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Abstract

Analysis of welfare in auctions comes traditionally via one of two approaches: pre-
cise but fragile inference of the exact details of a setting from data or robust but coarse
theoretical price of anarchy bounds that hold in any setting. As markets get more and
more dynamic and bidders become more and more sophisticated, the weaknesses of
each approach are magnified.

In this paper, we provide tools for analyzing and estimating the empirical price of
anarchy of an auction. The empirical price of anarchy is the worst case efficiency loss
of any auction that could have produced the data, relative to the optimal.

Our techniques are based on inferring simple properties of auctions: primarily the
expected revenue and the expected payments and allocation probabilities from possible
bids. These quantities alone allow us to empirically estimate the revenue covering
parameter of an auction which allows us to re-purpose the theoretical machinery of
Hartline et al. [2014] for empirical purposes. Moreover, we show that under general
conditions the revenue covering parameter estimated from the data approaches the
true parameter with the error decreasing at the rate proportional to the square root of
the number of auctions and at most polynomially in the number of agents. While we
focus on the setting of position auctions, and particularly the generalized second price
auction, our techniques are applicable far more generally.

Finally, we apply our techniques to a selection of advertising auctions on Microsoft’s
Bing and find empirical results that are a significant improvement over the theoretical
worst-case bounds.

1 Introduction

Evaluation of the revenue and welfare of market mechanisms has been one of the key ques-
tions in Economics. A typical question of interest is the comparison of a currently deployed
mechanism with the best solution implemented by a central planner, taking into account
the incentives of participating Economic agents. The price of anarchy, first introduced in
Koutsoupias and Papadimitriou [1999] for network routing games, provides a bound on the
ratio of the revenue or welfare from the implementation of the second best and the current
mechanism over all possible uncertainties in the market.
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The worst-case nature of price-of-anarchy bounds results in very robust results, but
this robustness can come at the cost of bounds that are coarse for an analyst interested in
understanding the performance of a currently deployed mechanism. In some types of games
this is not a problem because performance can be empirically measured: processing time
or memory usage can be measured; route choice and delay in a network can be tracked,
and compared to another benchmark.

However, in auctions and other settings where agents have private information that
impacts the objectives of a system, estimating the performance has traditionally required
learning that private information. Oftentimes the results from this style of analysis are
also very sensitive to the exact decision making of bidders, and for instance are not robust
to bidders who choose only the approximately best action, or play learning strategies.

In this paper, we bridge the robust but coarse theoretical price of anarchy bounds and
precise but fragile inference based bounds, by integrating data directly into the price of
anarchy style analysis. Instead of quantifying over all settings and uncertainties, we take
the worst case over all settings and uncertainties that could induce the observed data. The
more we know about the data generated by a mechanism, the higher the potential for an
accurate bound.

Many real-world mechanisms are implemented in highly dynamic settings, where the
assumptions of perfect best-response are highly suspect. Cases in point include advertising
auctions on Google, Facebook and Bing, markets for electricity and treasury bill auctions.
In such dynamic settings it becomes hard to justify the common knowledge assumptions
needed for the full evaluation of the Bayes-Nash equilibrium. For instance, in the sponsored
search auctions the bidders use sophisticated algorithmic bidding tools that dynamically
explore the structure of the empirical best response correspondence and optimize bids in
continuous time. Moreover, given the dynamic market structure, the underlying primitives
of the model, such as valuations of participating agents may significantly change over
time. As a result, the welfare analysis in the context of traditional structural modeling
approach, which requires first to estimate the primitives of the model and then to compute
the equilibrium outcome of the current and the optimal mechanism, becomes very hard if
not impossible.

Our approach benefits from the inherent robustness of worst-case analysis to realistic
market features such as differences in details of mechanisms or agents who only approxi-
mately best-respond. At the same time, our approach uses the data and effectively informs
the price of anarchy bound regarding the “worst case scenario” distributions of uncertainty
that are clearly inconsistent with the observed data. That allows us to improve the welfare
and revenue bounds given by the theoretical price of anarchy.

1.1 Methods

Theoretical Our theoretical techniques for proving empirical Price of Anarchy bounds
are largely an empirical application of the revenue-covering framework of Hartline et al.
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[2014], targetted to position auctions. First, we analyze the optimization problem of a
bidder, comparing actions in the auction based on their expected price-per-click (or first-
price equivalent bid in the terminology of Hartline et al. [2014]).

Second, we relate the revenue of an auction to a threshold quantity, which is based
on how expensive allocation is. We call this empirical revenue covering, and differs from
revenue covering of Hartline et al. [2014] only in that we measure it for a given instance of
an auction instead of proving it for every possible strategy profile. As a result, our empirical
revenue covering framework applies even more broadly that theoretical revenue covering:
it can be measured for any Bayes-Nash Equilibrium of any single-parameter auction in the
independent, private values model.

Finally, we consider and measure how agents would react to the optimization prob-
lem that they are faced with. In the terminology of Hartline et al. [2014], we measure
the value-covering of the auction, which improves on the 1 − 1

e term. This can be done
both with precise knowledge of price-per-click allocation rule, or with rough knowledge of
concentration bounds on the price-per-click allocation rule.

Our general approach can also be seen as reducing the empirical analysis of an auction
to the econometric question of estimating the revenue of an auction and estimating the
allocations and prices-per-click of actions in the auction.

Econometrics Our econometric approach is based on recovering the price and allocation
functions from the auction data: provided that we observe the realizations of uncertainty
(regarding the bids of participating agents and the scores assigned to the agents by the
mechanism), the empirical approximation to the price and allocation functions for each
agent are based on computing the average price and average allocation for each possible
bid across historical auctions. We demonstrate that if the auction logic is “relatively
simple” (i.e. it is based on the finite list of ranking and comparison operations), then both
price and allocation functions can be recovered accurately uniformly over the bid space.
This property further allows us establish the convergence of the empirical price of anarchy
bound to its population counterpart. As find that the statistical noise only has a second
order effect on the recovered empirical price of anarchy. We also note that our results
extend beyond the standard i.i.d. data settings allowing us to consider complex serially
correlated time series data that satisfy the β-mixing conditions which is compatible with
various learning dynamics.

Robustness

Our results adopt a robustness to changes in the mechanism or the setting that is similar
to the inherent robustness of results from the revenue covering or smoothness frameworks.

• Beyond Position Auctions. While all of our analysis is based on the position
auction model with uncertain quality scores, the analysis is general and can be applied
for Bayes-Nash Equilibria of other auctions and feasibility environments as well.
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• Changes in the Mechanism. As the thresholds we calculate are based on the
price-per-click allocation rule of a bidder, threshold quantities can be compared and
computed no matter what the mechanism is as long as these quantities can be es-
timated. If for instance an auctioneer is A/B testing many different auctions, the
same analysis can be used for their comparisons as long as the prices-per-click and
allocations from actions can be learned.

• Approximate Equilibrium. If the agents in an auction only ε-best respond to
the optimization problem that they are faced with, then our efficiency results only
degrade by that ε.

Moreover, if some agents are irrational and some are rational, then our results can
be broken out to give efficiency results only for the rational bidders.

• Learning Quality Scores. We model the quality score of a bidder as coming from
a known distribution. This distribution should be interpreted as the auctioneers
knowledge of the quality score of the bidder. Our efficiency results give a comparison
to the optimal auction subject to the same knowledge of quality scores of the bidders.
This distribution moreover can have arbitrary correlations, as it only really affects
the space of feasible allocations.

1.2 Contributions

Our primary contributions are the following:

• Empirical Price of Anarchy. We introduce the empirical Price of Anarchy(EPoA)
benchmark for welfare, representing the worst case efficiency loss of a game consistent
with a distribution of data from the game.

• Empirical Revenue Covering. We refine the revenue-covering framework of Hart-
line et al. [2014] for proving robust EPoA bounds, and show that we can empirically
estimate the empirical revenue covering of the Generalized Second Price auction with
very fast convergence properties.

• Data. We apply and bound the empirical price of anarchy from GSP advertising
auctions run in Microsoft’s Bing, and show that we get EPoA bounds that are sig-
nificantly stronger than the relevant theoretical bounds.

