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ABSTRACT

Weak identification is likely to be prevalent in many economic models. When instruments are

weak, the limiting distributions of standard test statistics - like Student, Wald, likelihood ratio and

Lagrange multiplier criteria in structural models - have non-standard distributions and often depend

heavily on nuisance parameters. Inference procedures robust to weak instruments have been devel-

oped. These robust procedures however test hypotheses that arespecified on structural parameters.

Even though robust procedures solve statistical difficulties related to identification issues, applied

researchers may want to first pre-test the exogeneity of some regressors before inference on the

parameters of interest. In linear IV regression, Durbin-Wu-Hausman (DWH) tests are often used

as pre-tests for exogeneity. Unfortunately, these tests rely on the assumption that model parameters

are identified by the available instruments. When identification is deficient or weak, the properties

of DWH tests need to be investigated. Early references that study the effects of weak instruments

on Hausman-type tests are not well documented and usually focus on testing. Not much is known

about pre-test estimators based on DWH tests when IV are weak. In this paper, we provide a large-

sample analysis of the distribution of DWH and RH tests under both the null hypothesis (level) and

the alternative hypothesis, with or without identification. We show that underthe null hypothesis,

usual chi-square critical values are applicable irrespective of the presence of weak instruments, in

the sense that the asymptotic critical values obtained under the identification assumption provide

bounds when identification fails. We characterize a necessary and sufficient condition for DWH

and RH tests (with fixed level) to be consistent under the alternative of endogeneity. The latter

condition automatically holds when the rank condition for identification holds: DWH tests are con-

sistent when identification holds. The consistency condition also holds in a wide range of cases

where identification fails. Moreover, we study the properties of pre-testestimators where OLS or

IV is used depending on the outcome of DWH exogeneity tests. We present theoretical arguments

suggesting that OLS may be preferable to IV in many cases where regressor endogeneity may be an

issue. We present simulation evidence indicating that: (1) over a wide rangecases, including weak

instruments and moderate endogeneity, OLS performs better than 2SLS [finding similar to Kiviet

and Niemczyk (2007)]; (2) pretest-estimators based on exogeneity havean excellent overall perfor-

mance. Hence, the recommendation of Guggenberger (2008) to abandonthe practice of pretesting

may go too far. We illustrate our theoretical results through two empirical applications: the relation

between trade and economic growth and the widely studied problem of returns to education. We

find that exogeneity tests cannot reject the exogeneity of schooling,i.e. the IV are possibly weak in

this model [Bound (1995)]. However, “trade share” is endogenous,suggesting that the IV are not

too poor as showed by Dufour and Taamouti (2007).
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1. Introduction

The literature on weak instruments in linear structural models focuses on proposing statistical pro-

cedures which are robust to instrument quality, see Anderson and Rubin(1949, AR-test), Dufour

(1997, 2003), Staiger and Stock (1997), Wang and Zivot (1998), Kleibergen (2002, K-test), Mor-

eira (2003, CLR-test), Dufour (2005, 2007), Dufour and Jasiak (2001), Stock, Wright and Yogo

(2002), Hall, Rudebusch and Wilcox (1996), Hall and Peixe (2003), Donald and Newey (2001),

Doko Tchatoka and Dufour (2008). Weak instrument robust statistics however, test hypotheses that

are specified on the parameters of interest. Although robust procedures prevent statistical difficul-

ties related to identification, applied researchers may need to check whethersome regressors are

exogenous before running inference on the parameters of interest (pretesting). Exogeneity tests of

the type proposed by Durbin (1954), Wu (1973), Hausman (1978), Revankar and Hartley (1973)

are commonly used for this purpose. Unfortunately, such tests rely on the assumption that model

parameters are identified by the available instruments. When identification is weak, the properties

(size and power) of exogeneity tests need to be investigated. The literaturerelated to weak instru-

ment problems on exogeneity tests is not well documented. Early references include Guggenberger

(2010) and Hahn, Ham and Moon (2010).

Guggenberger (2010) investigates the asymptotic size properties of a two-stage test, where in

the first stage a Hausman test is undertaken as a pretest for exogeneity of a regressor. His major

finding is that the two-stage test based on DWH-type test have arbitrary size even in large samples.

In fact, when the endogeneity between the structural and reduced formerrors is local to zero of order

T−1/2, whereT denotes the sample size, the Hausman pretest statistic converges to a noncentral chi-

squared distribution. The non centrality parameter is small when the strength of the instruments is

small. In this situation, the Hausman pre-test has low power against local deviations of the pretest

null hypothesis and consequently, with high probability, OLS-based inference is done in the second

stage. However, the second stage OLS based t-statistic often takes on very large values under such

local deviations. The latter causes size distortions in the two-stage test. Hahnet al. (2010) consider

the problem of testing the exogeneity of a subset of excluded instruments. They divide the excluded

instruments from the structural equation into two components. The first component is weak but

exogenous, while the second is strong but potentially invalid. They then testthe validity of the

strong component using a modified Hausman-type test. The test statistic proposed is valid despite

the presence of the weak component.

However, neither Guggenberger (2010) nor Hahn et al. (2010) provide a formal characterization

of DWH-type tests in presence of weak instruments. Furthermore, the issues related to estimation

are not addressed by these papers. For example, how do pre-test estimators based on exogeneity

tests behave when identification is deficient or weak? In particular, do alternative pre-test estimators

based on exogeneity tests better perform (in term of bias and mean squareerror) than usual IV

estimators when instruments are weak?

Doko Tchatoka and Dufour (2010) provide a finite-sample characterization of the distribution

of DWH-tests under the null hypothesis (level) and the alternative hypotheses (power). However,
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the issues related to estimation and the large-sample behaviour of the tests are not addressed.

In this paper, we consider the problem of testing the exogeneity of includedregressors in the

structural equation. This problem is quite different and more complex than testing orthogonality

restrictions of excluded instruments, as done by Hahn et al. (2010). We focus on large-sample

and study the behaviour of DWH- and RH-type tests including when identification is deficient or

weak (weak instruments). Furthermore, we analyze the properties (bias and mean squares errors) of

pre-test estimators based on exogeneity tests.

First, we characterize the asymptotic distribution of DWH and RH tests under thenull hypoth-

esis (level) and the alternative hypothesis (power). We show that DWH- and RH-tests are asymp-

totically robust to weak instruments (level is controlled) and we provide a necessary and sufficient

condition under which the tests have no power [similar to Doko Tchatoka and Dufour (2010) and

Guggenberger (2010)]. We find that exogeneity tests have no power when all instruments are weak.

Moreover, power may exist as soon as we have one strong instrument (partial identification).

Second, we characterize the asymptotic bias and mean square error of OLS, 2SLS and pre-test

estimators based on DWH and RH tests. We find that: (1) when identification is deficient or weak

(weak instruments) and endogeneity is local to zero [i.e. the endogeneity between the structural

and reduced form errors converges to zero at rate (T− 1
2 ) as the sample size grows], OLS performs

(in terms of bias and mean square error) better than 2SLS [finding similar to Kiviet and Niemczyk

(2007)]; (2) pretest-estimators based on exogeneity tests have an excellent overall performance

compared with OLS and 2SLS estimators. Therefore, the recommendation of Guggenberger (2010)

to abandon the practice of pretesting may go too far.

We present two Monte Carlo experiments which confirm our theoretical results. The first exam-

ines the properties (size and power) of DWH and RH exogeneity tests. Thesecond studies the bias

and mean square error of OLS, 2SLS and pre-test estimators based on exogeneity tests. Our results

indicate that: (1) over a wide range cases, including weak instruments and moderate endogeneity,

ordinary least squares estimator (OLS) performs better than usual 2SLSestimator; (2) pre-test esti-

mators based on exogeneity tests have an excellent overall performance, hence more preferable than

OLS and IV estimators.

We illustrate our theoretical results through two empirical applications: the relation between

trade and economic growth [see, Dufour and Taamouti (2007), Irwin and Tervio (2002), Frankel and

Romer (1999), Harrison (1996), Mankiw, Romer and Weil (1992)] andthe widely studied problem

of returns to education [Dufour and Taamouti (2007), Angrist and Krueger (1991), Angrist and

Krueger (1995), Angrist and al. (1999), Mankiw et al. (1992)]. The results indicate that exogeneity

tests cannot reject the exogeneity of schooling, which suggest that instruments are possibly weak

in this model [ (n.d.)]. However, “trade share ”is endogenous,i.e., instruments are not too poor as

showed in the literature [Dufour and Taamouti (2007)].

The paper is organized as follows. Section 2 formulates the model studied. Section 3 studies the

asymptotic behaviour of the tests when identification is strong or deficient (lack of identification).

Section 4 examines their behaviour when identification is weak (weak IV). Section 5 presents the

pre-test estimators based on exogeneity tests and characterizes their asymptotic behaviour, including

2



when identification is deficient or weak. Section 6 presents two Monte Carlo experiments (i) the

properties (size and power) of exogeneity; and (ii) the performance (bias and mean squares errors–

MSE) of pre-test estimators. Section 7 illustrates our theoretical results through two important

applications. We conclude in Section 8 and proofs are presented in the Appendix.

2. Framework

We consider the linear structural model:

y = Yβ +Z1γ +u, (2.1)

Y = Z1Π1 +Z2Π2 +V, (2.2)

wherey∈ R
T is a dependent variable,Y ∈ R

T×G is a matrix of (possibly) endogenous explanatory

variables(G ≥ 1) Z1 ∈ R
T×k1 is a matrix of exogenous variables,Z2 ∈ R

T×k2 is a matrix of IVs,

u = (u1, . . . , uT)′ ∈ R
T andV = [v1, . . . , vT ]′ ∈ R

T×G are disturbances,β ∈ R
G, γ ∈ R

k1, Π1 ∈
R

k1×G andΠ2 ∈ R
k2×G unknown coefficients. LetZ = [Z1 : Z2] andk = k1 + k2. We assume that

the “instrument matrix”Z has full-column rank andk2 ≥ G. The usual necessary and sufficient

condition for identification of this model is rank(Π2) = G. If rank(Π2) < G, β is not identified and

the instruments are weak. However, some components ofβ may be identified (partial identification)

even if this rank condition fails. We also suppose thatu can be regressed onV yielding the following

equation:

u = Va+ ε (2.3)

wherea∈ R
G is a vector of unknown coefficients,ε has mean zero, varianceσ2

ε and uncorrelated

with V.

Let

M = MZ = I −Z(Z′Z)−1Z′, Z = [Z1, Z2], M1 = MZ1 = I −Z1(Z
′
1Z1)

−1Z′
1. (2.4)

Then,M1−M can be expressed as

M1−M = M1Z2(Z
′
2M1Z2)

−1Z′
2M1 = Z̄2(Z̄

′
2Z̄2)

−1Z̄′
2,

whereZ̄2 = M1Z2 ⊥ Z1. Let Z̄ = [Z1 , Z̄2]. If we replaceZ by Z̄ in (2.26) - (2.28), then the statistics

Hi (i = 1, 2, 3), Tl (l = 1, 2, 3, 4) andRH do not change. Therefore, the orthogonalization be-

tweenZ1 andZ̄2 has no impact on our results. To simplify the notations,Z̄2 will be used instead of

Z2 [see for example, equation (2.20)].

We make the following generic assumptions on the asymptotic behaviour of modelvariables

[where B > 0 for a matrixB means thatB is positive definite (p.d.), and→ refers to limits as

3



T → ∞]:

1
T

[

V ε
]′ [

V ε
]

p→
[

ΣV 0′

0 σ2
ε

]

> 0, (2.5)

1
T

Z′
[

V ε
]

p→ 0, (2.6)

1
T

Z′Z
p→ ΣZ =

[

ΣZ1 Σ ′
Z2Z1

ΣZ2Z1 ΣZ2

]

> 0, (2.7)

1√
T

V ′ε L→ SVε ,
1√
T

Z′[u, V, ε]
L→ [Su, SV , Sε ] , (2.8)

vec[Su, SV , Sε , SVε ] ∼ N [0, ΣS] ,Sε andSV are uncorrelated, (2.9)

Su =

[

S1u

S2u

]

, SV =

[

S1V

S2V

]

, Sε =

[

S1ε

S2ε

]

, (2.10)

S1u ∼ N
[

0, σ2
uΣZ1

]

, S2u ∼ N
[

0, σ2
uΣZ2

]

, (2.11)

S1ε ∼ N
[

0, σ2
εΣZ1

]

, S2ε ∼ N
[

0, σ2
εΣZ2

]

, (2.12)

Siu is aki ×1 random vector,SiV is aki ×G random matrix matrix(i = 1, 2), ΣV is G×G positive

definite matrix, andσ2
u > 0.

From the above assumptions, we have

1
T

Z′u
p→ 0,

1
T

[

u V
]′ [

u V
]

p→ Σ =

[

σ2
u δ ′

δ ΣV

]

> 0, (2.13)

where

δ = ΣVa, σ2
u = a′ΣVa+σ2

ε , Su = SVa+Sε = SV(Σ−1
V δ )+Sε . (2.14)

Furthermore,

1
T

Z̄′
[

u V ε
]

p→ 0,
1
T

Z̄′Z̄
p→ ΣZ̄ =

[

ΣZ1 0

0 ΣZ̄2

]

> 0, (2.15)

1√
T

Z̄′[u, V, ε]
L→ [S̄u, S̄V , S̄ε ] , (2.16)

vec[S̄u, S̄V , S̄ε , SVε ] ∼ N [0, ΣS̄] , S̄ε andS̄V are uncorrelated, (2.17)

S̄u =

[

S1u

S̄2u

]

, S̄V =

[

S1V

S̄2V

]

, Sε =

[

S1ε

S̄2ε

]

, (2.18)
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S̄2u ∼ N
[

0, σ2
uΣZ̄2

]

, S̄2ε ∼ N
[

0, σ2
εΣZ̄2

]

, (2.19)

where

ΣZ̄2
= ΣZ2 −ΣZ2Z1Σ−1

Z1
Σ ′

Z2Z1
. (2.20)

Under assumptions (2.5) - (2.12),

plim
T→∞

β̂ = β +(Π ′
2ΣZ̄2

Π2 +ΣV)−1δ (2.21)

and β̂ is consistent if and only ifδ = 0, irrespective of the rank ofΠ2. In particular, under lo-

cal alternative considered by Guggenberger (2010) [δ = δ 0/
√

T → 0 asT → ∞], β̂ is consistent.

However,

β̃ = β +[Y′(M1−M)Y]−1Y′(M1−M)u = β +

[

Y′(M1−M)Y
T

]−1 Y′(M1−M)u
T

, (2.22)

so, provided that the identification condition rank(Π2) = G holds,

Y′(M1−M)Y
T

p→ Π ′
2ΣZ̄2

Π2 > 0,
Y′(M1−M)u

T
p→ 0, (2.23)

and

plim
T→∞

β̃ = β . (2.24)

Nevertheless,̃β does not generally converge toβ when rank(Π2) < G.

This paper focuses on both testing and estimation. First, we investigate the large-sample prop-

erties of DWH and RH exogeneity tests, including when identification is deficient or weak (weak

instruments). Second, we study the performance (bias and mean squareserrors- MSE) of pre-test

estimators based on DWH and RH exogeneity tests, allowing for the presenceof weak instruments.

From (2.13) - (2.14), the exogeneity assumption ofY can be expressed as

H0 : δ = 0 ⇔ Ha : a = 0. (2.25)

We consider the Durbin-Wu-Hausman (DWH) test statistics, namely three versions of Hausman-

type statistics[Hi , i = 1, 2, 3], the four statistics proposed by Wu (1973)[Tl , l = 1, 2, 3, 4] and

Revankar and Hartley (1973, RH) test statistic. These statistics are defined by equations (2.26) -

(2.28) below:

Tl = κ l (β̃ − β̂ )′Σ̃−1
l (β̃ − β̂ ) , l = 1, 2, 3, 4; (2.26)

Hi = T(β̃ − β̂ )′Σ̂−1
i (β̃ − β̂ ) , i = 1, 2, 3, (2.27)

5



RH = κRy′Σ̂Ry, (2.28)

where β̂ = (Y′M1Y)−1Y′M1y is the ordinary least squares (OLS) estimator ofβ , β̃ = [Y′(M1 −
M)Y]−1Y′(M1−M)y is the two-stage least squares (2SLS) estimator ofβ , κ1 = (k2−G)/G, κ2 =

(T −k1−2G)/G, κ3 = κ4 = T −k1−G, κR = (T −k1−k2−G)/k2, and

Σ̃1 = σ̃2
1∆̂ , Σ̃2 = σ̃2

2∆̂ , Σ̃3 = σ̃2∆̂ , Σ̃4 = σ̂2∆̂ , (2.29)

Σ̂1 = σ̃2Ω̂−1
IV − σ̂2Ω̂−1

LS , Σ̂2 = σ̃2∆̂ , Σ̂3 = σ̂2∆̂ , (2.30)

Σ̂R =
1

σ̂2
R

D1Z2(Z
′
2D1Z2)

−1Z′
2D1 , (2.31)

Ω̂IV =
1
T

Y′(M1−M)Y , Ω̂LS =
1
T

Y′M1Y , (2.32)

∆̂ = Ω̂−1
IV − Ω̂−1

LS , D1 =
1
T

M1MM1Y , (2.33)

σ̃2 = (y−Yβ̃ )′M1(y−Yβ̃ )/T , σ̂2 = (y−Yβ̂ )′M1(y−Yβ̂ )/T , (2.34)

σ̃2
1 = (y−Yβ̃ )′(M1−M)(y−Yβ̃ )/T = σ̃2− σ̃2

e , (2.35)

σ̃2
2 = σ̂2− (β̃ − β̂ )′∆̂−1(β̃ − β̂ ) = σ̂2− σ̃2(β̃ − β̂ )′Σ̂−1

2 (β̃ − β̂ ) , (2.36)

σ̃2
e = (y−Yβ̃ )′M(y−Yβ̃ )/T, σ̂2

R = yMX̄y′/T , (2.37)

MM1Y = I −M1Y(Y′M1Y)−1Y′M1 , (2.38)

Note thatσ̂2 is the OLS-based estimator ofσ2
u, σ̃2 is the usual 2SLS-based estimator ofσ2

u (both

without correction for degrees of freedom), whileσ̃2
1, σ̃2

2 andσ̂2
R may be interpreted as alternative

IV-based scaling factors.

The link between WuT -tests and HausmanH -tests and the regression formula of these tests

has been given in Doko Tchatoka and Dufour (2010). For example, wecan observe that̃Σ3 = Σ̂2

andΣ̃4 = Σ̂3, soT3 = (κ3/T)H2 andT4 = (κ4/T)H3. Sinceκ3/T = κ4/T → 1 asT → +∞, T3

is asymptotically equivalent withH2, andT4 is asymptotically equivalent withH3.

