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This supplement contains an extended model, which allows that (i) the number of firms may differ from

the number workers and (ii) some workers (or firms) may not be acceptable to some firms (or workers).

Accordingly, firms (or workers) may remain unmatched in a stable matching. Moreover, we allow that (iii)

private values for each pair of a firm and a worker are possibly correlated. Theorem 1 in the main paper

holds in this extended model as well.

1 An Extended Model.

Let F be the set of n firms and W be the set of m workers. Utilities are represented by n × m random

matrices U = [Uf,w] and V = [Vf,w]. When a firm f and a worker w match with one another, the firm f

receives utility Uf,w and the worker w receives utility Vf,w. For each pair (f, w), utilities are defined as

Uf,w = λ Uow + (1− λ) ζf,w and

Vf,w = λ V of + (1− λ) ηf,w (0 < λ ≤ 1).

We call Uow and V of common-values, and ζf,w and ηf,w private-values.1

Common-values are defined as random vectors

Uo := 〈Uow〉w∈W and V o := 〈V of 〉f∈F .

〈Uow〉w∈W is an i.i.d sample of size m from a distribution with a positive density function on a bounded

support in R. 〈V of 〉f∈F is defined similarly.

Independent private-values are defined as two n×m random matrices

ζ := [ζf,w] and η := [ηf,w].

Each pair (ζf,w, ηf,w) is randomly drawn from a joint distribution on a bounded support in R2. We normalize

utilities such that firms and workers remaining unmatched receive 0 utility.

A random market is defined as a tuple 〈F,W,U, V 〉. We denote realized matrices of U and V by u and v.

A market instance is then denoted by 〈F,W, u, v〉. With probability 1, the market has all distinct utilities,
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1Note that we exclude the pure private value case (λ = 0).
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none of which equals to 0. As such, for each 〈F,W, u, v〉, we can derive a strict preference list �f as

�f= w,w′, . . . , f, . . . , w′′

if and only if

uf,w > uf,w′ > · · · > 0 > · · · > uf,w′′ .

Take any α ∈ (0,∞), and consider a sequence mn such that mn
n converges to α. We study properties

of stable matchings in the sequence of random markets 〈Fn,Wmn , Un×mn , Vn×mn〉∞n=1. We often omit the

indexes n and mn, or simply write n and m.

2 Main Result

Given a market instance 〈F,W, u, v〉 and a matching µ, we let uµ(·) and vµ(·) denote utilities from the

matching: i.e. uµ(f) := uf,µ(f) and vµ(w) := vµ(w),w. For each f ∈ F , we define ∆(f ;u, v) as the difference

between utilities from firm-optimal and worker-optimal stable matchings: i.e.

∆(f ;u, v) := uµF (f)− uµW (f).

For every ε > 0, we have the set of firms whose utilities are within ε of one another for all stable matchings,

which is denoted by

AF (ε;u, v) := {f ∈ F | ∆(f ;u, v) < ε} .

Theorem 2.1. For every ε > 0,

E

[∣∣AF (ε;U, V )
∣∣

n

]
→ 1, as n→∞.

We have similar notations and a theorem for workers, which are omitted here.

The intuition of Theorem 2.1 is from the fact that the set of unmatched firms and workers is the same

for all stable matchings (McVitie and Wilson (1970)). Firms and workers who remain unmatched have no

difference in utilities from all stable matchings. Firms and workers who are matched in stable matchings

have small differences in utilities by Theorem 1 in the main paper.

3 Proof of Theorem 2.1

We prove the theorem when 0 < λ < 1. If λ = 1, assortative matching forms a unique stable matching, and

Theorem 1 follows immediately.

We first simplify the notations by compressing λ and 1− λ and considering utilities defined as

Uf,w = Uow + ζf,w and Vf,w = V of + ηf,w.

We do not lose generality since we can regard common-values and private-values as the ones already multiplied

by λ and 1− λ, respectively.

Let Uo := 〈Uow〉w∈W be an i.i.d sample of size m from a distribution GW , and V o := 〈V of 〉f∈F be an i.i.d

sample of size n from a distribution GF . GW and GF have strictly positive density functions on R. Each
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pair (ζf,w, ηf,w) is randomly drawn from a joint distribution Γ with a support bounded above by (ū, v̄).

We define

BF (ε;u, v) := F\AF (ε;u, v) = {f ∈ F | ∆(f ;u, v) ≥ ε}

and prove that |B
F (ε;U,V )|
n converges to 0 in probability, which is equivalent to proving convergence to 0 in

the mean (Theorem A.2). That is, we fix ε > 0 and K ∈ N, and prove that

P

(
|BF (ε;U, V )|

n
>

14

K

)
→ 0, as n→∞.