1.3 Related Work

Our approach for empirical revenue covering is primarily an empirical application and
refinement of the revenue covering framework in Hartline et al. [2014], which uses the
revenue-covering property to prove theoretical bounds for auctions that always satisfy the
revenue-covering property. The revenue covering approach itself is a refinement of the
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smooth-games and mechanisms frameworks of Roughgarden [2009, 2012]; Syrgkanis and
Tardos [2013] for the Bayesian setting. Hartline et al. [2014] also give revenue approxima-
tion results for the first-price auction with the optimal reserve prices, which we do not.
Our techniques could be used for improved bounds for revenue if the optimal reserve prices
were known and implemented, or with the assumption of more symmetry in the setting.

The notion of thresholds and revenue covering is also strongly related to the threshold
and the c-threshold approximate concept in Syrgkanis and Tardos [2013].

The efficiency of the Generalized Second-Price auction (GSP) was originally modeled
and studied in full-information settings in Edelman et al. [2007] and Varian [2009]. Gomes
and Sweeney [2014] characterize equilibrium in the Bayesian setting, and give conditions
on the existence of efficient equilibria. Athey and Nekipelov [2010] give a structural model
of GSP with varying quality scores, which are included in our model. Caragiannis et al.
[2014] explores the efficiency of GSP in the Bayesian setting, and finds a theoretical price
of anarchy for welfare of 2.927 when the value distributions are independent or correlated,
and players do not overbid. Our results apply only for independent distributions of values,
but do not need the no-overbidding assumption. However, our approach applies even to the
modified GSP which is being used where the scoring ruled used for ranking is not equal to
the quality γi of a bidder. The latter theoretical results do not apply for this modified GSP.
Hence, in principle we could observe higher inefficiency in the data than the theoretical
bound above. Despite this fact we find in the data that only better inefficiency bounds
are derived, with the exception of one search phrase where we almost exactly match the
latter worst-case theoretical bound. The semi-smoothness based approach of Caragiannis
et al. [2014] can be seen through our model as using a welfare covering property in place
of revenue covering.

2 Preliminaries

We consider the position auction setting, with m positions and n bidders. Each bidder i has
a private value vi drawn independently from distribution Fi over the space of possible values
Vi. We denote the joint value-space and distribution over values V = Πi Vi and F = Πi Fi
respectively. Bidders have a linear utility, so if they pay Pi to receive a probability of
service xi, the utility of the bidder is ui = vixi − Pi.

An outcome π in a position auction is an allocation of positions to bidders. π(j) denotes
the bidder who is allocated position j; π−1(i) refers to the position assigned to bidder i.
Henceforth we will adopt the terminology of ad auctions and refer to service as a ‘click’.

When bidder i is assigned to slot j, the probability of click ci,j is the product of the
click-through-rate of the slot αj and the quality score of the bidder, γi, so ci,j = αjγi. We
will generally assume that γi is drawn independently from distribution Γi, and is observable
to the auctioneer, but not to the bidder themselves.

Since the auctioneer can use the quality scores in assigning bidders to slots and the
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Price-per-click (PPC)

PPC Allocation Rule

x̃i(ppc) = τ−1i (ppc)
E
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(a) In full-information GSP, the PPC allo-
cation rule is piecewise constant with a step
per slot, where the price-per-click correspond-
ing with a slot is the bid of the agent in the
next slot.
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Price-per-click (PPC)

PPC Allocation Rule

x̃i(ppc) = τ−1i (ppc)

E
[#
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ck
s]

(b) In Bayesian GSP, the number of clicks
from a bid is a smoother function. Note that
since a bid might result in winning a number
of different slots, the number of clicks comes
from all possible slots.

quality scores impact the number of clicks that each agent sees, an allocation x is feasible
if and only if there is a quality-score dependent assignment of slots to bidders that gives
rise to this allocation.

Denote by ρ(γ, ·) such an assignment, where ρ(γ, j) is the player who is assigned position
j when the quality score profile is γ and ρ−1(γ, i) is the position assigned to player i. More-
over, denote with M the space of all such quality score dependent assignments. Then an
allocation x is feasible if there exists ρ ∈M such that for each bidder i: xi = Eγ [aρ−1(γ,i)γi].
Call X the set of all feasible allocations.

A position auction A consists of a bid space B, allocation rule x : Bn → X mapping from
bid profiles to feasible allocations and payment allocation rule P : Bn → Rn mapping from
bid profiles to payments. A strategy profile σ : Rn → Bn maps values of agents to bids. For
a set of values v, the utility generated for each bidder is Ui(b; vi) = vixi(σ(b))−Pi(σ(b)).

Given a strategy profile σ, we will often use and consider the expected allocation and
payment an agent expects to receive when playing an bid bi, taking expectation over other
agents values and the quality score γi. We call xi(bi) = Ev−i [xi(bi, σ−i(v−i))] the interim
bid allocation rule. We define Pi(bi) and ui(bi) analogously.

A strategy profile σ is in Bayes-Nash Equilibrium (BNE) if for all agents i, σi(vi)
maximizes their interim expected utility: e.g., for all bids b′, ui(σi(vi)) ≥ ui(b′).

The welfare from an allocation x is the expected utility generated for both the bidders
and the auctioneer,

∑
i xivi. Thus the expected utility of a strategy profile σ is

Welfare(A(σ)) = Ev

[∑
i

xi(σi(vi))vi

]
(1)
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Price-per-click (PPC)

PPC Allocation Rule

x̃i(ppc) = τ−1
i (ppc)

E
[#

C
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s]

vi

ui(b)

ppc(b)

Figure 1: For any bid b with PPC ppc(b), the area of a rectangle between (ppc(b), xi(ppc(b)))
and (vi, 0) on the bid allocation rule is the expected utility ui(b). The BNE action b∗ is
chosen to maximize this area.

We will break down the welfare of the auction into the revenue paid to the auctioneer,
Rev(A(σ)) = Ev[

∑
i Pi(σi(v))] payments made to the bidder and the utility derived from

the agents, Util(A(σ)) = Ev[
∑

i ui(σ(v))], with

Welfare(A(σ)) = Rev(A(σ)) + Util(A(σ))

Our benchmark for welfare will be the welfare of the auction that chooses a feasible
allocation to maximize the welfare generated, thus Welfare(Opt) = Ev[maxx

∑
i xivi] =

Ev,γ [maxπ
∑

i γiαπ−1(i)vi]. We will denote the resulting optimal value-based allocation rule
x∗.

The (Bayesian) price-of-anarchy for welfare of an auction is defined as the worst-case
ratio of welfare in the optimal auction to the welfare in an equilibrium, taken over all
distributions and equilibriums

PoA(A) = max
Γ,F,σ∈BNE(A,F)

Welfare(Opt)

Welfare(A)
(2)

2.1 Sponsored Search Auction: model and data

We consider data generated by advertisers repeatedly participating in a sponsored search
auction. The mechanism that is being repeated at each stage is an instance of a generalized
second price auction triggered by a search query.

The rules of each auction are as follows1: Each advertiser i is associated with a click

1ignoring small details that we will ignore and are rarely in effect
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Figure 2: The price of anarchy of an auction which is µ-revenue covered, either theoretically
or empirically, is µ

1−e−µ .

1

Ti(x
′
i)

x′i

Price-per-click (PPC)

x̃(ppc)
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(a) In full-information GSP, the threshold for
agent i corresponds to a summation over all
worse slots than the one he receives.

1

Ti(x
′
i)

x′i
x̃(ppc)

Price-per-click (PPC)

E
[#

C
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ck
s]

(b) In Bayesian GSP, the threshold for bidder
i in slot j is the area above the PPC allocation
rule up to allocation of αjγi — note that it
is not the expectation of the full-information
threshold .

probability γi and a scoring coefficient si and is asked to submit a bid-per-click bi. Ad-
vertisers are ranked by their rank-score qi = si · bi and allocated positions in decreasing
order of rank-score as long as they pass a rank-score reserve r. If advertisers also pass a
higher mainline reserve m, then they may be allocated in the positions that appear in the
mainline part of the page, but at most k advertisers are placed on the mainline.

