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We propose a new transaction-level bivariate log-price model that yields fractional or standard cointegra-
tion. The model provides a link between market microstructure and lower-frequency observations. The
two ingredients of our model are a long-memory stochastic duration process for the waiting times, {τk},
between trades and a pair of stationary noise processes, ({ek} and {ηk}), which determine the jump sizes
in the pure-jump log-price process. Our model includes feedback between the disturbances of the two
log-price series at the transaction level, which induces standard or fractional cointegration for any fixed
sampling interval �t. We prove that the cointegrating parameter can be consistently estimated by the
ordinary least squares estimator, and we obtain a lower bound on the rate of convergence. We propose
transaction-level method-of-moments estimators of the other parameters in our model and discuss the
consistency of these estimators.
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1. INTRODUCTION

We propose a transaction-level, pure-jump model for a bi-
variate price series in which the intertrade durations are sto-
chastic and enter into the model in a fully endogenous way.
The model is flexible and able to capture a variety of styl-
ized facts, including standard or fractional cointegration, per-
sistence in durations, volatility clustering, leverage (i.e., a neg-
ative correlation between current returns and future volatility),
and nonsynchronous trading effects. In our model, all of these
features observed at equally spaced time intervals are derived
from transaction-level properties. Thus the model provides a
link between market microstructure and lower-frequency obser-
vations. This article focuses on the cointegration aspects of the
model, presenting theoretical, simulation, and empirical analy-
ses.

Cointegration is a well-known phenomenon that has received
considerable attention in economics and econometrics. Under
both standard and fractional cointegration, there is a contempo-
raneous linear combination of two or more time series that is
less persistent than the individual series. Under standard coin-
tegration, the memory parameter is reduced from 1 to 0, while
under fractional cointegration, the level of reduction need not be
an integer. Indeed, in the seminal article of Engle and Granger
(1987), both standard and fractional cointegration were allowed
for, although the literature has since developed separately for
the two cases. Important contributions to the representation, es-
timation, and testing of standard cointegration models include
those of Stock and Watson (1988), Johansen (1988, 1991), and
Phillips (1991a). Literature addressing the corresponding prob-
lems in fractional cointegration includes works by Dueker and
Startz (1998), Marinucci and Robinson (2001), Robinson and
Marinucci (2001), Robinson and Yajima (2002), Robinson and
Hualde (2003), Velasco (2003), Velasco and Marmol (2004),
and Chen and Hurvich (2003a, 2003b, 2006).

A limitation of most existing models for cointegration is that
they are based on a particular fixed sampling interval, �t (e.g.,
1 day, 1 month) and thus do not reflect the dynamics at all lev-
els of aggregation. Indeed, Engle and Granger (1987) assumed
a fixed sampling interval. It is also possible to build models

for cointegration using diffusion-type continuous-time models,
such as ordinary or fractional Brownian motion (see Phillips
1991b; Comte and Renault 1996, 1998; Comte 1998), but such
models would fail to capture the pure-jump nature of observed
asset-price processes.

In this article we propose a pure-jump model for a bivari-
ate log-price series such that any discretization of the process
to an equally spaced sampling grid with sampling interval �t
produces fractional or standard cointegration; that is, there ex-
ists a contemporaneous linear combination of the two log-price
series that has a smaller memory parameter than the two indi-
vidual series. A key ingredient in our model is a microstructure
noise contribution, {ηk}, to the log prices. In the weak fractional
cointegration case, this noise series is assumed to have memory
parameter dη ∈ (− 1

2 ,0) in the strong fractional cointegration
case dη ∈ (−1,− 1

2 ), while in the standard cointegration case,
dη = −1. In all three cases, the reduction of the memory para-
meter is −dη. Due to the presence of the microstructure noise
term, the discretized log-price series are not martingales, and
the corresponding return series are not linear in an iid sequence,
a martingale-difference sequence, or a strong-mixing sequence.
This is in sharp contrast to existing discrete-time models for
cointegration, most of which assume at least that the series has a
linear representation with respect to a strong-mixing sequence.

The discretely sampled returns (i.e., the increments in the
log-price series) in our model are not martingale differences,
because of the microstructure noise term. Instead, for small
values of �t they may exhibit noticeable autocorrelations, as
also seen in actual returns over short time intervals. Neverthe-
less, the returns behave asymptotically like Martingale differ-
ences as the sampling interval �t is increased, in the sense that
the lag-k autocorrelation tends to 0 as �t tends to ∞ for any
fixed k. Again, this is consistent with the near-uncorrelatedness
observed in actual returns measured over long time intervals.
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The memory parameter of the log prices in our model is 1, in
the sense that the variance of the log price increases linearly in t
asymptotically as t → ∞. In contrast, the memory parameter of
the appropriate contemporaneous linear combination of the two
log-price series is reduced to (1 + dη) < 1, thereby establishing
the existence of cointegration in our model.

To derive the results described herein, we make use of the
general theory of point processes, and also rely heavily on the
theory developed by Deo et al. (2009) for the counting process
N(t) induced by a long-memory duration process. In Section 2
we present our pure-jump model for the bivariate log-price se-
ries. Because the two series need not have all of their transac-
tions at the same time points (due to nonsynchronous trading),
it is not possible to induce cointegration in the traditional way,
that is, by directly imposing in clock time (calendar time) an
additive common component for the two series with a mem-
ory parameter equal to 1. Instead, the common component is
induced indirectly, and incompletely, by means of a feedback
mechanism in transaction time between current log-price dis-
turbances of one asset and previous log-price disturbances of
the other asset. This feedback mechanism also induces certain
end-effect terms, which we explicitly display and handle in our
theoretical derivations using the theory of point processes.

The article is organized as follows. In Section 2 we provide
economic justification for the model, as well as a transaction-
level definition of the information share of a market. We also
present some preliminary data analysis results that affirm the
potential usefulness of certain flexibilities in the model. In Sec-
tion 3 we define conditions on the microstructure noise process
for both fractional and standard cointegration. These conditions
are satisfied by various standard time series models. In Sec-
tion 4 we present the properties of the log-price series implied
by our model. In particular, we show that the log price behaves
asymptotically like a martingale as t is increased, and that the
discretely sampled returns behave asymptotically like Martin-
gale differences as the sampling interval �t is increased. In Sec-
tion 5 we establish that our model has cointegration, by show-
ing that the cointegrating error has memory parameter (1+dη).
We present separate theorems for the weak and strong frac-
tional cointegration and standard cointegration cases. In Sec-
tion 6 we show that the ordinary least squares (OLS) estima-
tor of the cointegrating parameter θ is consistent, and obtain a
lower bound on its rate of convergence. In Section 7 we pro-
pose an alternative cointegrating parameter estimator based on
the tick-level price series. In Section 8, we propose a method-
of-moments estimator for the tick-level model parameters (ex-
cept the cointegrating parameter θ ). The method is based on the
observed tick-level returns. In Section 9 we propose a specifica-
tion test for the transaction-level price model, and in Section 10
we present simulation results on the OLS estimator of θ , the
tick-level cointegrating parameter estimator θ̃ , the method-of-
moments estimator, and the proposed specification test. In Sec-
tion 11 we present a data analysis of buy and sell prices of a sin-
gle stock (Tiffany; TIF), providing evidence of strong fractional
cointegration. The cointegrating parameter is estimated by both
OLS regression and the alternative tick-level method proposed
in Section 7. The proposed specification test is implemented on
the data. Interesting results are observed that are consistent with
the existing literature about price discovery process in a market-
dealer market. We then consider the information content of buy

trades versus sell trades in different market environments. In
Section 12 we provide some concluding remarks and discuss
possible further generalizations of our model and related future
work. We provide proofs in the Appendix.

2. A PURE–JUMP MODEL FOR LOG PRICES

Before describing our model, we provide some background
on transaction-level modeling. Currently, a wealth of tran-
saction-level price data is available, and for such data, the (ob-
served) price remains constant between transactions. If there is
a diffusion component underlying the price, it is not directly
observable. Thus pure-jump models for prices provide a poten-
tially appealing alternative to diffusion-type models. The com-
pound Poisson process proposed by Press (1967) is a pure-jump
model for the logarithmic price series under which innovations
to the log price are iid, and these innovations are introduced
at random time points, determined by a Poisson process. The
model was generalized by Oomen (2006), who introduced an
additional innovation term to capture market microstructure.

An informative and directly observable quantity in tran-
saction-level data is the duration {τk} between transactions. In a
seminal article focusing on durations and, to some extent, on the
induced price process, Engle and Russell (1998) documented
a key empirical fact that durations are strongly autocorrelated,
quite unlike the iid exponential duration process implied by a
Poisson transaction process, and they proposed the autoregres-
sive conditional duration (ACD) model, which is closely related
to the generalized autoregressive conditional heteroscedasticity
model of Bollerslev (1986). Deo, Hsieh, and Hurvich (2006)
presented empirical evidence that durations, as well as transac-
tion counts, squared returns, and realized volatility, have long
memory, and introduced the long-memory stochastic duration
(LMSD) model, which is closely related to the long-memory
stochastic volatility model of Breidt, Crato, and de Lima (1998)
and Harvey (1998). The LMSD model is τk = ehkεk, where
{hk} is a Gaussian long-memory series with memory parame-
ter dτ ∈ (0, 1

2 ), the {εk} are iid positive random variables with
mean 1, and {hk} and {εk} are mutually independent.

Deo et al. (2009) demonstrated that long memory in dura-
tions propagates to long memory in the counting process N(t),
where N(t) counts the number of transactions in the time in-
terval (0, t]. In particular, if the durations are generated by an
LMSD model with memory parameter dτ ∈ (0, 1

2 ), then N(t) is
long-range count–dependent with the same memory parameter,
in the sense that var N(t) ∼ Ct2dτ +1 as t → ∞. This long-range
count dependence then propagates to the realized volatility, as
studied by Deo et al. (2009).

We now describe the tick-time return interactions that yield
cointegration in our model. Suppose that there are two assets, 1
and 2, and that each log price is affected by two types of distur-
bances when a transaction occurs. These disturbances are the
value shocks, {ei,k}, and the microstructure noise, {ηi,k}, for as-
set i = 1,2. The subscript i, k pertains to the kth transaction of
asset i. The value shocks are iid and represent permanent con-
tributions to the intrinsic log value of the assets, which in the
absence of feedback effects is a martingale with respect to full
information, both public and private (see Amihud and Mendel-
son 1987; Glosten 1987). The microstructure shocks represent
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Figure 1. Changes in log prices. The online version of this figure is in color.

the remaining contributions to the observed log prices, along
similar lines as the noise process considered by Amihud and
Mendelson (1987), reflecting transitory price fluctuations due
to, for example, liquidity impact of orders. We assume that the
mth tick-time return of asset 1 incorporates not only its own
current disturbances e1,m and η1,m, but also weighted versions
of all intervening disturbances of asset 2 that were originally
introduced between the (m − 1)th and mth transactions of as-
set 1. The weight for the value shocks, denoted by θ , may differ
from the weight for the microstructure noise, denoted by g21
(the impact from asset 2 to asset 1). We similarly define the mth
tick-time return of asset 2, but the weight for the value shocks
from asset 1 to asset 2 is (1/θ), and the corresponding weight
for the microstructure noise is denoted by g12. The choice of
the second impact coefficient (1/θ) is necessary for the two
log-price series to be cointegrated. In general, if the two series
are not cointegrated, then this constraint is not required.

Figure 1 illustrates the mechanism by which tick-time returns
are generated in our model. All disturbances originating from
asset 1 are shown in blue, and all disturbances originating from
asset 2 are shown in red. When the first transaction of asset 1
occurs, a value shock e1,1 and a microstructure disturbance η1,1
are introduced. The first transaction of asset 2 follows in clock
time, and because the first transaction of asset 1 occurred be-
fore it, the return for this transaction is (e2,1 + η2,1 + 1

θ
e1,1 +

g12η1,1), that is, the sum of the first value shock of asset 2,
e2,1, the first microstructure disturbance of asset 2, η2,1, and a
feedback term from the first transaction of asset 1 whose distur-
bances are e1,1 and η1,1, weighted by the corresponding feed-
back impact coefficients 1

θ
and g12. In the figure, both log-price

processes evolve until time t. Notice that the third return of as-
set 1 contains no feedback term from asset 2, because there is
no intervening transaction of asset 2. The second return of as-
set 2 includes its own current disturbances (e2,2, η2,2) as well as
six weighted disturbances (e1,2, e1,3, e1,4, η1,2, η1,3, and η1,4)
from asset 1, because there are three intervening transactions of
asset 1.

At a given clock time t, most of the disturbances of asset 1 are
incorporated into the log price of asset 2 and vice-versa. There
is an end effect, however. The problem is readily seen in the
figure: because the fifth transaction of asset 1 occurred after the
last transaction of asset 2 before time t, the most recent asset 1

disturbances e1,5 and η1,5 are not incorporated in the log price
of asset 2 at time t. Eventually, at the next transaction of asset 2,
which will occur after time t, these two disturbances will be
incorporated. But this end effect may be present at any given
time t. We handle this end effect explicitly in all derivations in
this article.

