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Abstract— This paper explores the relationship between the
topology of a network of agents and how efficiently they can
learn a common unknown parameter. Agents repeatedly make
private observations which are possibly informative about the
unknown parameter; they also communicate their beliefs over
the set of conceivable parameter values to their neighbors. It
has been shown that for agents to learn the realized state, it
is sufficient that they incorporate in their beliefs their private
observations in a Bayesian way and the beliefs of their neigh-
bors using a fixed linear rule. In this paper we establish upper
and lower bounds on the rate by which agents performing such
an update learn the realized state, and show that the bounds
can be tight. These bounds enable us to compare efficiency of
different networks in aggregating dispersed information. Our
analysis yields an important insight: while for agents in large
“balanced” social networks learning is much slower compared
to that of a central observer, unbalanced networks could result
in near efficient learning.

I. INTRODUCTION

Social networks help shape the public opinion about
different social, economic, and political issues by enabling
individuals to gain information from the experiences of
the others. In particular they influence individuals’ opinions
about hypotheses that are testable through observation, such
as climate change or the risks associated with certain medical
procedures. In light of this, it is important to understand
when social networks could lead agents to hold accurate
beliefs, whether the information of individual observations is
aggregated efficiently, and how this depends on the network
structure. It has been shown in [1] that under mild assump-
tions agents will eventually hold correct opinions. This paper
builds upon [1] to provide answers to the last two of the
questions posed above. We characterize the rate of learning
(i.e., the rate by which agents’ opinions become correct)
in terms of information content of agents’ observations and
the structure of the social network. We then use the result
to compare networks in terms of efficiency of information
aggregation over them.

We base our analysis on the model of social learning
proposed in [1]. Agents in a society desire to learn some
unknown state which is drawn by nature from a finite
set. They interact in a social structure that is represented
by a weighted and possibly directed network. Agents have
beliefs about the realized state, and use the information
available to them to repeatedly update their beliefs. In every
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time period each agent privately observes a signal. It is
assumed that agents cannot communicate their signals to
each other; however, they observe the opinions held by their
neighbors in the previous period.1 Instead of processing all
new information in a Bayesian way, agents use a simple rule
to update their beliefs: Each agent first forms the Bayesian
posterior given only her private signal, as an intermediate
step. She then updates her belief to the convex combination
of her Bayesian posterior and the beliefs of her neighbors,
where the weights in the convex combination correspond to
the trust she has in each of her neighbors. It is assumed that
weights are fixed and independent of agents’ observations.

The model provides a tractable framework to study the
evolution of beliefs held by agents who interact in a social
setting in addition to repeatedly making private observations.
Repeated Bayesian updating over social networks is known
to be computationally intractable—except for certain special
cases—even when agents have knowledge of the network
structure and other agents’ observation models. This is since
a fully Bayesian agent needs to form and update beliefs over
the information of all other agents in the society, while only
observing the beliefs of her neighbors. Incomplete informa-
tion about the network structure and other agents’ signal
distributions intensifies these complications. The naı̈veté in
the way agents incorporate the beliefs of their neighbors into
their future beliefs in this model makes it tractable. It also
serves to capture the assumption that agents are unaware
of, and cannot learn the origin or quality of their neighbors’
information. Nonetheless, it is shown in [1] that—for generic
prior beliefs—the outcome of this model asymptotically
agrees with that of a model with fully Bayesian agents.

The main contributions of this paper are as follows.
First, we find lower and upper bounds on the rate of

learning, and show that the bounds can be tight. The rate
of learning depends on the topology of the network and
information content of individual agents’ observations. This
result signifies that even though network connectivity and
global identifiability of the states are sufficient for agents to
learn the realized state, the rate by which they do so is highly
dependent on the network structure and informed agents’
position in it. Namely, learning is faster whenever the most
centrally located agents are also the ones who make the most
informative observations.

Second, we show that the maximum efficiency by which
agents can aggregate information is different in different
networks. Social learning is inefficient in a large network

1A rationale for this assumption is that agents’ signals could belong to
different spaces, rendering it difficult for an agent to interpret the signals
of others, whereas all agents share the same belief space.
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unless some agents are disproportionally central in it. Such
agents correspond to “opinion leaders” whose opinions are
observed by a non-vanishing fraction of all agents. Existence
of opinion leaders is not sufficient, however, for efficient
learning; rather, the opinion leaders also need to be the agents
who make the most informative observations. Failure of this
condition could provide an explanation for the widely ob-
served phenomenon of individuals holding incorrect beliefs
about factual issues, notwithstanding overwhelming evidence
to the contrary.

