
SUPPLEMENTAL MATERIAL 1:

THE STRUCTURE OF THE SUPPLEMENTAL MATERIALS AND

EXACT CONDITIONS FOR THEOREM 1

In the following Supplemental Materials, we prove Theorem 1 (folk theorem) for a general

game without cheap talk or public randomization in steps. Remember that the arguments

in the main text before Section 8 are valid for all the steps.

We o¤er an overview of the structure and summarize exactly what generic conditions we

need to prove theorem 1 in each step.

16 Structure

First, we show Theorem 1 for a general two-player game with the perfect cheap talk, noisy

cheap talk and public randomization.

Second, we show Theorem 1 for a general game with more than two players with the

perfect cheap talk, noisy cheap talk and public randomization.

Third, we dispense with the perfect cheap talk, noisy cheap talk and public randomization

in the two-player game. We proceed in steps. In the coordination block, we replace the

perfect cheap talk with the noisy cheap talk. Then, we dispense with the noisy cheap talk

in the coordination and main blocks. On the other hand, in the report block, we dispense

with public randomization, after which we replace the perfect cheap talk with conditionally

independent noisy cheap talk. Then, we dispense with the conditionally independent cheap

talk.

Fourth, we dispense with the perfect cheap talk, noisy cheap talk and public randomiza-

tion in the more-than-two-player game. The main di¤erence from the two-player case is how

to construct the coordination block without the perfect cheap talk but with the noisy cheap

talk.
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17 Assumptions

Given the above structure, we mention what generic assumptions we need to prove Theorem

1 in each step. Again, all the assumptions are generic under Assumption 2.

17.1 Two-Player General Games with Cheap Talk and Public Ran-

domization

In the two-player general game with the perfect cheap talk, noisy cheap talk and public

randomization, no additional assumption is necessary, that is, Assumptions 1, 3, 4 and 5 are

su¢ cient.

17.2 More-Than-Two-Player General Games with Cheap Talk and

Public Randomization

With more than two players, we modify Assumptions 4 and 5 to deal with the fact that in

addition to player i and her monitor player i� 1, there are players � (i� 1; i).

Assumptions 1 and 3 are maintained as it is. We replace Assumption 4 with its coun-

terparts for more than two players, Assumptions 6, 7 and 8. In addition, Assumption 5 is

replaced with Assumption 9.

17.3 Two-Player General Games withOUT Cheap Talk

Now we consider how to dispense with the perfect cheap talk, noisy cheap talk and public

randomization device in a general two-player game.

17.3.1 Coordination Block

In the main paper, each player communicates xi via perfect cheap talk.
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Noisy Cheap Talk First, we replace the perfect cheap talk in the coordination block with

the noisy cheap talk. To do so, we do not need any new assumptions.

Messages via Actions Second, we replace the noisy cheap talk with messages via actions.

Since we replace the perfect cheap talk in the coordination block with the noisy cheap talk,

this step enables us to dispense with the perfect cheap talk in the coordination block and

the noisy cheap talk in the main blocks. In this step, we need an assumption to make sure

that we can create a message protocol to preserve the important features of the inferences

which were guaranteed with the noisy cheap talk (see Lemma 2). A su¢ cient condition is

Assumption 10.

17.3.2 Report Block

In the main paper, the players coordinate on who will report the history by the public

randomization device. In addition, the picked player reports the history via perfect cheap

talk.

Dispensing with Public Randomization We �rst dispense with the public randomiza-

tion device. So that the players can coordination through their actions and private signals,

we need Assumption 11.

Conditionally Independent Noisy Cheap Talk We second replace the perfect cheap

talk with conditionally independent noisy cheap talk. For this step, no new assumption is

necessary (except for the availability of the conditionally independent noisy cheap talk).

Messages via Actions We third replace the conditionally independent noisy cheap talk

with messages via actions. To do so, we need to create a statistics of a receiver to infer the

messages from a sender so that the sender cannot get any information about the realization

of the statistics through her private signals. See Assumption 12. Note that we do not assume

that 2 jYij � jAjj jYjj for all i; j with i 6= j. Hence, we cannot use the method that Fong,
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Gossner, Hörner and Sannikov (2010) create �j(yj) in their Lemma 1, which preserves the

conditional independence property.

17.4 More-Than-Two-Player General Games withOUTCheap Talk

Finally, we consider how to dispense with the perfect cheap talk, noisy cheap talk and public

randomization device in a general more-than-two-player game.

17.4.1 Coordination Block

In the Supplemental Material 3, each player communicates xi via perfect cheap talk in the

coordination block.

Noisy Cheap Talk We �rst replace the perfect cheap talk with the noisy cheap talk. As

we have explained in Section 4, with more than two players, it is important to create a

message protocol so that, while the players exchange messages and infer the other players�

messages in order to coordinate on xi, there is no player who can induce a situation where

some players infer xi is G while the others infer xi is B. Since the signals from the noisy

cheap talk is private as we will see in Section 29, we need a more sophisticated communication

protocol than the case with two players. For that purpose, we add Assumption 14.

Messages via Actions Then, we replace the noisy cheap talk with messages via actions.

So that we can create a message protocol to preserve the important features that were

satis�ed by the noisy cheap talk, we need Assumption 15.

17.4.2 Report Block

We need the more-than-two-player-case counterparts of Assumptions 11 and 12 to dispense

with the public randomization and perfect cheap talk in the report block. So that the

players can coordinate through their actions and private signals, we add Assumption 16.
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In addition, to construct a statistics to preserve the conditional independence property, we

need Assumption 17.
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SUPPLEMENTAL MATERIAL 2:

PROOF OF THEOREM 1 for a General Two-Player Game With CHEAP

TALK

In this Supplemental Material, we prove Theorem 1 (folk theorem) for a general two-

player game with the perfect cheap talk, noisy cheap talk and public randomization devices.

Since there are only two players, when we say players i and j, unless otherwise speci�ed,

player i is di¤erent from player j.

18 Valid Lemmas

Since we maintain Assumptions 3, 4 and 5, Lemmas 3, 4, 5 and 6 are still valid. Also, since

the noisy cheap talk is available, Lemma 2 holds.

19 Intuitive Explanation

The basic structure is the same as in the prisoners�dilemma: In each �nitely repeated game,

there are L review rounds and several supplemental rounds. In each review round, player

j monitors player i by making a reward function linearly increase in player j�s score about

player i: Xj(l) =
P

t	
a(x)
j;t . If the realization of

P
t	

a(x)
j;t is far from the ex ante mean, then

player j will switch to a constant reward.

Remember that player i with xi = B and �i (l) = B needs to give a non-negative constant

reward. On the other hand, player i with harsh strategy �i(B) needs to ensure that player

j�s payo¤ is below vj regardless of player j�s strategy.

In the prisoners�dilemma, ai(x) with xi = B de�ned to satisfy (6) and (7) happens to be

the minimiaxing action. Hence, player j�s payo¤ is below vj regardless of player j�s strategy

with non-negative reward. However, in a general game, ai(x) with xi = B is not always a

minimaxing action. Therefore, player i with xi = B and �i (l) = B needs to switch to the

minimaxing action if player i thinks that player j has deviated.
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For this purpose, in each lth review round, player j constructs a statistics such that if its

realization is low, then player j allows player i to minimax player j from the next review

round, that is, from the (l + 1)th review round. See �player j�s score about player j�s own

deviation�in Section 4 for the intuitive explanation.

The key lemma to construct such a statistics is as follows:

Lemma 10 If Assumption 4 is satis�ed, then there exist q2 > q1 such that, for all j 2 I and

a 2 A, there exists a function 
aj : Yj ! (0; 1) such that,

1. The ex ante value of player i�s conditional expectation of 
aj (yj) distinguishes whether

player j takes aj or not:

Eyi
�
Eyj
�

aj (yj) j a; yi

�
j ~aj; ai

�
�

X
yj

(X
yi

q(yj j a; yi)q(yi j ~aj; ai)
)

aj (yj)

=

8<: q2 if ~aj = aj;

q1 otherwise.

2. Player i cannot change the expected value of 
aj : For all ~ai 2 Ai,

E
�

aj (yj) j ~ai; aj

�
�
X
yj

q(yj j aj; ~ai)
aj (yj) = q2.

Proof. It su¢ ces that Q2(~aj; ai) with ~aj 2 Ai and Q1(~ai; aj) with ~ai 6= ai are linearly

independent (see the proof of Lemma 3 for the de�nition of Q1 and Q2). Assumption 4

guarantees this.

Further, we can assume that q1 and q2 in Lemmas 3 and 10 are the same after applying an

appropriate a¢ ne transformation of  �s and 
�s. The same caution is applicable whenever

we say q1 and q2.

For each lth review round, player j allows player i to minimax player j from the (l + 1)th

round if �player j�s score about player j�s own deviation,�
P

t2T (l) 

a(x)
j (yj;t), is very low.

Then, player i with lower conditional expectation of
P

t2T (l) 

a(x)
j (yj;t) is willing to minimax
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player j as seen in Section 4. Since the conditional expectation decreases if player j deviates

from Condition 1, the punishment is triggered properly. In addition, Condition 2 guarantees

that player i cannot manipulate this statistics.

Intuitively, dj(l+1) 2 fG;Bg indicates whether or not player j allows player i to minimax:

dj(l + 1) = G implies that player j does not allow player i to minimax player j while

dj(l + 1) = B implies that player j allows after observing low
P

t2T (l) 

a(x)
j (yj;t).

On the other hand, as player i constructs �̂j(l + 1) to infer �j(l + 1), player i constructs

d̂j(l + 1) 2 fG;Bg to infer dj(l + 1). d̂j(l + 1) = G implies that player i is not willing to

minimax while d̂j(l + 1) = B implies that player i believes that player j allows player i to

minimax player j and so player i is willing to minimax.

20 Structure of the Phase

We introduce supplemental rounds for d1(l + 1) and d2(l + 1) so that, in the supplemental

rounds for di(l + 1), player i can send di(l + 1) via noisy cheap talk with precision p = 1
2
.

In addition, player j with �j(l + 1) = B and d̂i(l + 1) = B minimaxes player i in the

(l + 1)th review round. Since player j�s reward function is constant after �j(l + 1) = B,

player i wants to take the best response to player j�s action. To best respond to player j,

player i wants to know d̂i(l+1) which indicates whether player j minimaxes player i or not.

Therefore, we also introduce supplemental rounds for d̂2(l+1) and d̂1(l+1) so that player j

can send d̂i(l + 1) via noisy cheap talk with precision p = 1
2
. The truthtelling incentive will

be veri�ed later.

Therefore, the whole structure of the phase is as follows:
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First review round: � � ����.

Supplemental round for ���	�.

Supplemental round for �
�	�.

1st main 

block

Player� sends �� via perfect cheap talk.

The picked player reports her whole history �

���� by 

cheap talk.

Report

block

Coordination

block

� periods

Figure 1 of the Supplemental Material 2:

Structure of the Phase
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�th review round: � � ����.� periods
�th main 

block

Instantaneous

Instantaneous

Public randomization picks one player.

2nd block to �� � ��th block: the structure is the same as in the first block

Supplemental round for ��
�	�.

Supplemental round for�����	�.

Supplemental round for ���	�.

Supplemental round for �
�	�.

Instantaneous

Instantaneous

Instantaneous

Instantaneous



21 Strictness

For the rest of the proof, we assume that the static best response is unique and that the

minimaxing action plan is unique. That is, we assume that there exists u > 0 such that

1. For any i and aj 2 Aj, there exists a unique BRi(aj) such that, for any ~ai 6= BRi(aj),

ui(BRi(aj); aj)� ui(~ai; aj) > u: (68)

This is without loss: Otherwise, with fBRi(aj)gaj ,
62 we can add a small reward

�
P

t
u

q2�q1

�
1�	BRj(aj;t);aj;tj;t

�
< 0 if xj = G or

P
t

u
q2�q1	

BRj(aj;t);aj;t
j;t > 0 if xj = B to

restore this property. If we take u small, then (3), (4) and (5) are still satis�ed.

2. For any i, there exists �minmaxj 2 �(Aj) such that

(a) For any ai, ui(ai; �minmaxj ) � v�i . That is, �
minmax
j is a minimaxing strategy.

(b) For any aj 2 Aj (pure action plan) with aj 6= �minmaxj ,

ui(BRi(aj); aj)� ui(BRi(�
minmax
j ); �minmaxj ) > u: (69)

Again, this is without loss: We can always add a small reward�
P

t 1
�
�j;t = �minmaxj

	
u <

0 if xj = G or
P

t 1
�
�j;t 2 Aj n f�minmaxj g

	
u if xj = B to have this property, keeping

(3), (4) and (5).

22 Perfect Monitoring

In this section, we consider a one-shot game with perfect monitoring parameterized with

l 2 N with the same sets of players and their possible actions. The result of this section

is used when we consider how player j punishes player i in the TP -period �nitely repeated

game with private monitoring.

62If there are multiple best responses to aj , pick one arbitrarily for BRi(aj).
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In the game with parameter l 2 f1; :::; L� 1g, player j takes aj(x). Depending on player

i�s action, d̂i(l + 1) 2 fG;Bg is determined. If player i takes ai(x), then d̂i(l + 1) = G with

probability one. If player i takes ai 6= ai(x), then d̂i(l+1) = B with probability pl+1j (x) and

d̂i(l+1) = G with the remaining probability 1�pl+1j (x). The payo¤ of player i is determined

as

V l
i = max

ai

1

L� l + 1
ui(ai; aj(x)) +

L� l

L� l + 1
E
h
W l+1
i (d̂i(l + 1)) j ai; aj(x)

i
with

u�i (x) = ui(BRi(aj(x)); aj(x)); (70)

W l+1
i (G) =

(L� l � 1)max fwi(x); v�i g+ u�i (x)

L� l
+ �; (71)

W l+1
i (B) = v�i + �; (72)

where � > 0 is a small number de�ned in Section 24.

In this game, we can show the following lemma:

Lemma 11 For any L � 2, q2 > q1 and � > 0, there exist "minmax > 0 and f�pl+1j (x)gL�1l=1 2

[0; 1] such that, for any " < "minmax and fpl+1j (x)gL�1l=1 with

pl+1j (x) 2
�
�pl+1j (x)

q2 � q1 � 2"
q2 � q1

; �pl+1j (x)

�

for all l = 1; :::; L� 1, it is uniquely optimal for player i to take BRi(aj(x)) and

V l
i � W l

i (G) =
(L� l)max fwi(x); v�i g+ u�i (x)

L� l + 1
+ �:

Proof. If aj(x) is �minmaxj , then wi(x) � v�i = u�i (x) and

W l+1
i (G) =W l+1

i (B) = v�i + �:
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Hence, for any pl+1j (x) 2 [0; 1], it is uniquely optimal for player i to take BRi(aj(x)) and

V l
i = v�i + � � W l

i (G)

for all l 2 f1; :::; L�1g as desired. Uniqueness follows from (68): Since �minmaxj = aj(x) 2 Aj
is pure, the static best response is unique.

Hence, we concentrate on the case with aj(x) 6= �minmaxj . Then, from (69), we have

u�i (x) > v�i and so

W l+1
i (G) =

(L� l � 1)max fwi(x); v�i g+ u�i (x)

L� l
+ � > v�i + � = W l+1

i (B) (73)

for all l 2 f1; :::; L� 1g.

Further, if BRi(aj(x)) = ai(x), then with �pl+1j (x) = pl+1j (x) = 0, it is uniquely optimal

for player i to take BRi(aj(x)) and

V l
i =

1

L� l + 1
u�i (x) +

L� l

L� l + 1

�
(L� l � 1)max fwi(x); v�i g+ u�i (x)

L� l
+ �

�
<

1

L� l + 1
wi(x) +

(L� l � 1)max fwi(x); v�i g+ u�i (x)

L� l + 1
+ �

� W l
i (G)

for all l 2 f1; :::; L� 1g as desired. The strict inequality follows from the following two: (i)

Since BRi(aj(x)) = ai(x), u�i (x) is equal to wi. (ii) � > 0 and
L�l
L�l+1 < 1.

Hence, we concentrate on the case with u�i (x) > v�i and BRi(aj(x)) 6= ai(x). The latter

means that wi(x) < u�i (x) from (68), which implies that W l+1
i (G) > W l+1

i (B) for all l 2

f1; :::; L� 1g.

Note that the value after taking ai(x) is

1

L� l + 1
wi(x) +

L� l

L� l + 1
W l+1
i (G)
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for all l 2 f1; :::; L� 1g. On the other hand, if player i takes BRi(aj(x)), then the value is

1

L� l + 1
u�i (x) +

L� l

L� l + 1

�
1� pl+1j (x)

�
W l+1
i (G) +

L� l

L� l + 1
pl+1j (x)W l+1

i (B)

for all l 2 f1; :::; L� 1g. If

pl+1j (x) <
u�i (x)�max fwi(x); v�i g

(L� l � 1) (max fwi(x); v�i g � v�i ) + u�i (x)� v�i

for all l 2 f1; :::; L� 1g, then it is strictly optimal to take BRi(aj(x)).

On the other hand, if

pl+1j (x) =
u�i (x)�max fwi(x); v�i g

(L� l � 1) (max fwi(x); v�i g � v�i ) + u�i (x)� v�i
2 (0; 1); (74)

then we have

V l
i =

(L� l)max fwi(x); v�i g+ u�i (x)

L� l + 1
+

L� 1
L� l + 1

� < W l
i (G): (75)

(74) follows from wi(x) < u�i (x). Since the last inequality in (75) is strict, if we take �p
l+1
j (x)

su¢ ciently close but smaller than

u�i (x)�max fwi(x); v�i g
(L� l � 1) (wi(x)�max fwi(x); v�i g) + u�i (x)� v�i

;

then the statement of this lemma holds for
�
�pl+1j (x)

	L�1
l=1
. Taking " su¢ ciently small, we are

done.

23 Equilibrium Strategy

As in Section 11, we de�ne �i (xi) and �maini (xj; h
main
j : �). In Section 23.1, we de�ne the

state variables that will be used to de�ne the action plans and rewards. Given the states,

Section 23.2 de�nes the action plan �i(xi) and Section 23.3 de�nes the reward function
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�maini (xj; h
main
j : �). Finally, Section 23.4 determines the transition of the states de�ned in

Section 23.1.

23.1 States xi, �i(l + 1), �̂j(l + 1), di(l + 1), d̂j(l + 1), d̂i(l + 1)(i), �i(l),

�i(�i (l + 1)), �i(di (l + 1)) and �i(d̂j (l + 1))

The state xi 2 fG;Bg is determined at the beginning of the phase and �xed. By the perfect

cheap talk, x becomes common knowledge.

As in the prisoners�dilemma, �i(l + 1) 2 fG;Bg is player i�s state, indicating whether

player i�s score about player j has been erroneous. On the other hand, �̂j(l + 1) 2 fG;Bg

indicates whether player i believes that �j(l + 1) = G or �j(l + 1) = B is likely.

As seen in Section 19 (with the roles of players i and j reversed), di(l + 1) 2 fG;Bg is

player i�s state, indicating whether or not player i allows player j to minimax player i.

On the other hand, when player i decides whether or not to minimax player j in the

(l+1)th review round, it is natural to calculate the belief about dj(l+1) = G. The space for

player i�s possible beliefs in each period t in the (l + 1)th review round is [0; 1] and it depends

on the details of a history hti. However, we classify the set of player i�s histories into two

partitions: The set of histories labeled as d̂j (l + 1) = G and that labeled as d̂j (l + 1) = B.

If and only if d̂j(l + 1) = B, player i believes that dj(l + 1) = B (player j allows player i to

minimax) and is willing to minimax player j.

To make the equilibrium tractable, d̂j(l + 1) depends only on player i�s history at the

beginning of the (l + 1)th review round and is �xed during the (l + 1)th review block, as

�̂j(l + 1).

As we have just mentioned, player j with d̂i(l+1) = B minimaxes player i in the (l+1)th

review round (the indices i and j are reversed). With �̂j(l + 1) = B, that is, when player

i believes that the reward function is constant, player i wants to take the best response to

player j�s action. To best respond to player j, player i wants to know whether d̂i(l + 1) is

G or B (that is, whether player j takes aj(x) or minimaxes player i). Therefore, we classify

the set of player i�s histories into two partitions: One with d̂i(l + 1)(i) = G and the other
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with d̂i(l + 1)(i) = B. Intuitively, player i believes d̂i(l + 1)(i) = d̂i(l + 1). Player i best

responses to aj(x) if player i believes that d̂i(l+1) = G (that is, if d̂i(l+1)(i) is G) and best

responses to �minmaxj if player i believes that d̂i(l + 1) = B (that is, if d̂i(l + 1)(i) is B).

Further, as in the prisoners�dilemma, player i makes player j indi¤erent between any

action pro�le sequence after some history. If she does in the lth review round, then �mainj

will be
P

� �
xi
j (ai;� ; yi;� ) for period � in the lth review round and after. �i(l) 2 fG;Bg,

�i(�i (l + 1)) 2 fG;Bg, �i(di (l + 1)) 2 fG;Bg and �i(d̂j (l + 1)) 2 fG;Bg are indices of

whether player i uses such a reward because of the history in the lth main block. See Section

11.3 for how the reward function depends on these four states.

23.2 Player i�s Action

In the coordination block, each player sends xi truthfully via perfect cheap talk. Then, the

state pro�le x becomes common knowledge.

In the lth review round, player i�s strategy depends on �̂j(l), d̂j(l) and d̂i(l)(i). If �̂j(l) =

G, then player i takes ai(x) if d̂j(l) = G and �minmaxi if d̂j(l) = B. If �̂j(l) = B, then player

i takes BRi(aj(x)) if d̂i(l)(i) = G and BRi(�
minmax
j ) if d̂i(l)(i) = B.

In the supplemental rounds for �i(l + 1), di(l + 1) and d̂j(l + 1), respectively, player i

sends the message �i(l + 1), di(l + 1) and d̂j(l + 1), respectively, truthfully via noisy cheap

talk with precision p = 1
2
.

23.3 Reward Function

In this subsection, we explain player j�s reward function on player i, �maini (xj; h
main
j : �).

Score First, since Lemma 3 is valid, we can de�ne Xj(l) as in (27).

Slope Second, take �L such that (28) holds.
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Reward Function As in the prisoners�dilemma, the reward �maini (xj; h
main
j : �) is written

as

�maini (xj; h
main
j : �) =

LX
l=1

X
t2T (l)

��i (t; aj;t; yj;t) +

8<: ��LT +
PL

l=1 �
main
i (x; hmainj ; l) if xj = G;

�LT +
PL

l=1 �
main
i (x; hmainj ; l) if xj = B:

(76)

Remember that T (l) is the set of periods in the lth review round.

Reward Function for Each Round If �j(~l) = B, �j(�j(~l + 1)) = B, �j(dj(~l + 1)) = B

or �j(d̂i(~l + 1)) = B happens for some ~l � l � 1, then player j makes player i indi¤erent

between any action pro�le by

�maini (x; hmainj ; l) =
X
t2T (l)

�
xj
i (aj;t; yj;t): (77)

Remember that �xji is de�ned in Lemma 5.

Otherwise, that is, if �j(~l) = �j(�j(~l + 1)) = �j(dj(~l + 1)) = �j(d̂i(~l + 1)) = G for all

~l � l � 1, then player j�s reward on player i is based on the state pro�le x, the index of the

past erroneous history �j(l), index of minimaxing d̂i(l) and player j�s score about player i,

Xj(l):

�maini (x; hmainj ; l) =

8>>>>>><>>>>>>:

��i(x;G; d̂i(l); l) + �L (Xj(l)� (q2T + 2"T )) if xj = G and �j(l) = G;

��i(x;B; d̂i(l); l) if xi = G and �j(l) = B;

��i(x;G; d̂i(l); l) + �L (Xj(l)� (q2T � 2"T )) if xj = B and �j(l) = G;

��i(x;B; d̂i(l); l) if xj = B and �j(l) = B:

(78)

��i(x; �j(l); d̂i(l); l) will be determined later so that (3), (4) and (5) are satis�ed.
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23.4 Transition of the States

In this subsection, we explain the transition of player i�s states. Since xi is �xed in the phase,

we consider the following nine states:

23.4.1 Transition of �j(l + 1) 2 fG;Bg

The transition of �j(l + 1) 2 fG;Bg is exactly the same as in Section 11.4.1.

23.4.2 Transition of �̂j(l + 1) 2 fG;Bg

The transition of �̂j(l + 1) 2 fG;Bg is the same as in Section 11.4.2 except that, if player

i has �̂j(l) = G and d̂j(l) = B, then �̂j(l + 1) = G with high probability. As explained in

Section 19, if d̂j(l) = B, then player i believes that player j allows player i to minimax player

j, that is, any action is optimal for player i. Hence, the belief about �j(l) is irrelevant.

That is, �̂j(1) = G. If �̂j(l) = B, then �̂j(l+1) = B. If �̂j(l) = G, then �̂j(l+1) 2 fG;Bg

is de�ned as follows:

1. If (35) and (36) are satis�ed or d̂j(l) = B, then player i randomly picks the following

two procedures:

(a) With large probability 1� �, player i has �̂j(l + 1) = G regardless of the signals

of the noisy cheap talk about �j(l + 1).

(b) With small probability � > 0, player i will use the signal from the noisy cheap

talk message: �̂j(l+1) is determined by (39). This is almost optimal by the same

reason as in Section 11.4.2.

2. If �(35) is not satis�ed or (36) is not satis�ed� and d̂j(l) = G, then �̂j(l + 1) is

determined by (39). As 1-(b), this is almost optimal.
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23.4.3 Transition of dj(l + 1) 2 fG;Bg

As 	aj and  
a
j , we �rstly de�ne �

a
j 2 f0; 1g from 
aj (yj). Player j, after believing a being

taken and observing yj, constructs a random variable �aj 2 f0; 1g from 
aj (yj) as player j

constructs 	aj from  aj (yj).

Given
�
�aj;t
	
t2T (l), we de�ne the transition as follows: The initial condition is dj(1) = G.

For l = 1; :::; L� 1, if dj(l) = B, then dj(l+1) = B as for �j(l+1). If dj(l) = G, then player

j calculates

Gj(l) =
X
t2Tj(l)

�
a(x)
j;t + 1tj(l):

Again, a random period tj(l) is excluded from monitoring. This is �player j�s score about

player j�s own deviation�in Section 4. Given Gj(l), dj(l + 1) is determined as

dj(l + 1) =

8<: G if Gj(l) 2 [q2T � "T; q2T + "T ] or d̂i(l) = B;

B if Gj(l) 62 [q2T � "T; q2T + "T ] and d̂i(l) = G:

Note that, compared to �j(l + 1), 2"T is replaced with "T . In addition, if d̂i(l) = B, then

player j takes �minmaxj 6= aj(x) to minimax player i. Although player j does not take aj(x),

this is not a deviation from the equilibrium strategy. Hence, player j does not allow player

i to minimax player j if d̂i(l) = B.

23.4.4 Transition of d̂j(l + 1) 2 fG;Bg

As we have mentioned in Section 23.1, d̂j(l+1) 2 fG;Bg is the partition of the set of player

i�s histories. Intuitively, player i believes that dj(l + 1) = d̂j(l + 1) with high probability.

Since dj(1) = G is common knowledge, de�ne d̂j(1) = G.

In addition, d̂j(l + 1) = B once d̂j(~l) = B has happened for some ~l � l. Hence, we are

left to specify, for each l, conditional on d̂j(~l) = G with all ~l � l, how d̂j(l + 1) 2 fG;Bg is

determined.

Intuitively, as for �̂j(l + 1), at the end of the lth review round, player i calculates

E
�
Gj(l) j a(x); fyi;tgt2T (l)

�
. Then, in the supplemental round for dj(l + 1), player j sends
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dj(l+1) via noisy cheap talk with precision p = 1
2
and player i receives a signal f [i](dj(l+1)).

Based on E
�
Gj(l) j a(x); fyi;tgt2T (l)

�
and f [i](dj(l + 1)), player i constructs d̂j(l + 1).

Instead of calculating the conditional expectation of Gj(l) directly, player i calculates

X
t2Ti(l)

E
h
�
a(x)
j;t j a(x); yi;t

i
+ q2:

As we have mentioned for �̂j(l + 1) in the prisoners�dilemma, player i uses Ti(l), not Tj(l).

Since Ti(l) and Tj(l) di¤er at most for two periods, we can neglect the fact that Ti(l) and

Tj(l) can be di¤erent for almost optimality.

Further, rather than using
P

t2Ti(l) E
h
�
a(x)
j;t j a(x); yi;t

i
, player i constructs (Ei�

a(x)
j )t 2

f0; 1g from E
h
�
a(x)
j;t j a(x); yi;t

i
as player i constructs (Ei	

a(x)
j )t from E

h
	
a(x)
j;t j a(x); yi;t

i
.

Let

EiGj(l) =
X
t2Ti(l)

(Ei�
a(x)
j )t + q2:

As for EiXj(l), for all at and yt, the ex post probability given fat; ytgt2T (l) that������
X
t2Ti(l)

E
h
�
a(x)
j;t j a(x); yi;t

i
+ q2 � EiGj(l)

������ � 1

4
"T: (79)

is 1� exp(�O(T )) by the central limit theorem.

Consider player i�s belief about dj(l + 1) in the case with (79) and

q2T � 2"T > EiGj(l): (80)

These two implies that

E
�
Gj(l) j a(x); fyi;tgt2T (l); Ti(l); Tj(l)

�
< q2T �

3

2
"T

since Ti(l) and Tj(l) di¤er at most for two periods.

Since dj(l + 1) = B if Gj(l) 62 [q2T � "T; q2T + "T ] and d̂i(l) = G, player i believes that
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dj(l + 1) = B if d̂i(l) = G with probability 1� exp(�O(T )).

On the other hand, forget about the belief about dj(l+1) and suppose that player i could

know dj(l+ 1) (she cannot in private monitoring). Consider the two possible realizations of

the signals in the supplemental round for dj(l+1). If f [i](dj(l+1)) = dj(l+1), then player i

receives a correct message. If f [i](dj(l+1)) 6= dj(l+1), then with probability 1� exp(�T
1
2 ),

player j should receive the signal telling that player i does not received the correct signal,

that is, g[j](dj(l+1)) = E. If g[j](dj(l+1)) = E, then player j will make player i indi¤erent

between any action pro�le sequence (see Section 23.4.6). Therefore, if player i uses

d̂j(l + 1) = f [i](dj(l + 1)); (81)

then it can be shown that �i(xi) de�ned in Section 23.2 is almost optimal.

Given the observations above, we consider the following transition of d̂j(l + 1):

1. If (79) is satis�ed, then

(a) If �i(l) = G, then player i randomly picks the following two procedures:

i. With probability 1� �, d̂j(l + 1) = G.

ii. With probability �, player i will use the signal from the noisy cheap talk

message and d̂j(l + 1) is determined by (81).

(b) If �i(l) = B, then there are following two cases:

i. If xi = G, then player i randomly picks the following two procedures:

A. With probability 1� �, d̂j(l + 1) = G.

B. With probability �, d̂j(l + 1) is determined by (81).

ii. If xi = B, then player i randomly picks the following two procedures:

A. With probability 1��, player i disregards the signal from the noisy cheap

talk and determines d̂j(l + 1) from EiGj(l). With probability

�pl+1i (x)min

�
1;
fq2T � 2"T � EiGj(l)g+

q2T � q1T

�
; (82)
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d̂j(l+1) = B and with the remaining probability, d̂j(l+1) = G. Remem-

ber that �pl+1i (x) is determined in Lemma 11.

B. With probability �, d̂j(l + 1) is determined by (81).

2. If (79) is not satis�ed, then d̂j(l + 1) is determined by (81).

There are several remarks: First, 1-(b)-ii-A is the only case where player i switches to

d̂j(l + 1) = B based on EiGj(l). (82) implies that, if d̂j(l + 1) = B, then (79) and (80) are

the case and player j believes that dj(l + 1) = B with high probability.

Second, if 1-(a) is the case, then the reward function on player j is increasing in Xi(l)

and player j will take aj(x). Hence, player i needs not to punish player j. Hence, with high

probability 1� �, d̂j(l + 1) = G.

Third, if 1-(b)-i is the case, then since player i is generous to player j, player i needs not

to punish player j. However, if 1-(b)-ii is the case, then since player i is harsh on player j

and player j�s reward on player i is a non-negative constant, with high probability, player i

punishes player j based on EiGj(l).

Fourth, after any history, player i uses the signal from the noisy cheap talk with proba-

bility at least �. As seen in Section 4, this guarantees that player j believes that an error

happens in communication if player j realizes that player i�s continuation play is di¤erent

from what player j expected (with the roles of players i and j reversed).

23.4.5 Transition of d̂i(l + 1)(i)

Player j sends d̂i(l+1) via noisy cheap talk with precision p = 1
2
in the supplemental round

for d̂i(l + 1). Player i obeys the signal:

d̂i(l + 1)(i) = f [i](d̂i(l + 1)): (83)

117



23.4.6 Transition of �i(l) 2 fG;Bg, �i(�i (l + 1)) 2 fG;Bg, �i(di (l + 1)) 2 fG;Bg and

�i(d̂j (l + 1)) 2 fG;Bg

As we have seen in Section 11.3, �i(~l) = B, �i(�i(~l+1)) = B, �i(di(~l+1)) = B or �i(d̂j(~l+1)) =

B with some ~l � l� 1 implies that player j is indi¤erent between any action pro�le (except

for the incentives from �reportj ).

�i(l) = B if at least one of the following four conditions is satis�ed:

1. Gi(l) 62 [q2T � "T; q2T + "T ] and d̂j(l) = G.

2. 1-(b) or 2 is the case when player i creates �̂j(l + 1) in Section 23.4.2.

3. (79) is satis�ed and player i picks a case that happens with probability � when player

i creates d̂j(l + 1) in Section 23.4.4.

4. (79) is not satis�ed.

Otherwise, �i(l) = G.

On the other hand, �i(�i (l + 1)) = B, �i(di (l + 1)) = B and �i(d̂j (l + 1)) = B, re-

spectively, if and only if player i receives g[i](�i (l + 1)) = E, g[i](di (l + 1)) = E and

g[i](d̂j (l + 1)) = E, respectively. That is, if player i realizes that player j may receive a

wrong signal in the supplemental rounds, then player i makes player j indi¤erent between

any action pro�le.

23.4.7 Summary of the Transitions of �j

We summarize the implications of the transitions of �j. Since we want to consider player

i�s incentive, we consider �j, not �i. Hence, reverse the roles of players i and j if necessary

when we refer to the previous sections.

First, suppose that a(x) is taken in the lth review round and that d̂i(l) = G. In this case,

if Gj(l) 62 [q2T � "T; q2T + "T ] happens, then player j makes player i indi¤erent from any

action pro�le sequence from 1 of Section 23.4.6.
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Further, from 1-(a) and 2 in Section 23.4.4 and 3 and 4 of Section 23.4.6, d̂i(l) = B

and �j(l) = G implies that player j has made player i indi¤erent between any action pro�le

sequence.

Therefore, suppose that player i knew that a(x) is taken in the lth review round and

�j(l) = G. If 1-(b)-ii-A is the case in Section 23.4.4, then player i at the end of the lth

review round puts a belief no less than 1 � exp(�O(T )) on the event that any action is

optimal at the end of the lth review round.

Second, if player j receives a signal indicating player i�s mistake when player j sends a

message m in a supplemental round, then �j(m) = B happens.

In total, we have shown the following lemma for d̂j(l + 1):

Lemma 12 For su¢ ciently large T , for all x 2 fG;Bg2 and l 2 f1; :::; Lg,

1. Suppose that player i knew that a(x) is taken in the lth review round and �j(l) = G. If

1-(b)-ii-A is the case in Section 23.4.4, then player i at the end of the lth review round

puts a belief no less than 1� exp(�O(T )) on the event that any action is optimal.

2. If d̂j(l + 1) = G is determined by (81), then conditional on dj(l + 1) 2 fG;Bg, player

i puts a belief no less than 1 � exp(�O(T 1
2 )) on the events that dj(l + 1) = G or any

action is optimal.

3. If d̂j(l + 1) = B is determined by (81), then conditional on dj(l + 1) 2 fG;Bg, player

i puts a belief no less than 1� exp(�O(T 1
2 )) on the events that any action is optimal.

In addition, from (83), player i always uses the signals from the noisy cheap talk to

construct d̂i(l + 1)(i). Therefore, similarly to the above lemma, we have the following:

Lemma 13 Conditional on d̂i(l + 1) 2 fG;Bg, player i puts a belief no less than 1 �

exp(�O(T 1
2 )) on the events that d̂i(l + 1)(i) = d̂i(l + 1) or any action is optimal.

Fourth, in the supplemental rounds between the lth review round and (l + 1)th review

round, whenever player i�s message a¤ects player j�s future actions, then �i(l) = B has

happened and player i is indi¤erent between any action pro�le in the future review rounds.
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Speci�cally, when player j creates �̂i(l + 1) in Section 23.4.2, if player j uses the signal

from the noisy cheap talk message, then 1-(b) or 2 is the case, which implies that �i(l) = B

has happened.

In addition, when player j creates d̂i(l+1) in Section 23.4.4, player j uses the signal from

the noisy cheap talk message only if player j picks a case that happens with probability �

or (79) is not satis�ed. Both implies �j(l) = B, as desired.

Further, from Section 23.2, the action by player j depends on d̂j(l+1)(j) only if �̂i(l+1) =

B. �̂i(l + 1) = B implies that 1-(b) or 2 is the case in Section 23.4.2, which implies that

�i(l) = B happened.

Fifth, suppose that �j(~l) = �j(�j(~l+1)) = �j(dj(~l+1)) = �j(d̂i(~l+1)) = G for all ~l � l�1

(otherwise, player i is indi¤erent between any action pro�le except for �reporti ). We will show

that the distribution of �j(l), �j(�j (l + 1)), �j(dj (l + 1)) and �j(d̂i (l + 1)) is independent

of player i�s action in the lth review round with probability 1� exp(�O(T 1
2 )). To see why,

consider the following three reasons:

1. (35) and (79) are not the case. This happens with the ex post probability exp(�O(T ))

given fat; ytgt2T (l).

2. Suppose that (35) and (79) are the case.

In Section 11.4.2,

(a) If �̂i(l) = B, then nothing happens.

(b) If �̂i(l) = G and d̂i(l) = B, then �j(l) = B happens by player j�s own mixture

and it is out of player i�s control.

(c) If �̂i(l) = d̂i(l) = G, then from Section 23.2, player j takes aj(x). From Lemma 3,

the distribution of
�
Ej	

a(x)
i

�
t
is independent of player i�s action. Hence, whether

(36) is satis�ed or not is independent of player i�s action. Conditional on that

(36) is satis�ed, whether 1-(a) or 1-(b) is the case depends on player j�s mixture

and is independent of player i�s action.
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Therefore, in Section 11.4.2, the distribution of �j(l) is independent of player i�s strat-

egy.

In Section 23.4.3, if d̂i(l) = B, then dj(l+1) = G does not newly happen. If d̂i(l) = G,

then player j takes aj(x) since otherwise �̂i(l) = B and ��̂i(l) = B and d̂i(l) = G�

contradict to �j(~l) = �j(�j(~l + 1)) = �j(dj(~l + 1)) = �j(d̂i(~l + 1)) = G for all ~l � l � 1.

Therefore, by Lemma 10, the distribution of Gj(l) is independent of player i�s strategy

in the lth review round.

In Section 23.4.4, �j(l) = B happens by player j�s own mixture and it is out of player

i�s control.

3. �j(m) = B in a supplemental round if and only if g[j](m) = E for some messagem sent

in the supplemental round, which happens with probability exp(�O(T 1
2 )) regardless

of the message.

24 Variables

In this section, we show that we can take all the variables necessary for the equilibrium

construction appropriately: q2, q1, �u, �L, L, � and ".

Lemmas 3 and 10 determine q1 and q2 and Lemma 5 determines �u.

We take �L su¢ ciently large so that

�L (q2 � q1) > max
a;i
2 jui (a)j : (84)

We are left to pin down L 2 N, " > 0 and � > 0. Take L su¢ ciently large su¢ ciently

small such that

max
x:xj=B

(L� 1)max fwi(x); v�i g+ u�i (x)

L
+
�L

L
< vi < vi < min

x:xj=G
wi(x)�

�L

L
: (85)
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Then, given L, take � > 0 su¢ ciently small so that

max
x:xj=B

(L� 1)max fwi(x); v�i g+ u�i (x)

L
+ � +

�L

L
+ 2L�

�
�u�min

i;x
wi (x)

�
< vi < vi < min

x:xj=G
wi(x)�

�L

L
� 2L�

�
�u+max

i;x
wi (x)

�
: (86)

Finally, take " > 0 su¢ ciently small so that

max
x:xj=B

(L� 1)max fwi(x); v�i g+ u�i (x)

L
+
�L

L
+ 2"�L+ 2L�

�
�u�min

i;x
wi (x)

�
< vi < vi < min

x:xj=G
wi(x)�

�L

L
� 2"�L� 2L�

�
�u+max

i;x
wi (x)

�
: (87)

and

" < "minmax; (88)

where "minmax is de�ned in Lemma 11 given q2, q1, L and � �xed above.

25 Almost Optimality

We now show that if we properly de�ne ��i(x; �j(l); d̂i(l); l), then �i(xi) and �maini satisfy (8),

(4) and (5).

25.1 Opponent�s Action

First, we summarize what player i can believe about the opponent�s action in each lth review

round.

