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The main goal of this paper is to develop a theory of inference of player valuations from observed data in
the generalized second price auction without relying on the Nash equilibrium assumption. Existing work in
Economics on inferring agent values from data relies on the assumption that all participant strategies are
best responses of the observed play of other players, i.e. they constitute a Nash equilibrium. In this paper,
we show how to perform inference relying on a weaker assumption instead: assuming that players are using
some form of no-regret learning. Learning outcomes emerged in recent years as an attractive alternative to
Nash equilibrium in analyzing game outcomes, modeling players who haven’t reached a stable equilibrium,
but rather use algorithmic learning, aiming to learn the best way to play from previous observations. In this
paper we show how to infer values of players who use algorithmic learning strategies. Such inference is an
important first step before we move to testing any learning theoretic behavioral model on auction data. We
apply our techniques to a dataset from Microsoft’s sponsored search ad auction system.
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1. INTRODUCTION
The standard approach in the econometric analysis of strategic interactions, starts
with assuming that the participating agents, conditional on their private parameters,
such as their valuation in an auction, can fully optimize their utility given their oppo-
nents actions and that the system has arrived at a stable state of mutual such best-
responses, aka a Nash equilibrium.

In recent years, learning outcomes have emerged as an important alternative to
Nash equilibria. This solution concept is especially compelling in online environments,
such as Internet auctions, as many such environments are best thought of as repeated
strategic interactions in a dynamic and complex environment, where participants need
to constantly update their strategies to learn how to play optimally. The strategies of
agents in such environments evolve over time, as they learn to improve their strate-
gies, and react to changes in the environment. Such learning behavior is reinforced
even more by the increasing use of sophisticated algorithmic bidding tools by most
high revenue/volume advertisers. With auctions having emerged as the main source
of revenue on the Internet, there are multitudes of interesting data sets for strategic
agent behavior in repeated auctions.
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To be able to use the data on agent behavior to empirically test the prediction of
the theory based on learning agents, one first needs to infer the agents’ types, or val-
uations of the items, from the observed behavior without relying on the stable state
best-response assumption. The idea behind inference based on the stable best response
assumption is straightforward: the distribution of actions of players is observed in the
data. If we assume that each player best responds to the distribution of opponents’
actions, this best response can be recovered from the data. The best response function
effectively describes the preferences of the players, and can typically be inverted to re-
cover each player’s private type. This is the idea used in all existing work in economics
on this inference problem, including [Athey and Nekipelov 2010], [Bajari et al. 2013],
and [Xin Jiang and Leyton-Brown 2007].

There are several caveats in this approach. First of all, the assumption that an equi-
librium has been reached is unrealistic in many practical cases, either because equilib-
rium best response functions are hard to compute or the amount of information needed
to be exchanged between the players to reach an equilibrium outcome is unrealistically
large. Second, the equilibrium is rarely unique especially in dynamic settings. In that
case the simple “inversion” of the best responses to obtain the underlying valuations
becomes a complicated computational problem because the set of equilibria frequently
has a complicated topological structure. The typical approach to avoid this complica-
tion is to assume some equilibrium refinement, e.g. the Markov Perfect Equilibrium in
the case of dynamic games.

In spite of a common understanding in the Economics community that many practi-
cal environments cannot be modeled using the traditional equilibrium framework (and
that the assumption of a particular equilibrium refinement holds), this point has been
overshadowed by the simplicity of using the equilibrium based models.

In this paper we consider a dynamic game where players learn how to play over
time. We focus on a model of sponsored search auctions where bidders compete for ad-
vertising spaces alongside the organic search results. This environment is inherently
dynamic where the auction is run for every individual consumer search and thus each
bidder with an active bid participates in a sequence of auctions.

Learning models agents that are new to the game, or participants as they adjust
to a constantly evolving environment, where they have to constantly learn what may
be best play. In these cases, strict best response to the observed past may not be a
good strategy, it is both computationally expensive, and can be far from optimal in a
dynamically changing environment. Instead of strict best response, players may want
to use a learning algorithm to choose their strategies.

No-regret learning has emerged as an attractive alternative to Nash equilibrium.
The notion of a no-regret learning outcome, generalizes Nash equilibrium by requiring
the no-regret property of a Nash equilibrium, in an approximate sense, but more im-
portantly without the assumption that player strategies are stable and independent.
When considering a sequence of repeated plays, having no-regret means that the to-
tal value for the player over a sequence of plays is not much worse than the value
he/she would have obtained had he played the best single strategy throughout the
time, where the best possible single strategy is determined with hindsight based on the
environment and the actions of the other agents. There are many well-known, natural
no-regret learning algorithms, such as the weighted majority algorithm [Arora et al.
2012], [Littlestone and Warmuth 1994] (also known as Hedge [Freund and Schapire
1999]) and regret matching [S. Hart and Mas-Colell 2000] just to name a few simple
ones. We propose a theory of inference of agent valuations just based on the assump-
tion that the agent’s learning strategies are smart enough that they have minimal
regret, without making any assumptions on the particular no-regret algorithms they
employ.



There is a growing body of results in the algorithmic game theory literature char-
acterizing properties of no-regret learning outcomes in games, such as approximate
efficiency with respect to the welfare optimal outcome (see e.g. [Roughgarden 2012;
Syrgkanis and Tardos 2013]). For instance, [Caragiannis et al. 2015] consider the gen-
eralized second price auction in this framework, the auction also considered in our
paper and showed that the average welfare of any no-regret learning outcome is al-
ways at least 30% of the optimal welfare. To be able to apply such theoretical results
on real data and to quantify the true inefficiency of GSP in the real world under learn-
ing behavior, we first need a way to infer player valuations without relying on the
equilibrium assumption.

Our contribution. The main goal of this paper is to develop a theory of value infer-
ence from observed data of repeated strategic interactions without relying on a Nash
equilibrium assumption. Rather than relying on the stability of outcomes, we make the
weaker assumption that players are using some form of no-regret learning. In a stable
Nash equilibrium outcome, players choose strategies independently, and their choices
are best response to the environment and the strategies of other players. Choosing a
best response implies that the players have no regret for alternate strategy options.
We make the analogous assumption, that in a sequence of play, players have small
regret for any fixed strategy.

