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Introduction

I Ingredient: Agents doubt their forecasting models.

I Question: Study how these doubts affect risk sharing in
economies with aggregate risk.

I Mechanism: Heterogeneity in wealth + Doubts

- New insurance channel

I Outcomes: Introducing doubts alters

- Agents’ trading behavior
- Dynamics of asset prices
- Evolution of inequality



Sketch of the model

1. Baseline

I Two agents trade in a complete market exchange
economy.

I Fluctuations in aggregate endowment.
I Two layers of uncertainty

I Learning: Prior over a set of models updated using
Bayes rule → “approximating” model.

I Doubts: Set of probability distributions statistically
close to the approximating model.

2. Extensions

I Publicly observed news shocks
I Privately observed taste shocks



Key mechanism

I Hansen–Sargent multiplier framework to address doubts.

- Construct worst-case beliefs to obtain decision rules
robust to misspecifications

I Worst-case beliefs are

- Endogenous: depend on fluctuations in future utilities
- Heterogeneous: depends on curvature of utility

functions

I IES is a key primitive for how agents trade in presence of
doubts.



Main results

I Heterogeneous priors
The Friedman conjecture is altered by introducing a small
amount of doubts depending on IES.

I Asset prices
Compensation for risk is countercyclical because richer agents
have larger belief distortions in recessions.

I News shocks
There is trading on news shocks as agents value resolution of
uncertainty through public signals differently.

I Taste shocks
Doubts can generate bounded inequality when insurance is
limited by private information.



Literature Review

Heterogeneous beliefs: Harrison–Kreps (1978)

I Exogenous heterogeneity in beliefs → trade in financial securities.

I This paper: heterogeneity in beliefs is endogenously correlated with
heterogeneity in wealth.

Asset pricing: Hansen–Sargent (2010), Miao–Ju (2012)

I Study representative agent economies

I This paper: wealth inequality affects volume of trade and volatility
of asset prices.

Efficient inequality: Blume–Easley (2006), Atkeson–Lucas (1992)

I Effects of heterogeneous beliefs or heterogeneous information
accumulate over time, leading to inequality.

I This paper: new insurance motives that come from doubts can
counter “immiseration” forces.



Setup

1. Technology: Exchange economy with stochastic aggregate
endowment yt ∈ Y.

2. Demography: Two types of agents I = {1, 2}.
3. Endowments: Both agents have equal shares of aggregate

endowment.

4. Shocks: Data generating process

P0(y∞|y0) =
∏
t≥0

P0
t (yt+1).

5. Markets: Agents trade one-period-ahead Arrow securities.



Doubts and learning

Agents do not know the true data generating process P0.

1. Learning
I Priors: πi,0(m) over a finite set of “parsimonious”

specifications

M = {m : PY (y ′|y ,m)}

Use Bayes rule to update πi,t(m)
I Approximating model:

P i
t(yt+1) =

∑
m

πi,t(m)PY (yt+1|yt ,m)

2. Doubts: A vast set of statistically close alternatives to the
approximating model
Agents use new information to revise where they focus their
doubts.



Valuations

Let V i
t [c] be Agent i’s value of c = {ct}t≥0 at history y t .

1. Without doubts

V i
t [c] = (1− δ)u[ct ] + δEi

tV
i
t+1[c]

with u(c) = c1−γ

1−γ and elasticity of substitution = 1
γ

2. With doubts

V i
t [c] = (1− δ)u[ct ] + δTi

θ,tV
i
t+1[c]



How are doubts modeled?

Likelihood ratio

zt,t+1(yt+1) =
P̃ i
t(yt+1)

P i
t(yt+1)