If advertiser i is allocated position j, then he is clicked with some probability ci,j ,
which we will assume to be separable into a part αj depending on the position and a part
γi depending on the advertiser, and that the position related effect is the same in all the
participating auctions: ci,j = αj ·γi. We denote with γ = (γ1, . . . , γm) the vector of position
coefficients. All the mentioned sets of parameters θ = (s, α, γ, r,m, k) and the bids b are
observable in the data. Moreover, the parameters and bids are known to the auctioneer at
the allocation time. We will denote with πb,θ(j) the bidder allocated in slot j under a bid
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profile b and parameter profile θ. We denote with π−1
b,θ(i) the slot allocated to bidder i.

If advertiser i is allocated position j, then he pays only when he is clicked and his
payment, i.e. his cost-per-click (CPC) is the minimal bid he had to place to keep his
position, which is:

cpcij(b; θ) = max

{
sπb,θ(j+1) · bπb,θ(j+1)

si
,
r

si
,
m

si
· 1{j ∈M}

}
(3)

where with M we denote the set of mainline positions.
We also assume that each advertiser has a value-per-click (VPC) vi, which is not ob-

served in the data. If under a bid profile b, advertiser i is allocated slot π−1
b,θ(i), his expected

utility is:

Ui(b; vi) = Eθ

[
απ−1

b,θ(i) · γi ·
(
vi − cpciπ−1

b,θ(i)(b; θ)
)]

(4)

3 Price of Anarchy from Data

We begin by defining the empirical price-of-anarchy of an auction.

Definition 1 (Empirical Price of Anarchy). The Bayesian empirical price-of-anarchy for
welfare of an auction and a distribution of data D generated by the auction is the worst-
case ratio of welfare in the optimal auction to the welfare in an equilibrium, taken over all
distributions and equilibriums that could generate the distribution of data D .

EPoA(A,D) = max
Γ, F, σ∈BNE(A,F,Γ)∩D(A,σ)=D

Welfare(Opt)

Welfare(A(σ))
(5)

We use the notation D(A) = D to denote that D is the distribution of data produced
by running the mechanism A, taken in expectation over all type distributions and the
randomness of the auction. In our setting, these data will be quantities resulting from
distributions of bids, including the expected revenue of the strategy profile.

3.1 Empirical Revenue Covering Framework for Position Auctions

In this section, we refine the revenue covering framework of Hartline et al. [2014] for
empirical bounds. Notably, we use a pointwise version of revenue-covering that applies
for a given strategy profile and auction rather than taking the worst-case revenue covering
over all strategy profiles.

The property of µ-revenue covering is based only on the relationship between the ex-
pected revenue of an auction, and a property of the optimization problem that the bidders
are solving (the expected threshold).

Both of these quantities are observable in the data, and hence by observing that an
instance of an auction is µ-revenue covered, we will get empirical price of anarchy bounds
that apply for the auction we are observing.
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The rest of this section will proceed in three parts:

1. Generate PPC Allocation rules: Analyze how to bid in the auction.

2. Measure µ: Analyze the correspondence between thresholds and revenue in the auc-
tion.

3. Measure λ: Calculate the worst-case tradeoff between utility and thresholds in the
auction.

Generate PPC Allocation Rules We first focus on the optimization problem each
bidder faces. When bidding in an auction, each bidder must think about for each possible
bid, how many clicks she will receive and how much she will have to pay on average for
each click. In particular, the utility of an agent can be written to only include these terms:

ui(b) = vixi(b)− Pi(b)

= xi(b)

(
vi −

Pi(b)

xi(b)

)
(6)

The price-per-click term Pi(b)
xi(b)

term now plays exactly the same role in the utility func-

tion that the first-price bid does in the first price auction. We call this term ppc(b) = Pi(b)
xi(b)

the price-per-click of the bid in a position auction. Outside of position auctions, it is called
the (first-price) equivalent bid in Hartline et al. [2014], because it plays the same role as a
first-price bid does in a first-price style auction.

Our analysis will be based on the price-per-click allocation rule x̃(ppc), which plots
the expected number of clicks of bids against their prices-per-click. See Figure 1b for an
illustration of the PPC allocation rule.

The utility of a bidder has a simple representation on the plot of the PPC allocation
rule. The utility of a bidder is ui(b) = xi(b) (vi − ppc(b)), which has a clean visualization on
a plot of the PPX allocation rule: is the area of a rectangle between the points (ppc, x̃i(ppc))
and (vi, 0). See Figure 1 for an illustration.

Thresholds & Revenue Covering We will most often use the inverse of the PPC
allocation rule for our analysis; let τi(z) = x̃−1

i (z) be the price-per-click of the cheapest bid
that achieves allocation at least z. More formally, τi(z) = minb|xi(b)≥z{ppc(b)}.

The threshold for agent i and expected probability of click x′i is

Ti(x
′
i) =

∫ x′i

0
τi(z) dz (7)

See Figure 3b for an illustration of Ti(x
′
i) on the plot of the price-per-click allocation rule.

10



The total threshold for the allocation x′ is then the sum of the thresholds across all
agents,

∑
i Ti(x

′
i).

2 We now refine the notion of revenue-covering from Hartline et al. [2014]
to apply for a specific strategy profile.

Definition 2 (Revenue Covering). Strategy profile σ of auction A is µ-revenue covered if
for any feasible allocation x′,

µRev(A(σ)) ≥
∑
i

Ti(x
′
i). (8)

If we can prove that for any strategy profile the auction and strategy profile are revenue
covered, then we say the auction is µ-revenue covered - this matches the definition of µ-
revenue covering in Hartline et al. [2014].

Definition 3. Auction A is µ-revenue covered if for any strategy profile σ, σ and A are
µ-revenue covered.

Value Covering & PoA Results

Lemma 4 (Value Covering). For any bidder i with value vi and allocation amount x′i,

ui(vi) +
1

µ
Ti(x

′
i) ≥

1− e−µ

µ
x′ivi. (9)

The proof is included in the appendix for completeness: it is a refinement of the proof
of value covering in Hartline et al. [2014], matching the bound in Syrgkanis and Tardos
[2013] for c-threshold approximate auctions.

Combining revenue covering of a strategy profile and value covering gives a welfare
approximation result for that strategy profile:

Theorem 5. The welfare in any µ-revenue covered strategy profile σ of auction A is at
least a µ

1−e−µ -approximation to the optimal welfare.

Proof of Theorem 5. Let x∗(v) be the welfare optimal allocation for valuation profile v.
Recall that the optimal allocation is also allowed to use the instantiation of the quality
scores and is taken in expectation over the quality scores. Applying the value covering
inequality of Equation (9) with respect to allocation quantity x∗i (v) gives that for each
bidder i with value vi,

ui(vi) +
1

µ
Ti(x

∗
i (v)) ≥ 1− e−µ

µ
x∗i (v)vi. (10)

2Note that while this is different than the general definition of expected thresholds in Hartline et al.
[2014], it is the same as the definition of thresholds for the generalized-first-price position auction in Hartline
et al. [2014]. It is also related to the threshold notion in Syrgkanis and Tardos [2013], which uses τ(x′) as
the threshold quantity rather than T (x′) =

∫ z
0
τ(z) dz.
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The quantity x∗i (v)vi is exactly agent i’s expected contribution to the welfare of the
optimal auction. Applying the revenue covering inequality (8) for x′ = x∗(v) and taking
expectation over v yields:

µ ·Rev(A(σ)) ≥ Ev

[∑
i

Ti(x
∗
i (v))

]
(11)

By Equations (10) and (11) we obtain:

Util(A(σ)) + Rev(A(σ)) ≥ Ev

[∑
i

ui(vi)

]
+ Ev

[∑
i

1

µ
Ti(x

∗
i (v))

]

=
∑
i

Ev

[
ui(vi) +

1

µ
Ti(x

∗
i (v))

]
≥
∑
i

Ev

[
1− e−µ

µ
x∗i (v)vi

]
=

1− e−µ

µ
Welfare(Opt)

Since Welfare(A(σ)) = Rev(A(σ)) + Util(A(σ)), we have our desired result:

Welfare(A(σ)) ≥ 1− e−µ

µ
Welfare(Opt).

See Figure 2 for a plot of the price of anarchy as a function of µ.

3.2 Refining with Observational Data

We now discuss the calculation of µ from the distribution of data D generated by an auction.
The revenue of an auction is observable in D . If we can also upper bound

∑
i Ti(x

′
i) for any

feasible allocation x′, then we have an upper bound on µ. Define T to be this upperbound,
hence T = maxx

∑
i Ti(xi).