3.1 Preliminary Notations

1. ξFq (or ξWq ) : qth quantile of GF (or GW ).

2. ξ̂Fq;n: empirical qth quantile of a sample of size n from GF . We also use ξ̂Fq;n to denote its realization.

3. ξ̂Wq;m: empirical qth quantile of a sample of size m from GW . We also use ξ̂Wq;m to denote its realization.

Since common-values are all distinct with probability 1, we index firms and workers in the order of their

common-values: i.e.

vofi > vofj and uowi > uowj , if i < j.

Then, Uowi;m (or V ofi;n) represents the ith highest value of m (or n) order statistics from GW (or GF ). Note

that Uowi;m = ξ̂W
(1− i−1

m );m
and V ofi;n = ξ̂F

(1− i−1
n );n

by the relationship between order statistics and empirical

quantiles (see Appendix A).

Some firms may remain unmatched in stable matchings due to unequal populations of firms and workers,

or because some firms (or workers) are not acceptable to some workers (or firms). Especially if a firm has a

common value less than ū, all workers consider the firm unacceptable. Roughly, GW (−ū) is the proportion of

workers who are not acceptable to any firm, and GF (−v̄) is the proportion of firms which are not acceptable

to any worker. Accordingly, we denote an asymptotic upper bound of the proportion of firms matched in

stable matchings by

β := min{α(1−GW (−ū)), 1−GF (−v̄)}.

3.2 Tier-Grouping

We partition R into

IW1 := (ξW1− 1
αK
,∞)

IW2 := (ξW1− 2
αK
, ξW1− 1

αK
]

. . .

IWk := (ξW
1− k

αK
, ξW

1− k−1
αK

]

. . .

IWK′ := (ξW
1− K′

αK

, ξW
1−K′−1

αK

]

IWK′+1 := (−∞, ξW
1− K′

αK

],
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where K ′ = dβKe.2

For each 〈F,W, u, v〉, we define the set of workers in tier-k (with respect to workers’ common-values)

as

Wk(u) :=
{
w | uow ∈ IWk

}
for k = 1, 2, . . . ,K ′ + 1

and define the set of firms in tier-k (with respect to workers’ common-values) as

Fk(u) := {fi ∈ F | wi ∈Wk(u)} for k = 1, 2, . . . ,K ′, and

FK′+1(u) := F\
K′⋃
k=1

Fk(u).

Note that FK′+1(u) may include firms with indexes larger than the number of workers.

Similarly, we partition R into

IF1 := (ξF1− 1
K
,∞)

IF2 := (ξF1− 2
K
, ξF1− 1

K
]

. . .

IFk := (ξF
1− k

K
, ξF

1− k−1
K

]

. . .

IFK′ := (ξF
1−K′K

, ξF
1−K′−1

K

]

IFK′+1 := (−∞, ξF
1−K′K

].

where K ′ = dβKe.
We define the set of firms in tier-k (with respect to firms’ common-values) as

Fk(v) :=
{
f | vof ∈ IFk

}
for k = 1, 2, . . . ,K ′,K ′ + 1

and define the set of workers in tier-k (with respect to firms’ common-values) as

Wk(v) := {wi ∈W | fi ∈ Fk(v)} for k = 1, 2, . . . ,K ′, and

WK′+1(v) := W\
K′⋃
k=1

Wk(v).

Note that WK′+1(v) may include workers with indexes larger than the number of firms.

We use the following notations.

1. uok := ξW
1− k

αK

for k = 1, 2, . . . ,K ′: The threshold level of tier-k and tier-(k+1) workers’ common-values.

That is, w ∈Wk(u) if and only if uok < uow ≤ uok−1.

2. vok := ξF
1− k

K

for k = 1, 2, . . . ,K ′: The threshold level of tier-k and tier-(k + 1) firms’ common-values.

That is, f ∈ Fk(v) if and only if vok < vof ≤ vok−1.

2 K′ is the smallest integer which is greater than or equal to βK. If 1 − K′

αK
≤ 0, we let ξW

1− K′
αK

equals to the infimum of

the support of GW .
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Remark 1. 1. The set of tier-k workers (with respect to workers’ common-values) is defined with a

random sample. Therefore, Wk(U) is random, and so is Fk(U); whereas, uok is a constant. Similarly,

Fk(V ) and Wk(V ) are random; whereas, vok is a constant.