Finite-sample distributions for all exogeneity test statistics with possibly weak IVs and non

Gaussian errors are available in Doko Tchatoka and Dufour (2010).

We distinguish two setups: (1)Π2 = Π0
2 is fixed; and (2)Π2 = Π0

2/
√

T, whereΠ0
2 = 0 is

allowed (weak instruments). Section 3 below characterizes the limiting distributions of the statistics

under the null hypothesis (δ = 0) and the alternative hypothesis (δ 6= 0) whenΠ2 is fixed (i.e. does

not depend on the sample size).

3. Asymptotic behaviour of exogeneity tests

In this section, we characterize the asymptotic behaviour of the statistics under the null (δ = 0)

and the alternative hypotheses (δ 6= 0) when parameters are fixed, so they do not depend on the

sample sizeT. We distinguish two cases for the reduced form parametersΠ2 : (i) Π2 = Π0
2 , with

rank(Π0
2) = G (strong identification); and (ii)Π2 = Π0

2 , with rank(Π0
2) < G (partial identification).
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To recover partial identification setup, it will be useful to parameterize the model as in Choi and

Phillips (1992):

y = Y1β 1 +Y2β 2 +Z1γ +u, (3.1)

Y1 = Z1Π11+Z2Π21+V21, (3.2)

Y2 = Z1Π12+V22, (3.3)

where

Π11 = Π1S1, Π12 = Π1S2, Π21 = Π2S1, (3.4)

Π22 = Π2S2 = 0, β 1 = S
′
1β , β 2 = S

′
2β , (3.5)

Y1 = YS1, Y2 = YS2, V21 = VS1, V22 = VS2 (3.6)

andS = [S1, S2] ∈ O(G), O(G) denotes the orthogonal group ofG×G matrices,S2 : G×G2

spans the null space ofΠ2, S1 : G×G1, β 1 : G1×1 andβ 2 : G2×1. The necessary and sufficient

condition for identification ofβ 1 is

rank(Π21) = G1, (3.7)

whereΠ21 is ak2×G1. This can be seen easily by considering the reduced form for model (3.1)-

(3.6)

y = Z1π1 +Z2π2 +v (3.8)

whereπ1 = Π11β 1 + Π12β 2 + γ, π2 = Π21β 1, andv = u+V21β 1 +V12β 2. So, β 1 is identified if

and only if rank(Π21) = G1. It is important to observe thatβ 1 andβ 2 are linear combinations of the

original coefficientβ . The original coefficientβ is recovered by the equation

β = S1β 1 +S2β 2. (3.9)

Equation (3.9) can then be used to find the effect of partial identification onthe entire vectorβ .

Of course, if rank(Π2) = G (strong identification), we haveS2β 2 = 0 andS = S1 = IG. Also,

if rank(Π2) = 0 (complete non identification), we haveS1β 1 = 0 andS = S2 = IG. So, the

above parametrization includes strong identification and complete non identification setups as spe-

cial cases.

We assume thatβ 1 is identified butβ 2 may not (partial identification),i.e.

rank(Π21) = G1, rank(Π12) ≤ G2. (3.10)

In particular, if rank(Π12) = 0, β 2 is not identified at all. Note that assumption (3.10) does not

constitute a restriction of the model. If assumption (3.10) fails, either the model isidentified or
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absolutely not. Both setups are special cases of (3.1)-(3.6) and will be recovered by our results.

From the above parametrization, the 2SLS estimator ofβ 1 andβ 2 are defined by

β̃ 1 = (Y′
1EY1)

−1Y′
1Ey, β̃ 2 = (Y′

2JY2)
−1Y′

2Jy, (3.11)

where

E = M1−M− (M1−M)Y2[Y
′
2(M1−M)Y2]

−1Y′
2(M1−M),

J = M1−M− (M1−M)Y1[Y
′
1(M1−M)Y1]

−1Y′
1(M1−M). (3.12)

Throughout the paper, the following definitions and notations will be used:

σ̄2
u = σ2

u + S̄′2uΣ−1
Z̄2

(ΣZ̄2
Π0 + S̄2V)Ψ−1

V ΣVΨ−1
V (ΣZ̄2

Π0 + S̄2V)′Σ−1
Z̄2

S̄2u, (3.13)

ΣA ≡ ΣA(S̄2V) = Σ−1
Z̄2

(ΣZ̄2
Π0 + S̄2V)Ψ−1

V (ΣZ̄2
Π0 + S̄2V)′Σ−1

Z̄2
, (3.14)

Σ ∗
Z̄2

= ΣZ̄2
−ΣZ̄2

Π0
2 (Π0′

2 ΣZ̄2
Π0

2 +ΣV)−1Π0′
2 ΣZ̄2

, (3.15)

ΨV = (ΣZ̄2
Π0 + S̄2V)′Σ−1

Z̄2
(ΣZ̄2

Π0 + S̄2V), (3.16)

∆V = (ΣZ̄2
Π0 + S̄2V)Ψ−1

V (ΣZ̄2
Π0 + S̄2V)′, ∆ ∗

V = Ik2 −Σ−1/2
Z̄2

∆VΣ−1/2
Z̄2

, (3.17)

σ2
1∗ = σ2

2∗ = σ̃2
∗, σ2

3∗ = σ2
ε , σ̃2

2∗ = σ̃2
4∗ = σ2

ε , σ̃2
3∗ = σ̃2

∗, (3.18)

σ̃2
1∗ = (Σ−1/2

Z̄2
S̄2Va+Σ−1/2

Z̄2
S2ε)

′∆ ∗
V(Σ−1/2

Z̄2
S̄2Va+Σ−1/2

Z̄2
S̄2ε), (3.19)

σ̃2
∗ = σ2

u−2δ ′Ψ−1
V (ΣZ̄2

Π0 + S̄2V)′Σ−1
Z̄2

S̄2u

+S̄′2uΣ−1
Z̄2

(ΣZ̄2
Π0 + S̄2V)Ψ−1

V ΣVΨ−1
V (ΣZ̄2

Π0 + S̄2V)′Σ−1
Z̄2

S̄2u, (3.20)

µV =
1

σ2
ε
a′Π ′

0∆VΠ0a = δ ′Σ−1
V Π ′

0∆VΠ0Σ−1
V δ , (3.21)

λV =
1

σ2
ε
a′S̄′2VΣ−1/2

Z̄2
∆ ∗

VΣ−1/2
Z̄2

S̄2Va =
1

σ2
ε
a′S̄′2V(Σ−1

Z̄2
−Σ−1

Z̄2
∆VΣ−1

Z̄2
)S̄2Va, (3.22)

Σ0
A = Σ−1

Z̄2
S̄2V(S̄′2VΣ−1

Z̄2
S̄2V)−1S̄′2VΣ−1

Z̄2
, (3.23)

σ̃2
u = σ2

u +N
′

BS
′
2(Π0′

2 ΣZ̄2
Π0

2 +ΣV)−1
NBS2, (3.24)

σ2
0∗ = σ2

ε + S̄′2εΣ−1
Z̄2

S̄2V(S̄′2VΣ−1
Z̄2

S̄2V)−1ΣV(S̄′2VΣ−1
Z̄2

S̄2V)−1S̄′2VΣ−1
Z̄2

S̄2ε ≥ σ2
ε . (3.25)

Finally, for a random variableζ whose distribution depends on the sample sizeT, the notation

ζ L→ +∞ means thatP[ζ > x] → 1 asT → ∞, for anyx. We will now characterize the behaviour of

the tests under the null hypothesisH0 (section 3.1) and the alternative (section 3.2).

3.1. Asymptotic distributions under the null hypothesis

This subsection describes the asymptotic behaviour of DWH and RH tests under the null hypothesis

δ = 0, including when identification is deficient. Theorem3.1below shows that all exogeneity tests

are valid (level is controlled) even if parameters are not identifiable.
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Theorem 3.1 ASYMPTOTIC DISTRIBUTIONS UNDER THE NULL HYPOTHESIS. Suppose the

assumptions(2.1) - (2.3) and(2.5) - (2.12) hold, and letδ = 0. If rank(Π0
2) = G, then

Hi
L→ χ2(G), i = 1, 2, 3 , (3.26)

T1
L→ F(G, k2−G), T2

L→ 1
G

χ2(G), Tl
L→ χ2(G), l = 3, 4, (3.27)

RH
L→ 1

k2
χ2(k2) . (3.28)

If rank(Π0
2) ≤ G, then

Hi
L→ 1

σ̃2
u

N
′

BS
′
2A S2NB ≤ χ2(G), i = 1, 2,

H3
L→ χ2(G), (3.29)

T1
L→ F(G, k2−G), T2

L→ 1
G

χ2(G),

T4
L→ χ2(G), T3

L→ 1

σ̃2
u

N
′

BS
′
2A S2NB ≤ χ2(G), (3.30)

RH
L→ 1

k2
χ2(k2), (3.31)

where

NB = S
′
2a+B

−1
S

′
2S̄′2V [Σ−1

Z̄2
−Π21(Π ′

21ΣZ̄2
Π21)

−1Π ′
21]S̄2ε

NB|S̄2V
∼ N

[

S
′
2a, σ2

εB
−1] ,

B = S
′
2S̄′2V [Σ−1

Z̄2
−Π21(Π ′

21ΣZ̄2
Π21)

−1Π ′
21]S̄2VS2,

A = S2BS
′
2 = S̄′2V [Σ−1

Z̄2
−Π21(Π ′

21ΣZ̄2
Π21)

−1Π ′
21]S̄2V ,

σ̃2
u is defined by(3.24), a = Σ−1

V δ andS2 is defined in(3.6) - (3.9).

In the above theorem, sinceδ = 0 if and only ifa= 0, we first note thatNB|S̄2V
∼N

[

0, σ2
εB

−1
]

.

Second, when identification is strong, the asymptotic null distribution of all exogeneity tests is free

of nuisance parameters (as expected). When identification fails, the asymptotic null distribution of

T1, T2, T4 andH3 is still pivotal. However, the null distribution ofT3, H1 andH2 is asymptoti-

cally bounded by a central chi-square withG degrees of freedom. Overall, usual chi-square critical

values are applicable irrespective of the presence weak instruments, in the sense that the asymptotic

critical values obtained under the identification assumption provide bounds when identification fails

[similar to Doko Tchatoka and Dufour (2010)]. We now study the properties of the tests under the

alternative hypothesisδ 6= 0.
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3.2. Asymptotic power

We distinguish two cases for the characterization of the power of the tests. (i) The parameter rep-

resenting the level of endogeneityδ is fixed and different from zero; (ii) the endogeneity is local to

zero,i.e, δ converges to zero at rateT− 1
2 as the sample size increases [δ = δ 0/

√
T, δ 0 is given].

Theorem3.2below presents the results forδ fixed.

Theorem 3.2 ASYMPTOTIC POWER. Suppose the assumptions(2.1) - (2.3) and (2.5) - (2.12)

hold. If Π2 = Π0
2 is fixed, the necessary and sufficient conditions under which DWH and RH exo-

geneity tests are consistent isΠ0
2a 6= 0, where a= Σ−1

V δ . More precisely,

Hi
L→ +∞, Tl

L→ +∞ ,RH
L→ +∞, (3.32)

for i = 1, 2, 3 and l = 1, 2, 3, 4, if and only ifΠ0
2a 6= 0.

Theorem3.2above provides the necessary and sufficient condition for consistency of all DWH

and RH exogeneity tests whenΠ2 is fixed. The result shows that exogeneity tests can detect an

exogeneity problem even if not all model parameters are identified, provided partial identification

holds. In particular, we have the following result when model parameters are identified (strong

instruments).

Theorem 3.3 ASYMPTOTIC DISTRIBUTIONS UNDER THE NULL HYPOTHESIS. Suppose the as-

sumptions(2.1) - (2.3) and(2.5) - (2.12) hold. If rank(Π0
2) = G, then all DWH and RH exogeneity

tests are consistent.

Clearly, exogeneity tests may be inconsistent only when identification is deficient. When iden-

tification is strong, the tests always detect an endogeneity problem. We can now show the following

result concerning the asymptotic behaviour of the tests whenΠ0
2a = 0.

Corollary 3.4 ASYMPTOTIC DISTRIBUTIONS UNDER THE NULL HYPOTHESIS. Suppose the

assumptions(2.1) - (2.3) and(2.5) - (2.12) hold and letΠ2 = Π0
2 fixed. IfΠ2a= 0, and rank(Π0

2 ) =

G, then

Hi
L→ χ2(G), i = 1, 2, 3 , (3.33)

T1
L→ F(G, k2−G), T2

L→ 1
G

χ2(G), Tl
L→ χ2(G), l = 3, 4, (3.34)

RH
L→ 1

k2
χ2(k2) . (3.35)

If Π2a = 0, and rank(Π0
2) ≤ G, then

Hi
L→ 1

σ̃2
u

N
′

BS
′
2A S2NB ≤ χ2(G), i = 1, 2, H3

L→ χ2(G), (3.36)

T1
L→ F(G, k2−G), T2

L→ 1
G

χ2(G),
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T4
L→ χ2(G), T3

L→ 1

σ̃2
u

N
′

BS
′
2A S2NB ≤ χ2(G), (3.37)

RH
L→ 1

k2
χ2(k2), (3.38)

whereσ̃2
u, NB, S2 andA are defined in Theorem3.1.

When rank(Π0
2) = G, Π0

2a = 0 if and only if δ = 0. Hence, the null hypothesis is satisfied.

Since identification is strong, all DWH and RH statistics are pivotal. However,when rank(Π0
2) ≤

G, Π0
2a = 0 does not entails thatδ = 0. The results of the above corollary indicate that when

identification is deficient andΠ0
2a = 0, the asymptotic distribution of the statistics is the same

under the null hypothesis (δ = 0) and the alternative hypothesis (δ 6= 0). Consequently, exogeneity

tests have no asymptotic power in this case.

We now characterize the asymptotic distributions of the statistics tests when the endogeneity is

local to zero (δ = δ 0/
√

T) and rank(Π0
2) = G (strong identification). The results are presented in

the following theorem.

Theorem 3.5 ASYMPTOTIC POWER. Suppose that the assumptions(2.1) - (2.3) and (2.5) -

(2.12) hold, and letδ = δ 0/
√

T. We have:

Hi
L→ χ2(G, µδ 0

), i = 1, 2, 3, (3.39)

T1
L→ F(G, k2−G; µδ 0

), T2
L→ 1

G
χ2(G, µδ 0

), Tl
L→ χ2(G, µδ 0

), l = 3, 4, (3.40)

RH
L→ 1

k2
χ2(k2, νδ 0

), (3.41)

if rank(Π0
2) = G, where

µδ 0
=

1
σ2

u
δ ′

0(Π0′
2 ΣZ̄2

Π0
2 +ΣV)−1∆−1

Π (Π0′
2 ΣZ̄2

Π0
2 +ΣV)−1δ 0,

νδ 0
=

1
σ2

u
δ ′

0(Π0′
2 ΣZ̄2

Π0
2 +ΣV)−1Π0′

2 ΣZ̄2
Σ ∗−1

Z̄2
ΣZ̄2

Π0
2 (Π0′

2 ΣZ̄2
Π0

2 +ΣV)−1δ 0 (3.42)

and

Hi
L→ 1

σ̃2
u

N
′

BS
′
2A S2NB ≤ χ2(G), i = 1, 2, H3

L→ χ2(G), (3.43)

T1
L→ F(G, k2−G), T2

L→ 1
G

χ2(G),

T4
L→ χ2(G), T3

L→ 1

σ̃2
u

N
′

BS
′
2A S2NB ≤ χ2(G), (3.44)
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RH
L→ 1

k2
χ2(k2), (3.45)

if rank(Π0
2) < G, whereσ̃2

u, NB, S2 andA are defined in Theorem3.1.

First, we note that when identification is strong, all exogeneity tests have nonzero power against

local alternatives. However, the tests are not consistent wheneverδ = δ 0/
√

T → 0, asT → +∞. If

δ 0 6= 0, the distributions of all exogeneity tests are non central chi-squares, where the non centrality

parameters are given in (3.42). Second, when identification is deficient, the distribution of the tests

remain the same as whenδ = 0. In this case, all tests have no power against local alternatives. So,

OLS procedure is used with a high probability in the second stage if one usesa two-staget-test

based on a DWH or RH pre-tests. Unlike Guggenberger (2010), we will see in Section 5 that this is

a good new in the view point of estimation. In fact, when identification is deficient and endogeneity

local to zero, OLS estimator is preferable to 2SLS. Since pre-test estimatorsbehave like OLS in this

case, they are also preferable to 2SLS. Clearly, the practice of pre-testing should not be abandoned,

as recommended by Guggenberger (2010).

We now focus on weak instruments setup.

4. Asymptotic behaviour of exogeneity tests when IV are asymptoti-

cally weak

In this section, we focus on weak instruments setup and characterize the behaviour of DWH and RH

tests under the null hypothesis (δ = 0) and the alternative hypothesis (δ 6= 0). Weak instruments

are characterized as in Staiger and Stock (1997),i.e. Π2 = Π0
2/

√
T whereΠ0

2 is ak2×G constant

matrix andΠ0
2 = 0 is allowed. The subsection 4.1 studies the properties of the tests under the null

hypothesis.

4.1. Asymptotic distributions under the null hypothesis

Following Staiger and Stock (1997), weak instruments are characterized by the local to zero condi-

tion for the reduced form matrixΠ2:

Π2 = Π0
2/

√
T, (4.1)

whereΠ0
2 is a k2×G constant matrix andΠ0

2 = 0 is allowed. Theorem4.1 below shows that all

exogeneity are valid when instruments are weak.

Theorem 4.1 ASYMPTOTIC DISTRIBUTIONS UNDER THE NULL HYPOTHESIS. Suppose that the

assumptions(2.1) - (2.3) and(2.5) - (2.12) hold. If Π2 = Π0
2/

√
T (Π0

2 = 0 is allowed), then under

the null hypothesisδ = 0, all DWH and RH tests are valid (level is controlled). In particular, we
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have

Hi
L→ 1

σ̄2
u
S̄′2uΣAS̄2u ≤ χ2(G), i = 1, 2, H3

L→ χ2(G), (4.2)

T1
L→ F(G, k2−G), T2

L→ 1
G

χ2(G), T4
L→ χ2(G), T3

L→ 1

σ̄2
u
S̄′2uΣAS̄2u ≤ χ2(G), (4.3)

RH
L→ 1

k2
χ2(k2), (4.4)

S̄2u is defined in(2.16) - (2.19), σ̄2
u andΣA are defined in(3.13) - (3.25).

We observe that when identification is weak (weak IVs), the statisticsT1, T2, T4 andH3 are

asymptotically pivotal under the null hypothesis (δ = 0). However, the asymptotic distributions

of T3, H1 andH2 depend on model parameters, but are bounded by a central chi square with G

degrees of freedom. Hence,T3, H1 andH2 are conservative [similar to Doko Tchatoka and Dufour

(2010)]. We now study the properties of the tests under the alternative hypothesisδ 6= 0.