Our results do not rely on the assumption that the participating players have correct
beliefs regarding the future actions of their opponents or that they even can correctly
compute expectations over the future values of state variables. Our only assumption is
that the players understand the rules of the game. This is significantly different from
most of the current results in Industrial Organization where estimation of dynamic
games requires that the players have correct beliefs regarding the actions of their op-
ponents. This is especially important to the analysis of bidder behavior in sponsored
search auctions, which are the core application of this paper. The sponsored search
marketplace is highly dynamic and volatile where the popularity of different search
terms is changing, and the auction platform continuously runs experiments. In this
environment advertisers continuously create new ads (corresponding to new bids), re-
move under-performing ads, learning what is the best way to bid while participating in
the game. In this setting the assumption of players who have correct beliefs regarding
their opponents and whose bids constitute and equilibrium may not be realistic.

When inferring player values from data, one needs to always accommodate small
errors. In the context of players who employ learning strategies, a small error ε > 0
would mean that the player can have up to ε regret, i.e., the utility of the player from
the strategies used needs to be at most ε worse than any fixed strategy with hindsight.
Indeed, the guarantees provided by the standard learning algorithms is that the total
utility for the player is not much worse than any single strategy with hindsight, with
this error parameter decreasing over time, as the player spends more time learning. In
aiming to infer the player’s value from the observed data, we define the rationalizable
set NR, consisting of the set of values and error parameters (v, ε) such that with value
v the sequence of bid by the player would have at most ε regret. We show that NR is
a closed convex set. Clearly, allowing for a larger error ε would result in a larger set of
possible values v. The most reasonable error parameter ε for a player depends on the
quality of his/her learning algorithm. We think of a rationalizable value v for a player
as a value that is rationalizable with a small enough ε.

Our main result provides a characterization of the rationalizable set NR for the dy-
namic sponsored search auction game. We also provide a simple approach to compute
this set. We demonstrate that the evaluation of NR is equivalent to the evaluation
of a one-dimensional function which, in turn, can be computed from the auction data



directly by sampling. This result also allows us to show how much data is needed to
correctly estimate the rationalizable set for the dynamic sponsored search auction. We
show that when N auction samples are observed in the data, the Hausdoff distance
between the estimated and the true sets NR is O((N−1 log N)γ/(2γ+1)), where γ is the
sum of the number of derivatives of the allocation and pricing functions and the de-
gree of Hölder continuity of the oldest derivative. In particular, when the allocation and
pricing functions are only Lipschitz-continuous, then the total number of derivatives is
zero and the constant of Hölder-continuity is 1, leading to the rate O((N−1 log N)1/3).

This favorably compares our result to the result in [Athey and Nekipelov 2010]
where under the assumption of static Nash equilibrium in the sponsored search auc-
tion, the valuations of bidders can be evaluated with error margin of order O(N−1/3)
when the empirical pricing and allocation function are Lipschitz-continuous in the bid.
This means that our approach, which does not rely on the equilibrium properties, pro-
vides convergence rate which is only a (log N)1/3 factor away.

In Section 6 we test our methods on a Microsoft Sponsored Search Auction data set.
We show that our methods can be used to infer values on this real data, and study the
empirical consequences of our value estimation. We find that typical advertisers bid a
significantly shaded version of their value, shading it commonly by as much as 40%.
We also observe that each advertiser’s account consists of a constant fraction of listings
(e.g. bided keywords and ad pairs) that have tiny error and hence seem to satisfy the
best-response assumption, whilst the remaining large fraction has an error which is
spread out far from zero, thereby implying more that bidding on these listings is still
in a learning transient phase. Further, we find that, among listings that appear to be
in the learning phase, the relative error (the error in regret relative to the player’s
value) is slightly positively correlated with the amount of shading. A higher error is
suggestive of an exploration phase of learning, and is consistent with attempting larger
shading of the bidder’s value, while advertisers with smaller relative regret appear to
shade their value less.

Further Related Work. There is a rich literature in Economics that is devoted to in-
ference in auctions based on the equilibrium assumptions. [Guerre et al. 2000] studies
the estimation of values in static first-price auctions, with the extension to the cases
of risk-averse bidders in [Guerre et al. 2009] and [Campo et al. 2011]. The equilibrium
settings also allow inference in the dynamic settings where the players participate in
a sequence of auctions, such as in [Jofre-Bonet and Pesendorfer 2003]. A survey of ap-
proaches to inference is surveyed in [Athey and Haile 2007]. These approaches have
been applied to the GSP and, more generally, to the sponsored search auctions in the
empirical settings in [Varian 2007] and [Athey and Nekipelov 2010].

The deviation from the “equilibrium best response” paradigm is much less common
in any empirical studies. A notable exception is [Haile and Tamer 2003] where the
authors use two assumptions to bound the distribution of values in the first-price auc-
tion. The first assumption is that the bid should not exceed the value. That allows to
bound the order statistics of the value distribution from below by the corresponding
order statistics of the observed bid distribution. The second assumption is that there
is a minimum bid increment and if a bidder was outbid by another bidder then her
value is below the bid that made her drop out by at least the bid increment. That al-
lows to provide the bound from above. The issue with these bounds is that in many
practical instances they are very large and they do not directly translate to the dy-
namic settings. The computation of the set of values compatible with the model may
be compicated even in the equilibrium settings. For instance, in [Aradillas-López et al.
2013] the authors consider estimation of the distribution of values in the ascending
auction when the distribution of values may be correlated. It turns out that even if we



assume that the bidders have perfect beliefs in the static model with correlated values,
the inference problem becomes computationally challenging.

2. NO-REGRET LEARNING AND SET INFERENCE
Consider a game G with a set N of n players. Each player i has a strategy space Bi.
The utility of a player depends on the strategy profile b ∈ B1 × . . . × Bn, on a set of
parameters θ ∈ Θ that are observable in the data and on private parameters vi ∈ Vi
observable only by each player i. We denote with Ui(b; θ, vi) the utility of a player i.

We consider a setting where game G is played repeatedly. At each iteration t, each
player picks a strategy bti and nature picks a set of parameters θt. The private parame-
ter vi of each player i remains fixed throughout the sequence. We will denote with {b}t
the sequence of strategy profiles and with {θ}t the sequence of nature’s parameters.
We assume that the sequence of strategy profiles {b}t and the sequence of nature’s
parameters {θ}t are observable in the data. However, the private parameter vi for
each player i is not observable. The inference problem we consider in this paper is the
problem of inferring these private values from the observable data.