This paper is related to a growing body of literature on
learning over social networks, especially those with non-
Bayesian updating rules. In this spirit are the works by
DeGroot [2], DeMarzo et al. [3], Acemoglu et al. [4], Golub
and Jackson [5], [6], and Jadbabaie et al. [1].

II. MODEL

A. Environment

There are a finite number of agents and possibilities for
the state of the world. Let N � t1, 2, . . . , nu be the set of
agents, and let Θ be the finite set of possible states.

There are countably many time periods which are indexed
by the non-negative integers. At time zero one of the states
is realized. Each agent i has a prior belief about the realized
state, denoted by µi,0p�q, which is a probability distribution
over Θ. More generally, we denote the belief of agent i at
time t by µi,tp�q. In every period t ¥ 1, a signal profile
ωt � pω1,t, . . . , ωn,tq P S1 � � � � � Sn � S is realized,
where Si is the finite set of possible signals for agent i.
Conditional on the realized state being θ, the signal profiles
are independent and identically distributed according to the
likelihood function `p�|θq. We assume that `ps|θq ¡ 0 for all
s P S and θ P Θ.

The interactions between agents are captured by a directed
graph G � pN , Eq. Agent j can observe the belief of agent i
if there exists a directed edge from i to j, that is, if pi, jq P E.
Let Ni � tj P N : pj, iq P Eu be the set of neighbors of
agent i whose beliefs she can observe.

B. Belief Update

Agents have two sources of information. At every time
period t ¥ 1, agent i privately observes ωi,t in addition
to the beliefs held by her neighbors in the previous time
period. She then updates her belief using the information
available to her. We assume that agents incorporate their
private observations into their beliefs in a Bayesian way;
however, they are naı̈ve with respect to the other information
available to them; namely,

µi,t�1 � aii BUpµi,t;ωi,t�1q �
¸
jPNi

aijµj,t, (1)

where BUpµi,t;ωi,t�1q is the Bayesian update of µi,t given
ωi,t�1, and aij are constants. Each agent updates her belief to
a convex combination of her own Bayesian posterior, given
only her private signal and neglecting the social network,
and her neighbors’ beliefs in the previous period. aij is the
weight that agent i assigns to the opinion of agent j, and

aii, called the self-reliance of agent i, is the weight she
assigns to her Bayesian posterior conditional on her private
signal. We assume that aij ¡ 0 for all i and j P Ni and that°
jPNiYtiu

aij � 1, in order for agents’ beliefs to remain a
probability distribution over Θ after they perform the update.
The update in (1) can be written more explicitly as

µi,t�1pθq � aii
`ipωi,t�1|θqµi,tpθq°
θ̃PΘ `ipωi,t�1|θ̃qµi,tpθ̃q

�
¸
jPNi

aijµj,tpθq,

(2)
for all θ P Θ.

C. Information

Let pΩ,Fq be the measurable space where Ω � SN and
F is the Borel σ-field over Ω. Let Pθ � `p�|θqN be the
probability measure over Ω given that the realized state of
the world is θ, and let Eθ be the corresponding expectation
operator.2

Agents’ private observations are not necessarily infor-
mative about the realized state of the world. We use the
expected discrimination information of agents’ observations
as a measure of how informative they are. The expected
discrimination information (or simply information) of agent
i’s observation for θ over θ1 is defined as

Iθi pθ1q � DKLp`ip�|θq}`ip�|θ
1qq � Eθ

�
log

`ipωi,t|θq

`ipωi,t|θ1q

�
,

(3)
where DKL is the Kullback-Leibler divergence and `i is the
marginal of ` over Si. This is the expected information per
observation for discriminating in favor of state θ against state
θ1, when state θ is realized. Note that Iθi pθq � 0. Gibbs’
inequality implies that Iθi pθ1q ¥ 0, and Iθi pθ1q � 0 if and
only if θ is observationally equivalent to θ1 from the point
of view of agent i; that is,

`ipsi|θq � `ipsi|θ
1q,

for all si P Si.
Let the total expected discrimination information (or sim-

ply total information) of agents’ observations for θ over θ1

be defined as

Iθsocpθ
1q �

ņ

i�1

Iθi pθ1q.

This is the expected information per observation profile in
favor of θ against θ1, when the realized state is θ. Iθsocpθ

1q �
0 if and only if θ is observationally equivalent to θ1 from the
point of view of all agents.