If �̂i(l) = B, then from Sections 23.4.2 and 23.4.6, �j(~l) = B with some ~l � l � 1.

If �̂i(l) = G, then from Sections 23.4.4 and 23.4.6, d̂i(l) = B with �xj = G or �j(l) = G�

implies �j(~l) = B with some ~l � l � 1. Hence, �d̂i(l) = B and �j(~l) = G for all ~l � l � 1�

imply xj = �j(l) = B.

Then, from Section 23.2,
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� player j takes aj(x) if xj = G or �j(l) = G and takes �aj(x) if d̂i(l) = G and �minmaxj

if d̂i(l) = B�if xj = �j(l) = B, or

� �j(~l) = B with ~l � l � 1.

25.2 Almost Optimality of the Inferences

Second, we show the almost optimality of �̂j(l + 1), d̂j(l + 1) and d̂i(l + 1)(i). Speci�cally,

we want to show that, for any lth review round, for any hti with period t in the lth review

round, player i puts high posteriors on the following events:

1. If �̂j(l) = G, then

(a) �player j takes aj(x) and �j(l) = G�or any action is optimal.

(b) If d̂j(l) = B, then any action is optimal.

2. If �̂j(l) = B, then

(a) If d̂i(l)(i) = G, then �player j takes aj(x) and �j(l) = B�or any action is optimal.

(b) If d̂i(l)(i) = B, then �player j takes �minmaxj and �j(l) = B� or any action is

optimal.

The basic logic is the same as Lemma 8 although the argument is more complicated since

player j switches to the minimaxing action after some history.

For notational convenience, Let �j(l) be player j�s action plan in the lth review round63

and �j(l) = (�j(1); :::; �j(l)) be the sequence of player j�s action plans from the �rst review

round to the lth review round (excluding what messages player j sent by the noisy cheap

talk in the supplemental rounds).

63Note that player j takes an i.i.d. action plan within a review round.
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Lemma 14 For any lth review round, for any hti with period t in the lth review round,

conditional on �j(l), player i puts a belief no less than

1� exp(�O(T 1
2 )) (89)

on the events that

1. If �̂j(l) = G, then

(a) �player j takes aj(x) and �j(l) = G�or any action is optimal.

(b) If d̂j(l) = B, then any action is optimal.

2. If �̂j(l) = B, then

(a) If d̂i(l)(i) = G, then �player j takes aj(x) and �j(l) = B�or any action is optimal.

(b) If d̂i(l)(i) = B, then �player j takes �minmaxj and �j(l) = B� or any action is

optimal.

Proof. First, we show that player i can believe that �̂j(l) = �j(l) or any action is optimal.

As in Lemma 8, there exists a unique l� such that �j (l) switches from G to B at the end of

the l�th review round. In addition, there exists l̂� such that �̂j (l) switches from G to B at

the end of the l̂�th main block. If �j (L) = G (�̂j (L) = G, respectively), then de�ne l� = L

(l̂� = L, respectively).

Then, there are following cases:

� If l� � l̂�, then the proof is the same as Lemma 8.

� If l� < l̂�, then there are following two cases:

� If 1-(b) or 2 is the case when player i creates �̂j(l� + 1) in Section 23.4.2, then,

again, the proof is the same as Lemma 8.
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� If 1-(a) is the case, then there are following two cases: d̂j(l�) = G or d̂j(l�) = B.

If d̂j(l�) = G, then player i takes ai(x). Further, from Section 25.1, player i can

believe that player j with �j(l�) = G takes aj(x). Hence, player i can believe that

a (x) is taken in the l�th review round. The rest of the proof is the same as Lemma

8. Note that player j�s continuation play is determined by �̂i(~l), d̂i(~l) and d̂j(~l)(j)

and that errors happen with probability exp(�O(T 1
2 )) in the supplemental rounds

since player j uses the signals from noisy cheap talk with probability at least � to

construct these states. Hence, learning does not change the posterior.

If d̂j(l�) = B, then there was ~l < l� such that player i switches from d̂j(~l� 1) = G

to dj(~l) = B. In the (~l� 1)th review round, since d̂j(~l� 1) = G and �j(~l� 1) = G

by assumption, player i can believe that a (x) was taken. Therefore, Lemma 12

implies that player i believes that any action is optimal with high probability

from the ~lth review round. Note that learning from the continuation play does

not change the posterior by the same reason as above.

Second, given the above observation, we can prove the statements in the lemma.

1. If �̂j(l) = G, then player i believes that �j(l) = G or any action is optimal with

probability 1� exp(�O(T 1
2 )) from the discussion above. If the former is the case, then

player j takes aj(x) or any action is optimal from Section 25.1. Hence, 1-(a) is satis�ed.

Further, the proof for the case with l� < l̂� above implies that 1-(b) is satis�ed.

2. If �̂j(l) = B, then player i believes that �j(l) = B or any action is optimal with

probability 1 � exp(�O(T 1
2 )). If the former is the case, then �player j takes aj(x) if

d̂i(l) = G and �minmaxj if d̂i(l) = B� if �̂i(l) = G. If �̂i(l) = B, then any action is

optimal for player i. Therefore, in total, player i believes that �player j takes aj(x)

if d̂i(l) = G and �minmaxj if d̂i(l) = B� or any action is optimal with probability

1� exp(�O(T 1
2 )).

Since Lemma 13 guarantees that player i can believe that d̂i(l)(i) = d̂i(l) or any action

is optimal with probability 1� exp(�O(T 1
2 )), 2-(a) and 2-(b) are satis�ed.
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25.3 Determination of ��i(x; �j(l); d̂i(l); l)

Based on Lemma 14, we determine ��i(x; �j(l); d̂i(l); l) such that �i(xi) and �maini satisfy (8),

(4) and (5).

We show that �i(xi) satis�es the following proposition by backward induction:

Proposition 2 For all i 2 I, there exists ��i(x; �j(l); d̂i(l); l) such that

1. �i(xi) is almost optimal: For each l 2 f1; :::; Lg,

(a) For any period t in the lth review round, (8) holds.

(b) When player i sends the noisy cheap talk messages in the supplemental rounds,

(8) holds.

2. (4) is satis�ed with �i replaced with �maini . Since each xi 2 fG;Bg gives the same value

conditional on xj, the strategy in the coordination block is optimal.64

3. �maini satis�es (5).

1-(b) follows from the following two facts: First, as seen in Section 23.4.7, whenever

player i�s message changes player j�s action, �j(~l) = B has happened. Second, Lemma 14

implies that player i can infer player j�s private state with probability 1 � exp(�O(T 1
2 ))

(or any action is optimal) by taking the equilibrium strategy. Therefore, the equilibrium

strategy is almost optimal.

To show 3, as in the prisoners�dilemma, it su¢ ces to have

��i(x; �j(l); d̂i(l); l)

8<: � 0 if xj = G;

� 0 if xj = B;
(90)

�����i(x; �j(l); d̂i(l); l)��� � maxi;a 2 jui (a)jT (91)

64As in the prisoners�dilemma, even after the adjustment of the report block, any xi 2 fG;Bg still gives
exactly the same value.
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for all x 2 fG;Bg2, �j(l) 2 fG;Bg, d̂i(l) 2 fG;Bg and l 2 f1; :::; Lg.

We are left to construct ��i so that 1-(a) and 2 are satis�ed together with (90) and (91).

Remember that, from Section 25.1, player i can believe that, if (78) is being used in the lth

review round, then with probability no less than 1� exp(�O(T 1
2 )), player j takes

1. aj(x) if xj = G or �j(l) = G, and

2. �aj(x) if d̂i(l) = G and �minmaxj if d̂i(l) = B�if xj = �j(l) = B.

Together with Lemmas 13 and 14, player i can believe that, if (78) is being used, then

with probability no less than 1� exp(�O(T 1
2 )), player j takes

1. aj(x) if xj = G or �̂j(l) = G, and

2. �aj(x) if d̂i(l)(i) = G and �minmaxj if d̂i(l)(i) = B�if xj = �̂j(l) = B.

Below, we consider the cases with xj = G and xj = B separately.

25.3.1 Case 1: xj = G

We start backward induction from the Lth review round.

Suppose that player j uses (78) in the Lth round. This together with xj = G implies

that d̂i(l) = G. If �j(L) = �̂j(L) and d̂i(L)(i) = d̂i(L), then from (78) and Section 23.2, if

player i obeys �i(xi), then player i�s average continuation payo¤ except for ��i is equal to

wi(x)� 2"�L if �j(L) = G and ui(BRi (aj(x)) ; aj(x)) � wi(x) if �̂j(L) = B.

Therefore, for l = L, there exists ��i(x; �j(l); d̂i(l); l) with (90) and (91) such that player

i�s average continuation payo¤ is equal to wi(x) � 2"�L if (78) is used, �j(L) = �̂j(L), and

d̂i(L)(i) = d̂i(L).

Consider the almost optimality of �i(xi). For almost optimality, Lemma 14 guarantees

that player i can always believe that (78) is used, that �j(L) = �̂j(L), and that d̂i(L)(i) =

d̂i(L) (these imply that ��j(L) = �̂j(L) implies d̂i(L)(i) = d̂i(L)�).

Therefore, it is almost optimal for player i to take ai(x) if �̂j(L) = G and �BRi (aj(x))

if d̂i(L)(i) = G and take BRi

�
�minmaxj

�
if d̂i(L)(i) = B�if �̂j(L) = B, as desired.
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In the (L � 1)th review round, as for l = L, there exists ��i(x; �j(l); d̂i(l); l) with (90)

and (91) such that player i�s average payo¤ from the (L� 1)th review round is equal to

wi(x)� 2"�L if (78) is used, �j(L) = �̂j(L), d̂i(L)(i) = d̂i(L), and player i obeys �i(xi).

If (78) is used in the (L� 1)th review round, then (77) will be used in the Lth review

round with probability no more than 2� (player j uses (39) or (81)) plus exp(�O(T 1
2 )).

When (77) is used, per period payo¤ is bounded by [��u; �u] by Lemma 5.

Therefore, for l = L�1, retaking ��i(x; �j(l); d̂i(l); l) if necessary, player i�s average contin-

uation payo¤ for the next two review rounds is equal to wi(x)�2"�L�2L� (�u+maxi;awi (a))

in the limit as � ! 1if player i obeys �i(xi).

For the almost optimality of �i(xi), only di¤erence from the Lth review round is that, if

�j(L�1) = G, then player i�s action in the (L�1)th review round can a¤ect the distribution

of �j(L) and d̂i(L).

However, this e¤ect is negligible by the following reasons:

First, we de�ne ��i(x; �j(L); d̂i(L); L) such that player i�s value from the Lth review

round is independent of �j(L) as long as �j(L) = �̂j(L) and d̂i(L) = d̂i(L)(i) = G.65

Second, Lemma 14 implies that player i in the main blocks does not put a belief more than

exp(�O(T 1
2 )) on the events that ��j(L) 6= �̂j(L) or d̂i(L) 6= d̂i(L)(i)�and player i�s payo¤

is not independent of the action pro�le in the Lth review round. Third, Section 23.4.7

guarantees that the probability that player j will newly make player i indi¤erent between

any action pro�le from the Lth review round is almost independent of player i�s strategy in

the (L� 1)th main block. Therefore, for almost optimality, we can assume that player i in

the (L� 1)th review round maximizes

X
t2T (L�1)

ui(at) + �maini (x; hmainj ; L� 1); (92)

assuming �j(L� 1) = �̂j(L� 1) and d̂i(L� 1) = d̂i(L� 1)(i).
65In the above discussion, we have veri�ed that this claim is correct for the case with �j = G unil the Lth

review round.
For the other cases, player i is indi¤erent between any action pro�le sequence, which implies that player

i�s value is constant for any action pro�le, as desired.
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Therefore, the same proof as l = L works for l = L� 1.

Recursively, for l = 1, 1-(a) is satis�ed and the average ex ante payo¤ of player i from

the �rst review round is wi(x) � 2"�L � 2L� (�u+maxi;awi (a)) if xj = G. Note that, in the

�rst review round, �j(1) = �̂j(1) = G, dj(1) = d̂j(1) = G and d̂i(1) = d̂i(i)(1) = G.

Taking the �rst term ��LT in (76) into account, the average ex ante payo¤ is wi(x)�
�L
L
�

2"�L� 2L� (�u+maxi;awi (a)) if xj = G.

From (87), we can further modify ��i (x;G;G; 1) with (90) and (91) such that �i(xi) gives

�vi if xj = G. Therefore, 2 is satis�ed.

25.3.2 Case 2: xj = B

The main di¤erence from the case with xj = G is as follows: When xj = G, then from

Section 23.4.4, player j has d̂i(l) = G with probability at least 1� � and does not minimax

player i with probability more than �. Hence, player i in each lth review round can neglect

the e¤ect on the probability of being minimaxed in the next review round.

On the other hand, when xj = B, player i needs to take into account that player i�s

action in the lth review round will a¤ect the probability of being minimaxed in the next

review round.

As in the case with xj = G, the distribution of �j is almost independent of player i�s

strategy. Since �j = B does not happen with probability more than 2� + exp(�O(T 1
2 )) in

each main block, we can deal with the e¤ect of �j = B on the continuation payo¤ as we do

in the case with xj = G. Therefore, we assume that �j = G for each round.

Further, by Lemma 14, player i can neglect the possibility of the mis-coordination. There-

fore, for almost optimality, we assume that, for each l, �̂j(l) = �j(l), d̂i(l)(i) = d̂i(l),

�̂i(l) = G, and ��j(l) = G implies d̂i(l) = d̂i(l + 1) = G.�The last one comes from the

fact that �j(l) = G and d̂i(l + 1) = B imply �j(l) = B from Sections 23.4.4 and 23.4.6.

In the Lth review round, consider the following cases:

1. If player j uses (78) and �j(L) = �̂j(L) = G, then ai(x) is strictly optimal as in the

case with xj = G. The average payo¤ of player i in the Lth review round except for
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��i is wi(x) + 2"�L.

2. If player j uses (78) and �j(L) = �̂j(L) = B, then there are following two cases:

(a) If d̂i(L) = d̂i(L)(i) = G, then BRi(aj(x)) is optimal and gives the average payo¤

u�i (x).

(b) If d̂i(L) = d̂i(L)(i) = B, then BRi(�
minmax
j ) is optimal and gives the average

payo¤ at most v�i .

Therefore, for l = L, there exists ��i(x; �j(l); d̂i(l); l) with (90) and (91) such that player i�s

average continuation payo¤is equal to u�i (x)+2"�L if 1 or 2-(a) is the case andmax fwi(x); v�i g+

� + 2"�L if 2-(b) is the case. Note that the former is higher than the latter by

u�i (x)�max fwi(x); v�i g � �: (93)

In the (L� 1)th review round,

1. If player j uses (78) and �j(L� 1) = �̂j(L� 1) = G, then ai(x) is optimal since (i) the

payo¤s from �j(L) = �̂j(L) = G and �j(L) = �̂j(L) = B with d̂i(L) = d̂i(L)(i) = G

are the same and (ii) player i can neglect the e¤ect of player i�s action in the (L� 1)th

review round on d̂i(L). For (ii), we use the assumption that �j(l) = G implies d̂i(l) =

d̂i(l + 1) = G.

The average payo¤ of player i from the (L� 1) and Lth review rounds except for

��i(x; L� 1; �j(L� 1); d̂i(L� 1)) is

wi(x) + u�i (x)

2
+ 2"�L � max fwi(x); v�i g+ u�i (x)

2
+ 2"�L:

2. Suppose that player j uses (78) and �j(L � 1) = �̂j(L � 1) = B. Now, �j(L) is �xed

at B. Hence, the relevant cases are the following two:

(a) If d̂i(L� 1) = d̂i(L� 1)(i) = G, then BRi(aj(x)) is optimal.
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To see why, remember that player j will have d̂i(L) = B with probability (82).

The marginal decrease of this probability by not taking the static best response

is bounded by

�pLj (x)
marginal decrease of EjGi(l)

q2T � q1T
�
�pLj (x)

T

T � 1
T

:

Here, T�1
T
represents the probability that an arbitrary period in T (l) is excluded

from Tj(l) and is not used to monitor player i. On the other hand, the maximum

gain of preventing d̂i(L) = B is equal to T times (93). Therefore, the expected

gain is bounded by �pLj (x)
T�1
T
times (93).

Since (93) corresponds to the gain of preventing d̂i(L) = B for l = L�1 in Lemma

11, player j should take BRi(aj(x)) for su¢ ciently large �.66

Given player i�s strategy, if �j(L � 1) = �̂j(L � 1) = B and d̂i(L � 1) = d̂i(L �

1)(i) = G, then, conditional on �j(L) = G, d̂i(L) happens with probability

�pl+1j (x)min

�
1;
q2T � 2"T � q1T

q2T � q1T

�

from (82) and Lemma 10. Therefore, Lemma 11 guarantees that the average

payo¤ from the (L� 1)th and Lth main block is no more than

max fwi(x); v�i g+ u�i (x)

2
+ � + 2"�L:

(b) If d̂i(L�1) = d̂i(L�1)(i) = B, then d̂i(L) is �xed at B. Therefore, BRi(�
minmax
j )

is optimal and this gives the average payo¤ at most v�i .

Therefore, for l = L � 1, there exists ��i(x; �j(l); d̂i(l); l) with (90) and (91) such that

player i�s average continuation payo¤ is equal to
maxfwi(x);v�i g+u�i (x)

2
+ � + 2"�L if 1 or 2-(a) is

the case and v�i + 2"�L if 2-(b) is the case.

66And so large T from (1).
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Recursively, for l = 1, Proposition 1 is satis�ed and the average ex ante payo¤ of player

i at the �rst review round is
(L�1)maxfwi(x);v�i g+u�i (x)

L
+ �+2"�L. Note that, in the �rst review

round, �j(1) = �̂j(1) = G, dj(1) = d̂j(1) = G and d̂i(1) = d̂i(i)(1) = G.

Taking the probability of having �j = B and the �rst term �LT in (76) into account, the

average ex ante payo¤ is
(L�1)maxfwi(x);v�i g+u�i (x)

L
+ � +

�L
L
+ 2"�L+ 2L� (�u�mini;awi (a)).

From (87), we can further modify ��i (x;G;G; 1) with (90) and (91) such that �i(xi) gives

vi if xj = B. Therefore, 2 is satis�ed.

26 Exact Optimality

The report block is the same as in the prisoners�dilemma except that we change the de�nition

of fi to deal with the fact that the players take a mixed strategy to punish the opponent.

We maintain the restriction (64) on fi. Therefore, the incentive to tell the truth is satis�ed

and �i cancels out the ex ante punishment from (54), (55), (56), (57), (58), (59), (60) and

(61).

For round r not corresponding to a review round, fi is the same as in the prisoners�

dilemma.

For round r corresponding to a review round, if ĥri is an o¤-path history or a history

where player i should not take a mixed minimax strategy in round r, then the reward is the

same as in Section 15.7.67

If ĥri is an on-path history where player i should take a mixed minimax strategy in round

r, then we change fi as follows.

If round r is the last review round, then player j gives

fi(ĥ
r
i ; #̂

r
i ; �j(r)) = 2

�
v(ĥri ; (T

�(r; ai))ai ; �j(r))� v(ĥri ; (T (r; ai))ai ; �j(r))
�

(94)

to player i so that player i is indi¤erent between any action plan ex ante. Again, the

�rst coe¢ cient 2 represents (67). Since we condition on �j(r), learning from fyi;tgt2T (r) is

67The de�nition of ĥri is still valid.
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irrelevant if round r is the last review round. Therefore, ex ante optimality is equivalent to

sequential optimality for player i to take any action sequence and so to take �minmaxi .

If round r is not the last review round, then fi is the summation of the following two.

First, remember that the history in round r, #r
i , changes the ex ante value at the beginning

of the next round by a¤ecting the belief about the best responses at the beginning of the

next round. Let Vi(ĥri ;#
r
i ; xj) be the value at the beginning of the next round given xj.

68

To cancel out the e¤ect of learning, player j �rst gives

2

�
min
#ri

Vi(ĥ
r
i ;#

r
i ; xj)� Vi(ĥ

r
i ; #̂

r
i ; xj)

�
: (95)

(95) is bounded by [�O (T�r�6) ; O (T�r�6)] since (i) ĥri ; #̂r
i which tells player i to mini-

max puts a belief no less than 1 � exp(�O(T 1
2 )) on the event that �maini makes any action

pro�le sequence indi¤erent, (ii) fi for round ~r � r + 1 is bounded by [�T�r�6; T�r�6] from

the inductive hypothesis and (64), (iii) we have established the incentive to tell the truth,

and (iv) from (iii) and �i, the ex ante punishments from (54), (55), (56), (57), (58), (59),

(60) and (61) are zero.

Then, player j calculates the ex ante payo¤taking (T (r; ai))ai in round r. Let U(ĥ
r
i ; (T (r; ai))ai ; �(r))

be this payo¤ from round r. Since (95) cancels out the e¤ect on the continuation values from

the next round, the e¤ects on (95) and the continuation payo¤ from the next round are ne-

glected.

In addition to (95), player j gives

2

 
min

(T (r;ai))ai

U(ĥri ; (T (r; ai))ai ; �(r))� U(ĥri ; (T̂ (r; ai))ai ; �(r))

!
(96)

to player i so that player i is indi¤erent between any action plan ex ante.

That is, fi is the summation of (95) and (96).

68By backward induction, given
�
ĥri ;#

r
i

�
, the ex ante value at the beginning of the next round can be

calculated, assuming that player i will take a best response after
�
ĥri ;#

r
i

�
. This is well de�ned even after

player i�s deviation since player j treats each period within a round identically. See Section 15.7.
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Given this, it is optimal for player i to take �minmaxi after any history since (i) learning

from fyi;tgt2T (r) for the reward function for the current round r is irrelevant after conditioning

�j(r) and (ii) learning for the future reward is canceled out with (95).
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SUPPLEMENTAL MATERIAL 3:

PROOF OF THEOREM 1 for a General N-Player Game With CHEAP

TALK

In this Supplemental Material, we prove Theorem 1 (folk theorem) for a general N -

player game with cheap talk and public randomization. We concentrate on N � 3. See the

Supplemental Material 2 for the case with N = 2 and the Supplemental Material 5 for the

dispensability of cheap talk and public randomization.

In this Supplemental Material, when we say player i with i 62 f1; :::; Ng, it means player

i (modN). In particular, player 0 is player N and player N + 1 is player 1.

Fix v 2 int(F �) arbitrarily. We will �nd f�i(xi)gi;xi and
�
�i(xi�1; h

TP+1
i�1 : �)

	
i;xi�1

in the

�nitely repeated game with (3), (4) and (5).

As in the main text, let

v�i � min
��i2�j 6=i�(Aj)

max
ai2Ai

ui(ai; ��i)

be the minimax payo¤ (by independently mixed strategies). In addition, let �minmax�i �

(�minmaxj;i )j 6=i be the solution for the above problem, that is, �minmaxj;i is player j�s stage game

strategy when players �i minimax player i.

27 Intuitive Explanation

Before proceeding to the proof, we o¤er an intuitive explanation. As in the two-player case,

we have L main blocks, where L will be de�ned in Section 34. Player i�1 incentivizes player

i by the reward function. Similarly to �j(l) and �̂j(l) in the two-player case, player i� 1 has

�i�1(l) 2 fG;Bg indicating whether player i � 1 has observed an �erroneous history�and

player i has �̂i�1(l) 2 fG;Bg indicating what is the optimal action for player i.

As we have mentioned in Section 4.6.3, the more-than-two-player case has two di¤erences

from the two-player case. In the Supplemental Material 3, we focus on the �rst di¤erence
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(see the Supplemental Material 5 for the second di¤erence): Since we use perfect and public

cheap talk to coordinate on xi, each player infers the same xi. Therefore, we concentrate on

how players �i coordinate on minimaxing player i after the histories where player i is likely

to have deviated. To deal with this problem, we consider a mechanism to coordinate on the

punishment di¤erent from the two-player case.

For each player i, there are two monitors, players i � 1 and i + 1. In other words, each

player n monitors players n� 1 and n+ 1.

After the lth review round, each player j constructs a variable dj(l+1) 2 f0; j�1; j+1g.

dj(l + 1) = 0 implies that player j thinks that there was no deviator in players j � 1 and

j + 1 in the lth review round. dj(l + 1) = j � 1 implies that player j thinks that player

j � 1 deviated in the lth review round. dj(l + 1) = j + 1 implies that player j thinks that

player j + 1 deviated. Player j sends the message dj(l + 1) to each player n 2 �j by noisy

cheap talk with precision p = 1
2
.69 Each player n 6= j constructs the inference of dj(l + 1),

dj(l + 1)(n) 2 f0; j � 1; j + 1g, from the private signal of the noisy cheap talk.

Each player n minimaxes player i by �minmaxn;i if and only if player n infers that the two

monitors i� 1 and i+1 think that player i has deviated: di�1(l+1)(n) = di+1(l+1)(n) = i.

To incentivize the players to tell the truth about dj(l + 1), whenever player j�s message

has an impact on the decision of minimax, we make player j indi¤erent between any action

pro�le. This happens only if there is �player j0 2 �j with dj0(l + 1) 6= 0; j� or �players

j0 2 �j and n 2 �j with dj0(l + 1)(n) 6= 0; j.�With the noisy cheap talk with precision

p = 1
2
, the latter does not happen with probability more than exp(�O(T 1

2 )). Therefore, if

we construct dj0(l+1) such that player j cannot manipulate dj0(l+1), then player j follows

the equilibrium strategy.

28 Almost Optimality

As seen in Section 7, we �rst show that player i�s strategy is �almost optimal.�

69Precisely, since dn(l+1) is ternary while the noisy cheap talk can send a binary message, player n sends
a sequence of binary messages. See Section 33.2.
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We divide the reward function into two parts:

�i(xi�1; h
TP+1
i�1 : �) = �maini (xi�1; h

main
i�1 ; h

rereport
i�1 : �) + �reporti (xi�1; h

TP+1
i�1 ; hrereporti�1 : �):

Contrary to the two-player case, we have hrereporti�1 in �maini and �reporti . We will de�ne hmaini�1 ,

hTP+1i�1 and hrereporti�1 below.

With more than two players, player i� 1 wants to use the information owned by players

� (i� 1; i) to construct player (i� 1)�s reward function on player i. Hence, as we will see

in Section 31, after the report block where player i reports hmaini , we have the �re-report

block�where players � (i� 1; i) send their history to player i� 1. This information is used

only for �i and does not a¤ect the value of players � (i� 1; i). Therefore, we can assume

that players � (i� 1; i) tell the truth. Further, since the information in the re-report block

is used only for the reward (not for the action plan �i�1(xi�1)), it is su¢ cient for player i�1

to know the information by the end of the review phase.

Let hmaini�1 , h
TP+1
i�1 , and hrereporti�1 , respectively, be the history of player i�1 in the main blocks,

�in the coordination, main and report blocks,�and in the re-report block, respectively.

We �rst construct �i (xi) and �maini (xi�1; h
main
i�1 ; h

rereport
i�1 : �) satisfying (8), (4) and (5) if

we neglect the report block. After constructing such �maini , we construct the strategy in the

report block and �reporti such that �i = �maini + �reporti satis�es (3), (4) and (5).

29 Special Case

We still focus on the spacial case where the perfect cheap talk, noisy cheap talk and public

randomization are available:

Perfect Cheap Talk We assume that the perfect cheap talk is available. In addition, we

assume that perfect cheap talk is public, that is, when player i sends a message to another

player, all the players can know exactly what is the message.
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Noisy Cheap Talk Between j and n with Precision p = 1
2
We assume that, for each

pair of players j and n with j 6= n, each player j has an access to a noisy cheap talk device

to send a binary message m 2 fG;Bg to player n.

With more than two players, we use only the noisy cheap talk with precision p = 1
2
.

Hence, from now on, when we consider the game with more than two players, we assume

that p = 1
2
.

When player j sends m to player n via noisy cheap talk, it generates player n�s private

signals f [n] (m) 2 fG;Bg with the following probability:

Pr (ff [n] (m) = fg j m) =

8<: 1� exp(�T 1
2 ) for f = m;

exp(�T 1
2 ) for f = fG;Bg n fmg:

That is, f [n] (m) is the correct signal with high probability.

Given player n�s signal f [n] (m), it generates player (n� 1)�s private signal g [n� 1] (m) 2

fm;Eg with following probability:

Pr (fg [n� 1] (m) = Eg j m; f [n] (m)) = 1� exp(�T 1
2 )

for all (m; f [n] (m)) with f [n] (m) 6= m. Note that, contrary to the two-player case, not

player j (the sender) but player n � 1 (the controller of player n�s payo¤) receives this

message. We do not specify the probability for the other cases except that

� anything happens with probability at least exp(�O(T 1
2 )):

Pr (f(f [n] (m); g [n� 1] (m)) = (f; g)g j m) � exp(�O(T 1
2 ))

for all m and (f; g), and

� unconditionally on f [n](m), g [n� 1] (m) = m with high probability:

Pr (fg [n� 1] (m) = mg j m) � 1� exp(�O(T 1
2 ))
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for all m.

Finally, player j�1 (the controller of the sender) observes a private signal f2 [j � 1] (m) 2

fG;Bg and player n�1 (the controller of the receiver) observes a private signal g2[n�1](m) 2

fG;Bg. The role of f2; g2 is the same as in the two-player case: To incentivize the sender to

tell the truth about m and the receiver to tell the truth about f [n](m) in the report block.

We assume that f2 [j � 1] (m) and g2 [n� 1] (m) are very imprecise signals compared to

f [n] (m) and g [n� 1] (m) but f2 [j � 1] (m) and g2 [n� 1] (m) have some information about

the other players�information. That is, there exists � > 0 such that:

� For all f2 2 fG;Bg and g2 2 fG;Bg,

Pr (ff2 [j � 1] (m) = f2; g2 [n� 1] (m) = g2g j m; f [n](m); g [n� 1] (m)) � �: (97)

By (97), even after observing any f2[j�1](m), player n still believes that if f [n] (m) 6=

m, then g[n� 1](m) = E with probability 1� exp(�O(T 1
2 )).70

Therefore, for almost optimality, player n can neglect f2[j � 1](m) even if she can

observe f2[j � 1](m), that is, even if n is equal to j � 1.

� For any m 2 fG;Bg, g[n � 1](m) 2 fG;Bg, f [n](m); f [n](m)0 2 fG;Bg and f2[j �

1](m); f2[j � 1](m)0 2 fG;Bg, if (f [n](m); f2[j � 1](m)) 6= (f [n](m)0; f2[j � 1](m)0),

then 





 E
�
1g2[n�1](m) j m; g[n� 1](m); f [n](m); f2[j � 1](m)

�
�E

�
1g2[n�1](m) j m; g[n� 1](m); f [n](m)0; f2[j � 1](m)0

�






 > �: (98)

This implies that, in the report block,

� If j � 1 6= n, then player n reports f [n](m) in the report block and player n � 1

punishes player n by (98) with f [n](m) replaced with player n�s report of f [n](m),

\f [n](m). So that player n � 1 can calculate (98), in the re-report block, player
70If j � 1 = n, then player n does observe f2[j � 1](m).
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j � 1 informs player n � 1 of f2[j � 1](m). Even after knowing m, player n has

the incentive to tell the truth about f [n](m).

� If j � 1 = n, then player n reports f [n](m) and f2[j � 1](m) in the report block

and player n � 1 punishes player n by (98) with f [n](m) replaced with \f [n](m)

and f2[j � 1](m) replaced with \f2[j � 1](m). Even after knowing m, player n has

the incentive to tell the truth about f [n](m) and f2[j � 1](m).

As we will see below, g[n� 1](m) and g2[n� 1](m) are not revealed to player n in the

main blocks.

� For any m;m0 2 fG;Bg, f [n](m) 2 fG;Bg, g[n � 1](m); g[n � 1](m)0 2 fG;Bg and

g2[n� 1](m); g2[n� 1](m)0 2 fG;Bg, if (m; g[n� 1](m); g2[n� 1](m)) 6=

(m0; g[n� 1](m)0; g2[n� 1](m)0), then





 E
�
1f2[j�1](m) j m; g[n� 1](m); g2[n� 1](m); f [n](m)

�
�E

�
1f2[j�1](m) j m0; g[n� 1](m)0; g2[n� 1](m)0; f [n](m)

�






 > �: (99)

This implies that, in the report block,

� If n�1 6= j, then player j reports m in the report block and player j�1 punishes

player j by (99) with m replaced with player j�s report of m, m̂. So that player

j � 1 can calculate (99), in the re-report block, player n� 1 informs player j � 1

of g[n � 1](m) and g2[n � 1](m), and player n informs player j � 1 of f [n](m).

Even after knowing f [n](m), player j has the incentive to tell the truth about m.

� If n � 1 = j, then player j reports m, g[n � 1](m) and g2[n � 1](m) in the

report block and player j � 1 punishes player j by (99) with m, g[n� 1](m) and

g2[n�1](m) replaced with m̂, \g[n� 1](m) and \g2[n� 1](m), respectively. So that

player j � 1 can calculate (99), in the re-report block, player n informs player

j � 1 of f [n](m). Even after knowing f [n](m), player j has the incentive to tell

the truth about m, g[n� 1](m) and g2[n� 1](m).
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As we will see below, f2[j � 1](m) is not revealed to player j in the main blocks.

We assume that all the signals are private and so

� player j knows only m,

� player n knows only f [n] (m),

� player n� 1 knows only g[n� 1] (m) and g2[n� 1] (m), and

� player j � 1 knows only f2[j � 1](m).71

As for Lemma 2, we can summarize the important features of the noisy cheap talk in the

following lemma:

Lemma 15 The signals by the noisy cheap talk satis�es the following conditions:

1. For any m 2 fG;Bg, player n�s signal f [n] (m) is correct with high probability:

Pr (ff [n] (m) = mg j m) � 1� exp(�T 1
2 ):

2. For any m 2 fG;Bg, f [n] (m) 2 fG;Bg and f2[j� 1](m) 2 fG;Bg, after knowing m,

f [n] (m) and f2[j�1](m), player n puts a high belief on the events that either f [n] (m)

is correct or g [n� 1] (m) = E. That is,

Pr (ff [n] (m) = m or g [n� 1] (m) = Eg j m; f [n] (m); f2[j � 1](m))

� 1� exp(�T 1
2 ):

3. For any m 2 fG;Bg, any signal pro�le can happen with positive probability:

Pr (f(f [n] (m); g[n� 1](m); f2[j � 1](m); g2[n� 1](m)) = (f; g; f2; g2)g j m)

� exp(�O(T 1
2 ))

71If there is a player whose index appears multiple times, then we assume that the player knows all the
signals of the players with that index.
For example, if player j and player n� 1 are the same player, she knows m, g[n� 1] (m) and g[n� 1] (m).
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for all (f; g; f2; g2).

We do not have a condition corresponding to Condition 3 of Lemma 2.

Public Randomization As in the two-player case, the players use public randomization

in the report block to determine who will report the history hmaini .

30 Assumptions

In addition to Assumptions 1 and 3, we need multi-player counterparts of Assumptions 4

and 5.

30.1 Identi�ability for the Reward

As Assumption 4, for each player i 2 I and action pro�le a 2 A, to incentivize player i,

it is important that the controller of her payo¤ (player i � 1) statistically identi�es player

i�s deviation. That is, we want to create a statistics  ai�1(yi�1) whose expectation is higher

when player i follows the prescribed action ai than ~ai 6= ai: With some q2 > q1,

E
�
 ai�1(yi�1) j ~ai; a�i

�
�
X
yi�1

q(yi�1 j ~ai; a�i) ai�1(yi�1) =

8<: q2 if ~ai = ai;

q1 if ~ai 6= ai:
(100)

In addition, with more than two players, it is important that player j 6= i � 1; i cannot

change the ex ante value of  ai�1(yi�1) by unilateral deviation: For any j 6= i � 1; i and

~aj 2 Aj,

E
�
 ai�1(yi�1) j ~aj; a�j

�
�
X
yi�1

q(yi�1 j ~aj; a�j) ai�1(yi�1) = q2: (101)

Further, as in the two-player case, player i calculates the conditional expectation of

 ai�1(yi�1) after observing yi, believing that a is taken:

X
yi�1

 ai�1(yi�1)q(yi�1 j a; yi):
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With more than two players, we want to make sure that not only player i�1 but also all the

other players than player i cannot change the ex ante value of this conditional expectation

by unilateral deviation: For each j 6= i and ~aj 2 Aj,

X
yi

0@X
yi�1

 ai�1(yi�1)q(yi�1 j a; yi)

1A q (yi j ~aj; a�j) = q2:

Note that this expression is equivalent to

X
yi�1

 X
yi

q(yi�1 j a; yi)q (yi j ~aj; a�j)
!
 ai�1(yi�1) = q2: (102)

A su¢ cient condition for the existence of such  ai�1 is as follows: Let Q1(j; ~aj; a�j) �

(q(yi�1 j ~aj; a�j))yi�1 be the vector expression of the distribution of player (i� 1)�s signals

conditional on ~aj; a�j. In addition, let Q2(j; ~aj; a�j) �
�P

yi
q(yi�1 j a; yi)q(yi j ~aj; a�j)

�
yi�1

be the vector expression of ex ante distribution of player (i� 1)�s signals when yi is �rst

generated according to q(yi j ~aj; a�j) and then yi�1 is generated according to q(yi�1 j a; yi).

We assume that all the vectors Q1(i; ~ai; a�i) with ~ai 2 Ai, Q1(j; ~aj; a�j) with j 6= i; i� 1 and

~aj 6= aj and Q2(j; ~aj; a�j) with j 6= i and ~aj 6= aj are linearly independent:

Assumption 6 For any i 2 I and a 2 A, Q1(i; ~ai; a�i) with ~ai 2 Ai, Q1(j; ~aj; a�j) with

j 6= i; i� 1 and ~aj 6= aj and Q2(j; ~aj; a�j) with j 6= i and ~aj 6= aj are linearly independent.

This assumption is generic if jYi�1j � jAij + jAi�1j � 1 + 2
P

j 6=i�1;i (jAjj � 1), which is

guaranteed by Assumption 2. We can show that Assumption 6 is su¢ cient for (100), (101)

and (102).

Lemma 16 If Assumption 6 is satis�ed, then there exist q2 > q1 such that, for each i 2 I

and a 2 A, there exists a function  ai�1 : Yi�1 ! (0; 1) such that (100), (101) and (102) are

satis�ed.

Proof. The same as Lemma 3.
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30.2 Identi�ability for Minimaxing

In addition, to coordinate on punishing (minimaxing) player i, not only player i� 1 but also

player i+ 1 monitors player i.

It is important to have 
ai+1(yi+1) by which player i+ 1 can distinguish whether player i

takes ai or not:

E[
ai+1 (yi+1) j ~ai; a�i] �
X
yi+1

q(yi+1 j ~ai; a�i)
ai+1(yi+1) =

8<: q2 if ~ai = ai;

q1 otherwise.
(103)

Also, we want to make sure that the other players � (i; i+ 1) cannot change the expec-

tation of 
ai+1: For all j 6= i; i+ 1 and ~aj 2 Aj,

E[
ai+1 (yi+1) j ~aj; a�j] �
X
yi+1

q(yi+1 j ~aj; a�j)
ai+1(yi+1) = q2: (104)

A su¢ cient condition for the existence of such 
ai+1 is as follows: Let Q
minmax(j; ~aj; a�j) �

(q(yi+1 j ~aj; a�j))yi+1 be the vector expression of the distribution of player (i+ 1)�s signals

conditional on ~aj; a�j. We assume that all the vectors Qminmax(i; ~ai; a�i) with ~ai 2 Ai and

Qminmax(j; ~aj; a�j) with j 6= i; i+ 1 and ~aj 6= aj are linearly independent:

Assumption 7 For any i 2 I and a 2 A, Qminmax(i; ~ai; a�i) with ~ai 2 Ai and Qminmax(j; ~aj; a�j)

with j 6= i; i+ 1 and ~aj 6= aj are linearly independent.

This assumption is generic if jYi+1j � jAij +
P

j 6=i;i+1 (jAjj � 1), which is guaranteed by

Assumption 2. We can show that Assumption 7 is su¢ cient for (103) and (104).

Lemma 17 If Assumption 7 is satis�ed, then there exist q2 > q1 such that, for all i 2 I and

a 2 A, there exists a function 
ai+1 : Yi+1 ! (0; 1) such that (103) and (104) are satis�ed.

Proof. The same as Lemma 3.
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30.3 Individual Identi�ability

In the two-player game, for each player i, the controller of her payo¤ (player i�1 = j) knows

which action player �i = j takes for each t. This is not the case with more than two players

since players �i now contains players �(i� 1; i).

Suppose that the controller of player i�s payo¤ (player i�1) knows which strategy players

�i play. If the coordination does not go well, then it is possible that each player j 2 �i takes

some aj 2 Aj or �minmaxj;nj
(player j�s strategy when players �nj minimax player nj 2 �n)

with di¤erent nj�s for di¤erent j�s.72

For each i, for each ��i such that each player j 2 �i takes a pure strategy aj 2 Aj or

�minmaxj;nj
for some player nj 2 �j, we want to construct �xi�1i (��i; yi�1) such that player i�s

payo¤ is constant regardless of ��i and player i�s strategy.

A su¢ cient condition is that all the vectors of player (i� 1)�s signal distributions are

linearly independent with respect to ai 2 Ai if player i � 1 knew ��i. That is, we assume

the following:

Assumption 8 For any i 2 I and ��i such that each player j 2 �i takes a pure strategy

aj 2 Aj or �minmaxj;nj
for some player nj 2 �j, (qi�1 (yi�1 j ai; �i))yi�1 is linearly independent

with respect to ai 2 Ai.