Our model for the log prices for all nonnegative real t is then
given by

log P1,t =
N1(t)∑
k=1

(e1,k + η1,k) +
N2(t1,N1(t))∑

k=1

(θe2,k + g21η2,k),

(1)

log P2,t =
N2(t)∑
k=1

(e2,k + η2,k) +
N1(t2,N2(t))∑

k=1

(
1

θ
e1,k + g12η1,k

)
,

where ti,k is the clock time for the kth transaction of asset i and
Ni(t) (i = 1,2) are counting processes that count the total num-
ber of transactions of asset i up to time t. Later we impose spe-
cific conditions on {ei,k}, {ηi,k}, and Ni(t). Note that (1) implies
that log P1,0 = log P2,0 = 0, the same standardization used by
Stock and Watson (1988) and others. The quantity N2(t1,N1(t))

represents the total number of transactions of asset 2 occurring
up to the time (t1,N1(t)) of the most recent transaction of asset 1.
An analogous interpretation holds for the quantity N1(t2,N2(t)).

To exhibit the various components of our model, we rewrite
(1) as

log P1,t =
(N1(t)∑

k=1

e1,k +
N2(t)∑
k=1

θe2,k︸ ︷︷ ︸
common component

)

+
(N1(t)∑

k=1

η1,k +
N2(t)∑
k=1

g21η2,k︸ ︷︷ ︸
microstructure component

)

−
N2(t)∑

k=N2(t1,N1(t))+1

(θe2,k + g21η2,k)

︸ ︷︷ ︸
end effect

,

(2)
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log P2,t =
(N1(t)∑

k=1

1

θ
e1,k +

N2(t)∑
k=1

e2,k︸ ︷︷ ︸
common component

)

+
(N1(t)∑

k=1

g12η1,k +
N2(t)∑
k=1

η2,k︸ ︷︷ ︸
microstructure component

)

−
N1(t)∑

k=N1(t2,N2(t))+1

(
1

θ
e1,k + g12η1,k

)
︸ ︷︷ ︸

end effect

.

The common component is a martingale and thus is I(1). We
show that the microstructure components are I(1+dη), so these
components are less persistent than the common component.
The end-effect terms are random sums over time periods that
are Op(1) as t → ∞ [see (A.10) to (A.12)] and thus are negli-
gible compared with all other terms. Because both log P1,t and
log P2,t are I(1) (see Theorem 1) and the linear combination
log P1,t − θ log P2,t is I(1 + dη) as defined in Section 3, the log-
price series are cointegrated (see Theorems 3, 4, and 5).

Frijns and Schotman (2006) considered a mechanism for
generating quotes in tick time that is similar to the mecha-
nism shown in Figure 1; however, they condition on durations,
whereas we endogenize them in our model (1). Furthermore,
their model implies standard cointegration, with a cointegrating
parameter known to be 1 and a single value shock component.

Throughout the article, unless noted otherwise, we make the
following assumptions for our theoretical results. The duration
processes {τi,k} of asset i (i = 1,2), are assumed to have long
memory with memory parameters dτ1,dτ2 ∈ (0, 1

2 ), to reflect
the empirically observed persistence in durations and the re-
sulting realized volatility. Specifically, the {τi,k} are assumed to
satisfy the assumptions in theorem 1 of Deo et al. (2009), which
are very general and would allow, for example, the LMSD
model of Deo, Hsieh, and Hurvich (2006).

We assume that the {ei,k} are mutually independent iid
processes with mean 0 and variance σ 2

i,e (i = 1,2). We also
assume that the {ηi,k} are mutually independent, with mean 0
and memory parameter dηi . For notational convenience, we set
dη1 = dη2 = dη in our theoretical results. All theorems will con-
tinue to hold, however, when dη1 and dη2 are distinct, simply by
replacing dη with d∗

η = max(dη1,dη2). For Theorem 6, which
establishes the consistency of the OLS estimator of θ , we fur-
ther assume {ei,k} to be N(0, σ 2

i,e).
We assume that {τ1,k} and {τ2,k} are independent of all dis-

turbance series {e1,k}, {e2,k}, {η1,k}, and {η2,k}, which we as-
sume to be mutually independent. But we do not require that
N1(·) and N2(·) be mutually independent, nor that {τ1,k} and
{τ2,k} be mutually independent. This is in keeping with recent
literature suggesting that feedback occurs between the counting
processes (see, e.g., Nijman, Spierdijk, and Soest 2004; Bow-
sher 2007; and references therein).

2.1 Economic Justification for the Model

Here we provide some economic rationale for the transaction-
level return interactions leading to model (1). This supplements

our earlier discussion around Figure 1 on the formal mechanism
for price formation. After a brief data analysis affirming the po-
tential usefulness of certain flexibilities of the model, we com-
pare and contrast the model with a clock-time model proposed
by Hasbrouck (1995), and then propose a transaction-level gen-
eralization of Hasbrouck’s definition of the information share
of a market.

The model (1) is potentially economically appropriate for
pairs of measured prices that are both affected by the same
information shocks (i.e., value shocks), possibly in different
ways. Examples include buy prices and sell prices of a sin-
gle stock, prices of two classified stocks (with different voting
rights) from a given company, prices of two different stocks
within the same industry, stock and option prices of a given
company, option prices on a given stock with different degrees
of maturity or moneyness, corporate bond prices at different
maturities for a given company, and Treasury bond prices at
different maturities.

The fundamental (value) prices at time t are an accumulation
of information shocks. If we ignore the end effects, then these
fundamental prices may be thought of as the common compo-
nents in (2). More precisely, the fundamental prices may be ob-
tained by setting the microstructure shocks in (1) to 0. For def-
initeness, consider the example of buy prices (asset 1) and sell
prices (asset 2) of a single stock. Information shocks may be
generated on either the buy side or the sell side. According to
the model, each buy transaction generates its own information
shock, as does each sell transaction. Furthermore, these shocks
spill over from the side of the market in which they originated
to the other side. Clearly, shocks originating from the sell side
of the market cannot be impounded into the buy price until there
is a transaction on the buy side. Similarly, in the absence of in-
formation arrivals (transactions) on the sell side, any string of
intervening information shocks from the buy side will render
the most recent sell price stale, until the intervening buy-side
shocks are actually impounded into the sell-side price at the
next sell transaction.

Shocks spilling over from the buy side to the sell side are
weighted by 1/θ , while those spilling from the sell side to the
buy side are weighted by θ . When θ = 1, shocks spill over from
one side to the other in an identical way, and there is just a sin-
gle fundamental price, shared by both the buy side and sell side.
In general, as can be seen from (1), the fundamental (log) price
for the buy side is an accumulation of information shocks from
both the buy side and the sell side, with the sell-side shocks
weighted by θ . Ignoring end effects, as can be seen from (2),
the common component on the buy side is proportional to the
common component on the sell side, and the constant of pro-
portionality is θ .

Analogous interactions take place on the microstructure
shocks, such that a microstructure shock originating on the buy
side spills over to the sell side with weight g12, and the oppo-
site spillover occurs with weight g21. Even in the absence of
spillover of the microstructure shocks (g12 = g21 = 0), the dif-
ference between the buy price and θ times the sell price is (ex-
cept for end effects) an accumulation of microstructure shocks.
It seems to be in accordance with the economic connotation
of the term “microstructure” that the microstructure shocks be
transitory, that is, the aggregate of microstructure shocks be
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stochastically of smaller order than the aggregate of funda-
mental shocks, as t → ∞. This will occur if and only if the
microstructure shocks have a smaller memory parameter than
the fundamental shocks (dη < 0), as we assume. Cointegra-
tion arises as a consequence of the spillover of the fundamental
shocks, together with the assumption dη < 0. The spillover of
the fundamental shocks induces the common component, while
the assumption dη < 0 ensures that the cointegrating error aris-
ing from the microstructure is less persistent than the common
component.

Two questions that might be raised in the context of model
(1) are whether there are situations in which the two prices are
affected by information in different ways, so that the cointe-
grating parameter is not equal to 1, and whether it is helpful
in practice to allow for fractional cointegration as opposed to
standard cointegration. To address these questions, we briefly
present some results of a preliminary data analysis. We consid-
ered clock-time option best-available-bid prices and underlying
best-available-bid prices for IBM on the NYSE at 390 1-minute
intervals from 9:30 a.m. to 4 p.m. on May 31, 2007. We origi-
nally analyzed 74 different options, but removed 5 from consid-
eration because they had either at least one zero bid price during
the day or a constant bid price throughout the day. For the re-
maining 69 options, we regressed the log stock bid price on the
log option bid price, and constructed a semiparametric GPH es-
timator (Geweke and Porter-Hudak 1983) of the memory pa-
rameter of the residuals. The least squares regression slopes
ranged from −0.21 to 0.39, with a mean of 0.04 and a stan-
dard deviation of 0.13. This suggests that information affected
the two prices in different ways for all 69 options. For the GPH
estimators, we used 3900.5 for the number of frequencies; this
resulted in an approximate standard error for the GPH estimator
of 0.19. The GPH estimator for the log stock bid price was 1.02.
The GPH estimators for the residuals ranged from 0.05 to 1.14,
with a mean of 0.55 and a standard deviation of 0.28. Of the
69 sets of residuals, 62 yielded a GPH estimator <1, with 54
<0.75, 42 <0.6, and 18 between 0.4 and 0.6. These results sug-
gest the presence of cointegration in most cases, and also imply
that the cointegration in some of these cases may be fractional
instead of standard.

It is instructive to compare and contrast our model (1) with
the clock-time model of Hasbrouck (1995), in which a single
security is traded on several markets and different market prices
share an identical random-walk component. To facilitate com-
parisons with the bivariate model (1), suppose that there are two
markets. Then for all nonnegative integers j, the clock-time log
stock prices at time j on the two different markets, are given by
Hasbrouck’s model as

log P1,j = log P1,0 +
j∑

s=1

(ψ1ẽ1,s + ψ2ẽ2,s) + v1,j,

(3)

log P2,j = log P2,0 +
j∑

s=1

(ψ1ẽ1,s + ψ2ẽ2,s) + v2,j,

where log P1,0 and log P2,0 are constants, (ẽ1,s, ẽ2,s)
′ is a mean-

0 vector of serially uncorrelated disturbances with covariance
matrix 	, ψ = (ψ1,ψ2) are the weights for ẽ1,s, ẽ2,s, and
{(v1,j, v2,j)

′} is a mean-0 stationary bivariate time series. The

quantity ẽi,s (i = 1,2) may be considered the fundamental
shock originating from the ith market. Hasbrouck (1995) es-
timated the model on data using a 1-second sampling interval.

Both models (1) and (3) induce a common component, as
well as cointegration. Both contain spillover of the fundamental
shocks from one market to the other. In model (3) the spillover
is the same in both directions, so the common components are
identical and the cointegrating parameter is 1. In contrast, in
model (1) the cointegrating parameter need not be equal to 1.
In model (3) the cointegrating error is I(0), while in model (1)
the cointegrating error is allowed to be I(1+dη) for any dη with
−1 ≤ dη < 0.

In model (3) the contemporaneous correlation between the
fundamental shocks originating from the two markets is al-
lowed to be nonzero, (i.e., 	 is allowed to be nondiagonal),
whereas in model (1) the two fundamental shock series are as-
sumed to be independent. Note, however, that in the transaction-
level model (1), the kth transactions of the two assets will (al-
most surely) occur at different clock times, so any correlation
between the two fundamental shocks e1,k and e2,k would not be
contemporaneous in clock time. This provides a motivation for
our assumption that {e1,k} and {e2,k} are mutually independent.
An economic motivation for this assumption stems from the
following remarks of Hasbrouck (1995, p. 1183): “In practice,
market prices usually change sequentially: a new price is posted
in one market, and then the other markets respond. If the obser-
vation interval is so long that the sequencing cannot be deter-
mined, however, the initial change and the response will appear
to be contemporaneous. Therefore, one obvious way of mini-
mizing the correlation is to shorten the interval of observation.”
Because model (1) is defined in continuous time, the interval
of observation is effectively zero, so at least under the idealized
assumptions that there are no truly simultaneous transactions
on the two markets and that the time stamps for the transac-
tions are exact, the assumption of mutual independence would
be economically reasonable.