We will refer to the two observable sequences as the sequence of play. In order to be
able to infer anything about agent’s private values, we need to make some rationality
assumption about the way agents choose their strategies. Classical work of inference
assumes that each agents best response to the statistical properties of the observable
environment and the strategies of other players, in other words assumes that game
play is at a stable Nash equilibrium. In this paper, we replace this equilibrium assump-
tion with the weaker no-regret assumption, stating that the utility obtained through-
out the sequence is at least as high as any single strategy bi would have yielded, if
played at every time step. If the play is stable throughout the sequence, no-regret is
exactly the property required for the play to be at Nash equilibrium. However, no-
regret can be reached by many natural learning algorithms without prior information,
which makes this a natural rationally assumption for agents who are learning how
to best play in a game while participating. More formally, we make no assumption
of what agents do to learn, but rather will assume that agents learn well enough to
satisfy the following no-regret property with a small error.

A sequence of play that we observe has εi-regret for advertiser i if:

∀b′ ∈ Bi :
1

T

T∑
t=1

Ui
(
bt; θt, vi

)
≥ 1

T

T∑
t=1

Ui
(
b′,bt−i; θ

t, vi
)
− εi (1)

This leads to the following definition of a rationalizable set under no-regret learning.

Definition 2.1 (Rationalizable Set). A pair (εi, vi) of a value vi and error εi is a ra-
tionalizable pair for player i if it satisfies Equation (1). We refer to the set of such pairs
as the rationalizable set and denote it with NR.

The rationality assumption of the inequality (1) models players who may be learning
from the experience while participating in the game. We assume that the strategies
bti and nature’s parameters θt are picked simultaneously, so agent i cannot pick his
strategy dependent on the state of nature θt or the strategies of other agents bti−1. This
makes the standard of a single best strategy bi natural, as chosen strategies cannot de-
pend on θt or bti−1. Beyond this, we do not make any assumption on what information
is available for the agents, and how they choose their strategies. Some learning algo-
rithms achieve this standard of learning with very minimal feedback (only the value
experienced by the agent as he/she participates). If the agents know a distribution of
possible nature parameters θ or is able to observe the past values of the parameters θt
or the strategies bti−1 (or both), and then they can use this observed past information



to select their strategy at time step t. Such additional information is clearly useful in
speeding up the learning process for agents. We will make no assumption on what in-
formation is available for agents for learning, or what algorithms they may be using to
update their strategies. We will simply assume that they use algorithms that achieve
the no-regret (small regret) standard expressed in inequality (1).

For general games and general private parameter spaces, the rationalizable set can
be an arbitrary set with no good statistical or convexity properties. Our main result is
to show that for the game of sponsored search auction we are studying in this paper,
the set is convex and has good convergence properties in terms of estimation error.

3. SPONSORED SEARCH AUCTIONS MODEL
We consider data generated by advertisers repeatedly participating in sponsored
search auction. The game G that is being repeated at each stage is an instance of a
generalized second price auction triggered by a search query.

The rules of each auction are as follows1: Each advertiser i is associated with a click
probability γi and a scoring coefficient si and is asked to submit a bid-per-click bi. Ad-
vertisers are ranked by their rank-score qi = si ·bi and allocated positions in decreasing
order of rank-score as long as they pass a rank-score reserve r. If advertisers also pass
a higher mainline reserve m, then they may be allocated in the positions that appear
in the mainline part of the page, but at most k advertisers are placed on the mainline.

If advertiser i is allocated position j, then he is clicked with some probability pij ,
which we will assume to be separable into a part αj depending on the position and a
part γi depending on the advertiser, and that the position related effect is the same in
all the participating auctions:

pij = αj · γi (2)
We denote with α = (α1, . . . , αm) the vector of position coefficients. All the mentioned
sets of parameters θ = (s,b, γ, r,m, k, α) are observable in the data.

If advertiser i is allocated position j, then he pays only when he is clicked and his
payment, i.e. his cost-per-click (CPC) is the minimal bid he had to place to keep his
position, which is:

cij(b; θ) = max

{
sπ(j+1) · bπ(j+1)

si
,
r

si
,
m

si
· 1{j ∈M}

}
(3)

where by π(j) we denote the advertiser that is allocated position j and with M we
denote the set of mainline positions.

We also assume that each advertiser has a value-per-click (VPC) vi, which is not
observed in the data. If under a bid profile b, advertiser i is allocated slot σi(b), his
expected utility is:

Ui(b; θ, vi) = ασi(b) · γi ·
(
vi − ciσi(b)(b; θ)

)
(4)

We will denote with:
Pi(b; θ) = ασi(b) · γi (5)

the probability of a click as a function of the bid profile and with:
Ci(b; θ) = ασi(b) · γi · ciσi(b)(b; θ) (6)

the expected payment as a function of the bid profile. Then the utility of advertiser i
at each auction is:

Ui(b; θ, vi) = vi · Pi(b)− Ci(b) (7)

1ignoring small details that we will ignore and are rarely in effect



The latter fits in the general repeated game framework, where the strategy space
Bi = R+ of each player i is simply any non-negative real number. The private param-
eter of a player vi is an advertiser’s value-per-click (VPC) and the set of parameters
that affect a player’s utility at each auction and are observable in the data is θ. At
each auction t in the sequence the observable parameters θt can take arbitrary values
that depend on the specific auction. However, we assume that the per-click value of the
advertiser remains fixed throughout the sequence.

Batch Auctions. Rather than viewing a single auction as a game that is being re-
peated, we will view a batch of many auctions as the game that is repeated in each
stage. This choice is reasonable, as it is impossible for advertisers to update their bid
after each auction. Thus the utility of a single stage of the game is simply the aver-
age of the utilities of all the auctions that the player participated in during this time
period. Another way to view this setting is that the parameter θ at each iteration t is
not deterministic but rather is drawn from some distribution Dt and a player’s utility
at each iteration is the expected utility over Dt. In effect, the distribution Dt is the
observable parameter, and utility depends on the distribution, and not only on a single
draw from the distribution. With this in mind, the per-period probability of click is

P ti (bt) = Eθ∼Dt [Pi(b
t; θ)] (8)

and the per-period cost is
Cti (b

t) = Eθ∼Dt [Ci(b
t; θ)]. (9)

We will further assume that the volume of traffic is the same in each batch, so the
average utility of an agent over a sequence of stages is expressed by

1

T

T∑
t=1

(
vi · P ti (bt)− Cti (bt)

)
. (10)

Due to the large volume of auctions that can take place in between these time-
periods of bid changes, it is sometimes impossible to consider all the auctions and
calculate the true empirical distribution Dt. Instead it is more reasonable to approxi-
mate Dt, by taking a sub-sample of the auctions. This would lead only to statistical es-
timates of both of these quantities. We will denote these estimates by P̂ ti (b) and Ĉti (b)
respectively. We will analyze the statistical properties of the estimated rationalizable
set under such subsampling in Section 5.