→Worst-case model
→ Approx. model

Ti
θ,tV

i
t+1 = min

zt,t+1(yt+1)
Ei
tzt,t+1 = 1

Ei
tzt,t+1V i

t+1︸ ︷︷ ︸
Expectations

under P̃ i
t

+θ−1 Ei
tzt,t+1 log(zt,t+1)︸ ︷︷ ︸
Relative entropy

P̃ i
t w.r.t P i

t

I Minimizing likelihood ratio:

zt,t+1(yt+1) ∝ exp
{
−θV i

t+1(yt+1)
}

I With θ = 0 we have Ti
θ,t = Ei

t



Competitive equilibrium

Definition
Given {ai ,0, πi ,0}i , and y0, a competitive equilibrium is a collection
of {ci ,t , ai ,t(yt+1), P̃ i

t(yt+1)}i ,t≥0 and Arrow prices {qt(yt+1)}t≥0

such that

I Agents optimize

max
{ci,t ,ai,t(yt+1)}t≥0

V i
0[ci ]

s.t for all t

ci ,t +
∑
yt+1

qt(yt+1)ai ,t(yt+1) = yi ,t + ai ,t−1

I Worst-case beliefs are consistent

P̃ i
t(yt+1) ∝ P i

t(yt+1) exp
{
−θV i

t+1(yt+1)
}

I Goods and asset markets clear



Planner’s problem

Use a planner’s problem to find competitive allocations.

1. Welfare theorems hold in this environment.

2. Pareto efficient allocations have a recursive structure.



Recursive formulation of planner’s problem

Q(πt , vt , yt) = max
c1,c2,v̄(yt+1)

(1−δ)u[c1]+δT1
θ,tQ(πt+1, v̄(yt+1), yt+1)

s.t.
(a) Promise keeping:

(1− δ)u[c2] + δT2
θ,t v̄(t+1) ≥ vt

(b) Feasibility:
c1 + c2 ≤ yt

(c) Bayes Rule: For all i

πi ,t+1(m) ∝ πi ,t(m)PY (yt+1|yt ,m)

The multiplier on the promise keeping constraint (λ) is the relative
Pareto weight of Agent 2.



Optimal allocation: characterization

The optimal allocation can be represented by

ci ,t = ci (λt , yt)

and a law of motion for λ

λt+1

λt
=

P̃2
t (yt+1)

P̃1
t (yt+1)

The allocations are also efficient in an “alternative” economy
where agents have no doubts but exogenous heterogeneous beliefs
{P̃ i

t}i ,t .



Endogenous heterogeneity in beliefs

Given the optimal allocation and continuation values V i
t+1

Worst case beliefs for Agent i are

P̃ i
t(yt+1) ∝ P i

t(yt+1)︸ ︷︷ ︸
Learning

exp
{
−θV i

t+1(yt+1)
}︸ ︷︷ ︸

Doubts

1. Endogeneity of beliefs

I Learning: approximating models are updated using Bayes law.
I Doubts: agents overweight states where their continuation

values are low.

2. Heterogeneity of beliefs

I Initial priors: {πi,0(m)}i
I Initial wealth shares: λ0



Doubts and insurance

Study the consequences of heterogeneity in initial priors

I How are doubts different from learning?

I How is the implied trading behavior altered?

Re-examine the Friedman conjecture

Agents with incorrect priors do worse in the long run.



Long run inequality: no doubts

Theorem
For θ = 0, suppose the data generating process is
P0
t (yt+1) = PY (yt+1|yt ,m∗)

If π1,0(m∗) > 0

λt → λ0
π2,0(m∗)

π1,0(m∗)
P0 − almost surely

The ratio
π2,0(m∗)
π1,0(m∗) denotes Agent 2’s initial relative “advantage”



Long run inequality: no doubts
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Dynamics of Pareto weights with doubts

λt is a martingale under Agent 1’s worst case beliefs.

λt+1

λt
=

P̃2
t (yt+1)

P̃1
t (yt+1)

=⇒ Ẽ 1
t λt+1 = λt

“Undoing” Agent 1’s distortions we get,

E1
tλt+1 = λt − Cov 1

t

[
λt+1, z

1
t,t+1

]
or

E1
tλt+1 = λt − Cov 1

t

[
P̃2
t (yt+1)

P̃1
t (yt+1)

λt ,
P̃1
t (yt+1)

P1
t (yt+1)

]
What is the sign of the covariance?