2. Tiers with respect to workers’ common-values are in general not the same as tiers with respect to firms’

common-values. In particular, we are most likely to have |Fk(U)| 6= |Fk(V )|.

Throughout the proof, we mainly use tiers defined with respect to workers’ common-values. However,

we need both tier structures in the last part of the proof. We simply write “tier-k” to denote tier-k with

respect to workers’ common-values, and use “(w.r.t firm) tier-k” to denote tier-k with respect to firms’

common-values.

3.3 High-Probability Events

We introduce three events and show that the events occur with probabilities converging to 1 as the market

becomes large. We provide proofs for completeness, but the main ideas are simply from the (weak) law of

large numbers. In the next section, we will leave the probability that the following events do not occur as a

remainder term converging to zero, and focus on the cases where the following events all occur.

3.3.1 No vanishing tier and an equal number of firms and workers in each tier.

Event 1 (E1). 1. For k = 1, 2, . . . ,K ′, the sets Fk(U), Wk(U), Fk(V ), and Wk(V ) are all non empty.

2. For k = 1, 2, . . . ,K ′ − 1,

|Fk(U)| = |Wk(U)| and |Fk(V )| = |Wk(V )|.

Proof. The second part immediately follows from the first part. For instance, FK′(U) 6= ∅ implies that the

total number of firms is larger than the number of workers in tier up to K ′ − 1. By definition of tiers with

respect to workers’ common-values, we have |Fk(U)| = |Wk(U)| for all k = 1, 2, . . . ,K ′ − 1.

We only prove that FK′(U) and WK′(U) are non empty with probability converging to one as the market

becomes large. Proofs for k = 1, 2, . . . ,K ′ − 1 are almost analogous, and we omit here.

Note that

1− K ′ − 1

αK
> 1− βK

αK
≥ 0,

which implies that for each w ∈W ,

P
(
uow ∈ IWK′

)
= GW

(
ξW
1−K′−1

αK

)
−GW

(
ξW
1− K′

αK

)
> 0.

As such, WK′(U) = ∅ occurs with probability converging to 0 as the market becomes large.

When WK′(U) is not empty, FK′(U) remains empty only if the total number of firms is no more than

the number of workers in tiers up to K ′ − 1. That is,

1 ≤ 1

n

K′−1∑
k=1

|Wk(U)|. (1)
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Note that

1

n

K′−1∑
k=1

|Wk(U)| = m

n
· 1

m

m∑
k=1

1{Uow ≥ uoK′−1}

p−→ α · K
′ − 1

αK
=
dβKe
K

− 1

K
≤ 1− 1

K
.

The convergence in probability is by the (weak) law of large numbers and Theorem A.3. Therefore, the

inequality (1) holds with probability converging to zero, and thus FK′(U) is not empty with probability

converging to 1.

3.3.2 Distinct common-values of the agents in non-adjacent tiers.

Let ε̃ > 0 be such that for any v, v′ ∈ R,

|v − v′| ≤ ε̃ =⇒ |GF (v)−GF (v′)| < 1

3K
,

and for any u, u′ ∈ R,

|u− u′| ≤ ε̃ =⇒ |GW (u)−GW (u′)| < 1

3αK
.

There exists such an ε̃ since GF and GW are continuous on their bounded supports, so uniformly con-

tinuous.

Event 2 (E2). For every k = 1, 2, . . . ,K ′ − 2,

min
f∈Fk(U)

f ′∈Fk+2(U)

|V of − V of ′ | > ε̃ and min
w∈Wk(V )

w′∈Wk+2(V )

|Uow − Uow′ | > ε̃.

Proof. We prove only the first part. Fix a realized matrix u such that E1 holds. For any k ∈ 1, 2, . . . ,K ′ − 2

and for any wi ∈Wk(u) and wj ∈Wk+2(u),

uowi > uok = ξW
1− k

αK
and uowj ≤ u

o
k+1 = ξW

1− k+1
αK

. (2)

For any q ∈ (0, 1), ξ̂Wq;m
p−→ ξWq (Theorem A.4), from which the following inequalities hold with probability

converging to 1.