4. PROPERTIES OF RATIONALIZABLE SET FOR SPONSORED SEARCH AUCTIONS
For the auction model that we are interested in, Equation (1) that determines whether
a pair (ε, v) is rationalizable boils down to:

∀b′ ∈ R+ : v · 1

T

T∑
t=1

(
P ti (b′,bt−i)− P ti (bt)

)
≤ 1

T

T∑
t=1

(
Cti (b

′,bt−i)− Cti (bt)
)

+ ε (11)

If we denote with

∆P (b′) =
1

T

T∑
t=1

(
P ti (b′,bt−i)− P ti (bt)

)
, (12)

the increase in the average probability of click from player i switching to a fixed alter-
nate bid b′ and with

∆C(b′) =
1

T

T∑
t=1

(
Cti (b

′,bt−i)− Cti (bt)
)
, (13)



the increase in the average payment from player i switching to a fixed alternate bid b′,
then the condition simply states:

∀b′ ∈ R+ : v ·∆P (b′) ≤ ∆C(b′) + ε (14)

Hence, the rationalizable set NR is an envelope of the family of half planes obtained
by varying b ∈ R+ in Equation (14).

We conclude this section by characterizing some basic properties of this set, which
will be useful both in analyzing its statistical estimation properties and in computing
the empirical estimate of NR from the data.

LEMMA 4.1. The set NR is a closed convex set.

PROOF. The Lemma follows by the fact that NR is defined by a set of linear con-
straints. Any convex combination of two points in the set will also satisfy these con-
straints, by taking the convex combination of the constraints that the two points have
to satisfy. The closedness follows from the fact that points that satisfy the constraints
with equality are included in the set.

LEMMA 4.2. For any error level ε, the set of values that belong to the rationalizable
set is characterized by the interval:

v ∈
[

max
b′:∆P (b′)<0

∆C(b′) + ε

∆P (b′)
, min
b′:∆P (b′)>0

∆C(b′) + ε

∆P (b′)

]
(15)

In particular the data are not rationalizable for error level ε if the latter interval is
empty.

PROOF. Follows from Equation (14), by dividing with δP (b′) and taking cases on
whether ∆P (b′) is positive or negative.

To be able to estimate the rationalizable set NR we will need to make a few ad-
ditional assumptions. All assumptions are natural, and likely satisfied by any data.
Further, the assumptions are easy to test for in the data, and the parameters needed
can be estimated.

Since NR is a closed convex set, it is conveniently represented by the set of support
hyperplanes defined by the functions P ti (·, ·) and Cti (·, ·). Our first assumption is on the
functions P ti (·, ·) and Cti (·, ·).

ASSUMPTION 1. The support of bids is a compact set B = [0, b]. For each bidvec-
tor bt

−i the functions P ti (·,bt−i) and Cti (·,bt−i) are continous, monotone increasing and
bounded on B.

Remark. These assumptions are natural and are satisfied by our data. In most ap-
plications, it is easy to have a simple upper bound M on the maximum conceivable
value an advertiser can have for a click, and with this maximum, we can assume that
the bids are also limited to this maximum, so can use B = M as a bound for the max-
imum bid. The probability of getting a click as well as the cost per-click are clearly
increasing function of the agent’s bid in the sponsored search auctions considered in
this paper, and the continuity of these functions is a good model in large or uncertain
environments.

We note that properties in Assumption 1 implies that the same is also satisfied by
the linear combinations of functions, as a linear combination of monotone functions
is monotone, implying that the functions ∆P (b) and ∆C(b) are also monotone and
continuous.



The assumption further implies that for any value v, there exists at least one ele-
ment of B that maximizes v∆P (b)−∆C(b), as v∆P (b)−∆C(b) is a continuous function
on a compact set.

4.1. Properties of the Boundary
Now we can study the properties of the setNR by characterizing its boundary, denoted
∂NR.

LEMMA 4.3. Under Assumption 1, ∂NR = {(v, ε) : supb (v∆P (b)−∆C(b)) = ε}

PROOF. (1) Suppose that (v, ε) solves supb (v∆P (b)−∆C(b)) = ε. Provided the con-
tinuousness of functions ∆P (b) and ∆C(b) the supremum exists and it is attained at
some b∗ in the support of bids. Take some δ > 0. Taking point (v′, ε′) such that v′ = v
and ε′ = ε − δ ensures that v′∆P (b∗) − ∆C(b∗) > ε′ and thus (v′ε′) 6∈ NR. Taking the
point (v′′, ε′′) such that v′′ = v and ε′′ = ε+ δ ensures that

sup
b

(v′′∆P (b)−∆C(b)) < ε′′,

and thus for any bid b: v′′∆P (b)−∆C(b) < ε′′. Therefore (v′′, ε′′) ∈ NR. Provided that δ
was arbitrary, this ensures that in any any neighborhood of (v, ε) there are points that
both belong to set NR and that do not belong to it. This means that this point belongs
to ∂NR.
(2) We prove the sufficiency part by contradiction. Suppose that (v, ε) ∈ ∂NR and
supb (v∆P (b)−∆C(b)) 6= ε. If supb (v∆P (b)−∆C(b)) > ε, provided that the objective
function is bounded and has a compact support, there exists a point b∗ where the supre-
mum is attained. For this point v∆P (b∗)−∆C(b∗) > ε. This means that for this bid the
imposed inequality constraint is not satisfied and this point does not belong to NR,
which is the contradiction to our assumption.
Suppose then that supb (v∆P (b)−∆C(b)) < ε. Let ∆ε = ε − supb (v∆P (b)−∆C(b)).
Take some δ < ∆ε and take an arbitrary δ1, δ2 be such that max

{
|δ1|, |δ2|

supb ∆P (b)

}
< δ

2 .
Let v′ = v + δ1 and ε′ = ε+ δ2. Provided that

sup
b

(v∆P (b)−∆C(b)) ≥ sup
b

((v + δ1)∆P (b)−∆C(b))− δ1 sup
b

∆P (b)δ1,

for any τ ∈ (−∞,∆ε) we have

sup
b

(v′∆P (b)−∆C(b)) < ε− τ + δ1 sup
b

∆P (b).

Provided that |δ1 supb ∆P (b)| < δ/2 < ∆ε/2, for any |δ2| < δ/2, we can find τ with
−τ + δ1 supb ∆P (b) = δ2. Therefore

sup
b

(v′∆P (b)−∆C(b)) < ε′,

and thus for any b: v′∆P (b) −∆C(b) < ε′. Therefore (v′, ε′) ∈ NR. This means that for
(v, ε) we constructed a neighborhood of size δ such that each element of that neighbor-
hood is an element of NR. Thus (v, ε) cannot belong to ∂NR.