Recall that as the auction gets to know the quality scores before deciding the allocation
of positions, any feasible allocation corresponds to a quality score dependent assignment
of slots to bidders.

If the quality scores γ were deterministic, then we could write

Tfixed = max
x

∑
i

Ti(xi) = max
ρ

∑
i

Ti(Eγ

[
γiαρ−1(γ,i)

]
) = max

π

∑
i

Ti(γiαπ−1(i)). (12)

The latter optimization problem would simply be a bipartite weighted matching problem,
where the weight of bidder i for position j would be Ti(γiαπ−1(i)). However, when the
quality scores are random and their distribution has support of size K, then the space
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of feasible assignments M has size (nm)K and the problem does not have the structure
of a matching problem anymore, since the functions Ti(·) are arbitrary convex functions.
Solving this complicated maximization problem seems hopeless. In fact it can be shown
that the latter problem is NP-hard by a reduction from the maximum hypergraph matching
problem, when the size of the support of the correlated distribution of γ is not constant.
The hardness arises even if each γi is either 0 or 1. We defer the proof to the full version.

However, for the purpose of providing an upper bound on the empirical price of anarchy,
it suffices to compute an upper bound on T and then show that this upper bound is revenue
covered. We will use the convexity of functions Ti(·) to provide such an upper bound.
Specifically, let

xi = max
x

xi = max
ρ∈M

Eγ

[
aρ−1(γ,i)γi

]
= α1 Eγ [γi]

denote the maximum possible allocation of bidder i. Then observe that by convexity for
any feasible xi: Ti(xi) ≤ xi Ti(xi)xi

. Thus we will define:

T
1

= max
x

∑
i

xi
Ti(xi)

xi
(13)

Then we immediately get the following observation:

Observation 1. T
1 ≥ T.

Computing T
1

is a much easier computational problem than computing T. Specifically,
by linearity of expectation:

T
1

= max
x

∑
i

xi
Ti(xi)

xi
= max

ρ∈M

∑
i

Eγ

[
αρ−1(γ,i)γi

] Ti(xi)
xi

= max
ρ∈M

Eγ

[∑
i

αρ−1(γ,i)γi ·
Ti(xi)

xi

]

= Eγ

[
max
π∈Π

∑
i

απ−1(i)γi ·
Ti(xi)

xi

]

Now observe that the problem inside the expectation is equivalent to a welfare maximization
problem where each player i has a value-per-click of v′i = Ti(xi)

xi
and we want to maximize

the welfare:
∑

i απ−1(i)γi · v′i. The optimal such allocation is simply the greedy allocation

which assigns slots to bidders in decreasing order of γi · v′i. Thus computing T
1

consists of
running a greedy allocation algorithm for each quality score profile γ in the support of the
distribution of quality scores, which would take time K · (m + n log(n)). When applying
it to the data, we will simply compute the optimal greedy allocation for each instance of
the quality scores that arrives in each auction (i.e. we compute the latter for the empirical
distribution of quality score profiles).
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T Lower Bounds If we can find a lower bound T ≤ T, then we can use T as a certificate
for the optimality of our upper bound: we will know that at best the auction is T/Rev(A)-
revenue covered.

One such lower bound comes from considering the case that the auction does not know
the quality scores when deciding the allocation. This case is equivalent to the case that
the bidder has a deterministic quality Eγ [γi]. The total threshold can be calculated just
as in Equation (12): let Tavg = maxπ

∑
i Ti(Eγ [γi]απ−1(i)).

If we show that Tavg is revenue covered then we get an efficiency guarantee with respect
to the optimal allocation problem that cannot condition on the quality scores

This can be seen as an interesting alternative welfare benchmark, even when the auction
gets to see the quality scores at the allocation time.

As a fixed allocation independent of the quality scores is a feasible quality score de-

pendent allocation, we immediately get that: Tavg ≤ T ≤ T
1
. Thus we can use Tavg as

a certificate of approximate optimality of our upper bound T
1

to check that it is not far
from the true optimal threshold T.

Empirical Revenue Covering If we can estimate the threshold upper-bound and the
revenue, then this is now enough for a revenue-covering result for the strategy profile being
played in the auction:

Lemma 6. For any auction A with strategy profile σ, revenue Rev(A) and threshold upper

bound T, A is T
Rev(A) -revenue covered with (implicit) strategy profile σ.

Combining this with Theorem 5 directly gives a welfare approximation result:

Corollary 1. For any instance of an auction, with (unobservable) strategy profile σ and
(observable) revenue Rev(A) and threshold upper bound T, the empirical price of anarchy
for auction A is at most

T

Rev(A)

1

1− e−T/Rev(A)
. (14)

Empirical Value Covering We can also use data to improve the 1
1−e−µ factor in the

approximation bound. This term comes from value covering (Lemma 4), which analyzes
how bidders react to the price-per-click allocation rules they face. In the proof of value
covering, it is shown that no matter what the price-per-click allocation rule is, it is always
the case that ui+

1
µTi(x

′
i) ≥ 1−e−µ

µ x′ivi. When we can observe the price-per-click allocation
rules, we can simply take the worst case over the price-per-click allocation rules that we
observe for each player, giving an improved price of anarchy result.

Definition 7 (Empirical Value Covering). Auction A and strategy profile σ are empirically
λ-value covered if A is µ-revenue covered, and for any bidder i with value vi and allocation

14



amount x′i,

ui(vi) +
1

µ
Ti(x

′
i) ≥

λ

µ
x′ivi. (15)

Lemma 8. If auction A and strategy profile σ are empirically µ-revenue covered and λ-
value covered, then the empirical price of anarchy of A and σ is at most µ

λ .

Proof. The proof is analogous to the proof of Theorem 5, using the value covering parameter
λ in place of the general value covering result, Lemma 4.

As threshold quantities are observable in the data — and required to generate revenue
covering results — one approach is to directly look, and find the worst case ratio of threshold
and utility to value.

Lemma 9. For a µ-revenue covered strategy profile σ and auction A with maximum feasible

probabilities of allocation xi, let λµi = minvi,x′i
µui(vi)+Ti(x

′
i)

x′ivi
and λµ = mini λ

µ
i .

Then A and σ are empirically λµ-value covered.

In the case that an auction is shown to be µ-revenue covered with respect to the upper

bound T
1
, the maximization can be simplified to only consider the allocation amount xi,

hence λµi = minvi
µui+Ti(xi)

vi
.

Concentration Bounds We can also improve on the value covering term even if we
only know some properties about the concentration of the price-per-click allocation rule.
If the price-per-click allocation rule is highly concentrated, and the minimum feasible price
per click is at least a (1− 1

k ) fraction of the maximum feasible price per click, we can get
significantly improved bounds.

Lemma 10. For any µ-revenue covered auction A and strategy profile σ with µ ≥ 1,
if τ(ε) ≥ (1 − 1/k)τ(x′) for any feasible allocation amount x′ and ε > 0, A and σ are
empirically (1− 1/k)-value covered.

The proof is included in the appendix: see Table 1 for better numerical results.

4 Learning Agents and Empirical Price of Anarchy

We show that the exact same analysis as in the previous section extends even if the data
we observe are not generated from a Bayes-Nash equilibrium of a stochastic i.i.d. valuation
setting, but rather are generated from learning agents whose valuation is fixed and who
are experimenting on how to play, using some no-regret learning algorithm.

In this setting, we assume we observe a sequence of data D of T timesteps. The
empirical price of anarchy takes the following definition

15



µ k = 1 k = 2 k = 4 k = 10 k = 100

0.5 1.271 1. 1. 1. 1.
0.75 1.421 1.116 1. 1. 1.

1 1.582 1.302 1.163 1.072 1.009
1.25 1.752 1.506 1.382 1.304 1.256
1.5 1.931 1.717 1.61 1.545 1.505
2 2.313 2.157 2.079 2.032 2.003
4 4.075 4.037 4.019 4.007 4.001
8 8.003 8.001 8.001 8. 8.

Table 1: Empirical Price of Anarchy when the price-per-click of getting any allocation is
at least a (1 − 1

k ) fraction of the price-per-click of getting the maximum allocation, with
empirical revenue covering parameter µ.