4.2. Asymptotic power

We will now examine the properties of exogeneity tests under the alternative hypothesisδ 6= 0. The

following theorem presents the results.

Theorem 4.2 ASYMPTOTIC POWER. Suppose that the assumptions(2.1) - (2.3) and (2.5) -

(2.12) hold. If Π2 = Π0
2/

√
T (Π0

2 = 0 is allowed), then, for i= 1, 2, 3 and l = 1, 2, 3, 4, we have

Hi
L→ 1

σ2
i∗

(Π0
2a−Σ−1

Z̄2
S̄2ε)

′∆V(Π0
2a−Σ−1

Z̄2
S̄2ε), i = 1, 2, 3, (4.5)

Tl
L→ κ̄ l

σ̃2
l∗

(Π0
2a−Σ−1

Z̄2
S̄2ε)

′∆V(Π0
2a−Σ−1

Z̄2
S̄2ε), l = 1, 2, 3, 4, (4.6)

RH
L→ 1

k2σ2
ε
(S̄2ε −ΣZ̄2

Π0
2a)′Σ−1

Z̄2
(S̄2ε −ΣZ̄2

Π0
2a) ∼ 1

k2
χ2(k2, µR) , (4.7)

whereµR = a′Π0′
2 ΣZ̄2

Π0
2a, κ̄1 = (k2−G)/G, κ̄2 = 1/G andκ̄3 = κ̄4 = 1. Furthermore, we have,

Hi |S̄2V
L→ 1

σ2
i∗

(Π0
2a−Σ−1

Z̄2
S̄2ε)

′∆V(Π0
2a−Σ−1

Z̄2
S̄2ε)|S̄2V ≤ χ2(G, µV), i = 1, 2, (4.8)

H3|S̄2V
L→ χ2(G, µV), T1|S̄2V

L→ F(G, k2−G; µV , λV), (4.9)

T2|S̄2V
L→ 1

G
χ2(G, µV), T4|S̄2V

L→ χ2(G, µV), (4.10)

T3|S̄2V
L→ κ̄3

σ̃2
3∗

(Π0
2a−Σ−1

Z̄2
S̄2ε)

′∆V(Π0
2a−Σ−1

Z̄2
S̄2ε)|S̄2V ≤ χ2(G, µV), (4.11)
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S̄2ε , S̄2V are defined in(2.16) - (2.19), σ2
i∗, i = 1, 2, 3 σ̃2

l∗, l = 1, 2, 3, 4, and ∆V , µV , λV , are

defined in(3.13) - (3.25).

From the above theorem, we note that when identification is weak, exogeneitytests do not con-

verge under the alternative hypothesisδ 6= 0. The asymptotic distribution of the statistics converge

to finite non-degenerate distributions. Furthermore, the conditional limiting distributions ofH3,

T2, T4 andRH givenS̄2V are noncentral chi-square distributions whileT1 follows a double non-

centralF-distribution. However,H1, H2, andT3 are bounded upward by a non central chi square

distribution withG degrees of freedom and non centrality parameterµV . This suggests that exo-

geneity tests can have non zero power even in presence of weak identification, provided the non

central parameters in the above theorem are different from zero. So,we can then characterize in

Theorem4.3 below, the necessary and sufficient condition under which exogeneity tests have no

power when identification is weak.

Theorem 4.3 ASYMPTOTIC POWER. Under the assumption of Theorem4.2, the power of DWH

and RH tests does not exceed the nominal levels if and only ifΠ0
2a = 0. More precisely, we have

underΠ0
2a = 0

Hi
L→ 1

σ2
0∗

S̄′2εΣ0
AS̄2ε ≤ χ2(G), i = 1, 2, H3

L→ χ2(G) , (4.12)

T1
L→ F(G, k2−G), T2

L→ 1
G

χ2(G), T4
L→ χ2(G), (4.13)

T3
L→ 1

σ2
0∗

S̄′2εΣ0
AS̄2ε ≤ χ2(G), RH

L→ 1
k2

χ2(k2), (4.14)

whereσ2
0∗, Σ0

A are defined in(3.13) - (3.25) andS̄2ε in (2.16) - (2.19).

Observe that whenΠ0
2a = 0, the non centrality parameters in Theorem4.2 vanish so that the

statisticsH3, T2, T4 andRH have central chi-square limiting distributions whileT1 is asymp-

totically distributed as a Fisher with(k2−G, G) degrees of freedom. Furthermore,H1, H2 andT3

are bounded by a central chi-square distribution withG degrees of freedom. Therefore, the asymp-

totic power ofH3, T2, T4, T1 andRH equals the nominal levels while those ofH1, H2 andT3

cannot exceed the nominal level [similar to Doko Tchatoka and Dufour (2010)]. Section 5 below

studies the asymptotic behaviour of pre-test estimators based on DWH and RHtests.

5. Pre-test estimators based on exogeneity tests

An important and practical problem in econometrics consists in using DWH-and RH-type tests to

pretest the exogeneity of regressors to decide whether one should apply ordinary least squares or in-

strumental variables methods for statistical inference. Although this practiceseems to be prevalent

in applied research, some authors, including Guggenberger (2010), have shown that the two-stage

t-test procedure based on DWH-and RH-tests is unreliable from the viewpoint of size control when
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endogeneity is local to zero of orderT−1/2 and the instruments are weak. In both cases, exogene-

ity tests are inconsistent and the two-staget-test procedure may be arbitrary size distorted. This is

showed by Guggenberger (2010), using some configurations of modelparameters. Guggenberger

(2010) suggests to use a 2SLS basedt-test when instruments are strong and the identification-robust

procedures [Anderson and Rubin (1949, AR-test), Kleibergen (2002, K-test), Moreira (2003, CLR-

test), projection-based techniques, see Dufour (1997, 2003), Dufour (2005, 2007), split-sample

methods, see Dufour and Jasiak (2001)] when there are weak. This suggests that the practice of

pretesting of the regressors should be abandoned. However, it is notclear how behave the pre-test

estimators when instruments are weak. The framework of Guggenberger (2010) focuses in testing

and does not deal with estimation. The main objective of this section is to study thebehaviour

of pre-test estimators based on exogeneity tests, including when identification is deficient or weak

(weak instruments).

We consider eight pre-test estimators associated to DWH and RH pre-tests defined by equations

(5.1) - (5.3) below:

β̂ Hi = β̂1[Hi ≤ cHi ,1−ξ ]+ β̃1[Hi > cHi ,1−ξ ] , i = 1, 2, 3, (5.1)

β̂ T l = β̂1[Tl ≤ cTl ,1−ξ ]+ β̃1[Tl > cTl ,1−ξ ] , l = 1, 2, 3, 4, (5.2)

β̂ RH = β̂1[RH ≤ cRH ,1−ξ ]+ β̃1[RH > cRH ,1−ξ ] , (5.3)

(5.4)

whereβ̂ andβ̃ are the OLS and 2SLS estimators ofβ , 1[.] is the indicator function andc H i ,1−ξ , i =

1, 2, 3, cTl ,1−ξ , l = 1, 2, 3, 4, andc RH ,1−ξ are the usual 1−ξ quantile of the standard distributions

of DWH and RH statistics respectively. It is important to observe that the pre-test estimators defined

by (5.1)-(5.3) are convex combinations of OLS and 2SLS estimators. The weight allocated to each

estimator is determined by the outcome of the underline pre-test in the first stage.

Lemma5.1 below characterizes the probability limit of OLS and 2SLS estimators whenΠ2 is

fixed.

Lemma 5.1 ASYMPTOTIC POWER. Suppose the assumptions(2.1) - (2.3) and (2.5) - (2.12)

hold. If Π2 is fixed, then

plim
T→∞

β̂ = β̄ LS = β +(Π ′
2ΣZ̄2

Π2 +ΣV)−1δ , (5.5)

plim
T→∞

β̃ 1 = β 1, plim
T→∞

β̃ 2 = β 2 +NB, (5.6)

plim
T→∞

β̃ = β̄ IV = β +S2NB (5.7)
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where

NB =



















0 if rank(Π2) = G,

S ′
2a+B−1S ′

2S̄′2V [Σ−1
Z̄2

−Π21(Π ′
21ΣZ̄2

Π21)
−1Π ′

21]S̄2ε if rank(Π2) ≤ G ,

(5.8)

NB|S̄2V
∼ N

[

S ′
2a, σ2

εB
−1
]

, B = S ′
2S̄′2V [Σ−1

Z̄2
−Π21(Π ′

21ΣZ̄2
Π21)

−1Π ′
21]S̄2VS2, S2 is defined in

(3.6) - (3.9) and a= Σ−1
V δ .

We make the following observations concerning Lemma5.1.

(i) From (5.7)-(5.8), we have

plim
T→∞

β̃ = β +a+S2N
0

B = β ∗ +S2N
0

B

whereβ ∗ = β +a and N 0
B =



















0 if rank(Π2) = G,

B−1S ′
2S̄′2V [Σ−1

Z̄2
−Π21(Π ′

21ΣZ̄2
Π21)

−1Π ′
21]S̄2ε if rank(Π2) ≤ G.

Furthermore, by using the generalization of matrix inversion lemma [see Tylavsky and Sohie (1986,

Equation (1d))], we have

(ΣV +Π ′
2ΣZ̄2

Π2)
−1 = Σ−1

V −Σ−1
V (I +Π ′

2ΣZ̄2
Π2Σ−1

V )−1Π ′
2ΣZ̄2

Π2Σ−1
V

so that

(Π ′
2ΣZ̄2

Π2 +ΣV)−1δ = Σ−1
V δ −Σ−1

V (I +Π ′
2ΣZ̄2

Π2Σ−1
V )−1Π ′

2ΣZ̄2
Π2Σ−1

V δ

= a−Σ−1
V (I +Π ′

2ΣZ̄2
Π2Σ−1

V )−1Π ′
2ΣZ̄2

Π2a.

Thus (5.5) can be written as

plim
T→∞

β̂ = β ∗−Σ−1
V (I +Π ′

2ΣZ̄2
Π2Σ−1

V )−1Π ′
2ΣZ̄2

Π2a.

(ii) If Π2a = 0, we have

plim
T→∞

β̂ = β ∗ = β +a, plim
T→∞

β̃ = β ∗ +S2N
0

B , (5.9)

AMSE(β̂ ) = plim
T→∞

[MSE(β̂ )] = ‖a‖ = δ ′Σ−2
V δ , (5.10)

AMSE(β̂ ) = plim
T→∞

[MSE(β̃ )] = ‖a+S2N
0

B ‖ = ‖a‖+‖S2N
0

B ‖+2a′S2N
0

B

= δ ′Σ−2
V δ +N

0′
B S

′
2S2N

0
B +2a′S2N

0
B , (5.11)
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whereAMSE(θ̂) is the asymptotic mean square error ofθ̂ ∈ {β̂ , β̃}. Hence OLS is always con-

sistent under the hypothesis of exogeneity (δ = 0), but 2SLS may not provided identification is

deficient [rank(Π2) < G].

Suppose that rank(Π2) = G. Then, we haveΠ2a= 0 if and only ifa= 0. By using (5.9), we get

plim
T→∞

β̂ = β , plim
T→∞

β̃ = β , (5.12)

AMSE(β̂ ) = AMSE(β̃ ) = 0. (5.13)

Both OLS and 2SLS estimators are consistent if strong is identification (as expected).

Suppose now that rank(Π2) < G (i.e. identification is deficient or weak). SinceΠ2a = 0 ;

a = 0, if endogeneity is present (a 6= 0), OLS converges to a pseudo valueβ ∗ = β +a while 2SLS

converges toβ ∗ plus a non degenerate random variable. More interestingly, the pseudo valueβ ∗

is observationally equivalentto the true valueβ . To see this latter point, consider equations (2.1)-

(2.3). From (2.2) and (2.3), we haveV = Y −Z1Π1 −Z2Π2 andu = Va+ ε. Substituting these

expressions in (2.1) gives

y = Yβ ∗ +Z2Π2a+Z1γ∗ + ε, (5.14)

whereβ ∗ = β +a andγ∗ = γ +Π1a. If Π2a = 0, ( 5.14) becomes

y = Yβ ∗ +Z1γ∗ + ε, (5.15)

and β̂ ∗ = β̂ . Clearly, the pseudo valueβ ∗ is observationally equivalent to the true valueβ . This

means that when identification fails, unlike 2SLS estimator, the inconsistency ofOLS estimator is

not too problematic as one should think. Now, define

AMSEOLS(β ∗) = plim
T→∞

‖β̂ −β ∗‖ and AMSEIV (β ∗) = plim
T→∞

‖β̃ −β ∗‖. (5.16)

If Π2a = 0, then we have

AMSEOLS(β ∗) = 0, AMSEIV (β ∗) = ‖S2N
0

B ‖ > 0. (5.17)

Hence, OLS is preferable to 2SLS if identification is deficient. Of course, (5.14)-(5.17) remain

valid if Π2 = 0 (complete non identification ofβ ).

(iii) If Π2a 6= 0, then both OLS and 2SLS estimators are biased and their respective asymp-

totic biases and mean square errors (centered atβ ∗) are given by

plim
T→∞

(β̂ −β ∗) = −Σ−1
V (I +Π ′

2ΣZ̄2
Π2Σ−1

V )−1Π ′
2ΣZ̄2

Π2a,

AMSEOLS(β ∗) = a′C a, (5.18)
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whereC = Π ′
2ΣZ̄2

Π2(I +Π ′
2ΣZ̄2

Π2Σ−1
V )−1Σ−2

V (I +Π ′
2ΣZ̄2

Π2Σ−1
V )−1Π ′

2ΣZ̄2
Π2 and

plim
T→∞

(β̃ −β ∗) = S2N
0

B , AMSEOLS(β ∗) = ‖S2N
0

B ‖. (5.19)

So, unlike 2SLS, we observe that the asymptotic bias and mean square error of OLS, centered

at β ∗, depend on the degree of endogeneitya. Furthermore, sinceC ≥ 0, AMSEOLS(β ∗) is a

nondecreasing and unbounded function ofa. This suggests that ifΠ2a 6= 0 and endogeneity is

large, 2SLS is preferable to OLS.

(iv) Finally, we note thatβ̃ 1 is still consistent even if identification is deficient or weak,

while β̃ 2 is consistent only when IV are strong. Hence, the inconsistency ofβ̃ comes fromβ̃ 2.

We can state a similar lemma concerning the behaviour of OLS and 2SLS estimatorswhen

instruments are asymptotically weak [Π2 = Π0
2/

√
T]. The results are presented in Lemma5.2

below.

Lemma 5.2 ASYMPTOTIC POWER. Suppose that the assumptions(2.1) - (2.3) and(2.5) - (2.12)

hold. If Π2 = Π0
2/

√
T, whereΠ0

2 is a k2×G constant matrix(Π0
2 = 0 is allowed), then

plim
T→∞

β̂ = β ∗, (5.20)

plim
T→∞

β̃ = β ∗ +N
W

Ψ , (5.21)

whereΨV = (ΣZ̄2
Π0

2 + S̄′2V)Σ−1
Z̄2

(ΣZ̄2
Π0

2 + S̄′2V), N W
Ψ = Ψ−1

V (ΣZ̄2
Π0

2 + S̄2V)′Σ−1
Z̄2

(S̄2ε − ΣZ̄2
Π0

2a),

N W
Ψ |S̄2V

∼ N[−Ψ−1
V (ΣZ̄2

Π0
2 + S̄2V)′Σ−1

Z̄2
ΣZ̄2

Π0
2a, σ2

εΨ−1
V ] andβ ∗ = β +a.

So, we see that the observations in Lemma5.1-(ii) still hold.

We can now prove the above results on the behaviour of pre-test estimators defined in (5.1)-(5.3).

Theorem 5.3 ASYMPTOTIC POWER. Suppose the assumptions(2.1) - (2.3) and (2.5) - (2.12)

hold. If Π2 is fixed, then

plim
T→∞

(β̂W −β ∗) = −pW Σ−1
V (I +Π ′

2ΣZ̄2
Π2Σ−1

V )−1Π ′
2ΣZ̄2

Π2a+

(1− pW )S2N
0

B , (5.22)

whereS2N
0

B is defined by(5.8). If Π2 = Π0
2/

√
T, then

plim
T→∞

(β̂W −β ∗) = (1− pW )N W
Ψ , (5.23)

whereN W
Ψ is defined in Lemma5.2and

pW = lim
T→∞

P[W ≤ cW ,1−ξ ] (5.24)
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andW ∈ {Hi, T l, RH}, i = 1, 2, 3, l = 1, 2, 3, 4.

We make the following remarks:

(i) whenΠ2 is fixed, if furtherΠ2a = 0, we have

plim
T→∞

(β̂W −β ∗) = (1− pW )S2N
0

B ≤ S2N
0

B , (5.25)

AMSEW (β ∗) = (1− pW )2AMSEIV (β ∗) ≤ AMSEIV (β ∗). (5.26)

In particular, when identification is deficient, the two-stage estimator is preferable to 2SLS. IfΠ2a 6=
0, we havepW = 0 (consistency of DWH and RH tests) and

plim
T→∞

(β̂W −β ∗) = S2N
0

B , (5.27)

AMSEW (β ∗) = AMSEIV (β ∗). (5.28)

So, pre-test estimators based on exogeneity tests behave like 2SLS. Since2SLS is preferable to

OLS whenΠ2a 6= 0 and endogeneity is large, pre-test estimators estimators are also preferable to

OLS in this cases;

(ii) if Π2 = Π0
2/

√
T (instruments are asymptotically weak), the results are similar toΠ2a = 0.

Thus, pre-test estimators based on exogeneity tests are preferable to 2SLS.

Overall, pre-test estimators based on exogeneity have an excellent performance compared to

OLS and 2SLS estimators.

Section 6 below presents the Monte Carlo experiment.

6. Monte Carlo experiment

In this section, we perform two Monte Carlo experiments. The first experiment study the effects

of weak IVs on DWH and RH tests. In this experiment, we consider three setup: (1) Strong iden-

tification of model parameters; (2) partial identification; and (3) weak identification. The second

experiment analyzes the performance (bias and MSE) of the pre-test estimators based on DWH and

RH exogeneity tests. The framework of this experiment is similar to Guggenberger (2010).

6.1. Size and power of DWH and RH tests

Consider the two endogenous variables model described by the following data generating process:

y = Y1β 1 +Y2β 2 +u, (Y1,Y2) = (Z2Π21,Z2Π22)+(V1,V2), (6.29)
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whereZ2 is aT ×k2 matrix of instruments such thatZ2t follow i.i.d N(0, Ik2) for t = 1, . . . , T, Π21

andΠ22 are vectors of dimensionk2. We assume that

u = Va+ ε = V1a1 +V2a2 + ε, (6.30)

wherea1 and a2 are 2× 1 vectors andε is independent withV = (V1,V2), V1 andV2 are T × 1

vectors. Through this experiment,V andε are drawn as

(V1t , V2t)
′ i.i.d∼ N

(

0,

[

1 0

0 1

])

and ε t
i.i.d∼ N(0, 1) , for all t = 1, . . . , T . (6.31)

The above setup allows us to take into account situations whereβ = (β 1,β 2)
′ is partially identified.