This is generic if jYi�1j � jAij. Note that we assume that player i� 1 knew ��i. As we

have mentioned, players � (i� 1; i) in the re-report block tells player i � 1 what strategy

��i they take in the main blocks.

Then, we can construct the two reward: One is to cancel out discounting and the other

is to make player i indi¤erent between any action pro�le sequence:

Lemma 18 If Assumption 8 is satis�ed, then for each i 2 I, there exists ��i : N��(A�i)�

Yi�1 ! R such that, for all ai;t 2 Ai and ��i;t such that each player j 2 �i takes a pure
72As will be seen in Section 33.2, �minmaxj;j is de�ned to be a pure strategy.
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strategy aj 2 Aj or �minmaxj;nj
for some player nj 2 �j, we have

�t�1ui (ai;t; ��i;t) + E
�
��i (t; ��i;t; yi�1;t) j ai;t; ��i;t

�
= ui (ai;t; ��i;t) for all t 2 f1; :::; TPg

and

lim
�!1

1� �

1� �TP

TPX
t=1

sup
��i;t;yi�1;t

����i (t; ��i;t; yi�1;t)�� = 0 (105)

for all TP = O(T ) with T = (1� �)�
1
2 . Here, the supremum is taken for ��i;t satisfying the

condition above.

Proof. The same as Lemma 4.

As we will see in Section 33.3, we add

TPX
t=1

��i (t; ��i;t; yi�1;t) (106)

to �maini so that we can ignore discounting.

Lemma 19 If Assumption 8 is satis�ed, then, there exists �u > 0 such that, for each i 2 I,

there exist �Gi (��i; �) : Yi�1 ! [��u; 0] and �Bi (��i; �) : Yi�1 ! [0; �u] such that

ui (ai; ��i) + E
�
�Gi (��i; yi�1) j ai; ��i

�
= constant 2 [��u; �u];

ui (ai; ��i) + E
�
�Bi (��i; yi�1) j ai; ��i

�
= constant 2 [��u; �u]

for all ai 2 Ai and ��i such that each player j 2 �i takes a pure strategy aj 2 Aj or �minmaxj;nj

for some player nj 2 �j.

Proof. The same as Lemma 5.

30.4 Slight Correlation

As in the two-player case, we need to establish the truthtelling incentive in the report block.

When player i reports her history (ai;t; yi;t) in some period t in the main blocks, intuitively,
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player i� 1 punishes player i proportionally tow




1yj;t � E h1yj;t j âi;t; ŷi;t; a�i;t; fyn;tgn2�(j;i)i


2
with

j =

8<: i� 1 if i 6= 1;

2 if i = 1:
(107)

Hence, player i wants to minimize

E

24 


1yj;t � E h1yj;t j âi;t; ŷi;t; a�i;t; fyn;tgn2�(j;i)i


2
j ai;t; yi;t; a�i;t; fyn;tgn2�(j;i)

35 : (108)

Compared to the two-player case, we assume that player i knows the action pro�le by players

�i and signal observations by players � (j; i).

We assume that a di¤erent (ai;t; yi;t) has di¤erent information about yi�1;t conditional on

a�i;t; fyn;tgn2�(j;i):

Assumption 9 For any i 2 I, j with (107), a�i 2 A�i, fyn;tgn2�(j;i) 2
Q

n2�(j;i) Yn, ai; a
0
i 2

Ai and yi; y0i 2 Yi, if (ai; yi) 6= (a0i; y0i), then

E
h
1yj j ai; yi; a�i; fyn;tgn2�(j;i)

i
6= E

h
1yj j a0i; y0i; a�i; fyn;tgn2�(j;i)

i
:

Given Assumption 9, the truthtelling is uniquely optimal.

Lemma 20 If Assumption 9 is satis�ed, then for any at 2 A, fyn;tgn2�(j;i) 2
Q

n2�(j;i) Yn

and yi;t 2 Yi, (âi;t; ŷi;t) = (ai;t; yi;t) is a unique minimizer of (108).

31 Structure of the Phase

In this section, we explain the structure of the �nitely repeated game. As in the two-player

game, we have the coordination block at the beginning, where each player takes turns to
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send the cheap talk message xi 2 fG;Bg: First, player 1 sends x1, second, player 2 sends

x2, and so on until player N sends xN . Note that x will become common knowledge for the

rest of the game.

After the coordination block, we have L main blocks. The �rst (L� 1) blocks is further

divided into 1 + N + N (N � 1) rounds. That is, for l 2 f1; :::; L � 1g, the lth main block

consists of the following rounds: First, the players play a T -period review round.

After that, as indicated in Section 27, each player i � 1 sends �i�1(l + 1) to player i by

the noisy cheap talk between i � 1 and i. The players take turns: Player 1 sends �1(l + 1)

to player 2, player 2 sends �2(l+ 1) to player 3, and so on until player N sends �N(l+ 1) to

player 1. We call the instance where player i� 1 sends �i�1(l+1) to player i �supplemental

round for �i�1(l + 1).�

After that, each player j sends dj(l + 1) to each player n 2 �j by the noisy cheap talk

between j and i.73 The players take turns: Player 1 sends d1(l + 1) to player 2, player 1

sends d1(l+1) to player 3, and so on until player 1 sends d1(l+1) to player N . Then, player

2 sends d2(l + 1) to player 1, player 2 sends d2(l + 1) to player 3, and so on until player 2

sends d2(l + 1) to player N . This step continues until player N sends dN(l + 1) to player

N � 1. We call the instance where player j sends dj(l+ 1) to player n �supplemental round

for dj(l + 1) between j and n.�

The last Lth main block has only the T -period review round.

Let T (l) be the set of T periods in the lth review round.

After the last main block, there is the report block, where each player i reports the whole

history hmaini .

Finally, after the report block, there is the re-report block, where each player i reports

the whole history hmaini again. This time, player i�s message is used only for the reward

�mainj (xj�1; h
main
j�1 ; h

rereport
j�1 : �) with j 6= i. That is, player i�s message does not a¤ect player i.

Therefore, the whole structure of the phase is as follows:

73While the noisy cheap talk is for a binary message, dj(l + 1) 2 f0; j � 1; j + 1g is ternary. The players
use a sequence of binary messages to send dj(l + 1) as we will see in Section 33.2.
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32 Perfect Monitoring

As in the two-player game, we consider a one-shot game with perfect monitoring parame-

terized with l 2 N. In the game with parameter l 2 f1; :::; L � 1g, players �i takes a�i(x).

Depending on player i�s action, c(l + 1) 2 f0; ig is determined. If player i takes ai(x), then

c(l + 1) = 0 with probability one. If player i takes ai 6= ai(x), then c(l + 1) = i with prob-

ability pl+1i+1(x) and c(l + 1) = 0 with the remaining probability 1 � pl+1i+1(x). The payo¤ of

player i is determined as

V l
i = max

ai

1

L� l + 1
ui(ai; a�i(x)) +

L� l

L� l + 1
E
�
W l+1
i (c(l + 1)) j ai; a�i(x)

�
with

u�i (x) = ui(BRi(a�i (x)); a�i (x));

W l+1
i (G) =

(L� l � 1)max fwi(x); v�i g+ u�i (x)

L� l
+ �;

W l+1
i (B) = v�i :

As in the two-player case, we can show the following lemma:

Lemma 21 For any L 2 N and � > 0, there exist fpl+1i+1(x)gL�1l=1 2 [0; 1] such that it is

uniquely optimal for player i to take BRi(a�i(x)) and

V l
i �

(L� l)max fwi(x); v�i g+ u�i (x)

L� l + 1
+ � = W l

i (G);

Proof. The same as Lemma 11. With Assumption 6, we can assume that the gain in the

instantaneous utility from taking a best response is strict as in Section 21.

Note that, contrary to the two-player case, we do not have the term q2�q1�2"
q2�q1 . This comes

from the fact that we will use the di¤erent coordination device on minimaxing player i.
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33 Equilibrium Strategy

In this section, we de�ne �i (xi) and �maini (xi�1; h
main
i�1 ; h

rereport
i�1 : �). In Section 33.1, we

de�ne the state variables that will be used to de�ne the action plans and rewards. Given

the states, Section 33.2 de�nes player i�s action plan �i(xi) and Section 33.3 de�nes player

(i� 1)�s reward function �maini (xi�1; h
main
i�1 ; h

rereport
i�1 : �) on player i. Finally, Section 33.4

determines the transition of the states de�ned in Section 33.1.

33.1 States xi, �i(l+1), �̂i�1(l+1), di(l+1), dj(l+1)(i), ci(l+1), �i(l),

�i(�j (l + 1)) and �i(dj (l + 1))

The intuitive meaning of xi 2 fG;Bg, �i(l + 1) 2 fG;Bg and �̂i�1(l + 1) 2 fG;Bg is the

same as in the two-player case with j replaced with i� 1.

As seen in Section 27, di(l + 1) 2 f0; i� 1; i+ 1g indicates what player i thinks about a

deviation by players i� 1 and i+ 1.

Player j 6= i sends dj(l + 1) via noisy cheap talk to player i in the supplemental round

for dj(l + 1) between j and i. Let dj(l + 1)(i) be player i�s inference of the message, which

will be determined in Section 33.4.4.

Player i minimaxes player n by �minmaxi;n if and only if player i infers that the two monitors

n�1 and n+1 think that player n has deviated: dn�1(l+1)(i) = dn+1(l+1)(i) = n. If there

is a unique player with such an �agreement,�then player i thinks that player n�s deviation is

�con�rmed.�ci(l+1) = n implies such a situation. Otherwise, we have ci(l+1) = 0. Hence,

ci(l + 1) 2 f0g [ I.

The intuitive meaning of �i(l) 2 fG;Bg, �i(�j (l + 1)) 2 fG;Bg and �i(dj (l + 1)) 2

fG;Bg is the same as in the two-player case except for the following: Player i controls

player (i+ 1)�s payo¤. Hence, player i makes player i + 1 indi¤erent between any action

pro�le sequence after �i(l) = B, �i(�j (l + 1)) = B and �i(dj (l + 1)) = B. The precise

de�nitions are given in Sections 33.4.6, 33.4.7 and 33.4.8.
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33.2 Player i�s Action

In the coordination block, each player sends xi truthfully. Then, the state pro�le x becomes

common knowledge.

In the lth review round, player i�s strategy depends on �̂i�1(l) and ci(l). If �̂i�1(l) = G,

then player i takes ai(x) if ci(l) = 0 and �minmaxi;n if ci(l) = j 2 I (de�ne �minmaxi;i as an

arbitrary pure action). If �̂i�1(l) = B, then player i takes BRi(a�i(x)) if ci(l) = 0 and

BRi(�
minmax
�i ) if ci(l) 2 I.

In the supplemental round for �i(l+1), player i sends �i(l+1) truthfully via noisy cheap

talk to player i+ 1.

In the supplemental round for di(l+1) between i and n, player i sends di(l+1) truthfully

via noisy cheap talk to player n.

Since di(l+1) is ternary while the noisy cheap talk can send a binary message, we attach

a sequence of binary messages to each di(l+1). Speci�cally, given di(l+1) 2 f0; i�1; i+1g,

player i de�ne a sequence di(l + 1)f1g; di(l + 1)f2g 2 fG;Bg2: If di(l + 1) = 0, then

di(l + 1)f1g = G and di(l + 1)f2g = B with probability 1
2
and di(l + 1)f1g = B and

di(l + 1)f2g = G with probability 1
2
. If di(l + 1) = i � 1, then di(l + 1)f1g = G and

di(l + 1)f2g = G. If di(l + 1) = i+ 1, then di(l + 1)f1g = B and di(l + 1)f2g = B.

Player i with di(l+1) sends di(l+1)f1g and di(l+1)f2g truthfully via noisy cheap talk.

We de�ne

f [n](di(l + 1)) =

8>>><>>>:
0 if f [n](di(l + 1)f1g) 6= f [n](di(l + 1)f2g);

i� 1 if f [n](di(l + 1)f1g) = f [n](di(l + 1)f2g) = G;

i+ 1 if f [n](di(l + 1)f1g) = f [n](di(l + 1)f2g) = B;

g[n� 1](di(l + 1))

=

8<: E if g[n� 1](di(l + 1)f1g) = E or g[n� 1](di(l + 1)f2g) = E;

di(l + 1) otherwise,
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g2[n� 1](di(l + 1)) = (g2[n� 1](di(l + 1)f1g); g2[n� 1](di(l + 1)f2g)) ;

and

f2[i� 1](di(l + 1)) = (f2[i� 1](di(l + 1)f1g); f2[i� 1](di(l + 1)f2g)) :

Then, the message transmits correctly with probability no less than 1 � exp(�O(T 1
2 ))

and given di(l + 1)f1g; di(l + 1)f2g, player n puts a conditional belief on the events that

f [n](di(l + 1)) = di(l + 1) or g[n � 1](di(l + 1)) = E with probability no less than 1 �

exp(�O(T 1
2 )). In addition, given di(l+1)f1g; di(l+1)f2g, any signal sequences can happen

with probability no less than exp(�O(T 1
2 )). Therefore, Lemma 15 holds as if player i sent

di(l + 1) via noisy cheap talk.

33.3 Reward Function

In this subsection, we explain player (i� 1)�s reward function on player i, �maini (xi�1; h
main
i�1 ; h

rereport
i�1 :

�).

Score As in the two-player case, each player i�1 constructs	a(x)i�1;t 2 f0; 1g from  
a(x)
i�1 (yi�1;t).

Player i � 1 picks ti�1(l) randomly from T (l). With Ti�1(l) � T (l) n fti�1(l)g, player i � 1

calculates the score about player i

Xi�1(l) =
X

t2Ti�1(l)

	
a(x)
i�1;t + 1ti�1(l):

Slope Second, take �L su¢ ciently large so that

�L (q2 � q1) > max
a;i
2 jui (a)j :
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Reward Function As in the two-player case, the reward �maini (xi�1; h
main
i�1 ; h

rereport
i�1 : �) is

written as

�maini

�
xi�1; h

main
i�1 ; h

rereport
i�1 : �

�
=

LX
l=1

X
t2T (l)

��i (t; ��i;t; yi�1;t) +

8<: ��LT +
PL

l=1 �
main
i (xi�1; h

main
i�1 ; h

rereport
i�1 ; l) if xi�1 = G;

�LT +
PL

l=1 �
main
i (xi�1; h

main
i�1 ; h

rereport
i�1 ; l) if xi�1 = B:

(109)

Note that we add (106) to ignore discounting.

Reward Function for Each Round If �i�1(~l) = B, �i�1(�j(~l+1)) = B or �i�1(dj(~l+1)) =

B happens for some ~l � l� 1 and j 2 I, then player i� 1 makes player i indi¤erent between

any action pro�le sequence by

�maini (xi�1; h
main
i�1 ; h

rereport
i�1 ; l) =

X
t2T (l)

�
xi�1
i (�i�1; yi�1;t): (110)

Otherwise, that is, if �i�1(~l) = �i�1(�j(~l + 1)) = �i�1(dj(~l + 1)) = G for all ~l � l � 1 and

j 2 I, then player (i� 1)�s reward on player i is based on x, �i�1(l) and ci�1(l). The formal

description is given by

�maini

�
xi�1; h

main
i�1 ; h

rereport
i�1 ; l

�
(111)

=

8>>>>>><>>>>>>:

��i(x;G; ci�1(l); l) + �LfXi�1(l)� (q2T + 2"T )g if xi�1 = G and �i�1(l) = G;

��i(x;B; ci�1(l); l) if xi = G and �i�1(l) = B;

��i(x;G; ci�1(l); l) + �LfXi�1(l)� (q2T � 2"T )g if xi�1 = B and �i�1(l) = G;

��i(x;B; ci�1(l); l) if xi�1 = B and �i�1(l) = B:

Here, ��i(x; �i�1(l); ci�1(l); l) will be determined later so that (8), (4) and (5) are satis�ed.
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33.4 Transition of the States

In this subsection, we explain the transition of player i�s states. Since xi is �xed in the phase,

we consider the following eight:

33.4.1 Transition of �i�1(l + 1) 2 fG;Bg

The transition of �i�1(l + 1) 2 fG;Bg is the same as in Section 23.4.1 with j replaces with

i � 1 except that ci�1(l) = 0 is necessary to transit from �i�1(l) = G to �i�1(l + 1) = B.

Player i�1 with ci�1(l) = n 2 I will minimax player n. In that case, the action pro�le taken

in the lth review round may not be a(x) and so 	a(x)i�1 is not a correct statistics. Therefore, we

have ci�1(l) = 0 as a condition for �i�1(l) to transit from G to B. As will be seen in Section

33.5, player i � 1 with �i�1(l) = G does not have ci�1(l) = i unless player i is indi¤erent

between any action pro�le. In addition, if player i� 1 has ci�1(l) = n 2 �i, then player i is

indi¤erent between any action pro�le. Therefore, conditioning on ci�1(l) = 0 does not cause

a problem in player i�s incentive to follow �i(xi).

Now, we de�ne the transition of �i�1(l): The initial condition is �i�1(1) = G. If �i�1(l) =

B, then �i�1(l + 1) = B. If �i�1(l) = G, then

1. If Xi�1(l) 62 [q2T � 2"T; q2T + 2"T ] and ci�1(l) = 0, then �i�1(l + 1) = B.

2. If Xi�1(l) 2 [q2T � 2"T; q2T + 2"T ] or ci�1(l) 6= 0, then �i�1(l + 1) = G.

33.4.2 Transition of �̂i�1(l + 1) 2 fG;Bg

The transition of �̂i�1(l + 1) 2 fG;Bg is the same as in the two-player case with j replaced

with i � 1, except that if ci(l) = j 2 �i, then �̂i�1(l + 1) = G with high probability. As

will be seen in Section 33.5, player i with ci(l) = j 2 �i believes that player i is indi¤erent

between any action pro�le. This implies that player i� 1 does not monitor player i by 	a(x)i�1

and that player i does not need to infer �i�1(l + 1) seriously.

That is, �̂i�1(1) = G. If �̂i�1(l) = B, then �̂i�1(l + 1) = B. If �̂i�1(l) = G, then

�̂i�1(l + 1) 2 fG;Bg is de�ned as follows.
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Intuitively, player i calculates the conditional expectation of Xi�1(l), believing that a(x)

was taken: E
h
Xi�1(l) j a(x); fyi;tgt2T (l)

i
. Instead, as in the two-player case, player i calcu-

lates X
t2Ti(l)

E
h
	
a(x)
i�1;t j a(x); yi;t

i
+ q2:

Further, instead of using E
h
	
a(x)
i�1;t j a(x); yi;t

i
directly, player i constructs (Ei	

a(x)
i�1 )t 2 f0; 1g

and EiXi�1(l) =
P

t2Ti(l)(Ei	
a(x)
i�1 )t as in the two-player case.

With ex post (given fat; ytgt2T (l)) probability 1� exp(�O(T )), we have������
X
t2Ti(l)

E
h
	
a(x)
i�1;t j a(x); yi;t

i
+ q2 � EiXi�1(l)

������ � 1

4
"T: (112)

In addition, if (112) is the case and

EiXi�1(l) 2 [q2T �
1

2
"T; q2T +

1

2
"T ]; (113)

then since Ti(l) and Ti�1(l) are di¤erent at most for two periods, player i has

E
�
Xi�1(l) j a(x); fyi;tgt2T (l); Ti(l); Ti�1(l)

�
2 [q2T � "T; q2T + "T ]: (114)

Given above statistics, there are following cases:

1. If �(112) and (113) are satis�ed�or ci(l) = j 2 �i, then player i randomly picks the

following two procedures:

(a) With large probability 1� �, player i has �̂i�1(l+1) = G regardless of the signals

from the noisy cheap talk about �i�1(l + 1).

(b) With small probability � > 0, player i will use the signal from the noisy cheap

talk: �̂i�1(l + 1) is determined by

�̂i�1(l + 1) = f [i](�i�1(l + 1)): (115)
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2. If �(112) or (113) is not satis�ed�and ci(l) 2 f0; ig, then �̂i�1(l + 1) is determined by

(115).

33.4.3 Transition of di(l + 1)

We de�ne the transition of di(l + 1) 2 f0; i � 1; i + 1g: di(l + 1) = 0 implies that player i

believes that neither player i�1 nor i+1 has deviated in the lth review round; di(l+1) = i�1

implies that player i believes that player i � 1 has unilaterally deviated; di(l + 1) = i + 1

implies that player i believes that player i+ 1 has unilaterally deviated.

As player i� 1 constructs 	a(x)i�1;t 2 f0; 1g from  
a(x)
i�1 (yi�1;t), player i constructs �

a(x)
i from



a(x)
i (yi). Remember that player i picks ti(l) randomly from T (l) when she constructs Xi(l).

With the same ti(l), player i calculates another score about player i� 1:

Gi(l) =
X
t2Ti(l)

�
a(x)
i;t + 1ti(l):

From Lemma 17, player i can monitor player i � 1 by Gi(l). That is, a low realization of

Gi(l) implies player (i� 1)�s deviation.

De�ne di(1) = 0. For l = 1; :::; L� 1, di(l + 1) is determined as follows:

1. If ci(l) 6= 0, then di(l + 1) = di(l).

2. If ci(l) = 0 and �i (l) = G, that is, if player i has not observed an erroneous history,

then player i picks one of the following transitions randomly:

(a) With small probability 2�, di (l + 1) = 0.

(b) With small probability 2�, di (l + 1) = i� 1.

(c) With small probability 2�, di (l + 1) = i+ 1.

(d) With large probability 1� 6�, di(l + 1) is determined as follows. Conditional on

1-(d), di(l + 1) = i� 1 with probability

pl+1i (x)min

�
1;
fq2T �Gi(l)g+
q2T � q1T

�
(116)
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and di(l + 1) = 0 with the remaining probability.

3. If ci(l) = 0 and �i (l) = B, that is, if player i has observed an erroneous history, then

(a) If xi = G, then player i picks one of the following transitions randomly:

i. With small probability 3�, di (l + 1) = i� 1.

ii. With small probability 3�, di (l + 1) = i+ 1.

iii. With large probability 1� 6�, di(l + 1) = 0.

(b) If xi = B, then player i picks one of the following transition randomly:

i. With small probability 3�, di (l + 1) = 0.

ii. With small probability 3�, di (l + 1) = i� 1.

iii. With large probability 1� 6�, di(l + 1) = i+ 1.

We postpone the intuitive explanation of this transition until Section 33.4.5.

33.4.4 Transition of dj(l + 1)(i)

If j = i, then player i knows dj(l + 1). Hence, dj(l + 1)(i) = dj(l + 1).

For each j 6= i, player i constructs dj(l + 1)(i) by

dj(l + 1)(i) = f [i](dj(l + 1)) (117)

using the signals that arrives when player j sends the message about dj(l+1) via noisy cheap

talk between players j and i.

33.4.5 Transition of ci(l + 1) 2 f0g [ I

As seen in Section 33.2, ci(l + 1) 2 f0g [ I is player i�s index about whom to minimax.

ci(l + 1) = 0 implies that player i does not minimax any player in the (l + 1)th review

round while ci(l + 1) = n 2 �i implies that player i minimaxes player n. The action after

ci(l + 1) = i depends on �̂i�1(l + 1).
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Player i constructs a variable ci(l+1) 2 f0g[I as follows: ci(1) = 0 (no player minimaxes

any player in the initial review round). For l � 1, if ci(l) 2 I, then ci(l+1) = ci(l) (intuitively,

once player i decides to minimax player j, she will keep minimaxing player j). If ci(l) = 0,

then if there exists a unique j 2 I such that dj�1(l + 1)(i) = dj+1(l + 1)(i) = j, then

ci(l + 1) = j. In this case, we say player j�s unilateral deviation is �con�rmed.�Otherwise,

ci(l + 1) = 0. As explained in Section 27, the consensus between players j � 1 and j + 1 is

necessary to con�rm player j�s deviation (if the communication about fdj(l + 1)gj does not

have a noise).

Let us explain the basic structure of the coordination on the punishment. For a simple

explanation, for a while, assume that there is no noise in the communication: dj(l + 1) =

dj(l + 1)(n) for all j and n.

See Section 33.4.3. Since we want to consider player i�s incentive, we consider the tran-

sition of dj(l + 1) for the two monitors of player i, players i � 1 and i + 1. Neglect the

events that happen with probability no more than 3�. Then, the transition is as follows: For

j 2 fi� 1; i+ 1g,

1. If cj(l) 6= 0, then dj(l + 1) = dj(l).

2. If cj(l) = 0 and �j (l) = G, then dj(l + 1) = j � 1 with probability

pl+1j (x)min

�
1;
fq2T �Gj(l)g+
q2T � q1T

�

and dj(l + 1) = 0 with the remaining probability.

3. If cj(l) = 0 and �j (l) = B, then

(a) If xj = G, then dj(l + 1) = 0.

(b) If xj = B, then dj(l + 1) = j + 1.

From 2, while �i�1 (l) = G, player i � 1 monitors player i � 2, not player i. That is,

di�1(l + 1) 6= i. Remember that the consensus between players i � 1 and i + 1 is necessary
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for the con�rmation of player i�s deviation. Therefore, while �i�1(l) = G, player i is not

minimaxed.

Consider the case with �i�1 (l) = B. If xi�1 = G, then from 3-(a), di�1(l+1) 6= i. By the

same reason, player i is not minimaxed. If xi�1 = B, then from 3-(b), player i � 1 always

infers player i�s deviation. Hence, it is all up to player i+ 1 to con�rm player i�s deviation.

Suppose that player i + 1 has �i+1(l) = G. Then, from 1, player i + 1 monitors player i

as player j with xj = �j (l) = B monitors player i in the two-player case: See (82) and

(116). Therefore, together with Lemma 21, if player i believes that �i�1(l) = B, then player

i should take the static best response to players (�i)�s action: Player i with �̂i�1(l) = B and

ci(l) = 0 takes BRi(a�i(x)).

33.4.6 Transition of �i�1(l) 2 fG;Bg

As in the two-player case, �i�1(~l) = B with for some ~l � l�1 implies that player i is indi¤erent

between any action pro�le (except for the incentives from �reporti ). Here, we consider player

(i� 1)�s state since we want to consider player i�s incentive and player i�s value is a¤ected

by player (i� 1)�s state.

�i�1(l) = B if one of the following four conditions is satis�ed:

1. There exists player j 6= i� 1; i such that 1 is the case when player j creates �j(l + 1)

in Section 33.4.1 (replace i� 1 with j).

2. There exists player j 6= i such that 1-(b) or 2 is the case when player j creates �̂j�1(l+1)

in Section 33.4.2 (replace i with j).

3. There exists player j 6= i who picks a case that happens with probability at most 3�

when player j creates dj(l + 1) in Section 33.4.3 (replace i with j).

4. There exists player j 6= i; i + 1 who has dj(l + 1) = j � 1 in 2-(d) of Section 33.4.3

(replace i with j).

Except for the above four cases, �i�1(l) = G.
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33.4.7 Transition of �i�1(�j (l + 1)) 2 fG;Bg

�i�1(�j(~l + 1)) = B with for some j 2 I and ~l � l � 1 implies that player i is indi¤erent

between any action pro�le (except for the incentives from �reporti ). Compared to the two-

player case, player i � 1 takes care of the miscommunication between players j and j + 1

with j 6= i.

�i�1(�j(l + 1)) = B if one of the following conditions is satis�ed:

1. For j = i � 1, when player i � 1 sends �i�1(l + 1) to player i via noisy cheap talk,

player i � 1 receives the signal indicating that player i�s signal may be wrong: g[i �

1](�i�1(l + 1)) = E.

2. For j 6= i � 1; i, when player j sends �j(l + 1) to player j + 1 via noisy cheap talk,

player j + 1 receives a wrong signal: f [j + 1](�j(l + 1)) 6= �j(l + 1).

Note that in order to know 2 is the case, player i � 1 needs to know �j(l + 1) and

f [j+1](�j(l+1)). These variables are sent in the re-report block and so included in h
rereport
i�1 .

Since �i�1 only a¤ects the reward function (does not a¤ect �i�1(xi�1)), it su¢ ces that player

i� 1 knows the information by the end of the review phase.

Except for the above two cases, �i�1(�j (l + 1)) = G.

33.4.8 Transition of �i�1(dj (l + 1)) 2 fG;Bg

The intuitive explanation is the same as �i�1(�j(l + 1)).

�i�1(dj (l + 1)) = B if one of the following two conditions is satis�ed:

1. For j 2 �i and i, when player j sends dj (l + 1) to player i via noisy cheap talk, player

i� 1 receives the signal indicating that player i�s signal may be wrong: g[i� 1](dj(l+

1)) = E.

2. For j 2 �i and n 2 �i, when player j sends dj (l + 1) to player j via noisy cheap talk,

player n receives a wrong signal: f [n](dj(l + 1)) 6= dj(l + 1).
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Again, the information about dj(l+1) with j 6= i�1; i and f [n](dj(l+1)) with n 6= i�1; i

is sent in the re-report block and so included in hrereporti�1 .

Except for the above two cases, �i�1(dj (l + 1)) = G.

33.5 Summary of the Transitions of �i�1

First, we consider the implication of the transitions of �i�1 on
�
�̂j�1

�
j 6=i
and (�j�1)j 6=i;i+1.

If �̂j�1(l) = B for some j 6= i, then 1-(b) or 2 is the case when player j creates �̂j�1(~l+1)

in Section 23.4.2 (replace i with j). From Section 33.4.6, we have �i�1(~l) = B for some

~l � l � 1. This also implies that, whenever player i�s message �i(~l + 1) changes player

(i+ 1)�s continuation play, player i has been indi¤erent between any action pro�le sequence.

If �j�1(l) = B for some j 6= i; i+1, then from Case 1 of Section 33.4.6, we have �i�1(~l) = B

for some ~l � l � 1.

In summary, we can concentrate on the case with �̂j�1(l) = G for all j 6= i and �j�1(l) = G

for all j 6= i; i+ 1.

Second, we consider the implication of the transitions of �i�1 on player i�s incentive to

tell the truth about di(l + 1) in the supplemental rounds.

Suppose that there exists player n 2 I for whom di(l+ 1)(n) has an impact on cn(l+ 1).

We will show that this implies �i�1(~l) = B or �i�1(dj(~l + 1)) for some j 2 I and ~l � l.

1. If there exists player j 6= i whose message player n 2 I misinterprets, that is, if

dj(l + 1)(n) 6= dj(l + 1), then

(a) If n = i, then from Case 1 of Section 33.4.8, player i believes that �i�1(dj(l+1)) =

B with probability no less than 1� exp(�O(T 1
2 )). Since the continuation play by

players �i is independent of g[i�1](dj(l+1)), this is true for all the main blocks.

(b) If n 2 �i, then from Case 2 of Section 33.4.8, we have �i�1(dj(l + 1)) = B.

Hence, for almost optimality, player i can believe that dj(l + 1)(n) = dj(l + 1) for all

j 6= i and n 2 I.
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2. If player j 6= i picks a case which occurs with probability at most 3�, then from Case

3 of Section 33.4.6, we have �i�1(~l) = B for some ~l � l.

Hence, we can assume that dj(~l+ 1) with j 6= i and ~l � l would transit as if described

in Section 33.4.5.

Given above, there are two possible cases where di(l+1)(n) has an impact on whether

cn(l + 1) for some n 2 I:

3. di�2(l+1) = i� 1. This implies that player i� 2 6= i� 1; i has monitored player i� 1.

From Section 33.4.5, this implies that �i�2(l) = B. Since i�2 6= i�1; i (or �j�1(l) = B

with j 6= i; i+ 1), from Case 1 of Section 33.4.6, we have �i�1(~l) = B for some ~l � l.

4. di+2(l+ 1) = i+ 1. This implies that dj+1(l+ 1) = j with j 6= i; i+ 1. From Case 4 of

Section 33.4.6, we have �i�1(~l) = B for some ~l � l.

Therefore, if there exists player n 2 I for whom di(l + 1)(n) has an impact on cn(l + 1),

then �i�1(~l) = B or �i�1(dj(~l + 1)) for some j 2 I and ~l � l with probability no less than

1� exp(�O(T 1
2 )).

Third, we consider the implication of �i�1 on the mis-coordination on (cn)n2I . Suppose

that there exist n; n0 2 I with n 6= n0 such that cn(l) 6= cn0(l). There are two possible cases:

1. If cn(l) and cn0(l) have been determined independently of
n
di(~l + 1)(n)

o
~l�l�1

andn
di(~l + 1)(n

0)
o
~l�l�1

, then it means that there exists player j 6= i such that there was

a miscommunication between j and �n or n0.�By the same reason as above, player

i believes that �i�1(dj(~l + 1)) = B for some ~l � l � 1 with probability no less than

1� exp(�O(T 1
2 )).

2. If
n
di(~l + 1)(n)

o
~l�l
or
n
di(~l + 1)(n

0)
o
~l�l
has an impact on cn(l) or cn0(l), then from the

discussion above, this implies �i�1(~l) = B or �i�1(dj(~l + 1)) for some j and ~l � l � 1.

Therefore, if there exist players n 2 I and n0 2 I with cn(l) 6= cn0(l), then �i�1(~l) = B or

�i�1(dj(~l + 1)) for some j and ~l � l � 1.

162



Fourth, we will show that, if player i is not indi¤erent between any action pro�le sequence,

then cn(l) must be i or 0 for all n 2 I. Suppose that there exist n 2 I and j 2 �i with

cn(l) = j. We will show that this implies �i�1(l̂) = B or �i�1(dj0(l̂ + 1)) for some j0 and

l̂ � l � 1.

As above, for almost optimality, we can concentrate on the case with dj0(~l + 1)(n) =

dj0(~l+1) for all n 2 I, j0 2 �i and ~l � l� 1. In addition, we can assume that dj0(~l+1) with

j0 2 �i would transit as if described in Section 33.4.5.

1. If j 6= i + 1, then dj�1(~l + 1) = j. From Section 33.4.5, this implies that �j�1(l) = B.

Since j � 1 6= i� 1; i (or j 6= i; i+ 1), this implies �i�1(l̂) = B for some l̂ � l � 1.

2. If j = i+ 1, then dj+1(~l+ 1) = j. Since j + 1 = i+ 2 6= i; i+ 1, from Case 4 of Section

33.4.6, we have �i�1(l̂) = B for some l̂ � l � 1.

Therefore, �i�1(~l) = �i�1(�j(~l + 1)) = �i�1(dj(~l + 1)) = G for all j and ~l � l � 1 implies

that cn(l) = i for all n 2 I or cn(l) = 0 for all n 2 I.

Finally, we consider when player i can be minimaxed. Suppose that if cn(l) = i for all

n 2 I, then except for the case with miscommunications between i � 1 and n,74 we have

di�1(~l + 1) = i. Then, player i� 1 picks a case that happens with probability at least 3� or

xi�1 = �i�1(~l) = B from Section 33.4.3. If the former is the case, then we have �i�1(~l) = B.

Hence, player i can believe that player i is minimaxed with �i�1(~l) = �i�1(�j(~l + 1)) =

�i�1(dj(~l + 1)) = G for all j and ~l � l � 1 only if xi�1 = �i�1(~l) = B.

In total, we have shown the following statements:

1. We can concentrate on the following two cases:

(a) cn(l) = 0 for all n 2 �i. In this case, a�i(x) is played in the lth review round.

In (a), from Lemmas 16 and 17, the distribution of Xj(l) with j 6= i � 1; i,

EjXj�1(l) with j 6= i and Gj(l) with j 6= i � 1; i is independent of player i�s

strategy. Therefore, the distribution of �i�1(l) is independent of player i�s strategy.

74If so, then �i�1(di�1(~l + 1)) = B with probability at least 1� exp(�O(T 1
2 )) from the discussion above.
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(b) xi�1 = �i�1(l) = B and cn(l) = i for all n 2 �i. In this case, �minmax�i is played in

the lth review round.

In (b), the distribution of �i�1(l) is independent of player i�s strategy since

i. For all j 2 � (i� 1; i), �j(l + 1) is �xed.

ii. For all j 2 �i, �̂j�1(l + 1) is determined by player j�s mixture.

iii. For all j 2 �i, dj(l + 1) is �xed.

2. If player i constructs ci(l) as prescribed, then cn(~l) = cn0(~l) for all ~l � l.

3. Whenever player i�s message �i(l+1) changes player (i+ 1)�s continuation play, player

i is indi¤erent between any action pro�le.

4. Whenever there exists player n 2 I for whom di(l + 1)(n) matters for cn(l + 1), then

player i is indi¤erent between any action pro�le.

Therefore, we have shown the following lemma:

Lemma 22 For all i 2 I and l = 1; :::; L, for any history of player i in the lth review round,

player i puts a belief no less than 1� exp(�O(T 1
2 )) on the following events:

1. Player (�i)�s action pro�le in the lth review round satis�es one of the following four:

(a) �i�1(l) = G, ci(l) = 0 and a�i(x) is played,

(b) �i�1(l) = B, ci(l) = 0 and a�i(x) is played,

(c) xi�1 = �i�1(l) = B, ci(l) = i, and �minmax�i is played, or

(d) �i�1(~l) = B, �i�1(�j(~l + 1)) = B or �i�1(dj(~l + 1)) = B for some j and ~l � l� 1.

2. If �i�1(~l) = �i�1(�j(~l + 1)) = �i�1(dj(~l + 1)) = G for all j 2 I and ~l � l � 1, then the

distribution of �i�1(l), �i�1(�j(l + 1)) and �i�1(dj(l + 1)) for all j 2 I is independent

of player i�s strategy.
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3. If player i�s message �i(l+1) changes player (i+ 1)�s continuation play, then �i�1(l) =

B.

4. If there exists player n 2 I for whom di(l+1)(n) matters for cn(l+1), then �i�1(~l) = B,

�i�1(�j(~l + 1)) = B or �i�1(dj(~l + 1)) = B for some j 2 I and ~l � l � 1.

34 Variables

In this section, we �nish de�ning the variables necessary for the equilibrium construction:

q2, q1, �u, �L, L, � and ". �u, q1 and q2 are determined in Lemmas 16, 17 and 19. We take �L

su¢ ciently large so that

�L (q2 � q1) > max
a;i
2 jui (a)j :

We are left to pin down L, " > 0 and � > 0. Take L su¢ ciently large and " > 0

su¢ ciently small such that

max
x:xi�1=B

(L� 1)max fwi(x); v�i g+ u�i (x)

L
+
�L

L
+ 2"�L

< vi < vi < min
x:xi�1=G

wi(x)�
�L

L
� 2"�L

Then, take � > 0 su¢ ciently small so that

max
x:xi�1=B

(L� 1)max fwi(x); v�i g+ u�i (x)

L
+ � +

�L

L
+ 2"�L+ 7 (N � 1)L�

�
�u�min

i;a
wi (a)

�
< vi < vi < min

x:xi�1=G
wi(x)�

�L

L
� 2"�L� 7 (N � 1)L�

�
�u+max

i;a
wi (a)

�
: (118)

35 Almost Optimality

Again, we want to show the almost optimality �rst: We construct ��i(x; �i�1(l); ci�1(l); l)

such that (8), (4) and (5) are satis�ed.
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35.1 Almost Optimality of the Inferences

We show the almost optimality of �̂i�1(l + 1) and ci(l). The basic logic is the same as in

Lemma 8. Let ��i(l) be player (�i)�s action plan in the lth review round75 and ��i(l) =

(��i(1); :::; ��i(l)) be the sequence of player (�i)�s action plans from the �rst review round

to the lth review round (excluding what messages players �i sent by the noisy cheap talk).

Lemma 23 For any lth review round, for any hti with period t in the lth review round,

conditional on ��i(l), player i puts a belief no less than

1� exp(�O(T 1
2 )) (119)

on the events that

1. If �̂i�1(l) = G, then

(a) �players �i take a�i(x) and �i�1(l) = G�or any action is optimal.

(b) If ci(l) = j 6= 0, then any action is optimal.

2. If �̂i�1(l) = B, then

(a) If ci(l) 6= i, then �players �i take a�i(x) and �i�1(l) = B� or any action is

optimal.

(b) If ci(l) = i, then �players �i take �minmax�i and �i�1(l) = B� or any action is

optimal.

Proof. From Lemma 22, it su¢ ces to show that player i puts a belief no less than 1 �

exp(�O(T 1
2 )) on the events that �i�1(l) = �̂i�1(l) or any action is optimal.

As in the two-player case, there exists a unique l� such that �i�1 (l) switches from G to

B at the end of the l�th review round. In addition, there exists l̂� such that �̂i�1 (l) switches

75Note that players �i take an i.i.d. action plan within a review round.
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from G to B at the end of the l̂�th main block. If �i�1 (L) = G (�̂i�1 (L) = G, respectively),

then de�ne l� = L (l̂� = L, respectively).

Then, there are following three cases:

� If l� � l̂�, then the proof is the same as Lemma 8.

� If l� < l̂�, then there are following two cases:

� If 1-(b) or 2 is the case when player i creates �̂i�1(l� + 1) in Section 33.4.2, then,

again, the proof is the same as Lemma 8. We assume that, whenever player i has

deviated from �i(xi) in the l�th review round or before, player i creates �̂i�1(l�+1)

by (115).

� If 1-(a) is the case in Section 33.4.2, then there are following three cases:

� If ci(l�) 6= 0, then since �i�1(l�) = G, from 4 of Lemma 22, player i puts a

belief no less than 1� exp(�O(T 1
2 )) on the events that any action is optimal,

as desired.