The next step will be to establish the properties of the boundary by characteriz-
ing the solutions of the optimization problem of selecting the optimal bid single
b with for a given value v and the sequence of bids by other agents, defined by
supb (v∆P (b)−∆C(b)).

LEMMA 4.4. Let b∗(v) = arg supb (v∆P (b)−∆C(b)). Then b∗(·) is upper-
hemicontinuous and monotone.



PROOF. By Assumption (1) the function v∆P (b) − ∆C(b) is continuous in v and b,
then the upper hemicontinuity of b∗(·) follows directly from the Berge’s maximum the-
orem.

To show that b∗(·) is monotone consider the function q(b; v) = v∆P (b)−∆C(b). We’ll
show that this function is supermodular in (b; v), that is, for b′ > b and v′ > v we have

q(b′; v′) + q(b; v) ≥ q(b′; v) + q(b; v′).

To see this observe that if we take v′ > v, then

q(b; v′)− q(b; v) = (v′ − v)∆P (b),

which is non-decreasing in b due to the monotonicity of ∆P (·), implying that q is su-
permodular. Now we can apply the Topkis’ ([Topkis 1998], [Vives 2001]) monotonicity
theorem from which we immediately conclude that b∗(·) is non-decreasing.

Lemma 4.4 provides us a powerful result of the monotonicity of the optimal response
function b∗(v) which only relies on the boundedness, compact support and monotonicity
of functions ∆P (·) and ∆C(·) without relying on their differentiability. The downside
of this is that b∗(·) can be set valued or discontinuously change in the value. To avoid
this we impose the following additional assumption.

ASSUMPTION 2. For each b1 and b2 > 0 the incremental cost per click function

ICC(b2, b1) =
∆C(b2)−∆C(b1)

∆P (b2)−∆P (b1)

is continuous in b1 for each b2 6= b1 and it is continuous in b2 for each b1 6= b2. Moreover
for any b4 > b3 > b2 > b1 on B: ICC(b4, b3) > ICC(b2, b1).

Remark. Assumption 2 requires that there are no discounts on buying clicks “in
bulk”: for any average position of the bidder in the sponsored search auction, an incre-
mental increase in the click yield requires the corresponding increase in the payment.
In other words, “there is no free clicks”. In [Athey and Nekipelov 2010] it was shown
that in sponsored auctions with uncertainty and a reserve price, the condition in As-
sumption 2 is satisfied with the lower bound on the incremental cost per click being
the maximum of the bid and the reserve price (conditional on the bidder’s participation
in the auction).

LEMMA 4.5. Under Assumptions 1 and 2 b∗(v) = arg supb (v∆P (b)−∆C(b)) is a
continuous monotone function.

PROOF. Under Assumption 1 in Lemma 4.4 we established the monotonicity and
upper-hemicontinuity of the mapping b∗(·). We now strengthen this result to mono-
tonicity and continuity.

Suppose that for value v, function v∆P (b)−∆C(b) has an interior maximum and let
B∗ be its set of maximizers. First, we show that under Assumption 2 B∗ is singleton.
In fact, suppose that b∗1, b∗2 ∈ B∗ and wlog b∗1 > b∗2. Suppose that b ∈ (b∗1, b

∗
2). First, note

that b cannot belong to B∗. If it does, then

v∆P (b∗1)−∆C(b∗1) = v∆P (b)−∆C(b) = v∆P (b∗2)−∆C(b∗2),

and thus ICC(b, b∗1) = ICC(b∗2, b) for b∗1 < b < b∗2 which violates Assumption 2. Second if
b 6∈ B∗, then

v∆P (b∗1)−∆C(b∗1) ≥ v∆P (b)−∆C(b),

and thus v ≤ ICC(b, b∗1). At the same time,

v∆P (b∗2)−∆C(b∗2) ≥ v∆P (b)−∆C(b),



and thus v ≥ ICC(b∗2, b). This is impossible under Assumption 2 since it requires that
ICC(b∗2, b) > ICC(b, b∗1). Therefore, this means that B∗ is singleton.

Now consider v and v′ = v + δ for a sufficiently small δ > 0 and v and v′ leading
to the interior maximum of the of the objective function. By the result of Lemma 4.4,
b∗(v′) ≥ b∗(v) and by Assumption 2 the inequality is strict. Next note that for any
b > b∗(v) ICC(b, b∗(v)) > v and for any b < b∗(v) ICC(b, b∗(v)) < v. By continuity,
b∗(v) solves ICC(b, b∗(v)) = v. Now let b′ solve ICC(b′, b∗(v)) = v′. By Assumption 2,
b′ > b∗(v′) since b∗(v′) solves ICC(b, b∗(v′)) = v′ and b∗(v′) > b∗(v). Then by Assumption
2, ICC(b′, b∗(v)) − v > v − ICC(0, b∗(v)). This means that b′ − b∗(v) < (v′ − v)/(v −
ICC(0, b∗(v))). This means that |b∗(v′)− b∗(v)| < |b′− b∗(v)| < δ/(v− ICC(0, b∗(v))). This
means that b∗(v) is continuous in v.

Lemma 4.5, the interior solutions maximizing v∆P (b) −∆C(b) are continuous in v.
We proved that each boundary point of NR corresponds to the maximant of this func-
tion. As a result, whenever the maximum is interior, then the boundary shares a point
with the support hyperplane v∆P (b∗(v))−∆C(b∗(v)) = ε. Therefore, the corresponding
normal vector at that boundary point is (P (b∗(v)),−1).

4.2. Support Function Representation
Our next step would be to use the derived properties of the boundary of the set NR
to compute it. The basic idea will be based on varying v and computing the bid b∗(v)
that maximizes regret. The corresponding maximum value will deliver the value of
ε corresponding to the boundary point. Provided that we are eventually interested
in the properties of the set NR (and the quality of its approximation by the data),
the characterization via the support hyperplanes will not be convenient because this
characterization requires to solve the computational problem of finding an envelope
function for the set of support hyperplanes. Since closed convex bounded sets are fully
characterized by their boundaries, we can use the notion of the support function to
represent the boundary of the set NR.

Definition 4.6. The support function of a closed convex set X is defined as:

h(X,u) = sup
x∈X
〈x, u〉,

where in our case X = NR is a subset of R2 or value and error pairs (v, ε), and then u
is also an element of R2.