Definition 11 (Empirical Price of Anarchy for Learning Agents). The empirical price-
of-anarchy for learning agents of an auction and a distribution of data D generated by
the auction is the worst-case ratio of welfare in the optimal auction to the welfare in an
equilibrium, taken over all valuation profiles and learning outcomes that could generate the
sequence of data D .

EPoA(A,D) = max
v,D is no-regret for v

∑T
t=1 Welfare(Opt(v, γt); v)∑T
t=1 Welfare(A(bt, γt); v)

(16)

4.1 Average Utility, Average Price-per-click

We first focus on the optimization problem each bidder faces. When bidding in a sequence
of auctions, we assume that each bidder i, with some value vi, is submitting a sequence
of bids bti, such that in the limit he achieves no-regret with respect to any fixed bid in
hindsight:

∀b′i : lim sup
T→∞

1

T

T∑
t=1

(
Ui(b

′
i,b

t
−i; vi)− Ui(bt; vi)

)
≤ 0 (17)

For simplicity, we will assume that the for the sequence we observe, each bidder has
zero regret for his value, with respect any fixed bid. Our results smoothly degrade if the
regret is at most some small ε. Hence, for now on, we will asume:

∀b′i :
1

T

T∑
t=1

(
Ui(b

′
i,b

t
−i; vi)− ui(bt; vi)

)
≤ 0 (18)

16



Consider the utility of an agent from a fixed bid b. We can re-write it as:

1

T

T∑
t=1

Ui(b,b
t
−i; vi) = vi

1

T

T∑
t=1

xi(b,b
t
−i)−

1

T

T∑
t=1

Pi(b,b
t
−i) (19)

Given the sequence of bids and gamma profiles, we define for any fixed bid b:

uTi (b; vi) =
1

T

T∑
t=1

ui(b,b
t
−i; vi) (20)

xTi (b) =
1

T

T∑
t=1

xi(b,b
t
−i) (21)

P Ti (b) =
1

T

T∑
t=1

Pi(b,b
t
−i) (22)

the average allocation and the average payment as a function of the fixed bid. Then we
can write:

uTi (b; vi) = vix
T
i (b)− P Ti (b) = xTi (b)

(
vi −

P Ti (b)

xTi (b)

)
(23)

The average price-per-click term
PTi (b)

xTi (b)
term now plays exactly the same role in the utility

function that the first-price bid does in a one-shot first price auction. We call this term

ppcT (b) =
PTi (b)

xTi (b)
the average price-per-click of the bid in a position auction.

Fixed bid thresholds. We will use the inverse of the PPC allocation rule for our analy-
sis; let τTi (z) be the price-per-click of the cheapest fixed bid that achieves average allocation
at least z. More formally,

τTi (z) = min
b|xTi (b)≥z

{ppcT (b)}. (24)

The threshold for agent i and average probability of click x′i is

T Ti (x′i) =

∫ x′i

0
τTi (z) dz (25)

4.2 Revenue and Value Covering for Learning Agents

First we show that the average utility of a bidder and the average thresholld for any
allocation satisfy a very useful inequality:
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Lemma 12 (Value Covering for Learning Agents). For any bidder i with value vi and
average allocation amount x′i,

1

T

T∑
t=1

Ui(b
t; vi) +

1

µ
T Ti (x′i) ≥

1− e−µ

µ
x′ivi. (26)

Proof. By the no-regret property we know that:

∀b :
1

T

T∑
t=1

Ui(b
t; vi) ≥ uTi (b; vi)

Thus it suffices to show that:

max
b
uTi (b; vi) +

1

µ
T Ti (x′i) ≥

1− e−µ

µ
x′ivi. (27)

The latter follows exactly as in the proof of Lemma 12.

Definition 13 (Revenue Covering for Learning Agents). A sequence of bid profiles b1, . . . ,bT

of auction A is µ-revenue covered if for any feasible average allocation x′,

µ
1

T

T∑
t=1

Rev(A(bt)) ≥
∑
i

T Ti (x′i). (28)

Combining revenue covering of a strategy profile and value covering gives a welfare
approximation result for that strategy profile:

Theorem 14 (Empirical Price of Anarchy Bound for Learning Agents). The average wel-
fare in any µ-revenue covered strategy profile σ of auction A produced by no-regret learning
agents is at least a µ

1−e−µ -approximation to the average optimal welfare.

Proof of Theorem 5. Let x∗(v) be the welfare optimal average allocation for valuation
profile v, i.e. if x∗(v, γ) is the optimal allocation of clicks for valuation profile v and
quality scores γ, then x∗(v) = 1

T

∑T
t=1 x∗(v, γt).

Applying the value covering inequality of Equation (9) with respect to average allocation
quantity x∗i (v) gives that for each bidder i with value vi,

1

T

T∑
t=1

Ui(b
t; vi) +

1

µ
T Ti (x∗i (v)) ≥ 1− e−µ

µ
x∗i (v)vi. (29)

The quantity x∗i (v)vi is exactly agent i’s expected contribution to the welfare of the
optimal auction. Applying the revenue covering inequality (8) for x′ = x∗(v) yields:

µ · 1

T

T∑
t=1

Rev(A(bt)) ≥
∑
i

T Ti (x∗i (v)) (30)
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By Equations (29) and (30) we obtain:

1

T

T∑
t=1

(
Util(A(bt); v) + Rev(A(bt))

)
≥
∑
i

(
1

T

T∑
t=1

Ui(b
t; vi) +

1

µ
T Ti (x∗i (v))

)

≥ 1− e−µ

µ

∑
i

x∗i (v)vi

=
1− e−µ

µ

1

T

T∑
t=1

∑
i

vix
∗
i (v, γ

t)

=
1− e−µ

µ

1

T

T∑
t=1

Welfare(Opt(v, γt))

Since Welfare(A(b)) = Rev(A(b)) + Util(A(b); v), we have our desired result:

1

T

T∑
t=1

Welfare(A(bt, γt)) ≥ 1− e−µ

µ

1

T

T∑
t=1

Welfare(Opt(v, γt))

5 Statistical properties of the Empirical Price of Anarchy

Our empirical approach is based on the analysis of the average cost per click in a sponsored
search auction defined as the ratio of the expected price to the expected click probability
in a given auction instance. We are going to adhere to the settings where in each auction
t we observe the bids of n eligible bidders i = 1, . . . , n denoted bi,t.

3 We assume that we
observe T instances of the auction for each bidder whose allocation we consider in the
EPoA bound.

As we mentioned previously, in position auctions the additional randomness is intro-
duced by the scoring rule that comes out of the scoring algorithm crafted by the search
engine to estimate bidder-specific probabilities of a click. The scores si,t assigned to each
bidder are derived from the click probabilities. Although, in many theoretical analyses it
is assumed that γi,t ≡ si,t, in practice the scores are not always equal to the clickabilities,
for instance, due to “squashing” or penalization of particular bidders (e.g. associated with
fraudulent or harmful web content). These multipliers can play various roles from con-
trolling the relevance of ads to the users to price discrimination of the participants of the
auction. Our results extend to the case of arbitrary scoring algorithm (provided that the
true bidder-specific click probabilities can also be recovered from the data).

3The number of bidders is fixed without loss of generality. If the number of active bidders varies over
time then n defines the upper bound on the number of participating bidders and the bids of the “inactive”
bidders are set to zero.
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We now characterize the structure of the allocation rule that defines “auction logic”, i.e.
the function that takes the scores and bids as inputs and outputs the prices per click and
allocations to the bidders. The auction logic is based on the customization of the order of
bidders to each auction (corresponding to an individual user query) using the assignment
rule ρ(bt, st, j). We recycle the notation ρ that we used before but add an argument bt to
note that the assignment of the bidder to slot j depends both on the vector of scores st
and the bids bt eligible for query t. We use the notation bi,t to denote the bid of bidder i
applied to auction t and si,t to denote the score of this bidder in that query. As in Athey
and Nekipelov [2010] we also can incorporate the (random and fixed) query, main line and
other reserve prices by adding “virtual bidders” to the set of actual bidders to incorporate.