� If players �i played a�i 6= a�i(x) in the l�th review round, then from 1 of

Lemma 22, player i puts the belief no less than 1 � exp(�O(T 1
2 )) on the

events that any action is optimal, as desired.

� cn(l
�) = 0 for all n 2 I. Then, the players play a (x). The rest of the

proof is the same as Lemma 8. Note that players (�i)�s continuation play

is determined by
�
�̂j�1(~l)

�
j2�i

and
�
cn(~l)

�
n2�i

. For �̂j�1(~l), errors happen

with probability exp(�O(T 1
2 )) since each player j uses the signals from the

noisy cheap talk with probability at least �. For cn(~l), each player n always

uses dj(~l + 1)(n) for all j 2 I and any dj(~l + 1)(n) happens with probability

at least 2� as long as cn(~l) = 0. Therefore, learning from the continuation

play does not update the belief more than exp(O(T
1
2 )).
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35.2 Determination of ��i(x; �i�1(l); ci�1(l); l)

Based on Lemmas 21, 22 and 23, we determine ��i(x; �i�1(l); ci�1(l); l) such that �i(xi) and

�maini satisfy (8), (4) and (5).

Proposition 3 For all i 2 I, there exists ��i(x; �i�1(l); ci�1(l); l) such that

1. �i(xi) is almost optimal: For each l 2 f1; :::; Lg,

(a) For any period t in the lth review round, (8) holds.

(b) When player i sends the noisy cheap talk messages in the supplemental rounds,

(8) holds.76

2. (4) is satis�ed with �i replaced with �maini . Since each xi 2 fG;Bg gives the same value

conditional on x�i, the strategy in the coordination block is optimal.77

3. �maini satis�es (5).

1-(b) follows from the following two facts: First, 3 and 4 of Lemma 22 imply that, when-

ever player i�s message changes some player�s action, player i has been indi¤erent between

any action pro�le. Second, Lemma 23 implies that player i can infer (cn(l))n2�i and �i�1(l)

with probability 1 � exp(�O(T 1
2 )) (or any action is optimal) by taking the equilibrium

strategy. Therefore, the equilibrium strategy is almost optimal.

As in the two-player case, for 3, it su¢ ces to have

��i(x; �i�1(l); ci�1(l); l)

8<: � 0 if xi�1 = G;

� 0 if xi�1 = B;
(120)

j��i(x; �i�1(l); ci�1(l); l)j � maxi;a 2 jui (a)jT (121)

for all x 2 fG;BgN , �i�1(l) 2 fG;Bg, ci�1(l) 2 f0g [ I and l 2 f1; :::; Lg.
76If l = L, then this is redundant.
77As in the two-player case, even after the adjustment of the report block, any xi 2 fG;Bg still gives

exactly the same value.
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We are left to construct ��i so that 1-(a) and 2 are satis�ed together with (120) and (121).

Remember that, from Lemma 23, it is almost optimal to take any action after ci(l) =

j 2 �i. Hence, we veri�ed the incentive to minimax player j if �̂i�1(l) = G and ci(l) = j as

desired.

Further, from Lemma 23, we can concentrate on the following �ve cases:

� xi�1 = G, �̂i�1(l) = �i�1(l) = G, ci(l) = 0 and players �i take a�i(x). Remember that

player i takes ai(x) from Section 33.2.

� xi�1 = G, �̂i�1(l) = �i�1(l) = B, ci(l) = 0 and players �i take a�i(x). Remember that

player i takes BRi(a�i(x)) from Section 33.2.

� xi�1 = B, �̂i�1(l) = �i�1(l) = G, ci(l) = 0 and players �i take a�i(x). Remember that

player i takes ai(x) from Section 33.2.

� xi�1 = B, �̂i�1(l) = �i�1(l) = B, ci(l) = 0 and players �i take a�i(x). Remember that

player i takes BRi(a�i(x)) from Section 33.2.

� xi�1 = B, �̂i�1(l) = �i�1(l) = B, ci(l) = i and players �i take �minmax�i . Remember

that player i takes BRi(�
minmax
�i ) from Section 33.2.

Therefore, almost optimality of �i(xi) and the existence of ��i with (120) and (121) can

be shown as in the two-player case. Remember that if the fourth bullet point is the case,

then player i � 1 with �i�1(l) = B has di�1(l + 1) = i with probability at least 1 � 6� and

it is up to player i + 1 to monitor player i (see Section 33.4.3). (116) implies that player

i+ 1 monitors player i as player j monitors player i in the two-player case. Therefore, from

Lemma 21, it is optimal for player i to take BRi(a�i(x)), as desired.

Note that the slack in (118) is enough since, for each lth main block, except for the cases

that happen with probability no more than exp(�O(T 1
2 )), �i�1(l) = B, �i�1(�j(l + 1)) = B

or �i�1(dj(l + 1)) = B happens only if
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� There is player j 6= i who uses the signal from the noisy cheap talk to create �̂j�1(l+1)

(Case 1-(b) or 2 in Section 33.4.2 with i replaced with j). This happens with probability

no more than (N � 1) �.

� There is player j 6= i who has dj(l + 1) that occurs with probability at most 3�. This

happens with probability no more than (N � 1) 6�.

36 Report Block

We are left to construct the report and re-report blocks to attain the exact optimality of the

equilibrium strategies. In this section, we explain the report block.

36.1 Structure of the Report Block

The report block proceeds as follows:

1. Player N sends the message about hmainN .

2. Player N � 1 sends the message about hmainN�1.

...

3. Player 3 sends the message about hmain3 .

4. Then, public randomization yp is drawn.

5. Player 1 reports hmain1 if yp � 1
2
and player 2 reports hmain2 if yp > 1

2
.

We explain each step in the sequel.

36.2 Player i sends hmaini

Since there is a chronological order for the rounds and r is a generic serial number of rounds,

the notations #r
i , #

r
i (k), T (r; k) and fai;t; yi;tgt2T (r;k) de�ned in the Appendix of the main

paper is still valid except that
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� If player i sends m to player n via noisy cheap talk in round r, then #r
i contains m for

sure. In addition, if and only if player n� 1 is player i, g[n� 1](m) and g2[n� 1](m)

are also included in #r
i .

� If player i receives m from player n via noisy cheap talk in round r, then #r
i contains

f [i](m) for sure. In addition, if and only if player n� 1 is player i, f2[n� 1](m) is also

included.

Player i sends the message about hmaini in the same way as player i sends the message in

Section 15.7. That is, for each round r,

� If round r corresponds to a review round, then

�First, player i reports the summary #r
i .

� Second, for each subround k, player i reports the summary #r
i (k).

�Third, public randomization is drawn such that each subround k is randomly

picked with probability T�
3
4 . Let k(r) be the subround picked by the public

randomization.

�Fourth, for k(r), player i reports the whole history fai;t; yi;tgt2T (r;k(r)) in the k(r)th

subround.

� If player i sends or receives a noisy cheap talk message in round r, then player i reports

#r
i .

Again, the necessary number of binary messages to send the information is

O(T
1
4 ): (122)

36.3 Reward Function �reporti

We are left to de�ne the reward function �reporti . As a preparation, we prove the following

lemma:
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Lemma 24 Let hi be player i�s history right before player i sends the message about hmaini

in the report block. If Assumption 9 is satis�ed, then there exists �" > 0 such that

1. For each l 2 f1; :::; Lg, in the lth review round, there exists gi(hmaini�1 ; h
rereport
i�1 ; ai; yi)

such that, for period t 2 T (l), it is better for player i to report (ai;t; yi;t) truthfully: For

all hi,

E
�
gi(h

main
i�1 ; h

rereport
i�1 ; âi;t; ŷi;t) j hi; (âi;t; ŷi;t) = (ai;t; yi;t)

�
(123)

> E
�
gi(h

main
i�1 ; h

rereport
i�1 ; âi;t; ŷi;t) j hi; (âi;t; ŷi;t) 6= (ai;t; yi;t)

�
+ �"T�1;

where (âi;t; ŷi;t) is player i�s message in the report block.

2. For round r where player i sends or receives the noisy cheap talk message, it is better

for player i to report player i�s history #r
i truthfully:

E
h
gi(h

main
i�1 ; h

rereport
i�1 ; #̂r

i ) j hi; #̂r
i = #

r
i

i
(124)

> E
h
gi(h

main
i�1 ; h

rereport
i�1 ; #̂r

i ) j hi; #̂r
i 6= #r

i

i
+ �"T�1;

where #̂r
i is player i�s message about #

r
i in the report block.

Proof.

1. By the same proof as Lemma 9, we can show that

gi(h
main
i�1 ; h

rereport
i�1 ; âi;t; ŷi;t) = �1ftj(r) = tg




1yj;t � E[1yj;t j âi;t; ŷi;t; a�i;t; �yn;t; 'n;t�n6=j;i]


2
with

j =

8<: i� 1 if i 6= 1;

2 if i = 1
(125)

works. Note that, compared to Lemma 9,

(a) 'n � (	
a(x)
n ; (En�1	n);�n) is a statistics that player n constructs in the lth review

round.
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(b) We condition the history
�
yn;t; 'n;t

�
n6=j;i of all the players except for player i herself

and player j. (125) and the structure of the report block explained in Section 36.1

imply that player i cannot know player j�s history from the report block.

As we will see, players � (i� 1; i) sends the information tj(r); a�(i�1;i); (yn; 'n)n6=j;i to

player i�1 in the re-report block and so tj(r), a�(i�1;i) and (yn; 'n)n6=j;i are in h
rereport
i�1 .

2. If player i sends m to player n via noisy cheap talk in round r, then

(a) If #r
i contains g[n� 1](m) and g2[n� 1](m), then

gi(h
main
i�1 ; h

rereport
i�1 ; #̂r

i ) = �



1f2[i�1](m) � E[1f2[i�1](m) j f [n](m); #̂r

i ]



2 :

(b) If #r
i does not contain g[n� 1](m) and g2[n� 1](m), then

gi(h
main
i�1 ; h

rereport
i�1 ; #̂r

i ) = �



1f2[i�1](m) � E[1f2[i�1](m) j f [n](m); #̂r

i ; g[n� 1](m); g2[n� 1](m)]



2 :

If player i receives m from player n via noisy cheap talk in round r, then

(a) If #r
i contains f2[n� 1](m), then

gi(h
main
i�1 ; h

rereport
i�1 ; #̂r

i ) = �



1g2[i�1](m) � E[1g2[i�1](m) j g[i� 1](m); #̂r

i ]



2 :

(b) If #r
i does not contain f2[n� 1](m), then

gi(h
main
i�1 ; h

rereport
i�1 ; #̂r

i ) = �



1g2[i�1](m) � E[1g2[i�1](m) j g[i� 1](m); #̂r

i ; f2[n� 1](m)]



2 :

Then, (98) and (99) imply that truthtelling is optimal.

As we will see, player n� 1 2 � (i� 1; i) sends g[n� 1](m), g2[n� 1](m), f [n� 1](m)

and f2[n� 1](m) to player i� 1 in the re-report block.
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Given these preparations, by backward induction, we construct �reporti

�
hTP+1i�1 ; hrereporti�1 ; ĥr+1i ; r

�
for each r such that

�reporti (xi�1; h
TP+1
i�1 ; hrereporti�1 ) =

X
r

�reporti

�
hr+1i�1 ; h

rereport
i�1 ; ĥr+1i ; r

�

makes it optimal to tell the truth in the report block and �i(xi) is exactly optimal.

Formally, �reporti

�
hr+1i�1 ; h

rereport
i�1 ; ĥr+1i ; r

�
is the summation of the following rewards and

punishments.

Punishment for a Lie As in the two-player case, we punish a lie. For round r corre-

sponding to a review round, the punishment is the summation of the following three:

� The number indicating player i�s lie about fai;t; yi;tgt2T (r;k(r)):

X
t2T (r;k(r))

T�3gi(h
main
i�1 ; h

rereport
i�1 ; âi;t; ŷi;t): (126)

� The number indicating player i�s lie about #r
i (k):

T�3 � T
3
4 � 1

8<:#̂r
i (k(r)) 6=

X
t2T (r;k(r))

1âi;t;ŷi;t

9=; ; (127)

where 1âi;t;ŷi;t is a vector whose element corresponding to (ai; yi) is equal to 1 if

(âi;t; ŷi;t) = (ai; yi) and 0 otherwise.

� The number indicating player i�s lie about #r
i :

T�3 � 1
(
#̂r
i 6=

X
k

#̂r
i (k)

)
: (128)
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For round r where player i sends or receives a message m, player i� 1 punishes player i

if it is likely for player i to tell a lie by

T�3gi(h
main
i�1 ; h

rereport
i�1 ; #̂r

i ): (129)

Cancel Out the Expected Punishment by Telling the Truth As in the two-player

case, we cancel out the di¤erences in ex ante value of the punishment between di¤erence

actions and messages: If player i reports the history (player i 2 f1; 2g needs to be picked by

the public randomization to report the history), then we add the following variable to �maini :

� if round r is a review round, then

X
t2T (r)

1ft 2 T (r; k(r))g1ftj(l) = tgT�3�i(a�i;t; yi�1;t);

� if player i sends the message in round r, then

T�3�i(f [n] (m));

where player n is the receiver of the message, and

� if player i receives the message in round r, then

T�3�i(n;m)

where player n is the sender of the message m.

Here, �i(a�i; yi�1) is de�ned so that the di¤erences in (126) among action ai�s are canceled

out ex ante before taking ai. Since we assume that player i � 1 knew a�i, Assumption 8 is

su¢ cient to construct such �i(a�i; yi�1). As we will see, player i � 1 gets the information

about a�i from players � (i� 1; i) in the re-report block.
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Similarly, �i(f [n] (m)) (�i(n;m), respectively) is de�ned so that the di¤erences in (129)

among messages are canceled out ex ante before sending (receiving, respectively) the message.

Again, player n 2 � (i� 1; i) sends f [n] (m) (m, respectively) to player i�1 in the re-report

block. The identi�ability to construct such �i is guaranteed by Lemma 15.

Reward for Optimal Action and Incentive to Tell the Truth This is the same as

in the general two-player case. We construct the reward fi so that, for each round r, for

any period t in round r, for any history hti, conditional on A�i(r), �i(xi) is optimal. Here,

A�i(r) represents

� which state x�i 2 fG;Bg players �i is in, and

� for each review round l that is before or equal to round r, which action plan �j each

player j 2 �i takes in the lth review rounds.

See Section 26 for the construction of fi.

37 Re-Report Block

This is the block for each player i�1 to collect the information owned by players � (i� 1; i)

which is necessary to construct player(i� 1)�s reward on player i, �i.

In the re-report block, we have the following rounds in this chronological order:

� Players � (N � 1; N) send the information to player N � 1 to construct �N .

� Players � (N � 2; N � 1) send the information to player N � 2 to construct �N�1.
...

� Players � (1; 2) send the information to player 1 to construct �2.

� Players � (N; 1) send the information to player N to construct �1.

We explain what information is sent for each step:
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37.1 Information Sent by Players � (i� 1; i) to Player i� 1

First, each player n 2 � (i� 1; i) sends the information about their histories in the coordi-

nation and main blocks:

� Which state xn player n has.

� For each lth review round, what strategy �n(l) player n took. Remember that player

n�s strategy within a round is i.i.d.

� For each lth review round, for each (an; yn; 'n), how many times player n observed

(an; yn; 'n).

� For each lth review round, which period tn(l) is excluded from Tn(l).

� At the end of each lth review round, all the realizations of player n�s randomization

for the construction of each state. For example, when player n constructs �̂n�1(l + 1)

in Section 33.4.2, which of 1-(a), 1-(b) or 2 is the case.

� For each supplemental round when player n sends a message, which message m player

n sent.

� For each supplemental round when player n receives a message, which signal f [n](m)

player n had.

Second, the players communicate about the histories related to the report block.

� For each round r corresponding to a review round,

�First, player i � 1 sends which k(r) player i � 1 and i coordinate about sending

(ai;t; yi;t) for each r corresponding to the review round. With public random-

ization, k(r) is public. Expecting that we replace public randomization with

coordination through private signals, we let player i� 1 speak k(r) here.
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�Then, for each r, based on player (i� 1)�s report k(r), each player n 2 � (j; i)

with j de�ned in (125) sends
�
yn;t; 'n;t

�
t2T (r;k(r)) and each player n 2 � (i� 1; i)

sends (an;t)t2T (r;k(r)).

� For a supplemental round, each player n 2 � (i� 1; i) sends g[n](m) and g2[n](m) if

player i receives a message and f [n](m) and f2[n](m) if player i sends a message.

Then, player i � 1 collects all the information necessary to construct player (i� 1)�s

reward on player i, �i. Further, the cardinality of the messages sent in the re-report block is

O(T
1
4 ) (130)

by the same calculation as for (50).
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SUPPLEMENTAL MATERIAL 4:

PROOF OF THEOREM 1 for a General Two-Player Game withOUT

CHEAP TALK

In this Supplemental Material, we prove the dispensability of the perfect cheap talk, noisy

cheap talk and public randomization in the proof of Theorem 1.

After we summarize new notations and assumptions in Section 38, we show that the play-

ers can communicate and coordinate via actions and private signals. We take the following

steps to dispense with the perfect and noisy cheap talk and public randomization device.

Remember that the coordination block uses the perfect cheap talk to communicate x,

that the supplemental rounds for �i(l + 1), di(l + 1) and d̂j(l + 1) use the noisy cheap talk,

and that the report block uses the public randomization and perfect cheap talk.

First, in Section 39, we replace the perfect cheap talk in the coordination block with the

noisy cheap talk. Although xi is no longer common knowledge, by exchanging the messages

via noisy cheap talk several times, each player can construct an inference of xi such that,

given the opponent�s inference, each player puts a belief no less than 1�exp(�O(T 1
2 )) on the

event that if their inferences are di¤erent, then the opponent has made her indi¤erent between

any action pro�le sequence in the main blocks. No additional assumption is necessary for

this step.

Second, in Section 41, we dispense with the noisy cheap talk in the coordination block

(given the �rst step above) and supplemental rounds. See Section 4 for the intuition and

Section 38.1 for a new assumption necessary for this step.

Third, in Section 44.2, we dispense with the public randomization in the report block,

keeping the perfect cheap talk. Now, the players coordinate with their actions and private

signals. Section 38.2 o¤ers a su¢ cient condition for this step.

Fourth, in Section 44.3, we replace the perfect cheap talk in the report block with �con-

ditionally independent noisy cheap talk.�In the report block, the receiver does not have a

strict incentive to infer the messages correctly since the messages are used only for the reward
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on the sender. Hence, we can disregard the incentives for the receiver. For the sender, since

the cheap talk is conditionally independent, she always believes that each message transmits

correctly with high probability. We can show that the cardinality of the messages sent in the

report block is su¢ ciently small compared to the precision of the conditionally independent

noisy cheap talk. Therefore, all the messages transmit correctly with high probability, which

is enough to construct �reporti to make �i(xi) exactly optimal. This step does not require any

assumption in addition to the availability of the conditionally independent cheap talk.

Fifth, in Section 44.4, we replace the conditionally independent noisy cheap talk with

messages via actions. This step is novel since we do not assume anything about the di¤erences

in each player�s number of signals. See Section 38.3 for what generic assumption is necessary.

When we say players i and j in this Supplemental Material, unless otherwise speci�ed,

it implies that i 6= j. In addition, without loss of generality, we assume that

jA1j jY1j � jA2j jY2j : (131)

38 Notations and Assumptions

38.1 Assumption for Dispensing with the Noisy Cheap Talk

When we dispense with the noisy cheap talk with precision p 2 (0; 1) about a binary message

m 2 fG;Bg, with � being a small number to be de�ned, the sender (say player j) determines

zj(m) =

8>>><>>>:
m with probability 1� 2�;

fG;Bg n fmg with probability �;

M with probability �

and player j takes

�
zj(m)
j =

8>>><>>>:
aGj if zj(m) = G;

aBj if zj(m) = B;

1
2
aGj +

1
2
aBj if zj(m) =M
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for T p periods. That is, player j sends the �true�message �zj(m)j = amj with high probability

1� 2� while player j �tells a lie�with probability 2�. With probability �, player j sends the

opposite message zj(m) = fG;Bgnfmg. With probability �, player j �mixes�two messages:

zj(m) =M and �Mj = 1
2
aGj +

1
2
aBj .

Player i (receiver) takes aGi .

Let yj be the vector whose element corresponding to yj represents the frequency that

player j observes yj while taking �
zj(m)
j . De�ne yi symmetrically for the receiver. In addition,

let qj(a) = (qj(yj j a))yj (qi(a) = (qi(yi j a))yi, respectively) be the distribution of player j�s

(player i�s, respectively) signals.

Our task is to create a mapping from yj to g[j](m) 2 fm;Eg and that from yi to

f [i](m) 2 fG;Bg such that important features of Lemma 2 are satis�ed. The mapping from

yi to f [i](m) cannot depend on m since the receiver does not know the true message.

First, when player j tells a lie, player j makes player i indi¤erent between any action.

That is, g[j](m) = E if zj(m) 6= m.

Second, regardless of player i�s deviation, as long as zj(m) = m, yj is close to a�(fqj(amj ; ai)gai)

(a¢ ne hull of player j�s signal distributions with respect to player i�s deviations) with high

probability. As we will see, if not, then player j makes player i indi¤erent between any action

pro�le in the continuation game. That is, g[j](m) = E if yj is not close to a�(fqj(amj ; ai)gai).

Using 1 and 2 of Notation 1 below, g[j](m) = E if yj 62 Hj["](m) for small " to be

determined.

Therefore, in total, we de�ne

1. g[j](m) = m if zj(m) = m and yj 2 Hj["](m).

2. g[j](m) = E if zj(m) 6= m or yj 62 Hj["](m).

By the law of large numbers (remember that the message is repeated for T p periods),

yj 2 Hj["](m) with probability 1� exp(�O(T p)). Therefore, g[j](m) = m with probability

1� 2� � exp(�O(T p)).
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On the other hand, player j wants to infer the message. For the moment, since zj(m) 6= m

implies that g[j](m) = E, let player i assume that zj(m) = m. Player i wants to infer that the

message is m̂ if player i�s conditional expectation of yj given m̂ and yi is close to Hj["](m̂).

Consider the following mapping:

� f [i](m) = G if the conditional expectation of yj given m = G and yi is close to

a�(fqj(aGj ; ai)gai), and

� f [i](m) = B if the conditional expectation of yj given m = B and yi is close to

a�(fqj(aBj ; ai)gai).

Suppose that this is well de�ned. That is, there is no yi such that the conditional

expectation of yj given m = G and yi is close to a�(fqj(aGj ; ai)gai), and, at the same time,

the conditional expectation of yj given m = B and yi is close to a�(fqj(aBj ; ai)gai).

Then, 2 of Lemma 2 is satis�ed. To see why, suppose that m = G and f [i](m) = B.

This means that, the �rst bullet is not the case. That is, given m = G (the true message)

and yi, the conditional expectation of yj is not close to a�(fqj(aGj ; ai)gai). Hence, given m,

g[j](m) = E with probability 1� exp(�O(T p)). The symmetric argument holds for m = B.

However, the above mapping from yi to f [i](m) is not always well de�ned. If jYij >

2(jYjj � jAij) + 1, then it is possible to have yi such that the conditional expectation of yj
given m = G and yi is close to a�(fqj(aGj ; ai)gai) and that the conditional expectation of yj
given m = B and yi is close to a�(fqj(aBj ; ai)gai).

Therefore, we restrict our attention to yi that is close to a�(fqi(aGi ; aj)gaj) (a¢ ne hull

of player i�s signal distributions with respect to player j�s actions). Regardless of player j�s

message and deviation, yi is close to a�(fqi(aGi ; aj)gaj) with probability 1 � exp(�O(T p)).

Later, we will care about yi that is not close to a�(fqi(aGi ; aj)gaj).

That is,

� If yi is close to a�(fqi(aGi ; aj)gaj), then

� f [i](m) = G if the conditional expectation of yj given m = G and yi is close to

a�(fqj(aGj ; ai)gai), and

182



� f [i](m) = B if the conditional expectation of yj given m = B and yi is close to

a�(fqj(aBj ; ai)gai).

� If yi is not close to a�(fqi(aGi ; aj)gaj), then we will consider the extra care later.

Using 4 of Notation 1 below,

� If yi 2 Hi["](G),78 then

� f [i](m) = G if yi 2 Hj;i["](G), and

� f [i](m) = B if yi 2 Hj;i["](B).

� If yi =2 Hi["](G), then we will consider the extra care later.

Then, for the �rst bullet, 2 of Lemma 2 is satis�ed. In addition, by the law of large num-

bers (remember the message is repeated for T p periods), yi 2 Hi["](G) and yi 2 Hj;i["](m)

with probability 1�exp(�O(T p)). Therefore, f [i](m) = m with probability 1�exp(�O(T p)).

To sustain 3 of Lemma 2, we further modify player i�s inference so that player j with

g[j](m) = m can believe that f [j](m) = m or yi =2 Hi["](G). As we will see, if yi =2 Hi["](G),

then player i makes player j indi¤erent between any action pro�le sequence. This does not

a¤ect player j�s incentive to send the message truthfully since yi 2 Hi["](G) with probability

1� exp(�O(T p)) regardless of player j�s strategy.

Suppose that player i infers

� f [i](m) = G if there exists yj 2 Hj["](G) such that yi is close to player j�s conditional

expectation of the empirical distribution of player i�s signals given yj and m = G.

� f [i](m) = B if there exists yj 2 Hj["](B) such that yi is close to player j�s conditional

expectation of the empirical distribution of player i�s signals given yj and m = B.

78Here, we use 1 of Notation 1 with j replaced with i. Since the receiver takes aGi , this is comparable to
the situation where player i is the sender and sends m = G after taking the a¢ ne hull with respect to the
opponent�s actions.
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Using 5 of Notation 1 below, player i infers

� f [i](m) = G if yi 2 Ii["](G), and

� f [i](m) = B if yi 2 Ii["](B).

Player j with g[j](m) = m should have zj(m) = m and yj 2 Hj["](m). Since player

j knows that she takes amj , player j calculates the conditional expectation of the empirical

distribution of player i�s signals given yj and m. The above inference implies that if player

i�s signal observation is close to this conditional expectation (player j believes that this is

the case), then player i infers f [i](m) = m as desired.

In total, we de�ne a mapping from yi to f [i](m) such that

1. If yi 2 Hi["](G), then

(a) f [i](m) = G if yi 2 Hj;i["](G) [ Ii["](G),

(b) f [i](m) = B if yi 2 Hj;i["](B) [ Ii["](B) or yi 62 Hj;i["](G) [ Ii["](G), and

2. If yi =2 Hi["](G), then we will consider the extra care later.

See 1-(b). For completeness, we require f [i](m) = B if yi is not included in either

Hj;i["](G) [ Ii["](G) or Hj;i["](B) [ Ii["](B).

Let us consider Case 2. Here, player i infers zj(m) from the likelihood, taking the

possibility that zj(m) 6= m into account. Givenm 2 fG;Bg and yi, the conditional likelihood

ratio between zj(m) = zj 2 fG;B;Mg and zj(m) = z0j 2 fG;B;Mg is

Pr (zj(m) = zj j m;yi)
Pr
�
zj(m) = z0j j m;yi

� = Pr (yi j zj(m) = zj)

Pr
�
yi j zj(m) = z0j

� Pr (zj(m) = zj j m)
Pr
�
zj(m) = z0j j m

� :
log

Pr(yijzj(m)=zj)
Pr(yijzj(m)=z0j)

is expressed as T p
�
L(yi; zj)� L(yi; z0j)

�
with

L(yi; zj) = yi;1 log q(yi;1jaGi ; �
zj
j ) + � � �+ yi;jYij log q(yi;jYijjaGi ; �

zj
j ):
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If L(yi; zj) is strictly concave with respect to the mixture of aGj and aBj for all possible yi�s,

then there exists � > 0 such that one of the following is true:

1. zj(m) = G is su¢ ciently more likely than zj(m) = B: L(yi; G)� � � L(yi; B).

2. zj(m) = B is su¢ ciently more likely than zj(m) = G: L(yi; B)� � � L(yi; G).

3. If zj(m) = G and zj(m) = B are equally likely, then since L(yi; zj) is strictly concave,

zj(m) =M is most likely: L(yi;M)� � � L(yi; G);L(yi; B).

Suppose that 1 is the case. This means that Pr(zj(m)=Gjm;yi)
Pr(zj(m)=Bjm;yi) � exp(�T

p) �
1�2� for all m 2

fG;Bg. Remember that zj(m) = M implies that player j told a lie and that g[j](m) = E.

Hence, given anym 2 fG;Bg, player i puts a conditional belief no less than 1�exp(O(�T p))

on the event that m = G or g[j](m) = E. Similarly, if 2 is the case, then given any

m 2 fG;Bg, player i puts a conditional belief no less than 1 � exp(O(�T p)) on the event

that m = B or g[j](m) = E. Finally, if 3 is the case, then given any m 2 fG;Bg, player i

puts a conditional belief no less than 1 � exp(O(�T p)) on the event that g[j](m) = E. In

this case, player i can infer m arbitrarily for almost optimality.

Hence, using the likelihood, there exists a mapping from yi to f [i](m) 2 fG;Bg such

that, given any m 2 fG;Bg, player i puts a conditional belief more than 1 � exp(O(�T p))

on the event that m = f [i](m) or g[j](m) = E.

In total,

1. If yi 2 Hi["](G), then

(a) f [i](m) = G if yi 2 Hj;i["](G) [ Ii["](G),

(b) f [i](m) = B if yi 2 Hj;i["](B) [ Ii["](B) or yi 62 Hj;i["](G) [ Ii["](G), and

2. If yi =2 Hi["](G), then player i infers f [i](m) from the likelihood.

After we introduce the notations, Assumption 10 gives a su¢ cient condition for the above

mapping to be well de�ned, that is, there is no yi such that the above mapping maps yi to

both G and B.
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Notation 1 For m; m̂ 2 fG;Bg, we de�ne

1. A (jYjj � jAij + 1)� jYjj matrix Hj(m) and a (jYjj � jAij + 1)� 1 vector pj(m) such

that the a¢ ne hull of player j�s signal distributions with respect to player i�s action

when player j takes amj is represented by

a�(fqj(amj ; ai)gai) \ R
jYj j
+ =

n
yj 2 RjYj j+ : Hj(m)yj = pj(m)

o
:

2. The set of hyperplanes generated by perturbing RHS of 1: for " � 0,

Hj["](m) �

8<:yj 2 RjYj j+ : 9" 2 RjYj j�jAij+1 such that

8<: k"k � ";

Hj(m)yj = pj(m)+"

9=; :

3. The matrix projecting player i�s signal frequency yi on the conditional expectation of

player j�s signal frequency yj given an action pro�le a:

Qj;i(a) =

26664
q(yj;1 j a; yi;1) � � � q(yj;1 j a; yi;jYij)

...
...

q(yj;jYj j j a; yi;1) � � � q(yj;jYj j j a; yi;jYij)

37775 :

4. The set of player i�s signal frequencies yi�s such that the conditional expectation of

player j�s signal frequency yj given m̂ and yi is close to Hj["](m̂):

Hj;i["](m̂) =

8>>>>>>>>><>>>>>>>>>:

yi 2 RjYij+ such that

there exist "1 2 RjYj j, "2 2 RjYj j�jAij+1 and yj 2 RjYj j+ with8>>><>>>:
yj = Qj;i(a

m̂
j ; a

G
i )yi + "1;

Hj(m̂)yj = pj(m̂) + "2;

k"1k ; k"2k � "

9>>>>>>>>>=>>>>>>>>>;
:

5. The set of player i�s frequencies yi�s such that, if player j believes that (am̂j ; a
G
i ) is

taken and observes yj 2 Hj ["] (m̂), then player j�s conditional expectation of yi given
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m̂ and yj is close to the set:

Ii["](m̂) �

8>>>>>><>>>>>>:

yi 2 RjYij+ : 9yj 2 RjYj j+ , "j 2 RjYj j�jAj j+1 and "i 2 RjYij such that8>>><>>>:
k"jk � "; k"ik � ";

Hj(m̂)yj = pj(m̂) + "j;

yi = Qi;j(a
m̂
j ; a

G
i )yj+"i

9>>>>>>=>>>>>>;
:

Before stating a su¢ cient condition, we prove one lemma that will turn out to be useful:

Lemma 25 For each j 2 I, we can take Hj(G) and Hj(B) such that all the elements are

in (0; 1).

Proof. Let mH be the minimum element of Hj(m) and MH be the maximum element of

Hj(m). Let ~Hj(m) be the matrix whose (l; n) element is
(Hj(m))l;n+jmH j+1
jMH j+2jmH j+2 2 (0; 1) and ~pj(m)

be the vector whose lth element is (pj(m))l+jmH j+1
jMH j+2jmH j+2 .

We will show

n
yj 2 RjYj j+ : Hj(m)yj = pj(m)

o
� Hj(m) = ~Hj(m) �

n
yj 2 RjYj j+ : ~Hj(m)yj = ~pj(m)

o
:

1. Hj(m) � ~Hj(m)

Suppose that yj 2 Hj(m). Since yj 2 a�(fqj(amj ; ai)gai) � a�
�
f1yjgyj2Yj

�
,79 ~Hj(m)yj =

~pj(m) as desired.

2. Hj(m) � ~Hj(m)

Suppose that yj 62 Hj(m). Since a�(fqj(amj ; ai)gai) � a�
�
f1yjgyj2Yj

�
, without loss of

generality, we can assume that one row of Hj(m) is parallel to (1; :::; 1) and that the

element of pj(m) corresponding to that row is 1. If (1; :::; 1)yj 6= 1, then�
1+jmH j+1

jMH j+2jmH j+2 ; :::;
1+jmH j+1

jMH j+2jmH j+2

�
yj =

1+jmH j+1
jMH j+2jmH j+2 (1; :::; 1)yj 6=

1+jmH j+1
jMH j+2jmH j+2 and yj 62

79Remember that 1yj is a jYj j � 1 vector such that the element corresponding to yi is 1 and the others are
0.
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~Hj(m) as desired. If (1; :::; 1)yj = 1, then there is another row hj(m) and the corre-

sponding element pj(m) of pj(m) such that

hj(m)yj 6= pj(m):

Let ~hj(m) be the corresponding row of ~Hj(m) and ~pj(m) is the corresponding element

of ~pj(m). Then,

~hj(m)yj =
1

jMH j+ 2 jmH j+ 2
(hj(m) + (jmH j+ 1) (1; :::; 1))yj

=
1

jMH j+ 2 jmH j+ 2
(hj(m)yj + jmH j+ 1)

6= 1

jMH j+ 2 jmH j+ 2
(pj(m) + jmH j+ 1) = ~pj(m)

and so yj 62 ~Hj(m).

Now, we state our su¢ cient condition:

Assumption 10 For each j 2 I, there exists aGj ; a
B
j 2 Aj such that the following �ve

conditions are satis�ed:

1. There exists x 2 R3jYij+2jYj j�jAj j�2jAij+5 such that26666666664

Hi(G) O

�E Qi;j(a
G
j ; a

G
i )

O Hj(G)

�E Qi;j(a
B
j ; a

G
i )

O Hj(B)

37777777775

0

x � 0;

26666666664

pi(G)

0

pj(G)

0

pj(B)

37777777775
� x > 0;
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2. There exists x 2 RjYij+2jYj j�jAj j�2jAij+3 such that26664
Hi(G)

Hj(G)Qj;i(a
G
j ; a

G
i )

Hj(B)Qj;i(a
B
j ; a

G
i )

37775
0

x � 0;

26664
pi(G)

pj(G)

pj(B)

37775 � x > 0;

3. There exists x 2 R2jYij+2jYj j�jAj j�2jAij+4 such that26666664
Hi(G) O

Hj(B)Qj;i(a
B
j ; a

G
i ) O

�E Qi;j(a
G
j ; a

G
i )

O Hj(G)

37777775

0

x � 0;

26666664
pi(G)

pj(B)

0

pj(G)

37777775 � x > 0;

4. There exists x 2 R2jYij+2jYj j�jAj j�2jAij+4 and yj 2 RjYij+ such that

26666664
Hi(G) O

Hj(G)Qj;i(a
G
j ; a

G
i ) O

�E Qi;j(a
B
j ; a

G
i )

O Hj(B)

37777775

0

x � 0;

26666664
pi(G)

pj(G)

0

pj(B)

37777775 � x > 0

5. For each k 2 f1; : : : ; jYijg, we have

q(yi;kjaGi ; �Gj ) 6= q(yi;kjaGi ; �Bj ):

It will be apparent from the proof of Theorem 1 below that aGj for the case where player j

sends the message m = G and aGj for the case where player j is the receiver can be di¤erent.

However, for notational simplicity, we assume that these two aGj �s are the same.

Taking into account the fact that some of rows are parallel to 1, we have the following:

1. x has 3 jYij + 2 jYjj � jAjj � 2 jAij + 1 degrees of freedom while the condition has

jYij+ jYjj+ 1 constraints.

189



2. x has jYij+2 jYjj � jAjj � 2 jAij+1 degrees of freedom while the condition has jYij+1

constraints.

3. x has 2 jYij + 2 jYjj � jAjj � 2 jAij + 1 degrees of freedom while the condition has

jYij+ jYjj+ 1 constraints.

4. x has 2 jYij + 2 jYjj � jAjj � 2 jAij + 1 degrees of freedom while the condition has

jYij+ jYjj+ 1 constraints.

Therefore, Assumption 10 is generic if Assumption 2 is satis�ed.

The next lemma shows that Assumption 10 is actually su¢ cient so that the above infer-

ence f [i](m) is well de�ned.

Lemma 26 If Assumption 10 is satis�ed, then there is �" > 0 such that for all " < �", for

any i 2 I, there is at most one m̂ 2 fG;Bg such that yi 2 Hi["](G)\ (Hj;i["](m̂)[Ii["](m̂)).

Proof. It su¢ ces to show that, for su¢ ciently small ",

Hi["](G) \ Ii["](G) \ Ii["](B) = ;;

Hi["](G) \Hj;i["](G) \Hj;i["](B) = ;;

Hi["](G) \Hj;i["](B) \ Ii["](G) = ;;

Hi["](G) \Hj;i["](G) \ Ii["](B) = ;:

That is, for su¢ ciently small ", it is equivalent to have the following four:
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� For any k"k � ", there are no yi 2 RjYij+ and yj 2 RjYj j+ such that80

26666666664

Hi(G) O

�E Qi;j(a
G
j ; a

G
i )

O Hj(G)

�E Qi;j(a
B
j ; a

G
i )

O Hj(B)

37777777775
24 yi
yj

35 =

26666666664

pi(G)

0

pj(G)

0

pj(B)

37777777775
+ ";

� For any k"k � ", there is no yi 2 RjYij+ such that

26664
Hi(G)

Hj(G)Qj;i(a
G
j ; a

G
i )

Hj(B)Qj;i(a
B
j ; a

G
i )

37775yi =
26664
pi(G)

pj(G)

pj(B)

37775+ ";

� For any k"k � ", there are no yi 2 RjYij+ and yj 2 RjYj j+ such that

26666664
Hi(G) O

Hj(B)Qj;i(a
B
j ; a

G
i ) O

�E Qi;j(a
G
j ; a

G
i )

O Hj(G)

37777775
24 yi
yj

35 =
26666664
pi(G)

pj(B)

0

pj(G)

37777775+ ";

� For any k"k � ", there are no yi 2 RjYij+ and yj 2 RjYj j+ such that

26666664
Hi(G) O

Hj(G)Qj;i(a
G
j ; a

G
i ) O

�E Qi;j(a
B
j ; a

G
i )

O Hj(B)

37777775
24 yi
yj

35 =
26666664
pi(G)

pj(G)

0

pj(B)

37777775+ ":

80One row of each of Hi(G), Hj(m), Hj(G)Qj;i(amj ; a
G
i ) and Qi;j(a

m
j ; a

G
i ) is parallel to 1 for each m 2

fG;Bg. This reduces the number of constraints. We change the freedom of x after we take the dual
accordingly. The same caution is applicable for the other three equations.
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By Farkas Lemma,81 if " = 0, then it su¢ ces to have the following:

� There exists x 2 R3jYij+2jYj j�jAj j�2jAij+5 such that26666666664

Hi(G) O

�E Qi;j(a
G
j ; a

G
i )

O Hj(G)

�E Qi;j(a
B
j ; a

G
i )

O Hj(B)

37777777775

0

x � 0;

26666666664

pi(G)

0

pj(G)

0

pj(B)

37777777775
� x > 0;

� There exists x 2 RjYij+2jYj j�jAj j�2jAij+3 such that26664
Hi(G)

Hj(G)Qj;i(a
G
j ; a

G
i )

Hj(B)Qj;i(a
B
j ; a

G
i )

37775
0

x � 0;

26664
pi(G)

pj(G)

pj(B)

37775 � x > 0;

� There exists x 2 R2jYij+2jYj j�jAj j�2jAij+4 such that26666664
Hi(G) O

Hj(B)Qj;i(a
B
j ; a

G
i ) O

�E Qi;j(a
G
j ; a

G
i )

O Hj(G)

37777775

0

x � 0;

26666664
pi(G)

pj(B)

0

pj(G)

37777775 � x > 0;

81Farkas Lemma has a constraint that each element of x should be non-negative. However, since we have
equality constraints, not inequality constraints, for each l with xl < 0, we can multiply �1 to xl, each
element of lth row of the matrix in the LHS, and lth element of the vector in RHS. Therefore, non-negativity
constraint is redundant.
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� There exists x 2 R2jYij+2jYj j�jAj j�2jAij+4 such that26666664
Hi(G) O

Hj(G)Qj;i(a
G
j ; a

G
i ) O

�E Qi;j(a
B
j ; a

G
i )

O Hj(B)

37777775

0

x � 0;

26666664
pi(G)

pj(G)

0

pj(B)

37777775 � x > 0:

Since the second inequality of each condition is strict, for su¢ ciently small ", the same

x�s work for all " with k"k � ". Therefore, we are done.