An important property of the support function is the way it characterizes closed
convex bounded sets. Recall that the Hausdorf norm for subsets A and B of the metric
space E with metric ρ(·, ·) is defined as

dH(A,B) = max{sup
a∈A

inf
b∈B

ρ(a, b), sup
b∈B

inf
a∈A

ρ(a, b)}.

It turns out that dH(A,B) = supu |h(A, u)−h(B, u)|. Therefore, if we find h(NR, u), this
will be equivalent to characterizing NR itself.

We note that the set NR is not bounded: the larger is the error ε that the player
can make, the wider is the range of values that will rationalize the observed bids. We
consider the restriction of the set NR to the set where we bound the error for the
players. Moreover, we explicitly assume that the values per click of bidders have to be
non-negative.

ASSUMPTION 3.

(i) The rationalizable values per click are non-negative: v ≥ 0.
(ii) There exists a global upper bound ε̄ for the error of all players.



Remark. While non-negativity of the value may be straightforward in many auction
context, the assumption of an upper bound for the error may be less straightforward.
One way to get such an error bound is if we assume that the values come from a
bounded range [0,M ] (see Remark after Assumption (1)), and then an error ε > M
would correspond to negative utility by the player, and the players may choose to exit
from the market if their advertising results in negative value.

THEOREM 4.7. Under Assumption 1, 2 the support function of NR is

h(NR, u) =

{
+∞, ifu2 ≥ 0, or u1

|u2| 6∈ [infb ∆P (b), supb ∆P (b)] ,

|u2|∆C
(

∆P−1
(
u1

|u2|

))
, ifu2 < 0 and u1

|u2| ∈ [infb ∆P (b), supb ∆P (b)] .

PROOF. Provided that the support function is positive homogenenous, without loss
of generality we can set u = (u1, u2) with ‖u‖ = 1. To find the support function, we take
u1 to be dual to vi and u2 to be dual to εi. We re-write the inequality of the half-plane
as: vi ·∆P (bi)− εi ≤ ∆C(bi). We need to evaluate the inner-product

u1vi + u2εi

from above. We note that to evaluate the support function for u2 ≥ 0, the corresponding
inequality for the half-plane needs to “flip” to ≥ −∆C(bi). This means that for u2 ≥ 0,
h(NR, u) = +∞. Next, for any u2 < 0 we note that the inequality for the half-plane can
be re-written as: vi|u2|∆P (bi) + u2εi ≤ |u2|∆C(bi).

As a result if there exists bi such that for a given u1: u1

|u2| = ∆P (bi), then |u2|∆C(bi)

corresponds to the support function for this bi.
Now suppose that supb ∆P (b) > 0 and u1 > |u2| supb ∆P (b). In this case we can

evaluate

u1vi + u2εi = (u1 − |u2| sup
b

∆P (b))vi + |u2| sup
b

∆P (b)vi + u2εi.

Function |u2| supb ∆P (b)vi + u2εi is bounded by |u2| supb ∆C(b) for each (vi, εi) ∈ NR.
At the same time, function (u1 − |u2| supb ∆P (b))vi is strictly increasing in vi on NR.
As a result, the support function evaluated at any vector u with u1/|u2| > supb ∆P (b)
is h(NR, u) = +∞.

This behavior of the support function can be explained intuitively. The set NR is
a convex set in ε > 0 half-space. The unit-length u corresponds to the normal vector
to the boundary of NR and −h(NR, u) is the point of intersection of the ε axis by
the tangent line. Asymptotically, the boundaries of the set will approach to the lines
vi supb ∆P (b)−ε ≤ supb ∆C(b) and vi infb ∆P (b)−ε ≤ infb ∆C(b). First of all, this means
that the projection of u2 coordinate of of the normal vector of the line that can be
tangent to NR has to be negative. If that projection is positive, that line can only
intersect the set NR. Second, the maximum slope of the normal vector to the tangent
line is supb ∆P (b) and the minimum is infb ∆P (b). Any line with a steeper slope will
intersect the set NR.

Now we consider the restriction of the set NR via Assumption 3. The additional
restriction on what is rationalizable does not change its convexity, but it makes the
resulting set bounded. Denote this bounded subset of NR by NRB . The following the-
orem characterizes the structure of the support function of this set.

THEOREM 4.8. Let v̄ correspond to the furthest point of the set NRB from the ε axis.
Suppose that b̄ is such that v̄∆P (b̄)− ε̄ = ∆C(b̄). Also suppose that b is the point of inter-
section of the boundary of the set NR with the vertical axis v = 0. Under Assumptions



1, 2, and 3 the support function of NRB is

h(NRB , u) =


h(NR, u), ifu2 < 0, ∆P (b) < u1/|u2| < ∆P (b̄),
u1v̄ + u2ε̄, ifu2 < 0, u1/|u2| > ∆P (b̄),
u2ε, ifu2 < 0, ∆P (b) > u1/|u2|,
u1v̄ + u2ε̄, ifu1, u2 ≥ 0,
u2ε̄, ifu1 < 0, u2 ≥ 0,

PROOF. We begin with u2 < 0. In this case when ∆P (b) < u1/|u2| < ∆P (b̄), then
the corresponding normal vector u is on the part of the boundary of the set NRB
that coincides with the boundary of NR. And thus for this set of normal vectors
h(NRB , u) = h(NR, u).

Suppose that u2 < 0 while u1/|u2| ≥ ∆P (b̄). In this case the support hyperplane is
centered at point (v̄, ε̄) for the entire range of angles of the normal vectors. Provided
that the equation for each such a support hyperplane corresponds to u1

|u2|v − ε = c and
each needs pass through (v̄, ε̄), then the support function is h(NRB , u) = u1v̄ + u2ε̄.

Suppose that u2 < 0 and u1/|u2| < ∆P (b). Then the support hyperplanes will
be centered at point (0, v). The corresponding support function can be expressed as
h(NRB , u) = u2ε.

Now suppose that u2 ≥ 0 and u1 > 0. Then the support hyperplanes are centered at
(v̄, ε̄) and again the support function will be h(NRB , u) = u1v̄ + u2ε̄.

Finally, suppose that u2 ≥ 0 and u1 ≤ 0. Then the support hyperplanes are centered
at (0, ε̄). The corresponding support function is h(NRB , u) = u2ε̄.

5. INFERENCE FOR RATIONALIZABLE SET
Note that to construct the support function (and thus fully characterize the set NRB)
we only need to evaluate the function ∆C

(
∆P−1 (·)

)
. It is one-dimensional function

and can be estimated from the data via direct simulation. We have previously noted
that our goal is to characterize the distance between the true set NRB and the set N̂R
that is obtained from subsampling the data. Denote

f(·) = ∆C
(
∆P−1 (·)

)
and let f̂(·) be its estimate from the data. The set NRB is characterized by its support
function h(NRB , u) which is determined by the exogenous upper bound on the error
ε̄, the intersection point of the boundary of NR with the vertical axis (0, ε), and the
highest rationalizable value v̄.