III. ASSUMPTIONS

We maintain the following assumptions throughout the
paper. These are sufficient to guarantee that all agents
eventually learn the realized state of the world. For a full
characterization of necessary and sufficient conditions for
learning see [7].

2More generally, we use a superscript θ to denote conditioning given that
the realized state is θ.



Assumption 1: The social network is strongly connected.3

This assumption allows for information to flow from any
agent to any other one. One can always assume connectivity
without loss of generality, since otherwise each connected
component could be analyzed separately. However, strong
connectivity requires that any agent that influences other
agents be influenced back by them, either directly or indi-
rectly. This assumption excludes the scenarios where some
stubborn agents place zero total weight on the beliefs of all
other agents in the network.

Assumption 2: For any state θ P Θ, there exists at least
one agent with positive prior belief in θ.

This assumption requires that, no matter which state is
realized, at least one of the agents’ beliefs includes a “grain
of truth”. If this assumption is violated, we could face the
rather uninteresting scenario where all agents continue to
have zero belief in the realized state at all time periods.

Assumption 3: All agents have strictly positive self-
reliance.

This assumption is a convenient way to guarantee that
there is sufficient flow of new information into the social
network. It requires agents to incorporate their private ob-
servations into their posterior beliefs. If all agents fail to do
so, information cannot be accumulated over time, excluding
the possibility of learning.

Assumption 4: For any two states θ � θ1, total informa-
tion of agents’ observations for θ over θ1 is positive.

This assumption is necessary to ensure that agents’ ob-
servations are sufficiently informative to let them distinguish
θ from θ1. If this assumption is violated, even sophisticated
Bayesian learners would not be able to learn the realized
state.

IV. LEARNING

We are interested in characterizing the rate of learning for
agents who use (2) to update their beliefs. In this section we
formalize the notions of learning and rate of learning, and
summarize the earlier results that establish learning.

The following proposition states that Assumptions 1–4 are
sufficient to guarantee that agents’ beliefs are asymptotically
almost surely correct. The proof and a thorough discussion
of the result’s implications can be found in [1].

Proposition 1: If Assumptions 1–4 are satisfied and given
that the realized state of the world is θ,

µi,tp�q Ñ µθi,8p�q as tÑ8 Pθ-a.s.,

for all i P N , where µθi,8p�q is the probability distribution
over Θ defined as

µθi,8pθ
1q �

#
1 if θ1 � θ,

0 if θ1 � θ.

We refer to the rate by which µi,tp�q approaches µθi,8p�q in
total variation (TV) distance as the rate of learning. Define

Dθ
i,t � ‖µi,8p�q � µθi,tp�q‖TV �

¸
θ1PΘztθu

µi,tpθ
1q.

3A network is called strongly connected if there exists a directed path
from any vertex to any other one.

Note that Dθ
i,t is equal to the total probability that agent i

assigns to all states other than θ, given that θ is the realized
state of the world. One can think of Dθ

i,t, therefore, as agent
i’s disbelief in the realized state at time t. Let sDθ

t be the
average of all Dθ

i,t; that is,

sDθ
t �

1

n

ņ

i�1

Dθ
i,t.

Note that the consequent of Proposition 1 can be written
more compactly as sDθ

t Ñ 0 with Pθ-probability one, given
that the realized state is θ. The next result shows that sDθ

t

converges to zero exponentially fast (equivalently, µi,tp�q
converges to µθi,8p�q exponentially fast in the TV distance),
and provides a lower bound for the rate of learning. A proof
can be find in [8].

Proposition 2: If Assumptions 1–4 are satisfied and given
that the realized state is θ, for all ε ¡ 0,

lim sup
tÑ8

1

t
log sDθ

t ¤ λθ1 � ε, Pθ-a.s.,

for some λθ1   0.
The lower bound on the rate of learning λθ1 can be written

in terms of the top Lyapunov exponent of a set of i.i.d.
matrices. Let Mθ

t pθ
1q be the n� n matrix defined as

Mθ
t pθ

1q � A� diag

��
aii

�
`ipωi,t| θ

1q

`ipωi,t| θq
� 1




i�1,...,n

�
,

where diagpv1, . . . , vnq is the diagonal matrix with the ith
diagonal element given by vi. Note that since ωi,t are i.i.d.,
the matrices Mθ

t pθ
1q are i.i.d. as well. The top Lyapunov

exponent (TLE) of pMθ
t pθ

1qqt�1,...,8 is defined as

λθ1pθ
1q � lim

tÑ8

1

t
log‖Mθ

t pθ
1q � � �Mθ

1 pθ
1q‖.