Assumption 1. In each query t, the allocation of bidders to slots is determined by the
allocation rule ρ(bt, st, j) for j = 1, . . . , J where each function ρ(bt, st, j) can be represented
as a finite superposition of:

(i) Fixed linear functions of bt, st and the element-by-element product st ∗ bt

(ii) Indicator functions for 1{· > ·}

(iii) Sums and differences · ± ·

Finally, for each bidder i the ratio γi,t/si,t < Γ.

Note that the allocation rule ρ(bt, st, j) also determines the price once the pricing rule
is known. For GSP the price of slot j can be computed as

p(bt, st, j) =
sρ(bt,st,j+1),tbρ(bt,st,j+1),t

sρ(bt,st,j),t

An example of the implementation of the allocation and price rule for the generalized
second price auction with a simple single reserve price is given in Edelman et al. [2007] and
Varian [2009]. In that case the price and the allocation rule are determined solely by the
score-weighted bid sitbit for each bidder. The allocation of bidders to slots is determined
by the ranks of their score-weighted bids:

n∑
k=1

1
{
sk,tbk,t > γρ(bt,st,j),tbρ(bt,st,j),t

}
= j − 1.

Our inference will be based on the idea that the customization of the order of bidders to
users generates randomness, that in turn, allows us to apply the concentration inequalities
to the prices and allocations averaged over T auction instances.

Assumption 2. The combined score profile and the vector of bids (st, bt) is independently
drawn from its fixed joint distribution at each auction instance t.
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We note here that Assumption 2 is sufficient but not necessary to establish our bound
inequalities below. Our general results only require the vector of bids and scores to follow
a β-mixing over the course of arriving auctions. That allows for various adaptation and
learning dynamics for bids and the scoring algorithm. We omit those more general results
for the sake of brevity.

We allow general setting where the scores of different bidders can be correlated (i.e.
there can be query-level features that affect the scores of all participating bidders). At the
same time, we also notice that in our formulation we allow the values of the bidder to come
from an arbitrary distribution and be correlated both across bidders and over time. In
particular, the case of fixed values of the bidders (such as in Edelman et al. [2007], Varian
[2009] and Athey and Nekipelov [2010]) is included as a special case.

Note that in the context of the random scores, the expected price and allocation rules
are computed as expectations over the bid and the score distributions:

pi(b) = Es,b−i

[
αρ−1(bt,st,i)γi,t

sρ(bt,st,ρ−1(bt,st,i)+1),tbρ(bt,st,ρ−1(bt,st,i)+1),t

si,t

∣∣∣∣ bi,t = b

]
and

xi(b) = Es,b−i
[
αρ−1(bt,st,i)γi,t

∣∣ bi,t = b
]
.

Now for position discounts α1, . . . , αJ we estimate the expected price and allocation rule
by replacing expectations with sample averages:

p̂i(b) =
1

T

T∑
t=1

αρ−1(b̃t,st,i)
γi,t

sρ(b̃t,st,ρ−1(b̃t,st,i)+1),tbρ(b̃t,st,ρ−1(b̃t,st,i)+1),t

si,t
(31)

and

x̂i(b) =
1

T

T∑
t=1

αρ−1(b̃t,st,i)
γi,t, (32)

where b̃t = (b, b−i,t), i.e. this is the bid profile where the bid of bidder i is set to a and the
bids of remaining bidders are set to the empirically observed values.

In our subsequent analysis we assume that the bid space is bounded such that there is
a universal constant B such that the support of bids is a compact subset of [0, B]. Next
we characterize the properties of the presented estimators for the price and the allocation
functions.

Theorem 15. For estimators (31) and (32) there exist universal constants C1, C2 and φ
such that

E

[
sup
b∈[0,B]

√
T |p̂i(b)− pi(b)|

]
≤ C1B α1 Γnφ

and

E

[
sup
b∈[0,B]

√
T |x̂i(b)− xi(b)|

]
≤ C2 α1 n

φ.
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The result of the theorem suggests that under fixed (or bounded) number of bidders in
the auctions, the estimated expected price and allocation rule have the error that contracts
at the rate

√
T , i.e. behaves like the sample mean of the i.i.d. sequence of random

variables. That also gives us a simple approach to computing the upper bound variance of
the estimated price and the allocation rule by taking the maximum of

V̂ar(x̂i(b)) =
1

T

T∑
t=1

(
αρ−1(b̃t,st,i)

γi,t − x̂i(b)
)2

over the bid space, and obtain a similar evaluation for the variance of the price function.
Next we turn to the analysis of the quantities that form the EPoA, namely the integrals

of functions τi(z). In that case the object of interest, can be written as

Ti(x) =

x∫
0

pi(x
−1
i (z))

z
dz.

We need to ensure that this function is well-behaved if the true population allocation and
pricing rule are available.

Assumption 3. Functions pi(·) and xi(·) are continuous and strictly monotone. Moreover,
there exist constants κ, ζ > 0 and ∆ > 0 such that for b ∈ [0, ∆]

p̂i(b) < κ b+ o(∆) and x̂i(b) > ζ b+ o(∆).

Moreover, the population counterparts pi(b) and xi(b) satisfy

|pi(b1)− pi(b2)| ≤ Lp|b1 − b2|, and |xi(b1)− xi(b2)| ≥ Lx|b1 − b2|.

Now we define the empirical analog of Ti(x) obtained by the replacement of the true
allocation and pricing functions with their empirical analogs:

T̂i(x) =

x∫
0

p̂i(x̂
−1
i (z))

z
dz.

Our next step will be to establish the uniform convergence of the estimated function T̂i(x)
to Ti(x).

Theorem 16.

E

[
sup
x∈[0,1]

√
T
(
T̂i(x)− Ti(x)

)]
≤ O

(
nφ
)
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Now we investigate how the replacement of the true thresholds with the empirical

thresholds affect the outcome of maximization over possible allocations. Define T̂ =
max

x

∑
i
T̂i(xi),

Corollary 2. E
[√

T
∣∣∣T̂−T

∣∣∣] = O(n1+φ)

Proof. From Theorem 16 it follows that

sup
xi

√
T
∣∣∣T̂i(xi)− Ti(xi)∣∣∣ = Op(n

φ).

Then

sup
x

√
T

∣∣∣∣∣∑
i

T̂i(xi)−
∑
i

Ti(xi)

∣∣∣∣∣ = Op(n
φ+1).

Provided that for two non-negative functions sup
x

(f(x) − g(x)) ≥ sup
x
f(x) − sup

x
g(x), we

conclude that

sup
x

∑
i

T̂i(xi) ≤ sup
x

∑
i

Ti(xi) +Op

(
nφ+1

√
T

)
.

This corollary states that the empirical analog of T approaches to its true value and the
distance between the true and the empirical value is of order nφ+1/

√
T , i.e. this distance

shrinks at the rate
√
T .

The last component is the estimation of the revenue. Note that the true revenue in our
notation can be expressed as

Rev(M) =
1

T

T∑
t=1

∑
i

pi(bi,t).

The corresponding empirical revenue is obtained by the replacement of the expected pay-
ment function with its estimated version, i.e.

R̂ev(M) =
∑
i

p̂i(bi).

Corollary 3.

E
[√

T |R̂ev(M)− Rev(M)|
]

= O(nφ+1)
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Proof. Note that

√
T |R̂ev(M)− Rev(M)| ≤

∑
i

√
T |p̂i(bi,t)− pi(bi,t)|

≤ nmax
i

sup
b

√
T |p̂i(b)− pi(b)|

= O(nφ+1)

Thus we established that both the empirical analog for T and the empirical analog for
Rev(M) converge to their true counterparts at the rate

√
T .

6 Data Analysis

We run our analysis on the BingAds auctions. We analyzed eleven phrases from multiple
thematic categories. For each phrase we retrieved data of auctions for the phrase for the
period of a week. For each phrase and bidder that participated in the auctions for the
phrase we computed the allocation curve and by simulating the auctions for the week and
computing what would have happened at each auction for each possible bid an advertiser
could submit. We discretized the bid space and assumed a hard upper bound on the bid
amount.