In addition, the following lemma shows that Assumption 10 is also su¢ cient to construct

f [i](m) based on the likelihood:

Lemma 27 If Assumption 10 is satis�ed, then for each m 2 fG;Bg and j 2 I, there exists

a mapping from yi to f [i](m) 2 fG;Bg such that, for any yi, given m, player i puts a belief

no less than 1� exp(�O(T p)) on the events that f [i](m) = m or g[j](m) = E.

Proof. From the above discussion, it su¢ ces to show that there exists � > 0 such that, for

L(yi; zj; z0j) � L(yi; zj)� L(yi; z0j);

for any yi 2 �(f1yigyi2Yi), one of the following is true:

1. L(yi; G;B) � �,

2. L(yi; B;G) � �,

3. L(yi;M;G) � � and L(yi;M;B) � �.

Let ��j = �aGj + (1� �) aBj for � 2 [0; 1] and consider

L(yi; �) = yi;1 log q(yi;1jaGi ; ��j ) + � � �+ yi;jYij log q(yi;jYijjaGi ; ��j ):
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Then,

d2L(yi; �)
d�2

= �
jYijX
k=1

yi;k

(
q(yi;kjaGi ; �Gj )� q(yi;kjaGi ; �Bj )

q(yi;kjaGi ; ��j )

)2
< 0

for any yi because of 5 of Assumption 10. Hence, L(yi; �) is strictly concave. Therefore,

since L(yi; zj; ~zj) is the di¤erence in L(yi; �), we have

max fL(yi; G;B);L(yi; B;G);min fL(yi;M;G);L(yi;M;B)gg > 0:

Since LHS is continuous in yi and �(f1yigyi2Yi) is compact, there exists � > 0 such that

max fL(yi; G;B);L(yi; B;G);min fL(yi;M;G);L(yi;M;B)gg > �

for all yi 2 �(f1yigyi2Yi) as desired.

Therefore, from Lemmas 26 and 27, if Assumption 10 is satis�ed, then for " < �", the

following mapping preserves the important features of Lemma 2:82 For the sender,

1. g[j](m) = m if zj(m) = m and yj 2 Hj["](m).

2. g[j](m) = E if zj(m) 6= m or yj 62 Hj["](m).

And for the receiver,

1. If yi 2 Hi["](G), then

(a) f [i](m) = G if yi 2 Hj;i["](G) [ Ii["](G),

(b) f [i](m) = B if yi 2 Hj;i["](B) [ Ii["](B) or yi 62 Hj;i["](G) [ Ii["](G), and

2. If yi =2 Hi["](G), then player i infers f [i](m) from the likelihood.

If " de�ned in (88) does not satisfy " < �", then re-take " such that

" < �":

82We replace exp(�T p) in the probability of g[j](m) = E in Lemma 2 with 2� + exp(�T p).
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This does not a¤ect the consistency among the variables de�ned in Section 24.

38.2 Assumption for Dispensing with the Public Randomization

When we dispense with the public randomization in the report block, the players use actions

and private signals to coordinate. Fix i 2 I arbitrarily.

The players play some action pro�le aG. Then, each player observes her own private

signal.

Player j partitions the set of her signals into non-empty subsets Y i
j;1 and Y

i
j;2 with Yj =

Y i
j;1 [ Y i

j;2.

Player i tries to infer which set player j�s signal belongs to. With some �pi 2 (0; 1), player

i classi�es the set of her signals into two classes: The set of signals with which player i thinks

that player j observes yj 2 Y i
j;1 with probability more than �pi and the set of signals with

which player i thinks that player j observes yj 2 Y i
j;1 with probability less than �pi. That is,

Y i
i;1 �

�
yi 2 Yi : Pr(fyj 2 Y i

j;1g j aG; yi) > �pi
	

(132)

Y i
i;2 �

�
yi 2 Yi : Pr(fyj 2 Y i

j;1g j aG; yi) < �pi
	
: (133)

We assume that there exists �pi 2 (0; 1) such that Y i
i;1 and Y

i
i;2 are non-empty partitions

of Yi.

Assumption 11 For each i 2 I, there exists aG 2 A such that there exist Y i
j;1, Y

i
j;2, �pi, Y

i
i;1

and Y i
i;2 such that Y

i
i;1 and Y

i
i;2 satisfy (132), (133) and

Y i
i;1 6= ;; Y i

i;2 6= ;; Yi = Y i
i;1 [ Y i

i;2:

For notational convenience, we assume that aG is the same for each player and the same

as in Assumption 10.
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38.3 Assumption for Dispensing with Conditionally Independent

Cheap Talk

As mentioned, after we replace the perfect cheap talk in the report block with the condi-

tionally independent noisy cheap talk, we dispense with the conditionally independent cheap

talk.

To do so, we want to construct a statistics that preserves the conditional independence

property for player 2. Player 2 sends a binary message m 2 fG;Bg by taking am2 2 faG2 ; aB2 g.

Player 1 takes some mixed action ��1 2 �(A1). Based on the realization of the mixture a1 and

signal observation y1, player 1 calculates �1(a1; y1). We want to make sure that, regardless

of player 2�s signal observation, player 2 believes that player 1 statistically infers player 2�s

signal properly: There exist q2 > q1 such that

E [�1(a1; y1) j ��1; a2; y2] =

8<: q2 if a2 = aG2 ;

q1 if a2 6= aG2

(134)

for all y2 2 Y2.

A su¢ cient condition for the existence of such � is as follows: Let �Q1(��1; a2; y2) �

(q1(a1; y1 j ��1; a2; y2))a1;y1 be the vector expression of the conditional probability of (a1; y1)

after player 2 plays a2 and observes y2. It is su¢ cient that �Q1(��1; a2; y2) is linearly indepen-

dent with respect to (a2; y2) 2 A2 � Y2.

Assumption 12 There exists ��1 2 �(A1) such that �Q1(��1; a2; y2) is linearly independent

with respect to a2; y2.

Note that this is generic since we assume (131).

The following lemma shows that Assumption 12 is su¢ cient to have � with (134).

Lemma 28 If Assumption 12 is satis�ed for ��1 2 �(A1), then there exist q2 > q1 and

�1 : A1 � Y1 ! (0; 1) such that (134) holds for all y2 2 Y2.

Note that we do not assume the existence of such � when player 1 sends the message.
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39 Replacing the Perfect Cheap Talk in the Coordina-

tion Block with the Noisy Cheap Talk

Remember that, with the perfect cheap talk, the players communicate about x in the co-

ordination block in the following way: First, player 1 tells x1 and second, player 2 tells

x2.

We divide the step where player i sends the message about xi into the following steps

(remember that this step is called the �round for xi�with the perfect cheap talk in Section

10):

1. First, player i sends xi to player j via noisy cheap talk with precision p = 1
2
. Among

other things,83 f [j](xi; 1) 2 fG;Bg and g[i](xi; 1) 2 fxi; Eg are generated. With abuse

of notation, instead of xi, we use (xi; 1) since, as we will see, player i will re-send the

message xi and we want to distinguish the result of the �rst message and the second

message.

2. Second, player i sends xi to player j via noisy cheap talk with precision p = 2
3
. Among

other things,84 f [j](xi; 2) 2 fG;Bg and g[i](xi; 2) 2 fxi; Eg are generated.

It is important to realize that the precision is higher for the second step. Given these

two steps, player j constructs an inference of xi, xi(j) 2 fG;Bg.

3. Third, player j sends xi(j) to player i via noisy cheap talk with precision p = 1
2
. Among

other things, f [i](xi(j)) 2 fG;Bg and g[j](xi(j)) 2 fxi; Eg are generated.

Given these three steps, player i constructs an inference of xi, xi(i) 2 fG;Bg. Each

player n 2 f1; 2g plays the continuation game as if xi were xi(n).

In addition, after some events, player i (player j, respectively) makes player j (player

i, respectively) indi¤erent between any action pro�le sequence in the main blocks by using

�xij (ai;t; yi;t) (�
xj
i (aj;t; yj;t), respectively) for �

main
j (�maini , respectively).

83Precisely, in addition to f2[j](xi; 1) and g2[i](xi; 1).
84Precisely, in addition to f2[j](xi; 2) and g2[i](xi; 2).
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Intuitively, the coordination goes as follows: If player i observes g[i](xi; 2) = xi, then with

high probability, player i infers xi(i) = xi. With small probability, player i uses the signal

from player j�s message: xi(i) = f [i](xi(j)). In addition, if the latter is the case, then player

i makes player j indi¤erent between any action pro�le in the main blocks. If g[i](xi; 2) 6= xi,

then player i uses the signal from player j�s message: xi(i) = f [i](xi(j)).

On the other hand, player j uses the signals from the second message from player i and

xi(j) = f [j](xi; 2) with high probability. With small probability, player j uses the signal

from the �rst message: xi(j) = f [j](xi; 1). In addition, if the latter is the case, then player

j makes player i indi¤erent between any action pro�le in the main blocks.

Consider player i�s inference. If player i uses f [i](xi(j)), then since player j�s continuation

play is independent of g[j](xi(j)), 2 of Lemma 2 implies that player i can always believe that

player i�s inference is correct or player j knows the mistake with high probability.

If player i adheres to xi after g[i](xi; 2) = xi, then player i before observing player j�s

continuation play believes that f [j](xi; 2) = g[j](xi; 2) by 3 of Lemma 2 with high probability.

Hence, player i believes that xi(j) = f [j](xi; 2) = g[j](xi; 2) or any action pro�le is optimal.

When player i realizes that xi(j) 6= g[j](xi; 2), player i believes that player j uses f [j](xi; 1)

rather than f [j](xi; 2). Here is where we use the assumption that the precision of the second

message is higher than the �rst message. Since the precision of the second message is higher

than the �rst message, player i after observing xi(j) contradictory to player i�s expectation

from the second message believes that player j uses the �rst message (this happens with

positive probability) and that there was an error in the �rst message. Remember that player

j makes player i indi¤erent between any action pro�le in the main blocks if player j uses the

�rst message. Therefore, after observing xi(j) contradictory to xi, player i believes that any

action is optimal with high probability.

Therefore, player i is willing to obey the same strategy as in the case with the perfect

cheap talk with xi replaced with xi(i).

Consider player j�s inference. If player j uses the �rst message: xi(j) = f [j](xi; 1), then

since player i�s continuation play is independent of g[i](xi; 1), 2 of Lemma 2 implies that this
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is almost optimal.

Suppose that player j uses f [j](xi; 2) and realizes xi(i) 6= f [j](xi; 2). Then, since the

precision of player i�s second message is higher than player j�s message, player j believes

that player i uses player j�s message (this happens with positive probability) and that there

was an error in player j�s message. Remember that player i makes player j indi¤erent

between any action pro�le in the main blocks if player i uses player j�s message. Therefore,

after observing xi(i) contradictory to f [j](xi; 2), player j believes that any action is optimal

with high probability.

Verify that g[i](xi; 2) = xi and that player i adheres to xi with high probability regardless

of player j�s message and so player j cannot manipulate xi(i).

The following lemma formalizes the argument:

Lemma 29 We can de�ne (xi(1); xi(2))i2I and the events that a player makes her opponent

indi¤erent between any action pro�le sequence such that, conditional on x 2 fG;Bg2, for

each i 2 I, the inferences in the coordination block satisfy the following:

1. Given the true state xi and player j�s inference x(j), player i puts a belief no less than

1� exp(�O(T 1
2 )) on the events that xi(j) = xi(i) or player i is indi¤erent between any

action pro�le.

2. Given the true state xi and player i�s inference x(i), player j puts a belief no less than

1�exp(�O(T 1
2 )) on the events that xi(i) = xi(j) or player j is indi¤erent between any

action pro�le.

3. It is almost optimal for the players to send the messages truthfully.

We �rst de�ne xi(i) and xi(j). Player i constructs xi(i) as follows:

1. If g[i](xi; 2) = xi in the second step, then player i mixes the following two:

(a) With probability 1��, xi(i) = xi. That is, with high probability, player i adheres

to her own state.
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(b) With probability �, xi(i) = f [i](xi(j)). That is, with low probability, player i uses

the signal from player j�s message.

2. If g[i](xi) = E in the second step, then player i always uses the signal from player j�s

message: xi(i) = f [i](xi(j)).

For completeness, if player i deviates in the step 1 or 2 of the communication, then player

i always uses the signal from player j�s message: xi(i) = f [i](xi(j)).

Player j mixes the following two:

1. With probability 1��, xi(j) = f [j](xi; 2). That is, with high probability, player j uses

the signal from player i�s second message.

2. With probability �, xi(j) = f [j](xi; 1). That is, with low probability, player j uses the

signal from player i�s �rst message.

Second, we identify after what history player i (player j, respectively) makes player j

(player i, respectively) indi¤erent between any action pro�le sequence.

Player i makes player j indi¤erent between any action pro�le sequence if (and only if

based on the round for xi)85 g[i](xi; 1) = E, g[i](xi; 2) = E, or �1-(b) or 2 is the case for the

construction of xi(i).�

Player j makes player i indi¤erent between any action pro�le sequence if (and only if

based on the round for xi) g[j](xi(j)) = E or 2 is the case for the construction of xi(j).

Given the above preparation, we prove the theorem:

Proof of 1 of Lemma 29: If 1-(b) or 2 of the construction of xi(i) is the case, then 2 of

Lemma 2 guarantees the result. Note that player j�s continuation play in the main blocks

does not reveal g[j](xi(j)).

85With abuse of notation, for the multimple steps to coordinate on xi, we use the same notation �the
round for xi�as in the case with the perfect cheap talk. In Section 40, we introduce a di¤erent notation
from the case with the perfect cheap talk.
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If 1-(a) is the case, then without conditioning on xi(j), by 3 of Lemma 2, player i puts

a belief no less than 1� exp(�O(T 2
3 )) on the event that f [j](xi; 2) = xi = xi(i). Whenever

player j uses f [j](xi; 1) for xi(j), player j makes player i indi¤erent between any action

pro�le sequence. Hence, without conditioning on xi(j), player i puts the belief no less than

1�exp(�O(T 2
3 )) on the event that xi(j) = xi(i) or player i is indi¤erent between any action

pro�le.

Suppose that player i learns xi(j) 6= xi(i). Remember that with probability �, player

j uses the signal of the �rst message f [j](xi; 1). Since the precision of the �rst message is

p = 1
2
, 4 of Lemma 2 implies that player i believes that any f [j](xi; 1) could happen with

probability exp(�O(T 1
2 )) regardless of g[i](xi; 1) and g2[i](xi; 1). Since player i�s prior on

f [j](xi; 2) = xi(i) is 1� exp(�O(T
2
3 )), after learning xi(j) 6= xi(i), player i puts a posterior

no less than 1� exp(�O(T 2
3 ))= exp(�O(T 1

2 )) = 1� exp(�O(T 2
3 )) on the event that player j

uses the signal of the �rst message f [j](xi; 1) and that f [j](xi; 1) was wrong. In that event,

player j makes player i indi¤erent between any action pro�le sequence. Therefore, we are

done.

Proof of 2 of Lemma 29: If 2 of the construction of xi(j) is the case, then 2 of Lemma

2 guarantees the result. Note that xi(i) never reveals g[i](xi; 1).

If 1 of the construction of xi(j) is the case, then 2 of Lemma 2 implies that, without

conditioning on xi(i), player j puts the belief no less than 1�exp(�O(T
2
3 )) on the events that

xi(i) = xi(j) or player j is indi¤erent between any action pro�le since (i) if g[i](xi; 2) = E,

then player j is indi¤erent between any action pro�le and (ii) if g[i](xi; 2) = xi and player i

uses f [i](xi(j)), then player j is indi¤erent between any action pro�le.

Suppose that player j learns that xi(i) 6= xi(j) and xi(i) = xi.86 If player j puts a high

belief on xi(i) = g[i](xi; 2) = xi, then this lemma does not hold. However, with probability �,

player i uses the signal from player j�s message, f [i](xi(j)). Since the precision of this message

is p = 1
2
, 4 of Lemma 2 implies that player j believes that any f [i](xi(j)) could happen with

86In the other cases, either xi(i) = xi(j) or �xi(i) 6= xi and so player j is indi¤erent between any action
pro�le in the main blocks.�
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probability exp(�O(T 1
2 )) regardless of g[j](xi(j)) and g2[j](xi(j)). Since player j�s prior on

the event �xi = f [i](xi; 2) or g[i](xi; 2) = E�is 1�exp(�O(T 2
3 )), after learning xi(i) 6= xi(j)

and xi(i) = xi, player i puts a posterior no less than 1 � exp(�O(T
2
3 ))= exp(�O(T 1

2 )) =

1� exp(�O(T 2
3 )) on the event that player i uses the result of player j�s message f [i](xi(j))

and that f [i](xi(j)) happened to be xi. In that event, player i makes player j indi¤erent

between any action pro�le sequence. Therefore, we are done.

Proof of 3 of Lemma 29: Let us consider player i�s incentive. First, the probability that

player j makes player i indi¤erent is almost independent of player i�s strategy: g[j](xi(j)) =

E happens with probability no more than exp(�O(T 1
2 )) regardless of xi(j). In addition,

whether 1 or 2 is the case for the construction of xi(j) is determined by player j�s own

randomization.

Since xi controls player j�s value, not player i�s value, player i does not have an incentive

to deviate to coordinate on a di¤erent xi. Since 1 of Lemma 29 guarantees that player i can

infer player j�s inference xi(j) correctly or player i is indi¤erent between any action pro�le,

we are done.

Next, we consider player j�s incentive. First, the probability that player i makes player j

indi¤erent is independent of player j�s strategy: The distribution of g[i](xi; 1) and g[i](xi; 2)

is independent of player j�s strategy. In addition, whether 1-(a) or 1-(b) is the case for the

construction of xi(i) is determined by player i�s own randomization.

Second, by 2 of Lemma 29, the equilibrium strategy enables player j to infer player i�s

inference xi(i) correctly or player j is indi¤erent between any action pro�le with probability

no less than 1� exp(�O(T 1
2 )).

Third, whenever player i uses the signal from player j�s message, f [i](xi(j)), 1-(b) or 2

is the case for the construction of xi(i) and player i makes player j indi¤erent.

Therefore, the truthtelling incentive for xi(j) is satis�ed.
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40 Structure of the Review Phase

Replacing the perfect cheap talk in the coordination block with the noisy cheap talk, we

have the following structure of the review phase:

Now, the coordination block has six rounds with the following chronological order:

� The round for (x1; 1) where player 1 sends x1 via noisy cheap talk with precision p = 1
2
.

� The round for (x1; 2) where player 1 sends x1 via noisy cheap talk with precision p = 2
3
.

� The round for (x1; 3) where player 2 sends x1(2) via noisy cheap talk with precision

p = 1
2
.

� The round for (x2; 1) where player 2 sends x2 via noisy cheap talk with precision p = 1
2
.

� The round for (x2; 2) where player 2 sends x2 via noisy cheap talk with precision p = 2
3
.

� The round for (x2; 3) where player 1 sends x2(1) via noisy cheap talk with precision

p = 1
2
.

After that, we have L review blocks. For each lth main block with l = 1; :::; L� 1, there

are following seven rounds in the following chronological order:

� The lth review round where the players play the stage game for T periods.

� The supplemental round for �1(l + 1) where player 1 sends �1(l + 1) via noisy cheap

talk with precision p = 1
2
.

� The supplemental round for �2(l + 1) where player 2 sends �2(l + 1) via noisy cheap

talk with precision p = 1
2
.

� The supplemental round for d1(l + 1) where player 1 sends d1(l + 1) via noisy cheap

talk with precision p = 1
2
.

� The supplemental round for d2(l + 1) where player 2 sends d2(l + 1) via noisy cheap

talk with precision p = 1
2
.
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� The supplemental round for d̂2(l + 1) where player 1 sends d̂2(l + 1) via noisy cheap

talk with precision p = 1
2
.

� The supplemental round for d̂1(l + 1) where player 2 sends d̂1(l + 1) via noisy cheap

talk with precision p = 1
2
.

The last main block only has the Lth review round where the players play the stage game

for T periods.

After that, we have the report block, which will be explained fully in Section 44.

As we can see, there is a chronological order for the rounds. Hence, we can number all

the rounds serially. For example, the round for (x1; 1) is round 1, the round for (x1; 2) is

round 2, and so on.

In addition, if we replace the noisy cheap talk with precision p with messages via actions,

then the round r where player i sends the message via noisy cheap talk with precision p

consists of T p periods. For example, in the round for (x1; 1), the players play the stage game

for T
1
2 periods.

Finally, let T (r) be the set of periods in round r.

41 Replacing the Noisy Cheap Talk with Messages via

Actions

Consider round r where player j sends m via noisy cheap talk message with precision p. We

replace the noisy cheap talk with precision p with messages via actions as follows. Now,

round r consists of T p periods.

As we have mentioned in Section 38.1, to send message m with precision p, player j takes

�
zj(m)
j =

8>>><>>>:
aGj if zj(m) = G;

aBj if zj(m) = B;

1
2
aGj +

1
2
aBj if zj(m) =M
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with

zj(m) =

8>>><>>>:
m with probability 1� 2�;

fG;Bg n fmg with probability �;

M with probability �

for T p periods. Player i takes aGi for T
p periods.

Instead of using g[j](m) and f [i](m) in Section 38.1, we formally re-de�ne g[j](m) and

f [i](m) below. Although the intuitive meaning is the same as in Section 38.1, we slightly

change the de�nition to deal with the incentives to send the message and to establish the

truthtelling incentive in the report block.

41.1 Formal: g[j](m)

If zj(m) 6= m, then g[j](m) = E as in Section 38.1. In addition, player j randomly picks

tj(r) from the set of periods in round r. De�ne Tj(r) � T (r) n ftj(r)g.

Let us concentrate on the case with zj(m) = m. Let yj(r) be the frequency of player j�s

signal observations in round r. Instead of using yj(r) directly as in Section 38.1, we consider

the following procedure to construct g[j](m).

Player j constructs random variables
�

H
j;t

	
t2Tj(r)

as follows. After taking amj (remember

that we concentrate on the case with zj(m) = m) and observing yj;t, player j calculates

Hj(m)1yj;t. Then, player j draws (jYjj � jAij+ 1) random variables independently from the

uniform distribution on [0; 1]. If the lth realization of these random variables is less than

the lth element of Hj(m)1yj;t, then the lth element of 

H
j;t is equal to 1. Otherwise, the lth

element of 
H
j;t is equal to 0. From Lemma 25,

Pr
�n�


H
j;t

�
l
= 1
o
j a; y

�
=
�
Hj(m)1yj;t

�
l
2 (0; 1) (135)

for all a and y.
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We de�ne g[j](m) = m if and only if





 1

T
1
2 � 1

X
t2Tj(r)


H
j;t �

1

T
1
2 � 1

X
t2Tj(r)

Hj(m)1yj;t







 � "

4
(136)

and 





 1

T
1
2 � 1

X
t2Tj(r)


H
j;t � pj(m)







 � "

2
: (137)

In summary, there are following cases:

1. g[j](m) = E if zj(m) 6= m, (136) is not satis�ed, or (137) is not satis�ed.

2. g[j](m) = m if zj(m) = m, (136) is satis�ed, and (137) is satis�ed.

41.2 Formal: f [i](m)

Let yi(r) be the frequency of player i�s signal observations in round r. Instead of using yi(r)

directly as in Section 38.1, we consider the following procedure to construct f [i](m).

First, player i randomly picks ti(r) from the set of periods in round r. With Ti(r) � T (r)n

fti(r)g, player i constructs f [i](m) based only on fyi;tgt2Ti(r). For notational convenience,

let yi(r; Ti(r)) be the frequency of player i�s signal observations in Ti(r).

f [i](m) is determined as in Section 38.1 with yi(r) replaced with yi(r; Ti(r)).

1. If yi(r; Ti(r)) 2 Hi["](G), then

(a) f [i](m) = G if yi(r; Ti(r)) 2 Hj;i["](G) [ Ii["](G),

(b) f [i](m) = B if yi(r; Ti(r)) 2 Hj;i["](B) [ Ii["](B) or yi(r; Ti(r)) 62 Hj;i["](G) [

Ii["](G), and

2. If yi(r; Ti(r)) =2 Hi["](G), then player i infers f [i](m) from the likelihood using yi(r; Ti(r))

(neglecting yi;ti(r)).

By Assumption 3 (full support), neglecting
�
ai;ti(r); yi;ti(r)

�
does not a¤ect the posterior

so much.
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41.3 Formal: �i(j !m i)

In addition, player i constructs �i(j !m i) 2 fG;Bg for a round where player i receives a

message m from player j. Intuitively, �i(j !m i) = B implies that player i makes player j

indi¤erent between any action pro�le sequence in the subsequent rounds.

First, player i creates
�

H
i;t

	
t2Ti(r)

as player j constructs
�

H
j;t

	
t2Tj(r)

with m = G. Since

the receiver (player i) takes aGi and we take the a¢ ne hull with respect to player j�s actions

for the de�nition of Hi(G), the situation is as player i were a sender and sent a message G.

Hence, the distribution of 
H
i;t is independent of player j�s strategy.

We de�ne �i(j !m i) = G if and only if





 1

T
1
2 � 1

X
t2Ti(r)


H
i;t �

1

T
1
2 � 1

X
t2Ti(r)

Hi(G)1yi;t







 � "

4
(138)

and 





 1

T
1
2 � 1

X
t2Ti(r)


H
i;t � pi(G)







 � "

2
: (139)

Otherwise, �i(j !m i) = B. Note that �i(j !m i) = B if yi(r; Ti(r)) =2 Hi["](G) by the

triangle inequality.

In summary, we can show the following lemma:

Lemma 30 There exists �" > 0 such that, for any " 2 (0; �"), for su¢ ciently large T , for any

i; j 2 I, the above mappings satisfy the following:

1. For any m 2 fG;Bg, f [i](m) = m with probability 1� exp(�O(T p)) and g[j](m) = m

with probability 1� 2� � exp(�O(T p)).

2. For any m 2 fG;Bg, given m and any yi(r), player i puts a belief no less than

1� exp(�O(T p)) on the event that f [i](m) = m or g[j](m) = E.

3. For any m 2 fG;Bg, given m and any yj(r), player j with g[j](m) = m puts a belief

no less than 1� exp(�O(T p)) on the event that f [i](m) = m or �i(j !m i) = B.
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4. For anym 2 fG;Bg, any (f [i](m); g[j](m)) happens with probability at least exp(�O(T p)).

5. The probability of g[j](m) being E does not react to player i�s strategy by more than

exp(�O(T p)).

6. The distribution of �i(j !m i) is independent of player j�s strategy with probability no

less than 1� exp(�O(T p)).

Note that, compared to the noisy cheap talk, Condition 3 implies that player j with

g[j](m) = m believes that f [i](m) = m or �i(j !m i) = B with probability no less than

1� exp(�O(T p)), instead of believing f [i](m) = m. However, since �i(j !m i) = B implies

that player j is indi¤erent between any action sequence, the inference de�ned in Section 39

is still almost optimal. In addition, Condition 6 guarantees that player j does not have an

incentive to deviate to manipulate �i(j !m i). Further, as f2[i](m) is not revealed in the

main blocks, yi;ti(r) is not revealed by player i�s continuation strategy in the main block.

Similarly, as g2[j](m) is not revealed in the main blocks, yj;tj(r) is not revealed by player

j�s continuation strategy in the main block. This fact will be important to incentivize the

players to tell the truth in the report block.

Proof.

1. This follows from the law of large numbers.

2. If f [i](m) = m, then we are done. Suppose not.

Note that the de�nition of g[j](m) implies that g[j](m) = m only if zj(m) = m

and (136) and (137) are satis�ed. Therefore, g[j](m) = m only if zj(m) = m and

yj 2 Hj["](m).

f [i](m) 6= m implies that either

(a) yi(r; Ti(r)) 2 Hj;i["](m) is not the case, or

(b) player i infers f [i](m) from the likelihood using yi(r; Ti(r)) (neglecting yi;ti(r)).
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If (a) is the case, then by Hoe¤ding�s inequality, given m, player i puts a belief no less

than 1 � exp(�O(T p)) on the event that yj 62 Hj["](m). If (b) is the case, then by

Lemma 27, given m, player i puts a belief no less than 1� exp(�O(T p)) on the event

that zj(m) 6= m. Note that, by Assumption 3 (full support), neglecting
�
aj;tj(r); yj;tj(r)

�
and

�
ai;ti(r); yi;ti(r)

�
does not a¤ect the posteriors so much.

3. As we have mentioned, g[j](m) = m implies that zj(m) = m and yj 2 Hj["](m).

Hence, player j�s conditional expectation of yi is Qi;j(a
m
j ; a

G
i )yj. Since yj 2 Hj["](m)

implies Hj(m)yj = pj(m) + "j with some k"jk � ", by Hoe¤ding�s inequality and

the de�nition of Ii["](m), player j puts a belief no less than 1 � exp(�O(T p)) on the

event that yi(r; Ti(r)) 2 Ii["](m). Again, by Assumption 3 (full support), neglect-

ing
�
aj;tj(r); yj;tj(r)

�
and

�
ai;ti(r); yi;ti(r)

�
does not a¤ect the order of the posteriors. If

yi(r; Ti(r)) 2 Ii["](m), then either f [i](m) = m or yi(r; Ti(r)) =2 Hi["](G). If the latter

is the case, then �i(j !m i) = B, as desired.

4. Given m, any (yt)t2T (r) can occur with probability at least

�
min
y;a

q(y j a)
�T p

:

Assumption 3 (full support) implies that this probability is exp(�O(T p)).

5. zj(m) 6= m happens with probability 2� regardless of m and player i�s strategy. The

distribution of 
H
j;t is independent of player i�s strategy in period t and (136) is satis�ed

ex post (conditional on fat; ytgt2T (r)) with probability 1� exp(�O(T p)) by the law of

large numbers. Finally, even if the message m can depend on player i�s past strategy,

the probability of g[j](m) being E does not react to m by more than exp(�O(T p)).

Therefore, the probability of g[j](m) being E does not react to player i�s strategy by

more than exp(�O(T p)).

6. The distribution of 
H
i;t is independent of player j�s strategy (note that player i takes

aGi after any history) and (138) is satis�ed ex post with probability 1� exp(�O(T p))
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by the law of large numbers.

42 Equilibrium Strategies

In this section, we de�ne �i(xi) and �maini .

42.1 States

The states �i(l+1), �̂j(l+1), di(l+1), d̂j(l+1), d̂i(l+1)(i), �i(l), �i(�i (l + 1)), �i(di (l + 1))

and �i(d̂j (l + 1)) are de�ned as in the Supplemental Material 2 except that x is replaced

with x(i) = (x1(i); x2(i)) de�ned in Section 39.

If we replace the noisy cheap talk with messages via actions, then we use f [i](m) (when

player i is a receiver) and g[i](m) (when player i is a sender) de�ned in Section 41. �i(�i (l + 1)),

�i(di (l + 1)) and �i(d̂j (l + 1)) are still valid.

In addition, remember that each player makes the opponent indi¤erent between any

action pro�le sequence if the following events happen in the coordination block: Each player

imakes player j indi¤erent between any action pro�le sequence if g[i](xi; 1) = E, g[i](xi; 2) =

E, g[i](xj(i)) = E, �1-(b) or 2 is the case for the construction of xi(i),�or 2 is the case for

the construction of xj(i).

We create a new state �i(c) 2 fG;Bg to summarize these events. For player i, if the

events listed above happen, then we say �i(c) = B. Otherwise, �i(c) = G. Note that �i(c) is

well de�ned for the coordination block with and without the noisy cheap talk.

42.2 Player i�s Action

42.2.1 With the Noisy Cheap Talk

In the coordination block, the players play the game as explained in Section 39. For the

other blocks, �i(xi) prescribes the same action with x replaced with x(i) except for the report
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block. See Section 44 for the strategy in the report block.

42.2.2 Without the Noisy Cheap Talk

In a round where player i would send a message m via noisy cheap talk with precision p

if it were available, the players�strategies are explained in Section 41. Here, since player i

is sender, reverse i and j: Player i (sender) takes �zi(m)i and player j (receiver) takes aGj .

f [j](m) 2 fG;Bg and g[i](m) 2 fm;Eg are determined as in Section 41.

42.3 Reward Function

In this subsection, we explain player j�s reward function on player i, �maini (xj; h
main
j : �).

42.3.1 With the Noisy Cheap Talk

The reward function is the same as in the Supplemental Material 2 except that x replaced

with x(j) and that if �j(c) = B happens, then player j uses

�maini (xj; h
main
j ; l) =

X
t2T (l)

�
xj
i (aj;t; yj;t):

for all the review rounds.

42.3.2 Without the Noisy Cheap Talk

Without cheap talk, �maini (xj; h
main
j : �) is de�ned by

�maini (xj; h
main
j : �) =

LX
l=1

X
t2T (l)

��i (t; aj;t; yj;t) +
X
r

�maini (xj; h
main
j ; r : �);

where �maini (xj; h
main
j ; r : �) is the reward for each round r. Note that we add (23) only for

the review rounds. For the other rounds where the players communicate, the reward for

round r, �maini (xj; h
main
j ; r : �), directly takes discounting into accounting.
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For round r corresponding to a review round, the reward function is the same as in the

case with the noisy cheap talk except that, if �j(i !m j) = B happens in some previous

round where player i sends a message m to player j, then player j uses

�maini (xj; h
main
j ; r) =

X
t2T (r)

�
xj
i (aj;t; yj;t)

to make player i indi¤erent between any action pro�le sequence.

For round r where the players communicate, player j makes player i indi¤erent between

any action pro�le sequence by

�maini (xj; h
main
j ; r) =

X
t2T (r)

�t�1�
xj
i (aj;t; yj;t): (140)

Note that we take discounting into account.87

43 Almost Optimality of �i(xi)

We �rst consider player i�s incentive to receive a message m. When player i receives the

message, Lemma 30 implies that aGi gives player i the inference f [i](m) satisfying f [i](m) = m

or g[j](m) = E with 1 � exp(�O(T 1
2 )). In addition, the probability of g[j](m) being E is

almost independent of player i�s strategy. Since (140) cancels out the di¤erence in the

instantaneous utilities, it is almost optimal to take aGi .

Second, we verify player i�s incentive to receive a message. Consider the rounds for

(xi; 1) or (xi; 2). With the noisy cheap talk, we are done with Lemma 29. Suppose that we

replace the noisy cheap talk with messages via actions. Remember that if player i deviates

in these rounds, then player i uses the signal from player j�s message in the round for (xi; 3).

87In the review rounds, there is a positive probability that the opponent uses the reward that is linear in
Xj(l), which does not take discounting into account. Therefore, to make each round symmetric, we add ��i
to cancel out discounting. See footnote 60 for the explanation of why this is important.
On the other hand, in the rounds where the players communicate, it is common knowledge that the

opponent uses the reward that takes discounting into account. Hence, we do not need to add ��i .
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Therefore, from Lemmas 29 and 30, �x(i) = x(j),���j(i !xi j) = B for the round (xi; 1)

or (xi; 2)�or ��j(c) = B�with probability 1 � exp(�O(T 1
2 )) and the coordination on the

same inference of xi is achieved with high probability, regardless of player i�s strategy in the

rounds for (xi; 1) or (xi; 2). In addition, the distribution of �j(i !xi j) = B and �j(c) = B

is almost independent of player i�s strategy from Lemmas 29 and 30. Since xi controls only

player j�s payo¤, this implies that player i is almost indi¤erent between any strategies in the

rounds for (xi; 1) or (xi; 2).

For the other rounds where player i sends the message, whenever player i�s message

a¤ects player j�s strategy (action or reward), �j(i !xi j) = B or �j(c) = B has happened

before and player i is indi¤erent between any actions.

Therefore, when player i sends a message, player i is almost indi¤erent between any

strategy.

For review rounds, from Lemmas 29 and 30, given x(j), for any t in the main blocks and

any hti, player i puts a conditional belief no less than 1 � exp(�O(T
1
2 )) on the event that

x (j) = x (i), �j(i !xi j) = B or �j(c) = B. Therefore, the same proof for Proposition 2

works except that now player j makes player i indi¤erent between any action pro�le sequence

with higher probability:

1. �j(c) = B with probability

2�|{z}
zj(xj) 6=xj
in the round
for (xj ;1)

+ 2�|{z}
zj(xj) 6=xj
in the round
for (xj ;2)

+ �|{z}
1-(b)

is the case
for xj(j)

+ 2�|{z}
zj(xi(j)) 6=xi(j)
in the round
for (xi;3)

+ �|{z}
2

is the case
for xi(j)

� 8�:

plus negligible probability exp(�O(T 1
2 )).

2. For each supplemental rounds where player j sends a message m,

2�|{z}
zj(m) 6=m
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plus negligible probability exp(�O(T 1
2 )).

Therefore, instead of (87), we re-take � su¢ ciently small such that88

max
x:xj=B

(L� 1)max fwi(x); v�i g+ u�i (x)

L
+ � +

�L

L
+ 2"�L+ (8 + 6L) �

�
�u�min

i;a
wi (a)

�
< vi < vi < min

x:xj=G
wi(x)�

�L

L
� 2"�L� (8 + 6L) �

�
�u+max

i;a
wi (a)

�
: (141)

Finally, since the review round has T period while the other round has at most T
2
3

periods, the payo¤s from the rounds other than the review rounds are negligible. Therefore,

Proposition 2 holds.

44 Report Block

We are left to construct the report block. First, we explain the report block with the perfect

cheap talk and public randomization. Although this is the same setup as in the main text,

since we replace the cheap talk in the coordination block and supplemental rounds with

messages via actions, we need to change the structure accordingly.

Second, we construct the report block with the perfect cheap talk but without public

randomization device.

Third, we replace the perfect cheap talk with conditionally independent noisy cheap talk.

Finally, we replace the conditionally independent noisy cheap talk with messages via

actions.

Whenever the players play the stage game, we cancel out the di¤erence in the instanta-

neous utilities and discounting by adding

�t�1�
xj
i (aj;t; yj;t):

Since the report block lasts for O(T
1
3 ) periods, this does not a¤ect the equilibrium payo¤.

88Precisely speaking, " is re-taken after � is re-taken so that Lemma 11 is satis�ed.
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44.1 Report Block with the Perfect Cheap Talk and Public Ran-

domization

We formally construct �reporti assuming that the players send messages via actions in the

coordination block and supplemental rounds, keeping the perfect cheap talk and public

randomization in the report block.

Remember that r is a serial number of the rounds. Let Aj(r) be the set of information

up to and including round r consisting of

� What state xj player j is in, and

� For each lth review round, what action plan �j(l) player j took in the lth review round

if round r is the lth review round or after.

Remember that, for each round r, for any period t in round r and any history hti, condi-

tional on Aj(r), �i(xi) is almost optimal.

The reward �reporti is the same as in the case with the cheap talk in the coordination

block and supplemental rounds except for the following di¤erences:

Subrounds As we divide a review round into review subrounds whose length is T
1
4 periods,

we divide each round into subrounds whose length is T
1
4 periods.

Since the rounds for (x1; 2) and (x2; 2) have T
2
3 periods, there are T

2
3
� 1
4 subrounds. Since

the other rounds for communication have T
1
2 periods, there are T

1
4 subrounds.

The coordination on k(r) is analogously modi�ed.

Truthtelling Incentive Since the players communicate via actions, we use (51) to give

the incentive for player i to tell the truth instead of (52) and (53). Note that player j�s

action plan is independent of the signal observation in period tj(r) and that player i cannot

learn it from the history in the coordination and main blocks.
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The Rounds where Player i Sends the Message Note that player i takes a mixed

strategy in the round where player i sends the message. Moreover, the history in this round

a¤ects the belief about the best responses at the beginning of the next round.

Therefore, as we incentivize player i to take a mixed strategy for minimaxing player j,

we cancel out the di¤erence of the values coming from learning at the beginning of the next

round by (95). Then, we cancel out the di¤erence in the payo¤s in the current round by

(96).

Since player i is almost indi¤erent between any strategies (see Section 43), the e¤ect of

this adjustment is su¢ ciently small.

44.2 Report Block withOUT the Public Randomization

In this subsection, we keep the availability of the perfect cheap talk and dispense with the

public randomization device. We use the public randomization device to coordinate on the

following two: First, who reports the history in the report block. Second, for each round

r, the picked player sends the message about (ai;t; yi;t) for t included in T (r; k(r)) for some

k(r) determined by the public randomization. We explain how to dispense with the public

randomization for each of them.

44.2.1 Coordination on Who will Report the History

Remember that the problem is that we want to require that (i) for each i, there is a positive

probability that �reporti adjusts the reward function and that (ii) each player should not learn

about the opponent�s history from the opponent�s messages in the report block.

Instead of using the public randomization device, we use actions and private signals to

coordinate as follows:

1. First, the players take the action pro�le aG. Then, each player i observes yi 2 Yi.

2. Player 2 sends the message whether player 2 observed y2 2 Y 2
2;1 or y2 2 Y 2

2;2 in Step 1.