The Furstenberg-Kesten theorem [9] implies that for
Pθ-almost all ω, the above limit exists and is independent
of the realization of ω. The authors in [8] show that the
lower bound on the rate of learning is given by

λθ1 � max
θ1PΘztθu

λθ1pθ
1q. (4)

V. BOUNDS ON THE RATE OF LEARNING

In this section we find analytic bounds on the rate of
learning that depend on agents’ centralities in the social
network and information of their observations. Proposition 2
suggests that when the realized state is θ, �λθ1 could be
used as a lower bound on the rate of learning. However,
λθ1pθ

1q is the top Lyapunov exponent of a set of matrices, and
determination of the TLE is known to be a difficult problem
[10], [11]. Techniques for finding lower and upper bounds
for the TLE of i.i.d. matrices have been proposed under some
additional hypotheses [12], [13].

We use the upper bound on the TLE suggested by Gharavi
and Anantharam in [13] to find a lower bound on the rate of
learning. The bound is expressed as the solution to a concave
maximization problem over a finite-dimensional convex set
of probability distributions. In the appendix, we show that



when Iθsocpθ
1q is small, the upper bound on λθ1pθ

1q can be
approximated by

�
¸
iPN

πiaiiIθi pθ1q,

where πi ¡ 0 is the eigenvector centrality of agent i; that
is, pπ1, . . . , πnq is the left eigenvector of A corresponding to
the unit eigenvalue normalized such that

°n
i�1 πi � 1.4

We can also find an upper bound on the rate of learning
that depends on agents’ centralities and the information of
their observations. The following proposition establishes one
such upper bound.

Proposition 3: If Assumptions 1–4 are satisfied, and given
that the realized state is θ, for all ε ¡ 0,

lim inf
tÑ8

1

t
log sDθ

t ¥ �rθ � ε, Pθ-a.s.,

where
rθ � min

θ1PΘztθu

¸
iPN

πiaiiIθi pθ1q. (5)

Proof: Let the realized state be denoted by θ. By
Assumption 2, for any θ1 P Θ there exists an agent j such
that µj,0pθ1q ¡ 0. This implies by (2) that µi,1pθ1q ¡ 0 for
all i such that j P Ni. Since the network is assumed to
be strongly connected, one can repeat the same argument
to conclude that µi,tpθ1q ¡ 0 for all i P N , θ1 P Θ and
t ¡ n. We take logarithms of (2) evaluated at t ¡ n and use
Jensen’s inequality to get

logµi,t�1pθ
1q ¥ aii log

�
`ipωi,t�1|θ

1qµi,tpθ
1q°

θ̃PΘ `ipωi,t�1|θ̃qµi,tpθ̃q

�
�
¸
jPNi

aij logµj,tpθ
1q

� aii logµi,tpθ
1q �

¸
jPNi

aij logµj,tpθ
1q

� aii log
`ipωi,t�1| θ

1q°
θ̃PΘ `ipωi,t�1|θ̃qµi,tpθ̃q

. (6)

By Proposition 1, µi,tp�q Ñ µθi,tp�q with Pθ-probability one;
hence, ¸

θ̃PΘ

`ip�|θ̃qµi,tpθ̃q ÝÑ `ip�|θq Pθ-a.s. (7)

Since `ip�|�q ¡ 0, equation (7) implies that for all ε ¡ 0 and
Pθ-almost all ω, there exists Ti such that for all t ¥ Ti,∣∣∣∣∣log

`ipωi,t�1| θ
1q°

θ̃PΘ `ipωi,t�1|θ̃qµi,tpθ̃q
� log

`ipωi,t�1| θ
1q

`ipωi,t�1|θq

∣∣∣∣∣   ε.

(8)
Let pπ1, . . . , πnq be the left eigenvector of A corresponding
to the unit eigenvalue normalized such that

°n
i�1 πi � 1.