For instance the left part of Figure 3 shows the allocation curves for a subset of the
advertisers for a specific search phrase. Then we computed the threshold curves by nu-
merically integrating the allocation curves. The threshold curves for the same subset of
advertisers are depicted in the right part of Figure 3. Most of these keywords have a huge
amount of heterogeneity across advertisers as can be seen by the very different bid levels
of each advertiser and the very different quality score. For instnace, in Figure 4 we depict
the average bid, average quality score and average payment of each of the same subset of
advertisers for which we depicted the allocation and threshold function in Figure 3.

Subsequently, we applied all the techniques we describe in Section 3 for each of the

search phrases. We first computed the optimal upper bound on the thresholds T
1

and by
observing the revenue of the auctions from the data, we can compute an upper bound on

the revenue covering of the auction for the phrase, i.e. µ1 = T
1
/Rev. Then for this µ1

we optimized over λ by using the allocation curves and Lemma 9 and assuming some hard
upper bound on the valuation of each advertiser and found the optimal such λ, denoted by
λ1. Then an upper bound on the empirical price of anarchy is µ1/λ1.

Subsequently we tested the tightness of our analysis by computing the value of the true
thresholds on the optimal allocation that was computed under the linear approximations
of the thresholds. This is a feasible allocation and hence the true value of T is at least the
value of the thresholds for this allocation. Hence, by looking at the value of the thresholds
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Figure 3: Examples of allocation curves (left) and threshold curves (right) for a subset
of six advertisers for a specific keyword during the period of a week. All axes are nor-
malized to 1 for privacy reasons. The circles in the left plot correspond to the expected
allocation and expected threshold if bidder i was given the j-th slot in all the auctions, i.e.
the circle corresponding to the highest allocation and threshold corresponds to the point
(α1 E[γi], T (α1 E[γi])), the next circle corresponds to (α2 E[γi], T (α2 E[γi])), etc.

Figure 4: Average bid E[bi], average quality factor E[γi] and average revenue contribuiton
E[Pi], correspondingly, for the same subset of six advertisers that participated in a specific
keyword during the period of a week. y axes are normalized to 1 for privacy reasons.
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at this allocation, denoted by LB − T we can check how good our approximation of T

is T
1
. Then we also computed the optimal thresholds for any quality score independent

allocation rule. Apart from yielding yet another lower bound for T, the latter analysis also
yields an empirical price of anarchy with respect to such a handicaped optimal welfare,
which can also be used as a welfare benchmark.

We portray our results on these quantities for each of the eleven search phrases in Table
2
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1
EPoA1

T
1

Rev λ1 LB−T
Rev

1
LB−EPoA

Tavg

Rev
1

FA−EPoA
phrase1 .567 1.4164 .803 .562 .788 .511 .783
phrase2 .606 1.2848 .779 .553 .792 .509 .784

phrase3 .279 4.182 1.167 3.364 .325 2.966 .320
phrase4 .284 3.860 1.098 2.298 .401 1.556 .507

phrase5 .673 1.099 .740 .437 .828 .386 .829
phrase6 .628 1.183 .743 .495 .832 .488 .791
phrase7 .672 1.031 .693 .503 .824 .459 .802

phrase8 .645 1.036 .669 .520 .795 .419 .817
phrase9 .622 1.169 .726 .581 .759 .441 .809

phrase10 .597 1.138 .680 .545 .771 .377 .833
phrase11 .573 1.431 .820 .631 .780 .502 .786

Table 2: Empirical Price of Anarchy analysis for a set of eleven search phrases on the
BingAds system. Phrases are grouped together according to the thematic category of
the search phrase. The columns have the following interpretation: 1) EPoA1 is the upper
bound on the empirical price of anarchy, i.e. if 1/EPoA1 is x it means that the welfare of the
auction is at least x·100% efficient. This lower bound is computed by using the polynomially

computable upper bound T
1

of T and then also optimizing over λ. 2) µ1 = T
1
/Rev is

the ratio of the upper bound on the maximum sum of thresholds over the revenue of the
auction. 3) λ1 is the minimum lambda across advertisers after running the optimization
problem presented in Lemma 9 for the allocation curve of each advertiser, assuming some
upper bound on the value. Then based on Lemma 8, EPoA1 = λ1/µ1. 4) LB −T/Rev:
we use the optimal allocation computed by assuming the linear form of thresholds used for

T
1
. Then we evaluate the true thresholds on this allocation. This is a feasible allocation

and hence the value of the thresholds on this allocation, denoted LB−T is a lower bound
on the value of T. Thus this ratio is a lower bound on how well the auction is revenue
covered. 5) LB − EPoA, this is simply the empirical price of anarchy bound that would
have been implied if T = LB − T and even if we optimized over λ. Thus 1

LB−EPoA is
an upper bound on how good our efficiency bound could have been even if we solved the
hard problem of computing T. 6) Tavg, this corresponds to the optimal thresholds with
respect to any quality score independent feasible allocation as defined in Section 3. 7)
FA − EPoA a bound on the empirical price of anarchy with respect to a quality score
independent allocation rule. For this price of anarchy we did not optimize over λ, hence
FA− EPoA = µ

1−exp(−µ) .
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A Appendix for Price of Anarchy from Data

Lemma 4 (Restatement). For any bidder i with value vi and allocation amount x′i,

ui(vi) +
1

µ
Ti(x

′
i) ≥

1− e−µ

µ
x′ivi.

(Proof sketch). The proof proceeds analogously to the proof of value covering in Hartline
et al. [2014], first defining a lower bound T (x) =

∫ x
0 τ(z) dz s.t. τ(z) ≤ τ(z) and hence

T (x) ≤ Ti(x).

T (x′i) =

∫ x′i

0
τ(z) dz

=

∫ x′i

0
max(0, v − ui(vi)/z) dz

Evaluating the integral gives T (x′i) = (vix
′
i − ui(vi))− ui(vi)

(
log x′i − log ui(vi)

vi

)
, thus

ui(vi) +
1

µ
T (x′i) = ui(vi) +

1

µ

(
vix
′
i − ui(vi)

(
1 + log x′i − log

ui(vi)

vi

))
and

ui(vi) + 1
µT (x′i)

vi
=
ui(vi)

vi
+

1

µ

(
x′i −

ui(vi)

vi

(
1 + log x′i − log

ui(vi)

vi

))
(33)

The right side of Equation (33) is convex in ui(vi)
vi

, so we can minimize it by taking
first-order conditions in ui

vi
, giving

0 = 1− 1

µ

(
log x′i − log

ui(vi)

vi

)
.

Thus the right side of Equation (33) is minimized with ui(vi)/vi = x′ie
−µ, giving our desired

result,

ui(vi) + 1
µT (x′i)

vi
≥ 1− e−µ

µ
x′i.

Lemma 10 (Restatement). For any µ-revenue covered mechanism M and strategy
profile σ with µ ≥ 1, if τ(ε) ≥ (1 − 1/k)τ(x′) for any feasible allocation amount x′ and
ε > 0, M and σ are empirically (1− 1/k)-value covered.
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(Proof sketch). First, for bidders with values vi < τ(1), the bound holds even without the
ui term, as

Ti(x
′
i) =

∫ x′i

0
τ(z) dz (34)

≥
∫ x′i

0
τ(0) (35)

≥ x′i(1− 1/k)τ(1) (36)

≥ x′i(1− 1/k)vi (37)

Consider bidders with values vi ≥ τ(1). As such a bidder can always choose the bid
with price-per-click τ(1) and get utility vi − τ(1), we know ui(vi) ≥ vi − τ(1). For any
allocation they choose, we then have

ui(vi) +
1

µ
Ti(x

′
i) ≥ vi − τ(1) +

1

µ

∫ x′i

0
τ(z) dz (38)

≥ vi − τ(1) +
1

µ
x′i(1− 1/k)τ(1) (39)

≥ vi − τ(1) +
x′i(1− 1/k)τ(1)

max(1, µ)
(40)

≥ (vi − τ)

(
1− x′i(1− 1/k)

max(1, µ)

)
+
x′i(1− 1/k)vi

max(1, µ)
(41)

≥ x′i(1− 1/k)vi
max(1, µ)

(42)

We can improve on the bound by considering the worst-case price-per-click allocation
rule that satisfies τ(1) = 1 and τ(0) = 1− 1

k , much like in the proof of value covering.
The worst case price-per-click allocation rule x̃, for agents with value v = u+ 1 is

x̃(z) =


1 if 1 ≤ z
u
v−z if 1− 1

k ≤ z ≤ 1

0 if z ≤ 1− 1
k

. (43)

Note that this is exactly the price-per-click allocation rule that results in the bidder being
indifferent over all bids in [1− 1

k , 1], as opposed to the indifference over [0, 1] for the normal
value covering proof (with a little more normalization).

