Exogeneity tests and estimation in IV regressions

Jean-Marie Dufouf
McGill University

First version: May 2007
Revised: October 2007, November 2008, December 2009
This version: March 2010
Compiled: February 25, 2013, 1:02

*The authors thank Atsushi Inoue, Marine Carrasco, Jan Kiviet @ambiBPerron for several useful comments. This
work was supported by the William Dow Chair in Political Economy (McGill UWsrsity), the Canada Research Chair
Program (Chair in Econometrics, Univetsile Montéal), the Bank of Canada (Research Fellowship), a Guggenheim
Fellowship, a Konrad-Adenauer Fellowship (Alexander-von-HumbBtrlindation, Germany), the Institut de finance
matrematique de Monéal (IFM2), the Canadian Network of Centres of Excellence [progoarMathematics of In-
formation Technology and Complex SystgM$TACS)], the Natural Sciences and Engineering Research Coohcil
Canada, the Social Sciences and Humanities Research Council afeCémaFonds de recherche sur la 8técét la cul-
ture (Qebec), and the Fonds de recherche sur la nature et les technologése() and a Killam Fellowship (Canada
Council for the Arts).

T William Dow Professor of Economics, McGill University, Centre interwnsitaire de recherche en analyse des
organisations (CIRANO), and Centre interuniversitaire de recheeafeconomie quantitative (CIREQ). Mailing ad-
dress: Department of Economics, McGill University, Leacock BuildiRpom 519, 855 Sherbrooke Street West,
Montreal, Qebec H3A 2T7, Canada. TEL: (1) 514 398 4400 ext. 09156; FAX:5{4 398 4800; e-mail: jean-
marie.dufour@mcgill.ca . Web page: http://www.jeanmariedufour.com



ABSTRACT

Weak identification is likely to be prevalent in many economic models. When instrisnage
weak, the limiting distributions of standard test statistics - like Student, Wald, liladilnatio and
Lagrange multiplier criteria in structural models - have non-standard digtitsiand often depend
heavily on nuisance parameters. Inference procedures robusakoimgtruments have been devel-
oped. These robust procedures however test hypotheses tisgearfied on structural parameters.
Even though robust procedures solve statistical difficulties related tdifidation issues, applied
researchers may want to first pre-test the exogeneity of some regrdsfore inference on the
parameters of interest. In linear IV regression, Durbin-Wu-Hausma&HPtests are often used
as pre-tests for exogeneity. Unfortunately, these tests rely on the assutmat model parameters
are identified by the available instruments. When identification is deficient ak,wee properties
of DWH tests need to be investigated. Early references that study tloesedfeweak instruments
on Hausman-type tests are not well documented and usually focus on téétinmuch is known
about pre-test estimators based on DWH tests when IV are weak. In tiés pae provide a large-
sample analysis of the distribution of DWH and RH tests under both the nulthggis (level) and
the alternative hypothesis, with or without identification. We show that utigenull hypothesis,
usual chi-square critical values are applicable irrespective of tteepee of weak instruments, in
the sense that the asymptotic critical values obtained under the identificasiam@tson provide
bounds when identification fails. We characterize a necessary andieniffcondition for DWH
and RH tests (with fixed level) to be consistent under the alternative ofgenédty. The latter
condition automatically holds when the rank condition for identification holdsHXeéts are con-
sistent when identification holds. The consistency condition also holds in & raitje of cases
where identification fails. Moreover, we study the properties of pregstainators where OLS or
IV is used depending on the outcome of DWH exogeneity tests. We presemetital arguments
suggesting that OLS may be preferable to IV in many cases where regeestogeneity may be an
issue. We present simulation evidence indicating that: (1) over a wide casgs, including weak
instruments and moderate endogeneity, OLS performs better than 2SLi8dfsichilar to Kiviet
and Niemczyk (2007)]; (2) pretest-estimators based on exogeneityahasecellent overall perfor-
mance. Hence, the recommendation of Guggenberger (2008) to abidwedmractice of pretesting
may go too far. We illustrate our theoretical results through two empirical atiglits: the relation
between trade and economic growth and the widely studied problem of sgtueducation. We
find that exogeneity tests cannot reject the exogeneity of schoaknthe IV are possibly weak in
this model [Bound (1995)]. However, “trade share” is endogensuggesting that the IV are not
too poor as showed by Dufour and Taamouti (2007).
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1. Introduction