In particular, ifΠ21 = 0 and det(Π ′
22Π22) 6= 0, the instrumentsZ2 cannot identifyβ 1. However,β 2

is identified. We define

Π21 = η1C0, Π22 = η2C1, (6.32)

whereη1 and η2 take the value 0 (design of complete non identification),.01 (design of weak

identification) or.5 (design of strong identification),[C0,C1] is ak2×2 matrix obtained by taking

the first two columns of the identity matrix of orderk2. The number of instrumentsk2 varies in

{5,10,20} and the true value ofβ is set atβ 0 = (2,5)′. It is worthwhile to note that whenη1 andη2

belong to{0, .01}, the instrumentsZ2 are weak and both ordinary least squares and two stage least

squares estimators ofβ in (6.29) are biased and inconsistent unlessa1 = a2 = 0. The simulations

are run the sampleT = 500, and the number of replications isN = 10,000. The endogeneitya is

chosen such that

a = (a1,a2)
′ ∈ {(−20,0)′,(−5,5)′,(0,0)′,(.5, .2)′,(100,100)′} . (6.33)

From the above setup, the exogeneity hypothesis forY is expressed as

H0 : a = (a1,a2)
′ = (0,0)′. (6.34)

The nominal level of the tests is 5%. For each value of the vectora, we compute the empirical

rejection probability of exogeneity test statistics. Whena = 0, the rejection frequencies are the

empirical levels of the tests. However, ifa 6= 0, the rejection frequencies represent the power of the

tests.

The results are presented in Table 1 below. In the first column of the table, we report the statistics

while in the second column, we report the values ofk2 (number of excluded instruments). Finally

in the other columns, we report for each value of the endogeneitya and instrument qualitiesη1 and

η2, the rejection frequencies at nominal level 5%.

First, we note that all exogeneity tests are valid whether the instruments are strong or weak. In

particular,T1, T2, T4, H3 andRH control the level whileT3, H1 andH2 are conservative when

IVs are weak. However,T3, H1 andH2 do not exhibit this problem when identification is strong
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[see the column(a1,a2)
′ = (0,0)′ in Table 1 below].

Second, all exogeneity tests have a low power when bothβ 1 andβ 2 are not identified even in

large-sample Nevertheless, when at least one component ofβ is identified [Table 1 (continued)], all

exogeneity tests exhibit power.
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Table 1. Power of exogeneity tests at nominal level 5%;G = 2, T = 500

(a1,a2)
′ = (−20,0)′ (a1,a2)

′ = (−5,5)′ (a1,a2)
′ = (0,0)′ (a1,a2)

′ = (.5, .2)′ (a1,a2)
′ = (100,100)′

k2 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5
η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0

T1 5 5.24 6.23 100 5.12 5.35 100 5.06 4.76 4.73 4.8 4.98 94.91 4.91 5.96 100
T2 5 4.66 91.92 100 5.11 27.86 100 5.11 4.91 4.43 5.35 5.09 100 4.92 98.13 100
T3 5 0.02 13.61 100 0.04 0.51 99.98 0 0 0.99 0.02 0.03 99.45 0.01 19.26 99.99
T4 5 4.64 91.89 100 5.06 27.79 100 5.03 4.89 4.38 5.29 5.09 100 4.88 98.13 100
H1 5 0.02 13.26 99.93 0.04 0.45 99.86 0 0 0.64 0.02 0.03 98.25 0.01 18.87 99.88
H2 5 0.02 13.72 100 0.05 0.53 99.98 0 0 1.01 0.02 0.03 99.46 0.01 19.39 99.99
H3 5 4.68 91.94 100 5.14 27.96 100 5.12 4.94 4.44 5.39 5.12 100 4.98 98.13 100

RH 5 4.76 100 100 5.04 45.45 100 5.02 5.02 4.74 5.05 5.59 100 5.34 100 100

T1 10 5.26 6.71 100 5.46 6.32 100 5 5.37 4.96 5.16 5.15 100 5.23 7.52 100
T2 10 4.63 86.64 100 4.75 30.49 100 4.84 5.6 4.91 4.74 5.53 100 4.91 95.81 100
T3 10 0.16 46.63 100 0.17 4.49 100 0.14 0.2 1.7 0.12 0.24 100 0.19 64.18 100
T4 10 4.62 86.63 100 4.7 30.45 100 4.84 5.57 4.9 4.68 5.48 100 4.91 95.81 100
H1 10 0.15 45.96 100 0.17 4.26 100 0.14 0.2 0.92 0.12 0.23 99.99 0.19 63.68 100
H2 10 0.16 46.97 100 0.17 4.62 100 0.15 0.2 1.72 0.15 0.25 100 0.19 64.5 100
H3 10 4.68 86.67 100 4.77 30.55 100 4.87 5.65 4.93 4.78 5.56 100 4.96 95.83 100

RH 10 4.7 100 100 4.5 67.61 100 5.01 5.44 4.89 4.78 5.69 100 4.85 100 100

T1 20 5.07 10.67 100 5.27 8.1 100 4.84 5.15 5.03 4.82 5.45 100 4.99 11 100
T2 20 5.07 86.47 100 5.17 31.8 100 4.79 5.3 5.07 5.16 5.51 100 4.87 93.16 100
T3 20 1.2 79.4 100 1.38 17.44 100 1.1 1.46 2.87 1.22 1.52 100 1.28 89.05 100
T4 20 5.03 86.43 100 5.13 31.71 100 4.78 5.23 5.06 5.14 5.46 100 4.87 93.16 100
H1 20 1.16 79.11 100 1.28 17.08 100 1.03 1.42 1.44 1.11 1.43 100 1.2 88.91 100
H2 20 1.21 79.52 100 1.43 17.58 100 1.13 1.48 2.91 1.26 1.56 100 1.32 89.1 100
H3 20 5.08 86.49 100 5.22 31.83 100 4.83 5.33 5.13 5.17 5.54 100 4.88 93.16 100

RH 20 5.27 100 100 5.06 86.37 100 5.01 5.07 4.99 4.97 5.84 100 5.26 100 100
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Table 1 (continued). Power of exogeneity tests at nominal level 5%;G = 2, T = 500

(a1,a2)
′ = (−20,0)′ (a1,a2)

′ = (−5,5)′ (a1,a2)
′ = (0,0)′ (a1,a2)

′ = (.5, .2)′ (a1,a2)
′ = (100,100)′

k2 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5
η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5

T1 5 4.72 5.64 99.56 5.1 5.28 99.49 5.17 5.04 5.33 5.25 4.95 57.68 5.07 5.33 99.57
T2 5 4.59 90.91 100 4.96 64.46 100 5.26 4.94 5.02 5.34 5.79 99.35 5.32 94.61 100
T3 5 0.82 27.15 100 0.91 9.89 100 0.84 0.92 4.31 0.78 0.99 99.18 1.04 30.41 100
T4 5 4.55 90.9 100 4.91 64.42 100 5.25 4.9 5 5.33 5.79 99.35 5.26 94.59 100
H1 5 0.75 26.34 100 0.8 9.38 100 0.74 0.8 4.21 0.63 0.87 99.16 0.87 29.62 100
H2 5 0.84 27.37 100 0.95 10.1 100 0.86 0.94 4.36 0.81 1.03 99.21 1.06 30.64 100
H3 5 4.63 90.94 100 5 64.52 100 5.29 4.98 5.04 5.38 5.82 99.35 5.35 94.64 100

RH 5 4.7 100 100 4.98 99.1 100 5.07 5 4.86 5.54 6.46 97.45 5.41 100 100

T1 10 5.19 7.33 100 4.93 6.55 100 4.83 4.97 5.13 5.2 4.85 91.46 5.19 7.75 100
T2 10 5.31 86.33 100 5.32 50.06 100 4.99 4.95 4.87 5.28 5.7 99.56 4.99 91.52 100
T3 10 1.59 61.19 100 1.58 21.63 100 1.42 1.69 4.34 1.63 1.96 99.39 1.61 69.56 100
T4 10 5.3 86.32 100 5.29 49.98 100 4.96 4.94 4.83 5.24 5.66 99.55 4.94 91.51 100
H1 10 1.45 59.83 100 1.43 20.57 100 1.22 1.44 4.21 1.46 1.67 99.36 1.41 68.37 100
H2 10 1.62 61.44 100 1.63 21.73 100 1.44 1.71 4.38 1.69 2.01 99.41 1.62 69.85 100
H3 10 5.36 86.34 100 5.35 50.17 100 5.02 5.02 4.92 5.3 5.75 99.56 5.01 91.54 100

RH 10 4.44 100 100 5.06 98.91 100 5.34 4.9 4.84 5 5.95 95.38 5.01 100 100

T1 20 5.11 7.85 100 4.94 6.22 100 4.93 5.05 5.35 5.1 5.02 94.32 5.25 8.1 100
T2 20 5.42 76.16 100 4.85 30.65 100 4.76 5.25 5.59 5.02 4.91 98.81 5.24 84.89 100
T3 20 2.77 70.09 100 2.59 20.47 100 2.56 2.77 4.9 2.67 2.84 98.6 2.84 80.64 100
T4 20 5.39 76.12 100 4.84 30.55 100 4.73 5.2 5.57 5 4.89 98.8 5.2 84.85 100
H1 20 2.65 69.59 100 2.4 19.9 100 2.36 2.57 4.76 2.51 2.61 98.52 2.68 80.17 100
H2 20 2.85 70.24 100 2.64 20.63 100 2.58 2.83 4.93 2.7 2.88 98.62 2.85 80.7 100
H3 20 5.43 76.19 100 4.88 30.7 100 4.78 5.31 5.6 5.04 4.92 98.82 5.25 84.92 100

RH 20 5.19 100 100 4.61 94.7 100 4.66 5.12 5.32 5.03 5.29 86.39 5.59 100 100
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6.2. Performance of OLS, 2SLS and two-stage estimators

Consider the single simultaneous equations system described by the followingDGP:

y = Yβ +u, Y = Z2Π2 +V, (6.35)

where y and Y are T × 1 random vectors,Z2 is a T × k2 matrix of instruments such that

Z2t
i.i.d∼ N(0, Ik2), t = 1, . . . , T, and Π2 is a vector of dimensionk2 such thatΠ2 =

√

µ2

T‖Z2C‖C,

where C is a k2 × 1 vector of ones andµ2 is a concentration parameter. We varyµ2 in

{0, 13, 200, 1000, 2000000}, where the values ofµ2 less than 613 correspond to weak instruments

setup while the values greater than 613 are for strong identification [see Hansen, Hausman and

Newey (2008)]. The correlation betweenu andV also varies in{0, .05, .1, .5, .6, .95} and the true

value ofβ is et at 10. We takek2 = 5 instruments to guarantee the existence of finite moments

for both 2SLS and OLS estimators (note alternative choices ofk2 greater than 3 lead to the same

conclusions). The sample size isT = 500 and the number of replications isN = 10,000. The results

are presented in Tables 2 - 7 above.

In the first column of the tables, we report the different estimators while in thesecond, we report

the concentration parametersµ2 which represents the quality of the IV. Finally, the other columns

report the correlationρ between the errors and (possibly) endogenous regressors.

Our major findings can be summarized into two points: (1) over a wide range cases, includ-

ing weak IV and moderate endogeneity, OLS performs better than 2SLS [finding similar to Kiviet

and Niemczyk (2007)]; (2) pretest-estimators based on exogeneity havean excellent overall per-

formance compared with usual IV estimator. This suggests that the practice of pretesting based on

exogeneity tests is not to bad (at least in the viewpoint of estimation) as claimed by Guggenberger

(2010).

Table 2:: Absolute bias of OLS, 2SLS and two-stage estimators.

Estimators µ2 ↓, ρ → 0 .05 .1 .5 .6 .95

0 -1.2E-04 5.1E-02 1.0E-01 4.5E-01 5.1E-01 6.9E-01

13 2.1E-05 5.0E-02 1.0E-01 4.5E-01 5.1E-01 6.9E-01

OLS 200 -4.6E-05 5.1E-02 9.9E-02 4.5E-01 5.1E-01 6.9E-01

1000 -8.0E-04 4.9E-02 9.8E-02 4.5E-01 5.1E-01 6.9E-01

2000000 -1.6E-05 5.7E-03 1.1E-02 4.9E-02 5.7E-02 7.6E-02

0 5.6E-03 5.3E-02 1.4E-02 4.5E-01 5.1E-01 6.9E-01

13 2.7E-03 5.0E-02 9.8E-02 4.4E-01 5.1E-01 6.9E-01

2SLS 200 3.1E-03 5.4E-02 8.9E-02 4.1E-01 4.8E-01 6.4E-01

1000 1.4E-03 3.9E-02 7.1E-02 3.1E-01 3.7E-01 4.8E-01

2000000 -3.4E-05 2.4E-04 -1.1E-05 1.3E-04 4.1E-04 4.9E-04

Continued on next page
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Table 2 – continued from previous page

Estimators µ2 ↓, ρ → 0 .05 .1 .5 .6 .95

Pre-tests 0 4.5E-03 5.0E-02 1.0E-01 4.5E-01 5.1E-01 6.8E-01

Two-stage 13 2.2E-03 4.7E-02 9.9E-02 4.5E-01 5.1E-01 6.9E-01

T1 200 1.6E-03 5.5E-02 9.9E-02 4.4E-01 5.0E-01 6.8E-01

1000 -1.1E-03 4.7E-02 9.2E-02 4.2E-01 4.8E-01 6.4E-01

2000000 -4.6E-05 4.3E-03 5.5E-03 1.3E-04 4.1E-04 4.9E-04

0 2.5E-03 4.8E-02 1.0E-01 4.5E-01 5.1E-01 6.8E-01

13 1.5E-03 5.0E-02 9.9E-02 4.5E-01 5.2E-01 6.9E-01

T2 200 2.9E-03 5.3E-02 9.6E-02 4.4E-01 5.1E-01 6.7E-01

1000 -2.9E-03 4.8E-02 9.0E-02 4.0E-01 4.6E-01 6.0E-01

2000000 -4.2E-05 3.4E-03 2.8E-03 1.3E-04 4.1E-04 4.9E-04

0 1.4E-04 5.1E-02 1.0E-01 4.5E-01 5.1E-01 6.9E-01

13 -3.7E-04 5.1E-02 1.0E-01 4.5E-01 5.1E-01 6.9E-01

T3 200 -5.4E-05 5.1E-02 9.9E-02 4.5E-01 5.1E-01 6.9E-01

1000 2.0E-04 4.9E-02 9.7E-02 4.4E-01 5.0E-01 6.7E-01

2000000 -4.2E-05 3.4E-03 2.8E-03 1.3E-04 4.1E-04 4.9E-04

0 2.5E-03 4.8E-02 1.0E-01 4.5E-01 5.1E-01 6.8E-01

13 1.6E-03 5.0E-02 9.9E-02 4.5E-01 5.2E-01 6.9E-01

T4 200 2.9E-03 5.3E-02 9.6E-02 4.4E-01 5.1E-01 6.7E-01

1000 -2.8E-03 4.7E-02 9.0E-02 4.0E-01 4.6E-01 6.0E-01

2000000 -4.2E-05 3.4E-03 2.8E-03 1.3E-04 4.1E-04 4.9E-04

0 8.6E-05 5.0E-02 1.0E-01 4.5E-01 5.1E-01 6.9E-01

13 -3.7E-04 5.1E-02 1.0E-01 4.5E-01 5.1E-01 6.9E-01

H1 200 -5.4E-05 5.1E-02 9.9E-02 4.5E-01 5.1E-01 6.9E-01

1000 3.8E-04 4.9E-02 9.6E-02 4.4E-01 5.0E-01 6.7E-01

2000000 -4.4E-05 3.4E-03 2.8E-03 1.3E-04 4.1E-04 4.9E-04

0 6.7E-05 5.1E-02 1.0E-01 4.5E-01 5.1E-01 6.9E-01

13 -3.7E-04 5.1E-02 1.0E-01 4.5E-01 5.1E-01 6.9E-01

H2 200 -5.4E-05 5.1E-02 9.9E-02 4.5E-01 5.1E-01 6.9E-01

1000 1.3E-04 4.9E-02 9.7E-02 4.4E-01 5.0E-01 6.7E-01

2000000 -4.3E-05 3.4E-03 2.8E-03 1.3E-04 4.1E-04 4.9E-04

Continued on next page
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Table 2 – continued from previous page

Estimators µ2 ↓, ρ → 0 .05 .1 .5 .6 .95

0 2.6E-03 4.8E-02 1.0E-01 4.5E-01 5.1E-01 6.8E-01

13 1.5E-03 5.0E-02 9.9E-02 4.5E-01 5.2E-01 6.9E-01

H3 200 2.8E-03 5.3E-02 9.6E-02 4.4E-01 5.1E-01 6.7E-01

1000 -2.8E-03 4.8E-02 9.0E-02 4.0E-01 4.6E-01 6.0E-01

2000000 -4.4E-05 3.4E-03 2.8E-03 1.3E-04 4.1E-04 4.9E-04

0 -1.4E-03 5.1E-02 1.0E-01 4.5E-01 5.1E-01 6.9E-01

13 1.3E-03 4.9E-02 9.9E-02 4.5E-01 5.2E-01 6.9E-01

RH 200 1.0E-03 5.3E-02 9.7E-02 4.4E-01 5.1E-01 6.8E-01

1000 -1.3E-03 4.8E-02 9.3E-02 4.2E-01 4.9E-01 6.3E-01

2000000 -3.2E-05 4.6E-03 5.9E-03 1.3E-04 4.1E-04 4.9E-04
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Table 3:: Absolute MSE of OLS, 2SLS and two-stage estimators.