See Assumption 11 to review the notation. Player 1 adjusts player 1�s reward function
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on player 2 if and only if player 2 says that player 2 observed y2 2 Y 2
2;1.

3. Player 2 sends the messages �rst. Player 2 has the following two cases:

(a) If player 2 observed y2 2 Y 2
2;1, then player 2 sends the messages about her history

hmain2 truthfully.

(b) If player 2 observed y2 2 Y 2
2;2, then player 2 sends a meaningless message f;g.

4. Player 1 sends the messages about her history hmain1 truthfully.

In Step 4, player 2 adjusts player 2�s reward function on player 1 if and only if player 2

observed y2 2 Y 2
2;2. Therefore, the probability that player j�s reward on player i is adjusted

is now Pr(y2 2 Y 2
2;2 j aG) for i = 1 and Pr(y2 2 Y 2

2;1 j aG) for i = 2. The term representing

1

Pr(player i is picked by the public randomization device)

in �reporti of Section 15.7 is analogously modi�ed to

Pr(y2 2 Y 2
2;2 j aG) for i = 1;

Pr(y2 2 Y 2
2;1 j aG) for i = 2:

Consider player 1�s incentives. By Assumptions 3 and 11, there is a positive probability

that y2 2 Y 2
2;2 and player 2�s reward on player 1 is adjusted. In addition, when player 1 sends

the message in Step 4, player 1 conditions that player 2�s message in Step 3 does not reveal

hmain2 , as desired.

Therefore, we need to verify the incentives that the players take aG in Step 1 and player

2 tells the truth in Step 2 and 3. To establish the incentives, we add the following rewards:

� In Step 1, to incentivize the players to take aG, each player j gives a reward on aGi :

T�1	a
G

j : (142)
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� In Step 2, to incentivize player 2 to tell the truth, player 1 punishes player 2 by �T�2

if player 2 sends the message y2 2 Y 2
2;1 while player 1 observed y1 2 Y 2

1;2 and by � 1
�p2
T�2

if player 2 sends the message y2 2 Y 2
2;2 while player 1 observed y1 2 Y 2

1;1.

� In Step 3,

� If player 2 sent the message y2 2 Y 2
2;1 in Step 2, then player 1�s reward on player 2

is the same as �report2 so that player 2 sends the messages about her history hmain2

truthfully.

� If player 2 sent the message y2 2 Y 2
2;2 in Step 2, then player 1 changes �

report
2 so

that player 1 gives a small reward on f;g:

�report2 (x1; h
TP+1
1 : �) = T�31 fplayer 2 sends f;gg � T�3:

Then, we can show the incentive compatibility of the above strategy.

� In Step 1, since all the rewards a¤ected by player i�s action except for (142) are bounded

by O(T�2), it is strictly optimal to take aG.

� In Step 2, since all the rewards a¤ected by player i�s current and future actions are

bounded by O(T�3),89 if

Pr(fy1 2 Y 2
1;1g j aG; y2) >

�LT�2 +O (T�3)
1
�p2
�LT�2 �O (T�3)

! �p2;

then it is optimal to send y2 2 Y 2
2;1 and if

Pr(fy1 2 Y 2
1;1g j aG; y2) <

�LT�2 �O (T�3)
1
�p2
�LT�2 +O (T�3)

! �p2;

then it is optimal to send y2 2 Y 2
2;2, as desired.

89For the punishment in Step 5 in the coordination on k(r) below, there is a punishment of order T�2.
However, as we will see, by backward induction, this punishment is not a¤ected by Step 2 here.
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� In Step 3, since player 2 believes that the message in Step 2 was transmitted correctly,

it is optimal to tell the truth by the same reason as in Section 15.7.

Remember that player 1 rewards player 2 in Step 3 based on player 2�s message about

y2, not depending on player 1�s signal y1. Therefore, after sending the message about y2 in

Step 2, it is optimal for player 2 to follow the equilibrium strategy.

44.2.2 Coordination on k(r)

For each player i, while player i sends the messages about hmaini , for each round r, the players

coordinate on k(r) 2 f1; : : : ; Kg with K � T
3
4 .

By abuse of language, in our equilibrium,

� in Step 3 in Section 44.2.1, even if player 2 sends f;g, the players play the following

game for each round and player 1 punishes player 2.

� in Step 4 in Section 44.2.1, even if player 2 sent hmain2 , the players play the following

game for each round and player 2 punishes player 1.

The players take aG for log2K periods. We create a mapping between a sequence of

f1; 2g, i 2 f1; 2glog2K , and k(r) such that each i uniquely identi�es k(r) and that, for each

k(r), there is at least one i that is mapped into k(r).

For each n 2 f1; :::; log2Kg, the players coordinate on one element of f1; 2g as in Steps

1, 2 and 3 in Section 44.2.1. That is,

1. The players take aG for log2K times.

2. For each n 2 f1; :::; log2Kg, if player j observes yj 2 Y i
j;1, then player j infers that the

nth element of i is 1. Otherwise, that is, if player j observes yj 2 Y i
j;2, then player j

infers that the nth element of i is 2. By doing so, player j infers i. Let i(j) be player

j�s inference. Let k(r; j) be player j�s inference of k(r) that corresponds to i (j).
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3. On the other hand, for each n 2 f1; :::; log2Kg, player i infers i (i) and k(r; i) using

the partitions Y i
i;1 and Y

i
i;2 instead of Y

i
j;1 and Y

i
j;2.

4. Player i sends the sequence of binary messages i (i) 2 f1; 2glog2K .

5. For each n 2 f1; :::; log2Kg, player j punishes player i if player i�s message in (i) is

di¤erent from in (j). Here, in (1) and in (2) are the nth element of i (1) and i (2),

respectively.

Speci�cally, player j punishes player i by �T�2 if player i sends the message in (i) = 1

while player j observed in (j) = 2 and by� 1
�p2
T�2 if player i sends the message in (i) = 2

while player j observed in (j) = 1.

Note that this is the same as in Step 2 in Section 44.2.1.

6. From the message i (i), player j knows k(r; i). Player j calculates the punishment (55)

based on k(r; i).

By backward induction, we can show that it is always optimal to follow the equilibrium

strategy: Consider the message for the last element of the sequence, iK (i), for the last

round. Since the punishment from the previous messages about i (i) is sunk and the reward

or punishment a¤ected by player i�s continuation strategy except for the punishment coming

from iK (i) 6= iK (j) is O(T�3), if

Pr(fyj 2 Y i
j;1g j aG; yi) >

�LT�2 +O (T�3)
1
�p2
�LT�2 �O (T�3)

! �pi;

then it is optimal to send yi 2 Y i
i;1 and if

Pr(fyj 2 Y i
j;1g j aG; yi) <

�LT�2 �O (T�3)
1
�p2
�LT�2 +O (T�3)

! �pi;

then it is optimal to send yi 2 Y i
i;2, as desired.

For the second iK�1 (i), since the expected punishment from the last message iK (i) is
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�xed by the equilibrium strategy, the same argument holds. Recursively, we can show the

optimality of the equilibrium strategy.

As mentioned in footnote 89, when the players coordinate on who will report the history

in Step 2 of Section 44.2.1, we can assume that the expected punishment from in (i) 6= in (j)

is �xed.

Although player j punishes player i for mis-coordination in Step 5, when player j calcu-

lates (55), player j uses player i�s inference of k(r), k(r; i). Hence, once player i sends the

messages about i(i), player i has the incentive to tell the truth about hmaini based on her

own inference k(r; i).

Expected Punishment As we have mentioned, when the players coordinate on whether

player 2 should send the message about hmain2 , player 1 rewards player 2 in Step 3 based on

player 2�s message about y2. In addition, when the players coordinate on k(r), player j uses

k(r; i) to calculate (55) and the term T
3
4 in (55) is replaced by

1

Pr(k(r; i) is realized in the coordination explained in Section 44.2.2)
:

Therefore, given the truthtelling incentive for y2 and k(r; i), the expected punishment

from the coordination is independent of the players�history in
�
hmain1 ; hmain2

�
. Hence, this

coordination in the report block does not a¤ect any incentive in the coordination and main

blocks.

44.3 Report Block with Conditionally Independent Cheap Talk

In this subsection, we replace the perfect cheap talk with conditionally independent noisy

cheap talk. That is, each player has the conditionally independent noisy cheap talk commu-

nication device to send a binary message m 2 fG;Bg. When player i sends the message m,

the receiver (player j) observes the correct message m with high probability 1 � exp(�T 1
3 )

while player j observes the erroneous message fG;Bgnfmg with low probability exp(�T 1
3 ).
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Player i (sender) does not obtain any information about what message player j receives

(conditional on m). Hence, the communication is conditionally independent.

When player j (receiver) constructs �reporti , player j needs to take care of the possibility

that player j receives an erroneous message.

Note that the number of binary messages sent in the report block is O(T
1
4 ). Therefore,

all the messages transmit correctly with probability at least

1�O(T
1
4 ) exp(�T 1

3 ):

In addition, the cardinality of the information sent by all the messages is exp(O(T
1
4 )).

LetMi be the set of information possibly sent by player i in the report block with jMij =

exp(O(T
1
4 )). Let Pi be the jMij � jMij matrix whose (k; k0) element represents

Pr

0@ player j receives the message corresponding to the element k0 ofMi

j player i sends the message corresponding to the element k ofMi

1A :

Since jMij = exp(O(T
1
4 )) and all the messages transmit correctly with probability no less

than 1�O(T
1
4 ) exp(�T 1

3 ),

�
1�O(T

1
4 ) exp(�T 1

3 )
�exp(O(T 1

4 ))

� 1� exp(O(T 1
4 ))O(T

1
4 ) exp(�T 1

3 )! 1

as T goes to in�nity and so

lim
�!1

P�1i = lim
T!1

P�1i = E (identity matrix).

Let

�reporti (xj; h
TP+1
j ; k : �)

be the reward function that player j with hTP+1j would construct after the history corre-
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sponding to the element k via perfect cheap talk, that is, if Pi were E.90 In addition, let

�reporti (xj; h
TP+1
j : �) be the vector stacking all �reporti (xj; h

TP+1
j ; k : �)�s with respect to k.

If we player j uses

P�1i �reporti (xj; h
TP+1
j : �);

then player i�s incentive is the same as in the situation that the messages would always

transmit correctly (as if Pi were E). Since the truthtelling incentive is strict, multiplying

P�1i to �reporti (xj; h
TP+1
j : �) does not a¤ect the incentives in the report block if P�1i is

su¢ ciently close to E.

44.4 Report Block withOUT the Conditionally Independent Cheap

Talk

Finally, we dispense with the conditionally independent cheap talk.

Consider Step 2 of Section 44.2.1. If player 2 wants to send y2 2 Y 2
2;1, then player 2 takes

aG2 for T
1
3 periods. On the other hand, if player 2 wants to send y2 2 Y 2

2;2, then player 2

takes aB2 for T
1
3 periods.

Player 1 takes ��1 for T
1
3 periods. After calculating �1(a1;t; y1;t), player 1 constructs �1;t

from �1(a1;t; y1;t) as she constructs 	1;t from  a1(y1;t). Lemma 39 implies that

Pr (f�1;t = 1g j ��1;t; a2;t; y2;t) =

8<: q2 if a2;t = aG2 ;

q1 if a2;t 6= aG2

(143)

for all t and y2;t.

Player 1 infers that player 2�s message is G if

P
t�1;t

T
1
3

>
q2 + q1
2

(144)

and B otherwise. Here, the summation is taken over T
1
3 periods where player 2 sends the

90Here, we use hTP+1j instead of hmainj since player j needs to use the signal observations while the players
coordinate on who will report the history and k(r).
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message.

Next, consider Step 3 of Section 44.2.1. If 3-(a) is the case, then player 2 would send

binary messages about hmain2 with the conditionally independent noisy cheap talk. Since all

the messages are binary, we can see player 2 sending a binary message m 2 fG;Bg. Without

the conditionally independent cheap talk, for each message m, the players spend T
1
3 periods.

Player 2 takes am2 and player 1 takes ��1. Player 1 infers player 2�s message by (144).

On the other hand, if 3-(b) of Section 44.2.1 is the case, then the players spend the same

number of periods as in 3-(a). For periods where player 2 would send the message about

hmain2 in 3-(a), player 2 takes aG2 . On the other hand, for periods where player 2 sends the

message about k(r), player 2 sends the same message as in 3-(a). Player 1 always takes ��1.91

Player 1�s reward on player 2 is determined as follows: While player 2 sends the message

m corresponding to Step 2 of Section 44.2.1, player 1 gives the following reward: Let t(m)

be the �rst period when player 2 sends m.

1. At t(m), both aG2 and a
B
2 are indi¤erent and are better than the other actions (if any).

The reward is given by

	
aG2 ;a1;t(m)
1;t(m) +	

aB2 ;a1;t(m)
1;t(m) � (q2 + q1) : (145)

By algebra, we can verify that

(a) The expected payo¤ of taking aG2 or a
B
2 in period t(m) is 0.

(b) The expected payo¤ of taking another action is �O(1).

2. After that, the constant action is optimal:

t(m)+T
1
3�1X

t=t(m)+1

0@c+ T�1 �L
1

q2 (1� q1) (q1 � q2)
2

0@ (1� q1)1f�1;t(m) = 1g	
aG2 ;a1;t
1;t

+q21f�1;t(m) = 0g	
aB2 ;a1;t
1;t

1A1A :

(146)

91Note that player 1 takes the same action between in 3-(a) and 3-(b). Therefore, player 1 does not need
to know which is the case.
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Here, c is a constant such that the expected payo¤ of taking aG2 after a2;t(m) = aG2 is

equal to 0.

From (143) and (146), we can verify that

(a) The expected payo¤ of taking am2 in period t after taking a
m
2 in period t(m) is 0.

(b) The expected payo¤ of taking another action in period t after taking am2 in period

t(m) is �O(T�1).

Next, let us consider the reward for the messages corresponding to Step 3 of Section

44.2.1.

If player 1 infers that player 2�s message corresponding to Step 2 says that player 2

observed y2 2 Y 2
2;1, then for each message m in Step 3 of Section 44.2.1, player 1 gives the

same reward as (145) and (146).

If player 1 infers that player 2�s message in Step 2 says that player 2 observed y2 2 Y 2
2;2,

then for periods where player 2 is supposed to take aG2 , player 1 gives

X
t

�
	
aG2 ;a1;t
1;t � q2

�
; (147)

so that player 2 takes aG2 . Note that the expected payo¤ from (147) by taking aG2 is zero.

For periods where player 2 sends the message about k(r), player 1 gives the same reward

as (145) and (146).

By backward induction, we can show the following: Suppose that player 2 constantly took

aG2 in Step 2 of Section 44.2.1. Then, with probability no less than 1� exp(�O(T
1
3 )), player

1 uses the reward (145) and (146).92 Consider the last message m. All the rewards from

(145) and (146) determined by the previous messages are sunk. In addition, the punishment

and reward in the report block g2 and fi de�ned in Section 15.7 are bounded by O(T�3).

Hence, the di¤erence between 1-(a) and 1-(b) is su¢ ciently large that, in period t(m), player

92More precisely, given the truthtelling incentive, since player j takes into the account that Pi is not an
identity matrix as seen in Section 44.3, player i believes that the messages transmit correctly with probability
one.
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2 takes either aG2 or a
B
2 . In addition, the di¤erence between 2-(a) and 2-(b) is su¢ ciently

large that after taking aG2 or a
B
2 in period t(m), player 2 should take the constant action.

Since this equilibrium strategy makes the expected payo¤ from the last message, (145)

and (146) equal to 0, the same argument holds until the �rst message.

Symmetrically, if player 2 constantly took aB2 in Step 2 of Section 44.2.1, then it is optimal

for player 2 in Step 3 to take aG2 when player 2 is supposed to take a
G
2 and to take a

G
2 or a

B
2

constantly for periods where player 2 should send a message for k(r).

Finally, when player 2 sends the message about y2 in Step 2 of Section 44.2.1, it is strictly

optimal to take a constant action since (i) there is a strict incentive for the constant action

and (ii) it gives player 2 the better idea about whether player 2 should tell the truth about

the history or take aG2 constantly to maximize (147).

Therefore, (i) this replacement of the conditionally independent cheap talk with messages

via actions does not a¤ect the payo¤ and since player 2 repeats the message for T
1
3 periods,

(ii) player 1 infers the correct message m with high probability 1 � exp(�O(T 1
3 )), (iii)

player 2�s private signal cannot update player 2�s belief about player 1�s inference of player

2�s message (conditional independence) by (143), and (iv) since the number of necessary

messages is O(T
1
4 ), the number of necessary periods for player 2 to send all the messages is

O(T
1
3
+ 1
4 ) < O(T );

as desired.

For player 1, since we cannot assume that jA1j jY1j � jA2j jY2j, we cannot generically �nd

a function �2(a2; y2) with the conditional independence property symmetric to �1(a1; y1).

Therefore, after Step 4 in Section 44.2.1, we add an additional round where player 1 sends

the messages about player 1�s histories in Step 4. Based on the information that player 2

obtains in this additional round, player 2 creates a statistics to infer player 1�s messages in

Step 4, so that while player 1 sends the messages about hmain1 in Step 4 (before observing the

history in the additional round), player 1 cannot update player 2�s inference of the messages

from player 1�s signal observations.
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44.4.1 Recovery of Conditional Independence

In Step 4 of Section 44.2.1, without cheap talk, player 1 takes a1 2 faG1 ; aB1 g to send the

message. To send each message m, player 1 repeats am1 for T
1
3 periods. Player 2 takes aG2 .

As for player 2, this takes O(T
1
3
+ 1
4 ) periods.

After this step is over, we have the following round named the �round for conditional

independence.�The intuitive structure is as follows. For each period t in Step 4, player 1

reports the history in period t to player 2 in the round for conditional independence. Player

2 infers player 1�s messages in Step 4 combining player 2�s signals in Step 4 and player 1�s

reports about player 1�s history.

Player 2 gives the following rewards to player 1: (i) The adjustment of player 1�s reward

so that �1(x1) is exactly optimal; (ii) A reward that makes an optimal strategy in the round

for conditional independence given player 1�s history in Step 4 unique; (iii) We make sure

that (i) is much smaller than (ii), so that player 1�s history in Step 4 and the strictness of

player i�s incentive in the round for conditional independence completely determines player

1�s strategy in the round for conditional independence, independently of hmain1 . (iv) Given

player 1�s continuation strategy in the round for conditional independence, player 2 in Step

4 changes player 1�s continuation payo¤ so that ex ante (before player 1 takes an action

in each period of Step 4), the di¤erence in the expected payo¤s from di¤erent actions in

Step 4 is canceled out, taking (ii) into account. (iv) implies that the round for conditional

independence does not a¤ect player 1�s payo¤ in Step 4.

Finally, since player 2 obtains rich information about player 1�s history in Step 4 from

the round for conditional independence, player 2 infers player 1�s messages in Step 4 so that

player 1 cannot update the belief about player 2�s inference of player 1�s message during Step

4. (ii) implies that the incentives in the round for conditional independence is not a¤ected

by this.

Now, we de�ne the round fo conditional independence formally. For each period t in Step

4, we attach S log2 jA1j jY1j periods in the round for conditional independence. S is a �xed

number to be determined. Hence, this new round also takes O(T
1
3
+ 1
4 ) periods.
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In these S log2 jA1j jY1j periods, player 1 sends the message about the history in each

period t in Step 4, (a1;t; y1;t), as follows:

� We create a mapping between a sequence of
�
aG1 ; a

B
1

	
, a1(a1; y1) 2

�
aG1 ; a

B
1

	log2jA1jjY1j,
and (a1; y1) 2 jA1j� jY1j, such that each a1(a1; y1) uniquely identi�es (a1; y1) and that,

for each (a1; y1), there is at least one a1(a1; y1) that is mapped into (a1; y1).

� Player 1�s strategy is to be determined.

� Player 2 always takes aG2 .

� S log2 jA1j jY1j periods are separated into log2 jA1j jY1j sets of S periods. In each S

periods, player 2 infers that player 1 sends the message aG1 ifP
s	

aG

2;s

S
>
q2 + q1
2

(148)

and aB1 otherwise. From these inferences and the correspondence a1(a1; y1), player 2

infers player 1�s message (â1;t; ŷ1;t).

Let

�



1y2;t � E h1y2;t j aG2 ; â1;t; ŷ1;ti


2 � f(h

S log2jA1jjY1j
2 ); (149)

be player 2�s reward on player 1. Here, hS log2jA1jjY1j2 is player 2�s history in the S log2 jA1j jY1j

periods where player 1 sends (â1;t; ŷ1;t) and f will be determined in the following lemma:

Lemma 31 There exists e1 such that, for each S 2 N and " > 0, there generically exist f

and e2 > 0 such that, suppose that the players play the following game:

1. Nature chooses a1;t (t is introduced to make the notations consistent) and (y1;t; y2;t) is

distributed according to q(yt j a1;t; aG2;t). Player 1 can observe only (a1;t; y1;t).

2. The players play an (S log2 jA1j jY1j)-period �nitely repeated game where, in each period

s 2 f1; : : : ; S log2 jA1j jY1jg, player 1 chooses a1;s 2 A1, the signal pro�le (y1;s; y2;s) is
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generated by q(ys j a1;s; aG2;s), player 1 can observe only (a1;s; y1;s), and there is no

instantaneous utility.

3. Player 2 infers (â1;t; ŷ1;t) as explained above.

4. Player 1�s utility is given by (149).

Then,

(a) The message transmits correctly with probability at least 1� "� e1 exp(�O(S
1
2 )), and

(b) For any two pure strategies �1 and ~�1, if there exists h1 where �1 j h1 6= ~�1 j h1 on

the path after h1, then the continuation payo¤ from h1 is di¤erent by at least e2. Here,

with abuse of notation, �1 and h1 are player 1�s strategy and history in the game just

de�ned. Let ��1 be the (unique) optimal strategy.

Note that e2 > 0 here corresponds to (ii) in the intuitive explanation above.

Proof. There exists �E such that



1y2;t � E �1y2;t j aG2;t; â1;t; ŷ1;t�

2 < �E

for all y2;t, aG2;t, â1;t and ŷ1;t. In addition, de�ne

e = min
(a1;t;y1;t)

8<: min(â1;t;ŷ1;t) 6=(a1;t;y1;t) E
h

1y2;t � E �1y2;t j aG2;t; â1;t; ŷ1;t�

2 j a1;t; y1;ti

�E
h

1y2;t � E �1y2;t j aG2;t; a1;t; y1;t�

2 j a1;t; y1;ti

9=; :

By Assumption 5, e > 0. Note that �E and e are independent of S and f .

Fix S and " > 0 arbitrarily. Lemma 3 implies that we can �nd and �x f and e2 > 0

such that (b) is satis�ed and that f(hS log2jA1jjY1j2 ) 2 [� "e
2
; "e
2
] for all hS log2jA1jjY1j2 . Speci�cally,

�rst, without loss of generality, we can make sure that player 1 has only two strategies since

otherwise, Lemma 3 enables player 2 to give a very high punishment if player 1 takes an

action other than aG1 or a
B
1 . Second, consider the last period of the game. If there is a
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history where aG1 and a
B
1 are indi¤erent, Lemma 3 guarantees that player 2 can break the

ties by adding a small reward for aG1 uniformly for all the histories. Making this adjustment

su¢ ciently small in order not to a¤ect the strict incentives in the other histories, we establish

the strictness in the last period. Third, we can proceed by backward induction. Whenever

player 2 breaks a tie for some period, it does not a¤ect the strict incentives in the later

periods since the reward in a certain period will be sunk in the later periods.

Let ��1 be such that player 1 constantly takes aG1 or a
B
1 for each S periods that correspond

to the proper counterpart of a1(a1;t; y1;t). In addition, de�ne

R�(a1;t; y1;t) = �E
h

1y2;t � E �1y2;t j aG2;t; a1;t; y1;t�

2 j a1;t; y1;ti ;

�R(a1;t; y1;t) = � min
(â1;t;ŷ1;t) 6=(a1;t;y1;t)

E
h

1y2;t � E �1y2;t j aG2;t; â1;t; ŷ1;t�

2 j a1;t; y1;ti ;

R = � max
(a1;t;y1;t)

max
(â1;t;ŷ1;t) 6=(a1;t;y1;t)

E
h

1y2;t � E �1y2;t j aG2;t; â1;t; ŷ1;t�

2 j a1;t; y1;ti :

Note that for all (a1;t; y1;t),

R�(a1;t; y1;t)�R � 2E;

R�(a1;t; y1;t)� �R(a1;t; y1;t) � e.

For (a), since the message transmits with ex ante probability 1� exp(�O(S 1
2 )) with ��1,

the optimal strategy ��1 should guarantee

(1� Pr ((â1;t; ŷ1;t) 6= (a1;t; y1;t)))R�(a1;t; y1;t) + Pr ((â1;t; ŷ1;t) 6= (a1;t; y1;t)) �R(a1;t; y1;t)

�E
h
f
�
h
S log2jA1jjY1j
2

�
j ��1 j (a1;t; y1;t)

i
�

�
1� exp(�O(S 1

2 ))
�
R�(a1;t; y1;t) + exp(�O(S

1
2 ))R� E

h
f
�
h
S log2jA1jjY1j
2

�
j ��1 j (a1;t; y1;t)

i

230



or

Pr ((â1;t; ŷ1;t) 6= (a1;t; y1;t))

� R�(a1;t; y1;t)�R

R�(a1;t; y1;t)� �R(a1;t; y1;t)
exp(�O(S 1

2 ))

+
E
h
f
�
h
S log2jA1jjY1j
2

�
j ��1 j (a1;t; y1;t)

i
� E

h
f
�
h
S log2jA1jjY1j
2

�
j ��1 j (a1;t; y1;t)

i
R�(a1;t; y1;t)� �R(a1;t; y1;t)

� 2E

e
exp(�O(S 1

2 )) + ":

Take

e1 =
2E

e
> 0;

which is independent of S and f , then we are done.

Given that, for each period t in Step 4 of Section 44.2.1, player 1 will take ��1 j (a1;t; y1;t)

in the round for conditional independence and that player 2�s reward on player 1 in the

round for conditional independence is (149), the expected payo¤ from Nature�s choice a1;t is

determined. By Lemma 3, there exists �g(a1) such that

X
a1

�g (a1)	
aG2 ;a1
2;t (150)

cancels out the di¤erence from (149). Player 2 adds (151) to player 2�s reward on player 1

in the report block. Then, seeing a1;t as player 1�s action in Step 4 of Section 44.2.1, any

action gives ex ante payo¤ 0. Note that this corresponds to (iv) in the intuitive explanation

above.

Then, based on the report ��1 in the round for conditional independence, player 2 can

construct the statistics that indicates player 1�s action with the conditional independence

property from the perspective of Step 4 of Section 44.2.1.

Lemma 32 There exist S 2 N, " > 0 and �2 : â1; ŷ1; y2 ! (0; 1) such that, for all (a1;t; y1;t),
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if player 1 reports (a1;t; y1;t) by ��1, then for all y1;t,

E
�
�2(â1;t; ŷ1;t; y2;t) j aG2;t; a1;t; y1;t; ��1 j a1;t; y1;t

�
=

8<: q2 if a1;t = aG1;t;

q1 if a1;t 6= aG1;t:

Proof. Since, from Condition (a) of Lemma 31, (â1;t; ŷ1;t) transmits with probability no

less than 1 � " � e1 exp(�O(S
1
2 )), for su¢ ciently large S and small ", player 2 has enough

information. Note that e1 does not depend on S.

Now, we are ready to construct Step 4 of Section 44.2.1. Fix S 2 N and " > 0 such that

Lemma 32 holds. Then, �x f and e2 such that Lemma 31 holds for those S and ". Finally,

take � such that e2 > T�1 = (1� �)
1
2 . This implies that (iii) in the intuitive explanation is

satis�ed.

Step 4 of Section 44.2.1 For each T
1
3 periods when player 1 is supposed to take a

constant action, player 2 infers that player 1�s action is aG1 ifP
t�2;t

T
1
3

>
q2 + q1
2

and aB2 otherwise. Then, from Lemma 32, if player 1 uses ��1 j a1;t; y1;t in the round for

conditional independence, then �2;t has the same property as �1;t from Lemma 32.

If player 2 sent the message y2 2 Y 2
2;2 (y2 2 Y 2

2;1, respectively) in Step 2 of Section 44.2.1,

then player 2�s reward on player 1 in the Step 4 is symmetrically de�ned as player 1�s reward

on player 2 in Step 3 after inferring that player 2�s message in Step 2 says that player 2

observed y2 2 Y 2
2;1 (y2 2 Y 2

2;2, respectively). On the top of that, player 2 gives the reward

X
a1

�g (a1)	
aG2 ;a1
2;t (151)

to cancel out the e¤ect of the round for conditional independence. Note that player 2 does

not need to know the true action a1;t to calculate (151).
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Round for Conditional Independence For S log2 jA1j jY1j periods that correspond to

period t in Step 4 of Section 44.2.1, player 1 plays ��1 j a1;t; y1;t and player 2 plays aG2 . The

reward is given by (149).

Optimality of Player 1�s Strategy Note that all the rewards in Step 4 of Section 44.2.1

a¤ected by the messages in the round for conditional independence is bounded by T�1. Since

we take T such that e2 > T�1, from Condition 2 of Lemma 31, regardless of the history in

Step 4, the optimal strategy in the round for conditional independence is ��1 (note that (151)

is sunk in the round for conditional independence).

Then, (151) together with the expected reward in the round for conditional independence

makes player 1 indi¤erent between all the actions in terms of the expected reward in the

round for conditional independence and yield 0 regardless of the history.

Therefore, the same argument as in Step 3 of Section 44.2.1 for player 2 establishes the

result since, given that player 1 takes ��1, the conditional independence property holds.

233



SUPPLEMENTAL MATERIAL 5:

PROOF OF THEOREM 1 for a General N-Player Game withOUT CHEAP

TALK

In this Supplemental Material, we prove the dispensability of cheap talk and public

randomization in the proof of Theorem 1 for a general N -player game with N � 3 (see the

Supplemental Material 3 for the proof with cheap talk and public randomization). Remember

that in the Supplemental Material 3, the coordination block uses the perfect cheap talk, the

supplemental rounds use the noisy cheap talk, the report block uses the public randomization

and perfect cheap talk, and the re-report block uses the perfect cheap talk.

First, in Section 46, we replace the perfect cheap talk in the coordination block with the

noisy cheap talk. As seen in Section 4.7.2, with more than two players, we need to make

sure that while the players exchange messages and infer the other players�messages from

private signals in order to coordinate on xi, there is no player who can induce a situation

where some players infer xi is G while the others infer xi is B in order to increase her own

equilibrium payo¤. For this purpose, we need to use the communication through actions and

to make new assumptions. In Section 45.1, we introduce these new assumptions and explain

why they are necessary.

Second, in Section 48, we dispense with the noisy cheap talk in the coordination block

(given the �rst step above) and supplemental rounds. See Section 45.2 for what assumption

is necessary for this step.

Third, in Section 51, we dispense with the public randomization and the perfect cheap

talk in the report and re-report blocks. See 45.3 for new assumptions for this step.

In this Supplemental Material, when we say player i 62 f1; :::; Ng, without otherwise

speci�ed, it means player i (modN). In addition, without loss of generality, assume that

jA1j jY1j � � � � � jAN j jYN j : (152)
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45 Notations and Assumptions

45.1 Assumptions for Dispensing with the Perfect Cheap Talk in

Coordination Block

We explain how to replace the perfect cheap talk with the noisy cheap talk in the coordination

block. As explained in Section 29, the noisy cheap talk is �private� in that when player j

sends the message to player n via noisy cheap talk, the main signal f [n] (m) is only observed

by player n.

This creates the second problem in Section 4.6.3: If player i sent the message xi to each

of the other players �i via noisy cheap talk separately, then player i could create a situation

where some players infer xi is G while the others infer xi is B by telling a lie. Since the

action that will be taken in the main blocks may not be included in fa(x)gx and we do not

have any bound on player i�s payo¤ in such a situation, it might be of player i�s interest to

tell a lie.

To prevent this situation, we consider the following message protocol: Let N(i) = fi; i+

1; i+ 2g be the set of players whose index is in fi; i+ 1; i+ 2g. In addition, let

n�(i) 2 arg min
j2fi;i+2g

jAjj jYjj (153)

be the player whose jAjj jYjj is smaller among fi; i+ 2g. Let

n��(i) = fi; i+ 2g n fn�(i)g (154)

be the other player. Note that N(i) = fn�(i); i + 1; n��(i)g. The players communicate as

follows:

1. First, player i sends the message about xi to player n�(i).

2. Then, player n�(i) sends the message about xi to players N(i) via actions. This corre-

sponds to �Phase 1�of Hörner and Olszewski (2006).
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3. After that, each player j in N(i) sends the message about xi to each player n 6= j via

noisy cheap talk.

4. Finally, each player n infers xi based on the messages from N(i). This corresponds to

�Phase 2�of Hörner and Olszewski (2006).

As Hörner and Olszewski (2006), to incentive each player j 2 N(i) to tell the truth in

Step 3, for each j 2 N(i), if there exists player n 2 �j such that player n�s inference of player

j�s message changes player n�s inference of xi in Step 4 (that is, if player j is �pivotal�), then

player j � 1 makes player j indi¤erent between any action pro�le sequence.

Given above, we will show that player n�(i) does not want to deviate in Step 2 in order

to create a situation where player n�(i) herself will be pivotal with high probability in Step

3. Remember that we take n�(i) such that the set of player n�(i)�s action-signal pairs is

smaller than that of player n�� (i) in (153). Heuristically, this guarantees that player n�(i)

cannot infer player n��(i)�s inference precisely, which prevents player n�(i) from creating the

situation where player n�(i) is pivotal.

Given player n�(i)�s truthtelling strategy in Step 2, the probability that player i is pivotal

in Step 3 is almost independent of player i�s strategy in Step 1. Since xi controls player

(i+ 1)�s payo¤, players i and n�(i) 6= i + 1 do not have an incentive to manipulate the

communication in Step 1.

Below, we explain which step requires exactly what assumption.

Let us consider Step 1 �rst. Suppose that player i wants to send the message xi 2 fG;Bg

to player n�(i). If n�(i) = i, then this is redundant. Otherwise, player i sends xi by taking

axii for T
1
2 periods. The other players are supposed to take aG�i. We want to make sure that

player n�(i) can statistically infer player i�s message regardless of deviations by the other

players � (i; n�(i)).

More generally, for each i 2 I and n 2 �i, we want to construct a statistics  in(yn) with

which player n can infer player i�s binary message regardless of the other players�deviation.
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That is,

E
�
 in(yn) j ai; aj; aG�(i;j)

�
=

8<: q2 if ai = aGi ;

q1 if ai = aBi

(155)

for all j 2 � (i; n) and aj 2 Aj.

A su¢ cient condition is as follows: Let Qi
n(ai; aj; a

G
�(i;j)) �

�
q(yn j ai; aj; aG�(i;j))

�
yn
be

the vector expression of player n�s signal distribution conditional on ai; aj; aG�(i;j). It su¢ ces

to assume that all the vectors Qi
n(ai; aj; a

G
�(i;j)) with j 2 � (i; n), ai 2 faGi ; aBi g and aj 2 Aj

are linearly independent.

Assumption 13 For any i 2 I and n 2 �i, there exist
�
aGi ; a

B
i

	
� Ai and aG�i 2 A�i such

that Qi
n(ai; aj; a

G
�(i;j)) with j 2 � (i; n), ai 2

�
aGi ; a

B
i

	
and aj 2 Aj are linearly independent.

For notational convenience, we assume that aGi that is used for player i to send the

message is the same as aGi that is player i�s action in a
G
�j when player j 2 �i sends the

message.

This assumption is generic since Assumption 2 implies that jYnj � 2
P

j 6=i;n jAjj. The

following lemma shows that this assumption is su¢ cient for the existence of  in.

Lemma 33 If Assumption 13 holds, then for each i 2 I and n 2 �i, there exist q2 > q1 and

 in : Yn ! (0; 1) satisfying (155).

Proof. The same as Lemma 3.

See (168) for how player n�(i) infers xi using  
i
n(yn).

After player n�(i) infers xi, player n�(i) sends the message about her inference of xi to

players N(i) = fn�(i); i + 1; n��(i)g. To distinguish player n�(i)�s inference of xi from the

true state xi, let wi 2 fG;Bg denote player n�(i)�s inference of xi.

While player n�(i) sends wi, player n�(i) takes a
wi
n�(i), player i+ 1 takes �

�
i+1 2 �(Ai+1),

player n��(i) takes ��n��(i) 2 �
�
An��(i)

�
, and each player j =2 N(i) takes aGj for T

1
2 periods.

That is, in equilibrium, the players take

�(i; wi) �
�
awin�(i); �

�
i+1; �

�
n��(i);

�
aGj
	
j =2N(i)

�
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for T
1
2 periods.

Take n 2 N(i) n n�(i). Suppose that player j = N(i) n fn�(i); ng unilaterally deviates

and takes aj 2 Aj. Then, the distribution of player n�s action-signal pairs is

qn(aj; ��j(i; wi)) � (q (an; yn j aj; ��j(i; wi)))an2An;yn2Yn :

Consider the following linear equations: For any aj 2 Aj,

in(i)qn(aj; ��j(i; wi)) =

8<: q2 if wi = G;

q1 if wi = B:
(156)

Here, in(i) is a 1�jAnj jYnj vector. Intuitively, if player n uses in(i)1an;t;yn;t after the history

(an;t; yn;t) to infer wi, then player j cannot manipulate player n�s inference.

Solve (156) for in(i). Suppose that there are Ln(i) linearly independent solutions. Then,

let

In (i) =
�
iln(i)

�Ln(i)
l=1

(157)

be the Ln(i)� jAnj jYnj matrix collecting all the linearly independent in(i)�s. Suppose that

player n infers wi is equal to ŵi 2 fG;Bg if the realized frequency x of action-signal pairs

satis�es

In(i)x+ " = q(ŵi)1

for some k"k � " (imagine that " is a small number). Here,

q(ŵi) =

8<: q2 if ŵi = G;

q1 if ŵi = B:

We will take care of the case where there is no such ŵi 2 fG;Bg later. Note that (156)

implies that player j = N(i) n fn�(i); ng cannot manipulate this inference.

In addition, consider the matrix projecting player n�(i)�s history on the conditional ex-

pectation of player n�s history given an action pro�le by players �n�(i) being equal to
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��n�(i)(i; wi):

Qn;n�(i)(i)
(jAnjjYnj�jAn�(i)jjYn�(i)j)

;

where the element corresponding to (an; yn) ;
�
an�(i); yn�(i)

�
is the conditional probability that

player n observes (an; yn) given
�
an�(i); yn�(i)

�
and ��n�(i)(i; wi):

q(an; ynj��n�(i)(i; wi); an�(i); yn�(i)):

Since ��n�(i)(i; wi) =
�
��i+1; �

�
n��(i);

�
aGj
	
j =2N(i)

�
is independent of wi, Qn;n�(i) is independent

of wi.

Given Qn;n�(i)(i), the set of player n� (i)�s histories such that player n� (i) believes that

player n infers ŵi 2 fG;Bg with a non-negligible probability is expressed by

In;n�(i)["](i; ŵi) �

8>>><>>>:
x 2 RjAn�(i)jjYn�(i)j+ : 9" 2 RLn(i) such that8<: k"k � ";

In(i)Qn;n�(i)(i)x = q(ŵi)1+ ":

9>>>=>>>;
So that player n�(i) cannot induce the situation that players n��(i) and i + 1 infer the

di¤erent states, we want to make sure that, for su¢ ciently small ",

In��(i);n�(i)["](i; G) \ Ii+1;n�(i)["](i; B) = ; (158)

and

In��(i);n�(i)["](i; B) \ Ii+1;n�(i)["](i; G) = ;: (159)

Therefore, we give a su¢ cient condition for (158) and (159).

In addition, we want to incentives each player i0 2 I to take a prescribed action by the

reward function �
xi0�1
i0 (n�(i)! N(i); ai0�1; yi0�1) such that
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� If player i0 is player n�(i), then the ex ante payo¤of player i0 is constant for all ai0 2 Ai0:

ui0
�
ai0 ; �

�
i+1; �

�
n��(i); a

G
�N(i)

�
+ E

24 �
xi0�1
i0 (n�(i)! N(i); ai0�1; yi0�1)

j ai0 ; ��i+1; ��n��(i); aG�N(i)

35
= constant. (160)

A su¢ cient condition for this is that all the vectors of player (i0 � 1)�s signal distribution

given ai0 ; ��i+1; �
�
n��(i); a

G
�N(i) are linearly independent with respect to ai0. That is,

�
qi0�1(yi0�1 j ai0 ; ��i+1; ��n��(i); aG�N(i))

�
yi0�1

is linearly independent with respect to ai0 2 Ai0.

� If player i0 is not player n�(i), then the ex ante payo¤ of player i0 is constant for all

ai0 2 Ai0 and player n�(i)�s possible messages:

ui0 (ai0 ; ��i0(i; G)) + E
�
�
xi0�1
i0 (n�(i)! N(i); ai0�1; yi0�1) j ai0 ; ��i0(i; G)

�
= ui (ai0 ; ��i0(i; B)) + E

�
�
xi0�1
i0 (n�(i)! N(i); ai0�1; yi0�1) j ai0 ; ��i0(i; B)

�
= constant. (161)

A su¢ cient condition for this is that all the vectors of player (i0 � 1)�s signal distribution

given ai0 ; ��i0(i; wi) are linearly independent with respect to ai0 and wi. That is,

(qi0�1(yi0�1 j ai0 ; ��i0(i; wi)))yi0�1

is linearly independent with respect to ai0 2 Ai0 and wi 2 fG;Bg.