Multiplying both sides of (6) by πi, summing over i P N ,

4Since A is the weighted adjacency matrix of a strongly connected graph,
the Perron-Frobenius theorem implies A has a unique left eigenvector corre-
sponding to the unit eigenvalue; furthermore, this eigenvector is elementwise
positive.

and using (8) implies that for all ε ¡ 0 and Pθ-almost all ω,
there exists T such that for all t ¥ T ,

ņ

i�1

πi logµi,t�1pθ
1q ¥

ņ

i�1

πi logµi,tpθ
1q

�
¸
iPN

πiaii log
`ipωi,t�1| θ

1q

`ipωi,t�1|θq
� ε,

which recursively implies that for all t ¡ t0 ¥ T ,
ņ

i�1

πi logµi,tpθ
1q ¥

ņ

i�1

πi logµi,t0pθ
1q

�
t�1̧

τ�t0

¸
iPN

πiaii log
`ipωi,τ�1| θ

1q

`ipωi,τ�1|θq

� εpt� t0q.

Hence, for all ε ¡ 0 and Pθ-almost all ω,

lim inf
tÑ8

1

t

ņ

i�1

πi logµi,tpθ
1q

¥ lim inf
tÑ8

1

t

t�1̧

τ�t0

¸
iPN

πiaii log
`ipωi,τ�1| θ

1q

`ipωi,τ�1|θq
� ε

� Eθ
�¸
iPN

πiaii log
`ipωi,t�1| θ

1q

`ipωi,t�1|θq

�
� ε

� �
¸
iPN

πiaiiIθi pθ1q � ε,

where the first equality is by the strong law of large numbers
and the second one is by (3). Therefore, for all ε ¡ 0 and
Pθ-almost all ω,

lim inf
tÑ8

1

t
max

θ1PΘztθu

ņ

i�1

πi logµi,tpθ
1q

¥ max
θ1PΘztθu

�
�
¸
iPN

πiaiiIθi pθ1q

�
� ε

� �rθ � ε.

On the other hand,

1

t
log sDθ

t �
1

t
log

�
� 1

n

ņ

i�1

¸
θ1PΘztθu

µi,tpθ
1q

�


¥
1

t
log

�
max
iPN

max
θ1PΘztθu

µi,tpθ
1q



�

1

t
log n

�
1

t
max

θ1PΘztθu
max
iPN

logµi,tpθ
1q �

1

t
log n

¥
1

t
max

θ1PΘztθu

ņ

i�1

πi logµi,tpθ
1q �

1

t
log n,

where the last inequality is since
°n
i�1 πi � 1. Hence, for

all ε ¡ 0 and Pθ-almost all ω,

lim inf
tÑ8

1

t
log sDθ

t ¥ �rθ � ε� lim sup
tÑ8

1

t
log n � �rθ � ε.



Note that rθ is equal to the approximate lower bound
found earlier assuming that Iθsocpθ

1q is small for all θ1. There-
fore, the upper and lower bounds on the rate of learning are
both tight when the total information of agents’ observations
for θ over θ1 is small, an assumption we maintain in the rest
of the paper.

Equation (5) implies that for an agent to be influential in
accelerating learning in the social network, three conditions
need to be met. First, she needs to make observations which
are highly informative in favor of the realized state. Second,
she needs to have a high self-reliance. This is required for
the agent to incorporate her observations in her belief with a
large weight. Finally, she needs to be centrally located in the
social network, as measured by eigenvector centrality. This
allows her to influence the beliefs of other agents to a large
extent.

VI. NETWORK TOPOLOGY AND RATE OF LEARNING

We are interested in comparing network structures in terms
of how quickly they lead agents to learn the realized state. We
can use rθ defined in (5) as an approximation of the rate of
learning. The minimum in (5) might be obtained, however, by
different θ in different networks. This could complicate the
comparison between rates of learning in different networks
and obscure the resulting insights. To avoid this issue, in the
rest of the paper we assume that |Θ| � 2; that is, there are
only two possibilities for the state. We let Θ � tθ, θ1u, and
let θ denote the realized state of the world. We also use Ii as
shorthand for Iθi pθ1q and r as shorthand for rθ. Moreover, we
make the dependence of the rate of learning on the network
topology and information of agents’ observations explicit by
letting rpA, Iq denote the rate of learning over the network
with adjacency matrix A when the information of agents’
observations is given by I � pI1, . . . , Inq.

A. Examples

In what follows we compute the rate of learning for three
classes of networks in terms of their structural properties.

Example 1 (symmetric networks): A network is called
symmetric if aij � aji for all i, j P N . In a symmetric
network πi � 1{n for all i. Therefore, the rate of learning
for the symmetric network with adjacency matrix Asym is
given by

rpAsym, Iq �
1

n

ņ

i�1

aiiIi.

