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Abstract

We develop a model in which delinquents compete with each other in criminal activities but

may benefit from being friends with other criminals by learning and acquiring proper know-how

on the crime business. We first study the Nash equilibrium of this game by taking the social

network connecting agents as given. We show that this game always has a pure strategy Nash

equilibrium for generic values of the parameters. Ex ante identical individuals connected through

a network can end up with very different equilibrium outcomes: either employed, or isolated

criminal or criminals in networks. We also show that multiple equilibria with different number of

active criminals and differing levels of involvement in crime activities may coexist and are only

driven by the geometry of the pattern of links connecting the criminals. We then consider a two-

stage network formation and crime decisions game. We show that the multiplicity of equilibrium

outcomes holds even when we allow for endogenous network formation.
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1 Introduction

In their seminal study, Shaw and McKay (1942) show that delinquent boys in certain areas of US cities have

contact not only with other delinquents who are their contemporaries but also with older offenders, who in

turn had contact with delinquents preceding them, and so on ... This contact means that the traditions of

delinquency can be and are transmitted down through successive generations of boys and across members

of the same generation, in much the same way that language and other social forms are transmitted.

The aim of this paper is precisely to study the role of social networks and social structure in facilitating

criminal behavior.

Even though there is an important literature in criminology and sociology on the social aspects of crime1

(see e.g. Sutherland, 1947, Sarnecki, 2001 andWar, 2002), surprisingly very little has been done in economics,

especially from a theoretical viewpoint, to try and wedge a careful bridge between the underlying social

setting where individuals are embedded, and the individual crime decisions. Two prominent exceptions are

Sah (1991) and Glaeser, Sacerdote and Scheinkman (1996).2

Let us now describe our model. As in the standard crime model (Becker, 1968), each individual has to

make a choice between becoming a criminal and participating in the labor market (these two activities being

mutually exclusive) by implementing a cost-benefit analysis. Compare to the standard model, we have at

least three main innovations.

First, the decision is not binary since individuals not only decide to become a criminal or not but also

determine how much effort to put in criminal activities.

Second, on the benefit part, the booty is not exogenous but depends positively on the effort level of the

criminal in question and negatively of the efforts of the other criminals. This is because the higher the crime

level, the less that remains for a particular criminal (the fixed pie to share shrinks with the aggregate level

of criminal activities).

Third, and this is our main innovation, on the cost part, criminals may benefit from being friends with

other criminals or more exactly from belonging to the same network of relationships. In our framework,

the social connections between criminals are modeled by means of a graph. We assume that the higher

the criminal connections to a criminal and/or the higher the involvement in criminal activities of these

connections, the lower his individual probability to be caught. The idea is as follows. There is no formal way

of learning to become a criminal, no proper “school” providing an organized transmission of the objective

skills needed to undertake successful criminal activities. Given this lack of formal institutional arrangement

whereby to learn how to become a criminal, we believe that the most natural and efficient way to learn to

become a criminal is through the interaction with other criminals.3 Delinquents learn from other criminals

1To avoid monotony, the terms “crime” and “delinquency”are used interchangeably throughout this paper.
2We will discuss in more details these two models in section 5.
3Empirical evidence suggests that indeed peer effects are very strong in criminal decisions. Case and Katz (1991), using data

from the 1989 NBER survey of youths living in low-income Boston neighborhoods, find that the behaviors of neighborhood

peers appear to substantially affect criminal activities of youth behaviors. They find that the direct effect of moving a youth

with given family and personal characteristics to a neighborhood where 10 percent more of the youths are involved in crime

than in his or her initial neighborhood is to raise the probabibility the youth will become involved in crime by 2.3 percent.

Ludwig et al. (2001) explore this last result by using data from the Moving to Opportunity (MTO) experiment that relocates

families from high- to low-poverty neighborhoods. They find that this policy reduces juvenile arrests for violent offences by

30 to 50 percent of the arrest rate for control groups. This also suggests very strong social interactions in crime behaviors. A

more recent paper by Chen and Shapiro (2003) find strong peer effects in prison by showing that worsening prison conditions

significantly increases post-release crime.

2



belonging to the same network how to commit crime in a more efficient way by sharing the know-how about

the “technology” of crime. In our model, we capture this local nature of the mechanism through which

skills are acquired by relating the individual probability to be caught to the crime level involvement of one’s

direct mates, and by assuming that this probability decreases with the corresponding local aggregate level of

crime. The criminology and sociology literature proposes different mechanisms according to which social ties

among criminally active individuals are a means whereby the individuals in question exert an influence over

one another to commit offences (e.g. social facilitation model, subdeviance local norms, etc... just to name

a few). Note, though, that for the outside observer, our assumption of local know-how sharing is equivalent

to many other models of local social influence in crime decisions.

This view of criminal networks and the role of peers in learning the technology of crime is not new, at

least in the criminology literature. In his very influential theory of differential association, Sutherland (1947)

locates the source of crime and delinquency in the intimate social networks of individuals. Emphasizing

that criminal behavior is learned behavior, Sutherland (1947) argued that persons who are selectively or

differentially exposed to delinquent associates are likely to acquire that trait as well.4 In particular, one

of his main propositions states that when criminal behavior is learned, the learning includes (i) techniques

of committing the crime, which are sometimes very complicated, sometimes very simple, (ii) the specific

direction of motives, drives, rationalization and attitudes. Interestingly, the positive correlation between

self-reported delinquency and the number of delinquent friends reported by adolescents has proven to be

among the strongest and one of the most consistently reported findings in the delinquency literature (for

surveys, see War, 1996 and Matsueda and Anderson, 1998).

One natural way of interpreting the social connections between criminals is through a gang since the

latter is in general viewed as a specific type of criminal network (Sarnecki, 2001). Indeed, when individuals

belong to the same gang, they learn from each other. Using data from the Rochester Youth Development

study, which followed 1,000 adolescents through their early adult years, Thornberry et al. (1993) find that

once individuals become members of a gang, their rates of delinquency increase substantially compared to

their behavior before entering the gang. In other words, networks of criminals or gangs amplify delinquent

behaviors. In the sociological literature, this is referred to as the social facilitation model, where gang

members are intrinsically no different from nongang members in terms of delinquency or drug use. If they

do join a gang, however, the normative structure and group processes of the gang (network) are likely to

bring about high rates of delinquency and drug use. Gang membership is thus viewed as a major cause of

deviant behavior. This is also what is found by Thornberry et al. (2003).

In the present paper, the gang interpretation of the network is possible as long as it means that the role

of gangs is to facilitate the learning of crime technology to its members without implying that crimes are

committed collectively as it is sometimes the case in gang activities. In other words, in our model, individuals

learn illegal conduct from others but practice it alone.

These are the key ingredients of the model in which the other criminals have two opposite effects on a

given criminal’s (expected) utility. On the one hand, they compete in criminal activities since the higher the

number of criminals, the smaller the pie to share. On the other, the higher the number of criminals that are

connected to a given criminal, the lower is his probability to be caught because he benefits from the knowledge

of the others in terms of crime efficiency. The tension between these two forces is at the heart of our model. In

4Sutherland (1947) and Akers (1998) expressly argue that criminal behavior is learned from others in the same way that all

human behavior is learned. Indeed, young people may be influenced by their peers in all categories of behavior - music, speech,

dress, sports, and delinquency.
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our framework, criminal friends (social connections) create both positive and negative externalities between

each other. The competitive effect acts as a negative externality exerted by every individual criminal to

every other individual in the delinquent pool. By contrast, the positive externality in the form of know-how

is only exerted at the local level, among those directly connected individuals.5 The span and intensity of

this latter externality is determined by the shape of the social network and varies across individuals (and

their graph locations) with the geometry of the network of links. In particular, ex ante identical individuals

holding asymmetric network locations face different externality intensities. Because these externalities are at

the heart of the cost-benefit analysis undertaken at the individual level, the equilibrium pattern of network

decisions is likely to reflect ex post heterogeneity among individuals. In solving the tension between the two

forces, the geometry of the network of connections plays a major role, that we explore.