The literature on weak instruments in linear structural models focuses poging statistical pro-
cedures which are robust to instrument quality, see Anderson and RL818, AR-test), Dufour
(1997, 2003), Staiger and Stock (1997), Wang and Zivot (1998)ibKrgen (2002, K-test), Mor-
eira (2003, CLR-test), Dufour (2005, 2007), Dufour and Jasi®@12, Stock, Wright and Yogo
(2002), Hall, Rudebusch and Wilcox (1996), Hall and Peixe (2008ndd and Newey (2001),
Doko Tchatoka and Dufour (2008). Weak instrument robust statistisgver, test hypotheses that
are specified on the parameters of interest. Although robust prosepikeeent statistical difficul-
ties related to identification, applied researchers may need to check whetherregressors are
exogenous before running inference on the parameters of interetqiing). Exogeneity tests of
the type proposed by Durbin (1954), Wu (1973), Hausman (1978)arikar and Hartley (1973)
are commonly used for this purpose. Unfortunately, such tests rely orssiuengtion that model
parameters are identified by the available instruments. When identification ks tliegoroperties
(size and power) of exogeneity tests need to be investigated. The literalaied to weak instru-
ment problems on exogeneity tests is not well documented. Early refergrbede Guggenberger
(2010) and Hahn, Ham and Moon (2010).

Guggenberger (2010) investigates the asymptotic size properties of stage-test, where in
the first stage a Hausman test is undertaken as a pretest for exogdreeitggoessor. His major
finding is that the two-stage test based on DWH-type test have arbitrargwin in large samples.
In fact, when the endogeneity between the structural and reduceefooms is local to zero of order
T-1/2 whereT denotes the sample size, the Hausman pretest statistic converges to anabobin
squared distribution. The non centrality parameter is small when the strefiji iostruments is
small. In this situation, the Hausman pre-test has low power against lodatideg of the pretest
null hypothesis and consequently, with high probability, OLS-baseddnteris done in the second
stage. However, the second stage OLS based t-statistic often takey dargervalues under such
local deviations. The latter causes size distortions in the two-stage test.etHahii2010) consider
the problem of testing the exogeneity of a subset of excluded instrumdreg.divide the excluded
instruments from the structural equation into two components. The first qenpés weak but
exogenous, while the second is strong but potentially invalid. They thenhiesialidity of the
strong component using a modified Hausman-type test. The test statistic@dapovalid despite
the presence of the weak component.

However, neither Guggenberger (2010) nor Hahn et al. (201@)dw@ formal characterization
of DWH-type tests in presence of weak instruments. Furthermore, thesisslaéed to estimation
are not addressed by these papers. For example, how do preti@stt@s based on exogeneity
tests behave when identification is deficient or weak? In particular, doafies pre-test estimators
based on exogeneity tests better perform (in term of bias and mean syuamethan usual 1V
estimators when instruments are weak?

Doko Tchatoka and Dufour (2010) provide a finite-sample charactenizaf the distribution
of DWH-tests under the null hypothesis (level) and the alternative hypesh@ower). However,



the issues related to estimation and the large-sample behaviour of the tesisaddrassed.

In this paper, we consider the problem of testing the exogeneity of incltetgdssors in the
structural equation. This problem is quite different and more complex tistimgeorthogonality
restrictions of excluded instruments, as done by Hahn et al. (2010). oW¥es fon large-sample
and study the behaviour of DWH- and RH-type tests including when ideniifices deficient or
weak (weak instruments). Furthermore, we analyze the properties (lalasean squares errors) of
pre-test estimators based on exogeneity tests.

First, we characterize the asymptotic distribution of DWH and RH tests undeuthkypoth-
esis (level) and the alternative hypothesis (power). We show that DWW Rad-tests are asymp-
totically robust to weak instruments (level is controlled) and we provide assaey and sufficient
condition under which the tests have no power [similar to Doko Tchatoka afeub(2010) and
Guggenberger (2010)]. We find that exogeneity tests have no polagr all instruments are weak.
Moreover, power may exist as soon as we have one strong instrunaetdl(entification).