Example 2 (k-regular network with equal weights): A
network is called k-regular if each node has exactly k
neighbors. Also assume that aii � 1 � ε for all i and
aij � ε{k for all j P Ni; that is, agents all have the same
self-reliance and trust all their neighbors equally. In this case
πi � 1{n for all i, which implies that the rate of learning
over such a k-regular network with adjacency matrix Ak-reg
is given by

rpAk-reg, Iq �
1

n

ņ

i�1

p1� εqIi.

Note that the rate of learning is independent of k.
Example 3 (star network): A star network is one where

there is a central node that is a neighbor of all other nodes,
whereas any other node is only neighbors with the central
node. Let agent i � 1 denote the central agent in the star
network, and let the adjacency matrix be given by

Astar �

���������

1� δ
δ

n� 1

δ

n� 1
. . .

δ

n� 1
1� ε ε 0 . . . 0

1� ε 0 ε . . . 0
...

...
...

. . .
...

1� ε 0 0 . . . ε

��������
.

It is straightforward to show that agents’ eigenvector central-
ities are given by5

πi �

$''&
''%

1� ε

1� ε� δ
if i � 1,

δ

pn� 1qp1� ε� δq
if i � 1.

Therefore, the rate of learning is given by

rpAstar, Iq �
1

1� ε� δ

�
p1� εqp1� δq I1 �

δε

n� 1

ņ

i�2

Ii

�
.

The networks of Examples 1 and 2 are examples of
“balanced” networks where all agents are (roughly) equally
central, whereas in Example 3 agent i � 1 is much
more central than other agents. Over balanced networks,
information of agents’ observations receives similar weights
in the expression for the rate of learning. Consequently,
the rate of learning is not sensitive to variations in the
information of individual agents’ observations—as long as
the total information is constant. On the contrary, in a star
network with a large number of agents, the rate of learning is
very sensitive to variations in the information of the central
agent’s observations (even if the total information available
to agents is fixed). This is because in a large star network the
information of central agent’s observations receives a much
larger weight than that of peripheral agents.

B. Efficiency

Which social networks result in more efficient aggregation
of the information contained in agents’ observations? To
answer this question, we use the rate of learning for a
central observer with access to all agents’ observations
and likelihood functions `ip�|�q (but not the joint likelihood
function `p�|�q) as a benchmark. The rate of learning for a
such central observer is given by the Chernoff-Stein lemma
as

rcpIq �
ņ

i�1

Ii.

This is the fastest one can hope to learn the realized state,
given all the information available to agents in the social

5See, e.g., [5].



network. For I � 0 let αpA, Iq be defined as

αpA, Iq � rpA, Iq
rcpIq

.

This is a measure of deceleration in the rate of learning
as a result of decentralization of observations. A larger α
corresponds to less deceleration, and hence, more efficient
social learning. Note that if A corresponds to a strongly
connected network, then αpA, Iq P p0, 1q.

The efficiency of social learning depends not only on
the network topology, but also on which agents make the
most informative observations; however, one can compare
different networks directly in terms of the highest level of
efficiency that is possible over them. Let α�pAq be defined
as

α�pAq � sup
I¡0

rpA, Iq.

That is, α�pAq is the maximum achievable efficiency of
social learning over the network corresponding to A. The
networks in Examples 1–3 result in significantly different
values for α�:

α�pAsymq �
1

n
max
iPN

aii  
1

n
,

α�pAk-regq �
1

n
p1� εq,

whereas if n is sufficiently large

α�pAstarq �
p1� εqp1� δq

1� ε� δ
.

While the rate of learning for the star network is independent
of the number of agents, for the networks of Examples 1
and 2 it is a decreasing function of n. This implies that
the balanced networks of Examples 1 and 2 cannot result in
efficient learning when the number of agents is large.

More generally, the maximum achievable efficiency of
social learning over the network with adjacency matrix A
is given by

α�pAq � max
i

πiaii.

This implies that for a network to be efficient in aggregating
information it is necessary that the maximum eigenvector
centrality among all agents is large; that is, there needs to
exist an “opinion leader” who is disproportionally central in
the network. This is not sufficient, however. For learning to
be efficient, opinion leaders need to also be the agents who
make the most informative observations. Even though strong
connectivity is sufficient to ensure that the belief of even a
non-central agent is eventually heard by others, a substantial
part of the information contained in her observations is
lost in the process. The following example illustrates this
point. Suppose that the peripheral agent i observes a very
informative signal that tilts her belief strongly in favor of
state θ; however, as a result of her small centrality, her belief
is observed only by few other agents. Let k be one such agent
who observes the belief of agent i in addition to that of an
uninformed agent j. Since k cannot know the quality of the
observations made by i and j, she treats their beliefs as two

equally valid “sides of the story”. Therefore, agent k’s belief
will be less strongly in favor of θ than that of i. By the same
argument, neighbors of k will be even less strongly in favor
of θ compared to k, and so on.