We first study the Nash equilibrium of this game (where individuals choose their crime’s effort levels)

by taking the social network as given. In particular, we study the impact of the shape of the network on

the crime rate in the economy. We first show that this game always has a pure strategy Nash equilibrium

for generic values of the parameters. As in Becker, and not surprisingly, we find that, if punishment is

sufficiently high, then individuals never choose to become a criminal and all enter the labor market. When

punishment is not too high, some individuals are criminal and some are not, and the equilibrium pattern

of crime decisions is carefully tailored to the underlying network geometry. In particular, different Nash

equilibria with different number of active criminals and differing levels of involvement in crime activities may

coexist. Note that this multiplicity of equilibria is obtained with ex ante identical agents, and is only driven

by the geometry of the pattern of links connecting them. Note also that multiplicity of equilibria, as obtained

in our model, is consistent with the high (unexplained) variance of crime levels across geographic locations

(see, e.g., Glaeser et al. 1996).

The way we compute the Nash equilibrium is as follows. Given n agents in the economy, we start with

a given graph of relationships that could have any shape. Prominent examples are the complete graph in

which each agent is in direct relationship with every other agents so that each has n− 1 direct contacts, the
circle in which each agent has two direct contacts, and the star-shaped graph where one central agent is in

direct contact with all the other peripheral agents who, in turn, are only connected to this central agent.6

Given this initial graph of relationships on the whole population set N , we solve for the Nash equilibria

in crime-effort levels exclusively (that is, without yet considering the outside option provided by the labor

market) for all possible subsets of criminals S. The network of know-how sharing among a given subset

S ⊂ N of criminals is given by the network induced on S by the initial graph. The network induced on

S is simply obtained by removing from the initial network all agents not in S and all links stemming from

agents not in S. Then, we look at all the induced graphs of criminals that are indeed sustainable as a Nash

equilibrium of our general game, where agents compare crime benefits with the outside option provided by

the labor market (i.e. no unilateral deviation shall be profitable for neither type of agents, nor criminal, nor

worker). Nash equilibria are thus characterized by the subset S of active criminals and the corresponding

crime effort levels; all remaining agents in N\S are workers. The network induced by the initial graph on
5In fact, when solving for the Nash equilibria of the crime decision games, the strategic interdependence of individual

decisions ruling out the equilibrium outcome within a connected set of agents causes this externality to unravel (indirectly and

through individual best-responses to population decisions) along the network to distant indirect contacts.
6Both the complete graph and the circle are examples of regular networks where all agents have the same number of direct

contacts and, thus, hold symmetric positions in the network. By contrast, in the star, agents hold very asymmetric positions,

as one agents has n− 1 direct links while all the other agents only have 1 direct link.
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S and connecting active criminals is unambiguously defined. Given that different subsets S are, in general,

interrelated through induced graphs of different geometry, multiple network configurations and crime patterns

can emerge at equilibrium for the same conditions on parameter values. Nash equilibria may differ in the

actual number of active criminals, the crime-effort level they are providing and/or the geometric pattern of

links among them. We also show with an example that delinquents provide a higher individual crime effort

when linked to other criminals than not. This is in accordance with the empirical findings of Thornberry et

al. (2003) who show that networks of criminals or gangs amplify delinquent behaviors

In order to obtain closed-form solutions for the equilibrium crime effort levels, the number of active

criminals and the patterns of links connecting them, we focus on regular networks, i.e. networks for which each

agent has the same number of direct links. Starting from a given network, we look exclusively at the induced

regular subgraphs that are sustainable at the Nash equilibrium. When criminals are connected through a

regular network, they all exert the same crime-effort level which can now be simply expressed in terms of

the number of active criminals and the size of the actual network connecting them. Unfortunately, when we

restrict to this particular family of networks, existence of equilibrium outcomes is no longer guaranteed. The

difficulty is mostly a graph-theoretical issue. For example, start with a star-shaped network with n = 4 (i.e.

the individual in the center has 3 links and all the other peripheral individuals have only one link). Then, it

should be clear that there will never exist an induced regular graph with two links. The only possible induced

regular graph is with one link in which two individuals are linked together (the individual in the center linked

with any other peripheral individual) and are thus criminals, and the two other individuals are not linked

together and can be either criminal or not. Complete graphs are of particular interest when dealing with

regular graphs. Indeed, complete networks have the interesting property that all their induced subgraphs are

regular, and existence of symmetric Nash equilibria on regular subgraphs is no longer an issue.7 We show

in this case that the aggregate crime level decreases non-linearly with the level of punishment. Moreover,

the marginal decrease in aggregate crime level resulting from a marginal increase in punishment intensity

increases with the initial value of the punishment. In words, variations of the same size of the punishment

level are more effective the higher the statu quo value for such punishment level.

One of the main result of this first analysis is that ex ante identical individuals connected through a network

can end up with very different equilibrium outcomes: either employed, or isolated criminal or criminals in

networks. Part of this ex post heterogeneity is amenable to the presence of geometric asymmetries in the

locations held by individuals in the original network (some being initially very well-connected, some not).

But, besides this structural network asymmetry across individuals, ex post heterogeneity is also explained by

the graph theoretical restrictions on the shape of the induced graphs imposed by the geometry of the original

graph.8 Given the prominent role played by the original network of contacts in shaping individual incentives

and equilibrium outcomes, we should expect the agents to try and manipulate the network geometry at

their advantage. In particular, one may wonder whether the multiplicity of Nash equilibria is not an artifact

driven by the exogenously given initial network of contacts and its particular geometry. In the second part

of the paper, we explicitly deal with the issue of endogenous network formation.

A recent literature provides a number of models of network formation. Here, we consider a two-stage

network formation and crime decisions game. At the second stage, agents play the crime decisions game

described above. At the first stage, we consider the following non-cooperative game of network formation:

7In fact, the graph induced on a set S by the complete graph on the original population N is the complete graph on S.
8That may arise even when the original graph is regular, as in the example with n = 4 agents on a circle.
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individuals choose simultaneously with whom they wish to form links.9 Given the agents wills, we impose

that mutual consent is needed for a link to be effectively formed. To rule out coordination problems that

plague most games of network formation, we focus on Nash equilibria of the first-stage game with the added

requirement that any mutually beneficial link be formed at equilibrium. Therefore, agents decide to form

networks in the first stage anticipating their criminal/work decisions that are taken in the second stage.

The multiplicity of Nash equilibria of the second-stage game challenges a general analysis. We thus focus

on the case with n = 4 agents, for which we provide a whole characterization of the Subgame perfect Nash

equilibria (with the refinement mentioned above). We show that only six different network configurations (out

of 75) may be sustained at equilibrium of the network formation and crime decision game.10 In particular,

any number of criminals can be obtained at equilibrium depending on the values of w and φ. But, given a

number of active criminals, strong geometric restrictions are imposed on the network arrangement connecting

them. For instance, when only two criminals are active, they are necessarily linked; with three criminals,

necessarily one is completely isolated while the remaining two criminals are linked to each other. Because

of this feature, the aggregate crime level varies non-linearly with the punishment cost φ (holding the wage

constant). Transitions from one equilibrium network configuration to another as φ varies translate into

abrupt variations of this aggregate crime level. Although the network is now a manipulated device, the

restrictions on network geometries at equilibrium do not rule out multiplicities of crime patterns. Indeed,

for low values of φ and/or w, all four criminals are active, but they may interrelated in two different ways:

either through the complete graph; else, one agent is isolated and the three others linked through a star.

2 The model

Individual payoffs There are n agents in a set N = {1, . . . , n}. All agents are risk-neutral and

maximize expected material payoffs. Agents may either be criminals or participate in the labor force.

Agents in the labor force earn a wage w, while those involved in criminal activities receive an expected

payoff di = pi (yi − f)+(1− pi) yi = yi−pif , where yi is i’s booty, pi his probability to be caught and f the
corresponding fine. Agent i’s expected payoffs are thus πi = max {yi − pif ;w}. The rewards from becoming
a criminal are thus balanced against the gains from participating in the labor force.