Estimators µ2 ↓, ρ → 0 .05 .1 .5 .6 .95

0 2.0E-03 4.6E-03 1.2E-02 2.0E-01 2.7E-01 4.8E-01

0 2.0E-03 4.6E-03 1.2E-02 2.0E-01 2.7E-01 4.8E-01

13 2.0E-03 4.5E-03 1.2E-02 2.0E-01 2.7E-01 4.8E-01

OLS 200 2.1E-03 4.6E-03 1.2E-02 2.0E-01 2.7E-01 4.8E-01

1000 2.0E-03 4.4E-03 1.2E-02 2.0E-01 2.6E-01 4.7E-01

2000000 2.2E-04 2.5E-04 3.4E-04 2.6E-03 3.5E-03 6.0E-03

0 3.4E-01 3.5E-01 3.4E-01 4.7E-01 4.9E-01 6.5E-01

13 3.3E-01 3.3E-01 3.5E-01 4.6E-01 5.0E-01 6.5E-01

2SLS 200 3.1E-01 3.2E-01 3.2E-01 4.3E-01 4.6E-01 5.8E-01

1000 2.2E-01 2.3E-01 2.3E-01 2.9E-01 3.2E-01 3.8E-01

2000000 2.5E-04 2.5E-04 2.5E-04 2.5E-04 2.5E-04 2.5E-04

Pre-tests 0 6.4E-02 6.9E-02 7.7E-02 2.5E-01 3.1E-01 5.1E-01

Two-stage 13 7.3E-02 6.3E-02 7.2E-02 2.5E-01 3.1E-01 5.1E-01

T1 200 6.8E-02 6.1E-02 7.5E-02 2.4E-01 3.0E-01 5.0E-01

1000 3.9E-02 4.2E-02 5.3E-02 2.2E-01 2.8E-01 4.6E-01

2000000 2.3E-04 2.6E-04 3.2E-04 2.5E-04 2.5E-04 2.5E-04

0 9.4E-02 1.0E-01 1.1E-01 2.7E-01 3.2E-01 5.2E-01

13 9.4E-02 8.7E-02 9.8E-02 2.7E-01 3.3E-01 5.3E-01

T2 200 8.9E-02 9.9E-02 9.8E-02 2.7E-01 3.2E-01 5.1E-01

1000 5.3E-02 6.8E-02 7.1E-02 2.3E-01 2.9E-01 4.5E-01

2000000 2.3E-04 2.6E-04 2.9E-04 2.5E-04 2.5E-04 2.5E-04

0 4.2E-03 7.7E-03 1.5E-02 2.0E-01 2.7E-01 4.8E-01

13 4.6E-03 6.5E-03 1.4E-02 2.0E-01 2.7E-01 4.8E-01

T3 200 3.8E-03 7.8E-03 1.5E-02 2.0E-01 2.7E-01 4.8E-01

1000 6.7E-03 9.1E-03 1.6E-02 2.0E-01 2.6E-01 4.6E-01

2000000 2.3E-04 2.6E-04 2.9E-04 2.5E-04 2.5E-04 2.5E-04

0 9.4E-02 1.0E-01 1.1E-01 2.7E-01 3.2E-01 5.2E-01

13 9.4E-02 8.7E-02 9.8E-02 2.7E-01 3.3E-01 5.3E-01

T4 200 8.9E-02 9.9E-02 9.8E-02 2.7E-01 3.2E-01 5.1E-01

1000 5.3E-02 6.7E-02 7.1E-02 2.3E-01 2.9E-01 4.5E-01

Continued on next page
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Table 3 – continued from previous page

Estimators µ2 ↓, ρ → 0 .05 .1 .5 .6 .95

2000000 2.3E-04 2.6E-04 2.9E-04 2.5E-04 2.5E-04 2.5E-04

0 4.2E-03 7.5E-03 1.5E-02 2.0E-01 2.7E-01 4.8E-01

13 4.6E-03 6.3E-03 1.4E-02 2.0E-01 2.7E-01 4.8E-01

H1 200 3.8E-03 7.6E-03 1.5E-02 2.0E-01 2.7E-01 4.8E-01

1000 6.4E-03 9.1E-03 1.6E-02 2.0E-01 2.6E-01 4.6E-01

2000000 2.3E-04 2.6E-04 2.9E-04 2.5E-04 2.5E-04 2.5E-04

0 4.3E-03 7.7E-03 1.5E-02 2.0E-01 2.7E-01 4.8E-01

13 4.6E-03 6.5E-03 1.4E-02 2.0E-01 2.7E-01 4.8E-01

H2 200 3.8E-03 7.8E-03 1.5E-02 2.0E-01 2.7E-01 4.8E-01

1000 6.8E-03 9.1E-03 1.6E-02 2.0E-01 2.6E-01 4.6E-01

2000000 2.3E-04 2.6E-04 2.9E-04 2.5E-04 2.5E-04 2.5E-04

0 9.4E-02 1.0E-01 1.1E-01 2.8E-01 3.2E-01 5.2E-01

13 9.4E-02 8.7E-02 9.9E-02 2.7E-01 3.3E-01 5.3E-01

H3 200 9.0E-02 9.9E-02 9.8E-02 2.7E-01 3.2E-01 5.1E-01

1000 5.3E-02 6.8E-02 7.1E-02 2.3E-01 2.9E-01 4.5E-01

2000000 2.3E-04 2.6E-04 2.9E-04 2.5E-04 2.5E-04 2.5E-04

0 5.0E-02 5.1E-02 5.2E-02 2.4E-01 3.0E-01 5.0E-01

RH 200 4.7E-02 5.1E-02 5.7E-02 2.3E-01 2.9E-01 4.9E-01

1000 2.7E-02 3.7E-02 4.2E-02 2.2E-01 2.8E-01 4.6E-01

2000000 2.2E-04 2.6E-04 3.2E-04 2.5E-04 2.5E-04 2.5E-04
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Table 4:: Relative bias of OLS and two-stage estimators compared

to 2SLS.

Estimators µ2 ↓, ρ → 0 .05 .1 .5 .6 .95

0 -0.02 0.96 7.02 0.99 1.01 1.00

13 0.01 1.00 37.35 8.96 192.59 13.80

OLS 200 -0.01 16.57 32.10 144.92 166.48 223.16

1000 -0.56 34.04 68.02 308.08 353.88 474.02

2000000 0.47 -168.17 -322.79 -1455.03 -1683.21 -2249.76

Pre-tests 0 0.81 0.95 7.12 0.99 1.01 1.00

Two-stage 13 0.81 0.94 1.01 1.01 1.00 1.00

T1 200 0.52 1.03 1.12 1.06 1.06 1.06

1000 -0.75 1.19 1.30 1.36 1.32 1.34

2000000 1.35 17.72 -522.69 1.00 1.00 1.00

0 0.45 0.91 6.97 1.00 1.00 0.99

13 0.57 1.00 1.01 1.01 1.01 1.00

T2 200 0.93 0.99 1.08 1.06 1.06 1.05

1000 -2.02 1.22 1.27 1.30 1.26 1.25

2000000 1.25 14.12 -262.32 1.00 1.00 1.00

0 0.03 0.96 6.98 0.99 1.01 1.00

13 -0.14 1.02 1.02 1.01 1.01 0.99

T3 200 -0.02 0.94 1.11 1.08 1.08 1.08

1000 0.14 1.26 1.36 1.42 1.37 1.40

2000000 1.25 14.14 -263.08 1.00 1.00 1.00

0 0.45 0.91 6.97 1.00 1.00 0.99

13 0.60 1.00 1.01 1.01 1.01 1.00

T4 200 0.93 0.99 1.08 1.06 1.06 1.05

1000 -1.96 1.21 1.27 1.30 1.26 1.25

2000000 1.25 14.14 -262.70 1.00 1.00 1.00

0 0.02 0.95 6.97 0.99 1.01 1.00

13 -0.14 1.02 1.02 1.01 1.01 0.99

H1 200 -0.02 0.94 1.11 1.08 1.08 1.08

1000 0.26 1.26 1.36 1.42 1.37 1.40

2000000 1.28 14.21 -264.63 1.00 1.00 1.00
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Table 4 – continued from previous page

Estimators µ2 ↓, ρ → 0 .05 .1 .5 .6 .95

0 0.01 0.96 6.98 0.99 1.01 1.00

13 -0.14 1.02 1.02 1.01 1.01 0.99

H2 200 -0.02 0.94 1.11 1.08 1.08 1.08

1000 0.09 1.26 1.36 1.42 1.37 1.40

2000000 1.28 14.12 -262.21 1.00 1.00 1.00

0 0.47 0.91 6.97 1.00 1.00 0.99

13 0.55 1.00 1.01 1.01 1.01 1.00

H3 200 0.91 0.98 1.08 1.06 1.06 1.05

1000 -1.93 1.22 1.27 1.30 1.26 1.25

2000000 1.28 14.10 -262.21 1.00 1.00 1.00

0 -0.25 0.96 7.19 0.99 1.01 1.00

13 0.50 0.99 1.01 1.00 1.01 1.00

RH 200 0.33 0.98 1.09 1.07 1.07 1.07

1000 -0.91 1.22 1.31 1.35 1.33 1.32

2000000 0.94 18.98 -558.08 1.00 1.00 1.00
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Table 5:: Relative bias of 2SLS and two-stage estimators compared

to OLS.

Estimators µ2 ↓, ρ → 0 .05 .1 .5 .6 .95

0 -45.95 1.04 0.14 1.01 0.99 1.00

13 127.94 1.00 0.98 0.99 0.99 1.01

2SLS 200 -67.27 1.05 0.90 0.92 0.93 0.93

1000 -1.80 0.79 0.72 0.69 0.72 0.70

2000000 2.11 0.04 0.00 0.00 0.01 0.01

Pre-tests 0 -37.41 0.99 1.01 1.00 1.00 0.99

Two-stage 13 103.22 0.94 0.99 1.00 1.00 1.01

T1 200 -35.00 1.08 1.00 0.98 0.98 0.98

1000 1.34 0.95 0.94 0.94 0.94 0.93

2000000 2.84 0.75 0.50 0.00 0.01 0.01

0 -20.87 0.95 0.99 1.01 0.99 0.99

13 73.16 1.00 0.99 1.00 1.00 1.01

T2 200 -62.63 1.04 0.97 0.98 0.98 0.98

1000 3.64 0.97 0.91 0.90 0.90 0.87

2000000 2.63 0.60 0.25 0.00 0.01 0.01

0 -1.17 1.00 0.99 1.00 1.00 1.00

13 -17.59 1.02 1.00 1.00 1.00 1.00

T3 200 1.18 0.99 1.00 1.00 1.00 1.00

1000 -0.25 1.00 0.98 0.98 0.98 0.97

2000000 2.63 0.60 0.25 0.00 0.01 0.01

0 -20.87 0.95 0.99 1.01 0.99 0.99

13 77.13 1.00 0.99 1.00 1.00 1.01

T4 200 -62.63 1.04 0.97 0.98 0.98 0.98

1000 3.52 0.96 0.91 0.90 0.91 0.87

2000000 2.63 0.60 0.25 0.00 0.01 0.01

0 -0.71 0.99 0.99 1.00 1.00 1.00

13 -17.59 1.02 1.00 1.00 1.00 1.00

H1 200 1.18 0.99 1.00 1.00 1.00 1.00

1000 -0.47 1.00 0.98 0.99 0.98 0.97

2000000 2.70 0.60 0.25 0.00 0.01 0.01
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Table 5 – continued from previous page

Estimators µ2 ↓, ρ → 0 .05 .1 .5 .6 .95

0 -0.56 1.00 0.99 1.00 1.00 1.00

13 -17.59 1.02 1.00 1.00 1.00 1.00

H2 200 1.18 0.99 1.00 1.00 1.00 1.00

1000 -0.16 1.00 0.98 0.98 0.98 0.97

2000000 2.69 0.60 0.25 0.00 0.01 0.01

0 -21.70 0.95 0.99 1.01 0.99 0.99

13 70.27 1.00 0.99 1.00 1.00 1.01

H3 200 -61.32 1.04 0.97 0.98 0.98 0.98

1000 3.47 0.96 0.91 0.90 0.90 0.87

2000000 2.70 0.60 0.25 0.00 0.01 0.01

0 11.68 1.00 1.02 1.01 1.00 1.00

13 63.41 0.99 0.99 1.00 1.00 1.00

RH 200 -22.29 1.03 0.98 0.99 0.99 0.99

1000 1.63 0.97 0.94 0.94 0.95 0.92

2000000 1.98 0.80 0.54 0.00 0.01 0.01
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Table 6:: Relative MSE of OLS and two-stage estimators com-

pared to 2SLS.

Estimators µ2 ↓, ρ → 0 .05 .1 .5 .6 .95

0 0.01 0.01 0.04 0.43 0.54 0.73

13 0.01 0.01 0.04 0.62 0.81 1.45

OLS 200 0.01 0.01 0.04 0.65 0.85 1.53

1000 0.01 0.02 0.05 0.91 1.20 2.15

2000000 0.89 1.03 1.39 10.75 14.08 24.43

Pre-tests 0 0.19 0.20 0.23 0.55 0.62 0.78

Two-stage 13 0.22 0.19 0.21 0.55 0.62 0.78

T1 200 0.22 0.19 0.24 0.57 0.66 0.86

1000 0.18 0.18 0.23 0.75 0.86 1.19

2000000 0.91 1.03 1.25 1.00 1.00 1.00

0 0.28 0.29 0.31 0.59 0.66 0.80

13 0.29 0.27 0.28 0.58 0.65 0.81

T2 200 0.29 0.31 0.31 0.63 0.70 0.89

1000 0.24 0.30 0.31 0.79 0.89 1.16

2000000 0.92 1.03 1.16 1.00 1.00 1.00

0 0.01 0.02 0.05 0.44 0.54 0.73

13 0.01 0.02 0.04 0.44 0.53 0.73

T3 200 0.01 0.02 0.05 0.47 0.58 0.83

1000 0.03 0.04 0.07 0.68 0.82 1.20

2000000 0.92 1.03 1.16 1.00 1.00 1.00

0 0.28 0.29 0.31 0.59 0.66 0.80

13 0.29 0.27 0.28 0.58 0.65 0.81

T4 200 0.29 0.31 0.31 0.63 0.70 0.89

1000 0.24 0.29 0.31 0.79 0.89 1.16

2000000 0.92 1.03 1.16 1.00 1.00 1.00

0 0.01 0.02 0.05 0.44 0.54 0.73

13 0.01 0.02 0.04 0.44 0.53 0.73

H1 200 0.01 0.02 0.05 0.47 0.58 0.83

1000 0.03 0.04 0.07 0.68 0.82 1.20
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Table 6 – continued from previous page

Estimators µ2 ↓, ρ → 0 .05 .1 .5 .6 .95

2000000 0.92 1.03 1.16 1.00 1.00 1.00

0 0.01 0.02 0.05 0.44 0.54 0.73

13 0.01 0.02 0.04 0.44 0.53 0.73

H2 200 0.01 0.02 0.05 0.47 0.58 0.83

1000 0.03 0.04 0.07 0.68 0.82 1.20

2000000 0.92 1.03 1.16 1.00 1.00 1.00

0 0.28 0.29 0.31 0.59 0.66 0.80

13 0.29 0.27 0.28 0.58 0.65 0.81

H3 200 0.29 0.31 0.31 0.63 0.70 0.89

1000 0.24 0.30 0.31 0.79 0.89 1.16

2000000 0.92 1.03 1.16 1.00 1.00 1.00

0 0.15 0.15 0.15 0.51 0.60 0.77

13 0.14 0.15 0.17 0.50 0.59 0.77

RH 200 0.15 0.16 0.18 0.54 0.65 0.86

1000 0.12 0.16 0.18 0.76 0.87 1.19

2000000 0.91 1.03 1.26 1.00 1.00 1.00
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Table 7:: Relative MSE of 2SLS and two-stage estimators com-

pared to OLS.

Estimators µ2 ↓, ρ → 0 .05 .1 .5 .6 .95

0 169.09 76.96 28.18 2.32 1.85 1.37

13 163.78 72.86 28.97 2.28 1.90 1.38

2SLS 200 150.90 68.59 27.02 2.12 1.72 1.21

1000 109.10 52.27 19.84 1.47 1.22 0.82

2000000 1.12 0.99 0.74 0.09 0.07 0.04

Pre-tests 0 32.15 15.26 6.36 1.26 1.15 1.07

Two-stage 13 36.17 13.92 6.04 1.26 1.17 1.08

T1 200 33.08 13.33 6.40 1.21 1.13 1.05

1000 19.29 9.57 4.57 1.10 1.05 0.97

2000000 1.02 1.01 0.92 0.09 0.07 0.04

0 47.15 22.47 8.75 1.36 1.22 1.10

13 46.84 19.37 8.23 1.33 1.24 1.12

T2 200 43.37 21.54 8.33 1.33 1.21 1.08

1000 26.25 15.43 6.12 1.17 1.09 0.95

2000000 1.03 1.02 0.85 0.09 0.07 0.04

0 2.11 1.69 1.28 1.01 1.01 1.00

13 2.28 1.44 1.13 1.01 1.01 1.00

T3 200 1.82 1.70 1.27 1.00 1.00 1.00

1000 3.33 2.07 1.39 1.00 1.00 0.98

2000000 1.03 1.02 0.85 0.09 0.07 0.04

0 47.15 22.44 8.74 1.36 1.22 1.10

13 46.80 19.37 8.23 1.33 1.24 1.12

T4 200 43.37 21.50 8.33 1.33 1.21 1.08

1000 26.22 15.30 6.11 1.17 1.09 0.95

2000000 1.03 1.02 0.85 0.09 0.07 0.04

0 2.10 1.65 1.27 1.01 1.01 1.00

13 2.28 1.41 1.13 1.01 1.01 1.00

H1 200 1.82 1.65 1.26 1.00 1.00 1.00

1000 3.17 2.05 1.38 1.00 1.00 0.98

Continued on next page
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Table 7 – continued from previous page

Estimators µ2 ↓, ρ → 0 .05 .1 .5 .6 .95

2000000 1.03 1.02 0.86 0.09 0.07 0.04

0 2.15 1.69 1.28 1.01 1.01 1.00

13 2.28 1.44 1.13 1.01 1.01 1.00

H2 200 1.82 1.70 1.27 1.00 1.00 1.00

1000 3.36 2.07 1.39 1.00 1.00 0.98

2000000 1.03 1.02 0.85 0.09 0.07 0.04

0 47.20 22.47 8.75 1.37 1.22 1.10

13 46.85 19.37 8.24 1.33 1.24 1.12

H3 200 43.39 21.55 8.33 1.33 1.21 1.08

1000 26.30 15.45 6.12 1.17 1.09 0.95

2000000 1.03 1.02 0.85 0.09 0.07 0.04

0 25.09 11.18 4.31 1.19 1.11 1.06

13 23.51 10.66 4.83 1.14 1.12 1.06

RH 200 22.59 11.05 4.83 1.15 1.11 1.04

1000 13.48 8.34 3.56 1.12 1.06 0.97

2000000 1.01 1.02 0.93 0.09 0.07 0.04
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7. Empirical illustrations

This section illustrates the behaviour of exogeneity tests through two empiricalapplications related

to important issues in macroeconomics and labor economics literature: the relation between trade

and growth [see, Dufour and Taamouti (2007), Irwin and Tervio (2002), Frankel and Romer (1999),

Harrison (1996), Mankiw et al. (1992)] and the widely studied problem of returns to education

[Dufour and Taamouti (2007), Angrist and Krueger (1991), Angrist and Krueger (1995), Angrist

and al. (1999), Mankiw et al. (1992)].