In the remainder of this section, we discuss the information
share, originally defined by Hasbrouck (1995) to measure how
market information that drives stock prices is distributed across
different exchanges. Hasbrouck (1995) defined the information
share of market i based on model (3) as Si = (ψ2

i 	ii)/(ψ	ψ ′),
which is the proportional contribution from market i to the total
fundamental innovation variance. Only the random-walk com-
ponent is used in constructing the information share, because
this is the only permanent component. As Hasbrouck (1995)
discussed, because 	 may not be diagonal, only a bound for
the information share can be estimated. Here we propose a
transaction-level generalization of the concept of information
share based on model (1), which is directly estimable because
of our assumption of mutual independence of the transaction-
level fundamental disturbance series. The information share
proposed by Hasbrouck (1995) measures how the price discov-
ery of one security is fulfilled across difference exchanges. In
contrast, our information share instead measures how the price-
driving information of a security is distributed between buy ver-
sus sell trades in a market. The ideas are similar. Indeed, as Has-
brouck (1995) noted, his model can be extended to model bid
and ask price dynamics. Nevertheless, as discussed earlier, our
model ultimately is a tick-level model that differs from existing
clock-time models, including that of Hasbrouck (1995).
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For model (1), we define the information share as follows.
For a given clock-time sampling interval �t, the information
share of asset i is given by

S1,C = var(
∑N1(j�t)

k=N1((j−1)�t)+1 e1,k)

var(
∑N1(j�t)

k=N1((j−1)�t)+1 e1,k + θ
∑N2(j�t)

k=N2((j−1)�t)+1 e2,k)

= λ1σ
2
1,e

λ1σ
2
1,e + θ2λ2σ

2
2,e

, (4)

S2,C = θ2λ2σ
2
2,e

λ1σ
2
1,e + θ2λ2σ

2
2,e

,

where λi is the intensity of the counting process Ni(·) (see Da-
ley and Vere-Jones 2003) and represents the intensity of trading
(level of market activity) of asset i. The ultimate expressions for
Si,C do not depend on the sampling interval �t. Note that only
the common component in (2) is used to evaluate the informa-
tion share, as was done by Hasbrouck (1995). As λ1/λ2 → ∞,
S1,C approaches 1 and S2,C approaches 0. This is consistent
with general intuition; an actively traded security should reveal
more information than a thinly traded one. Indeed, Hasbrouck
(1995) found that for the 30 Dow Jones stocks, the preponder-
ance of the price discovery occurs at the NYSE and the majority
of the transactions occur on the NYSE. The information share
Si,C can be estimated using the transaction-level method of mo-
ments, as described in Section 8. We present estimates of Si,C

computed from transaction-level data in Section 11.

3. CONDITIONS ON THE MICROSTRUCTURE NOISE
FOR FRACTIONAL AND STANDARD COINTEGRATION

In this section we consider three types of cointegration: weak
fractional, strong fractional, and standard cointegration. We de-
scribe the conditions assumed for each of these three cases sep-
arately.

The weak fractional cointegration case corresponds to dη ∈
(− 1

2 ,0). In this case, we require the following condition, stated
for a generic process {ηk}:

Condition A. For dη ∈ (− 1
2 ,0), {ηk} is a weakly stationary

mean-0 process with memory parameter dη in the sense that the
spectral density f (λ) satisfies

f (λ) = σ̃ 2C∗λ−2dη (1 + O(λβ)) as λ → 0+

for some β with 0 < β ≤ 2, where σ̃ 2 > 0 and C∗ = (dη +
1
2 )�(2dη + 1) sin((dη + 1

2 )π)/π > 0.

Condition A, which was originally used in a semiparamet-
ric context by Robinson (1995), is very general, specifying
only the behavior of the spectral density in a neighborhood
of zero frequency. The condition is satisfied by all parametric
long-memory models that we have seen in the literature, in-
cluding the ARFIMA(p,dη,q) model with p ≥ 0, q ≥ 0, and
dη ∈ (− 1

2 ,0). In the ARFIMA case, β = 2. Condition A also
allows the possibility for seasonal long memory, that is, poles
or 0s of f (λ) at nonzero frequencies.

The strong fractional cointegration case corresponds to dη ∈
(−1,− 1

2 ). For this case, we assume the following:

Condition B. For dη ∈ (−1,− 1
2 ), ηk = ϕk − ϕk−1, k =

1,2, . . . , where ϕ0 = 0 and {ϕk}∞k=1 is a mean-0, weakly sta-
tionary long-memory process with memory parameter dϕ =
dη + 1 ∈ (0, 1

2 ) in the sense that its autocovariances satisfy

cov(ϕk, ϕk+j) = Kj2dϕ−1 + O(j2dϕ−3), j ≥ 1, (5)

where K > 0.

By theorem 1 of Lieberman and Phillips (2006), any sta-
tionary, invertible ARFIMA(p,dϕ,q) process with dϕ ∈ (0, 1

2 )

has autocovariances satisfying (5), with K = 2f ∗(0)�(1 −
2dϕ) sin(πdϕ), where f ∗(0) is the spectral density of the ARMA
component of the model at zero frequency.

The standard cointegration case corresponds to dη = −1. In
this case we assume the following:

Condition C. If dη = −1, then {ηk}∞k=1 is given by ηk = ξk −
ξk−1 with ξ0 = 0. The process {ξk}∞k=1 is weakly stationary with
mean 0 and autocovariance sequence {cξ,r}∞r=0, where cξ,r =
E(ξk+rξk) with exponential decay and |cξ,r| ≤ Aξ e−Kξ r for all
r ≥ 0, where Aξ and Kξ are positive constants.

The assumptions on {ξk} in Condition C are satisfied by all
stationary invertible ARMA models.

4. LONG–TERM MARTINGALE–TYPE PROPERTIES
OF THE LOG PRICES

In this section we present the properties of the log-price se-
ries generated by model (1). Define λi = 1/E0(τi,k), where E0

denotes expectation under the Palm distribution (see Deo et al.
2009 for information on the Palm probability measure), that is,
the distribution under which the {τi,k} (i = 1,2) are stationary.
The following two theorems show that the log-price series in
model (1) have asymptotic variances that scale like t as t → ∞,
as would happen for a martingale, and that their discretized dif-
ferences are asymptotically uncorrelated as the sampling inter-
val increases, as would occur for a martingale difference series.

Theorem 1. For the log-price series in model (1),

var(log Pi,t) ∼ Cit, i = 1,2,

as t → ∞, where C1 = (σ 2
1,eλ1 + θ2σ 2

2,eλ2) and C2 = (σ 2
2,eλ2 +

1
θ2 σ 2

1,eλ1).

For a given sampling interval (equally spaced clock-time pe-
riod) �t, the returns (changes in log price) for assets 1 and 2
corresponding to model (1) are

r1,j =
N1(j�t)∑

k=N1((j−1)�t)+1

(e1,k + η1,k)

+
N2(t1,N1(j�t))∑

k=N2(t1,N1((j−1)�t))+1

(θe2,k + g21η2,k),

(6)

r2,j =
N2(j�t)∑

k=N2((j−1)�t)+1

(e2,k + η2,k)

+
N1(t2,N2(j�t))∑

k=N1(t2,N2((j−1)�t))+1

(
1

θ
e1,k + g12η1,k

)
.
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Theorem 2. For any fixed integer k > 0, the lag-k autocorre-
lation of {ri,j}∞j=1, i = 1,2, tends to 0 as �t → ∞.

5. PROPERTIES OF THE COINTEGRATING ERROR

Here we show that model (1) implies a cointegrating rela-
tionship between the two series, treating the weak and strong
fractional as well as standard cointegration cases separately.

Theorem 3. Under model (1) with dη ∈ (− 1
2 ,0), the mem-

ory parameter of the linear combination (log P1,t − θ log P2,t)

is (1 + dη) ∈ ( 1
2 ,1), that is,

var(log P1,t − θ log P2,t) ∼ Ct2dη+1

as t → ∞, where C > 0. In this sense, log P1,t and log P2,t are
weakly fractionally cointegrated.

We next investigate the standard cointegration case. It is im-
portant to note that, unlike in Theorem 3, where we measure
the strength of cointegration using the asymptotic behavior of
the variance of the cointegrating errors var(log P1,t −θ log P2,t),
we need a different measure here, because log P1,t − θ log P2,t
is stationary and its variance is constant for all t. Instead, we
consider the asymptotic covariance of the cointegrating errors,

cov(log P1,t − θ log P2,t, log P1,t+j − θ log P2,t+j)

as j → ∞. Here we take t and j to be positive integers; that is,
we sample the log-price series using �t = 1, without loss of
generality.

Theorem 4. Under model (1) with dη ∈ (−1,− 1
2 ), the mem-

ory parameter of the cointegrating error (log P1,t − θ log P2,t) is
(1 + dη) ∈ (0, 1

2 ); that is, for any fixed t > 0,

cov(log P1,t − θ log P2,t, log P1,t+j − θ log P2,t+j)

∼ j2(1+dη)−1[C1 Pr{N1(t) > 0} + C2 Pr{N2(t) > 0}]
as j → ∞, where C1 > 0, C2 > 0. In this sense, log P1,t and
log P2,t are strongly fractionally cointegrated.

We say that a sequence {aj} has nearly exponential decay if
aj/j−α → 0 as j → ∞ for all α > 0. We say that a time series
has short memory if its autocovariances have nearly exponential
decay.

Theorem 5. Under model (1), with dη = −1, the cointegrat-
ing error (log P1,t − θ log P2,t) has short memory. In this sense,
log P1,t and log P2,t are cointegrated.

6. LEAST SQUARES ESTIMATION OF THE
COINTEGRATING PARAMETER

Assume that the log-price series are observed at integer mul-
tiples of �t. The proposed model (1) becomes (with a minor
abuse of notation)

log P1,j =
N1(j�t)∑

k=1

(e1,k + η1,k) +
N2(t1,N1(j�t))∑

k=1

(θe2,k + g21η2,k),

(7)

log P2,j =
N2(j�t)∑

k=1

(e2,k + η2,k) +
N1(t2,N2(j�t))∑

k=1

(
1

θ
e1,k + g12η1,k

)
.

We show that the cointegrating parameter θ can be consis-
tently estimated by OLS regression.

Theorem 6. For the discretely sampled log-price series in (7)
with normally distributed value shocks {e1,k}, {e2,k}, the cointe-
grating parameter θ can be consistently estimated by θ̂ , the OLS
estimator obtained by regressing {log P1,j}n

j=1 on {log P2,j}n
j=1

without intercept. For all δ > 0, as n → ∞, we have

Case I: dη ∈ (− 1
2 ,0)

n−dη−δ(θ̂ − θ)
p−→ 0,

Case II: dη ∈ (−1,− 1
2 )

n1/2−δ(θ̂ − θ)
p−→ 0,

Case III: dη = −1

n1−δ(θ̂ − θ)
p−→ 0.

In the weak fractional cointegration case, dη ∈ (− 1
2 ,0), the

rate of convergence of θ̂ improves as dη decreases. In the stan-
dard cointegration case where dη = −1, the rate is arbitrarily
close to n. Phillips and Durlauf (1986) and Stock (1987) have
demonstrated the n-consistency (super-consistency) of the OLS
estimator of the cointegrating parameter in the standard cointe-
gration case for time series in discrete clock time that are linear
with respect to a strong-mixing or iid sequence. We are cur-
rently unable to derive the asymptotic distribution of the OLS
estimator of the cointegrating parameter in the standard coin-
tegration case for our model, because we cannot rely on the
strong-mixing condition on returns. This condition would not
be expected to hold in the case of LMSD durations, because
these are not strong mixing in tick time. In the strong frac-
tional cointegration case dη ∈ (−1,− 1

2 ), even though we es-
tablished a rate of n1/2−δ , simulations in Section 10 indicate
that the actual rate is faster, at n−dη−δ , in keeping with the
rates obtained in the weak fractional and standard cointegration
cases.

7. A TICK–LEVEL COINTEGRATING
PARAMETER ESTIMATOR

In this section we propose a transaction-level estimator, θ̃ , for
the cointegrating parameter θ . It may be argued that the OLS
estimator θ̂ discussed in Section 6 is not optimal, because it is
constructed based on discretized log-prices and thus uses only
partial information. Here we propose a tick-level estimator, θ̃ ,
that uses the full tick-level price series, log P1,t, log P2,t for t ∈
[0,T].

Specifically, let N(T) = N1(T) + N2(T) be the pooled count-
ing process of transactions for both asset 1 and asset 2 in the
time interval (0,T], and let {t�k}N(T)

k=1 denote the transaction times
for the pooled process. The proposed estimator is

θ̃ =
∫ T

0 log P1,t · log P2,t dt∫ T
0 log P2

2,t dt

=
(N(T)−1∑

j=1

[
log P1,N1(t�j )

· log P2,N2(t�j )
] · (t�j+1 − t�j )
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+ [log P1,N1(T) · log P2,N2(T)

] · (T − t�N(T)

))
/(N2(T)−1∑

j=1

log P2
2,j · τ2,j+1

+ log P2
2,N2(T) · (T − t2,N2(T)

))
, (8)

where the numerator is a summation over all transactions,
adding up the product of the most recent log prices of as-
sets 1 and 2 weighted by the corresponding duration for the
pooled process. The denominator of θ̃ has the same structure,
except that the product is now of asset 2 log prices with them-
selves.

We do not derive asymptotic properties of the estimator θ̃ .
Nevertheless, the simulation study presented in Section 10 indi-
cates that the tick-level estimator θ̃ may outperform the OLS es-
timator θ̂ , having smaller bias, variance, and root mean squared
error (RMSE), particularly if the sampling interval �t for θ̂ is
large.