Second, we characterize the asymptotic bias and mean square erro8p28ILS and pre-test
estimators based on DWH and RH tests. We find that: (1) when identificatioficgedé or weak
(weak instruments) and endogeneity is local to zém [the endogeneity between the structural
and reduced form errors converges to zero at r'ﬁtéI as the sample size grows], OLS performs
(in terms of bias and mean square error) better than 2SLS [finding similaviet lind Niemczyk
(2007)]; (2) pretest-estimators based on exogeneity tests have dfeexoeerall performance
compared with OLS and 2SLS estimators. Therefore, the recommendatiarggéGberger (2010)
to abandon the practice of pretesting may go too far.

We present two Monte Carlo experiments which confirm our theoreticaltseJ he first exam-
ines the properties (size and power) of DWH and RH exogeneity testsseboad studies the bias
and mean square error of OLS, 2SLS and pre-test estimators basedgameity tests. Our results
indicate that: (1) over a wide range cases, including weak instruments ashel @@ endogeneity,
ordinary least squares estimator (OLS) performs better than usual&Sinator; (2) pre-test esti-
mators based on exogeneity tests have an excellent overall perforrhance more preferable than
OLS and IV estimators.

We illustrate our theoretical results through two empirical applications: the nelbgBbveen
trade and economic growth [see, Dufour and Taamouti (2007), IrvdrTarvio (2002), Frankel and
Romer (1999), Harrison (1996), Mankiw, Romer and Weil (1992)] tredwidely studied problem
of returns to education [Dufour and Taamouti (2007), Angrist andeien (1991), Angrist and
Krueger (1995), Angrist and al. (1999), Mankiw et al. (1992)]eTasults indicate that exogeneity
tests cannot reject the exogeneity of schooling, which suggest thatrirestts are possibly weak
in this model [ (n.d.)]. However, “trade share "is endogenaues,instruments are not too poor as
showed in the literature [Dufour and Taamouti (2007)].

The paper is organized as follows. Section 2 formulates the model studietiors3 studies the
asymptotic behaviour of the tests when identification is strong or deficiett ¢ladentification).
Section 4 examines their behaviour when identification is weak (weak 1\¢}id®eb presents the
pre-test estimators based on exogeneity tests and characterizes thngit@gybehaviour, including



when identification is deficient or weak. Section 6 presents two Monte Caplerienents (i) the
properties (size and power) of exogeneity; and (ii) the performariase émd mean squares errors—
MSE) of pre-test estimators. Section 7 illustrates our theoretical resultsgtriovo important
applications. We conclude in Section 8 and proofs are presented in thendipp

2. Framework

We consider the linear structural model:

y = YB+Ziy+u, (2.1)
= Lyl + 25l +V, (2.2)

wherey € RT is a dependent variabl¥,c R"*C is a matrix of (possibly) endogenous explanatory
variables(G > 1) Z; € R™*X is a matrix of exogenous variableg; € RT*¥ is a matrix of IVs,
U= (U, ...,ur) € RT andV = [vq, ..., vr]' € RT*C are disturbances3 € R®, y e R, 1; €
R4*G and [T, € R%*C unknown coefficients. LeZ = [Z; : Z,] andk = k; + k2. We assume that
the “instrument matrix”Z has full-column rank an#, > G. The usual necessary and sufficient
condition for identification of this model is ratk») = G. If rank(I1») < G, B is not identified and
the instruments are weak. However, some componer@swdy be identified (partial identification)
even if this rank condition fails. We also suppose the&n be regressed dhyielding the following
equation:

u = Va+¢ (2.3)

wherea € RS is a vector of unknown coefficients,has mean zero, variancg and uncorrelated
with V.
Let

M=Mz=1-2(Z2)7'2', Z=1[21,2)], Mi=Mg =1-Z1(Z121)7'7;.  (2.4)
Then,M; — M can be expressed as
M1 — M = M1Z5(Z6M1Z2) " 2Z6My = Z5(Z5Z5) 225,

whereZ, = M1Z, | 3. LetZ =[Z;,Z5). If we replaceZ by Z in (2.26) - (2.28), then the statistics
0 (1=1,2,3), 7 (1 =1,2,3,4) andZ ¢ do not change. Therefore, the orthogonalization be-
tweenZ; andZ, has no impact on our results. To simplify the notatiaswill be used instead of
Z; [see for example, equation (2.20)].