ξW
1− k

αK
> ξ̂W

1− k
αK−

1
8αK

and ξW
1− k+1

αK

< ξ̂W
1− k+1

αK + 1
8αK

. (3)

Considering (2) and the relation between order statistics and empirical quantiles (see Appendix A), if

(3) holds, we have

1− k

αK
− 1

8αK
< min
wi∈Wk(u)

(
1− i− 1

m

)
= min
fi∈Fk(u)

(
1− i− 1

m

)
,

which implies that

1− k

K
− 1

8K
< min
fi∈Fk(u)

(
1− α(i− 1)

m

)
< min
fi∈Fk(u)

(
1− i− 1

n
+

1

8K

)
with large n.
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In addition, we have

1− k + 1

K
+

1

8K
> max
wj∈Wk+2(u)

(
1− α(j − 1)

m

)
= max
fj∈Fk+2(u)

(
1− α(j − 1)

m

)
,

which implies that

1− k + 1

K
+

1

4K
> max
fj∈Fk+2(u)

(
1− j − 1

n

)
with large n.

As such for every fi ∈ Fk(u) and fj ∈ Fk+2(u),

vofi > ξ̂F
1− k

K−
1

4K
and vofj < ξ̂F

1− k+1
K + 1

4K

.

Therefore,

P
(

inf
fi∈Fk(U)
fj∈Fk+2(U)

∣∣V ofi − V ofj ∣∣ ≤ ε̃) ≤ P
(∣∣ξ̂F

1− k
K−

1
4K
− ξ̂F

1− k+1
K + 1

4K

∣∣ ≤ ε̃)+Rn

≤ P

(∣∣GF (ξ̂F
1− k

K−
1

4K
)−GF (ξ̂F

1− k+1
K + 1

4K

)
∣∣ < 1

3K

)
+Rn, (4)

where Rn corresponds to the probability that either E1 does not hold or (3) is violated: i.e. Rn → 0. The

last inequality is by the definition of ε̃.

Note that

GF (ξ̂F
1− k

K−
1

4K
)−GF (ξ̂F

1− k+1
K + 1

4K

)
p−→ 1

2K

by Theorem A.4 and continuity of GF (Theorem A.3). As a result, the right hand side of (4) converges to

0.

3.3.3 Similarity between tiers w.r.t workers’ common-values and tiers w.r.t firms’ common-

values

Event 3 (E3). For every k = 1, 2, 3, . . . ,K ′ + 1,

Fk(U) ⊂
k+1⋃

k′=k−1

Fk′(V ) and Wk(V ) ⊂
k+1⋃

k′=k−1

Wk′(U).3

Proof. We prove the first part for k = 1, . . . ,K ′ under the condition that E1 holds.4

For each realized (u, v), we have

{uow|w ∈Wk(u)} ⊂
(
uok, u

o
k−1

]
=
(
ξW
1− k

αK
, ξW

1− k−1
αK

]
. (5)

Suppose (
ξW
1− k

αK
, ξW

1− k−1
αK

]
⊂
(
ξ̂W
1− k

αK−
1

3αK
, ξ̂W

1− k−1
αK + 1

3αK

]
, (6)

3 We define F0(V ), W0(V ), WK′+2(U), and WK′+2(U) as empty sets.
4 For k = 1, 2, we need to modify the proof by replacing the intervals such as (ξW

1− k
αK

, ξW
1− k−1

αK

] with (ξW
1− k

αK

,∞) and

(ξF
1− k+1

K

, ξF
1− k−2

K

] with (ξF
1− k+1

K

,∞). We omit the modifications since they are trivial and tedious.
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and (
ξ̂F
1− k

K−
2

3K
, ξ̂F

1− k−1
K + 2

3K

]
⊂
(
ξF
1− k+1

K

, ξF
1− k−2

K

]
. (7)

If (6) hold, then (5) implies that for every tier-k worker wi, we have

uowi ∈
(
ξ̂W
1− k

αK−
1

3αK
, ξ̂W

1− k−1
αK + 1

3αK

]
,

and thus,

1− i− 1

m
∈
(

1− k

αK
− 1

3αK
, 1− k − 1

αK
+

1

3αK

]
,

which implies that

1− i− 1

n
∈
(

1− k

K
− 2

3K
, 1− k − 1

K
+

2

3K

]
with large n.

Then for any tier-k firm fi, we have

vofi ∈
(
ξ̂F
1− k

K−
2

3K
, ξ̂F

1− k−1
K + 2

3K

]
,

which implies that {
vof | f ∈ Fk(u)

}
⊂
(
ξ̂F
1− k

K−
2

3K
, ξ̂F

1− k−1
K + 2

3K

]
.