In our model, criminals also decide how much effort ei ∈ [0, e] they devote to delinquent behavior. By
convention, ei = 0 means that agent i rejects being a criminal and, instead, enters the labor force. Denote by

e = (e1, . . . , en) a population crime effort profile and by e−i the crime efforts profile of all agents in N except

agent i. When i is indeed a criminal, we assume that his booty yi is a function of e, with ∂yi (e) /∂ei ≥ 0
and ∂yi (e) /∂e−i ≤ 0 (for the component-wise ordering for e−i). In words, individual booties increase with
one’s involvement in crime (captured by ei) but decrease with other’s involvement in delinquent behavior

(captured by e−i), reflecting rivalry in the individual crime gross payoffs.

The network Besides from being competitors in the crime market, criminals may also benefit from

having criminal mates. This benefit may take the form of know-how sharing about delinquent behavior

between individuals that know each other. We represent social connections by a graph g, where gij = 1 if i

knows j and gij = 0 otherwise. Links are taken to be reciprocal, so that gij = gji. By convention, gii = 0.

9To this purpose, they simply elaborate a list with the names of the agents they would like to be linked with.
10This number corresponds to the case where neither criminal nor worker’s identity matter.
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Therefore, i and j share their knowledge about delinquent activities if and only if gij = 1.

We assume that a higher individual know-how induces a lower individual probability pi to be caught

when involved in delinquent activities. Know-how is collected from criminal mates. It increases with the

number of such mates and with their involvement in crime. Formally, given a network g and a criminal

profile e, ∂pi (e) /∂ej ≤ 0 whenever gij = 1. We also assume that ∂pi (e) /∂ei ≥ 0, that is, the probability to
be caught increases with exposure to crime.

Network payoffs Given a network g, a crime profile e, a fine f and a wage w, the individual expected

gains from becoming a criminal are di (e, f, g) = yi (e) − pi (e, g) f , and the overall individual expected
payoffs are πi (e,w, f, g) = max {di (e, f, g) ;w}. For sake of tractability, we restrict to the following linear
expressions for, respectively, the booty and the punishment probability:(

yi (e) = ei(1−
P
j∈N ej)

pi (e, g) = p0ei(1−
P
j∈N gijej)

In the sequel, given a network g, we restrict to those crime profiles e such that both yi (e) and pi (e, g) are

non-negative, for all i ∈ N . Letting φ = p0f denote the marginal expected punishment cost for an isolated
agent, individual expected payoffs become

πi (e,w,φ, g) = max{ei(1−
X
j∈N

ej)− φei(1−
X
j∈N

gijej);w} (1)

3 Fixed networks

The crime decision game Consider some given network g connecting individuals. We first assume

that g is fixed, and we focus on the individual decisions to become a criminal against entering the labor

force. The crime decision game is as follows. The set of players is N , a strategy of player i is a crime effort

level ei ∈ [0, e] for some e > 0, where ei = 0 means that i enters the labor force and gets the wage w, and
payoffs are given by (1).

Note that the individual payoffs of this crime decision game depend both on the strategy profile (e1, ..., en)

being played and on the topology of the underlying network connecting individuals. But, given that the

network structure influencing payoffs is exclusively the one connecting active criminals among themselves,

the actual topology of the network affecting payoffs is itself shaped by the strategies adopted by the players

(either work or become a criminal; and, if a criminal, how much effort to devote to such activity). The

impact of individual decisions on the criminal network and on payoffs thus goes either ways. This interplay

between individual strategies and interaction structure is at the heart of our analysis.11

Given a network g, an exogenously given wage w and the marginal expected punishment cost for an

isolated individual φ, we denote the corresponding crime decision game by Γ (w,φ, g). We solve for the Nash

equilibria in pure strategies of this game. These equilibria depend on w, φ and g.

Solving for the crime decision game Given a crime decision profile e, agent i’s gains from crime

are:

di (e,φ, g) = ei(1−
X
j∈N

ej)− φei(1−
X
j∈N

gijej),

11For another model where strategies and interaction structure are interrelated and, together, determine individual payoffs

in a public good settings, see Bramoullé and Kranton (2003).
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with cross-derivatives ∂2di/∂ei∂ej = −1 + φgij . We distinguish two cases. First, when φ < 1, the cross-

derivatives are always negative and crime effort decisions are strategic substitutes.12 Second, if φ ≥ 1, then
∂2di/∂ei∂ej < 0 when gij = 0 while ∂2di/∂ei∂ej ≥ 0 when gij = 1. In words, crime decisions are global

strategic substitutes but local strategic complements, where local (resp. global) refers to directly linked

(resp. not directly linked) individuals. We have the following result.

Lemma 1 When φ ≥ 1, at the unique Nash equilibrium of Γ (w,φ, g), all agents enter the labor force.

Proof. Suppose that φ ≥ 1. We show that πi (0, e−i) ≥ πi (ei, e−i), for all (ei, e−i) ∈ [0, e]n and i ∈ N .
First note that πi (0, e−i) = max {0, w} = w, for all e−i. Suppose that πi (eei, ee−i) > w for some ee and i ∈ N .
Then, di (ee,φ, g) > w. Given that both (1− φ) ≤ 0 and −φPj∈N (1− gij) ej ≤ 0, necessarily both ei > 0
and 1−Pj∈N ej < 0, implying that yi (ee) < 0.
¿From now on we restrict to the case φ < 1.

Consider some w, φ and g. We describe a simple procedure to construct the Nash equilibria in pure

strategies of Γ (w,φ, g). To this purpose, we introduce an auxiliary game, denoted Γ∗ (φ, g), and defined
as follows. Players in N select an effort level ei ∈ IR and agent i’s payoffs are di (e,φ, g). In other words,
Γ∗ (φ, g) = Γ (−∞,φ, g) with the added requirement that the individual strategy set is now IR instead of

[0, e].

Lemma 2 There exists a finite set Z ∈ IR such that, for all φ ∈ (0, 1) \Z and all network g on N , the set

of Nash equilibria in pure strategies of Γ∗ (φ, g) exists and is unique.

We refer to the situations in which φ /∈ Z as generic situations. Since Z is a finite set, the whole set of

nongeneric situations has Lebesgue measure of zero. For the equilibrium analysis, we restrict from now on

to generic situations.

For all φ and g, denote by e∗ (φ, g) = (e∗1 (φ, g) , . . . , e∗n (φ, g)) ∈ IRn the unique Nash equilibrium in pure

strategies of Γ∗ (φ, g). This equilibrium is obtained from the following (standard) procedure. First, given

some profile e ∈ IRn, we derive the best-response function of each agent i ∈ N , BRi (e−i), from the first-order
condition on di (e,φ, g). Then, the n equations BRi (e−i) = ei, i ∈ N characterizing the equilibrium efforts

of Γ∗ (φ, g) define a linear system of n equations:

2ei +
X
j 6=i

(1− φgij) ej = 1− φ, i ∈ N (2)

with n unknowns ei, whose unique solution is precisely e
∗ (φ, g).13

Consider some wage level w, marginal punishment cost φ and network g on N . We first introduce a

definition.

Definition 1 For all subset S ⊂ N of players in N , let g (S) such that gij (S) = 1 if and only if both gij = 1

and i, j ∈ S.
12Strictly speaking, crime efforts are strategic substitutes insofar we ignore the outside opportunity to enter the labor force

or, equivalently, we set w = −∞.
13Note that payoffs in Γ∗ (φ, g) satisfy all the required smoothness conditions for all the Nash equilibria of the game to be

exactly characterized by this set of equations.
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We say that g (S) is the network induced by g on S. The network g (S) is obtained the following

way. Originally, all agents in N are connected according to some given network g. Prominent examples of

such networks are (a) the complete graph, where each agent is directly linked to every other agent in the

population, (b) the star-shaped graph, where some given agent, say agent 1, is related to every other agent in

the population, while every other agent only has agent 1 as his direct contact, (c) a circle, where each agent

has exactly two direct contacts. Suppose now that we shrink the population from N to N\{i}. This has an
impact on the geometry of the links among the remaining set of player N\{i}. Indeed, by eliminating agent
i from the population, we also eliminate all the direct links stemming from i in the original graph g. The

network we obtain after eliminating i’s node and corresponding direct links is denoted g (N\{i}) and termed
network induced on N\{i} by g. Suppose now we want to obtain the subnetwork g (S) of g induced by some
originally given network g on some subset S of agents. Consider the set N\S of agents not in S. Then, we
simply eliminate from g every node corresponding to an agent in N\S and every direct link stemming from
those agents. The resulting network is g (S).