Signing the covariance

Suppose π1,0 = π2,0. This shuts off exogenous heterogeneity in
beliefs

Etλt+1 = λt − Covt

[
P̃2
t (yt+1)

P̃1
t (yt+1)

λt ,
P̃1
t (yt+1)

P1
t (yt+1)

]

1. P̃1
t (yt+1)

P1
t (yt+1)

: Agent 1’s pessimism

This is countercyclical

2. P̃2
t (yt+1)

P̃1
t (yt+1)

: Agent 2’s relative pessimism

Depends on IES and Agent 2’s wealth share



Role of IES

I Agents care about fluctuations in utilities relative to costs.

I Volatile utilities =⇒ large belief distortions
I Entropy costs of deviating from the approximating model

I Suppose c = ηy

σ[u] ≈ σ[c]u′[Ec]

Is σ[u] increasing in η?



Role of IES

I When η increases, we have two effects

1. σ[c] ⇑
2. u′[Ec⇑] ⇓

I Elasticity of marginal utility to changes in consumption
determines which force dominates.

1. If IES > 1 marginal utility is less sensitive to changes in
consumption
→ σ[u] is increasing in η.

2. If IES < 1 marginal utility is more sensitive to changes in
consumption
→ σ[u] is decreasing in η.



Role of IES

Etλt+1 = λt − Covt

[
P̃2
t (yt+1)

P̃1
t (yt+1)

λt ,
P̃1
t (yt+1)

P1
t (yt+1)

]

WLOG suppose λt > 1 (Agent 2 is rich)

1. When IES> 1

I Richer agents have larger belief distortions.

I Agent 2’s relative pessimism
P̃2
t (yt+1)

P̃1
t (yt+1)

is countercyclical.

I Covariance positive =⇒ negative drift of λt .

2. IES < 1: covariance is negative and λt increases.

3. IES = 1: homothetic Epstein–Zin preferences



Long-run inequality with doubts: IES > 1
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Long run inequality with doubts: IES < 1
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Long run inequality with doubts

Theorem
For θ > 0, suppose the data generating process is
P0
t (yt+1) = PY (yt+1|yt ,m∗) is i.i.d. over time

[Convergence] If IES>1,

λt → 1 P0 − almost surely

[Divergence] If IES < 1,

P0{λt → 0 ∪ λt →∞} > 0

[Homotheticity] If IES = 1

λt → λ∞ ∀t



Remarks

I In absence of doubts, initial heterogeneity in priors have a
permanent effect on long run inequality.

I Doubts that are enduring dominate Bayesian learning.

I Even for θ ≈ 0, long run outcomes are very different.

I Doubts induce low frequency changes in insurance
arrangements whose effects accumulate through time.

Interpreting IES: design of social insurance schemes



Doubts, dogmatism and market selection

Dogmatic beliefs: ∃ m ∈M such πi (m) = 1

1. IES and the ‘gap’ between approximating models matter for
long-run wealth shares.

2. Main result

Theorem
Suppose P0 = P1 and let I0,2 be the relative entropy of Agent 2’s
approximating model w.r.t the DGP. If IES > 1, there exists
M̄ > 0 such that

I0,2 < M̄

is sufficient for

λt 6→ 0 P0 − almost surely



Survival Region: 2 shock case
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Figure: The shaded region plots the approximating models (Binary-IID)
for Agent 1 and Agent 2 for which both agents survive. The DGP
P0 = P1



Asset pricing

So far

I Impact of learning and doubts on long run wealth shares

Next, study how doubts and wealth dynamics generate

I Countercyclical prices of risks

I Motives for trade on news shocks



Market price of risk

I Common approximating model: Assume π0,1 = π0,2 = π0

I Pricing kernel: ρt(yt+1) that prices cash-flows f (y)

Pt(f ) = Etρt(yt+1)f (yt+1)

It follows that

ρt(yt+1) = δ
uc(ci ,t+1)

uc(ci ,t)

(
P̃ i
t(yt+1)∑

m∈M πt(m)PY (yt+1|yt ,m)

)

I Market price of risk: the conditional volatility of the (log)
pricing kernel

MPR[π, v , y ] = var[log(ρ)|π, v , y ]

This measures quantities from the perspective of an outside
econometrician who uses the common approximating model.



Dynamics of MPR

Figure: A sample path of MPR in an economy with Y = {yl , yh}. Shaded
regions denote periods with low aggregate endowment.