8. METHOD–OF–MOMENTS
PARAMETER ESTIMATION

In earlier work (Hurvich and Wang 2009), we proposed a
transaction-level parameter estimation procedure for model (1)
using the method of moments, based on log P1,t, log P2,t for
t ∈ [0,T]. To conserve space, we omit the complete details
on how we constructed the method-of-moments estimators
here. We make specific assumptions for the sake of definite-
ness, although most of these assumptions could be relaxed.
Specifically, in constructing our estimates of �, we assume
Gaussian white noise for the value shocks and a Gaussian
ARFIMA(1,dη,0) process for the microstructure noise when
dη ∈ (− 1

2 ,0), and also assume that the microstructure noise is
the difference of a Gaussian ARFIMA(1,dη + 1,0) process
with the initial value set to 0 when dη ∈ (−1,− 1

2 ). In the
standard cointegration case dη = −1, we assume that the mi-
crostructure noise is the difference of a Gaussian AR(1) process
with initial value set to 0. We denote the autoregressive para-
meters (lag-1 autocorrelations) of the two microstructure noise
series by α1 and α2. The method-of-moments estimator, �̂ =
(σ̂ 2

1,e, σ̂
2
2,e, σ̂

2
1,η, σ̂

2
2,η, ĝ21, ĝ12, d̂η1, d̂η2, α̂1, α̂2), is obtained as

the solution to the following system of equations, based on
certain specific observed sequences of assets 1 and 2 transac-
tions:

v̂ar(second transaction of Sequence 1 1) = σ̂ 2
1,e + σ̂ 2

1,η,

v̂ar(second transaction of Sequence 2 2) = σ̂ 2
2,e + σ̂ 2

2,η,

ĉov(first and second transactions of Sequence 1 1)

= σ̂ 2
1,ηρ̂1,1,

ĉov(first and second transactions of Sequence 2 2)

= σ̂ 2
2,ηρ̂2,1,

ĉov(first and third transactions of Sequence 1 1 1) = σ̂ 2
1,ηρ̂1,2,

ĉov(first and third transactions of Sequence 2 2 2) (9)

= σ̂ 2
2,ηρ̂2,2,

v̂ar(third transaction of Sequence 1 2 1)

= σ̂ 2
1,e + σ̂ 2

1,η + θ̃2σ̂ 2
2,e + ĝ2

21σ̂
2
2,η,

v̂ar(third transaction of Sequence 2 1 2)

= σ̂ 2
2,e + σ̂ 2

2,η + 1

θ̃2
σ̂ 2

1,e + ĝ2
12σ̂

2
1,η,

ĉov(g21 pairs in Sequence 1 2 1 2 2) = ĝ21σ̂
2
2,ηρ̂2,2,

ĉov(g12 pairs in Sequence 2 1 2 1 1) = ĝ12σ̂
2
1,ηρ̂1,2,

where v̂ar and ĉov are the sample variance and covariance, ρi,j

is the lag-j autocorrelation of the microstructure disturbances
{ηi,k} for asset i = 1,2, and ρ̂i,j is the resulting estimate of ρi,j.
In ealrier work (Hurvich and Wang 2009) we established the
following theorem on consistency of the estimator.

Theorem 7. The method-of-moments estimator �̂ is consis-
tent, that is,

�̂
p→ � as T → ∞,

where � = (σ 2
1,e, σ

2
2,e, σ

2
1,η, σ

2
2,η,g21,g12,dη1,dη2, α1, α2).

Motivated by computational constraints that limit the size of
the data set we are analyzing, we propose an alternative ad hoc
estimator �̃, which performed reasonably well in simulations
reported earlier (Hurvich and Wang 2009). We start by taking
the ratio of the third and fifth equations in (9), giving us a nu-
merical estimate of ρ1,1/ρ1,2, which we denote by ρ̃1,1/ρ̃1,2.
Then, on a grid of values of (d, α), we compute the correspond-
ing ratio ρ1,1/ρ1,2 for the ARFIMA(1,d,0) model with para-
meters (d, α). We use the algorithm of Bertelli and Caporin
(2002) to compute ρ1,1 and ρ1,2, since there is no attractive
closed form for the autocovariances of an ARFIMA(1,d,0)
process. The supports of (d, α) are (−1,− 1

2 ) ∪ (− 1
2 ,0) and

(−1,1), respectively. Next, we construct d̃η1 and α̃1 such that

| ρ̃1,1
ρ̃1,2

− ρ1,1
ρ1,2

| is minimized, that is,

(d̃η1 , α̃1) = min
d,α

∣∣∣∣ ρ̃1,1

ρ̃1,2
− ρ1,1

ρ1,2

∣∣∣∣.
In addition, ρ̃1,1 and ρ̃1,2 are obtained. Similarly, we obtain
(d̃η2, α̃2), ρ̃2,1, and ρ̃2,2. We then obtain the remaining para-
meter estimates in �̃ from (9). Using ρ̃1,1 in the third equation
of (9), we get σ̃ 2

1,η, which we then use in the first equation to
get σ̃ 2

1,e. Similarly, we obtain σ̃ 2
2,η and σ̃ 2

2,e. Next, we obtain g̃2
21

and g̃2
12 based on the seventh and eighth equations in (9). By

this point, we have obtained g̃2
21 and g̃2

12, as well as all entries
of �̃ except for g̃12 and g̃21 using only the first eight equa-
tions of (9). Finally, we use the last two equations in (9) (which
are inherently less accurate than the others, because they are
based on five-trade sequences) to determine the signs of g̃21

and g̃12.
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9. MODEL SPECIFICATION TEST

In this section we propose a specification test for our model
(1), based on Theorem 6. The idea is that, according to Theo-
rem 6, if the model (1) is correctly specified, then the OLS esti-
mator is consistent for any particular sampling interval �t. Sup-
pose that we choose two sampling intervals, �t1 and �t2, and
denote the corresponding OLS estimators by θ̂�t1 and θ̂�t2 . Be-
cause both estimators are consistent, their difference must con-
verge in probability to 0. Thus we propose a specification test
to test whether this difference is significantly different from 0.
The test is semiparametric, in that model (1) makes no para-
metric assumptions on either the duration or the microstructure
noise.

To implement the test, we divide the entire time span, say
1 year, into K nonoverlapping subperiods, for example, into
months. Within subperiod k (k = 1, . . . ,K), we sample every
�t1 to obtain a bivariate log-price series {log P�t1

1,j,k, log P�t1
2,j,k},

where log P�t1
1,j,k is the jth sampled asset 1 log price in subpe-

riod k using sampling interval �t1 and similarly for log P�t1
2,j,k .

Based on these results, we obtain an OLS cointegrating parame-
ter estimate, θ̂

�t1
k , and similarly we sample every �t2 to obtain

{log P�t2
1,j,k, log P�t2

2,j,k}, and then θ̂
�t2
k . Repeating the procedure

through all K subperiods, we obtain sequences {θ̂�t1
k }K

k=1 and

{θ̂�t2
k }K

k=1. The proposed test statistic is

δ̂12 = sample mean of {δ̂12,k}√
1
K · sample variance of {δ̂12,k}

,

where δ̂12,k = θ̂
�t2
k − θ̂

�t1
k (k = 1, . . . ,K). The distribution of

the test statistic under the null hypothesis that all model as-
sumptions are correctly specified is unknown; however, the crit-
ical value for the test, as well as the corresponding distribution
of the test statistic, can be simulated under the null hypothesis,
based on the estimated parameter values.

The power of the proposed specification test is unknown,
because the precise alternative hypothesis is not specified. As
discussed by Hausman (1978), a sufficient requirement for the
specification test to be consistent is that the two estimators, θ̂�t1

and θ̂�t2 , have different probability limits under the alternative.
In Section 10, we first investigate the simulation-based dis-

tributions of the test statistics for empirically relevant parame-
ter values, We then compute critical values for the specification
test on the empirical example, Tiffany (TIF), which we use in
the data analysis in Section 11.

10. SIMULATIONS

10.1 Estimation of the Cointegrating Parameter:
θ̂ and θ̃

We study the performance of θ̂ and θ̃ in a simulation study
carried out as follows. First, we simulate two mutually inde-
pendent duration process {τi,k} for asset i = 1,2. Note that for
simplicity, we assume that the two duration processes are mutu-

ally independent, although this is not required by our theoretical
results. Each duration process follows the LMSD model,

τi,k = ehi,kεi,k,

where the {εi,k} are iid positive random variables with all mo-
ments finite and the {hi,k} are a Gaussian long-memory se-
ries with mean 0 and common memory parameter dτ . Based
on empirical work of Deo, Hsieh, and Hurvich (2006), we
choose dτ1 = dτ2 = 0.45. Here we assume that the {εi,k} fol-
low an exponential distribution with unit mean. We simulate
the {hi,k} from a Gaussian ARFIMA(0,dτ , 0) model, with in-
novation variances chosen such that the mean of the log dura-
tions matches those observed in the Tiffany series used in Sec-
tion 11. Using the simulated durations {τi,k}, i = 1,2, we ob-
tain the corresponding counting processes {Ni(t)}, using ti,1 =
Uniform[0, τi,1]. This ensures that the counting processes are
stationary.

Next, we generate mutually independent disturbance series
{e1,k}, {e2,k}, {η1,k}, and {η2,k}. Here {ei,k}, i = 1,2, are iid
Gaussian with mean 0. For simplicity, the memory parame-
ters of the microstructure noise series are assumed to be the
same: dη1 = dη2 = dη. When dη ∈ (− 1

2 ,0), the {ηi,k} are given
by ARFIMA(1,dη , 0). When dη ∈ (−1,− 1

2 ), {ηi,k} are simu-
lated as the differences of ARFIMA(1,dη + 1, 0), and when
dη = −1, {ηi,k} are simulated as the differences of two inde-
pendent mean-0 Gaussian AR(1) series, {ξi,k}. The disturbance
variances are var(ei,k) = 4 × 10−6 and var(ηi,k) = 1 × 10−6 for
i = 1,2. We set g21 = g12 = 1. We select these particular values
because they are close to the corresponding parameter estimates
based on several stocks that we have analyzed empirically.

We then construct the log-price series {log Pi,j}n
j=1, i = 1,2,

from (1), using a fixed sampling interval �t. We calculate the
estimated cointegrating parameter θ̂ by regressing {log P1,j}n

j=1
on {log P2,j}n

j=1, using OLS without intercept. We construct the

tick-level estimator, θ̃ , according to (8), using the entire tick-
level price series.

In the study, we fixed the cointegrating parameter at θ = 1.
We considered various values of the parameters �t and the sam-
ple size n. We consider time as being measured in seconds, so
that �t = 300 corresponds to observing the price series every
5 minutes; in this case, n = 390 would correspond to 1 week of
data. (There are 6.5 trading hours each day, so sampling every
5 minutes yields 78 observations per day.) For each parameter
configuration, we generated 1000 realizations of the log-price
series. The results are summarized in Table 1.

As the sample size n increases, the bias, the standard devi-
ation, and the RMSE of θ̂ decrease, as seen in block A. This
is consistent with Theorem 6. We report results only for dη =
−0.75; however, we found similar patterns for dη = −0.25,−1.

In A2 together with block B, we fixed the total time span
T = n�t, while varying the sampling interval �t and n. For
this specific set of empirically relevant parameter values, the
impact of increasing �t was not obvious until �t = 9,000,
which corresponds to the commonly used sampling frequency
of 1 day. Both the standard deviation and the RMSE deteri-
orated as �t increased. We found the same pattern for dη =
−0.25,−0.75,−1, although we report only results for dη =
−0.75 here. In addition, the bias of θ̂ decreased as the sam-
pling interval �t increased, possibly because the end effect is
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Table 1. Simulation results for estimating the cointegrating parameter

Simulation parameters θ̂ θ̃

Block Case n�t �t (sec) dη n Mean SD RMSE Mean SD RMSE

A A1 39,000 300 −0.75 130 0.9510 0.1192 0.1288 0.9511 0.1192 0.1288
A2 117,000 300 −0.75 390 0.9769 0.0576 0.0620 0.9768 0.0575 0.0620
A3 351,000 300 −0.75 1170 0.9875 0.0350 0.0371 0.9876 0.0349 0.0370
A4 1,053,000 300 −0.75 3,510 0.9957 0.0142 0.0148 0.9957 0.0142 0.0148

B B1 117,000 10 −0.75 11,700 0.9768 0.0575 0.0620 0.9768 0.0575 0.0620
B2 117,000 60 −0.75 1,950 0.9768 0.0575 0.0620 0.9768 0.0575 0.0620
B3 117,000 1800 −0.75 65 0.9770 0.0592 0.0635 0.9768 0.0575 0.0620
B4 117,000 9,000 −0.75 13 0.9780 0.0761 0.0792 0.9768 0.0575 0.0620
B5 117,000 23,400 −0.75 5 0.9876 0.1148 0.1154 0.9768 0.0575 0.0620

not as important when �t is large. Finally, in terms of RMSE,
θ̃ performed no worse than θ̂ , and performed much better than
θ̂ when �t was large.