We make the following generic assumptions on the asymptotic behaviour of maxdkgbles
[where B > 0 for a matrixB means thaB is positive definite (p.d.), and-> refers to limits as
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vedS,, Sv, &, Sve) ~ N[0, 2g] ,S andS, are uncorrelated,
o S.Lu . SlV _ S.Ls
sJ_[SZU], 5 - Sw] s [SZ]
Sw~N[0,0557], Su~NI[0,005,],
Sie ~N[0,0257], S~NJ[0,0%57],

(2.5)

(2.6)

(2.7

(2.8)

(2.9)
(2.10)

(2.11)
(2.12)

Su is ak; x 1 random vectorgy is ak; x G random matrix matriXi = 1, 2), 2y is G x G positive

definite matrix, ands2 > 0.
From the above assumptions, we have

1 ;P 1 ! p . O'S o
~Zulo, T[u vHu V}_)Z_[5 5, |70
where
d=3va,02=d5a+02,5=Sa+S=S(5,10)+S.
Furthermore,
1- j[—— b3 0
—Z’[u vV s}—>0, 2770 5| “A >0,
T T 0 Zzz

'S, Sve] ~ N[0, =5 ,S andS, are uncorrelated,

sul = [ sw [ s
[52] 5 - SN] se_[&]

7]

vedS,,

S

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)



Sw~N[0,03%7], S ~N[0,0257], (2.19)
where
ZZ_Z = ZZZ - ZZZZlZilzézzl‘ (220)

Under assumptions (2.5) - (2.12),

plimB = B+ (M33z, M2+ 5v) 15 (2.21)

T—oo

andﬁ is consistent if and only i® = 0, irrespective of the rank ofT,. In particular, under lo-
cal alternative considered by Guggenberger (2080¥ [6o/v/T — 0 asT — o], [3 is consistent.
However,

~ Y'(My— MY 1Y/ (M —M)u
B=pB+] ’(Ml—M)Y]lY’(Ml—M)u:B+[ ( 1T ) } ( 1T ) , (2.22)
so, provided that the identification condition réfk) = G holds,
Y/ (Mg —M)Y Y'(My —M)u
(1T> 255> 0, (1T) P20, (2.23)
and
plimB =j. (2.24)

T—oo

NeverthelessB does not generally converge fowhen rankl1,) < G.

This paper focuses on both testing and estimation. First, we investigate thestargple prop-
erties of DWH and RH exogeneity tests, including when identification is deficieweak (weak
instruments). Second, we study the performance (bias and mean seguarss MSE) of pre-test
estimators based on DWH and RH exogeneity tests, allowing for the preskweak instruments.

From (2.13) - (2.14), the exogeneity assumptiolY @fan be expressed as

Ho: =0 <« Hi:a=0. (2.25)

We consider the Durbin-Wu-Hausman (DWH) test statistics, namely thre®uerof Hausman-
type statisticd.74,i = 1,2, 3], the four statistics proposed by Wu (1973}, = 1,2, 3, 4] and
Revankar and Hartley (1973, RH) test statistic. These statistics are dléfinequations (2.26) -
(2.28) below:

T = kB-BYEB-B), 1=1,234; (2.26)

I = T(ﬁ_B),ii_l(B_B)a i:172a37 (227)



RHA = KrYSRY, (2.28)

wherefi = (Y'MrY)~1Y’'Myy is the ordinary least squares (OLS) estimatorﬁoffﬁ’ = [Y'(M1 —
M)Y]~1Y’(M; — M)y s the two-stage least squares (2SLS) estimat@, &, = (ko — G) /G, k2 =
(T—k]_—ZG)/G, K3 = K4:T—k1—G, KR = (T—k]_—kz—G)/kz, and

51=0%A, 5,=063A, 53=06°A, 5,=07%, (2.29)
51=0%20 - 6297, 5,=06%, 53=06%A, (2.30)
Sa= %Dlzz(z’lezz)lngl, (2.31)
Q.V:%Y’(Ml—M)Y, QLS:%Y’MlY, (2.32)
A=y - LSle—%MlMMlY, (2.33)