A comparison with the result obtained by Golub and
Jackson in [5] is due. The paper studies social learning
for the case where agents receive only one noisy signal
each about the unknown real-valued state of the world.
Each agent repeatedly updates her estimate of the state by
taking a convex combination of her estimate with those
of her neighbors. The authors show that for agents in a
large network to be able to form an unbiased estimate of
the state, it is necessary that no agent has an eigenvector
centrality which is non-vanishing in the number of agents.
The authors call networks that satisfy this property wise.
However, these are exactly the networks that in our model
result in inefficient learning. This illustrates the tradeoff
between correctness of agents’ opinions when they have
limited information, and the rate of learning when there is
constant flow of new information. While if a central agent
repeatedly makes informative observations she can lead all
agents to quickly learn the state, if no agent makes repeated
informative observations, all agents’ could be misled by the
central agent as a result of her excessive influence on others’
beliefs.

VII. CONCLUSION

In this paper we studied a model of social learning where
agents repeatedly update their beliefs to incorporate the
information they obtain through both private observations
and communication with their neighbors. We focused on
scenarios where agents are unaware of (and cannot learn)
the origin or quality of their neighbors’ observations. We
found lower and upper bounds on the rate of learning, and
showed that the bounds are tight when the total information
of agents’ observations is small. We also compared networks
in terms of their maximum achievable social learning effi-
ciency. The analysis showed that even though in unbalanced
networks agents could learn the realized state efficiently
regardless of the network size, in large balanced networks
social learning is always inefficient.

Throughout the paper our point of view was positive;
however, the insights obtained are transferable to the problem
of sensor network design. Consider the problem of decen-
tralized detection where each sensor could sense a possibly
different relevant variable. As we argued, in order for sensors
to detect the event, they do not need to communicate to other
sensors their entire observations; rather, it is sufficient for
sensors to individually estimate the probability of the event
and communicate their private estimates. This could save
sensors valuable communication resources especially when
their observations are large objects such as videos. Proposi-
tion 2 implies that, if the event is identifiable, this protocol
leads sensors to learn whether the event has occurred or not
exponentially fast. Moreover, the expression obtained for the
rate of learning in (5) can be used to maximize the speed of
detection subject to design constraints.



APPENDIX

We use the upper bound on the TLE found in [13] to
approximate λθ1pθ

1q. To make the derivation simpler we
introduce some new notation. Let s denote the signal profile
ps1, s2, . . . , snq where si P Si for all i P N . Let S �
t1, 2, . . . , |S|u, and let h : S ÞÑ S be an enumeration
of S.6 For all k P S, we use hipkq to denote the ob-
servation of agent i when signal profile hpkq is realized;
i.e., hpkq � ph1pkq, . . . , hnpkqq. For all k P S, let pk �
`1ph1pkq|θq � � � `1phnpkq|θq, and let Nk be the realization of
Mθ
t pθ

1q given ωt � hpkq; that is, Nk is the n � n matrix
defined as

Nk � A� diag

��
aii

�
`iphipkq|θ

1q

`iphipkq|θq
� 1




i�1,...,n

�
.

Let Hppq be the entropy of p defined as

Hppq � �
¸
kPS

pk log pk.

Let M be the set of all probability measures on pN � Sq �
pN � Sq. With slight abuse of notation, for any η P M, let
Hpηq be the entropy of η defined as

Hpηq � �
¸
i,jPN
k,lPS

ηk,li,j log
ηk,li,j

ηk,�i,�
,

where
ηk,�i,� �

¸
jPN
lPS

ηk,li,j .

The solution to the following optimization problem is
an upper bound on the TLE of the set of i.i.d. matrices
pMθ

t pθ
1qqt�1,...,8 when Mθ

t pθ
1q P tNkukPS and Nk is

realized with probability pk:

λ̂θ1pθ
1q � max

ηPM
Hpηq � F pηq �Hppq (9)

subject to
ηk,l�,� � pkpl @ k, l P S, (10)

ηk,�i,� � η�,k�,i @ i P N @k P S, (11)

ηk,li,j � 0 @ i, j P N @k, l P S s.t. Nk
j,i � 0, (12)

where Nk
j,i is the element of Nk in the ith row and jth

column, and F : M ÞÑ R is defined as

F pηq �
¸
i,jPN
k,lPS

ηk,li,j logNk
j,i.