We also performed simulations related to the convergence
rate of θ̂ . In Theorem 6, when dη ∈ (−1,− 1

2 ), the convergence
rate is arbitrarily close to

√
n and does not depend on dη. But

simulations indicate a faster rate in this strong fractional coin-
tegration case. For example, when dη = −0.75, we simulated
the log-price series in discrete clock-time using sample sizes
n ranging from 1000 to 20,000 with an equally spaced incre-
ment of 800. The variance of θ̂ for each value of n was obtained
based on 1000 realizations. The estimated convergence rate of
θ̂ was n0.78, obtained from the estimated slope in a log-log plot
of these simulated variances versus the corresponding sample
sizes. We ran similar simulations for other values of dη. Based
on these, we conjecture that the actual rate of convergence for
θ̂ was n−dη−δ , in keeping with the rates obtained in the weak
fractional and standard cointegration cases.

10.2 Specification Test

We performed a simulation study for the specification test
proposed in Section 9. We used two sets of empirically relevant
parameter values to investigate the simulation-based distribu-
tion of the test statistic δ̂.

We chose empirically relevant parameter values to investi-
gate the simulation-based distribution of the test statistic δ̂.

Specifically, we selected four sampling intervals, �t1 = 60,
�t2 = 300, �t3 = 600, and �t4 = 1800 seconds. We set the
entire time span at 100 trading days, divided into 25 subperiods
of 4 trading days each. Other model parameter values included
dη = dη1 = dη2 = −0.25,−0.75, and dτ1 = dτ2 = 0.45. Results
are based on 1000 realizations.

We generated six test-statistic distributions for each pair of
sampling intervals; for example, for the pair �t1, �t2, we ob-
tained the test statistic

δ̂12,m = sample mean of {θ̂�t2
k,m − θ̂

�t1
k,m }√

1
25 · sample variance of {θ̂�t2

k,m − θ̂
�t1
k,m }

for realization m based on {θ̂�t1
k,m }25

k=1 and {θ̂�t2
k,m }25

k=1. Overall,

we had {δ̂12,m}1000
m=1, forming the simulation-based empirical dis-

tribution of the test statistic δ̂12. This distribution can be used
to generate critical values or compute empirical p-values. Ta-
ble 2 summarizes the quantiles of these empirical distributions,
where Qq represents the qth quantile. For each distribution, the
null hypothesis of normality is rejected at a nominal size of 1%
based on the Kolmogorov–Smirnov goodness-of-fit test.

11. DATA ANALYSIS

In this section we focus on analyzing the buy prices, {P1,t},
and sell prices, {P2,t}, of a single stock, Tiffany Company

Table 2. Summary statistics of the simulation-based empirical distributions

Case Test-stat Q0.005 Q0.025 Q0.05 Q0.5 Q0.95 Q0.975 Q0.995 Skewness Excess kurtosis

dη = −0.25 δ̂12 −2.32 −1.80 −1.55 −0.04 1.47 1.64 2.12 0.05 −0.50
δ̂13 −2.26 −1.83 −1.54 0.02 1.48 1.70 1.96 0.11 −0.52
δ̂14 −2.12 −1.80 −1.51 0.00 1.39 1.66 2.16 0.02 −0.45
δ̂23 −2.43 −1.82 −1.60 0.03 1.57 1.80 2.25 0.08 −0.54
δ̂24 −2.09 −1.80 −1.50 0.03 1.39 1.65 2.22 0.03 −0.51
δ̂34 −2.17 −1.81 −1.54 −0.02 1.41 1.74 2.38 0.04 −0.48

dη = −0.75 δ̂12 −2.05 −1.66 −1.41 0.00 1.42 1.66 2.10 0.01 −0.72
δ̂13 −2.45 −1.69 −1.55 −0.02 1.41 1.59 2.02 0.10 −0.51
δ̂14 −2.14 −1.67 −1.34 −0.05 1.36 1.64 2.06 0.01 −0.17
δ̂23 −2.47 −1.77 −1.59 −0.02 1.40 1.62 2.17 0.07 −0.63
δ̂24 −2.15 −1.64 −1.37 −0.03 1.39 1.72 2.06 0.01 −0.24
δ̂34 −2.17 −1.73 −1.44 −0.01 1.41 1.66 2.11 0.02 −0.35

Standard normal Z −2.58 −1.96 −1.64 0.00 1.64 1.96 2.58 0.00 0.00
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Table 3. Buy and sell prices of TIF

�t (sec) n Estimate of θ d̂buy−price [SE] d̂sell−price [SE] d̂coint−error [SE]

1800 1612 θ̂ = 0.998040 1.0124 [0.0484] 1.0105 [0.0484] 0.2328 [0.0484]
600 4,836 θ̂ = 0.998046 1.0223 [0.0330] 1.0208 [0.0330] 0.1312 [0.0330]
300 9,672 θ̂ = 0.998042 0.9906 [0.0259] 0.9914 [0.0259] 0.1068 [0.0259]

− − θ̃ = 1.001678 − − −

(ticker: TIF). The data were obtained from the TAQ database
of WRDS. We considered daily transactions between 9:30 a.m.
and 4:00 p.m. We ignore overnight durations and returns, as was
also done by, for example, Hasbrouck (1995). The data span the
period from January 25, 2000 to July 20, 2000, comprising 124
trading days.

We followed Lee and Ready (1991) in classifying individual
trades. If the transaction price was higher than the prior bid-
ask midpoint, then the current trade was labeled a buy order; if
the transaction price was lower, then it was labeled a sell order.
If the transaction price was exactly the same as the prior bid-
ask midpoint, then we used the tick test (described in Lee and
Ready 1991) to determine whether it should be classified as a
buy order or a sell order. Lee and Ready (1991) found that the
accuracy of their method was at least 85%. Using this method,
we found 26,103 buy trades and 32,812 sell trades during the
study period.

We first verified that a strong cointegrating relationship ex-
ists between buy and sell prices of TIF. The results are given
in Table 3. We estimated the memory parameters of the log-
buy prices and log-sell prices as 1 plus the GPH estimator (see
Geweke and Porter-Hudak 1983) of the memory parameter of
the differences. We estimated the memory parameter of the
cointegrating error using a GPH estimator based on the levels of
the residuals from an OLS regression of {log P1,j} on {log P2,j}
for various choices of �t. The memory parameter of the cointe-
grating error was 1+max(dη1 ,dη2). The number of frequencies
used in the log periodogram regressions was n0.5. As expected,
the estimated cointegrating parameter was close to 1. Evidence
of strong cointegration was observed, along with some evidence
indicating that the cointegration is fractional, not standard.

Next, using the ad hoc estimator �̃, we estimated the model
parameters for three clock-time subperiods, as well as the en-
tire period. During period 1 (day 1 to day 25), the stock price
declined by roughly 25%. During period 2 (day 41 to day 70),
the price remained relatively stable. In period 3 (day 90 to day

124), the stock price increased by approximately 25%. The re-
sults are given in Table 4. The tick-time stock prices are plotted
in Figure 2.

Based on the results in Table 4, we report the following find-
ings:

(1) The microstructure noise variance estimates, σ̃ 2
i,η, were

smaller for period 2 (during which the stock prices var-
ied substantially but showed no clear trend) than for peri-
ods 1 and 3 (during which the price showed a decreasing
trend and an increasing trend, respectively).

(2) The value-shock variance estimates (σ̃ 2
i,e) showed an op-

posite pattern, that is, larger in period 2 but smaller in
periods 1 and 3.

(3) Comparing σ̃ 2
i,e and σ̃ 2

i,η shows that the variability of the
value shocks usually exceeded that of the microstructure
shocks. Indeed, σ̃ 2

i,e was greater than σ̃ 2
i,η for both buy

and sell trades in the entire period.

As for the microstructure noise feedback coefficient esti-
mates, g̃21 and g̃12, their magnitudes were generally around 1,
but the signs varied in different periods. In some periods, the es-
timates of g̃2

21 or g̃2
12 were negative; thus we set the correspond-

ing g̃21 or g̃12 at 0. In general, we found no systematic pattern
for g̃21 and g̃12, and their values are not reported in Table 4. We
stress, however, that the simulation study of Hurvich and Wang
(2009) showed that g21 and g12 were harder to estimate than the
other parameters.

Finding (1) is consistent with results from the study of Ami-
hud and Mendelson (1980, 1982), where a market-maker exe-
cutes buy and sell orders that arrive randomly, with the arrival
rate determined by the quoted bid and ask prices, so as to max-
imize his expected profit per unit time, under the constraint that
his inventory position will not exceed a long position (L) and
a short position (S). (The analysis applies to traders who act
as market makers, that is, quote buying and selling prices and
benefit from trading at these prices, rather taking a long-run

Table 4. Method-of-moments parameter estimates of TIF

Period Type # of trades σ̃ 2
i,e (×10−6) σ̃ 2

i,η (×10−6)

1: Trading day 1 to 25 Buy 5,852 3.01 3.38
Sell 6,875 3.05 1.93

2: Trading day 41 to 70 Buy 5,360 6.22 0.72
Sell 7,688 4.08 0.83

3: Trading day 90 to 124 Buy 6,896 3.50 1.18
Sell 8,827 2.00 2.66

Entire period Buy 26,103 4.67 1.26
Sell 32,812 3.35 1.66
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Figure 2. TIF Transaction-level stock price.

position in the stock, based on some information.) The market-
maker sets the pair of bid-ask prices to adjust his inventory,
and his policy results in having a preferred inventory position
to which he reverts. The bid-ask spread is minimized at this
preferred position, while it increases as the inventory diverges
from the preferred level. This policy applies when there is no
change in information about the security’s value, in which case
prices show no clear trend, hovering within a range. Amihud
and Mendelson (1982, pp. 56–58) analyzed a situation involv-
ing a change in information about the security’s value, unknown
to the market-maker. At first, the market-maker maintains the
schedule of bid-ask prices that applies to the old valuation, but
given the value change, his inventory will deviate from the pre-
ferred position, and the bid-ask spread will widen. (For exam-
ple, if the value is lower, then the market-maker will accumulate
a large long position, quoted prices will decline, and the bid-ask
spread will widen.) After realizing that the value has changed,
the market-maker shifts his schedule of quoted bid-ask prices,
and the bid-ask spread reverts to a normal, narrower range. Ap-
plying this analysis to the data, periods 1 and 3 demonstrate a
major shift in the security value, reflected in the trend in price.
Following Amihud and Mendelson (1982), a period of shifting
value is associated with wider bid-ask spread. In period 2, when
prices vary but do not exhibit a clear trend, the bid-ask spread
should be narrower.

A narrower bid-ask spread (i.e., a smaller spread magnitude)
indicates a smaller microstructure noise variance (see Amihud
and Mendelson 1987, pp. 536, 547), that is, a smaller σ 2

η,i in
model (1). Indeed, we found that the estimated microstructure
noise variances were smaller when price fluctuated without a
clear trend (period 2) and larger otherwise (periods 1 and 3).
Unfortunately, it is not possible to test the significance of the
change in microstructure noise variances across the three sub-
periods, because the estimates are not independent.

Another interesting topic is the price discovery process, a
popular topic in finance. Specifically, here we focus on the price
discovery of a single stock, e.g., TIF, during different market
environments. To estimate the information share, estimates for
the trading intensities, λ1 and λ2, and the value-shock vari-
ances, σ 2

1,e and σ 2
2,e, are required. To estimate λi (i = 1,2), we

used the total number of transactions divided by the total pe-
riod of observation for asset i. We estimated σ 2

1,e and σ 2
2,e by

the method of moments, as discussed in Section 8. We com-
puted the information share estimates for each of three clock-
time periods based on the results given in Table 4. The results
are summarized in Table 5.

For period 2, the information shares were approximately
equally divided between buys and sells. For period 1, when the
stock price declined dramatically, the sell trades had more in-
formation than buy trades. In contrast, during period 3, when
prices were rising, the buy trades had more information. Unfor-
tunately, we could not test the significance of the change in in-
formation share across the three periods, because the estimates
were not independent.

As pointed out by Hasbrouck (1995), the information ratios
are not related to the microstructure (e.g., spreads) of the mar-
kets. This is clear because only the random-walk components
of the price series are used in the construction of the informa-
tion ratios. Thus the results that we have presented so far in this
section reflect different aspects of the dynamics of the TIF price
series.

Finally, we implemented the specification test described in
Section 9 to investigate whether model (1) was misspecified.
We divided the 124-day trading period into K = 62 subperiods
of 2 trading days each. We chose four sampling intervals, �t1 =
1800, �t2 = 600, �t3 = 300, and �t4 = 60 seconds.

First, we simulated the corresponding empirical distributions
of δ̂’s, as in Section 10. The results are reported in Table 6.

Based on the values in Table 6, we used the corresponding
simulated test statistic distributions to compute the empirical
p-values reported in Table 7.