We note that the set NR lies inside the shifted cone defined by half-spaces
v supb ∆P (b)− ε ≤ supb ∆C(b) and v infb ∆P (b)− ε ≤ infb ∆C(b). Thus the value v̄ can be
upper bounded by the intersection of the line v supb ∆P (b)− ε = supb ∆C(b) with ε = ε̄.
The support function corresponding to this point can therefore be upper bounded by
|u2| supb ∆C(b).

Then we notice that

dH(N̂RB , NRB) = sup
‖u‖=1

|h(N̂RB , u)− h(NRB , u)|.

For the evaluation of the sup-norm of the difference between the support function, we
split the circle ‖u‖ = 1 to the areas where the support function is linear and non-linear
determined by the function f(·). For the non-linear segment the sup-norm can be upper



bounded by the global sup-norm

sup
u2<0,∆P (b)<u1/|u2|<∆P (b̄)

|h(N̂RB , u)− h(NRB , u)| ≤ sup
‖u‖=1

∣∣∣∣|u2|f̂
(
u1

|u2|

)
− |u2|f

(
u1

|u2|

)∣∣∣∣
≤ sup

z

∣∣∣f̂ (z)− f (z)
∣∣∣ .

For the linear part, provided that the value ε̄ is fixed, we can evaluate the norm from
above by

sup
‖u‖=1

|u1 sup
b

∆Ĉ(b)− u1∆C(b)| ≤ | sup
b

∆Ĉ(b)−∆C(b)| ≤ sup
z

∣∣∣f̂ (z)− f (z)
∣∣∣ .

Thus we can evaluate

dH(N̂RB , NRB) ≤ sup
z

∣∣∣f̂ (z)− f (z)
∣∣∣ . (16)

Thus, the bounds that can be established for estimation of function f̂ directly imply
the bounds for estimation of the Hausdorff distance between the estimated and the
true sets NRB . We assume that a sample of size N = n × T is available (where n is
the number of auctions sampled per period and T is the number of periods). We now
establish the general rate result for the estimation of the set NRB .

THEOREM 5.1. Suppose that function f has derivative up to order k ≥ 0 and for
some L ≥ 0

|f (k)(z1)− f (k)(z2)| ≤ L|z1 − z2|α.
Under Assumptions 1, 2, and 3 we have

dH(N̂RB , NRB) ≤ O((N−1 log N)γ/(2γ+1)), γ = k + α.

Remark. The theorem makes a further assumption the function f is k times differen-
tiable, and satisfies a Lipschitz style bound with parameter L ≥ 0 and exponent α. We
note that this theorem if we take he special case of k = 0, the theorem does not require
differentiability of functions ∆P (·) and ∆C(·). If these functions are Lipschitz, the con-
dition of the theorem is satisfied with k = 0 and α = 1, and the theorem provides a
O((N−1 log N)1/3) convergence rate for the estimated set NR.

PROOF. By (16) the error in the estimation of the set NRB is fully characterized
by the uniform error in the estimation of the single-dimensional function f(·). In part
(i) of the Theorem our assumption is that we estimate function f(·) from the class
of convex functions. In part (ii) of the Theorem our assumption is that we estimate
the function from the class of k times differentiable single-dimensional functions. We
now use the results for optimal global convergence rates for estimation of functions
from these respective classes. We note that these rates do not depend on the particular
chosen estimation method and thus provide a global bound on the convergence of the
estimated set N̂RB to the true set. By [Stone 1982], the global uniform convergence
rate for estimation of the unknown function with k derivatives where k-th derivative is
Hölder-continuous with constant α is (N−1 log N)γ/(2γ+1)) with γ = k+α. That delivers
our statement.

We note that this theorem does not require differentiability of functions ∆P (·)
and ∆C(·). For instance, if these functions are Lipschitz, the theorem provides a
O((N−1 log N)1/3) convergence rate for the estimated set NR.



Fig. 1. NR set for two listings of a high-frequency bid changing advertiser. Values are normalized to 1. The
tangent line selects our point prediction.

6. DATA ANALYSIS
We apply our approach to infer the valuations and regret constants of a set of advertis-
ers from the search Ads system of Bing.Our focus is on advertisers who change their
bids frequently (up to multiple bid changes per hour) and thus are more prone to use
algorithms for their bid adjustment instead of changing those bids manually. Each ad-
vertiser corresponds to an “account”. Accounts have multiple listings corresponding to
individual ads. The advertisers can set the bids for each listing within the account sep-
arately. We examine nine high frequency accounts from the same industry sector for a
period of a week and apply our techniques to all the listings within each account. The
considered market is highly dynamic where new advertising campaigns are launched
on the daily basis (while there is also a substantial amount of experimentation on the
auction platform side, that has a smaller contribution to the uncertainty regarding the
market over the uncertainty of competitors’ actions.) We focus on analyzing the bid dy-
namics across the listings within the same account as they are most probably instances
of the same learning algorithm. Hence the only thing that should be varying for these
listings is the bidding environment and the valuations. Therefore, statistics across
such listings, capture in some sense the statistical behavior of the learning algorithm
when the environment and the valuation per bid is drawn from some distribution.

Computation of the Empirical Rationalizable Set. We first start by briefly describ-
ing the procedure that we constructed to compute the set NR for a single listing. We
assumed that bids and values have a hard absolute upper bound and since they are
constrained to be multiples of pennies, the strategy space of each advertiser is now a
finite set, rather than the set R+. Thus for each possible deviating bid b′ in this finite
setwe compute the ∆P (b′) and ∆C(b′) for each listing. We then discretize the space of
additive errors. For each additive error ε in this discrete space we use the characteriza-
tion in Lemma 4.2 to compute the upper and lower bound on the value for this additive
error. This involves taking a maximum and a minimum over a finite set of alternative
bids b′. We then look at the smallest epsilon ε0, where the lower bound is smaller than
the upper bound and this corresponds to the smallest rationalizable epsilon. For every
epsilon larger than ε0 we plot the upper bound function and the lower bound function.

An example of the resulting set NR for a high frequency listing of one of the adver-
tisers we analyzed is depicted in Figure 1. From the figure, we observe that the right
listing has a higher regret than the left one. Specifically, the smallest rationalizable
additive error is further from zero. Upon the examination of the bid change pattern,
the right listing in the Figure was in a more transient period where the bid of the ad-
vertiser was increasing, hence this could have been a period were the advertiser was
experimenting. The bid pattern of the first listing was more stable.