7.1. Trade and growth

The trade and growth model studies the relationship between standards of living and openness. The

recent studies in this issue include Irwin and Tervio (2002), Frankel and Romer (1999), Harrison

(1996), Mankiw et al. (1992) and the survey of Rodrik (1995). Evenif many studies conclude that

openness is conductive to higher growth, there is no evidence concerning the effect of openness on

income. Estimating the impact of openness on income through cross-country regression often raises

the problem of finding a good proxy for openness. Frankel and Romer(1999) argue that trade share

(ratio of imports or exports to GDP) which is the commonly used indicator of openness should be

viewed as endogenous variable, and similarly for the other indicators suchas trade policies. So,

instrumental variables method should be applied for estimating the income-trade relationship. The

equation studied is

yi = α +βTri + γ1Ni + γ2Ari +ui , (7.1)

whereyi is log of income per capita in countryi, Tri the trade share (measured as a ratio of imports

and exports to GDP),Ni the logarithm of population, andAri the logarithm of country area. Since

the trade shareTri may be endogenous, Frankel and Romer (1999) used an instrument constructed

on the basis of geographic characteristics. The first stage equation is given by

Tri = a+bXi +c1Ni +c2Ari +vi , (7.2)

whereXi is a constructed instrument from geographic characteristics. In this paper, we use the

sample of 150 countries and the data include for each country: the trade share in 1985, the area

and population (1985), per capita income (1985), and the fitted trade share (instrument)1. In this

application, we focus on testing whether trade share is exogenous in (7.1). However, it is not clear

how “weak ”instruments are in this model. In fact, the F-statistic in the first stageregression (7.2)

is around 13 [see Frankel and Romer (1999, Table 2, p.385)], which may indicate a possible weak

identification problem [ Staiger-Stock (1997)]. Dufour and Taamouti (2007) proposed to use directly

identification-robust procedures to draw inference on the coefficientsof model (7.1). The projection

approach shows that there is a slight difference between the usual 95 %IV-type confidence sets and

the 95 % AR-based confidence sets of the coefficients of the structural equation (7.1). The 95 %

1The data set and its sources are given in the Appendix of Frankel and Romer (1999)
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IV-type confidence interval for the trade share coefficient is[−.01,3.95], while the corresponding

95 % AR-based confidence set is[.284,4.652]. However, since all the confidence sets are bounded,

we do not have a serious problem of identification in this model. We provide analternative way

to access whether the instrument used is weak by examining the behaviour ofDWH and RH

statistics. For example, if the test for exogeneity based on these statistics does not reject trade share

exogeneity, this may indicate that instrument are not “very poor ”. Note thatthe model contains only

one endogenous and one excluded instrument, hencek2 = G, and the statisticT1 is not considered

in this application because it is identically zero. Table 8 below summarizes the results. In the first

column of the table, we report the statistics while in the second and third columns,we report the

sample values and the sample p-value of these tests. In the other columns, we report the Monte Carlo

tests p-values for two data generating process where the disturbancesu are drawn from normal and

Cauchy distributions.

Table 8. Tests for exogeneity of trade share in trade-income relation

Statistics Sample value Sample p-value (%) MC-test p-value MC-test p-value
(normal distribution) (Cauchy distribution)

RH 3.9221 4.95∗ 5.02∗ 2.74∗

H1 2.3883 12.23 6.15 2.93∗

H2 2.4269 11.93 6.12 2.94∗

H3 3.9505 4.67∗ 5.49 2.85∗

T2 3.9221 4.95∗ 5.49 2.85∗

T3 2.3622 12.43 6.12 2.94∗

T4 3.8451 4.99∗ 5.49 2.85∗

Note –∗ : H0 is rejected at nominal levelα = 5%.

First, we note from Table 8 thatH3, T2, T4 andRH , reject trade share exogeneity whileH1,

H2, andT3, cannot reject the null hypothesis. When we run exact Monte Carlo tests (for Gaussian

and Cauchy type errors), we see that all statistics strongly reject trade share exogeneity at level 5 %,

which means that the quality of the instrument is not too poor in this model as notedby Dufour and

Taamouti (2007) . Our results also underscore the difference betweenexact Monte Carlo exogeneity

procedures and earlier procedures.

7.2. Education and earnings

This application considers the well known problem of estimating returns to education. The literature

in this issue includes Angrist and Krueger (1991), Angrist and Krueger (1995), Angrist and al.

(1999), (n.d.). The equation studies is a relationship where the log weekly earning is explained

by the number of years of education and several other covariates (age, age squared, year of birth,

. . .). Since education can be viewed as an endogenous variable, Angrist and Krueger (1991) used

the birth quarter as an instrument. The basic idea is that individuals born in thefirst quarter of the

year start school at an older age, and can therefore drop out aftercompleting less schooling than

individuals born near the end of the year. Consequently, individuals born at the beginning of the
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year are likely to earn less than those born during the rest of the year2. However, it is well known

that the instruments used by Angrist and Krueger (1991) are weak and explains very little of the

variation in education; see (n.d.). So, standard IV-based inference is quite unreliable. As showed in

this paper, DWH or RH tests for the exogeneity of education will lead to accept the null hypothesis

of exogeneity of this variable. The model considered is specified as:

y = β 0 +β 1E +
k1

∑
i=1

γ iXi +u, (7.3)

E = Π0
2 +

k2

∑
i=1

π iZi +
k1

∑
i=1

φ iXi +v, (7.4)

wherey is log-weekly earnings,E is the number of years of education (possibly endogenous),X

contains the exogenous covariates (age, age squared, 10 dummies for birth of year). Z contains

40 dummies obtained by interacting the quarter of birth with the year of birth. In this model,β 1

measures the return to education. The data set consists of the 5% public-use sample of the 1980 US

census for men born between 1930 and 1939. The sample size is 329 509 observations. We test the

exogeneity of education in this model using DWH and RH statistics. The results are summarized

in Table 9. As showed in this table, all exogeneity tests cannot reject the exogeneity of “education

”even at level 15%. This is true for earlier versions of the tests or the MCE-tests.

The results can be interpreted as follow: (a) either the instruments are strong and education

is effectively exogenous, (b) or education is endogenous but the instruments are too poor and the

tests fail to detect that education is endogenous. Moreover, it is well documented that the generated

instruments obtained by interacting the quarter of birth with the year of birth areweak, see e.g.,

(n.d.). So, our interpretation in (b) matter with these observations.

Table 9. Tests for exogeneity of education in income-education equation.

Statistics Sample value Sample p-value MC-test p-value MC-test p-value
(normal distribution) (Cauchy distribution)

RH .6783 .93986 .6590 .9451
H1 1.337 .24757 .2474 .2488
H2 1.337 .24756 .2474 .2488
H3 1.3492 .24542 .2474 .2488
T1 2.0406 .16111 .2302 .2308
T2 1.3491 .24543 .2474 .2488
T3 1.3369 . 224757 .2474 .2488
T4 1.3491 .24543 .2474 .2488

2Other versions of the IV regression take as instruments interactions between the birth quarter
and regional and/or birth year dummies.
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8. Conclusion

Exogeneity tests of the type proposed by Durbin (1954), Wu (1973), Hausman (1978) (DWH) and,

Revankar and Hartley (1973) (RH) are built on the prerequisite of having strong IVs. Not much is

known about their behaviour of such tests when identification is weak. Thispaper proposes a large-

sample analysis of the distribution of these tests under the null hypothesis (level) and the alternative

hypothesis (power). Two main contributions is established.

First, the characterization of the large-sample distribution of the test statistics shows that DWH-

and RH-type tests are typically robust to weak IV. We provide a provide a necessary and sufficient

condition under which the tests have no power. In particular, the tests haveno power when all IV

are weak [similar to Guggenberger (2010)]. But, power does exist as soon as we have one strong IV.

The conclusions of Guggenberger (2010) focus on the case where all IV are weak (a case of little

practical interest).

Furthermore, we present simulation evidence indicating that: (1) Over a widerange cases, in-

cluding weak IV and moderate endogeneity, OLS performs better than 2SLS[Similar to Kiviet

and Niemczyk (2007)]; (2) pretest-estimators based on exogeneity tests have an excellent overall

performance compared with OLS and IV estimators. We illustrate our theoretical results through

two empirical applications: the returns to education and the relation between trade and economic

growth. We find that exogeneity tests cannot reject the exogeneity of schooling, indicating that IVs

are possibly weak in this model [ (n.d.)]. However, “trade share ”is endogenous,i.e. IVs are not too

poor [similar to Dufour and Taamouti (2007)].
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APPENDIX

A. Proofs

PROOF OFTHEOREM3.1 Assume thatδ = 0. Then, we havea= Σ−1
V δ = 0. We shall distinguish

two cases: (A)Π2 = Π0
2 whereΠ0

2 is a k2 ×G constant matrix with rankG; and (B)Π2 = Π0
2 ,

rank(Π0
2) < G.

(A) Suppose first thatΠ2 = Π0
2 , with rank(Π0

2) = G (strong identification). Then, we have:

Ω̂IV
p→ Π0′

2 ΣZ̄2
Π0

2 , Ω̂LS
p→ Π0′

2 ΣZ̄2
Π0

2 +ΣV , (A.1)

Y′u/T
p→ δ = 0, Y′M1u/T

p→ δ = 0. (A.2)

From (A.1) - (A.2), we get

σ̂2/T = û′û/T = u′u/T − (u′M1Y/T)Ω̂−1
LS (Y′M1u/T)

p→ σ2
u , (A.3)

σ̃2/T = u′u/T −2(u′M1Y/T)Ω̂−1
IV (Y′(M1−M)u/T)

+(u′(M1−M)Y/T)Ω̂−1
IV (Y′(M1−M)u/T)

p→ σ2
u . (A.4)

Moreover, we can writeY
′u√
T

as

Y′u√
T

= Π̄ ′
1
Z′

1u√
T

+Π0′
2

Z̄′
2u√
T

+
V ′V√

T
(Σ−1

V δ )+
V ′ε√

T
= Π̄ ′

1
Z′

1u√
T

+Π0′
2

Z̄′
2u√
T

+
V ′ε√

T
,

whereZ̄2 = M1Z2 andΠ̄1 = Π1+(Z′
1Z1)

−1Z′
1Z2Π2. SinceΠ̄1

p→ Π̄01= Π1+Σ−1
Z1

ΣZ1Z2Π0
2 , it follows

that
Y′u√

T
L→ Π̄ ′

01S1u +Π0′
2 S̄2u +SVε .

Thus, we get

Y′M1u√
T

=
Y′u√

T
−
(

Y′Z1

T

)(

Z′
1Z1

T

)−1 Z′
1u√
T

L→ (Π̄ ′
01S1u +Π0′

2 S̄2u +SVε)− Π̄ ′
01S1u = Π0′

2 S̄2u +SVε , (A.5)

1√
T

Y′(M1−M)u =

(

Y′Z̄2

T

)(

Z̄′
2Z̄2

T

)−1( Z̄′
2u√
T

)

L→ Π0′
2 S̄2u . (A.6)

We can then observe that

√
T(β̃ − β̂ ) = Ω̂−1

LS
Y′M1u√

T
− Ω̂−1

IV
Y′(M1−M)u√

T
L→ ψπ , (A.7)

Σ̂i
p→ σ2

u∆Π , ∆Π = (Π0′
2 ΣZ̄2

Π0
2)−1− (Π0′

2 ΣZ̄2
Π0

2 +ΣV)−1, i = 1, 2, 3, (A.8)
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where

ψπ = (Π0′
2 ΣZ̄2

Π0
2 +ΣV)−1(Π0′

2 S̄2u +SVε)− (Π0′
2 ΣZ̄2

Π0
2)−1Π0′

2 S̄2u, (A.9)

so that

Hi =
√

T(β̃ − β̂ )′Σ̂−1
i

√
T(β̃ − β̂ )

L→ 1
σ2

u
ψ ′

π∆−1
Π ψπ , i = 1, 2, 3. (A.10)

Sincea = 0, we haveσ2
u = σ2

ε , hence

[

Π0′
2 S̄2u +SVε

Π0′
2 S̄2u

]

∼ N
[

0, σ2
uΣ0
]

. (A.11)

where

Σ0 =

[

Π0′
2 ΣZ̄2

Π0
2 +ΣV Π0′

2 ΣZ̄2
Π0

2

Π0′
2 ΣZ̄2

Π0
2 Π0′

2 ΣZ̄2
Π0

2

]

. (A.12)

This entails

ψπ ∼ N
{

0, σ2
u[(Π0′

2 ΣZ̄2
Π0

2 )−1− (ΣV +Π0′
2 ΣZ̄2

Π0
2 )−1]

}

≡ N(0, σ2
u∆Π ), (A.13)

hence

Hi
L→ χ2(G), i = 1, 2, 3. (A.14)

Applying the same arguments as above, we get

T2
L→ 1

G
χ2(G), Tl

L→ χ2(G), l = 3, 4, and RH
L→ 1

k2
χ2(k2) .

We now derive the distribution ofT1. We can write

T1 =
k2−G

G
T(β̃ − β̂ )′∆−1(β̃ − β̂ )

Tσ̃2
1

(A.15)

andT(β̃ − β̂ )′∆−1(β̃ − β̂ )
L→ ψ ′

π∆−1
Π ψπ ∼ σ2

uχ2(G). Furthermore, becauseZ1 is orthogonal toZ̄2,

we can observe that

Tσ̃2
1 = u′((M1−M)−PỸ)u = u′(M1−M)u−u′PỸu,

whereỸ = (M1−M)Y. Thus, we have

Tσ̃2
1

L→ S̄′2uΣ−1
Z̄2

S̄2u− S̄′2uΠ0
2 (Π0′

2 ΣZ̄2
Π0

2 )−1Π0′
2 S̄2u

= S̄′2uΣ−1/2
Z̄2

[Ik2 −P(P′P)−1P′]Σ−1/2
Z̄2

S̄2u , (A.16)

whereP = Σ1/2
Z̄2

Π0
2 and the matrixIk−P(P′P)−1P′ is idempotent with rankk2−G. Furthermore,

1
σu

Σ−1/2
Z̄2

S̄2u ∼ N[0, Ik2], henceTσ̃2
1

L→ σ2
uχ2(k2 −G). Moreover, we can writeTσ̃2

1 = u′(M1 −
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M)MŶ(M1−M)u andT(β̃ − β̂ )′∆−1(β̃ − β̂ ) = u′AZu, where

AZ =
1
T

(M1YΩ̂−1
LS −ŶΩ̂−1

IV )∆−1(Ω̂−1
LS Y′M1− Ω̂−1

IV Ŷ′)

is symmetric, idempotent andAZ((M1 −M)MŶM̄1) = ((M1 −M)MŶ(M1 −M))AZ = 0. This en-

tails thatTσ̃2
1 andT(β̃ − β̂ )′∆−1(β̃ − β̂ ) are independent, hence asymptotically independent and

distributed asχ2 with k2−G andG degrees of freedom respectively. Consequently,

T1
L→ F(G, k2−G) . (A.17)

(B) Suppose now thatΠ2 = Π0
2 , where (Π0

2 ) < G. We shall only prove the validity ofH3. The

validity of other statistics can be proved in a similar way. We recall that

H3 = T(β̃ − β̂ )′Σ̂−1
3 (β̃ − β̂ ), (A.18)

whereΣ̂−1
3 = 1

σ̂2 ∆̂−1 with ∆̂ = Ω̂−1
IV − Ω̂−1

LS andΩ̂LS andΩ̂IV are defined in (2.32).Using (3.9), we
can now write equation (A.18) as

H3 = [(β̂ −β )−S1(β̃ 1−β 1)−S2(β̃ 2−β 2)]
′Σ̂ ∗−1

3 [(β̂ −β )−S1(β̃ 1−β 1)−S2(β̃ 2−β 2)],(A.19)

= (β̃ 2−β 2)
′
S

′
2Σ̂ ∗−1

3 S2(β̃ 2−β 2)−2[(β̂ −β )−S1(β̃ 1−β 1)]
′Σ̂ ∗−1

3 S2(β̃ 2−β 2)

+[(β̂ −β )−S1(β̃ 1−β 1)]
′Σ̂ ∗−1

3 [(β̂ −β )−S1(β̃ 1−β 1)] (A.20)

where Σ̂ ∗
3 = σ̂2[(Y′(M1 − M)Y)−1 − 1

T (Y′M1Y/T)−1]. We first find the limit of Σ̂ ∗
3 . Since

(Y′M1Y/T)−1 p→ (Π0′
2 ΣZ̄2

Π0
2 + ΣV)−1, hence, we have1T (Y′M1Y/T)−1 p→ 0. It is also easy to see

thatσ̂2 p→ σ2
u. We now focus on[Y′(M1−M)Y]−1. We have

S
′Y′(M1−M)YS =

[

Y′
1

Y′
2

]

(M1−M)
[

Y1 Y2

]

=

[

Y′
1(M1−M)Y1 Y′

1(M1−M)Y2

Y′
2(M1−M)Y1 Y′

2(M1−M)Y2

]

, (A.21)

So, the partitioned inverse ofS ′Y′(M1−M)YS can be written as

S
′[Y′(M1−M)Y]−1

S =

[

P11 P′
21

P21 P22

]

,

where

P11 = [Y′
1(M1−M)Y1−Y′

1(M1−M)Y2(Y
′
2(M1−M)Y2)

−1Y′
2(M1−M)Y1]

−1, (A.22)

P21 = −(Y′
2(M1−M)Y2)

−1Y′
2(M1−M)Y1P11, (A.23)

P22 = (Y′
2(M1−M)Y2)

−1 +(Y′
2(M1−M)Y2)

−1Y′
2(M1−M)Y1P11
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×Y′
1(M1−M)Y2(Y

′
2(M1−M)Y2)

−1. (A.24)

However, we have

Y′
1(M1−M)Y1/T

p→ Π ′
21ΣZ̄2

Π21, Y′
2(M1−M)Y1/T

p→ 0, (A.25)

Y′
2(M1−M)Y2

L→ S
′
2S̄′2VΣ−1

Z̄2
S̄2VS2, Y′

2(M1−M)Y1/
√

T
L→ S

′
2S̄′2VΠ21. (A.26)

So, we get

TP11
L→ P̄11 = [Π ′

21ΣZ̄2
Π21−Π21S̄2VS2(S

′
2S̄′2VΣ−1

Z̄2
S̄2VS2)

−1
S

′
2S̄′2VΠ21]

−1, (A.27)

T1/2P21
L→ P̄21 = −(S ′

2S̄′2VΣ−1
Z̄2

S̄2VS2)
−1

S
′
2S̄′2VΠ21P̄11, (A.28)

P22
L→ P̄22 = (S ′

2S̄′2VΣ−1
Z̄2

S̄2VS2)
−1 +(S ′

2S̄′2VΣ−1
Z̄2

S̄2VS2)
−1

×S
′
2S̄′2VΠ21P̄11Π ′

21S̄2VS2(S
′
2S̄′2VΣ−1

Z̄2
S̄2VS2)

−1. (A.29)

Hence, we have

[Y′(M1−M)Y]−1 L→ S

[

0 0

0 P̄22

]

S
′ = S2P̄22S

′
2.