The figure below shows the possible network geometries obtained from the complete graph, a star-

shaped graph and a circle for n = 4 when we remove progressively one node from the population (and its

corresponding direct links). We omit the cases with one isolated node alone.

complete

circle

star

tt tt¡¡@@ tt t@@ tt
tt tt tt t tt
tt tt¡¡

tt t tt t tt t t
As we remove nodes from either the complete graph or the circle, we obtain a nested chain of induced

(sub)networks. The case of the star is a bit different as we get two chains of nested induced (sub)graphs.

One chain is obtained by removing progressively the peripheral players; the other chain is obtained by

first removing the central player and then the peripheral players. In the first case, induced subgraphs are

themselves stars with a fewer number of peripheral players. In the second case, induced subgraphs consist

on isolated players, as all the links in the original network g stem from the central player being removed

first. The precise identities of the agents being removed (and not only their number) thus may considerably

impact the shape of the resulting induced graphs. The complete graph is a remarkable exception as, in this

case, only the number of agents being removed (and not their precise labeling) matters.

As the previous examples show, the geometry of the original graph imposes restrictions on the possible

geometries for the induced subgraphs. In general, the set of subgraphs for different original graphs do not

coincide.14 Both these restrictions on subgraphs and the dependence of the shape of the subgraphs on the

identity of the agents being removed (and not only their number) will be at the root of both the multiplicity

of the equilibria of the game and some equilibrium existence problems. We discuss these issues below. We

first characterize the Nash equilibria of the crime decisions game.

The procedure to obtain the Nash equilibria of Γ (w,φ, g) builds on the computation of the Nash equilibria

of the auxiliary game Γ∗ (φ, g) (where the outside option provided by the labor market has been removed)

14Yet, two identical subgraphs may sometimes be obtained from different original graphs (as for the star with two peripheral

agents obtained both from the star and the circle).
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on all the possible subgraphs g (S) ⊂ g induced by the original network g on all possible subsets S ⊂ N of

players. With this list of equilibrium effort levels in hand for all the g (S), S ⊂ N , and given some wage

level w, it is easy to single out those subsets S of criminals and corresponding equilibrium profiles of the

auxiliary game for which no criminal in S has incentives to take the outside option w, and no worker in N\S
has incentives to enter the crime pool.

More precisely, for all S ⊂ N , compute the unique Nash equilibrium in pure strategies of Γ∗ (φ, g (S)),
that we denote by e∗ (φ, g (S)). As seen before, this amounts to solving a linear system of n equations with

n unknowns. Define:
m (φ, S) = min {e∗i (φ, g (S)) | i ∈ S} , for all S ⊂ N
m (φ, S) = max

©
e∗j (φ, g (S ∪ {j})) | j /∈ S

ª
, for all S ⊂ N,S 6= N

m (φ, N) = 0

Then, we have:

Proposition 1 Let S ⊂ N . If m (φ, S) >m(φ, S) ≥ 0, then the crime decision profile e such that ei =

e∗i (φ, g (S)) for all i ∈ S, and ei = 0 otherwise is a Nash equilibrium of Γ (w,φ, g) for all wage w such that

m (φ, S) >
√
w >m(φ, S). Moreover, all the Nash equilibria of Γ (w,φ, g) are of this sort.

The intuition for the wage range condition is as follows. First, note that for all φ and g, the equilibrium

payoffs of the subsidiary game Γ∗ (φ, g) are exactly di (e∗i (φ, g)) = [e∗i (φ, g)]
2, that is, equilibrium payoffs

coincide with the square of equilibrium effort levels. Consider now the crime decision game Γ (w,φ, g). At

any equilibrium of Γ (w,φ, g) involving exactly a set S of criminals, no worker in N\S gains by entering the
crime business (that is, w > [m (φ, S)]

2) and no worker in S gains by participating in the labor force (that

is, [m (φ, S)]
2
> w). Stating the condition with

√
w instead of w has the added virtue to check for positive

crime effort levels at equilibrium.

When m (φ, S) >
√
w >m(φ, S) for some w and S, at all the Nash equilibria of Γ (w,φ, g), there are

exactly |S| criminals and n− |S| workers. At every such equilibria, g (S) is the know-how sharing network
connecting active criminals. Links in g\g (S) connect workers to workers or workers to criminals. Therefore,
no actual know-how is being shared between the end nodes of such connections, and links in g\g (S) are
redundant at equilibrium.

Proposition 1 does not establish uniqueness of the Nash equilibria for every set of the parameter values

w, φ and g. In fact, as illustrated below with an example, different crime patterns corresponding to different

subsets S and S0 of active criminals can be sustained at equilibrium for the same parameter values. The

multiplicity arises from the fact that, for some networks g, two different networks of active criminals g (S)

and g (S0), g (S) 6= g (S0), can arise at equilibrium for identical w and φ.

Existence of Nash equilibria in pure strategies of Γ (w,φ, g) is a side-product of the previous characteri-

zation result.

Corollary 1 For all w,φ and g, the crime decision game Γ (w,φ, g) has a pure strategy Nash equilibrium.

Proof. If there exists some S ⊂ N such that m (φ, S) >m(φ, S) ≥ 0, then Proposition 1 applies. Otherwise,
all agents working is a Nash equilibrium.

We now work out all the Nash equilibria in an example with n = 4 agents located on a circle g. We show

that, under certain conditions on w and φ, multiple criminal networks can arise at equilibrium for the same

10



parameter values. The example also serves the purpose to illustrate the differential effects of the competition

for the booty and the know-how sharing among direct mates on equilibrium outcomes.

Example with n = 4 agents on a circle Consider n = 4 agents arranged on a circle g where each

agent has exactly two direct contacts. The network connecting agents is represented by a graph where nodes

stem for agents and arcs represent direct social links between their end nodes. We follow the convention to

represent criminals (resp. workers) with full (resp. empty) nodes. As no actual crime knowledge is shared

among workers, or between a worker and a criminal, the arcs stemming from workers are represented by

dashed lines (they are redundant).

Fix φ ∈ (0, 1). Then, any of the crime pattern depicted below can be sustained as a Nash equilibrium
for a suitable wage range.15

t1

t2 ◦ 3

◦ 4
g(1, 2)

t1

◦2 ◦ 3

◦ 4
g(1)

◦1

◦2 ◦ 3

◦ 4
g(∅)

t1

t2 t3
t4

g

t1

t2 t3
◦ 4

g(1, 2, 3)

t1

◦2 t3
◦ 4

g(1, 3)

More precisely, let N = {1, 2, 3, 4}. For all subset S ⊂ N of agents, let e∗ (g (S)) denote the Nash equilibrium
profile where only agents in S are criminals, while agents in N\S are workers. The network connecting
criminals is then g (S), that is, the network induced by g on S. Specializing and solving the equilibrium

equations (2) of Γ∗ (φ, g0) for all induced network g0 ⊂ g, we obtain the following equilibrium effort levels:

Network g0 g g (1, 2, 3) g (1, 3) g (1, 2) g (1) g (∅)
e∗1 (φ, g0)