&%= (y—YBYMuy—YB)/T. &°=(y—YB)Mi(y-YB)/T, (2.34)
65 =(y- YB) (M1—M )(y—YB)/T=0 - &z, (2.35)
63=06°—(B—BYA(B-B)=6"-5*(B-B)5, (B-B), (2.36)
F2=(y—YBYM(y—YB)/T, 6&=yMgy /T, (2.37)

M,y = | — MY (YM1Y)Y'My, (2.38)

Note thatd? is the OLS-based estimator of, 62 is the usual 2SLS-based estimatorag (both
without correction for degrees of freedom), whité, G5 and 6% may be interpreted as alternative
IV-based scaling factors.

The link between WU -tests and Hausmag?’-tests and the regression formula of these tests
has been given in Doko Tchatoka and Dufour (2010). For exampleanwebserve thaf; = 5,
and3, = 53,50 %3 = (k3/T).# and 7, = (K4/T). 4. Sinceks/T = k4/T — 1 asT — +w, 73
is asymptotically equivalent with#2, and.7; is asymptotically equivalent withz3.

Finite-sample distributions for all exogeneity test statistics with possibly weakahd non
Gaussian errors are available in Doko Tchatoka and Dufour (2010).

We distinguish two setups: (1), = 19 is fixed; and (2)1, = M12//T, wherer? = 0 is
allowed (weak instruments). Section 3 below characterizes the limiting distrisuifdhe statistics
under the null hypothesig(= 0) and the alternative hypothesi&s# 0) when[1, is fixed (.e. does
not depend on the sample size).

3. Asymptotic behaviour of exogeneity tests

In this section, we characterize the asymptotic behaviour of the statistics thedeull © = 0)

and the alternative hypotheses#£ 0) when parameters are fixed, so they do not depend on the
sample sizd'. We distinguish two cases for the reduced form paraméiers(i) 1, = ng, with
rank(12) = G (strong identification); and (i1, = 12, with rank(119) < G (partial identification).



To recover partial identification setup, it will be useful to parameterize théeinas in Choi and
Phillips (1992):

y = Y1B1+Y2B,+Z1y+u, (3.1)
Y1 = ZilMa1+2ZolM1+ Vo, (3.2)
Yo = ZilM12+ Voo, (3.3)
where
M1 = MA, Mo=TMS, My =7, (3.4)
My = Mp=0,PBi=5B, B,= B, (3.5)
Y. = YA Yo=Y 5%, Vo1 =V, Vo =V.% (3.6)

and.v = [¥1, %] € 0(G), 0(G) denotes the orthogonal group Gfx G matrices, 7% : G x Gy
spans the null space 6fz, .71 : G x Gq, B, : G1 x 1 andf, : Gy x 1. The necessary and sufficient
condition for identification of3, is

ranl<(l721) = Gl, (3-7)

wherefll,; is aky x G;. This can be seen easily by considering the reduced form for modet (3.1)
(3.6)

y = Zm+2Z;m+V (3.8)

wherermy = 1181 + M2B, + Y, T = [M2134, andv = u+ Vo218, + Vi2B,. So, B, is identified if
and only if ranKI1,1) = Gy. Itis important to observe thf; andf, are linear combinations of the
original coefficientB. The original coefficien is recovered by the equation

B =1B1+ 2B, (3.9)

Equation (3.9) can then be used to find the effect of partial identificatiotn@mentire vecto.
Of course, if ranklT,) = G (strong identification), we have,f3, = 0 and. = .71 = |g. Also,
if rank(l12) = 0 (complete non identification), we hav#f; =0 and.¥ = ., = lg. So, the
above parametrization includes strong identification and complete non idditifisatups as spe-
cial cases.