Why MPR increases in recessions?

1. IES > 1
I Belief distortions increase with wealth shares
I Insurance contracts are resolved in favor of rich agents
I Their concerns for misspecification are even larger

2. IES < 1
I Rich agents make insurance payments and lose wealth
I Concerns for misspecification are again larger due to increase

in marginal utilities

In either case, valuations are lower and compensation for risk is
higher.



Role of “news” shocks

I Augment economy with “news” shocks

νt = yt+1 + εt , εt i.i.d.

I If agents have identical initial priors and no doubts, news
shocks are irrelevant.

1. Informative public signals only affect information sets.
2. But these are the same across agents, so there is no motive to

trade.



News shocks matter

Theorem
For IES 6= 1, so long as there is wealth inequality (λ0 6= 1), there
exist (y t , νt) 6= (y t , ν̃t) for which

ci ,t(y t , νt) 6= ci ,t(y t , ν̃t)

1. Heterogeneity in wealth =⇒ value of resolution of
uncertainty differs across agents.

2. Bad news is worse for agents with larger fluctuations in
valuations.

3. With complete market, agents trade consumption claims
contingent on news.



Extension: asymmetric information

1. Add privately observed i.i.d. taste shocks to Agent 2’s utility

I Efficiency requires insurance arrangements to be incentive
compatible.

I This generates an “immiseration” force as in Atkeson–Lucas or
Thomas–Worrall

2. In a simple example, I will contrast how doubts alter these
immiseration forces.

3. The planner’s problem is modified to incorporate truth telling
constraints. problem



Revisiting the dynamics of Pareto weights

λt+1(yt+1, st)

λt
=

[
P̃2
t (yt+1, st)

P̃1
t (yt+1, st)

]
︸ ︷︷ ︸

Heterogeneous beliefs

[
1 + µt(st)− µt(s

′
t)

P̃2
t (yt+1, s

′
t)

P̃2
t (yt+1, st)

]
︸ ︷︷ ︸

Optimal Incentives

1. Heterogeneous Beliefs: agents disagree on the worst case
beliefs about states tomorrow.

2. Optimal Incentives: optimal incentives spread promised
values.



Immiseration

Theorem
Suppose IES > 1.

I With θ = 0, λt → 0 P0 − almost surely

I With θ > 0, λt 6→ 0 P0 − almost surely

The force generated by heterogeneity in worst case beliefs
dominates the fluctuations due to incentives .



Inspecting the mechanism

1. The bilateral credit market looks like “annuities”:
I High taste shock =⇒ Agent 2 borrows today and repays by

lowering future expected consumption.

2. With θ = 0,
I Aggregate endowment shocks are immaterial for Pareto weight

dynamics.
I A sequence of high taste shocks drives Agent 2 to

immiseration.

3. With θ > 0,
I As λ→ 0 agents disagree on likelihoods of y∗.
I Agent 1 buys “expensive” insurance against bad aggregate

outcomes
I For Agent 2, this income more than offsets the annuities

coming from high taste shocks and thus prevents immiseration.



Conclusions

I Theory of endogenous belief distortions

1. Insurance motives
2. Trading behavior
3. Asset pricing

I Implications for how effects of doubts accumulate overtime
→Design of social insurance schemes

I Extensions:

1. Role of aggregate risk: study Bewley economies without
aggregate fluctuations

2. Quantitative examination of wealth-driven belief heterogeneity
and asset prices and volume

3. Framework for optimal policy with endogenous belief
distortions



Revisiting the planner’s problem

Q(v , y) = max
u1(s),u2(s),v̄(s,y∗)

Tθ [(1− δ)u1(s) + δTθ,yQ(v̄(s, y∗), y∗)]

subject to

Tθ [(1− δ)su2(s) + δTθ,y v̄(s, y∗)] ≥ v

(1−δ)u2(s)+δTθ,y v̄(s, y∗) ≥ (1−δ)su2(s ′)+δTθ,y v̄(s ′, y∗) ∀s, s ′

C (u1(s)) + C (u2(s)) ≤ y ∀s

v̄(s, y∗) ≤ vmax(y∗)

back