Furthermore, underδ = 0, we haveβ̂ −β p→ 0, and using (3.11), we can show that

β̃ 1−β 1
p→ 0, Y′

2(M1−M)u
L→ S

′
2S̄′2VΣ−1

Z̄2
S̄2u (A.30)

Y′
1(M1−M)u√

T
L→ Π ′

21S̄2u. (A.31)

So, we have

β̃ 2−β 2
L→ B

−1
S

′
2S̄′2V [Σ−1

Z̄2
−Π21(Π ′

21ΣZ̄2
Π21)

−1Π ′
21]S̄2u ≡ NB,

whereB = S ′
2S̄′2V [Σ−1

Z̄2
−Π21(Π ′

21ΣZ̄2
Π21)

−1Π ′
21]S̄2VS2. Moreover, because from (2.3) we have

S̄2u = S̄2Va+ S̄2ε , we easily get

NB = S
′
2a+B

−1
S

′
2S̄′2V [Σ−1

Z̄2
−Π21(Π ′

21ΣZ̄2
Π21)

−1Π ′
21]S̄2ε .

UnderH0 : δ = 0, NB|S̄2V
∼ N[0, σ2

εB−1]. Hence, we haveS2NB|S̄2V
∼ N[0, σ2

εA−1], whereA−1 =

S2B−1S ′
2 : G×G. We then see easily that

A = S̄′2V [Σ−1
Z̄2

−Π21(Π ′
21ΣZ̄2

Π21)
−1Π ′

21]S̄2V .

Now, using Anderson (2003, Theorem A.3.3 and Theorem A.3.4), we can writeP22 as

P22 = [Y′
2(M1−M)Y2−Y′

2(M1−M)Y1(Y
′
1(M1−M)Y1)

−1Y′
1(M1−M)Y2]

−1

= (Y′
2JY2)

−1 L→ B
−1 = P̄22. (A.32)
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And by noting that(S2P̄22S
′
2)

−1 = (S2B−1S ′
2)

−1 = A, we have

H3
L→ 1

σ2
ε
N

′
BS

′
2A S2NB.

SinceS2NB|S̄2V
∼ N[0, σ2

εA−1], we get

H3
L→ 1

σ2
ε
N

′
BS

′
2A S2NB|S̄2V

∼ χ2(G).

Because the conditional null distribution does not depend neither onS̄2V , we have

H3
L→ χ2(G), (A.33)

andH3 still is valid even if identification is deficient.

We will now focus onH1 andH2. First, we note that

H2 =
σ̂2

σ̃2H3, (A.34)

whereσ̂2 p→ σ2
ε and

σ̃2 =
u′u
T

−2
u′M1Y

T
(β̃ −β )+(β̃ −β )′Ω̂LS(β̃ −β )

L→ σ̃2
u = σ2

u +N
′

BS
′
2(Π0′

2 ΣZ̄2
Π0

2 +ΣV)−1
NBS2 ≥ σ2

ε . (A.35)

Hence

H2
L→ 1

σ̃2
u

N
′

BS
′
2A S2NB ≤ 1

σ2
ε
N

′
BS

′
2A S2NB ∼ χ2(G). (A.36)

Second, using (2.30), we can easily show thatTΣ̂1
p→ 1

σ̃2
u
A, so that

H1
L→ 1

σ̃2
u

N
′

BS
′
2A S2NB ≤ 1

σ2
ε
N

′
BS

′
2A S2NB ∼ χ2(G). (A.37)

By using the relations betweenTl andHi , we get the results forT2, T3 andT4. Finally, by following

the same steps as forH3, we get the results forT1 andRH. Clearly, all exogeneity tests are valid

even if identification is deficient.

PROOF OFTHEOREM3.2 (A) SupposeΠ2 = Π0
2 with rank(Π0

2) = G. From the proof of Theorem

3.1, we have

Ω̂IV
p→ Π0′

2 ΣZ̄2
Π0

2 , Ω̂LS
p→ Π0′

2 ΣZ̄2
Π0

2 +ΣV ,

Y′M1u
T

p→ δ ,
Y′(M1−M)u

T
p→ 0, (A.38)
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σ̂2 = u′u/T − (u′M1Y/T)Ω̂−1
LS (Y′M1u/T)

p→ σ2
u−δ ′(Π0′

2 ΣZ̄2
Π0

2 +ΣV)−1δ = σ̃2
u , (A.39)

σ̃2 = u′u/T −2(u′M1Y/T)Ω̂−1
IV (Y′(M1−M)u/T)+

(u′(M1−M)Y/T)Ω̂−1
IV (Y′(M1−M)u/T)

p→ σ2
u, (A.40)

so that we get

(β̃ − β̂ ) = Ω̂−1
LS (Y′M1u/T)− Ω̂−1

IV (Y′(M1−M)u/T)
p→ (Π0′

2 ΣZΠ0
2 +ΣV)−1δ ,

Σ̂i
p→ σ2

i ∆Π , ∆Π = (Π0′
2 ΣZ̄2

Π0
2 )−1− (Π0′

2 ΣZ̄2
Π0

2 +ΣV)−1, i = 2, 3, (A.41)

Σ̂1
p→ Σ1Π , Σ1Π = σ2

u(Π0′
2 ΣZ̄2

Π0
2 )−1− σ̃2

u(Π0′
2 ΣZ̄2

Π0
2 +ΣV)−1, (A.42)

whereσ2
2 = σ2

u andσ2
3 = σ̃2

u. Let first focus onHi , i = 1, 2, 3. We recall thatHi is defined as

Hi = T(β̃ − β̂ )′Σ̂−1
i (β̃ − β̂ ) (A.43)

hence

(β̃ − β̂ )′Σ̂−1
i (β̃ − β̂ )

p→ 1

σ2
i

δ ′(Π0′
2 ΣZΠ0

2 +ΣV)−1∆−1
Π (Π0′

2 ΣZΠ0
2 +ΣV)−1δ , i = 2, 3,

(β̃ − β̂ )′Σ̂−1
1 (β̃ − β̂ )

p→ δ ′(Π0′
2 ΣZΠ0

2 +ΣV)−1Σ−1
1Π (Π0′

2 ΣZΠ0
2 +ΣV)−1δ . (A.44)

Using Doko Tchatoka and Dufour (2010, Lemma A.1), we have

∆−1
Π = (Π0′

2 ΣZΠ0
2 )Σ−1

V (Π0′
2 ΣZΠ0

2 +ΣV),

hence

δ ′(Π0′
2 ΣZΠ0

2 +ΣV)−1∆−1
Π (Π0′

2 ΣZΠ0
2 +ΣV)−1δ

= a′Π0′
2 ΣZΠ0

2 [(Π0′
2 ΣZΠ0

2 )Σ−1
V (Π0′

2 ΣZΠ0
2 )+Π0′

2 ΣZΠ0
2 ]−1Π0′

2 ΣZΠ0
2a. (A.45)

If Π0
2a 6= 0, then the RHS of (A.45) is positive and we haveHi

L→ +∞ for i = 2, 3. The same

decomposition applies tôΣ−1
1 andH1

L→+∞. By the same way, we also getTl
L→+∞ for l = 1, 2, 3, 4

andRH
L→ +∞.

Now, suppose thatΠ0
2a= 0, i.e. a= 0, because rank(Π0

2) = G. This entails thatδ = 0 (remem-

ber thata = Σ−1
V δ ). So, the null hypothesis of exogeneity is satisfied and all test statistics converge

to non degenerate random variables as given in Theorem3.1.

Overall, the testsHi , Tl andRH are consistent if and only ifΠ0
2a 6= 0.

(B) Suppose now thatΠ2 = Π0
2 with rank(Π0

2 ) ≤ G. We shall only focus onH3. The proof
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is similar for the other statistics. Let writeH3 as

H3 = T[(β̃ −β )− (β̂ −β )]′(Ω̂−1
IV − Ω̂−1

LS )−1[(β̃ −β )− (β̂ −β )]/σ̂2

= T(β̃ −β )′(Ω̂−1
IV − Ω̂−1

LS )−1(β̃ −β )/σ̂2 +T(β̂ −β )′(Ω̂−1
IV − Ω̂−1

LS )−1(β̂ −β )/σ̂2

−2T(β̂ −β )′(Ω̂−1
IV − Ω̂−1

LS )−1(β̃ −β )/σ̂2. (A.46)

We now study the asymptotic behaviour of the three terms in (A.46). First, we have

β̂ −β = (Y′M1Y/T)−1(Y′M1u/T)
p→ (Π0′

2 ΣZ̄2
Π0

2 +ΣV)−1δ ,

σ̂2 p→ σ̄2
u = σ2

u−δ ′(Π0′
2 ΣZ̄2

Π0
2 +ΣV)−1δ , (A.47)

and

T(β̃ −β )′(Ω̂−1
IV − Ω̂−1

LS )−1(β̃ −β )/σ̂2 L→ 1

σ̄2
u
N

′
BS

′
2A S2NB, (A.48)

2(β̂ −β )′(Ω̂−1
IV − Ω̂−1

LS )−1(β̃ −β )/σ̂2 L→ 1

σ̄2
u

δ ′(Π0′
2 ΣZ̄2

Π0
2 +ΣV)−1

A S2NB. (A.49)

Moreover, using (A.47) and the equality

(Ω̂−1
IV − Ω̂−1

LS )−1 = Ω̂IV (Ω̂LS− Ω̂IV )−1Ω̂LS
p→ (Π0′

2 ΣZ̄2
Π0

2 )Σ−1
V (Π0′

2 ΣZ̄2
Π0

2 +ΣV), (A.50)

if Π0
2a 6= 0, we get

(β̂ −β )′(Ω̂−1
IV − Ω̂−1

LS )−1(β̂ −β )/σ̂2 p→ δ ′(Π0′
2 ΣZ̄2

Π0
2 +ΣV)−1(Π0′

2 ΣZ̄2
Π0

2 )Σ−1
V δ/σ̄2

u

= a[(Π0′
2 ΣZΠ0

2 )Σ−1
V + IG]−1Π0′

2 ΣZΠ0
2a/σ̄2

u, (A.51)

However, we have

a[(Π0′
2 ΣZΠ0

2 )Σ−1
V + IG]−1Π0′

2 ΣZΠ0
2a/σ̄2

u > 0

if and onlya /∈ Ker{[(Π0′
2 ΣZΠ0

2 )Σ−1
V + IG]−1Π0′

2 ΣZΠ0
2}, Ker(L) denotes the null space spanned by

the columns of the matrixL. Because[(Π0′
2 ΣZΠ0

2 )Σ−1
V + IG]−1 andΣZ are nonsingular, we then

have

Ker{[(Π0′
2 ΣZΠ0

2)Σ−1
V + IG]−1Π0′

2 ΣZΠ0
2} = Ker(Π0′

2 ΣZΠ0
2 ) = Ker(Π0

2).

So, the last term in (A.51) is positive if and only ifa /∈ Ker(Π0
2), i.e., Π0

2a 6= 0. In this case, we get

T(β̂ −β )′(Ω̂−1
IV − Ω̂−1

LS )−1(β̂ −β )/σ̂2 p→ +∞,

which entails thatH3
L→ +∞.
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Suppose now thatΠ0
2a = 0. We have

T(β̂ −β )′(Ω̂−1
IV − Ω̂−1

LS )−1(β̂ −β )/σ̂2 = (β̂ −β )′[(TΩ̂IV )−1− 1
T

Ω̂−1
LS )−1]−1(β̂ −β ).(A.52)

(A.53)

Since β̂ − β p→ (Π0′
2 ΣZ̄2

Π0
2 + ΣV)−1δ and [(TΩ̂IV )−1 − 1

T Ω̂−1
LS )−1]−1 L→ A , where A =

(S2P̄22S
′
2)

−1 = S2B
−1S ′

2, we get

T(β̂ −β )′(Ω̂−1
IV − Ω̂−1

LS )−1(β̂ −β )/σ̂2 L→ 1

σ̄2
u

δ ′(Π0′
2 ΣZ̄2

Π0
2 +ΣV)−1

A ×

(Π0′
2 ΣZ̄2

Π0
2 +ΣV)−1δ . (A.54)

Thus from (A.48)-(A.49), we find

H3
L→ 1

σ̄2
u

δ ′(Π0′
2 ΣZ̄2

Π0
2 +ΣV)−1

A (Π0′
2 ΣZ̄2

Π0
2 +ΣV)−1δ +

1

σ̄2
u
N

′
BS

′
2A S2NB

− 2

σ̄2
u

δ ′(Π0′
2 ΣZ̄2

Π0
2 +ΣV)−1

A S2NB. (A.55)

With a little manipulation, we get

H3
L→ 1

σ̄2
u

[

S2NB− (Π0′
2 ΣZ̄2

Π0
2 +ΣV)−1δ

]′
A

[

S2NB− (Π0′
2 ΣZ̄2

Π0
2 +ΣV)−1δ

]

.

hence

S2NB|S̄2VS2
∼ N[a, σ2

εS2B
−1

S
′
2] ≡ N[Σ−1

V δ , σ2
εS2B

−1
S

′
2],

S2B
−1

S
′
2 =

{

S̄′2V [Σ−1
Z̄2

−Π21(Π ′
21ΣZ̄2

Π21)
−1Π ′

21]S̄2V

}−1
= A

−1. (A.56)

It follows that

H3
L→ σ2

ε
σ̄2

u
χ2(G; µA),

whereµA = 1
σ2

ε
δ ′[Σ−1

V − (Π0′
2 ΣZ̄2

Π0
2 +ΣV)−1]A−1[Σ−1

V − (Π0′
2 ΣZ̄2

Π0
2 +ΣV)−1]δ . From Doko Tcha-

toka and Dufour (2010, Lemma A.1), we have

Σ−1
V − (Π0′

2 ΣZΠ0
2 +ΣV)−1 = (Π0′

2 ΣZΠ0
2 +ΣV)−1(Π0′

2 ΣZΠ0
2 )Σ−1

V .

SinceΠ0
2a = 0, this entails that

µA =
1

σ2
ε

δ ′(Π0′
2 ΣZ̄2

Π0
2 +ΣV)−1(Π0′

2 ΣZ̄2
Π0

2 )Σ−1
V A

−1(Π0′
2 ΣZ̄2

Π0
2 +ΣV)−1×

Π0′
2 ΣZ̄2

Π0
2a = 0,

σ̄2
u = σ2

u−δ ′(Π0′
2 ΣZ̄2

Π0
2 +ΣV)−1δ = σ2

ε +δ ′[Σ−1
V − (Π0′

2 ΣZ̄2
Π0

2 +ΣV)−1]δ

= σ2
ε +δ ′(Π0′

2 ΣZ̄2
Π0

2 +ΣV)−1Π0′
2 ΣZ̄2

Π0
2a = σ2

ε ,
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wherea = Σ−1
V δ andσ2

u = σ2
ε +δ ′Σ−1

V δ . HenceH3
L→ χ2(G). And H3 is not consistent. A similar

result holds for the other statistics.

Overall, exogeneity tests are consistent if and only ifΠ0
2a 6= 0.

PROOF OFTHEOREM 3.3 For anya 6= 0, we have rank(Π2) = G if and only if Π2a 6= 0 if and

only if DWH and RH tests are consistent.

PROOF OFCOROLLARY 3.4 The proof follows directly from those of Theorem3.1and Theorem

3.2.

PROOF OFTHEOREM3.5 Suppose thatδ = δ 0/
√

T andΠ2 = Π0
2 is fixed. (A) If rank(Π0

2) = G,

From (A.1)-(A.6), we have

Ω̂IV
p→ Π0′

2 ΣZ̄2
Π0

2 , Ω̂LS
p→ Π0′

2 ΣZ̄2
Π0

2 +ΣV , (A.57)

Y′M1u
T

p→ 0,
Y′(M1−M)u

T
p→ 0, (A.58)

σ̂2 = u′u/T − (u′M1Y/T)Ω̂−1
LS (Y′M1u/T)

p→ σ2
u , (A.59)

σ̃2 = u′u/T −2(u′M1Y/T)Ω̂−1
IV (Y′(M1−M)u/T)+ (A.60)

+(u′(M1−M)Y/T)Ω̂−1
IV (Y′(M1−M)u/T)

p→ σ2
u . (A.61)

Y′M1u√
T

L→ Π0′
2 S̄2u +SVε +δ 0,

Y′(M1−M)u√
T

L→ Π0′
2 S̄2u. (A.62)

Since we have

Hi =
√

T(β̃ − β̂ )′Σ̂−1
i

√
T(β̃ − β̂ ), (A.63)

and

√
T(β̃ − β̂ ) = Ω̂−1

LS (Y′M1u/
√

T)− Ω̂−1
IV (Y′(M1−M)u/

√
T)

L→ (Π0′
2 ΣZΠ0

2 +ΣV)−1(Π0′
2 S̄2u +SVε +δ 0)− (Π0′

2 ΣZΠ0
2 )−1Π0′

2 S̄2u ,(A.64)

Σ̂i
p→ σ2

u∆Π , ∆Π = (Π0′
2 ΣZ̄2

Π0
2 )−1− (Π0′

2 ΣZ̄2
Π0

2 +ΣV)−1, i = 1, 2, 3. (A.65)

So, following (A.11)-(A.13), we find

Hi
L→ χ2(G, µδ 0

)

whereµδ 0
= 1

σ2
u
δ ′

0(Π0′
2 ΣZ̄2

Π0
2 +ΣV)−1∆−1

Π (Π0′
2 ΣZ̄2

Π0
2 +ΣV)−1δ 0. By the same way, we can show

that

T2
L→ 1

G
χ2(G, µδ 0

), Tl
L→ χ2(G, µδ 0

), l = 3, 4, T1
L→ F(G, k2−G, µδ 0

).
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For the statisticRH , its denominator1T u′MX̄u converges toσ2
u. Its numerator is

1
k2

u′(MX1 −MX̄)u =
1
k2

u′MX1Z̄2√
T

(

Z̄′
2MX1Z̄2

T

)−1 Z̄′
2MX1u√

T
. (A.66)

Moreover, we have

Z̄′
2MX1Z̄2

T
p→ Σ ∗

Z̄2
= ΣZ̄2

−ΣZ̄2
Π0

2 (Π0′
2 Σ−1

Z̄2
Π0

2 +ΣV)−1Π0′
2 ΣZ̄2

Z̄′
2MX1u√

T
=

Z̄′
2u√
T
− Z̄′

2M1Y
T

(

Y′M1Y
T

)−1 Y′M1u√
T

L→ S̄2u−ΣZ̄2
Π0

2 (Π0′
2 Σ−1

Z̄2
Π0

2 +ΣV)−1(Π0′
2 S̄2u +SVε +δ 0)

∼ N[−ΣZ̄2
Π0

2 (Π0′
2 Σ−1

Z̄2
Π0

2 +ΣV)−1δ 0, σ2
uΣ ∗

Z̄2
].