1−φ
5−2φ

1−φ2
4+4φ−2φ2

1−φ
3

1−φ
3−φ

1−φ
2 0

e∗2 (φ, g0)
1−φ
5−2φ

(1+2φ)(1−φ)
4+4φ−2φ2 0 1−φ

3−φ 0 0

e∗3 (φ, g0)
1−φ
5−2φ

1−φ2
4+4φ−2φ2

1−φ
3 0 0 0

e∗4 (φ, g0)
1−φ
5−2φ 0 0 0 0 0

We have the following inequalities:(
e∗1 (g (1)) > e∗1 (g (1, 2)) > e∗1 (g (1, 3)) > e∗2 (g (1, 2, 3)) > e∗1 (g (1, 2, 3)) > e∗1 (g) , if 0 < φ < eφ
e∗1 (g (1)) > e∗1 (g (1, 2)) > e∗2 (g (1, 2, 3)) > e∗1 (g (1, 3)) > e∗1 (g (1, 2, 3)) > e∗1 (g) , if eφ < φ < 1

for some uniquely defined eφ ∈ (0, 1). From these inequalities, we deduce the following:

Equilibrium network g g(1, 2, 3) g(1, 3) g(1, 2) g(1) g(∅)
Upper bound for

√
w 1−φ

5−2φ
1−φ2

4+4φ−2φ2
1−φ
3

1−φ
3−φ

1−φ
2 +∞

Lower bound for
√
w 0 1−φ

5−2φ
(1+2φ)(1−φ)
4+4φ−2φ2

1−φ2
4+4φ−2φ2

1−φ
3−φ

1−φ
2

The following comments are in order. First, for those S such that i ∈ S, e∗i (g (S)) increases with |S|,
reflecting the competition or over-crowding effect on the booty size yi (e). Second, e

∗
1 (g (1, 2)) > e

∗
1 (g (1, 3)).

15See the appendix for more details. In fact, g (1, 3) can only emerge at equilibrium under some conditions both on w and

on φ, as we discuss below.
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There are exactly two agents involved in delinquent behavior both in g (1, 2) and in g (1, 3). Only in g (1, 2),

though, do the active criminals effectively share their knowledge. The inequality then simply reflects the

positive effect of actual knowledge on the level of crime. Third, e∗2 (g (1, 2, 3)) > e∗1 (g (1, 3)) if and only if φ >eφ. Despite there being more criminals in g (1, 2, 3) than in g (1, 2), when the premium to sharing knowledge

(as captured by φ) is high enough, the knowledge sharing positive effect on crime efforts overwhelms the

competitive negative effect on crime involvement.16

Finally, when φ < eφ, both g (1, 2) and g (1, 3) can be sustained at equilibrium for the (non-empty)

wage range e∗1 (g (1, 3)) >
√
w > e∗2 (g (1, 2, 3)). Consider for instance g (1, 2). Given that e∗1 (g (1, 2)) >

e∗1 (g (1, 3)) >
√
w, no criminal in g (1, 2) (that is, neither agent 1 nor agent 2) gains by entering the labor

force. Moreover, given that
√
w > e∗2 (g (1, 2, 3)) > e∗1 (g (1, 2, 3)), no worker in g (1, 2) (that is, neither

agent 3 nor agent 4) gains by dropping out from the labor market and becoming a criminal. Therefore,

no unilateral deviation from g (1, 2) is profitable for neither type of agents (nor criminals, nor workers).

The same reasoning applies to g (1, 3). It is readily checked that, whenever g (1, 2) and g (1, 3) coexist at

equilibria, the actual payoff allocation corresponding to g (1, 2) Pareto dominates that from g (1, 3) because

of the positive effect of sharing knowledge in g (1, 2), absent in g (1, 3).

Regular networks In order to obtain closed-form solutions, we now focus on general regular networks.

Regular networks are such that
P
l∈N gil =

P
l∈N gjl = k, for all i, j ∈ N . In a regular network, all agents

have the same number of direct contacts k that we refer to as the degree of g. A regular network g of degree

k is denoted by gk. For instance, the complete graph on a population of n agents is a regular network of size

n− 1 and may well be denoted by gn−1. Also, the circle is a regular network of size 2 that we denote g2.
The previous example shows all the possible Nash equilibrium patterns when n = 4 and agents are

originally arranged on a circle. Some of these Nash equilibria involve criminals connected through a regular

network, as in g where all active criminals are connected to exactly two other active criminals, in g (1, 2)

where the two active criminals are in touch with each other. In some other cases, criminals are isolated, as

in g (1, 3) or in g (1) or hold asymmetric positions in the network of know-how sharing, as in g (1, 2, 3), where

agent 2 is in contact with two criminals whereas both 1 and 3 are only linked to one criminal each.

The following result provides a general characterization of the Nash equilibria of the crime decisions game

whereby criminals, at equilibrium, are connected through a regular network.

Proposition 2 At every Nash equilibrium of Γ (w,φ, g) involving exactly a set S of criminals connected

through a regular network g (S) = gk, the equilibrium crime effort levels are e
∗
i (φ, g (S)) = (1− φ) / (|S|+ 1− kφ),

for all i ∈ S.

It is readily checked that, for all i ∈ S, e∗i (φ, gk (S)) increases with the degree k of the know-how
sharing network, decreases with the number |S| of total criminals (competition effect), and decreases with
the punishment cost φ (deterrence effect).

The previous characterization result does not guarantee existence of such symmetric Nash equilibria of

the crime decision game where criminals are connected through regular networks. Establishing existence is

a twofold task. First, given a wage level w, a punishment cost φ and a degree k, we need to determine which

sets S of criminals, if any, arise at equilibrium.17 This is a standard game-theoretical existence problem.

16Note also that e∗2 (g (1, 2, 3)) > e∗1 (g (1, 2, 3)), reflecting the comparative knowledge advantage of the central agent 2 in
g (1, 2, 3) with respect to the two peripheral agents 1 and 3.
17Assuming that such criminals are connected at equilibrium by a regular network of degree k
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Second, we need to check whether criminals in S are indeed connected though a regular network gk, where

the network gk is the one induced by g on S. This is a graph-theoretical existence problem as it amounts to

identifying topological conditions, if any, on the original network g ensuring that g (S) = gk for the sets S

that are candidates to equilibrium. The graph-theoretical existence problem is not trivial. For instance, when

n = 4 and agents are originally on the circle g2, when
√
w ∈

³
1−φ
5−2φ ;

1−φ2
4+4φ−2φ2

´
, all agents in S = {1, 2, 3},

and only those agents, are prone to become criminals, whereas when
√
w ∈

³
1−φ2

4+4φ−2φ2 ;
1−φ
3−φ

´
the candidate

criminal agents are S = {1, 2}. In the first case, the network g (1, 2, 3) induced by the original graph on the
candidate set of criminals {1, 2, 3} is not regular, whereas g (1, 2) is a regular network of size one. We deal
with the two existence problems separately.

Fix w, φ and k. Suppose first that the network induced on any equilibrium candidate set S of criminals

is such that g (S) = gk. Let s∗ (w,φ, k) = (1− φ) /√w + kφ− 1. To simplify the statement of the following
result, we suppose that the size n of the population is such that n ≥ s∗ (w,φ, k).

Proposition 3 If
√
w ≤ 1/ (k + 2), there exists a Nash equilibrium of Γ (w,φ, g) with exactly s∗ (w,φ, k)

criminals connected through a regular network of size k, and n− s∗ (w,φ, k) workers.

Proof. First note that, when g (S) = gk, e∗i (φ, g (S)) ≤ 1/ (k + 2), as there are at least k + 1 nodes in a

regular network of degree k, which explains the condition on
√
w. Second, s∗ is defined such that, for all set

S∗ of criminals where g (S∗) = gk and |S∗| = s∗, we have e∗i (φ, g (S∗)) =
√
w.

Strictly speaking, the equilibrium size s∗ (w,φ, k) of the criminals pool is, in fact, equal to the highest
integer smaller or equal than (1− φ) /√w + kφ− 1. The condition √w ≤ 1/ (k + 2) simply guarantees that
s∗ (w,φ, k) > 0.
Applying the chain rule, it is a simple algebra exercise to check that ∂e∗i (φ, g (S

∗)) /∂k ≥ 0 whenever

k ≥ 1.18 In particular, the aggregate level of crime
P
i∈S e

∗
i increases with the degree k of the network

connecting criminals. Therefore, criminal interconnections generate a crime level premium with respect to

the case with no social interactions among criminals, and this premium increases with the density of the

existing pattern of connections among criminals. The social setting and its density or tightness have thus a

multiplier effect on aggregate observed crime levels.