For two-sided hypothesis testing with nominal size of 5%,
we found no significant evidence to indicate that model (1) was
misspecified for the TIF data set, because the null was not re-
jected in any of the six cases.

Table 5. Information shares (S) of buy and sell price of TIF

Period S̃buy S̃sell (S̃buy − S̃sell)

1: Trading day 1 to 25 45.7% 54.3% −8.6%
2: Trading day 41 to 70 51.5% 48.5% 3.0%
3: Trading day 90 to 124 57.5% 42.3% 15.2%

Entire period 52.6% 47.4% 5.2%
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Table 6. Summary statistics of the simulation-based empirical distributions for Tiffany (TIF)

Case Test-stat Q0.005 Q0.025 Q0.05 Q0.5 Q0.95 Q0.975 Q0.995 Skewness Kurtosis

Tiffany (TIF) δ̂12 −2.05 −1.68 −1.41 −0.04 1.39 1.69 2.02 0.03 2.45
δ̂13 −1.98 −1.61 −1.41 −0.03 1.37 1.53 2.04 0.02 2.32
δ̂14 −2.07 −1.64 −1.43 −0.09 1.28 1.55 2.11 0.08 2.46
δ̂23 −2.00 −1.70 −1.47 0.00 1.45 1.73 2.27 0.07 2.38
δ̂24 −1.94 −1.61 −1.44 −0.10 1.34 1.65 2.12 0.13 2.41
δ̂34 −1.96 −1.68 −1.46 −0.12 1.38 1.69 2.08 0.13 2.39

12. CONCLUSIONS

Remark 1. So far, we have seen that the model (1) yields
cointegration and also captures two stylized facts that have been
observed in actual data: volatility clustering and persistence in
duration. It is worth mentioning that by modifying the basic
model (1) properly, two additional key stylized facts can be cap-
tured: the leverage effect (see, e.g., Andersen et al. 2006), and
portfolio autocorrelation due to nonsynchronous trading (see,
e.g., Fisher 1966; Scholes and Williams 1977; Lo and MacKin-
lay 1990a, 1990b; Boudoukh, Richardson, and Whitelaw 1994;
Kadlec and Patterson 1999). Hurvich and Wang (2009) have
verified that modified versions of our model can indeed capture
these effects.

Remark 2. There is an important caveat regarding the mar-
tingale property in the special case of model (1), in which the
microstructure noise components {η1,k} and {η2,k} are absent.
For each series, as long as the conditioning set involves only
returns of the given series up to time t, the log-price series (ob-
served at discrete, equally spaced time intervals) is a martin-
gale. But the martingale property is lost if the conditioning set
is augmented to include returns on both assets up to time t. Be-
cause of the feedback effect in the model and the nonsynchro-
nous trading, recent information about asset 1 can help predict
the asset 2 return, even though the asset 2 return is unpredictable
based on its own past. Such a situation can occur in actual mar-
kets. For example, to predict the (real) return on the sale of a
given home, it helps to know the returns on sales of similar
homes that have occurred recently, although knowing the past
returns on sales of the given home may not help at all, especially
if the home has not been sold for a long time.

We note a few possibilities for future work stemming from
the current study. It might be interesting to investigate the inter-
play between cointegration and option pricing, hedging, asset
allocation, pairs trading, and index tracking in the current pure-
jump context. So far, work has been done on option pricing
based on pure-jump processes (Prigent 2001) and dynamic asset

Table 7. Specification test for TIF

�t pair under testing Value of the test statistic [empirical p-value]

�t1 vs. �t2 1.2356 [0.144]
�t1 vs. �t3 0.0834 [0.920]
�t1 vs. �t4 −0.0190 [0.936]
�t2 vs. �t3 −0.7655 [0.474]
�t2 vs. �t4 −0.3412 [0.806]
�t3 vs. �t4 −0.0754 [0.958]

allocation based on jump-diffusion processes (Liu, Longstaff,
and Pan 2003), but this work does not allow for cointegration.
Another stream of the literature indicates that in a diffusion con-
text, cointegration may have an impact on option pricing (Duan
and Pliska 2004) and on index tracking (Alexander and Dim-
itriu 2005; Dunis and Ho 2005), but this work does not allow
for a pure-jump process.

Other estimators of the cointegrating parameter besides OLS
could be considered. Although many such estimators have been
proposed for both standard and fractional cointegration, none
has yet been justified under a transaction-level model such as
(1). Semiparametric estimators could be considered, because,
by the previous remark, our results do not require a parametric
model for durations.

A possible generalization of model (1) to the case of W ≥ 2
price series P1,t, . . . ,PW,t is

log P1,t =
N1(t)∑
k=1

(e1,k + η1,k)

+
W∑

i=2

{Ni(t1,N1(t))∑
k=1

(θi1ei,k + gi1ηi,k)

}
,

log P2,t =
N2(t)∑
k=1

(e2,k + η2,k)

+
W∑

i=1,i�=2

{Ni(t2,N2(t))∑
k=1

(θi2ei,k + gi2ηi,k)

}
, (10)

...

log PW,t =
NW (t)∑
k=1

(eW,k + ηW,k)

+
W−1∑
i=1

{Ni(tW,NW (t))∑
k=1

(θiWei,k + giWηi,k)

}
,

where for i = 1, . . . ,W , the {ei,k} are mutually independent
mean-0 iid value shock series; the {ηi,k} are mutually indepen-
dent microstructure shock series satisfying Condition A, B, or C
with memory parameters dηi ∈ [−1,0); and for i �= j, the pa-
rameters θij and ηij represent the impact of the value and mi-
crostructure shocks from series i on series j.

In the bivariate case, W = 2, there are two feedback coef-
ficients for the value shocks, θ21 and θ12. When cointegration
exists, one coefficient is constrained to be the reciprocal of the
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other, as in model (1), where θ21 = θ and θ12 = 1/θ . In the
multivariate model (10), there are W(W − 1) such feedback co-
efficients and at most (W − 1) cointegrating vectors, although
we do not present here the constraints on the coefficients θij
that would imply a specific cointegrating rank. It also would be
of interest to derive a common-components representation for
(10), as was obtained for clock-time multivariate models un-
der standard cointegration by Stock and Watson (1988). Such
a representation would generalize the representation (2) to the
multivariate case, and presumably would facilitate inference on
the cointegrating rank (as it did in Stock and Watson 1988). Fi-
nally, it would be of interest to derive properties for the OLS and
other estimators of the cointegrating vectors in (10), as consid-
ered, for example, for OLS in clock-time multivariate models
under standard cointegration by Stock (1987).

APPENDIX: PROOFS

A.1 Lemmas

These lemmas, used in the proofs of our theorems and of in-
terest in their own right, were proved in earlier work (Hurvich
and Wang 2009). From (2), it can be seen that the microstruc-
ture components of the log price are random sums of the mi-
crostructure noise. Lemmas 1 and 3 show, for the case of weak
and strong fractional cointegration, respectively, that such ran-
dom sums have memory parameter 1 + dη < 1, where dη is the
memory parameter of the microstructure noise.

Lemma 1. Suppose that {ηk} has memory parameter dη ∈
(− 1

2 ,0), is independent of {τk}, and satisfies Condition A. Then

var

(N(t)∑
k=1

ηk

)
∼ (σ̃ 2λ2dη+1)t2dη+1

as t → ∞.

The following lemma is used to prove Lemma 1.

Lemma 2. For dη ∈ (− 1
2 ,0), suppose that {ηk} satisfies Con-

dition A. Then there exists a positive constant C such that for all
nonnegative integers s, var(

∑s
k=1 ηk) = σ̃ 2s2dη+1 +R(s), where

|R(s)| ≤ Csmax(2dη+1−β,0).

Lemma 3. For dη ∈ (−1,− 1
2 ), suppose that {ηk} satisfies

Condition B and is independent of N(·). Then, for any fixed
t > 0,

cov

(N(t)∑
k=1

ηk,

N(t+j)∑
k=1

ηk

)
∼ Cj2dη+1 Pr{N(t) > 0} (A.1)

as j → ∞, where C > 0 is a constant not depending on t.

The following two lemmas are used in the proofs of Theo-
rems 3, 4, and 5.

Lemma 4. If the durations {τk} are generated by a LMSD
model with memory parameter dτ ∈ (0, 1

2 ) and all moments of
the durations {τk} are finite, then all moments of the backward
recurrence time (BRTt), as defined in (A.2), also are finite.

Lemma 5. For durations {τk} satisfying the assumptions in
Lemma 4, E[N(s)m] ≤ Km(sm + 1) for all s > 0, where Km <

∞, m = 1,2, . . . .

A.2 Proof of Theorem 1

We first consider the fractional cointegration case, dη ∈
(− 1

2 ,0). We focus on log P1,t; the proof for log P2,t follows
along similar lines.

The log price of asset 1 is

log P1,t =
N1(t)∑
k=1

(e1,k + η1,k) +
N2(t1,N1(t))∑

k=1

(θe2,k + g21η2,k).

Note that the two terms on the right side are uncorrelated. By
Lemma 1, because dη < 0, we obtain

var

[N1(t)∑
k=1

(e1,k + η1,k)

]
= σ 2

1,eE[N1(t)] + var

[N1(t)∑
k=1

η1,k

]

∼ (σ 2
1,eλ1)t + (σ 2

1,ηλ
2dη1 +1
1 )t2dη1 +1

= (σ 2
1,eλ1)t + o(t).

Next, consider E{N1(t) − N1(t2,N2(t))}, which is the expected
number of transactions of asset 1 after the most recent trans-
action of asset 2 up to time t. Define the backward recurrence
time for asset 2 at time t as

BRT2,t = inf{s > 0 : N2(t) − N2(t − s) > 0}. (A.2)

Clearly, BRT2,t = t − t2,N2(t). By stationarity of N2(·), and
using (3.1.7) of Daley and Vere-Jones (2003, p. 43),
we obtain E{N1(t) − N1(t2,N2(t))} = E[−N1(−BRT2,t)] =
E[−N1(−BRT2,0)]. In the right-side equality, we used the fact
that because N2(·) is a stationary point process, BRT2,t has the
same distribution as BRT2,0, which does not depend on t. (See
Daley and Vere-Jones 2003, pp. 58–59, for a detailed discus-
sion.) Thus

E
{
N1(t) − N1

(
t2,N2(t)

)}= C̃1, (A.3)

a finite constant, independent of t. Similarly,

E
{
N2(t) − N2

(
t1,N1(t)

)}= C̃2 (A.4)

also is a finite constant, independent of t as well.
It follows from the proof of Lemma 1 that

var

[N2(t1,N1(t))∑
k=1

(θe2,k + g21η2,k)

]

= θ2σ 2
2,e E
{
N2
(
t1,N1(t)

)}︸ ︷︷ ︸
T1

+g2
21σ

2
2,η E
{[

N2
(
t1,N1(t)

)]2dη+1}︸ ︷︷ ︸
T2

+ g2
21σ

2
2,η E
{
R
(
N2
(
t1,N1(t)

))}︸ ︷︷ ︸
T3

.

By (A.4), the first term equals

T1 = E{N2(t)} − C̃2 = λ2t − C̃2 ∼ λ2t,

as t → ∞.
As for the second term, because when x > 0 and 0 < p =

(2dη +1) < 1, the function xp is concave, we can apply Jensen’s
inequality to obtain

T2 ≤ {E[N2
(
t1,N1(t)

)]}2dη+1 = (λ2t − C̃2)
2dη+1 = o(t).



Hurvich and Wang: Pure-Jump Transaction-Level Price Model Yielding Cointegration 553

It follows from the proof of Lemma 1 that

|T3| ≤ CE
{[

N2
(
t1,N1(t)

)]max(2dη+1−β,0)}= o(t).

Therefore,

var

[N2(t1,N1(t))∑
k=1

(θe2,k + g21η2,k)

]
∼ (θ2σ 2

2,eλ2)t

as t → ∞.
Overall,

var[log P1,t] ∼ (σ 2
1,eλ1)t + (θ2σ 2

2,eλ2)t = C1t,

where C1 = (σ 2
1,eλ1 + θ2σ 2

2,eλ2).
Similarly,

var[log P2,t] ∼ (σ 2
2,eλ2)t +

(
1

θ2
σ 2

1,eλ1

)
t = C2t,

where C2 = (σ 2
2,eλ2 + 1

θ2 σ 2
1,eλ1).

Next, for both the strong fractional cointegration case [dη ∈
(−1,− 1

2 )] and the standard cointegration case (dη = −1), the
proof is identical to that for the weak fractional cointegration
case, except that here we have var(

∑Ni(t)
k=1 ηi,k) (i = 1,2), equal

to some finite constants, which do not increase with t.

A.3 Proof of Theorem 2

We first consider the fractional cointegration case, dη ∈
(− 1

2 ,0). We focus on the returns {r1,j} of asset 1, which cor-
responds to the first equation in (6), because the proof for {r2,j}
follows along similar lines.