Consequently if both (6) and (7) hold, then

{
vof | f ∈ Fk(u)

}
⊂
(
ξ̂F
1− k

K−
2

3K
, ξ̂F

1− k−1
K + 2

3K

]
⊂
(
ξF
1− k+1

K

, ξF
1− k−2

K

]
=

k+1⋃
k′=k−1

IFk′ .

In other words,

Fk(u) ⊂
k+1⋃

k′=k−1

Fk′(v).

Inequalities (6) and (7), and E1 occur with probability converging to 1 (Theorem A.4), and thus the event

E3 for k = 1, 2, . . . ,K ′ also occurs with probability converging to 1.

Lastly for k = K ′ + 1,

FK′+1(U) ⊂ FK′(V ) ∪ FK′+1(V )

occurs with probability converging to 1, since the event occurs whenever

Fk(V ) ⊂
k+1⋃

k′=k−1

Fk′(U) for all k = 1, 2, . . . ,K ′ − 1

holds.
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3.4 Proof of the Theorem 1

We choose K large enough that

max
1≤k≤K′−2

∣∣uok − uok+1

∣∣ ≡ max
1≤k≤K′−2

∣∣∣ξW1− k
αK
− ξW

1− k+1
αK

∣∣∣ < ε

9
.5 (8)

The proof of Theorem 1 is completed by the following inequalities.

P

(
|BF (ε;U, V )|

n
>

14

K

)
= P

 ∑
1≤k≤K′+1

|BFk (ε;U, V )|
n

>
14

K



< P

 ∑
7≤k≤K′−3

|BFk (ε;U, V )|
n

+
∑

k=1,...,6,
K′−2,K′−1,K′

Fk(U)

n
+
|BFK′+1(ε;U, V )|

n
>

14

K

 .

We show that the last term converges to 0. We first prove that for each k = 7, . . . ,K ′ − 3, the proportion
|BFk (ε;U,V )|

n converges to 0 in probability (Proposition 3.2). The proof identifies asymptotic upper and lower

bounds of utilities from all stable matchings and shows that the two bounds are close to each other. We

then prove that
|BF
K′+1

(ε;U,V )|
n is asymptotically bounded above by 4

K (Proposition 3.3). The proof shows

that most tier-K ′ + 1 firms remain unmatched in stable matchings, and thus have no difference in utilities.

Lastly, for each k = 1, . . . , 6,K ′ − 2,K ′ − 1,K ′, the proportion Fk(U)
n converges to at most 1

K in probability

by the (weak) law of large numbers.

3.4.1 For k = 7, . . . ,K ′ − 3,
|BFk (ε;U,V )|

n

p−→ 0.

We first identify an asymptotic lower bound on utilities of firms in each tier, using techniques from the theory

of random bipartite graphs (Proposition 3.1). Similarly, we find an asymptotic lower bound on utilities of

workers in each tier (Proposition 3.1∗). The asymptotic lower bound on utilities of workers induces an

asymptotic upper bound on utilities of firms in each tier. Lastly, we complete the proof by showing that the

asymptotic lower and upper bounds are close to each other (Proposition 3.2).

Proposition 3.1. For each instance 〈F,W, u, v〉 and for each k̄ = 1, 2, . . . ,K ′ − 3, define

B̂Fk̄ (ε;u, v) :=
{
f ∈ Fk̄(u) : uµW (f) ≤ uok̄+2 + ū− ε

}
.6

Then for any ε > 0,
|B̂F
k̄

(ε;U, V )|
n

p−→ 0 as n→∞.

Proof. For each instance 〈F,W, u, v〉 and for each k = 1, 2, . . . ,K ′ + 1, let F≤k(u) :=
⋃
k′≤k Fk′(u) and

F<k(u) :=
⋃
k′<k Fk′(u). We similarly define W≤k(u) and W<k(u).

Take any k̄ from {1, 2, . . . ,K ′ − 3}. We construct a bipartite graph with Fk̄(u) ∪ W≤k̄+2(u) as a bi-

partitioned set of nodes. Two vertices f ∈ Fk̄(u) and w ∈ W≤k̄+2(u) are joined by an edge if and only

if

ζf,w ≤ ū− ε or ηf,w ≤ v̄ − ε̃,
5 We can always satisfy the condition since GW has a strictly positive density function on a bounded support.
6 Note that uo

k̄+2
+ ū is the maximal utility that a firm can achieve by being matched with a worker in tier-(k̄ + 3).
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where ε̃ is the value taken before, while defining E2.