Also, one can easily check that ∂e∗i (φ, g (S∗)) /∂φ = 0. At equilibrium, both the actual pool size of

criminals and the crime effort level of active delinquents adapt endogenously to variations of the crime

punishment level in a way that renders such external variations ineffective. In particular, the elasticity of

the aggregate level of crime with respect to the deterrence level φ is zero.

This observation, though, needs qualifying. Indeed, so far, the degree of the regular network k connecting

the S∗ criminals at equilibrium is assumed to be exogenous. Yet, the geometry of the initial network g imposes
very strong restrictions on the regular subnetworks that can be effectively induced by g on any subset of N .19

Consider for instance the 4−agents circle g in the example above, where each agent has exactly two direct
contacts. The shape of g clearly imposes many restrictions on the possible regular subnetworks induced by

g on subsets of N = {1, 2, 3, 4}. In this example, g (1, 2), g (2, 3), g (3, 4) and g (4, 1) are all regular networks
of size 1 induced by g on subsets of N . Yet, these are the only subsets of N on which g induces a regular

network of size 1. For instance, g (1, 3) is regular but of size 0, while g (1, 2, 3) is not regular as agent 2

18Indeed, ∂
£
s∗ (w,φ, k) e∗i (φ, g (S

∗))
¤
/∂k = (k − φ) (1− φ) / (s∗ + 1− kφ)2.

19Recall that, at equilibrium, g (S∗) = gk, that is, the regular network gk connecting the S∗ criminals needs to coincide with
the network induced by g on S∗.
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has two links while 1 and 3 only one.20 Suppose that, initially, there are exactly 4 criminals arranged in

the regular network g. A (properly calibrated) increase in φ induces, at equilibrium, a reduction of the

number of active criminals to 3. With three criminals, the corresponding network arrangement g (1, 2, 3) is

no longer a regular network. In this case, the restrictions the particular geometry of the original network g

imposes on the attainable induced subnetworks does not allow the set of criminals that remain active (after

φ has increased) to rearrange themselves into a regular network. In this simple example, the shape of the

equilibrium network of criminals can not adapt endogenously, together with the crime pool, to the increase

of φ so as to render this increase ineffective, and the elasticity of the aggregate crime level to an increase in

φ is not zero.

The existence of a regular subnetwork gk on the equilibrium set S
∗ of criminals induced by some initially

given network g on S∗ is essentially a graph theoretical issue that we shall not contemplate here. We will
rather focus on a particular class of networks where the problem of existence is trivially solved.

Suppose that the initial network connecting agents is the complete graph g on N where every agent is

directly linked to every other agent, that is, gij = 1, for all i 6= j. In g, each agent has exactly n − 1
connections. Then, for each subset S ⊂ N , the network g (S) induced by g on S is also a complete graph
on S where each agent in S is directly linked to every other agent in S. In g (S), all agents in S have

exactly |S| − 1 links (while those in N\S have no links). In words, all networks induced on a subset S by
the complete network are complete networks on the corresponding subset S. A previous example with n = 4

illustrates this particular property of complete graphs.

Fix w and φ. Let s (w,φ) = 1/
√
w − (1+ φ) / (1− φ) and, for simplicity, assume that n ≥ s (w,φ).

Corollary 2 Suppose that initially all agents are linked through the complete network g. Then , if
√
w ≤

(1− φ) / (1+ φ), there exists a Nash equilibrium of Γ (w,φ, g) with exactly s (w,φ) criminals fully intercon-

nected and n− s (w,φ) workers.

At any such equilibria, active criminals exert a crime effort e (w,φ) = (1− φ) / [1+ φ+ s (w,φ) (1− φ)].
It is readily checked that the elasticity ηse,φ of the aggregate crime rate se (w,φ) with respect to the pun-

ishment level φ is negative and increasing in absolute terms.21 Therefore, the marginal impact on aggregate

crime (measured through the resulting decrease of such aggregate crime level) of an increase ∆φ in the

punishment level is highly non-linear and increases with the initial value for φ.

4 Endogenous networks

We should expect criminals to select strategies both to maximize the size of their booty and to minimize the

individual probability to be caught. In this section, we consider the endogenous formation of networks so as

to encompass both dimensions of strategic behavior.

A recent literature provides a number of models of network formation, together with appropriate equi-

librium concepts.22 We first describe the non-cooperative game of network formation that we adopt for our

20Recall that we are considering so far the case of fixed networks, where agents can neither cut existing links nor add new

connections. Therefore, knowledge is effectively shared between two initially directly connected agents that end up being

criminals at equilibrium.
21We have ∂se/∂φ = −2/

£
1− φ2 + s (1− φ)2

¤
< 0 and ∂2se/∂φ2 = −4 [1 + φ+ s (1− φ)] /

£
1− φ2 + s (1− φ)2

¤2
< 0.

22See, for instance, Jackson and Wolinsky (1996) and Bala and Goyal (2000) for seminal contributions, and Jackson (2003)

for a survey of recent work in this flourishing new strand of research. Ioannides and Datcher Loury (2002) survey the network
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analysis. We then describe the two-stage game of network formation and crime decision that we analyze.

A non-cooperative network formation game with mutual consent23 Consider some payoff

function u (g) = (u1 (g) , . . . , un (g)) that assigns a payoff to every agent in N as a function of the underlying

network g connecting such agents. For each such payoff function u, consider the following network formation

game.

The set of players is N . Agents in N individually announce all the links they wish to form. For all

i, j ∈ N , ωi,j = 1 if i wants to link with j, and ωi,j = 0 otherwise. By convention, ωi,i = 0. A strategy

of agent i is ωi = (ωi,1, . . . ,ωi,n), and Ω
i = {0, 1}n−1 is the set of strategies available to i. The link ij

is created if and only if ωi,jωj,i = 1. Links are thus created only by mutual consent. A strategy profile

ω = (ω1, . . . ,ωn) induces a non-directed graph g (ω) and a vector of payoffs u (g (ω)). We omit ω in the

sequel when no confusion is possible.

We denote this network formation game by Ψ (u).

Pairwise-equilibrium networks A strategy profile ω∗ = (ω∗1, . . . ,ω∗n) is a Nash equilibrium of the

network formation game Ψ (u) if and only if ui
¡
g
¡
ω∗i ,ω∗−i

¢¢ ≥ ui ¡g ¡ωi,ω∗−i¢¢, for all ωi ∈ Ωi. Following
Goyal and Joshi (2002), we refine Nash equilibrium building upon the pairwise stability concept in Jackson

and Wolinsky (1996). We require that any mutually beneficial link be formed at equilibrium. We refer to

such particular class of Nash equilibria as pairwise-equilibrium networks.

Definition 2 g is a pairwise-equilibrium network of Ψ (u) if and only if there is a Nash equilibrium strategy

profile which supports g and, for all ij /∈ g, if ui (g + ij) ≥ ui (g), then uj (g) > uj (g + ij).

Therefore, g is a pairwise-equilibrium network of Ψ (u) if and only if no player gains by cutting any of

the existing link, and no two players not yet connected both gain by creating a direct link to each other.

The two-stage game of network formation and crime decision Consider now the following two-

stage game of network formation. In the first stage, agents decide non-cooperatively with whom they wish

to form links to share their know-how with. We model this stage as a network formation game with mutual

consent, as described above. In the second stage, individual decisions to become a criminal or to enter the

labor market are taken simultaneously. Here, we consider the game analyzed in the previous section.24

We denote this two-stage game by (Ψ ◦ Γ) (w,φ). We consider a refinement of subgame perfect Nash
equilibria (SPNE) of this game as we focus on pairwise-equilibrium networks for the first-stage game. We

refer to such SPNE as pairwise-SPNE.