Thus,

RH
L→ 1

k2
χ2(k2, νδ 0

) , (A.67)

whereνδ 0
= 1

σ2
u
δ ′

0(Π0′
2 ΣZ̄2

Π0
2 +ΣV)−1Π0′

2 ΣZ̄2
Σ ∗−1

Z̄2
ΣZ̄2

Π0
2 (Π0′

2 ΣZ̄2
Π0

2 +ΣV)−1.

(B) Suppose now that rank(Π0
2 ) ≤ G. Since δ → 0 as T → +∞, we can observe that equa-

tions (A.19)-(A.33) still hold so that we have

H3
L→ χ2(G). (A.68)

By proceeding as in Theorem3.1, we get the results for the other statistics.

PROOF OFTHEOREM 4.1 Assume thatδ = 0. Under the assumptions of the model and ifΠ2 =

Π0
2/

√
T whereΠ0

2 is ak×G constant matrix (Π0
2 = 0 is allowed), then we have

TΩ̂IV
L→ΨV = (ΣZ̄2

Π0
2 + S̄2V)′Σ−1

Z̄2
(ΣZ̄2

Π0
2 + S̄2V), Ω̂LS

p→ ΣV , (A.69)

1
T

Y′M1u
p→ δ = 0, Y′(M1−M)u

L→ (ΣZ̄2
Π0

2 + S̄2V)′Σ−1
Z̄2

S̄2u , (A.70)

σ̂2 = u′u/T − (u′M1Y/T)Ω̂−1
LS (Y′M1u/T)

p→ σ2
u−δ ′Σ−1

V δ = σ2
u , (A.71)

β̃ −β = (TΩ̂IV )−1Y′(M1−M)u
p→Ψ−1

V (ΣZ̄2
Π0

2 + S̄2V)′Σ−1
Z̄2

S̄2u . (A.72)

Thus, we get

σ̃2 =
u′u
T

−2
u′M1Y

T
(β̃ −β )+(β̃ −β )′Ω̂LS(β̃ −β )

L→ σ̄2
u, Σ̂i

L→ 1

σ̄2
u
Ψ−1

V , i = 1, 2,
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whereσ̄2
u = σ2

u + S̄′2uΣ−1
Z̄2

(ΣZ̄2
Π0

2 + S̄2V)Ψ−1
V ΣVΨ−1

V (ΣZ̄2
Π0

2 + S̄2V)′Σ−1
Z̄2

S̄2u, so that

Hi
L→ 1

σ̄2
u
S̄′2uΣAS̄2u, i = 1, 2,

whereΣA = Σ−1
Z̄2

(ΣZ̄2
Π0

2 + S̄2V)Ψ−1
V (ΣZ̄2

Π0
2 + S̄2V)′Σ−1

Z̄2
. Sinceσ̄2

u ≥ σ2
u, we have

Hi ≤
1

σ2
u
S̄′2uΣAS̄2u, i = 1, 2.

BecausēS2u andS̄2V are independent whenδ = 0, it follows that

ΣZ̄2
Π0

2 + S̄2V)′Σ−1
Z̄2

S̄2u|S̄2V
∼ N(0, σ2

uΨV) , (A.73)

whereΨV is defined in (A.69). Hence,

1
σ2

u
S̄′2uΣAS̄2u|S̄2V

∼ χ2(G) ,

and Hi ≤ χ2(G), i = 1, 2. Furthermore,Σ̂3
p→ 1

σ2
u
Ψ−1

V , which entails thatH3|S̄2V

L→ χ2(G), i.e.

H3
L→ χ2(G). By the same way, we can also show that

T1
L→ F(G, k2−G), T2

L→ 1
G

χ2(G), T4
L→ χ2(G) , (A.74)

T3
L→ 1

σ̄2
u
S̄′2uΣAS̄2u ≤ χ2(G), and RH

L→ 1
k2

χ2(k2) . (A.75)

PROOF OFTHEOREM 4.2 Suppose thatΠ2 = Π0
2/

√
T whereΠ0

2 = 0 is allowed. Then we have

TΩ̂IV
L→ΨV = (ΣZ̄2

Π0
2 + S̄2V)′Σ−1

Z̄2
(ΣZ̄2

Π0
2 + S̄2V), Ω̂LS

p→ ΣV , (A.76)

1
T

Y′M1u
p→ δ 6= 0, Y′(M1−M)u

L→ (ΣZ̄2
Π0

2 + S̄2V)′Σ−1
Z̄2

S̄2u , (A.77)

σ̂2 = u′u/T − (u′M1Y/T)Ω̂−1
LS (Y′M1u/T)

p→ σ2
u−δ ′Σ−1

V δ = σ2
ε , (A.78)

β̃ −β = (TΩ̂IV )−1Y′(M1−M)u
p→Ψ−1

V (ΣZ̄2
Π0

2 + S̄2V)′Σ−1
Z̄2

S̄2u . (A.79)

σ̃2 =
u′u
T

−2
u′M1Y

T
(β̃ −β )+(β̃ −β )′Ω̂LS(β̃ −β )

L→ σ̃2
∗,

1
T

Σ̂i
L→ σ2

i∗Ψ−1
V , i = 1, 2, 3 (A.80)
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whereσ2
1∗ = σ2

2∗ = σ̃2
∗, σ2

3∗ = σ2
ε and

σ̃2
∗ = σ2

u−2δ ′Ψ−1
V (ΣZ̄2

Π0
2 + S̄2V)′Σ−1

Z̄2
S̄2u

+S̄′2uΣ−1
Z̄2

(ΣZ̄2
Π0

2 + S̄2V)Ψ−1
V ΣVΨ−1

V (ΣZ̄2
Π0

2 + S̄2V)′Σ−1
Z̄2

S̄2u.

Furthermore, we have

β̃ − β̂ = Ω̂−1
LS (u′M1Y/T)− (TΩ̂IV )−1Y′(M1−M)u

L→ Σ−1
V δ −Ψ−1

V (ΣZ̄2
Π0

2 + S̄2V)′Σ−1
Z̄2

S̄2u . (A.81)

By noting thatS̄2u = S̄2Va+ S̄2ε = S̄2VΣ−1
V δ + S̄2ε , we easily get

β̃ − β̂ L→ Σ−1
V δ −Ψ−1

V (ΣZ̄2
Π0

2 + S̄2V)′Σ−1
Z̄2

S̄2VΣ−1
V δ −Ψ−1

V (ΣZ̄2
Π0

2 + S̄2V)′Σ−1
Z̄2

S̄2ε

= Ψ−1
V [ΛVa− (ΣZ̄2

Π0
2 + S̄2V)′Σ−1

Z̄2
S̄2ε ].

whereΛV = ΨV − (ΣZ̄2
Π0

2 + S̄2V)′Σ−1
Z̄2

S̄2V = (ΣZ̄2
Π0

2 + S̄2V)′Π0
2 anda = Σ−1

V δ . So,

Hi
L→ 1

σ2
i∗

(Π0
2a−Σ−1

Z̄2
S̄2ε)

′∆V(Π0
2a−Σ−1

Z̄2
S̄2ε), i = 1, 2, 3,

whereσ2
1∗ = σ2

2∗ = σ̃2
∗, σ2

3∗ = σ2
ε , and∆V = (ΣZ̄2

Π0
2 + S̄2V)Ψ−1

V (ΣZ̄2
Π0

2 + S̄2V)′. Moreover,S̄2ε ∼
N(0, σ2

εΣZ̄2
) andS̄2ε is independent with̄S2V whenδ = 0. Thus

H3|S̄2V
L→ χ2(G, µV), µV =

1
σ2

ε
a′Π0′

2 ∆VΠ0
2a. (A.82)

SinceT3 = (κ3/T)H2, T3 = (κ4/T)H3 andκ3/T = κ4/T = (T−G)/T → 1 asT →+∞, it follows

that

T3
L→ 1

σ̃2
∗
(Π0

2a−Σ−1
Z̄2

S̄2ε)
′∆V(Π0

2a−Σ−1
Z̄2

S̄2ε),

T4
L→ 1

σ2
ε
(Π0

2a−Σ−1
Z̄2

S̄2ε)
′∆V(Π0

2a−Σ−1
Z̄2

S̄2ε) . (A.83)

By conditioning onS̄2V , we get

T4|S̄2V
L→ χ2(G, µV) . (A.84)

Moreover, by noting that plim
T→∞

(σ̃2
2) = plim

T→∞
(σ̂2) = σ2

ε , we also find

T2
L→ 1

σ2
εG

(Π0
2a−Σ−1

Z̄2
S̄2ε)

′∆V(Π0
2a−Σ−1

Z̄2
S̄2ε) andT2|S̄2V

L→ 1
G

χ2(G, µV) .

Furthermore, we can see that

Tσ̃2
1 = u′(M1−M)MŶ(M1−M)u

L→ S̄′2u(Σ−1
Z̄2

−Σ−1
Z̄2

∆VΣ−1
Z̄2

)S̄2u , (A.85)
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where the limit term in (A.85) can be written as

S̄′2u(Σ−1
Z̄2

−Σ−1
Z̄2

∆VΣ−1
Z̄2

)S̄2u = (Σ−1/2
Z̄2

S̄2Va+Σ−1/2
Z̄2

S̄2ε)
′∆ ∗

V(Σ−1/2
Z̄2

S̄2Va+Σ−1/2
Z̄2

S̄2ε),

where∆ ∗
V = Ik2−Σ−1/2

Z̄2
∆VΣ−1/2

Z̄2
is symmetric idempotent with rankk2−G. So, we haveTσ̃2

1|S̄2V
L→

σ2
ε χ2(k2−G, λV), where

λV =
1

σ2
ε
a′S̄′2VΣ−1/2

Z̄2
∆ ∗

VΣ−1/2
Z̄2

S̄2Va =
1

σ2
ε
a′S̄′2V(Σ−1

Z̄2
−Σ−1

Z̄2
∆VΣ−1

Z̄2
)S̄2Va.

Further, we have∆V(Σ−1/2
Z̄2

∆ ∗
VΣ−1/2

Z̄2
) = ∆VΣ−1

Z̄2
−∆VΣ−1

Z̄2
∆VΣ−1

Z̄2
and since∆VΣ−1

Z̄2
∆V = ∆V , it fol-

lows that∆V(Σ−1/2
Z̄2

∆ ∗
VΣ−1/2

Z̄2
) = 0. So, conditionally on̄S2V , the quadratic forms

(Σ−1/2
Z̄2

S̄2Va+Σ−1/2
Z̄2

S2ε)
′∆ ∗

V(Σ−1/2
Z̄2

S̄2Va+Σ−1/2
Z̄2

S̄2ε) and(Π0
2a−Σ−1

Z̄2
S̄2ε)

′∆V(Π0
2a−Σ−1

Z̄2
S̄2ε)

are independent and distributed as noncentral chi-squares. Thus

T1|S̄2V
L→ F(G, k2−G; µV , λV) . (A.86)

For the statisticRH, the denominator is

1
T

u′MX̄u =
1
T

(u′MX1u−u′MX1Z̄2(Z̄
′
2MX1Z̄2)

−1Z̄′
2MX1u) , (A.87)

where

1
T

u′MX1u =
1
T

u′M1u− 1
T

u′M1Y(Y′M1Y)−1Y′M1u
p→ σ2

u−δ ′Σ−1
V δ = σ2

ε ,

and
1
T

(u′MX1Z̄2(Z̄
′
2MX1Z̄2)

−1Z̄′
2MX1u)

p→ 0

underδ = 0. So, we find1
T u′MX̄u

p→ σ2
ε . For the numerator, we have

1
k2

u′(MX1 −MX̄)u =
1
k2

u′MX1Z̄2√
T

(

Z̄′
2MX1Z̄2

T

)−1 Z̄′
2MX1u√

T
. (A.88)

Moreover,
Z̄′

2MX1Z̄2

T =
Z̄′

2M1Z̄2
T − Z̄′

2M1Y
T

(

Y′M1Y
T

)−1
Y′M1Z̄2

T
p→ ΣZ̄2

becauseY
′M1Z̄2

T
p→ 0. Now, we have

Z̄′
2MX1u√

T
=

Z̄′
2u√
T
− Z̄′

2M1Y√
T

(

Y′M1Y
T

)−1 Y′M1u
T

,

where Z̄′
2u√
T

=
Z̄′

2V√
T

Σ−1
V δ +

Z̄′
2ε√
T

L→ S̄2ε + S̄2VΣ−1
V δ ,

(

Y′M1Y
T

)−1
Y′M1u

T
p→ Σ−1

V δ and Z̄′
2M1Y√

T

L→ ΣZ̄2
Π0

2 +
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S̄2V . Hence we have

1
k2

u′(MX1 −MX̄)u
L→ 1

k2
(S̄2ε −ΣZ̄2

Π0
2a)′Σ−1

Z̄2
(S̄2ε −ΣZ̄2

Π0
2a) ,

thus

RH
L→ 1

k2σ2
ε
(S̄2ε −ΣZ̄2

Π0
2a)′Σ−1

Z̄2
(S̄2ε −ΣZ̄2

Π0
2a) ∼ 1

k2
χ2(k2, µR) ,

µR = a′Π0′
2 ΣZ̄2

Π0
2a.

PROOF OF THEOREM 4.3 Let Π0
2a = 0 in the proof of Theorem4.2 above. Then, we have

µV = λV = µR = 0. Further, we can observe that

σ̃2
∗ = σ2

0∗ = σ2
ε + S̄′2εΣ−1

Z̄2
S̄2V(S̄′2VΣ−1

Z̄2
S̄2V)−1ΣV(S̄′2VΣ−1

Z̄2
S̄2V)−1S̄′2VΣ−1

Z̄2
S̄2ε (A.89)

≥ σ2
ε (A.90)

and the matrixΣ−1
Z̄2

−Σ−1
Z̄2

∆VΣ−1
Z̄2

is positive semi-definite,i.e.

Σ−1
Z̄2

−Σ−1
Z̄2

∆VΣ−1
Z̄2

= Σ− 1
2

Z̄2
(Ik2 −Σ− 1

2
Z̄2

∆VΣ− 1
2

Z̄2
)Σ− 1

2
Z̄2

≥ 0,

whereIk2 −Σ− 1
2

Z̄2
∆VΣ− 1

2
Z̄2

is idempotent of rankk2−G. Then, the results of Theorem4.3 follow.

PROOF OFLEMMA 5.1 Assume thatΠ2 is fixed. We have

β̂ = (Y′M1Y/T)−1(Y′M1y/T) = β +(Y′M1Y/T)−1(Y′M1u/T) (A.91)

β̃ = S1β̃ 1 +S2β̃ 2

= β +S1(Y
′
1EY1/T)−1(Y′

1Eu/T)+S2(Y
′
2JY2)

−1(Y′
2Ju), (A.92)

whereβ̃ 1 andβ̃ 2 are defined in (3.11). SinceY′M1Y/T
p→ Π ′

2ΣZ̄2
Π2 + ΣV andY′M1u/T

p→ δ , we

have

β̂ −β p→ (Π ′
2ΣZ̄2

Π2 +ΣV)−1δ

irrespective of whether rank(Π2) = G or not. We now focus oñβ . We have

Y′
1EY1/T

p→ Π ′
21ΣZ̄2

Π21, Y′
1Eu/T

p→ 0,

and we have

β̃ 1−β 1
p→ 0,

irrespective of whether rank(Π2) = G or not. Forβ̃ 2, we distinguish 3 cases:
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(i) if rank(Π2) = G, β reduces toβ 1 and we havẽβ p→ β .

(ii) if rank(Π2) < G, (A.91) still holds and we haveS1(Y′
1EY1/T)−1(Y′

1Eu/T)
p→ 0. Then,

S2(Y
′
2JY2)

−1(Y′
2Ju)

L→ S2NB, β̃ 2
L→ β 2 +NB, .

hence

β̃ p→ β +S2NB.

β̃ 1 is always consistent even if identification is deficient whileβ̃ 2 is consistent only when identifi-

cation is strong.

By putting (i)-(ii) together, we have

β̃ p→ β +S2NB,

where

S2NB =































0 if rank(Π2) = G,

S2B
−1S ′

2S̄′2V [Σ−1
Z̄2

−Π21(Π ′
21ΣZ̄2

Π21)
−1Π ′

21]S̄2u

if rank(Π2) < G ,

where from (A.56), we have

S2NB|S̄2VS2
∼ N[Σ−1

V δ , σ2
ε

{

S̄′2V [Σ−1
Z̄2

−Π21(Π ′
21ΣZ̄2

Π21)
−1Π ′

21]S̄2V

}−1
],

or equivalently

NB|S̄2VS2
∼ N

[

S
′
2Σ−1

V δ , σ2
εB

−1] .

PROOF OFLEMMA 5.2 Suppose thatΠ2 = Π0
2/

√
T (asymptotically weak instruments). We have

Y′M1Y/T
p→ ΣV andY′M1u/T

p→ δ . Hence, we have

β̂ p→ β +Σ−1
V δ = β +a = β ∗.

Now, we have

β̃ = [Y′(M1−M)Y]−1Y′(M1−M)y

= β +[Y′(M1−M)Y]−1Y′(M1−M)u. (A.93)

Moreover, from (A.76)-(A.77), we have

Y′(M1−M)Y = TΩ̂IV
L→ΨV ,

ΨV = (ΣZ̄2
Π0

2 + S̄2V)′Σ−1
Z̄2

(ΣZ̄2
Π0

2 + S̄2V), (A.94)
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Y′(M1−M)u
L→ (ΣZ̄2

Π0
2 + S̄2V)′Σ−1

Z̄2
S̄2u

= ΨVa+(ΣZ̄2
Π0

2 + S̄2V)′Σ−1
Z̄2

(S̄2ε −ΣZ̄2
Π0

2a). (A.95)

Thus

β̃ −β ∗ p→ N
W

Ψ ,

where N W
Ψ = Ψ−1

V (ΣZ̄2
Π0

2 + S̄2V)′Σ−1
Z̄2

(S̄2ε − ΣZ̄2
Π0

2a), and N W
Ψ |S̄2V

∼ N[−Ψ−1
V (ΣZ̄2

Π0
2 +

S̄2V)′Σ−1
Z̄2

ΣZ̄2
Π0

2a, σ2
εΨ−1

V ].

PROOF OFTHEOREM 5.3 Theorem5.3 follow from the definition of pre-test estimators given by

(5.1) - (5.3) and the results of Lemma5.1and Lemma5.2.
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