In total, the following assumption is su¢ cient.

Assumption 14 For any i 2 I, there exist
n
aGn�(i); a

B
n�(i)

o
, ��i+1 2 �(Ai+1), ��n��(i) 2

�
�
An��(i)

�
, aG�N(i), q2 and q1 such that
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1. q2; q1 2 (0; 1) and q2 > q1.

2. There exists x 2 RLi+1(i)+Ln��(i)(i) such that24 Ii+1(i)Qi+1;n�(i)(i)

In��(i)(i)Qn��(i);n�(i)(i)

350 x � 0;
24 q21

q11

35 � x > 0:
3. There exists x 2 RLi+1(i)+Ln��(i)(i) such that24 Ii+1(i)Qi+1;n�(i)(i)

In��(i)(i)Qn��(i);n�(i)(i)

350 x � 0;
24 q11

q21

35 � x > 0:
4. For i0 = n�(i), �

qi0�1(yi0�1 j ai0 ; ��i+1; ��n��(i); aG�N(i))
�
yi0�1

is linearly independent with respect to ai0 2 Ai0.

5. For i0 2 I n fn�(i)g,

(qi0�1(yi0�1 j ai0 ; ��i0(i; wi)))yi0�1

is linearly independent with respect to ai0 2 Ai0 and wi 2 fG;Bg.

Since all the expressions are linear and qn is a probability distribution, we can make sure

that each element in In(i) is in (0; 1). Further, for notational simplicity, we assume that�
aGj ; a

B
j

�
j2I in Assumption 13 satis�es Assumption 14 for each i.

93

This assumption is generic by the following reason: (156) puts 2 (jAjj � 1) constraints

while we have jAnj jYnj�1 degrees of freedom for in(i) if qn(aj; ��j(i; wi)) is linearly indepen-

dent for each wi and aj except for the constraint that �if we add all the elements up, then it

should be one.�Hence, generically Ln(i) is equal to jAnj jYnj�2 jAjj+1. Therefore, for each

one of Conditions 2 and 3, we have jAi+1j jYi+1j+
��An��(i)�� ��Yn��(i)��� 2 jAi+1j � 2 ��An��(i)��+ 1

93Remember that in Assumption 13, we assumed that aGi that is used for player i to send the message is
the same as aGi that is player i�s action in a

G
�j when player j 2 �i sends the message.
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degrees of freedom for x,94 while we have
��An�(i)�� ��Yn�(i)��+1 constraints. Hence, Assumption

2 together with (153) implies that we can generically �nd x for Conditions 2 and 3.

In addition, Condition 4 is generic if jYi0�1j � jAi0j and Condition 5 is generic if jYi0�1j �

2 jAi0j. Note that Assumption 2 implies that these inequalities are satis�ed.

The following lemma shows that Assumption 14 is su¢ cient for (158) and (159).

Lemma 34 If Assumption 14 is satis�ed, then there exists �" > 0 such that, for any " < �",

for any i 2 I, (158) and (159) are satis�ed.

Proof. The same as Lemma 26.

In addition, the following lemma shows that Assumption 14 is su¢ cient for the construc-

tion of the reward stated above:

Lemma 35 There exists �u such that, for each i and i0, there exist �Gi0 (n
�(i) ! N(i); �; �) :

Ai0�1 � Yi0�1 ! [��u; 0] and �Bi0 (n�(i)! N(i); �; �) : Ai0�1 � Yi0�1 ! [0; �u] such that

1. (160) is satis�ed for i0 = n�(i) and

2. (161) is satis�ed for i0 2 �n�(i).

Proof. The same as Lemma 3.

45.2 Assumption for Dispensing with the Noisy Cheap Talk

We explain how player j sends a binary message m 2 fG;Bg to player n via actions instead

of the noisy cheap talk. Since we only use the noisy cheap talk with precision p = 1
2
, we

concentrate on the case with p = 1
2
.

As in the two-player case, with � being a small number to be de�ned, the sender (player

j) determines

zj(m) =

8>>><>>>:
m with probability 1� 2�;

fG;Bg n fmg with probability �;

M with probability �

94Note that two rows are parallel to 1.
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and player j takes

�
zj(m)
j =

8>>><>>>:
aGj if zj(m) = G;

aBj if zj(m) = B;

1
2
aGj +

1
2
aBj if zj(m) =M

for T
1
2 periods. The other players �j take aG�j.

For each i 2 I, let yi be the realized frequency of player i�s signal observation while

player j sends m. In addition, let qi(a) = (qi(yi j a))yi be player i�s signal distribution with

action pro�le a.

We want to construct f [n](m) 2 fG;Bg from yn and g[n � 1](m) 2 fm;Eg from yn�1

such that

� Player n infers the message correctly with high probability,

� Player n� 1 has g[n� 1](m) = m with high probability,

� Given m, player n believes that f [n](m) = m or g[n�1](m) = E with high probability,

� Player n cannot manipulate g[n� 1](m), and

� The players other then the sender and receiver cannot manipulate f [n](m) to increase

their payo¤.

As in the two player case, g[n� 1](m) = E if and only if zj(m) 6= m or yn�1 is not close

to the a¢ ne hull of player (n� 1)�s signal distribution with respect to player n�s deviation,

a�(fqn�1(amj ; an; aG�(j;n))gan). Using 2 of Notation 2 below,

1. g[n� 1](m) = m if zj(m) = m and yn�1 2 Hn�1["] (m).

2. g[n� 1](m) = E if zj(m) 6= m or yn�1 62 Hn�1["] (m).

Here, we assume that player n� 1 knew the true message m. As will be seen in Section

52, player j informs player n� 1 of m in the re-report block. Since g[n� 1](m) only a¤ects
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the reward function (does not a¤ect �n�1(xn�1)), it su¢ ces that player n � 1 knows the

information by the end of the review phase.

On the other hand, regardless of any player�s deviation, with high probability, player n

(receiver) receives yn close to the a¢ ne hull of player n�s signal distributions with respect to

player i�s action with i 2 �i, that is,

a�(fqn(aGn ; aj; aG�(j;n))gaj2Aj) [ a�(fqn(amn ; aGj ; ai; aG�(i;j;n))gm2fG;Bg;i6=j;n;ai2Ai): (162)

Using 4 of Notation 2, yn 2 Gn["] with high probability.

If yn 2 Gn["], then as in the two-player case, player n constructs f [n](m) such that

� f [n](m) = G if the conditional expectation of yn�1 given m = G and yn is close to

Hn�1["] (G), and

� f [n](m) = B if the conditional expectation of yn�1 given m = B and yn is close to

Hn�1["] (B).

Using 6 of Notation 2,

� f [n](m) = G if yn 2 Hn�1;n["] (G), and

� f [n](m) = B if yn 2 Hn�1;n["] (B).

Further, so that players � (j; n) cannot manipulate player n�s inference (if zj(m) = m),

player n infers that m is m̂ 2 fG;Bg if yn is close to the a¢ ne full of player n�s signal

distributions under the message m̂ with respect to a unilateral deviation of each player

i 2 � (j; n), that is, if yn is close to a�(fqn(am̂j ; ai; aG�(i;j))gi6=j;n;ai2Ai).

Using 8 of Notation 2,

� f [n](m) = G if yn 2 Jn["] (G), and

� f [n](m) = B if yn 2 Jn["] (B).
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In total,

1. If yn 2 Gn["], then

(a) f [n](m) = G if yi 2 Hn�1;n["] (G) [ Jn["] (G),

(b) f [n](m) = B if yi 2 Hn�1;n["] (B) [ Jn["] (B) or yi 62 Hn�1;n["] (G) [ Jn["] (G),

and

2. If yn =2 Gn["], then player n infers f [n](m) from the likelihood as in the two-player

case.

Here, compared to the two-player case, Ii["](m̂) is not introduced since Lemma 15 does

not have a counterpart of 3 of Lemma 2.

In addition, we want to incentives each player i 2 I to take a prescribed action by the

reward function �xi�1i (j; ai�1; yi�1) such that

� If player i is player j (sender), then the ex ante payo¤ of player i is constant for all

ai 2 Ai:

ui
�
ai; a

G
�i
�
+ E

�
�
xi�1
i (j; ai�1; yi�1) j ai; aG�i

�
= constant. (163)

A su¢ cient condition for this is that all the vectors of player (i� 1)�s signal distribution

given ai; aG�i are linearly independent with respect to ai. That is,

�
qi�1(yi�1 j ai; aG�i)

�
yi�1

is linearly independent with respect to ai 2 Ai.

� If player i is not player j, then the ex ante payo¤ of player i is constant for all ai 2 Ai
regardless of player j�s message:

ui
�
ai; a

G
j ; a

G
�(i;j)

�
+ E

�
�
xi�1
i (j; ai�1; yi�1) j ai; aGj ; aG�(i;j)

�
= ui

�
ai; a

B
j ; a

G
�(i;j)

�
+ E

�
�
xi�1
i (j; ai�1; yi�1) j ai; aBj ; aG�(i;j)

�
: (164)

245



A su¢ cient condition for this is that all the vectors of player (i� 1)�s signal distribution

given ai; amj ; a
G
�(i;j) are linearly independent with respect to ai and m. That is,

�
qi�1(yi�1 j ai; amj ; aG�(i;j))

�
yi�1

is linearly independent with respect to ai 2 Ai and m 2 fG;Bg.

We �rst give notations and then give a su¢ cient condition so that the above inference is

well de�ned and that the reward function exists.

Notation 2 For aGj ; a
B
j 2 Aj and aG�j 2 A�j, for m 2 fG;Bg, we de�ne the following:

1. A (jYn�1j � jAnj + 1) � jYn�1j matrix Hn�1(m) and a (jYn�1j � jAnj + 1) � 1 vector

pn�1(m) such that the a¢ ne hull of player (n� 1)�s signal distributions with respect

to player n�s action when the other players take amj ; a
G
�(j;n) is represented by

a�(fqn�1(amj ; an; aG�(j;n))gan2An) \ R
jYn�1j
+

=
n
yn�1 2 RjYn�1j+ : Hn�1(m)yn�1= pn�1(m)

o
:

2. The set of hyperplanes that are generated by perturbing RHS of the characterization of

a�(fqn�1(amj ; an; aG�(j;n))gan2An) \ R
jYn�1j
+ : For " � 0,

Hn�1["] (m) =

8>>><>>>:
yn�1 2 RjYn�1j+ : 9" 2 RjYn�1j�jAnj+1 such that8<: k"k � ";

Hn�1(m)yn�1= pn�1(m) + "

9>>>=>>>; :

3. Let Gi be a (jYnj � jAjj � 2
P

i6=j;n jAij + 1) � jYnj matrix and gn be a (jYnj � jAjj �

2
P

i6=j;n jAij+ 1)� 1 vector such that (162) is represented by

n
yn 2 RjYnj+ : Gnyn= gn

o
:
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4. The set of hyperplanes that are generated by perturbing RHS of the above characteri-

zation: For " � 0,

Gi["] �

8>>><>>>:
yn 2 RjYnj+ : 9" 2 RjYnj�jAj j�2

P
i6=j;njAij+1

such that

8<: k"k � "

Gnyn= gn + "

9>>>=>>>; :

5. The matrix projecting the distributions of player n�s signals on the conditional distrib-

ution of player (n� 1)�s signals given an action pro�le a:

Qn�1;n(a) =

26664
q(yn�1;1 j a; yn;1) � � � q(yn�1;1 j a; yn;jYnj)

...
...

q(yn�1;jYn�1j j a; yn;1) � � � q(yn�1;jYn�1j j a; yn;jYnj)

37775 :

6. For m̂ 2 fG;Bg, the set of player n�s signal frequencies such that player n�s conditional

expectation of player (n� 1)�s signal frequency is in Hn�1["](m̂) when the players take

am̂j ; a
G
�j:

Hn�1;n["](m̂) =

8>>>>>>>>><>>>>>>>>>:

yn 2 RjYn�1j+ such that

there exist "1 2 RjYn�1j, "2 2 RjYn�1j�jAnj+1 and yn�1 2 RjYn�1j+ satisfying8>>><>>>:
yn�1 = Qn�1;n(a

m̂
j ; a

G
�j)yn + "1;

Hn�1(m̂)yn�1= pn�1(m̂) + "2;

k"1k ; k"2k � "

9>>>>>>>>>=>>>>>>>>>;
:

7. For m̂ 2 fG;Bg, a (jYnj�
P

i6=j;n jAij+1)�jYnj) matrix Jn(m̂) and a (jYnj�
P

i6=j;n jAij+

1) � 1 vector rn(m̂) such that the a¢ ne hull of player n�s signal distributions with

respect to player i�s deviation with i 2 � (j; n) when the other players take amj ; aG�(i;j)
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is represented by

a�(fqn(am̂j ; ai; aG�(i;j))gi6=j;n;ai2Ai) \ R
jYnj
+

=
n
yn 2 RjYnj+ : Jn(m̂)yn= rn(m̂)

o
:

8. The set of hyperplanes that are generated by perturbing RHS of the above characteri-

zation: For " � 0,

Jn["](m) =

8>>><>>>:
yn 2 RjYnj+ : 9" 2 RjYnj�

P
i6=j;njAij+1 such that8<: k"k � ";

Jn(m̂)yn= rn(m̂) + "

9>>>=>>>; :

Similar to Lemma 25, we can take Hn�1(G), Hn�1(B), Jn(G) and Jn(B) so that all the

elements of all the matrices are in (0; 1).

Assumption 15 For each j 2 I and n 2 �j, there exist aGj ; aBj 2 Aj and aG�j such that the

following seven conditions are satis�ed:

1. There exists x 2 RjYnj�jAj j�2
P
i6=j;njAij+1+2(jYn�1j�jAnj+1) such that26664

Gn

Hn�1(G)Qn�1;n(a
G
j ; a

G
�j)

Hn�1(B)Qn�1;n(a
B
j ; a

G
�j)

37775
0

x � 0;

26664
gn

pn�1(G)

pn�1(B)

37775 � x > 0:

2. There exists x 2 RjYnj�jAj j�2
P
i6=j;njAij+1+2

�
jYnj�

P
i6=j;njAij+1

�
such that26664

Gn

Jn(G)

Jn(B)

37775
0

x � 0;

26664
gn

rn(G)

rn(B)

37775 � x > 0:
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3. There exists x 2 RjYnj�jAj j�2
P
i6=j;njAij+1+(jYn�1j�jAnj+1)+jYnj�

P
i6=j;njAij+1 such that26664

Gn

Hn�1(G)Qn�1;n(a
G
j ; a

G
�j)

Jn(B)

37775
0

x � 0;

26664
gn

pn�1(G)

rn(B)

37775 � x > 0:

4. There exists x 2 RjYnj�jAj j�2
P
i6=j;njAij+1+(jYn�1j�jAnj+1)+jYnj�

P
i6=j;njAij+1 such that

26664
Gn

Hn�1(B)Qn�1;n(a
B
j ; a

G
�j)

Jn(G)

37775
0

x � 0;

26664
gn

pn�1(B)

rn(G)

37775 � x > 0:

5. For each k 2 f1; : : : ; jYnjg, we have

q(yn;kjaGj ; �G�j) 6= q(yn;kjaGj ; �B�j):

6. For i = j, �
qi�1(yi�1 j ai; aG�i)

�
yi�1

is linearly independent with respect to ai 2 Ai.

7. For i 2 �j, �
qi�1(yi�1 j ai; amj ; aG�(i;j))

�
yi�1

is linearly independent with respect to ai 2 Ai and m 2 fG;Bg.

For notational simplicity, we assume that
�
aGj ; a

B
j

�
j2I in Assumption 13 satis�es Assump-

tion 15 for each j.95

As Assumption 13, we can show that Assumption 2 implies that we can generically �nd

x�s for each condition of Assumption 15 and that Conditions 6 and 7 are satis�ed.

95Remember that in Assumption 13, we assumed that aGi that is used for player i to send the message is
the same as aGi that is player i�s action in a

G
�j when player j 2 �i sends the message.
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The next two lemmas show that Assumption 15 is actually su¢ cient so that the above

inference f [n](m) is well de�ned.

Lemma 36 If Assumption 15 is satis�ed, then there exists �" > 0 such that for all " < �",

for each j 2 I and n 2 �j, for any yn 2 �
�
f1yngyn2Yn

�
, at most one m̂ 2 fG;Bg satis�es

yn 2 Gn["] \ (Hn�1;n["] (m̂) [ Jn["] (m̂)).

Proof. The same as in Lemma 26.

Lemma 37 For each m 2 fG;Bg, j 2 I and n 2 �j, if Assumption 15 is satis�ed, then

there exists a mapping from yn 2 �
�
f1yngyn2Yn

�
to f [n](m) 2 fG;Bg such that, for any

m and yn, given m, player n puts a belief no less than 1� exp(�O(T
1
2 )) on the events that

f [n](m) = m or g[n� 1](m) = E.

Proof. The same as in Lemma 27.

We also provide the lemma to show that Assumption 15 is su¢ cient to construct the

reward:

Lemma 38 There exists �u such that, for each j 2 I and i 2 I, there exist �Gi (j; �; �) :

Ai�1 � Yi�1 ! [��u; 0] and �Bi (j; �; �) : Ai�1 � Yi�1 ! [0; �u] such that

1. (163) is satis�ed for i = j and

2. (164) is satis�ed for i 2 �j.

If " de�ned in (118) does not satisfy " < �" in Lemmas 34 and 36, then re-take " such

that " is smaller than �". This does not a¤ect the consistency among the variables de�ned in

Section 34.

45.3 Assumptions for Dispensing with the Public Randomization

and Perfect Cheap Talk

First, to dispense with the public randomization, we need an assumption comparable to

Assumption 11 in the two-player case. For each i 2 I, with player j replaced with player
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i � 1 (the controller of player i�s payo¤), all the de�nitions about aG, Y i
i�1;1, Y

i
i�1;2, (132),

(133), Y i
i;1 and Y

i
i;2 in Section 38.2 are valid with more than two players.

Now, we formally state the more-than-two-player analogue of Assumption 11:

Assumption 16 For each i 2 I, there exists aG 2 A such that there exist Y i
i�1;1, Y

i
i�1;2, �pi,

Y i
i;1 and Y

i
i;2 such that Y

i
i;1 and Y

i
i;2 satisfy

1. (132) and (133) with j replaced with i� 1, and

2.

Y i
i;1 6= ;; Y i

i;2 6= ;; Yi = Y i
i;1 [ Y i

i;2; Yi�1 = Y i
i�1;1 [ Y i

i�1;2:

For notational convenience, we assume that aG is the same for each player and the same

as in Assumption 13.96

Second, when player i with i � 2 sends the message, player i � 1 wants to construct a

statistics �i�1(ai�1; yi�1) such that player i� 1 can infer player i�s message statistically and

that the conditional independence property holds for player i, as �j(aj; yj) in Lemma 28:

For some aGi 2 Ai, ��i�1 2 �(Ai�1), aG�(i�1;i) 2 A�(i�1;i), for all yi 2 Yi,

E
�
�i�1(ai�1; yi�1) j ��i�1; aG�(i�1;i); ai; yi

�
=

8<: q2 if ai = aGi ;

q1 if ai 6= aGi :
(165)

A su¢ cient condition for the existence of such �i�1(ai�1; yi�1) is as follows: Let

�Qi�1(��i�1; a
G
�(i�1;i); ai; yi) � (qi�1(ai�1; yi�1 j ��i�1; aG�(i�1;i); ai; yi))ai�1;yi�1 be the vector ex-

pression of the conditional probability of (ai�1; yi�1) after player i plays ai and observes yi,

assuming that players �i take ��i�1; aG�(i�1;i). It is su¢ cient that �Qi(��i�1; a
G
�(i�1;i); ai; yi) is

linearly independent with respect to ai; yi.

At the same time, while player i sends a message by taking di¤erent ai�s, each player

n � 1 needs to incentivize player n to take the equilibrium strategy. To do so, we want to

96Remember that in Assumption 13, we assumed that aGi that is used for player i to send the message is
the same as aGi that is player i�s action in a

G
�j when player j 2 �i sends the message.
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construct the reward to cancel out the di¤erences in the instantaneous utilities: If we pick aBi

from Ai�faGi g properly, then for each n 2 I, there exists a reward �xn�1n (report; i; an�1; yn�1)

such that the ex ante payo¤ of player n is constant for all an 2 An and ai 2 faGi ; aBi g:

ui (an; ��n) + E [�xn�1n (report; i; an�1; yn�1) j an; ��n]

= constant (166)

for all an 2 An and8<: ��n 2
n�
��i�1; a

G
�(i�1;i;n); a

G
i

�
;
�
��i�1; a

G
�(i�1;i;n); a

B
i

�o
if player n is not player i (sender),

��n 2
n
��i�1; a

G
�(i�1;i)

o
if player n is player i.

(167)

A su¢ cient condition for the existence of such �xn�1n (report; i; an�1; yn�1) is as follows:

Let

�Qn�1(i; an; ��n) = (qn�1(yn�1 j an; ��n))yn�1 be the vector expression of the conditional prob-

ability of yn�1 after the players play an; ��n. It is su¢ cient that �Qn(i; an; ��n) is linearly

independent with respect to an 2 An and ��n with (167).

Assumption 17 For each i � 2, there exist ��i�1 2 Ai�1 and aG�(i�1;i) such that �Qi(��i�1; a
G
�(i�1;i); ai; yi)

is linearly independent with respect to ai; yi. Further, there exist aGi ; a
B
i such that for each

n 2 I, �Qn(i; an; ��n) is linearly independent with respect to an 2 An and ��n with (167).

The former requirement is generic since we assume (152). In addition, the latter require-

ment is generic since jYn�1j � 2 jAnj.

Again, for notational convenience, for each i, aGi that player i uses to send a message and

aGi that player i takes in a
G
�(j�1;j) when another player j is a sender are the same. Moreover,

assume that
�
aGi ; a

B
i

�
is the same as in Assumption 13.97

We can show that Assumption 17 is su¢ cient to have �i�1 with conditionally independent

property:
97Remember that in Assumption 13, we assumed that aGi that is used for player i to send the message is

the same as aGi that is player i�s action in a
G
�j when player j 2 �i sends the message.
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Lemma 39 If Assumption 17 is satis�ed, then there exist q2 > q1 such that for all i 2

f2; :::; Ng, there exist �i�1 : Ai�1 � Yi�1 ! (0; 1) such that (165) is satis�ed.

Proof. The same as Lemma 28.

In addition, Assumption 17 is su¢ cient to have �xn�1n (report; i; an�1; yn�1):

Lemma 40 There exists �u > 0 such that, for each i 2 I and n 2 I, there exist �Gn (report; i; �; �) :

An�1�Yn�1 ! [��u; 0] and �Bn (report; i; �; �) : An�1�Yn�1 ! [0; �u] such that (166) is satis�ed.

46 Coordination Block with the Noisy Cheap Talk

We consider the coordination block without the perfect cheap talk but with the noisy cheap

talk with precision p = 1
2
.

As mentioned in Section 45.1, we de�ne

N(i) = fi; i+ 1; i+ 2g;

n�(i) 2 arg min
j2fi;i+2g

jAjj jYjj ;

n��(i) = fi; i+ 2g n fn�(i)g:

First, player i sends the message about xi 2 fG;Bg to player n�(i) via actions. Let wi 2

fG;Bg be player n�(i)�s inference of this message. Second, player n�(i) sends the message

about wi to players N(i) via actions. Each player n 2 N(i) constructs player n�s inference

of wi, denoted wi(n) 2 fG;M;Bg. Here, the inference M (�middle�) is introduced so that

it prevents player n�(i) from creating a situation where player n�(i) is pivotal. See 45.1 for

the de�nition of �pivotal.�

46.1 Structure of the Coordination Block

Formally, the coordination block proceeds as follows:

� The periods where the players coordinate on x1:
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�The coordination round 1 for x1. Player 1 sends the message about x1 to player

n�(1) via actions. If n�(1) = 1, then this round does not exist.

�The coordination round 2 for x1. Player n�(1) sends the message about w1 to

players N(1) via actions. Player n 2 N(1) creates the inference w1(n).

�For each j 2 N(1) = f1; 2; 3g and n 2 �j, we have the coordination rounds 3 for

x1 between j and n, where player j sends the message w1(j) via noisy cheap talk.

The players take turns: First, player 1 sends w1(1) to player 2, second, player 1

sends w1(1) to player 3, and so on until player 1 sends w1(1) to player N . Then,

player 2 sends w1(2) to player 1, and so on until player 2 sends w1(2) to player N .

After player 2, player 3 sends w1(3) for each of the opponents �3 sequentially.

...

� The periods where the players coordinate on xi:

�The coordination round 1 for xi. Player i sends the message about xi to player

n�(i) via actions. If n�(i) = i, then this round does not exist.

�The coordination round 2 for xi. Player n�(i) sends the message about wi to

players N(i) via actions. Player n 2 N(i) creates the inference wi(n).

�For each j 2 N(i) and n 2 �j, we have the coordination rounds 3 for xi between

j and n, where player j sends the message wi(j) via noisy cheap talk. Again, the

players take turns.

...

� The periods where the players coordinate on xN :

�The coordination round 1 for xN . Player N sends the message about xN to player

n�(N) via actions. If n�(N) = N , then this round does not exist.

�The coordination round 2 for xN . Player n�(N) sends the message about wN to

players N(N) via actions. Player n 2 N(N) creates the inference wN(n).
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�For each j 2 N(N) and n 2 �j, we have the coordination rounds 3 for xN between

j and n, where player j sends the message wN(j) via noisy cheap talk. Again, the

players take turns.

For notational convenience, let T (i !xi n
�(i)) be the set of periods in the coordination

round 1 for xi, where player i sends the message xi to player n�(i) via actions. Similarly,

let T (n�(i)!wi N(i)) be the set of periods in the coordination round 2 for xi, where player

n� (i) sends the message wi to players N(i) via actions

We explain each round in the sequel.

46.2 Coordination Round 1 for xi

If player i is the same person as player n�(i), then this round does not exist. Let wi = xi be

player n�(i)�s inference (player i�s inference in other words).

Otherwise, player i takes axii and the other players �i take aG�i for T
1
2 periods. Remember

that T (i!xi n
�(i)) be the set of periods in this round.

Player n�(i) creates her inference of xi denoted by wi as follows: First, player n�(i) creates

	in�(i);t 2 f0; 1g from  in�(i)(yn�(i);t) as player i creates 	
a(x)
i;t from  

a(x)
i (yi;t). See Lemma 33

for the de�nition of  in�(i)(yn�(i);t).

Second, player n� (i) randomly picks tn�(i)(i!xi n
�(i)) from T (i!xi n

�(i)).

Finally, player n�(i) infers xi from
n
	in�(i);t

o
T (i!xin

�(i))
but excludes period tn�(i)(i !xi

n�(i)). That is, with Tn�(i)(i!xi n
�(i)) � T (i!xi n

�(i))r
�
tn�(i)(i!xi n

�(i))
	
, player n�(i)

infers wi = G if
1

T
1
2 � 1

X
t2Tn�(i)(i!xin

�(i))

	in�(i);t �
q1 + q2
2

(168)

and wi = B otherwise.

Lemma 33 directly implies the following:

Lemma 41 For any i 2 I and xi 2 fG;Bg, if players i and n�(i) follow the equilibrium
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strategy, then

Pr (fwi = xig j xi) � 1� exp(�O(T
1
2 ))

and the conditional distribution of wi given xi is independent of another player j 2 � (i; n�(i))�s

unilateral deviation.

46.3 Coordination Round 2 for xi

This is the round where player n�(i) sends wi to players N(i). Player n�(i) takes a
wi
n�(i), player

i+1 takes ��i+1, player n
��(i) takes ��n��(i), and each player j =2 N(i) takes aGj for T

1
2 periods.

See Assumption 14 for the de�nition of ��i+1 and �
�
n��(i). Remember that T (n

�(i)!wi N(i))

be the set of periods in this round.

See (156) and (157) for the de�nition of the Ln(i) � jAnj jYnj matrix In(i). Based on

In(i), each player n 2 N(i) n fn�(i)g constructs a random variable In;t(i) as follows: After

taking an and observing yn, player n calculates In (i)1an;yn. Here, 1an;yn is a jAnj jYnj � 1

vector such that the element corresponding to an; yn is equal to 1 and the other elements are

0. Hence, In (i)1an;yn is a Ln(i) � 1 vector. Then, player n draws Ln(i) random variables

independently from the uniform distribution on [0; 1]. If the lth realization of these random

variables is less than the lth element of In (i)1an;yn, then the lth element of In(i) is equal to

1. Otherwise, the lth element of In(i) is equal to 0. We have

Pr(f(In(i))l = 1g j a; y) = i
l
n(i)1an;yn : (169)

Given fIn;t(i)gt2T (n�(i)!wiN(i))
, player n 2 N(i) infers wi as follows: Player n randomly

picks tn(n� (i)!wi N(i)) from T (n� (i)!wi N(i)). Player n inferswi from fIn;t(i)gT (n�(i)!wiN(i))

but excludes period tn(n� (i)!wi N(i)). Speci�cally, with Tn(n
� (i)!wi N(i)) � T (n� (i)!wi

N(i))r ftn(n� (i)!wi N(i))g,

1. Player n�(i) infers her own message straightforwardly: wi (n�(i)) = wi.

2. Player n 2 N(i) n fn�(i)g infers as follows:
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(a) If 





 1

T
1
2 � 1

X
t2Tn(n�(i)!wiN(i))

In;t(i)� q21







 � ";

then wi (n) = G.

(b) If 





 1

T
1
2 � 1

X
t2Tn(n�(i)!wiN(i))

In;t(i)� q11







 � ";

then wi (n) = B.

(c) Otherwise, wi (n) =M (the posterior is not skewed enough for wi = G or wi = B

and so player n�(i) infers that the message is �middle�).

Assumption 14 implies the following Lemma:

Lemma 42 For any " < �", for any i 2 I and wi 2 fG;Bg,

1. For any n 2 N(i�),

(a) If players n�(i) and n follow the equilibrium strategy, then

Pr (fwi (n) = wig j wi) � 1� exp(�O(T
1
2 )):

(b) The distribution of wi (n) given wi is independent of player j = N(i)nfn�(i); ng�s

unilateral deviation.

2. For any history of player n�(i) at the end of the coordination round 2 for xi, player

n�(i) puts a belief no more than exp(�O(T 1
2 )) on the event

fG;Bg 3 wi (n��(i)) 6= wi (i+ 1) 2 fG;Bg:

Proof.
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1. Follows from (156) and (169).

2. Follows from Lemma 34 and Hoe¤ding�s inequality. By Assumption 3, excluding period

tn(n
� (i)!wi N(i)) does not a¤ect the probability so much.

As we will see, as long as the noisy cheap talk by the other players transmits correctly in

the coordination round 3 for xi (this is true ex ante at the end of the coordination round 2 for

xi), player n�(i) is pivotal for some player�s inference of xi if and only if fG;Bg 3 wi (n��(i)) 6=

wi (i+ 1) 2 fG;Bg. 2 of Lemma 42 guarantees that, after any history (including those after

player n�(i)�s deviation), the probability that player n�(i) is pivotal is negligible for the

almost optimality.

For each n 2 N(i) n fn�(i)g, consider player j = N(i) n fn�(i); ng. As we will see, player

j is not pivotal if players n�(i) and n infer the same state wi. Therefore, 1 of Lemma 42

guarantees that player j cannot manipulate player n�s inference to create a situation where

player j is pivotal.

46.4 Coordination Round 3 for xi Between Players j and n

This is the round where player j 2 N(i) sends wi(j) to player n 2 I. Let wi(j)(n) 2

fG;B;Mg be player n�s inference of player j�s message. Here, we assume that the noisy

cheap talk is available. See Section 48 for how to dispense with the noisy cheap talk.

If player j is the same player as player n, then wi(j)(n) = wi(j), that is, player j infers

her own message straightforwardly.

Otherwise, player j sends messages as follows. From wi(j) 2 fG;M;Bg, player j con-

structs a sequence of two binary messages wi(j)f1g; wi(j)f2g 2 fG;Bg2: If wi(j) = G, then

wi(j)f1g = wi(j)f2g = G; If wi(j) = B, then wi(j)f1g = wi(j)f2g = B; If wi(j) = M , then

wi(j)f1g = G and wi(j)f2g = B with probability 1
2
and wi(j)f1g = B and wi(j)f2g = G

with probability 1
2
.

Player j sends the two messages wi(j)f1g and wi(j)f2g sequentially via noisy cheap talk.
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With abuse of notation, we de�ne g[n � 1](wi(j)) 2 fwi(j); Eg and f [n](wi(j)) 2

fG;M;Bg as follows: For g[n� 1](wi(j)),

1. g[n � 1](wi(j)) = wi(j) if and only if player n � 1 thinks that there is no error for

f [n](wi(j)f1g) and f [n](wi(j)f2g), that is, g[n � 1](wi(j)f1g) = wi(j)f1g and g[n �

1](wi(j)f2g) = wi(j)f2g.

2. g[n� 1](wi(j)) = E otherwise.

For f [n](wi(j)), player i infers f [n](wi(j)) from f [n](wi(j)f1g) and f [n](wi(j)f2g), using

the mapping between wi(j) and wi(j)f1g; wi(j)f2g.

1. f [n](wi(j)) = G if and only if f [n](wi(j)f1g) = f [n](wi(j)f2g) = G.

2. f [n](wi(j)) = B if and only if f [n](wi(j)f1g) = f [n](wi(j)f2g) = B.

3. f [n](wi(j)) = M if and only if �f [n](wi(j)f1g) = G and f [n](wi(j)f2g) = B� or

�f [n](wi(j)f1g) = B and f [n](wi(j)f2g) = G.�

g2[n� 1](wi(j)) and f2[j � 1](wi(j)) are analogously de�ned.

Finally, player n infers wi(j) as wi(j)(n) = f [n](wi(j)).

46.5 Player n�s Inference of xi

Based on these rounds, player n infers xi as follows. Let xi(n) 2 fG;Bg be player n�s

inference of xi. From fwi (j) (n)gj2N(i), player n constructs xi (n) such that

xi (n) =

8>>>>>>>>>>>><>>>>>>>>>>>>:

G if

8>>>>>>>>><>>>>>>>>>:

wi (n
��(i)) (n) = wi (i+ 1) (n) = G;

wi (n
��(i)) (n) =M;wi (i+ 1) (n) = G;

wi (n
��(i)) (n) = G;wi (i+ 1) (n) =M;

wi (n
��(i)) (n) = B;wi (i+ 1) (n) = G;wi (n

�(i)) (n) = G;

wi (n
��(i)) (n) = G;wi (i+ 1) (n) = B;wi (n

�(i)) (n) = G;

B otherwise.

(170)
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Finally, let

x (n) = fxi(n)gi2I

be the pro�le of the inferences.

46.6 De�nition of �i�1(c) 2 fG;Bg

Based on the realization of the coordination block, if some events happen, then player i� 1

makes player i indi¤erent between any action pro�le sequence in the main blocks. �i�1(c) = B

implies that such an event happens while �i�1(c) = G implies that such an event does not

happen.

We will de�ne the events to induce �i�1(c) = B: For each j 2 I, while the players

coordinate on xj,

1. There exists player j0 2 �i with j0 2 N(j) such that when player j0 sends the message

wj(j
0) to player i, player i� 1 has g[i� 1](wj(j0)) = E.

2. There exist players j0 2 �i and n 2 �i \ N(j) such that when player j0 sends the

message wj(j0) to player n, player n has a wrong signal f [n](wj(j0)) 6= wj(j
0).

3. Player i is in N(j) and consider the following inference:

xj (n) =

8>>>>>>>>>>>><>>>>>>>>>>>>:

G if

8>>>>>>>>><>>>>>>>>>:

wj (n
��(j)) = wj (j + 1) = G;

wj (n
��(j)) =M;wj (j + 1) = G;

wj (n
��(j)) = G;wj (j + 1) =M;

wj (n
��(j)) = B;wj (j + 1) = G;wj (n

�(j)) = G;

wj (n
��(j)) = G;wj (j + 1) = B;wj (n

�(j)) = G;

B otherwise.

(171)

Note that this is what we replace player n�s inference of the messages in the coordination

round 3 in (170) with the true messages. We have �i�1(c) = B if there exist n 2 I and

j 2 I such that player i�s message wj(i) matters for xj(n) in (171). That is,
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(a) If player i is n�(j), then

fG;Bg 3 wj (n��(j)) 6= wj (j + 1) 2 fG;Bg: (172)

(b) If player i is in N(j) n fn�(j)g, then

wj � wj (n
�(j)) 6= wj (i

0) : (173)

with i0 = N(j) n fi; n�(j)g.

Note that, although player n can be player i herself, whether or not wj(i) matters in

(171) is determined by the other players�messages fwj(i0)gi0 6=i.

In the de�nition of �i�1(c), player i�1 uses the information owned by players �(i�1; i).

Section 52 explains how players �(i� 1; i) inform player i� 1 of their history necessary to

create �i�1(c) in the re-report block. Since �i�1(c) only a¤ects the reward function (that is,

does not a¤ect �i�1(xi�1)), it su¢ ces that player i� 1 knows the information by the end of

the review phase.

We verify that the distribution of �i�1(c) is almost independent of player i�s strategy:

For Cases 1 and 2, we need to verify that player i cannot manipulate �i�1(c) by a¤ecting

some player�s message m. The de�nition of the noisy cheap talk implies that the probability

of g[i� 1](m) = E when player i is a receiver and that of f [n](m) 6= m when player j 2 �i

is a sender and player n 2 �i is a receiver are almost independent of m.98

For Case 3-(a), 2 of Lemma 42 implies that player i puts a belief no more than exp(�O(T 1
2 ))

on (172) after any history (including those after player i�s deviation) at the end of the coordi-

nation round 2 for xj. Since wj (n��(j)) and wj (j + 1) are �xed at the end of the coordination

round 2 for xj, whether (172) happens or not is almost independent of player i�s strategy.

For Case 3-(b), note that if wj(n��(j)) = wj, then (173) is not the case. In addition,

regardless of wj, this event happens with probability no more than exp(�O(T
1
2 )) from the

98Note that m can be a¤ected by player i�s strategy before the round where player j sends m to player n.
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perspective at the end of the coordination round 1 for xj by 1 of Lemma 42.99 Therefore,

no player can change the distribution of �i�1(c) by more than exp(�O(T
1
2 )).

In summary, we have shown the following lemma:

Lemma 43 If

1. the probability of g[i� 1](m) = E when player i is a receiver of a message m is almost

independent of m and

2. the probability of f [n](m) 6= m when player j 2 �i is a sender of a message m and

player n 2 �i is a receiver is almost independent of m,

then, the distribution of �i�1(c) 2 fG;Bg is almost independent of player i�s strategy.

The premise of lemma is stated to clarify what assumption about the noisy cheap talk is

used, expecting that we will dispense with it later.

46.7 Incentives in the Coordination Block

First, Lemma 43 implies that player i does not have an incentive to manipulate �i�1(c).

Second, we consider player i�s incentive to tell the truth about wn(i) with i 2 N(n) for

the coordination round 3 for xn between i and i0 2 �i. If player i0 with i0 2 �i received

a wrong signal f [i0](wn(j)) for some n 2 I and j 2 �i, then Case 2 of �i�1(c) implies

�i�1(c) = B. Hence, together with Case 3 of �i�1(c), whenever player i�s message matters

for xn(i0) for some i0 2 �i, then �i�1(c) = B and player i is indi¤erent between any action

pro�le sequence. Therefore, it is optimal for player i to tell the truth.

Third, we consider the incentive of player i in the coordination rounds 1 and 2 for xn.

If player i is player n�(n), then since xn controls the value of player n + 1 6= n�(n), player

n�(n) is indi¤erent between coordinating on xn(j) = G for all j 2 I or xn(j) = B for all

j 2 I. (170) and 2 of of Lemma 42 imply that, if the messages in the coordination round

99Note that wj can be a¤ected by some player�s strategy before the end of the coordination round 1 for
xj .
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3 transmit correctly if a sender is not player n�(n) (this is true with probability no less

than 1 � exp(�O(T 1
2 ))), then player n�(n) at the end of the coordination round 2 puts a

conditional belief no less than 1� exp(�O(T 1
2 )) on the event that xn(j) = G for all j 2 I or

xn(j) = B for all j 2 I regardless of player n�(n)�s history. Therefore, player n�(n) (player

i) is almost indi¤erent between any strategy in the coordination rounds 1 and 2 for xn.

If player i is player n (the initial holder of state xn) but not player n�(n), then again,

since xn controls the value of player n+ 1 6= n, player n is indi¤erent between coordinating

on xn(j) = G for all j 2 I or xn(j) = B for all j 2 I. 1 of of Lemma 42 implies that

regardless of player n�s strategy in the coordination rounds 1 and 2 for xn, players n�(n) and

n+1 have wn(n�(n)) = wn(n+1) 2 fG;Bg with probability no less than 1� exp(�O(T
1
2 )).

Then, (170) implies that, if the messages in the coordination round 3 transmit correctly if a

sender is not player n (again, this is true with probability no less than 1 � exp(�O(T 1
2 ))),

then either xn(j) = G for all j 2 I or xn(j) = B for all j 2 I. Therefore, player n (player i)

is almost indi¤erent between any strategy in the coordination rounds 1 and 2.