We solve the game backwards. At the second stage, agents play the crime decision game Γ (w,φ, g). We

denote by π∗ (w,φ, g) the Nash equilibrium outcomes of such game that assigns a payoff to each agent in

literature from the particular prism of information exchange networks.
23A similar non-cooperative game and equilibrium concept to model network formation in different contexts has been used,

for instance, in Calvó-Armengol (2002) and Goyal and Joshi (2002).
24A link between two criminals has both a positive and a negative effect on the newly linked agents. First, because it

provides access to know-how about criminal behavior, it decreases the probability to be caught, which is a benefit. Second,

because the newly linked partner also benefits from the know-how being shared, the competition for the booty exerted by such

partner increases, which is a cost. Given this effects of both signs, we assume that establishing a link is costless, the cost being

indirectly induced by the know-how transmitted to the new partner. For another model of network formation with indirect

costs for establishing links, see the co-author model in Jackson and Wolinsky (1996).
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N for each network g.25 At the first stage, agents play the network formation game Ψ (π∗ (w,φ, ·)). The
potential multiplicity of Nash equilibrium outcomes for the second-stage crime decision game challenges a

full-fledged equilibrium analysis of the two-stage game of network formation and crime decision. We thus

focus on the particular case of n = 4 agents.26

An example with n = 4 agents We show that only six different network configurations can be

sustained as pairwise-SPNE of Ψ ◦ Γ.27

Proposition 4 When n = 4, and up to a relabelling of players, the only pairwise-SPNE networks charac-

terized by m >
√
w ≥ m are the following:

tt tt¡¡ tt tt¡¡@@ tt tt¡¡@@ tt ◦
t

¡¡ ◦
t
◦
t
◦
t
◦
◦

◦
◦
◦
◦

m (1−φ)(2−φ)
10−8φ

1−φ
5−3φ

1−φ
4−2φ

1−φ
3−φ

1−φ
2 +∞

m 0 (1−φ)(2−φ)
10−8φ

1−φ
5−3φ

1−φ
4−2φ

1−φ
3−φ

1−φ
2

These equilibrium configurations are depicted below as a function of w and φ.

w

1

.25

0 φ

25Recall that, in the previous section, we have characterized the Nash equilibrium outcomes of this second-stage game

Γ (w,φ, g) for any given fixed network g.

26Note also that, given a set N = {1, . . . , n} of agents, there exist
Pn

k=1
2
k(k−1)

2 different network configurations among all

the possible subsets of criminals in N , up to a relabelling of agents (if criminals’ identity matters, this number increases up toPn

k=1

¡
n
k

¢
2
k(k−1)

2 ). For instance, when n = 4, there are 75 network configurations of criminals to be considered (if criminals’

identity matters, there are 112 such configurations).
27See the appendix for more details.
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Any number of criminals can be obtained at equilibrium depending on the actual values of w and φ. The

equilibrium number of criminals decreases with w (holding φ constant) and with φ (holding w constant). At

equilibrium, for any given number of active criminals, strong geometric restrictions are imposed on the actual

know-how sharing network among these criminals. For instance, whenever only two agents are criminals at

equilibrium, both criminals agree to link each other at equilibrium. With three criminals, the equilibrium

network is asymmetric as two criminals form a pair while the third one remains isolated. Finally, with four

criminals, two different situations may arise. One in which every criminal is in direct contact with every

other criminal in the population (links form a complete network); one in which one criminal is alone, and

the three remaining criminals are all directly linked to each other.

Given a value for the exogenous parameters w and φ, the equilibrium aggregate level of crime defined as

e∗ = e∗1 + ... + e∗4 depends both on the number of active criminal and on the actual (equilibrium) network
connecting them. Given that the network of links is endogenously determined, and that network equilibrium

configurations differ drastically from one another (in terms of their geometry) variations of φ (while holding

w constant) yield abrupt variations on e∗ that reflect the transition from one network configuration to

another. The following figure shows the aggregate level of crime as a function of φ for different values of w

and illustrates the step-shape of e∗ (φ).

0

1

0.6 φ

e

W=0.15 W=0.10 W=0.05

Besides this non-linear variation of the aggregate crime rate with respect to the punishment level φ, a

salient feature of the game of network formation and crime decision Ψ ◦ Γ is the potential multiplicity of
equilibrium outcomes. With n = 4 agents, two different network configurations with 4 active criminals can be

sustained at equilibrium for the same values of w and φ, as illustrated above. The first network configuration

corresponds to a regular graph (where each agent has exactly three direct contacts), while the second network
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configuration is highly asymmetric, with one agent having two contacts, two agents having only one contact

and one agent having no contact at all at equilibrium. This multiplicity of network equilibria, corresponding

to different aggregate levels of crime, is consistent with the high unexplained variance in crime rates across

locations usually documented in the literature.28

5 Concluding discussion

The empirical literature documents huge differences in crime rates across different social groups and/or

locations displaying otherwise identical economic fundamentals. To account for this puzzle, the theoretical

literature devises mechanisms of social influence whereby individual decisions feed each other and, altogether,

generate a premium for the observed aggregate outcome (with respect to what would be observed if individual

outcomes were merely juxtaposed to each other, without cross influences of any sort). Glaeser et al. (2002)

and Horst and Scheinkman (2003) examine the incidence for empirical inferences and on the equilibrium of

and economy, respectively, of such social multiplier effects.29

The type of social interactions that generates social multiplier effects may take different forms. Indeed, the

social setting can affect any of the determinants of individual behavior, namely, opportunities, expectations

and preferences. Two important contributions analyze two possible incidences of social interactions on crime

behavior.30

First, Sah (1991) examines the influence of the social surrounding on individual expectations. In the

model, individuals’ perceptions of punishment probabilities evolve endogenously with the information on

the costs of crime these individuals gather locally, this information being in turn related to the level of

local involvement in crime activities. The paper examines the coupled dynamics of the individual sense of

impunity (or lack of), the associated individual crime behavior, and the local patterns of crime. It also

related this joint dynamics to the dynamics of the aggregate crime rate.31 Second, Glaeser et al. (1996)

provides a model of crime decisions with positive interrelationships among such decisions. In the model,

the positive covariance across agents’ decisions about crime generates an overall variance in crime rates

higher than predicted by the simple cost-benefit trade off at the individual level. The positive covariance

is obtained with a population of ex ante heterogeneous agents composed of rational agents, who decide

to become criminals after arbitrating the costs and benefits associated to this activity, and imitators, who

simply blindly imitate the behavior of rational agents. Given a topology for social interactions (in the paper,

agents are arranged on a circle), individual decisions taken by rational agents spill over nearby imitators and

generate clusters of agents undertaking identical activities (either criminals or workers).32 This model yields

28Glaeser et al. (1996) estimate that less than 30% of the variation in crimes rates across cities or subcity units can be

explained by differences in observable local area characteristics.
29The empirical anomalies due to social multiplier type of effects can be traced back to the ecological versus individual

correlation debate among sociologists during the 1950’s (see, e.g., Robinson (1950)). Glaeser et al. (2002) is a breakthrough to

this debate: the paper first constructs and estimator for the size of the social multiplier effect and then estimates this size in

three areas: education, crime and group membership.
30Another related contribution is Verdier and Zenou (2003) where the focus is on the geographical space. If everybody believes

that blacks are more criminal than whites (even if there is no basis for this), they show that ex ante identical agents who only

differ by the color of their skin (blacks versus whites) may have very different outcomes in terms of crime behavior. The key

result of this paper is that these beliefs cannot be self-fulfilling without the fact that blacks reside in remote location distant to

jobs.
31See Goyal (2003) for a general overview of learning dynamics with local information gathering.
32Models where agents take a binary decision and local influences are embedded in a regular lattice topology belong to the
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to an index of the degree of social interactions which is later estimated for a variety of different crimes in

the U.S.

In our model, the pattern of interconnections among active criminals is modelled as a graph. Through

their personal links with other criminals, and depending on the involvement in delinquent behavior of their

network mates, agents acquire proper know-how on the crime business. Therefore, and contrarily to Sah

(1991), social interactions do not affect the individual perception of the costs of crime but the true value of

these costs suffered by active criminals. Here, the social setting is not conducive to a higher or a lower sense

of impunity, but rather to a higher or a lower real impunity or vulnerability to punishment.