Point Prediction: Smallest Multiplicative Error. Since the two dimensional rational-
izable set NR is hard to depict as summary statistic from a large number of listings,
we instead opt for a point prediction and specifically we compute the point of the NR
set that has the smallest regret error.

Since the smallest possible additive error is hard to compare across listings, we in-
stead pick the smallest multiplicative error that is rationalizable, i.e. a pair (δ, v) such
that:

∀b′ ∈ Bi : 1
T

∑T
t=1 Ui (bt; θt, vi) ≥ (1− δ) 1

T

∑T
t=1 Ui

(
b′,bt−i; θ

t, vi
)

(17)

and such that δ is the smallest possible value that admits such a value per click v. De-
note P 0 = 1

T

∑T
t=1 P

t
i (bt) the observed average probability of click of the advertiser and

with C0 = 1
T

∑T
t=1 C

t
i (b

t) the observed average cost, then by simple re-arrangements
the latter constraint is equivalent to:

∀b′ ∈ Bi : v∆P (b) ≤ ∆C(b) + δ
1−δ

(
vP 0 − C0

)
(18)

By comparing this result to Equation (14), a multiplicative error of δ corresponds to an
additive error of ε = δ

1−δ
(
vP 0

i − C0
i

)
.

Hence, one way to compute the feasible region of values for a multiplicative error δ
from the NR set that we estimated is to draw a line of ε = δ

1−δ
(
vP 0

i − C0
i

)
. The two

points where this line intersects the NR set correspond to the upper and lower bound
on the valuation. Then the smallest multiplicative error δ, corresponds to the line that
simply touches the NR set, i.e. the smallest δ for which the intersection of the line
ε = δ

1−δ
(
vP 0

i − C0
i

)
is non-empty. This line is depicted in orange in Figure 1 and the

point appears with a black mark.
Computationally, we estimate this point by binary search on the values of δ ∈ [0, 1],

until the upper and lower point of δ in the binary search is smaller than some pre-
defined precision. Specifically, for each given δ, the upper and lower bound of the values
implied by the constraints in Equation 18 is:

max
b′:(1−δ)∆P (b′)−δP 0>0

(1− δ)∆C(b′)− δC0

(1− δ)∆P (b′)− δP 0
≤ v ≤ min

b′:(1−δ)∆P (b′)−δP 0>0

(1− δ)∆C(b′)− δC0

(1− δ)∆P (b′)− δP 0

If these inequalities have a non-empty intersection for some value of δ, then they have
a non-empty intersection for any larger value of δ (as is implied by our graphical inter-
pretation in the previous paragraph).

Thus we can do a binary search over the values of δ ∈ (0, 1). At each iteration we
have an upper bound H and lower bound L on δ. We test whether δ = (H+L)/2 gives a
non-empty intersection in the above inequalities. If it does, then we decrease the upper
bound H to (H+L)/2, if it doesn’t then we increase the lower bound L to (H+L)/2. We
stop whenever H − L is smaller than some precision, or when the implied upper and
lower bounds on v from the feasible region for δ = H, are smaller than some precision.

The value that corresponds to the smallest rationalizable multiplicative error δ can
be viewed as a point prediction for the value of the player. It is exactly the value that
corresponds to the black dot in Figure 1. Since this is a point of the NR set the estima-
tion error of this point from data has at least the same estimation error convergence
properties as the whole NR set that we derived in Section 5.

Experimental Findings. We compute the pair of the smallest rationalizable multi-
plicative error δ∗ and the corresponding predicted value v∗ for every listing of each
of the nine accounts that we analyzed. In Figure 2, on the right we plot the distri-
bution of the smallest non-negative rationalizable error over the listings of a single
account. Different listings of a single account are driven by the same algorithm, hence



Fig. 2. Histogram of the ratio of predicted value over the average bid in the sequence and the histogram
of the smallest non-negative rationalizable multiplicative error δ (the smallest bucket contains all listings
with a non-positive smallest rationalizable error).

we view this plot as the “statistical footprint” of this algorithm. We observe that all
accounts have a similar pattern in terms of the smallest rationalizable error: almost
30% of the listings within the account can be rationalized with an almost zero error,
i.e. δ∗ < 0.0001. We note that regret can also be negative, and in the figure we group
together all listings with a negative smallest possible error. This contains 30% of the
listings. The empirical distribution of the regret constant δ∗ for the remaining 70% of
the listings is close to the uniform distribution on [0, .4]. Such a pattern suggests that
half of the listings of an advertiser have reached a stable state, while a large fraction
of them are still in a learning state.

We also analyze the amount of relative bid shading. It has been previously observed
that bidding in the GSP auctions is not truthful. Thus we can empirically measure
the difference between the bids and estimated values of advertisers associated with
different listings. Since the bid of a listing is not constant in the period of the week
that we analyzed, we use the average bid as proxy for the bid of the advertiser. Then
we compute the ratio of the average bid over the predicted value for each listing. We
plot the distribution of this ratio over the listings of a typical account in the left plot
of Figure 2. We observe that based on our prediction, advertisers consistently bid on
average around 60% of their value. Though the amount of bid shading does have some
variance, the empirical distribution of the ratio of average bid and the estimated value
is close to normal distribution with mean around 60%.

Fig. 3. Scatter plot of pairs (v∗, δ∗)
for all listings of a single advertiser.

Interestingly, we observe that based on our predic-
tion, advertisers consistently bid on average around
60% of their value. Though the amount of bid shading
does have some variance, the empirical distribution
of the ratio of average bid and the estimated value is
close to normal distribution with mean around 60%.2

Figure 2 depicts the ratio distribution for one ac-
count. We give similar plots for all other accounts that
we analyzed in the full version of the paper.

Last we also analyze whether there is any corre-
lation between the smallest rationalizable error and
the amount of underbidding for listings that seem to
be in a learning phase (i.e. have δ∗ greater than some

tiny amount). We present a scatter plot of the pairs of (δ∗, v∗) in Figure 3 for a single

2We do observe that for a very small number of listings within each account our prediction implies a small
amount of overbidding on average. These outliers could potentially be because our main assumption that
the value remains fixed throughout the period of the week doesn’t hold for these listings due to some market
shock.



account and for listings that have δ∗ > 0.0001. Though there does not seem to be a
significant correlation we consistently observe a small correlation: listings with higher
error shade their bid more.
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