Consider the lag-1 autocorrelation of

r1,j =
N1[j�t]∑

k=N1[(j−1)�t]+1

e1,k︸ ︷︷ ︸
T1

+
N1[j�t]∑

k=N1[(j−1)�t]+1

η1,k︸ ︷︷ ︸
T2

+
N2(t1,N1(j�t))∑

k=N2(t1,N1((j−1)�t))+1

θe2,k

︸ ︷︷ ︸
T3

+
N2(t1,N1(j�t))∑

k=N2(t1,N1((j−1)�t))+1

g21η2,k

︸ ︷︷ ︸
T4

.

Denote �N1,j = N1(j�t) − N1((j − 1)�t) and �N2,j =
N2(j�t) − N2((j − 1)�t). We know that E(�N1,j) = λ1�t and
E(�N2,j) = λ2�t. Thus

var(T1) = E

{[ N1(j�t)∑
k=N1((j−1)�t)+1

e1,k

]2}

= E

[
E

{[ N1(j�t)∑
k=N1((j−1)�t)+1

e1,k

]2∣∣∣N1(·)
}]

= σ 2
1,eE
{
N1(j�t) − N1((j − 1)�t)

}
= σ 2

1,eE(�N1,j) = σ 2
1,eλ1�t. (A.5)

By Lemma 2, we have

var(T2) = σ 2
2,ηE[{�N1,j}2dη+1] + σ 2

2,ηE{R(�N1,j)}.

Because the function xp is concave when x > 0 and 0 <

p < 1, by Jensen’s inequality for dη ∈ (−0.5,0), the first part
satisfies

σ 2
2,ηE[{�N1,j}2dη+1] ≤ σ 2

2,η{E[�N1,j]}2dη+1

= σ 2
2,η{λ1�t}2dη+1 = o(�t), (A.6)

as �t → ∞. As for the second part,∣∣E{R(�N1,j)}
∣∣ ≤ CE

{
(�N1,j)

max(2dη+1−β,0)
}

≤ CE{(�N1,j)
2dη+1} = o(�t).

Thus var(T2) = o(�t) as �t → ∞.
Hurvich and Wang (2009) used Lemma 2 and equations

(A.3) and (A.4) to show that var(T3) = θ2σ 2
2,eλ2�t and

var(T4) = o(�t), which, together with the Cauchy–Schwartz
inequality and eqs. (A.5) and (A.6), imply that cov(Ti,Tj) =
o(�t) for i, j = 1, . . . ,4 with i �= j. In addition, cov(T1,T3) = 0,
because {e1,k} and {e2,k} are mutually independent iid series.

Overall, we obtain var(r1,j) ∼ (σ 2
1,eλ1 + θ2σ 2

2,eλ2)�t, as
�t → ∞, that is,

lim
�t→∞

var(r1,j)

�t
= (σ 2

1,eλ1 + θ2σ 2
2,eλ2).

Similarly, for

(r1,j + r1,j+1) =
N1((j+1)�t)∑

k=N1((j−1)�t)+1

(e1,k + η1,k)

+
N2(t1,N1((j+1)�t))∑

k=N2(t1,N1((j−1)�t))+1

(θe2,k + g21η2,k),

we obtain

var(r1,j + r1,j+1) ∼ 2(σ 2
1,eλ1 + θ2σ 2

2,eλ2)�t,

that is,

lim
�t→∞

var(r1,j + r1,j+1)

2�t
= (σ 2

1,eλ1 + θ2σ 2
2,eλ2).

Therefore,

corr(r1,j, r1,j+1) = cov(r1,j, r1,j+1)

var(r1,j)

= (1/2)var(r1,j + r1,j+1) − var(r1,j)

var(r1,j)

= (1/2)var(r1,j + r1,j+1)

var(r1,j)
− 1

= var(r1,j + r1,j+1)/(2�t)

var(r1,j)/�t
− 1 → 0,

as �t → ∞.
The fact that the lag-2 autocorrelation also converges to 0 can

be shown by recognizing that

corr(r1,j, r1,j+2) = 1

2

[
var(r1,j + r1,j+1 + r1,j+2)

var(r1,j)

− 3 − 4 corr(r1,j, r1,j+1)

]



554 Journal of Business & Economic Statistics, October 2010

and using the lag-1 autocorrelation results proved earlier, along
with

lim
�t→∞

var(r1,j + r1,j+1 + r1,j+2)

3�t
= (σ 2

1,eλ1 + θ2σ 2
2,eλ2).

The result follows for any fixed lag k by induction.
Next, for both the strong fractional cointegration case [dη ∈

(−1,− 1
2 )] and the standard cointegration case (dη = −1), the

proof is identical to that for the weak fractional cointegra-
tion case, except that here we have var(

∑Ni(j�t)
k=Ni((j−1)�t)+1 ηi,k)

(i = 1,2) (as well as other similar terms) equal to some finite
constants, which do not increase with �t.

A.4 Proof of Theorem 3

Consider a linear combination of log P1,t and log P2,t using
vector (1,−θ),

log P1,t − θ log P2,t

=
N1(t)∑

k=N1(t2,N2(t))+1

e1,k

︸ ︷︷ ︸
T1

−θ

N2(t)∑
k=N2(t1,N1(t))+1

e2,k

︸ ︷︷ ︸
T2

+ (1 − θg12)

N1(t)∑
k=1

η1,k︸ ︷︷ ︸
T3

+θg12

N1(t)∑
k=N1(t2,N2(t))+1

η1,k

︸ ︷︷ ︸
T4

− (θ − g21)

N2(t)∑
k=1

η2,k︸ ︷︷ ︸
T5

−g21

N2(t)∑
k=N2(t1,N1(t))+1

η2,k

︸ ︷︷ ︸
T6

. (A.7)

Because all shock series are mutually independent and also
independent of the counting processes N1(t) and N2(t), we ob-
tain

var[log P1,t − θ log P2,t]
= var(T1) + θ2 var(T2) + (1 − θg12)

2 var(T3)

+ θ2g2
12 var(T4) + 2θg12(1 − θg12) cov(T3,T4)

+ (θ − g21)
2 var(T5)

+ g2
21 var(T6) + 2g21(θ − g21) cov(T5,T6)· (A.8)

First, by Lemma 1,

var(T3) ∼ (σ 2
1,ηλ

2dη+1
1 )t2dη+1,

(A.9)
var(T5) ∼ (σ 2

2,ηλ
2dη+1
2 )t2dη+1.

Using (A.3) and Lemma 2, we obtain

var(T4) = σ 2
1,ηE
[{

N1(t) − N1
(
t2,N2(t)

)}2dη+1]
+ σ 2

1,ηE
{
R
[
N1(t) − N1

(
t2,N2(t)

)]}
≤ σ 2

1,η

[
E
{
N1(t) − N1

(
t2,N2(t)

)}]2dη+1

+ σ 2
1,ηC
[
E
{
N1(t) − N1

(
t2,N2(t)

)}]2dη+1

= (1 + C)σ 2
1,ηC̃

2dη+1
1 , (A.10)

where we apply Jensen’s inequality in the last inequality, noting
that for x > 0 and 0 < p = (2dη + 1) < 1, the function xp is
concave. Similarly,

var(T6) ≤ (1 + C)σ 2
2,ηC̃

2dη+1
2 . (A.11)

In addition, by (A.3) and (A.4),

var(T1) = var(e1,k)E
{
N1(t) − N1

(
t2,N2(t)

)}
= σ 2

1,eC̃1, (A.12)

var(T2) = var(e2,k)E
{
N2(t) − N2

(
t1,N1(t)

)}
= σ 2

2,eC̃2. (A.13)

Next, we consider the covariance terms in (A.8) using the
Cauchy–Schwartz inequality. By (A.9) and (A.10),

| cov(T3,T4)| ≤ √var(T3)var(T4)

≤
√

(1 + C)σ 2
1,ηC̃

2dη+1
1 var(T3)

= o(t2dη+1), (A.14)

and similarly, by (A.9) and (A.11),

| cov(T5,T6)| ≤ √var(T5)var(T6)

≤
√

(1 + C)σ 2
2,ηC̃

2dη+1
2 var(T5)

= o(t2dη+1). (A.15)

Overall, using (A.9) to (A.15) for (A.8), we obtain

var(log P1,t − θ log P2,t) ∼ Ct2dη+1, (A.16)

where C = (1−θg12)
2(σ 2

1,ηλ
2dη1 +1
1 )+ (θ −g21)

2(σ 2
2,ηλ

2dη2 +1
2 ).

The cointegrating vector is (1,−θ), and the memory parame-
ter decreases from 1 for both log prices to 1 + dη.

A.5 Proof of Theorem 4

The proof follows along the same lines as the proof of The-
orem 3, except that we now use Lemma 3 to obtain the asymp-
totic behavior of the autocovariances of the partial sums of the
microstructure noise.

A.6 Proof of Theorem 5

As in the proof of Theorem 3, we denote

St = log P1,t − θ log P2,t

=
N1(t)∑

k=N1(t2,N2(t))+1

e1,k

︸ ︷︷ ︸
S1,t

−θ

N2(t)∑
k=N2(t1,N1(t))+1

e2,k

︸ ︷︷ ︸
S2,t

+
N1(t)∑
k=1

η1,k︸ ︷︷ ︸
S3,t

−θg12

N1(t2,N2(t))∑
k=1

η1,k︸ ︷︷ ︸
S4,t
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− θ

N2(t)∑
k=1

η2,k︸ ︷︷ ︸
S5,t

+g21

N2(t1,N1(t))∑
k=1

η2,k︸ ︷︷ ︸
S6,t

= S1,t − θS2,t + S3,t − θg12S4,t − θS5,t + g12S6,t,

and evaluate the terms in cov(St,St+j).

(1) Consider cov(S1,t,S1,t+j) = E(S1,tS1,t+j). The term S1,t

is a sum of shocks occurring in the time interval between the last
transaction of asset 2 before time t and time t. Similarly, S1,t+j is
a sum of shocks occurring between the last transaction of asset 2
before time t + j and time t + j. Clearly, if at least one transac-
tion of asset 2 occurs in (t, t + j], then we must have t2,N2(t+j) >

t, so that E[S1,tS1,t+j|N1(·),N2(·)] = 0, because {e1,k} is iid.
Otherwise, t2,N2(t+j) = t2,N2(t) and E[S1,tS1,t+j|N1(·),N2(·)] =
σ 2

1,e[N1(t) − N1(t2,N2(t))]. Therefore, by the Cauchy–Schwartz
inequality,

cov(S1,t,S1,t+j)

= E(S1,tS1,t+j)

= E
{
E[S1,tS1,t+j|N1(·),N2(·)]

}
= E
{
σ 2

1,e

[
N1(t) − N1

(
t2,N2(t)

)] · I{N2(t + j) − N2(t) = 0}}
≤ σ 2

1,e

{
E
[
N1(t) − N1

(
t2,N2(t)

)]2}1/2

· {P[N2(t + j) − N2(t) = 0]}1/2
.

By Lemma 5 and the stationarity of N1(·), we obtain

E
{[

N1(t) − N1
(
t2,N2(t)

)]2}
= E
{[

N1
(
t − t2,N2(t)

)]2}
= E
{[N1(BRT2,t)]2}

= E
(
E
{[N1(BRT2,t)]2|N1(·),N2(·)

})
≤ E[K2(BRT2

2,t + 1)],
which is bounded uniformly in t using Lemma 4.

Next, because N2(·) is stationary, for any positive integer m,
we obtain

P[N2(t + j) − N2(t) = 0] = P[N2(j) ≤ 0]
≤ P
[|Z2(j)| ≥ λ2j1/2−dτ

]
≤ E|Z2(j)|m

λm
2 jm(1/2−dτ )

= O
(
jm(dτ −1/2)

)
, (A.17)

where Z2(j) = N2(j)−λ2j
j1/2+dτ

. This is true because it follows from
the proof of proposition 1 of Deo et al. (2009) that E|Z2(j)|m
is bounded uniformly in j for all m. Therefore, P[N2(t + j) −
N2(t) = 0] has nearly exponential decay, because (A.17) holds
for all m. Thus cov(S1,t,S1,t+j) has nearly exponential decay.
Similarly, cov(S2,t,S2,t+j) has nearly exponential decay.

(2) In earlier work (Hurvich and Wang 2009) we used
Lemma 4 and Lemma 5 to show that cov(S3,t,S3,t+j), cov(S3,t,

S4,t+j), cov(S4,t,S3,t+j), and cov(S4,t,S4,t+j) all have nearly ex-
ponential decay.

(3) So far, we have shown that the following terms have
nearly exponential decay as j → ∞: cov(S1,t,S1,t+j), cov(S2,t,

S2,t+j), cov(S3,t,S3,t+j), cov(S3,t,S4,t+j), cov(S4,t,S3,t+j),
cov(S4,t,S4,t+j), cov(S5,t,S5,t+j), cov(S5,t,S6,t+j), cov(S6,t,

S5,t+j) and cov(S6,t,S6,t+j). Because {e1,k}, {e2,k}, {η1,k}, and
{η2,k} are mutually independent, the remaining covariances are
all 0.