If player i is not player n or player n�(n), then Lemma 41 and 1 of of Lemma 42 imply

that, regardless of player i�s strategy in the coordination rounds 1 and 2 for xn, players n�(n)

and at least one player i0 2 N(n) n fig have wn(n�(n)) = wn(i
0) = xn with probability no

less than 1 � exp(�O(T 1
2 )). Then, (170) implies that, if the messages in the coordination

round 3 transmit correctly if a sender is not player i (this is true with probability no less

than 1 � exp(�O(T 1
2 ))), then either xn(j) = G for all j 2 I or xn(j) = B for all j 2 I.

Therefore, player i is almost indi¤erent between any strategy in the coordination rounds 1

and 2.

Finally, we show that the de�nition of �i�1(c) = B implies that, for any i, for any t in

the main blocks, for any hti, player i puts a belief no less than 1� exp(�O(T
1
2 )) on the event

that x(j) = x(i) for all j 2 �i or �i�1(c) = B by the following reasons: (i) If player i�s signal

f [i](wn(j)) was wrong for some n 2 I and j 2 �i, then, given wn(j), g[i � 1](wn(j)) = E

with probability no less than 1 � exp(�O(T 1
2 )). Since g[i � 1](wn(j)) is not revealed by

players (�i)�s continuation strategy in the main blocks, player i believes that �i�1(c) = B
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because of Case 1. (ii) If player i0 with i0 2 �i received a wrong signal f [i0](wn(j)) for some

n 2 I and j 2 �i, then Case 2 of �i�1(c) implies �i�1(c) = B. From (i) and (ii), player i

who considers almost optimality can condition that f [i0](wn(j)) = wn(j) for all i0 2 I, n 2 I

and j 2 �i. (iii) If player i is pivotal for player i0�s inference of xn with i0 2 I and n 2 I,

then �i�1(c) = B. Hence, wn(i) does not matter for player i�s value. Therefore, in total,

x(j) = x(i) for all j 2 �i or �i�1(c) = B.

The following lemma summarizes the above discussion:

Lemma 44 The following two statements are true:

1. If, for each player i 2 I,

(a) the probability of g[i � 1](m) = E when player i is a receiver of a message m is

almost independent of m,

(b) the probability of f [n](m) 6= m when player j 2 �i is a sender of a message m

and player n 2 �i is a receiver is almost independent of m, and

(c) for all n with i 6= n+1, player i�s value is almost the same between xn(j) = G for

all j 2 I and xn(j) = B for all j 2 I regardless of fxn0(j)gj2I;n0�n�1 (n0 � n� 1

implies that the coordination rounds for xn0 comes before those for xn),

then it is almost optimal for player i to follow the equilibrium strategy in the coordina-

tion block.

2. For any i 2 I, for any t in the main blocks, for any hti, player i puts a belief no less

than 1� exp(�O(T 1
2 )) on the event that x(j) = x(i) for all j 2 �i or �i�1(c) = B.

Note that, for the second statement, 1-(a), 1-(b) and 1-(c) are not necessary.

47 Structure of the Review Phase

Replacing the perfect cheap talk in the coordination block with the noisy cheap talk, the

structure of the coordination block is as explained in Section 46.1. Now, the coordination

264



block has at most N(1+1+3(N�1)) rounds.100 After the coordination block, the structure

is the same as in Section 31 of the Supplemental Material 3. As in the Supplemental Material

3, let r be a generic serial number for a round.

If we replace the noisy cheap talk with messages via actions, then as we will see in

Section 48, we treat rounds where a player sends one message and rounds where a player

send two messages separately. Each round where the sender sends one message has T
1
2

periods. Section 48 explains how the sender sends the message. On the other hand, each

round where the sender would send two messages via noisy cheap talk is now divided into

two rounds each of which has T
1
2 without the noisy cheap talk. Using the �rst T

1
2 -period

round, the sender sends the �rst message as we will explain in Section 48. After that, using

the second T
1
2 -period round, the sender sends the second message. With abuse of notation,

let r again be a generic serial number for a round and T (r) be the set of periods in round r.

48 Dispensing with the Noisy Cheap Talk

We consider how player j sends a binary message m 2 fG;Bg to player i in some round.

Let r be the serial number of this round and T (r) be the set of periods in round r.

As mentioned in Section 45.2, with � being a small number to be de�ned, the sender

(player j) determines

zj(m) =

8>>><>>>:
m with probability 1� 2�;

fG;Bg n fmg with probability �;

M with probability �

and player j takes

�
zj(m)
j =

8>>><>>>:
aGj if zj(m) = G;

aBj if zj(m) = B;

1
2
aGj +

1
2
aBj if zj(m) =M

100The precise number depends on whether n�(i) = i or not for each i.
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for T
1
2 periods. The other players �j take aG�j.

Then, intuitively, as in Section 45.2, g[n� 1](m) is determined as follows:

1. g[n� 1](m) = m if zj(m) = m and yn�1 2 Hn�1["] (m).

2. g[n� 1](m) = E if zj(m) 6= m or yn�1 62 Hn�1["] (m).

Instead of using yn�1 directly, as in the two-player case, we consider the following con-

struction of g[n� 1](m).

48.1 Formal: g[n� 1](m) 2 fm;Eg

In the de�nition of g[n � 1](m), player n � 1 uses m, which is the information owned by

player j. Section 52 explains how player j informs player n� 1 of m. Since g[n� 1](m) only

a¤ects the reward function (does not a¤ect �n�1(xn�1)), it su¢ ces that player n� 1 knows

the information by the end of the review phase.

If zj(m) 6= m, then g[n � 1](m) = E as in Section 45.2. Let us concentrate on the case

with zj(m) = m. Let yn�1(r) be the frequency of player (n� 1)�s signals in round r.

First, player n� 1 randomly picks tn�1(r) from T (r), the set of periods in round r. With

Tn�1(r) � T (r) n ftn�1(r)g, player n � 1 constructs random variables
�

H
n�1;t

	
t2Tn�1(r)

as

follows. After taking an�1 (an�1 = amn�1 if player n � 1 is the sender (n � 1 = j) since we

concentrate on zj(m) = m and an�1 = aGn�1 if player n� 1 is not the sender) and observing

yn�1;t, player n� 1 calculates Hn�1(m)1yn�1;t. Then, player n� 1 draws (jYn�1j � jAnj+ 1)

random variables independently from the uniform distribution on [0; 1]. If the lth realization

of these random variables is less than the lth element of Hn�1(m)1yn�1;t, then the lth element

of 
H
n�1;t is equal to 1. Otherwise, the lth element of 


H
n�1;t is equal to 0. Since all the

elements of Hn�1(m) are in (0; 1), we have

Pr
�n�


H
n�1;t

�
l
= 1
o
j a; y

�
=
�
Hn�1(m)1yn�1;t

�
l
2 (0; 1) (174)

for all a and y.
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We de�ne g[n� 1](m) = m if and only if





 1

T
1
2 � 1

X
t2Tn�1(r)


H
n�1;t �

1

T
1
2 � 1

X
t2Tn�1(r)

Hn�1(m)1yn�1;t







 � "

4
(175)

and 





 1

T
1
2 � 1

X
t2Tn�1(r)


H
n�1;t � pn�1(m)







 � "

2
: (176)

In summary, there are following cases:

1. g[n� 1](m) = E if zn�1(m) 6= m, (175) is not satis�ed, or (176) is not satis�ed.

2. g[n� 1](m) = m if zn�1(m) = m, (175) is satis�ed, and (176) is satis�ed.

48.2 Formal: f [n](m) 2 fG;Bg

On the other hand, let us consider how the receiver (player n) infers the message. Let yn(r)

be the frequency of player n�s signal observations in round r. Instead of using yn(r) directly

as in Section 45.2, we consider the following procedure to construct f [n](m).

First, player n randomly picks tn(r) from T (r), the set of periods in round r. With

Tn(r) � T (r) n ftn(r)g, player n constructs f [n](m) only depending on fyn;tgt2Tn(r). For

notational convenience, let yn(r; Tn(r)) be the frequency of player n�s signal observations in

Tn(r).

f [n](m) is determined as in Section 45.2 with yn(r) replaced with yn(r; Tn(r)):

1. If yn(r; Tn(r)) 2 Gn["], then

(a) f [n](m) = G if yi(r; Tn(r)) 2 Hn�1;n["] (G) [ Jn["] (G).

(b) f [n](m) = B if yi(r; Tn(r)) 2 Hn�1;n["] (B)[Jn["] (B) or yi(r; Tn(r)) 62 Hn�1;n["] (G)[

Jn["] (G), and

2. If yn(r; Tn(r)) =2 Gn["], then player n infers f [n](m) from the likelihood as in the two-

player case.
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By Assumption 3 (full support), neglecting
�
an;tn(r); yn;tn(r)

�
does not a¤ect the posterior

so much.

48.3 De�nition of �i�1(j !m n) 2 fG;Bg

While player j 2 I sends a message m to player n 2 �j, for each i 2 I, player i� 1 creates

�i�1(j !m n) 2 fG;Bg. As for �i�1(c), �i�1(j !m n) = B implies that player i � 1 makes

player i indi¤erent between any action pro�le sequence in the subsequent rounds.

Again, player i�1 uses the information owned by players �(i�1; i). Section 52 explains

how players �(i � 1; i) inform player i � 1 in the re-report block. Since �i�1(j !m n) only

a¤ects the reward function (does not a¤ect �i�1(xi�1)), it su¢ ces that player i � 1 knows

the information by the end of the review phase.

To create �i�1(j !m n), player i� 1 calculates the following variables:

Construction of 
G
n;� If i� 1 6= n, then player n informs player i� 1 of how many times

player n observes yn for each yn 2 Yn in T (r) (while receiving the message). Let T (r; yn) be

this number.

For each yn 2 Yn, player i�1 calculatesGn1yn. Then, repeat the following process T (r; yn)

times: Player i� 1 draws
�
jYnj � jAjj � 2

P
i0 6=j;n jAi0j+ 1

�
random variables independently

from the uniform distribution on [0; 1]. If the lth realization of these random variables is

less than the lth element of Gn1yn, then the lth element of 

G
n is equal to 1. Otherwise,

the lth element of 
G
n is equal to 0. Since player i� 1 repeats this process T (r; yn) times, it

generates T (r; yn) i.i.d. random variables
�

G
n;�

	T (r;yn)
�=1

. Since all the elements of Gn are in

(0; 1),

Pr
�n�


G
n;�

�
l
= 1
o�

= (Gn1yn)l :

In total,
n�

G
n;�

	T (r;yn)
�=1

o
yn2Yn

is constructed.

Construction of 
J
n;� (m) In addition to player n informing player i�1 of T (r; yn), player

j informs player i� 1 of m in the re-report block.
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For each yn 2 Yn, player i � 1 calculates Jn(m)1yn. Then, repeat the following process

T (r; yn) times: Player i� 1 draws
�
jYnj �

P
i0 6=j;n jAi0j+ 1

�
random variables independently

from the uniform distribution on [0; 1]. If the lth realization of these random variables is less

than the lth element of Jn(m)1yn, then the lth element of 

J
n(m) is equal to 1. Otherwise,

the lth element of 
J
n(m) is equal to 0. Since player i � 1 repeats this process T (r; yn)

times, it generates T (r; yn) i.i.d. random variables
�

J
n;� (m)

	T (r;yn)
�=1

. Since all the elements

of Jn(m) are in (0; 1),

Pr
�n�


J
n;� (m)

�
l
= 1
o�

= (Jn(m)1yn)l :

In total,
n�

J
n;� (m)

	T (r;yn)
�=1

o
yn2Yn

is constructed.

De�nition of �i�1(j !m n) 2 fG;Bg For player i 2 fj; ng (sender or receiver), �i�1(j !m

n) = G for any history.

If player i is in players � (j; n), then player i� 1 has �i�1(j !m n) = G if

1. The frequency of
n�

G
n;�

	T (r;yn)
�=1

o
yn2Yn

is close to gn:







 1T 1
2

X
yn2Yn

T (r;yn)X
�=1


G
n;� � gn







 � "

2
:

Regardless of player i�s deviation, this is the case with probability 1 � exp(�O(T 1
2 ))

by Notation 2 and the law of large numbers.101

2. The frequency of
n�

G
n;�

	T (r;yn)
�=1

o
yn2Yn

is close to
n
T (r;yn)
T

Gn1yn

o
yn
(the frequency of

101While player n�(i) excludes one period tn�(i)(i !xi n
�(i)) from (168), player i � 1 does not exclude a

period from fT (r; yn)gyn .
The reason why player n�(i) excludes one period tn�(i)(i !xi n

�(i)) from (168) is to prevent the contin-
uation play of player n�(i) from revealing player n�(i)�s signal observation too much. This is important to
incentivize player n�(i) + 1 to tell the truth in the report block.
On the other hand, since �i�1(j !m n) is not revealed by player (i� 1)�s continuation play in the main

blocks, player i� 1 does not need to exclude one period here.
The same causion is applicable for the other three inequalities to determine �i�1(j !m n).
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Gn1yn using player n�s true signal observation):





 1T 1
2

X
yn2Yn

T (r;yn)X
�=1


G
n;� �

1

T
1
2

X
yn2Yn

T (r;yn)X
�=1

Gn1yn







 � "

4
:

Ex post (after conditioning fat; ytgt2T (r)), this is true with probability 1�exp(�O(T
1
2 ))

by the law of large numbers.

3. The frequency of
n�

J
n;� (m)

	T (r;yn)
�=1

o
yn2Yn

is close to rn(m):







 1T 1
2

X
yn2Yn

T (r;yn)X
�=1


J
n;� (m)� rn(m)







 � "

2
:

Regardless of player i�s deviation, this is the case with probability 1 � exp(�O(T 1
2 ))

by Notation 2 and the law of large numbers.

4. The frequency of
n�

J
n;� (m)

	T (r;yn)
�=1

o
yn2Yn

is close to
n
T (r;yn)
T

Jn(m)1yn

o
yn
(the fre-

quency of Jn(m)1yn using player n�s true signal observation):





 1T 1
2

X
yn2Yn

T (r;yn)X
�=1


J
n;� (m)�

1

T
1
2

X
yn2Yn

T (r;yn)X
�=1

Jn(m)1yn







 � "

4
:

Ex post (after conditioning fat; ytgt2T (r)), this is true with probability 1�exp(�O(T
1
2 ))

by the law of large numbers.

If player i is in players� (j; n) and at least one of the above four conditions is not satis�ed,

then player i� 1 has �i�1(j !m n) = B.

48.4 Summary of the Properties of g[n�1](m), f [n](m) and �i�1(j !m

n)

In summary, we can show the following lemma:
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Lemma 45 For su¢ ciently large T , for any j 2 I and n 2 �j, the above communication

protocol satis�es the following:

1. g[n� 1](m) = E with probability 1� 2� � exp(�O(T 1
2 )) for any m 2 fG;Bg.

2. Given any m 2 fG;Bg and any yn(r), player n puts a belief no less than 1 �

exp(�O(T 1
2 )) on the event that f [n](m) = m or g[n� 1](m) = E.

3. Given m 2 fG;Bg, any f [n](m) happens with probability at least exp(�O(T 1
2 )).

4. The probability of g[n� 1](m) being equal to E does not react to player n�s strategy by

more than exp(�O(T 1
2 )).

5. For i 2 � (j; i), whenever player n does not have f [n](m) = m, �i�1(j !m n) = B.

6. For each i 2 I, the distribution of �i�1(j !m n) is independent of player i�s strategy

with probability no less than 1� exp(�O(T 1
2 )).

Proof.

1. This follows from the law of large numbers.

2. If f [n](m) = m, then we are done. Suppose not. Note that the de�nition of g[n�1](m)

implies that g[n � 1](m) = m only if zj(m) = m and (175) and (176) are satis�ed.

Therefore, g[n� 1](m) = m only if zj(m) = m and yn�1 2 Hn�1["](m).

f [n](m) 6= m implies that either

(a) yn(r; Tn(r)) 2 Hn�1;n["](m) is not the case, or

(b) player i infers f [n](m) from the likelihood using yn(r; Tn(r)) (neglecting yn;tn(r))

is the case. If (a) is the case, then by Hoe¤ding�s inequality, player n believes that

yn�1 62 Hn�1["](m) given m with probability 1 � exp(�O(T 1
2 )). If (b) is the case,

then by Lemma 37, player n believes that zj(m) 6= m given m with probability 1 �

exp(�O(T 1
2 )).
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Note that, by Assumption 3 (full support), neglecting
�
an;tn(r); yn;tn(r)

�
does not a¤ect

the posterior so much.

3. Given m, any (yt)t2T (r) can occur with probability at least

�
min
y;a

q(y j a)
�T 1

2

:

Assumption 3 (full support) implies that this probability is exp(�O(T 1
2 )).

4. Ex ante, g[n � 1](m) = E with probability 1 � 2� � exp(�O(T 1
2 )) regardless of m.

Therefore, the probability of g[n� 1](m) being equal to E does not react to player n�s

strategy before round r by more than exp(�O(T 1
2 )).

In addition, the distribution of 
H
n�1;t is independent of player n�s strategy in pe-

riod t and (175) is satis�ed ex post (conditional on fat; ytgt2T (r)) with probability

1�exp(�O(T 1
2 )) by the law of large numbers. Therefore, the probability of g[n�1](m)

being equal to E does not react to player n�s strategy in round r by more than

exp(�O(T 1
2 )).

5. Follows from the triangle inequality.

6. For player i 2 fj; ng, �i�1(j !m n) = G always. If i 62 fj; ng, then ex ante,

�i�1(j !m n) = G with probability 1� 2�� exp(�O(T 1
2 )) regardless of m. Therefore,

the distribution of �i�1(j !m n) is not changed by more than exp(�O(T 1
2 )) by player

i�s strategy before round r.

In addition, by Notation 2, the distribution of 
G
n;� and 


J
n;� (m) is independent of

player i�s strategy in round r and Cases 2 and 4 in the de�nition of �i�1(j !m n) is

satis�ed ex post (conditional on fat; ytgt2T (r)) with probability 1 � exp(�O(T
1
2 )) by

the law of large numbers. Therefore, the distribution of �i�1(j !m n) is independent

of player i�s strategy in round r with probability no less than 1� exp(�O(T 1
2 )).
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49 Equilibrium Strategies

In this section, we de�ne �i(xi) and �maini .

49.1 States

The states �i(l + 1), �̂i�1(l + 1), di(l + 1), dj(l + 1)(i), ci(l + 1), �i(l), �i(�j (l + 1)) and

�i(dj (l + 1)) are de�ned as in the Supplemental Material 3 except that x is replaced with

x(i) de�ned in Section 46.5.

If we replace the noisy cheap talk with messages via actions, then we use f [i](m) (when

player i is a receiver) and g[i](m) (when player i+ 1 is a receiver) de�ned in Section 48. In

addition, each player i makes player i + 1 indi¤erent between any action pro�le sequence if

the following events happen:

� In the coordination block, �i(c) = B happens.

� In a round where player j 2 I sends a message m to player n 2 �j, �i(j !m n) = B

happens.

49.2 Player i�s Action

49.2.1 With the Noisy Cheap Talk

In the coordination block, the players play the game as explained in Section 46. For the other

blocks, �i(xi) prescribes the same action with x replaced with x(i) except for the report and

re-report blocks. See Sections 51 and 52 for the strategy in the report and re-report blocks.

49.2.2 Without the Noisy Cheap Talk

When player j 2 I sends a message m to player n 2 �j, then the strategies are determined

in Section 48.
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49.3 Reward Function

In this subsection, we explain player i�1�s reward function on player i, �maini (xi�1; h
main
i�1 ; h

rereport
i�1 :

�). In general, the total reward �maini (xi�1; h
main
i�1 ; h

rereport
i�1 : �) is the summation of rewards

for each round r:

�maini (xi�1; h
main
i�1 ; h

rereport
i�1 : �) =

LX
l=1

X
t2T (l)

��i (t; ��i;t; yi�1;t)+
X
r

�maini (xi�1; h
main
i�1 ; h

rereport
i�1 ; r : �):

Note that we add (106) to ignore discounting only for the review rounds. As we will see,

for the round where the players communicate, we use reward function that take discounting

into account directly.

We de�ne �maini (x; hmaini�1 ; h
rereport
i�1 ; r : �) for each r.

49.3.1 With the Noisy Cheap Talk

In the coordination block, for round r where player j sends message xi�1 to player n�(i),

player i� 1 gives

�maini (xi�1; h
main
i�1 ; h

rereport
i�1 ; r : �) =

X
t2T (r)

�t�1�
xi�1
i (j; ai�1;t; yi�1;t)

to make player i indi¤erent between any action pro�le sequence.102 Note that we take

discounting into account.

In the coordination block, for round r where player n�(j) sends message wj to player

N(j), player i� 1 gives

�maini (xi�1; h
main
i�1 ; h

rereport
i�1 ; r : �) =

X
t2T (r)

�t�1�
xi�1
i (n�(j)! N (j) ; ai�1;t; yi�1;t):

In the main blocks, the reward function is the same as in the Supplemental Material 3

102�
xi�1
i (j; ai�1;t; yi�1;t) is de�ned in Lemma 38. Here, we use the assumption that the same aGj ; a

B
j in

Assumption 13 satisfy Assumption 15 for each j.
If not, assume that

�
aGj ; a

B
j

�
j
in Assumption 13 satisfy 6 and 7 in Assumption 15.
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except that x replaced with x(i� 1) and that if �i�1(c) = B happens, then player i� 1 uses

�maini (xi�1; h
main
i�1 ; h

rereport
i�1 ; l) =

X
t2T (l)

�
xi�1
i (��i;t; yi�1;t)

for all the review rounds to make player i indi¤erent between any action pro�le.103

49.3.2 Without the Noisy Cheap Talk

For round r corresponding to a review round, the reward function is the same as in the case

with the noisy cheap talk except that if there is round ~r � r � 1 (before r) such that player

j sends a message m to player n in round ~r and �i�1(j !m n) = B happens, then player

i� 1 uses

�maini (xi�1; h
main
i�1 ; h

rereport
i�1 ; l) =

X
t2T (l)

�
xi�1
i (��i;t; yi�1;t)

to make player i indi¤erent between any action pro�le.

For round r where player j sends a message, player i� 1 gives

�maini (xi�1; h
main
i�1 ; h

rereport
i�1 ; r : �) =

X
t2T (r)

�t�1�
xi�1
i (j; ai�1;t; yi�1;t)

de�ned in Lemma 38. Again, we take discounting into account.

50 Almost Optimality of the Strategy

We want to verity (8), (4) and (5) are satis�ed. First, by de�nition in Section 49.3, (5) is

satis�ed.

Second, since the length of the rounds other than the review rounds is T
1
2 , the payo¤ from

the review rounds approximately determines the payo¤ from the review phase for su¢ ciently

large � (and so su¢ ciently large T ). Therefore, we neglect the payo¤s from the rounds other

103Since �maini (xi�1; h
main
i�1 ; h

rereport
i�1 ; l) does not depend on �, with abuse of notation, we omit � from

�maini (xi�1; h
main
i�1 ; h

rereport
i�1 ; r : �) with r corresponding to the lth review round.
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than the review rounds.

Third, we consider (8) and (4) in the case with the noisy cheap talk. Suppose that

x(j) = x(i) for all i; j 2 I at the end of the coordination block. Then, (8) and (4) are shown

as in the case with the perfect cheap talk.

This implies that the premises of Lemma 44 are satis�ed. Therefore, (i) the incentive in

the coordination block is satis�ed and (ii) we can concentrate on the case with x(j) = x(i)

for all i; j 2 I.

(i) and (ii) implies (8). In addition, by the law of large numbers, x(j) = x for all j 2 �i

in the coordination block with probability no less than 1� exp(�O(T 1
2 )). Therefore, (4) is

satis�ed at the beginning of the review phase.

Finally, we consider (8) and (4) in the case without the noisy cheap talk. Again, suppose

that x(j) = x(i) for all i; j 2 I at the end of the coordination block. Then, (8) and (5) are

veri�ed as in the case with the perfect cheap talk except for the following two points:

� Player i� 1 makes player i indi¤erent between any action pro�le sequence because of

g[i�1](m) = E or �i�1(j !m n) = B with higher probability. However, the probability

of g[i�1](m) = E or �i�1(j !m n) is bounded by O(�). Hence, re-taking � su¢ ciently

small as we do in (141), we can deal with this problem as in the two-player case.

� When player j 2 �i sends a message m to player n 2 � (i; j), player i can manipulate

the distribution of f [n](m). However, Lemma 45 implies that player i cannot manip-

ulate �i�1(j !m n). f [n](m) matters for player i�s continuation payo¤ if and only if

�i�1(j !m n) = G. Hence, the relevant events for player i are

� f [n](m) = m and �i�1(j !m n) = G, or

� f [n](m) 6= m or �i�1(j !m n) = B.

Since f [n](m) 6= m implies �i�1(j !m n) = B, the relevant histories for player i are

� �i�1(j !m n) = G, or
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� �i�1(j !m n) = B.

Since player i cannot manipulate �i�1(j !m n) by Lemma 45, player i does not have

an incentive to manipulate f [n](m).

To verify the incentives in the coordination block, we consider the premises of Lemmas

43 and 44 in the case without the noisy cheap talk.

The premise 1 of Lemmas 43 and premise 1-(a) of Lemma 44 are satis�ed by Lemma 45.

As we have mentioned above, when player j 2 �i sends a messagem to player n 2 � (i; j),

player i does not have an incentive to manipulate f [n](m). Therefore, the premise 2 of

Lemmas 43 and premise 1-(b) of Lemma 44 are satis�ed.

We are left to verify the premise 1-(c) of Lemma 44: Player i�s value is almost the same

between xn(j) = G for all j 2 I and xn(j) = B for all j 2 I regardless of fxn0(j)gj2I;n0 6=n.

To formally show this, we proceed backward from player N�s state. There are following two

cases:

� Suppose that xn0(j) 6= xn0(j
0) happens for some n0 2 f1; :::; N � 1g, j 2 I and j0 2 �j.

Then, by de�nition of f�i�1(j00 !m n00)gj00;n00 and 2 of Lemma 44,104 player i puts a

belief no less than 1� exp(�O(T 1
2 )) on the event that �i�1(c) = B in the coordination

rounds for xn0 or that there exist j00 2 I and n00 2 �j00 such that �i�1(j00 !m n00) = B

happens when player j00 2 N(n0) sends a message m to player n00 in the coordination

round 3 for xn0. Therefore, if xn0(j) 6= xn0(j
0) happens for some n0 2 f1; :::; N�1g, j 2 I

and j0 2 �j, then player i is almost indi¤erent between any action pro�le sequence,

which implies player i�s value is almost constant.

� Suppose that xn0(j) = xn0(j
0) for all n 2 f1; :::; N � 1g and j; j0 2 I. Then, if either

xN(j) = G for all j 2 I or xN(j) = B for all j 2 I is the case, then we have veri�ed

that (4) holds with x replaced with x(j). Since i 6= N + 1, player i�s value is almost

the same between xN(j) = G for all j 2 I and xN(j) = B for all j 2 I.
1042 of Lemma 44 does not use the premises 1-(a), 1-(b) and 1-(c).
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Therefore, 1-(c) of Lemma 44 holds for n = N . This implies that each player follows the

equilibrium path in the coordination rounds for xN . Hence, at the end of the coordination

rounds for xN�1, each player i believes that xN(j) = xN for all j 2 I or �i�1(j !m n) = B

in the coordination round 3 for xN between some j 2 I and n 2 �j with probability no less

than 1 � exp(�O(T 1
2 )). Hence, the same argument as for n = N holds for n = N � 1. By

induction, we are done.

Therefore, all the premises in Lemmas 43 and Lemma 44 are satis�ed. This implies that

1. It is almost optimal for player i to follow the equilibrium strategy in the coordination

block.

2. For any i, for any t in the main blocks, for any hti, player i puts a belief no less than

1 � exp(�O(T 1
2 )) on the event that x(j) = x(i) for all j 2 �i or ��i�1(j !m n) = B

or �i�1(c) = B happens in the coordination block.�

Note that 1 implies the almost optimality of �i(xi) in the coordination block and that 2

implies the almost optimality of �i(xi) in the main blocks. Hence, (8) is veri�ed.

Since we have veri�ed (4) for x(j) = x(i) for all i; j 2 I, we are left to show (4) at the

beginning of the review phase. Compared to the case with the noisy cheap talk, we need to

deal with the fact that g[n � 1](m) = E and �i�1(j !m n) = B can happen when player j

sends a message m to player n in the coordination block with higher probability. However,

since the ex ante probability of �i�1(j !m n) = B for some j 2 I, n 2 �j and m is bounded

by O(�), re-taking � smaller if necessary, we are done.

51 Report Block

We are left to construct the report and re-report blocks to attain the exact optimality of the

equilibrium strategies. In this section, we explain the report block.

Contrary to the two-player case, we directly construct the report block without public

randomization or any cheap talk.
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51.1 Structure of the Report Block

The report block proceeds as follows:

1. Player N sends the messages about hmainN .

2. Player N � 1 sends the messages about hmainN�1.

...

3. Player 3 sends the messages about hmain3 .

4. As in the two-player case, players 1 and 2 coordinate on which of them will send

messages:

(a) Each player takes aG and each player i observes her private signal yi.

(b) If player 2 observes y2 2 Y 2
2;1, then player 2 sends the message that y2 2 Y 2

2;1 to

player 1. Otherwise, that is, if player 2 observes y2 2 Y 2
2;2, then player 2 sends the

message that y2 2 Y 2
2;2 to player 1.

5. If player 2 has sent the message y2 2 Y 2
2;1, then player 2 sends the meaningful messages

about hmain2 . If player 2 has sent the message y2 2 Y 2
2;2, then player 2 takes a

G
2 for the

periods where player 2 would send the messages about hmain2 otherwise.

6. Player 1 sends the message about hmain1 .

7. The players play the round for conditional independence.

We explain each step in the sequel.

51.2 Player i � 3 sends hmaini

Since there is a chronological order for the rounds and r is a generic serial number of rounds,

the notations #r
i , #

r
i (k), T (r; k) and fai;t; yi;tgt2T (r;k) de�ned in the Supplemental Material

3 is still valid.
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Player i sends the messages about hmaini in the same way as player 2 sends the messages

in the Supplemental Material 4 with two players.

That is, for each round r,

1. First, player i reports #r
i .

2. Second, player i reports f#r
i (k)gk2f1;:::;Kg. See Section 44.2.2 for the de�nition of K.

3. Third, players i and i� 1 coordinate on k(r) as players 2 and 1 coordinate on k(r) in

Section 44.2.2.

4. Fourth, player i sends fai;t; yi;tgt2T (r;k(r;i)). k(r; i) is the result of the coordination on

k(r).

In Steps 1, 2 and 4, player i sends a message as player 2 does in the Supplemental Material

4 and player i � 1 interprets the message as player 1 does in the Supplemental Material 4:

Player i takes ai 2 faGi ; aBi g, player i � 1 takes ��i�1 and players �(i � 1; i) take aG�(i�1;i).

Player i� 1 constructs �i�1 2 f0; 1g from �i�1(ai�1; yi�1) as player 1 constructs �1 2 f0; 1g

from �1(a1; y1) in the Supplemental Material 4. Then, player i� 1 infers player i�s message

from �i�1 as player 1 infers player 2�s message from �1. Then, from Lemma 39, player i

cannot infer �i�1 from player i�s signals.

In Step 3, the coordination between player i and i � 1 is the same as in Section 44.2.2

with j replaced with i� 1. Assumption 16 implies that this is a well de�ned procedure.

51.3 Player 2 sends hmain2

Player 2 sends the messages about hmain2 as player i � 3 if and only if player 2 observed

y2 2 Y 2
2;1 in Step 4 of Section 51.1. If player 2 observes y2 2 Y 2

2;2, then player 2 takes

aG2 for periods where player 2 would send #r
2, f#r

2(k)gk2f1;:::;Kg and fa2;t; y2;tgt2T (r;k(r;2))
otherwise. In addition, the coordination on k(r) between players 2 and 1 is the same as in

the Supplemental Material 4 (with the other players � (1; 2) taking aG�(i;2)). Assumption 16

implies that this is a well de�ned procedure.
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As for the case with i � 3, player 2 takes a2 2 faG2 ; aB2 g, player 1 takes ��1 and players

�(1; 2) take aG�(1;2). Player 1 constructs �1 2 f0; 1g from �1(a1; y1) to infer player 2�s message.

Lemma 39 guarantees that player 2 cannot infer �1 from player 2�s signals.

51.4 Player 1 sends hmain1

Player 1 sends the messages about hmain1 to player N as player i � 3. As in the two-player

case, player 1 takes a1 2 faG1 ; aB1 g and players �1 take aG�1.

After that, player 1 sends the histories in the report block to player N as player 1 does

to player 2 in the round for conditional independence in Section 44.4.1. Again, this set of

periods is called �the round for conditional independence.� In this round, player 1 takes

some action a1 2 A1 and players �1 take aG�1. Player N infers this message from yN . By 7

of Assumption 15, player N can statistically identify player 1�s action.105

From the history in the round for conditional independence, player N constructs �N .

Compared to the two-player case, player 2 is replaced with player N .

51.5 Reward Function �reporti

First, for each i, player i� 1 gives the reward for player i that cancels out the instantaneous

utility. When player n 2 �1 sends the message about hmainn , player i� 1 gives

�t�1�
xi�1
i (report; n; ai�1; yi�1)

to player i. (166) implies the payo¤ of each player i is constant for any action.

When player 1 reports hmain1 , player 1 takes
�
aG1 ; a

B
1

	
and players �1 take aG�i.106 Hence,

by 7 of Assumption 15, for each player i, player i� 1 can cancel out the di¤erences in player

i�s instantaneous utilities by

�t�1�
xi�1
i (1; ai�1; yi�1):

105Since we use Assumption 15,
�
aG1 ; a

B
1

	
and aG�i here are actions de�ned in Assumption 15, not in

Assumption 17. Note that, for notational simplicity, we use the same notations for di¤erent assumptions.
106Remember that

�
aG1 ; a

B
1

	
and aG�i here are actions de�ned in Assumption 15.
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Next, we consider the reward in the round for conditional independence. As we will see,

player 1 sends in the re-report block what action player 1 takes in each period in the round

for conditional independence. Hence, for player i 2 �1, player i � 1 will know a1 from the

re-report block and player i � 1 knows that players � (1; i) take aG�(1;i). For player i = 1,

since players �1 take aG�1, player i� 1 = N knows a�i without the messages in the re-report

block. For each i, player i� 1 gives

�t�1�
xi�1
i (a�i; yi�1)

to cancel out the di¤erence of player i�s instantaneous utilities.

On the top of that, while the players should take aG to coordinate on k(r) or whether

player 2 reports the history, player i� 1 incentivizes player i to take aGi . Since player i� 1

knows that players �i take aG�i 2 A�i, player i� 1 can construct a strict reward on aGi from

Lemma 16.

In the report block, when player i sends the message, no player j 2 �i has an incentive

to manipulate player (i� 1)�s inference of player i�s message since player i�s message only

a¤ects player (i� 1)�s reward on player i and we construct the structure of the report block

in Section 51.1 and the punishment for telling a lie, gj(hmainj�1 ; h
rereport
j�1 ; âj;t; ŷj;t), so that player

j does not have an incentive to learn player i�s history from the report block.

Finally, we construct �reporti that makes �i(xi) exactly optimal. This step is the same as

in Section 36 except for the following:

� 'n;t for each round r is de�ned as follows:

� If round r corresponds to the coordination round 1 for xj with some j 2 I where

player n infers player j�s message xj (that is, player n is n�(j)), then 'n;t is 	
j
n;t

de�ned in (168).

� If round r corresponds to the coordination round 1 for xj with some j 2 I where

player n is not n�(j), then 'n;t is f;g.

282



� If round r corresponds to the coordination round 2 for xj with some j 2 I where

player n receives a message from n�(j) (that is, player n is in N(j) n fn�(j)g),

then 'n;t is In;t(j) de�ned in (169).

� If round r corresponds to the coordination round 2 for xj with some j 2 I where

player n is not in N(j) n fn�(j)g, then 'n;t is f;g.

� If round r corresponds to the coordination round 3 or the supplemental round,

then 'n;t is f;g.

� If round r corresponds to the review round, then 'n;t is the same as in Section

36.

� ti�1(r) is not de�ned for a round in the coordination block or supplemental round if

player (i� 1)�s continuation strategy does not depend on player (i� 1)�s history in

that round. In that case, player i� 1 randomly picks one.

� For a round in the coordination block where player i takes a mixed strategy to send a

message, we (i) �rst cancel out the e¤ect of the history in the round on learning about

the best responses from the next rounds, and (ii) second make any action sequence is

indi¤erent ex ante. Since player i believes that player i is almost indi¤erent between

any strategies whenever player i sends a message, this treatment is the same as we

incentivize player i to take a mixed minimaxing strategy in the review round.

We are left to deal with the probability that the message does not transmit correctly

with probability 1. We deal with this problem in Section 53 after we explain the re-report

block.

52 Re-Report Block

As in Section 37, we introduce the re-report block so that, for each player i, player i� 1 can

collect the information necessary to construct �i from players � (i� 1; i).

The basic structure of the re-report block is the same as in Section 37:
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� Players � (N � 1; N) sends the information to player N � 1 to construct �N .

� Players � (N � 2; N � 1) sends the information to player N � 2 to construct �N�1.
...

� Players � (1; 2) sends the information to player 1 to construct �2.

� Players � (N; 1) sends the information to player N to construct �1.

When players � (i� 1; i) sends the information to player i � 1, each player takes turns

to send the information:

� Player 1 sends the information to player i � 1 if 1 2 � (i� 1; i). If 1 62 � (i� 1; i),

then skip this step.

...

� Player N sends the information to player i� 1 if N 2 � (i� 1; i). If N 62 � (i� 1; i),

then skip this step.

When player n 2 � (i� 1; i) sends the information about her history, she sends the

following information chronologically:

� For each round r, what strategy �n player n took in round r. Note that this contains

the information about what message player n sent if player n sends a message in that

round. The cardinality of this message is no more than

jAnj+ N � 1| {z }
the mixed strategy is taken

only if player n sends zj(m)=M
or minimaxes another player

:

� For each round r, for each (an; yn; 'n), how many times player n observed (an; yn; 'n).

Note that this contains the information about what was player n�s inference of a mes-

sage if player n receives a message in that round. The cardinality of this message is no

more than TO(1).
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� Note that the above two pieces of information is su¢ cient for player i� 1 to construct

�i�1(j !m n).

� For each round r, what was tn(r). The cardinality of this message is no more than T .

� At the end of each lth review round, what was the realization of player n�s random-

ization for the construction of some states. The cardinality of this message is a �nite

�xed number.

� So that player i� 1 knows (a�i;t)t2T (r;k(r;i)) and
�
yn;t; 'n;t

�
t2T (r;k(r;i)),

��rst, for each r, player i�1 sends the message about k(r; i) to players� (i� 1; i).107

Each player n 2 � (i� 1; i) infers k(r; i) from their private signals. Let kn (r; i)

be player n�s inference. The cardinality of this message is no more than T
3
4 .

� Second, player n sends the messages about
�
an;t; yn;t; 'n;t

�
t2T (r;kn(r;i))

to player

i� 1. The cardinality of this message is exp(O(T 1
4 )).

� If player n is player 1, then player 1 sends the message about player 1�s history in

the round for conditional independence: (a1;t; y1;t) for all t in the round for condi-

tional independence. Since the length of the round for conditional independence is

S
P

r

���T �r; k̂n(r; i)���� = O(T
1
4 ), the cardinality of this message is exp(O(T

1
4 )).

Therefore, the cardinality of the whole message is exp(O(T
1
4 )) and the length of the

sequence of binary messages fG;Bg necessary to encode the information is O(T 1
4 ). To send

a binary message m 2 fG;Bg, player n repeats amn for T
1
3 times to increase the precision.

The other players �n take aG�n.108

By 7 of Assumption 15, player i� 1 can statistically identify player n�s action. Also, for

each player j, player j�1 can cancel out the di¤erences in player j�s instantaneous utilities by
107We assume that player i � 1 knew player i�s inference k(r; i). See Section 53 for how to deal with the
small probability that player i� 1 misinterprets player i�s message about k(r; i).
108Since we use Assumption 15,

�
aG1 ; a

B
1

	
and aG�i here are actions de�ned in Assumption 15, not in

Assumption 17. Note that, for notational simplicity, we use the same notations for di¤erent assumptions.
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the reward. The incentive to tell the truth is automatically satis�ed since player n�s message

is used only for the reward on player i with i 6= n except for the round for conditional

independence. The incentive in the round for conditional independence is established as in

Lemma 31.

53 The Probability of Errors in the Report and Re-

Report Blocks

Note that the cardinality of the whole messages in the report and re-report blocks is exp(O(T
1
4 )).

Hence, the length of the sequence of binary messages fG;Bg that each player takes to send

the messages in the report or re-report block is O(T
1
4 ).

Since all the messages transmit correctly with probability at least

1�O(T
1
4 ) exp(�O(T 1

3 ));

by the same treatment as in Section 44.3, we can assume as if all the messages would transmit

correctly. We do not apply this procedure for the messages in the round for conditional

independence. As seen in Lemma 31, the incentive in the round for conditional independence

is established taking into account the probability of mis-transmission.
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