We can again define T (x′i) to be the threshold based on x̃. We will solve numerically
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for the case that x′i = 1 as every other case is strictly worse. So,

T (1) =

∫ 1

0
τ(z) dz (44)

= 1−
∫ 1

1−1/k
x̃(y) d y (45)

= 1−
∫ 1

1−1/k

u

v − y
d y (46)

= 1 + u

(
log(v − 1)− log(v − (1− 1

k
))

)
(47)

= 1 + u log
v − 1

v − (1− 1
k )

(48)

Thus, ui + 1
µT (1) = u+ 1

µ

(
1 + u log v−1

v−(1− 1
k

)

)
, and

v

ui + 1
µT (1)

=
v

u+ 1
µ

(
1 + u log v−1

v−(1− 1
k

)

) (49)

In the worst case, u = v − 1, so

v

ui + 1
µT (1)

=
v

v − 1 + 1
µ

(
1 + (v − 1) log v−1

v−(1− 1
k

)

) (50)

Numerically minimizing for a variety of µ and k values give the results in Table 1.

B Uniform inference for price and allocation functions

Theorem 15 (Restatement). For estimators (31) and (32) there exist universal con-
stants C1, C2 and φ such that

E

[
sup
b∈[0,B]

√
T |p̂i(a)− pi(a)|

]
≤ C1B α1 Γnφ

and

E

[
sup
b∈[0,B]

√
T |x̂i(b)− xi(b)|

]
≤ C2 α1 n

φ.

30



Proof. First of all, we notice that estimators (31) and (32) can be expressed in terms of
function ρ(·):

x̂i(a) =
1

T

T∑
t=1

J∑
j=1

αjγi,t1{ρ(a, bt,−i, st, j) = i}

and

p̂i(a) =
1

T

T∑
t=1

J∑
j=1

αjγi
sj+1bj+1

si
1{ρ(a, bt,−i, γt, j) = i}

Consider the class of functions Rj = {ρ(a, ·, ·, j), a ∈ [0, B]} which defined as the index
of the bidder in position j that results from applying the allocation rule to the bid profile
where the bid of bidder i is fixed at a. Provided that ρ(·) is based on linear functions of bt,
st and bt ∗ st. This means that ρ(a, ·, ·, j) is constructed from a linear space of functions to
the linear span of (a, ·∗a). Thus the VC dimension of such function is at most 4 by Lemma
2.6.15 in Van Der Vaart and Wellner [1996]. Next, the comparison indicator for elements
of st, b̃t and st ∗ b̃t leads to at most 3n functions of the form 1{a > ·} or 1{· × a > ·}. By
Lemma 2.6.18 in Van Der Vaart and Wellner [1996] and the previous finding, each of these
3n classes is a VC class. The application of weighted sums and differences to these classes
form a linear space of dimension 3n. Thus the resulting class Rj is a VC class where the
VC dimension is bounded by low order polynomial in n.

Now consider the class of functions

Xi =


J∑
j=1

αj × · × 1{f(·) = i}, f ∈ Ri

 ,

and

Pi =


J∑
j=1

αj × · × · × 1{f(·) = i}, f ∈ Ri

 ,

These classes are VC classes by Lemma 2.6.18 in Van Der Vaart and Wellner [1996].
Provided our previous result, we can bound the VC dimension of these classes by a constant
multiple of nφ for some φ <∞. Now denote FXi the envelope function for the class Xi and
FPi the envelope function for Pi. By Theorem 2.6.7. in Van Der Vaart and Wellner [1996]
the covering numbers for classes of functions Xi and Pi for a given probability measure Q
can be bounded by

log N(ε‖FXi‖Q,2,Xi, L2(Q)) ≤ A1n
φ log

(
1

ε

)
and

log N(ε‖FPi‖Q,2,Pi, L2(Q)) ≤ A2n
φ log

(
1

ε

)
,
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where ‖f‖Q,2 =
(∫
f(x)2dQ(x)

)1/2
.

Define the uniform covering integral as

J(t,Xi) = sup
Q

∫ t

0

√
1 + log N(ε‖FXi‖Q,2,Xi, L2(Q)) dε,

and similarly define J(t,Pi). Provided that our bounds on both covering numbers do not
contain the measure Q, we note that∫ t

0

√
1 + log N(ε‖FXi‖Q,2,Xi, L2(Q)) dε ∝ nφt log

(
1

t

)
≤ e nφ.

Next notice that by construction of Xi and Pi, the corresponding envelopes are bounded,
which implies that

‖FXi‖Q,2 ≤ α1, and ‖FPi‖Q,2 ≤ α1B Γ.

Next, the application of Theorem 2.14.1 in Van Der Vaart and Wellner [1996] allows us
to evaluate

E

[
sup
b∈[0,B]

√
T |p̂i(b)− pi(b)|

]
≤ O (J(1,Pi)‖FPi‖Q,2)

and

E

[
sup
b∈[0,B]

√
T |x̂i(b)− xi(b)|

]
≤ O (J(1,Xi)‖FXi‖Q,2) .

That yields the evaluation in the statement of the theorem.

Theorem 16 (Restatement).

E

[
sup
x∈[0,1]

√
T
(
T̂i(x)− Ti(x)

)]
≤ O

(
nφ
)

Proof. Consider the following chain of evaluations:

p̂i(x̂
−1
i (z))− pi(x−1

i (z)) = p̂i(x̂
−1
i (z))− pi(x̂−1

i (z))

+pi(x̂
−1
i (z))− pi(x−1

i (z))

Then consider the integral of the first component of this evaluation via

1∫
0

p̂i(x̂
−1
i (z))− pi(x̂−1

i (z))

z
dz =

∆∫
0

p̂i(x̂
−1
i (z))− pi(x̂−1

i (z))

z
dz +

1∫
∆

p̂i(x̂
−1
i (z))− pi(x̂−1

i (z))

z
dz.
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The first integral in the sum evaluates as κ∆/ζ. For the second integral we can evaluate∣∣∣∣∣∣
1∫

∆

p̂i(x̂
−1
i (z))− pi(x̂−1

i (z))

z
dz

∣∣∣∣∣∣ ≤ log

(
1

∆

)
sup
b
|p̂i(b)− pi(b)|

The second term will dominate, moreover from Theorem 15

E

∣∣∣∣∣∣√T
1∫

0

p̂i(x̂
−1
i (z))− pi(x̂−1

i (z))

z
dz

∣∣∣∣∣∣
 ≤ C1n

φB α1 Γ

Now consider the term∣∣pi(x̂−1
i (z))− pi(x−1

i (z))
∣∣ ≤ Lp|x̂−1

i (z)− x−1
i (z)|,

where Lp is the Lipschitz constant. Next, consider an identity

x̂i(x̂
−1
i (z))− xi(x−1

i (z)) = 0 = x̂i(x̂
−1
i (z))− xi(x̂−1

i (z)) + xi(x̂
−1
i (z))− xi(x−1

i (z)).

By our assumption

|xi(x̂−1
i (z))− xi(x−1

i (z))| ≥ Lx|x̂−1
i (z)− x−1

i (z)|.

Thus

sup
z
|x̂−1
i (z)− x−1

i (z)| ≤ 1

Lx
sup
z
|x̂i(x̂−1

i (z))− xi(x̂−1
i (z))| ≤ 1

Lx
sup
b
|x̂i(b)− xi(b)|.

This means that the application of Theorem 15 leads to

E

[√
T sup

z

∣∣pi(x̂−1
i (z))− pi(x−1

i (z))
∣∣] ≤ C2

Lp
Lx
nφ.

Splitting the integral into the two integrals from 0 to ∆ and from ∆ to 1, allows us to
bound the first integral by Lp ∆/ζ and the second integral is bounded by

log

(
1

∆

)
sup
z

∣∣pi(x̂−1
i (z))− pi(x−1

i (z))
∣∣ .

Combining this with our previous result, yields the statement of the theorem.
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