Let W̄≤k̄+2(u, v) be the set of workers in tiers up to k̄+ 2 who are not matched with firms in tiers up to

k̄ + 1 in µW . That is,

W̄≤k̄+2(u, v) :=
{
w ∈W≤k̄+2(u) |µW (w) /∈ F≤k̄+1(u)

}
.

We now show that if E2 holds, then

B̂Fk̄ (ε;u, v) ∪ W̄≤k̄+2(u, v)

is a biclique.

Suppose, towards a contradiction, that a pair of f ∈ B̂F
k̄

(ε;u, v) and w ∈ W̄≤k̄+2(u, v) is not joined by

an edge: i.e.

ζf,w > ū− ε and ηf,w > v̄ − ε̃.

Then, we have

uf,w = uow + ζf,w > uok̄+2 + ζf,w > uok̄+2 + ū− ε, (9)

and

vf,w = vof + ηf,w ≥ min
f ′∈Fk̄(u)

vof ′ + ηf,w > min
f ′∈Fk̄(u)

vof ′ + v̄ − ε̃.7

Conditioned on E2, we can proceed further and obtain

vf,w > min
f ′∈Fk̄(u)

vof ′ + v̄ −
(

min
f ′∈Fk̄(u)

vof ′ − max
f ′′∈Fk̄+2(u)

vof ′′

)
= max

f ′′∈Fk̄+2(u)
vof ′′ + v̄. (10)

On the other hand, f ∈ B̂F
k̄

(ε;u, v) implies that

uµW (f) ≤ uok̄+2 + ū− ε,

and w ∈ W̄≤k̄+2(u, v) implies that

vµW (w) ≤ max
f ′′∈Fk̄+2(u)

vof ′′ + v̄,

since a worker can obtain utility higher than maxf ′′∈Fk̄+2(u) v
o
f ′′+v̄ only by matching with a firm in F≤k̄+1(u).

Equations (9) and (10) imply that (f, w) would have blocked µW , contradicting that µW is stable.

Therefore,

B̂Fk̄ (ε;u, v) ∪ W̄≤k̄+2(u, v).

is a biclique, which is not necessarily balanced.

We now control the size of B̂F
k̄

(ε;U, V ) by referencing Theorem 3. Let uo and vo be realized common-

values such that events E1 and E2 hold. Then, the remaining randomness of U and V is from ζ and η.

Consider a random bipartite graph with Fk̄(U)∪W≤k̄+2(U) as a bi-partitioned set of nodes, where each pair

of f ∈ Fk̄(U) and w ∈W≤k̄+2(U) is joined by an edge if and only if

ζf,w ≤ ū− ε or ηf,w ≤ v̄ − ε̃.
7 We should not replace minf ′∈Fk̄(u) v

o
f ′ with vo

k̄
. Fk̄(u) is defined with respect to workers’ common-values, rather than

firms’ common-values.
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In other words, every pair is joined by an edge independently with probability p(ε) = 1− Γ(ū− ε, v̄ − ε̃).
We write β(n) := 2 · log(|W≤k̄+2(U)|)/ log 1

p(ε) and show that

P
(
|B̂Fk̄ (ε;U, V )| ≤ β(n)

)
→ 1 as n→∞. (11)

Consider that

P
(
|B̂Fk̄ (ε;U, V )| ≤ β(n)

)
≥ P

(
min{|B̂Fk̄ (ε;U, V )|, |W̄≤k̄+2(U, V )|} ≤ β(n)

)
− P

(
|W̄≤k̄+2(U, V )| ≤ β(n)

)
.

We show that the two terms on the right hand side converges respectively to 1 and 0 in probability.

Let α(U, V )× α(U, V ) be the size of a maximum balance biclique of the random graph

G
(
Fk̄(U) ∪W≤k̄+2(U) , p(ε)

)
.

Since every realized B̂F
k̄

(ε;u, v) ∪ W̄≤k̄+2(u, v) is a biclique, it contains a balanced biclique of the size

equals to

min
{
|B̂Fk̄ (ε;u, v)| , |W̄≤k̄+2(u, v)|

}
.

Therefore,

P
(

min
{
|B̂Fk̄ (ε;U, V )|, |W̄≤k̄+2(U, V )|

}
≤ β(n)

)
≥ P (α(U, V ) ≤ β(n))→ 1, (12)

where the convergence is from Theorem 3.