A.7 Proof of Theorem 6

Here we treat the weak fractional cointegration case (case 1),
the standard cointegration case (case 2), and the strong frac-
tional cointegration case (case 3) separately.

Case 1: Fractional cointegration, dη ∈ (− 1
2 ,0). The log

prices given by (7) can be written as

Aj ≡ log P1,j

=
N1(j�t)∑

k=1

(e1,k + η1,k) +
N2(t1,N1(j�t))∑

k=1

(θe2,k + g21η2,k),

Bj ≡ log P2,j

=
N2(j�t)∑

k=1

(e2,k + η2,k) +
N1(t2,N2(j�t))∑

k=1

(
1

θ
e1,k + g12η1,k

)

=
N2(j�t)∑

k=1

(e2,k + η2,k) +
N1(j�t)∑

k=1

(
1

θ
e1,k + g12η1,k

)

−
N1(j�t)∑

k=N1(t2,N2(j�t))+1

(
1

θ
e1,k + g12η1,k

)

=
N2(j�t)∑

k=1

e2,k + 1

θ

N1(j�t)∑
k=1

e1,k︸ ︷︷ ︸
B1,j

+
N2(j�t)∑

k=1

η2,k︸ ︷︷ ︸
B2,j

+g12

N1(j�t)∑
k=1

η1,k︸ ︷︷ ︸
B3,j

− 1

θ

N1(j�t)∑
k=N1(t2,N2(j�t))+1

e1,k

︸ ︷︷ ︸
B4,j

−g12

N1(j�t)∑
k=N1(t2,N2(j�t))+1

η1,k

︸ ︷︷ ︸
B5,j

,

and

Tj ≡ Aj − θBj

=
N1(j�t)∑

k=N1(t2,N2(j�t))+1

e1,k

︸ ︷︷ ︸
T1,j=B4,j

−θ

N2(j�t)∑
k=N2(t1,N1(j�t))+1

e2,k

︸ ︷︷ ︸
T2,j

+ (1 − θg12)

N1(j�t)∑
k=1

η1,k︸ ︷︷ ︸
T3,j=B3,j

+θg12

N1(j�t)∑
k=N1(t2,N2(j�t))+1

η1,k

︸ ︷︷ ︸
T4,j=B5,j

− (θ − g21)

N2(j�t)∑
k=1

η2,k︸ ︷︷ ︸
T5,j=B2,j

−g21

N2(j�t)∑
k=N2(t1,N1(j�t))+1

η2,k

︸ ︷︷ ︸
T6,j

.



556 Journal of Business & Economic Statistics, October 2010

The OLS slope estimator, θ̂ , obtained from regressing
{log P1,j}n

j=1 on {log P2,j}n
j=1 is

θ̂ =
∑n

j=1 AjBj∑n
j=1 B2

j

=
∑n

j=1 (θBj + Tj)Bj∑n
j=1 B2

j

= θ +
∑n

j=1 TjBj∑n
j=1 B2

j

. (A.18)

First, we show that n−r∑n
j=1 TjBj

p→ 0, where r = 2+dη + δ

for ∀δ > 0. By the Cauchy–Schwartz inequality,

1

nr

n∑
j=1

Ti,jBk,j ≤
√√√√( 1

n2r−2

n∑
j=1

T2
i,j

)(
1

n2

n∑
j=1

B2
k,j

)
. (A.19)

Thus it is sufficient to show that the right side of (A.19) con-
verges in probability to 0 for all i = 1, . . . ,6 and k = 1, . . . ,5.
We showed this earlier (Hurvich and Wang 2009). In that work,
we also showed that 1

(1/n2)
∑n

j=1 B2
j

is Op(1) by bounding it by a

random variable that converges in distribution. Here we make
use of the assumption that the {ei,j} are Gaussian. Thus

n2−r(θ̂ − θ) = (1/nr)
∑n

j=1 TjBj

(1/n2)
∑n

j=1 B2
j

p→ 0.

Case 3: standard cointegration, dη = −1. When dη = −1,
η1,k = ξ1,k − ξ1,k−1 and η2,k = ξ2,k − ξ2,k−1. Denote

Bj ≡
N2(t1,N1(j�t))∑

k=1

e2,k︸ ︷︷ ︸
B∗

1,j

+
N2(j�t)∑

N2(t1,N1(j�t))+1

e2,k

︸ ︷︷ ︸
B∗

2,j

+1

θ

N1(t2,N2(j�t))∑
k=1

e1,k︸ ︷︷ ︸
B∗

3,j

+ g12 · ξ1,N1(t2,N2(j�t))I
{
N1
(
t2,N2(j�t)

)
> 0
}︸ ︷︷ ︸

B∗
4,j

+ ξ2,N2(j�t)I{N2(j�t) > 0}︸ ︷︷ ︸
B∗

5,j

and

Tj ≡ Aj − θBj

=
N1(j�t)∑

k=N1(t2,N2(j�t))+1

e1,k

︸ ︷︷ ︸
T∗

1,j

−θ

N2(j�t)∑
k=N2(t1,N1(j�t))+1

e2,k

︸ ︷︷ ︸
T∗

2,j=B∗
2,j

+ ξ1,N1(j�t)I{N1(j�t) > 0}︸ ︷︷ ︸
T∗

3,j

− θg12 · ξ1,N1(t2,N2(j�t))I
{
N1
(
t2,N2(j�t)

)
> 0
}︸ ︷︷ ︸

T∗
4,j=B∗

4,j

− θ · ξ2,N2(j�t)I{N2(j�t) > 0}︸ ︷︷ ︸
T∗

5,j=B∗
5,j

+ g21 · ξ2,N2(t1,N1(j�t))I{N1(j�t) > 0}︸ ︷︷ ︸
T∗

6,j

.

(1) First, we consider
∑n

j=1 B∗
1,jT

∗
1,j. Earlier (Hurvich and

Wang 2009), we showed that

var

(
n∑

j=1

B∗
1,jT

∗
1,j

)

≤ O(n2) + Kn
n∑

j=1

n∑
s=j+1

(s − j)m(dτ −1/2)/4. (A.20)

Consider
∑n

j=1
∑n

s=j+1(s − j)m(dτ −1/2)/4. For any fixed inte-

ger 1 ≤ j ≤ n, we choose m > 8
1−2dτ

so that
∑n

s=j+1(s −
j)m(dτ −1/2)/4 is summable in s, and thus

∑n
j=1
∑n

s=j+1(s −
j)m(dτ −1/2)/4 = O(n). Therefore, var(

∑n
j=1 B∗

1,jT
∗
1,j) = O(n2),

and, by Chebyshev’s inequality, we obtain that for any δ > 0,

1

n1+δ

n∑
j=1

B∗
1,jT

∗
1,j

p→ 0.

(2) Earlier (Hurvich and Wang 2009), we used Isserlis’ for-
mula (Isserlis 1918) to show that, similarly as in (1),

1

n1+δ

n∑
j=1

B∗
1,jT

∗
2,j

p→ 0 ∀δ > 0.

(3) Similar to (1), for
∑n

j=1 B∗
1,jT

∗
3,j =∑n

j=1 B∗
1,jξ1,N1(j�t) ×

I{N1(j�t) > 0}, we have

var

(
n∑

j=1

B∗
1,jξ1,N1(j�t)I{N1(j�t) > 0}

)

≤ σ 2
2,eσ

2
1,ξ

n∑
j=1

E
[
N2
(
t1,N1(j�t)

)]

+ 2σ 2
2,eσ

2
1,ξ

n∑
j=1

n∑
s=j+1

∞∑
r=0

E
[
N2
(
t1,N1(j�t)

)
· I{N1(s�t) − N1(j�t) = r}] · ∣∣cξ1,r

∣∣
≤ σ 2

2,eσ
2
1,ξ

n∑
j=1

E[N2(j�t)]

+ 2σ 2
2,eσ

2
1,ξ

n∑
j=1

n∑
s=j+1

∞∑
r=0

E
[
N2(j�t)

· I{N1(s�t) − N1(j�t) = r}] · ∣∣cξ1,r

∣∣
≤ σ 2

2,eσ
2
1,ξ λ2�t

n(n + 1)

2

+ 2σ 2
2,eσ

2
1,ξ

n∑
j=1

n∑
s=j+1

∞∑
r=0

√
E
{[N2(j�t)]2

}
·√P[N1(s�t) − N1(j�t) = r] · ∣∣cξ1,r

∣∣
≤ σ 2

2,eσ
2
1,ξ λ2�t

n(n + 1)

2
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+ 2σ 2
2,eσ

2
1,ξ

√
E
{[N2(n�t)]2

}︸ ︷︷ ︸
O(n)

·
n∑

j=1

n∑
s=j+1

∞∑
r=0

√
P[N1(s�t) − N1(j�t) ≤ r] · ∣∣cξ1,r

∣∣.
Because

∞∑
r=0

√
P[N1(s�t) − N1(j�t) ≤ r] · ∣∣cξ1,r

∣∣
≤

∞∑
r=0

∣∣cξ1,r

∣∣√E|Z1(s − j) − r(s − j)−1/2−dτ |m
λm

1 (s − j)m(1/2−dτ )

≤ (s − j)(m/2)(dτ −1/2)

· Cm

∞∑
r=0

e−Kξ1 r[1 + rm/2(s − j)(m/2)(−1/2−dτ )
]

= O
(
(s − j)(m/2)(dτ −1/2)

)
,

we can choose m sufficiently large so that∑n
s=j+1

∑∞
r=0

√
P[N1(s�t) − N1(j�t) ≤ r] · |cξ1,r | is summable

in s. Thus√
E
{[N2(n�t)]2

}︸ ︷︷ ︸
O(n)

·
n∑

j=1

n∑
s=j+1

∞∑
r=0

√
P[N1(s�t) − N1(j�t) ≤ r]

︸ ︷︷ ︸
summable in s

·∣∣cξ1,r

∣∣= O(n2).

Therefore, var(
∑n

j=1 B∗
1,jξ1,N1(j�t)I{N1(j�t) > 0}) = O(n2) and

1

n1+δ

n∑
j=1

B∗
1,jT

∗
3,j

p→ 0 ∀δ > 0

using Chebyshev’s inequality.
By similar arguments for

∑n
j=1 B∗

1,jT
∗
3,j, we obtain that

∀δ > 0,

1

n1+δ

n∑
j=1

B∗
1,jTi,j

p→ 0, i = 4,5,6.

(4) The proof for
∑n

j=1 B∗
3,jTi,j (i = 1, . . . ,6) follows along

similar lines as for
∑n

j=1 B∗
1,jTi,j (i = 1, . . . ,6), because B∗

3,j
and B∗

1,j are essentially the same, because one is for asset 1 and
the other is for asset 2. Thus ∀δ > 0,

1

n1+δ

n∑
j=1

B∗
3,jT

∗
i,j

p→ 0, i = 1, . . . ,6.

(5) The remaining terms,
∑n

j=1 B∗
i,jT

∗
k,j (i = 2,4,5 and k =

1, . . . ,6), are all Op(n), as can be easily shown using the
Cauchy–Schwartz inequality and Chebyshev’s inequality. Con-
sider the following examples: (5.1) We have

n∑
j=1

B∗
2,jT

∗
1,j ≤

√√√√ n∑
j=1

B∗2
2,j ·

n∑
j=1

T∗2
1,j = Op(n),

because, by Chebyshev’s inequality, for any ε > 0, we can

choose M >
σ 2

2,eC̃2

ε
, so that

P

(
1

n

n∑
j=1

B∗2
2,j > M

)
≤ E(

∑n
j=1 B∗2

2,j)

nM

=
∑n

j=1 var(B∗
2,j)

nM
= σ 2

2,eC̃2

M
< ε

and similarly
∑n

j=1 T∗2
1,j = Op(n).

(5.2) We have

n∑
j=1

B∗
2,jT

∗
2,j =

n∑
j=1

B∗2
2,j = Op(n);

therefore, ∀δ > 0,

1

n1+δ

n∑
j=1

B∗
i,jT

∗
k,j

p→ 0, i = 2,4,5 and k = 1, . . . ,6.

(6) Overall, when dη = −1,

1

n1+δ

n∑
j=1

BjTj
p→ 0 (A.21)

for any δ > 0.

Furthermore, the proof of 1
(1/n2)

∑n
j=1 B2

j
= Op(1) in the stan-

dard cointegration case is identical to that for the fractional
cointegration case, except that here we have var(

∑Ni(t)
k=1 ηi,k) ≤

2σ 2
i,ξ (i = 1,2), which does not increase with t. (We still have

the telescope sum even if ξi is not iid and the variance of the
partial sum is still some constant.) This, together with (A.21),
gives that

n1−δ(θ̂ − θ)
p→ 0.

Case 2: Strong fractional cointegration, dη ∈ (−1,− 1
2 ). Fol-

lowing along the same lines as the proof of case 1, we can show
that the convergence rate of θ̂ is arbitrarily close to

√
n, using

the fact that the variance of the partial sums of the microstruc-
ture noise is a constant and not increasing with time.
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