As in Glaeser et al. (1996), we show that criminal interconnections generate a premium on the aggregate

crime level (with respect to the case with no social interactions), and that this social multiplier effect increases

with the density of the pattern of connections. Our approach, though, departs from this paper in at least

three respects.33 First, rather than focusing on regular lattices, we model interaction structures as graphs,

and provide general results relating the geometry of the network links to individual and aggregate outcomes.

Our framework thus allows for as many interaction structures as different graph geometries.34,35

Second, we work with an ex ante homogeneous population of agents. Agents have identical idiosyncratic

features, and the only source of heterogeneity across agents stems from their network location and the

topology of the local network surrounding each of them. This type of heterogeneity, not necessarily observable

to the econometrician, influences both individual decisions and aggregate outcomes and, as shown in our

analysis, may be responsible for the unexplained observed variance in crime rates.36 Also, it is important

to notice that, with general graphs, the influence that any two agents exert on each other varies with the

pair of agents considered and their local network geometry. Here, the social multiplier effect aggregates

local influences of different intensities scattered on the graph and tailored locally to the particular geometric

features of the different parts of such graph. Besides obtaining a global social multiplier effect, our model

can also account for the pattern and (potentially) uneven distribution of such social multiplier effects among

subgroups of agents.37

Finally, we allow for the interaction structure to evolve endogenously on account of agents’ actions,

motivated by their own self-interest. It is important to notice that the multiplicity of equilibrium outcomes

holds even when we allow for endogenous network formation, as shown in the example with n = 4 agents

that we fully analyze. Our account of the unexplained variance in aggregate crime rates in terms of multiple

equilibria, established in the first part of the paper, is thus robust to the endogenous formation of the

interaction structure, an aspect that, so far, has been largely neglected in the literature.

general family of Ising models (or voter model). See, e.g., Fölmer (1974).
33Also, our model is not intended to provide an estimator for social interaction effects on crime decisions (and actually to

estimate such social multiplier effect on crime).
34Graphs can display many both local (closely versus loosely-knitted) and global properties (high versus low average path

length), and the range of graphs displaying different properties is wide.
35Note also the central role played in our analysis by the subgraphs induced on subsets of agents by the original graph, and

the (potential) multiplicity of network architecture that such subgraphs may display.
36Indirect inference of these types of social interaction effects is nonetheless possible. For example, using spatial auto-regression

techniques, Topa (2001) identifies significant correlations in unemployment across social contacts.
37The literature on social multiplier effects (or peer effects) is often silent about the precise mechanisms through which

individuals influence each other, and seldom relate the shape and intensity of the influence agents exert on each other to the

details of the underlying social interaction process. For a model of a process of information transmission among network related

agents on a labor market context, see Calvó-Armengol and Jackson (2003a,b).
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Appendix

Proof of Lemma 2: Taking first order conditions leads to the following best-response functions:

BRi (e−i) =
1

2

1−X
j 6=i
ej − φ

X
j 6=i
(1− gij) ej

 , i ∈ N .
The equilibrium profiles e∗ of Γ∗ (φ, g) are the solutions to BRi

¡
e∗−i
¢
= e∗i , i ∈ N . We obtain a linear system

of n equations with n unknowns:

2ei +
X
j 6=i

(1− φgij) ej = 1− φ, i ∈ N (3)

that we can write in matrix form M (φ, g) · e = (1− φ)1n, where mii = 2, mij = 1− φgij for all i 6= j and
10n = (1, . . . , 1). Denote by det (M (φ, g)) the determinant of M (φ, g). We show that there exists some finite

set Z ∈ IR such that det (M (φ, g)) 6= 0, for all φ /∈ Z and for all g on N .

Consider some network g. It is readily checked that det (M (φ, g)) is a polynomial in φ of degree smaller

than n.38 Therefore, det (M (φ, g)) has at most n different roots
neφ1 (g) , . . . , eφm (g)o, m ≤ n, such that

det
³
M
³eφi (g) , g´´ = 0 for all 1 ≤ i ≤ m. Given that there are exactly 2n(n−1)2 different networks g on N ,

the set of values Z of φ such that det (M (φ, g)) = 0 for some g on N is finite, with |Z| ≤ n2n(n−1)2 .

Example with n = 4 agents located on a circle: Simple algebra shows that e∗1 (g (1)) > e∗1 (g (1, 2)) >
e∗1 (g (1, 3)) > e∗1 (g (1, 2, 3)) > e∗1 (g). Also, e∗2 (g (1, 2, 3)) > e∗1 (g (1, 3)) is equivalent to 2φ

2+2φ−1 > 0. This
polynomial of order two in φ has exactly one root eφ = ¡√3− 1¢ /2 contained in (0, 1), and the inequality
holds if and only if φ > eφ.
Endogenous networks with n = 4 agents: We solve the game backwards. For each network configu-

ration on N = {1, 2, 3, 4}, we specialize and solve for the equilibrium equations (3). We analyze separately

three cases with, respectively, two, three and four criminals. For each case, we establish the sequence of

improving networks g → g0, where g0 improves upon g if either (a) two agents i and j in g such that ij /∈ g
mutually gain by linking each other, and g0 = g ∪ {ij}, or (b) one player in g unilaterally gains by seceding
some existing links ij1, . . . ijm ∈ g, and g0 = g\ {ij1, . . . , ijm}.
Two criminals: For all φ ∈ (0, 1), we have:

◦
t
◦
t
→ ◦

t
◦
t

Three criminals: For all φ ∈ (0, 1), we have:

tt ◦
t
→ tt ◦

t
→ tt ◦

t
→ tt ◦

t
¡¡

38Indeed, det (M (φ, g)) is a polynomial of highest degree in φ when gij = 1 for all i 6= j, in which case det (M (φ, g)) =

(1 + φ)n + n (1− φ) (1 + φ)n−1, which is a polynomial in φ of degree exactly n.
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Four criminals: For all φ ∈ (0, 1), we have:

tt tt → tt tt → tt tt@@ → tt tt¡¡@@

↑ ↑tt tt tt tt@@ → tt tt@@

↑ ↑ ↓tt tt → tt tt → tt tt¡¡

↑tt tt
Given the previous sequences of improving paths, we can restrict to the following network configurations

for the equilibrium analysis of the two-stage game, for which we compute the last-stage equilibrium effort

levels (e∗1, . . . , e∗4):

t1 t2 t4t3¡¡@@ tt tt¡¡ tt ◦
t

¡¡ ◦
t
◦
t
◦
t
◦
◦

◦
◦
◦
◦

e∗1
1−φ
5−3φ

1−φ
5−4φ

1−φ
4−2φ 0 0 0

e∗2
1−φ
5−3φ

1−φ
5−4φ

1−φ
4−2φ

1−φ
3−φ

1−φ
2 0

e∗3
1−φ
5−3φ

1−φ
5−4φ

1−φ
4−2φ

1−φ
3−φ 0 0

e∗4
1−φ
5−3φ

(1−φ)(2−φ)
10−8φ 0 0 0 0

Pairwise-comparisons of payoffs leads to the following inequalities:

1− φ
2

>
1− φ
3− φ >

1− φ
4− 2φ >

1− φ
5− 4φ >

1− φ
5− 3φ >

(1− φ)(2− φ)
10− 8φ , for all φ ∈ (0, 1)

from which we deduce the pairwise-SPNE networks when m >
√
w ≥m, for the following upper and lower

bounds on
√
w:

tt tt¡¡ tt tt¡¡@@ tt tt¡¡@@ tt ◦
t

¡¡ ◦
t
◦
t
◦
t
◦
◦

◦
◦
◦
◦

m (1−φ)(2−φ)
10−8φ

1−φ
5−3φ

1−φ
4−2φ

1−φ
3−φ

1−φ
2 +∞

m 0 (1−φ)(2−φ)
10−8φ

1−φ
5−3φ

1−φ
4−2φ

1−φ
3−φ

1−φ
2
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