On the other hand, observe that W̄≤k̄+2(U, V ) is the size of at least |Wk̄+2(U)|. Among workers in tiers

up to k̄+ 2 at most |W≤k̄+1(U)| are matched with firms in tiers up to k̄+ 1. In addition,
|Wk̄+2(U)|

n converges

to 1
K by the (weak) law of large numbers. Therefore,

P
(
|W̄≤k̄+2(U, V )| ≤ β(n)

)
→ 0. (13)

Equations (12) and (13) imply that (11) holds.

Lastly, we consider random utilities U and V , in which common-values are yet realized. For every ε′ > 0,

P

(
|B̂F
k̄

(ε;U, V )|
n

> ε′

)
= P

(
|B̂Fk̄ (ε;U, V )| > ε′ · n

)
≤ P

(
|B̂Fk̄ (ε;U, V )| > β(n) | E1, E2, β(n) ≤ ε′n

)
+Rn, with large n,

where Rn is the probability that either E1 or E2 does not hold, or β(n) ≤ ε′n is violated: i.e. Rn → 0. We

complete the proof by applying (11).

We also obtain the counterpart proposition of Proposition 3.1 in terms of tiers defined with respect to

firms’ common-values.

Proposition 3.1∗ For each k̄ = 1, 2, . . . ,K ′ − 3, define

B̂Wk̄ (ε;u, v) :=
{
w ∈Wk̄(v)|vµF (w) ≤ vok̄+2 + v̄ − ε

}
.
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Then for any ε > 0,
|B̂W
k̄

(ε;U, V )|
n

p−→ 0 as n→∞.

Proof. We omit the proof since it is analogous to the proof of Proposition 3.1.

For each instance 〈F,W, u, v〉, we define

BFk̄ (ε;u, v) := {f ∈ Fk̄(u)|∆(f ;u, v) ≥ ε} for k̄ = 1, 2, . . . ,K ′ + 1.

Proposition 3.2. If k̄ = 7, 8, . . . ,K ′ − 3, then for any ε > 0,

|BF
k̄

(ε;U, V )|
n

p−→ 0 as n→∞.

Proof. In Proposition 3.1∗, for k = 1, 2, . . . ,K ′ − 3, let

εk := vok+2 − vok+3,

and write

B̂Wk (εk;u, v) =
{
w ∈Wk(v)|vµF (w) ≤ vok+3 + v̄

}
.8

By Proposition 3.1∗,
|B̂Wk (εk;U, V )|

n

p−→ 0 as n→∞. (14)

Note that a worker receives utility higher than vok+3 + v̄ only by matching with a firm in (w.r.t firm) tiers

up to k + 3.9 Thus for k = 5, 6, . . . ,K ′ + 1,

{w ∈W≤k−4(V ) : µ(w) ∈ Fk(V )} ⊂
k−4⋃
k′=1

B̂Wk′ (εk′ ;U, V ). (15)

If event E3 holds, we can translate (15) into an expression with tiers w.r.t workers’ common-values. That

is, for k = 7, 8, . . . ,K ′ + 1,

{w ∈W≤k−6(U) : µF (w) ∈ Fk(U)} ⊂
k+1⋃

k′=k−1

{w ∈W≤k−6(U) : µF (w) ∈ Fk′(V )}

⊂
k+1⋃

k′=k−1

{w ∈W≤k−5(V ) : µF (w) ∈ Fk′(V )}

⊂
k+1⋃

k′=k−1

{w ∈W≤k′−4(V ) : µF (w) ∈ Fk′(V )}

where the first and second inequalities are from E3.

8 Recall that vok is a constant, defined as vok := ξF
1− k

K

.

9 Recall that f ∈ Fk(v) if and only if vok < vof ≤ v
o
k−1. Thus, if f ∈ F>k+3(v) then vof ≤ v

o
k+3.
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By applying (15), we obtain

{w ∈W≤k−6(U) : µF (w) ∈ Fk(U)} ⊂
k−3⋃
k′=1

B̂Wk′ (εk′ ;U, V ).

It follows that
|{f ∈ Fk(U) : µF (f) ∈W≤k−6(U)}|

n

p−→ 0, (16)

because for every ε > 0,

P

(
|{f ∈ Fk(U) : µF (f) ∈W≤k−6(U)}|

n
> ε

)
≤ P

(
k−3∑
k′=1

|B̂Wk′ (εk′ ;U, V )|
n

> ε

)
+Rn,

where Rn is the probability that E3 does not hold: i.e. Rn → 0. The right hand side converges to 0 by (14).

We complete the proof of Proposition 3.2 by proving the following claim. Proposition 3.1 and (16) show

that the normalized sizes of two sets on the right hand side of (17) converge to 0 in probability.