We assume that the last set of constraints do not bind,
and use Lagrange multipliers ρk,l and νki to incorporate the
first and second set of constraints into the objective function,
respectively. The first order optimality conditions are given
by

logNk
j,i � log ηk,li,j � log ηk,�i,� � ρk,l � νki � νlj � 0, (13)

6An enumeration of a finite set S is a bijective mapping from
t1, 2, ..., |S|u to S.

for all i, j P N and k, l P S. The above equation cannot be
solved analytically, except for special cases. One such case
is when the information of all agents’ observations for θ over
θ1 is equal to zero; that is, Iθi pθ1q � 0 for all i P N . First,
we solve for η assuming this. Then, we analyse the effect of
a small perturbation in Iθi pθ1q on λ̂θ1pθ

1q.
First, assume that Iθi pθ1q � 0 for all i. In this case

`iphipkq|θq � `iphipkq|θ
1q for all i P N and k P S;

consequently, Nk � A for all k P S. It is easy to verify
that the solution pη̂, ρ̂, ν̂q given below satisfies the KKT
conditions (10)–(13).

η̂k,li,j � πjajip
kpl

ρ̂k,l � log pk

ν̂ki � � logpπip
kq

Note that since the set of constraints (12) are automatically
satisfied, they are not binding in this case. Since the optimiza-
tion problem (9) has a strictly concave cost function and a
set of linear constraints, η̂ is its unique solution. Substituting
η̂ in (9), one can easily see that λ̂θ1pθ

1q � 0 when Iθi pθ1q � 0
for all i.

Next, for some agent i we perturb `ip�|θ1q by the infinitesi-
mal function δ`ip�|θ1q and find the resulting change in λ̂θ1pθ

1q.
For the perturbed likelihood function to remain a probability
distribution over Si, it is necessary that

°
siPSi

δ`ipsi|θ
1q �

0. Let ∇δ`ip�|θ1qλ̂
θ
1pθ

1q denote the directional derivative of
λ̂θ1pθ

1q along δ`ip�|θ1q. Since the only constraint that depends
on `ip�|θ

1q is not binding, by the envelope theorem, the
derivative of λ̂θ1pθ

1q with respect to `ip�|θ
1q is given by the

partial derivative of the Hpηq�F pηq�Hppq with respect to
`ip�|θ

1q holding η fixed, and then evaluating the result at the
optimal solution η̂. While Hppq and Hpηq do not explicitly
depend on `ip�|θ1q, F pηq is given by

F pηq �
¸
i,jPN
k,lPS

ηk,li,j log aj,i �
¸
jPN
k,lPS

ηk,lj,j log
`jphjpkq|θ

1q

`jphjpkq|θq
.

Therefore,

∇δ`ip�|θ1qλ̂
θ
1pθ

1q � ∇δ`ip�|θ1q

¸
jPN
k,lPS

η̂k,lj,j log
`jphjpkq|θ

1q

`jphjpkq|θq

�
¸
jPN
k,lPS

η̂k,lj,j∇δ`ip�|θ1q log
`jphjpkq|θ

1q

`jphjpkq|θq

� πiaii
¸
kPS

pk∇δ`ip�|θ1q log
`iphipkq|θ

1q

`iphipkq|θq

� πiaii
¸
siPSi

`ipsi|θq∇δ`ip�|θ1q log
`ipsi|θ

1q

`ipsi|θq
,

where both of the derivatives are evaluated at `ip�|θ1q �
`ip�|θq. Since `ipsi|θq is not a function of `ip�|θ1q and by
linearity of the derivative operator, the above equation can



be written as

∇δ`ip�|θ1qλ̂
θ
1pθ

1q � πiaii∇δ`ip�|θ1q

¸
siPSi

`ipsi|θq log
`ipsi|θ

1q

`ipsi|θq

� �πiaii∇δ`ip�|θ1qIθi pθ1q.

Note that the above equation is valid for all i P N . On the
other hand, λ̂θ1pθ

1q � 0 when Iθi pθ1q � 0 for all i P N .
Therefore, when Iθi pθ1q is small for all i P N , λ̂θ1pθ

1q can
be approximated by the linear term in its Taylor expansion
with respect to pIθi pθ1qqi�1,...,n as

λ̂θ1pθ
1q � �

ņ

i�1

πiaiiIθi pθ1q.
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