Claim 3.1. For k̄ = 7, 8, . . . ,K ′ − 3 and each instance 〈F,W, u, v〉,

BFk̄ (ε;u, v) ⊂ B̂Fk̄ (ε/9;u, v) ∪
{
f ∈ Fk̄(u)|µF (f) ∈W≤k̄−6(u)

}
. (17)

Proof of Claim 3.1. If a firm f ∈ Fk̄(u) is not in B̂F
k̄

(ε/9;u, v), then

uµW (f) > uok̄+2 + ū− ε/9,

and if the firm f is not in
{
f ∈ Fk̄(u)|µF (f) ∈W≤k̄−6(u)

}
, then

uµF (f) ≤ uok̄−6 + ū.

Therefore, using (8) we obtain

uµF (f)− uµW (f) ≤ uok̄−6 − u
o
k̄+2 + ε/9 < ε,

and thus f is not in BF
k̄

(ε;u, v).

3.4.2 Firms in tier K ′ + 1

We show that most firms in tier-(K ′+ 1) remain unmatched in stable matchings. Unmatched firms’ utilities

from µF and µW are clearly less than ε difference from each other.

Proposition 3.3.

P

(
|BFK′+1(ε;U, V )|

n
>

4

K

)
→ 0 as n→∞.

Proof. We divide the proof into two cases.

Case 1. β = 1−GF (−v̄): only a small proportion of firms in tier K ′ + 1 are acceptable to workers.

13



For each 〈F,W, u, v〉, if E3 holds,

FK′+1(u) ⊂ FK′(v) ∪ FK′+1(v).

If f ∈ FK′+1(v),

vof ≤ ξF1−K′K = ξF
1− dβKeK

≤ ξF1−β = −v̄.10

That is, if there is a firm in tier-K ′ + 1, the firm is unacceptable to all workers regardless of the

firm’s private values to the workers. The firm remains unmatched in all stable matchings and have no

difference in utilities from stable matchings. Therefore, conditioned on E3,

|BFK′+1(ε;U, V )|
n

≤ |FK
′(V )|
n

.

Proposition 3.3 holds from the following convergence result.

|FK′(V )|
n

p−→ βK − (dβKe − 1)

K
as n→∞.

Case 2. β = α(1 − GW (−ū)): firms in tier-(K ′ + 1) see only a small proportion of acceptable workers

available.

For each market 〈F,W, u, v〉, if w ∈WK′+1(u),

uow ≤ ξW1− dβKeαK

≤ ξW
1− βα

= −ū.11

That is, workers in WK′+1(u) are unacceptable to all firms. Therefore, the total number of matched

workers in stable matchings is no more than the total number of workers in tiers up to K ′: i.e.

|{w ∈W |µW (w) ∈ F}| ≤
K′∑
k=1

|Wk(U)|,

which implies that

|{f ∈ F |µW (f) ∈W}| ≤
K′∑
k=1

|Wk(U)|.

As such, we have

|{f ∈ FK′+1(U)|µW (f) ∈W}| = |{f ∈ F |µW (f) ∈W}| −
K′∑
k=1

|{f ∈ Fk(U)|µW (f) ∈W}|

≤
K′∑
k=1

|Wk(U)| −
K′∑
k=1

|{f ∈ Fk(U)|µW (f) ∈W}|.

10 Note that f ∈ FK′+1(v) implies 1− K′

K
> 0 and GF (−v̄) > 0, which we used to derive the inequalities.

11 Note that w ∈WK′+1(u) implies 1− K′

K
> 0 and GW (−ū) > 0, which we used to derive the inequalities.
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Conditioned on E1,

|{f ∈ FK′+1(U)|µW (f) ∈W}| ≤
K′−3∑
k=1

(|Fk(U)| − |{f ∈ Fk(U)|µW (f) ∈W}|) +

K′∑
k=K′−2

|Wk(U)|

=

K′−3∑
k=1

|{f ∈ Fk(U)|µW (f) /∈W}|+
K′∑

k=K′−2

|Wk(U)|.

With a small ε′ > 0,

|BFK′+1(ε;U, V )|
n

≤ |{f ∈ FK
′+1(U)|µW (f) ∈W}|

n

≤
K′−3∑
k=1

|B̂Fk (ε′;U, V )|
n

+

K′∑
k=K′−2

|Wk(U)|
n

p−→ 0 +
3 + (βK − dβKe)

K
,

where the convergence in probability is from Proposition 3.1 and the (weak) law of large numbers.
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