We assume thgi; is identified bui3, may not (partial identification}),e.

rank(21) = G, rank(lM12) < Gy. (3.10)

In particular, if ranklM12) = 0, B, is not identified at all. Note that assumption (3.10) does not
constitute a restriction of the model. If assumption (3.10) fails, either the moddtngified or



absolutely not. Both setups are special cases of (3.1)-(3.6) and wélcbhgered by our results.
From the above parametrization, the 2SLS estimatdt,aind 3, are defined by

Bi = (Y{EV) YEy, B, = (33%) Y3y, (3.11)

where

E = Mi—M—(Mi—MYa[YA(Mi— MY 2Y5(M1 — M),
J = Mi—M—(Mi—M)Y1[Y{ (M1 — M)Y1] Y] (M1 — M). (3.12)

Throughout the paper, the following definitions and notations will be used:

04 = 05+ Su25 (25 Mo+ S )W T2V K, H (25 Mo+ S ) 25, S, (3.13)
£ ZA(S) SN (7, Mo+ Sv) W, H (7 Mo+ S ) 58, (3.14)
35 =57, — 25, (M3 27,13+ 5) '17 23, (3.15)

W = (Sz,Mo+Sv)' 25 (Zzzl'lo+Szv) (3.16)

By = (37, Mo+ S) K M5z, MTo+ ), A5 = I, — 352y 3572, (3.17)
0%, = 03, = 6%, 03, = 0%, 63, = 65, = 0%, 63, = 67, (3.18)

82, = (53’ swa+ 5575 ) 5 (25 *Sa+ 55 1%5), (3.19)

§2=0 —25%1(Zzzﬂo+szv) 25 S

+S,25 (27, Mo+ S )W 5V K (25, Mo+ Sv) 25 Sou, (3.20)

Uy = alga Moy Moa= &' 3,1 Moy Moz, o, (3.21)

Ay = Glga’gvzz—zl/za\’;zz‘zl/@va_ aSy (53! - 57 37 Sa, (3.22)
z,?:zzzzls_zv@vzz—zlszv 1szvzz—2 , (3.23)

02 = 02+ Mg (N3 27,10+ 5v) LA, (3.24)

0%, =02+, 5> 182\/ (Sw2s 132\, 5 (Sw s 182\/ 1S, 55 1szg>a (3.25)

Finally, for a random variabl€ whose distribution depends on the sample Jizeahe notation
4 L +o means thaP[{ > x] — 1 asT — o, for anyx. We will now characterize the behaviour of
the tests under the null hypotheslgs (section 3.1) and the alternative (section 3.2).

3.1. Asymptotic distributions under the null hypothesis

This subsection describes the asymptotic behaviour of DWH and RH tessthiechull hypothesis
0 =0, including when identification is deficient. Theor@l below shows that all exogeneity tests
are valid (level is controlled) even if parameters are not identifiable.



Theorem 3.1 ASYMPTOTIC DISTRIBUTIONS UNDER THE NULL HYPOTHESIS Suppose the
assumption$2.1) - (2.3) and(2.5) - (2.12) hold, and letd = 0. If rank(/12) = G, then

A5 x¥6),i1=1,2,3, (3.26)
L B L1, L 2 B
1 2
AA = X (k). (3.28)
2

L 1
~2
Oy

A = X(G), (3.29)

NSyt SoMg < XA(G),i = 1,2,

7 L FG k-0, %5 2x0),

1
To = XA(G). it NS S2 e < XP(C), (3.30)
u
25 Zx2(k0) (3.31)
k2 2 )5 .

where

Mo = Sa+ B LSSy [25 — Man(M15157,Ma1) M M5]Soe
Mg, ~ N[Fa 02587,

B = SS[E5 —Maa(MM5127, M) 11| Sv 72,

o = SrBSy =S5 — Ma(M3157,Ma1) M3 ]Sw,

g2 is defined by3.24), a= 3,6 and.#; is defined in(3.6) - (3.9).

In the above theorem, sinée= 0 if and only ifa= 0, we first note that/g|s, ~ N [0, 05%*1] .
Second, when identification is strong, the asymptotic null distribution of atjexeity tests is free
of nuisance parameters (as expected). When identification fails, the tiomull distribution of
T, T, T4 andiz3 is still pivotal. However, the null distribution of3, 5#7 and.7% is asymptoti-
cally bounded by a central chi-square w@degrees of freedom. Overall, usual chi-square critical
values are applicable irrespective of the presence weak instruments sSarte that the asymptotic
critical values obtained under the identification assumption provide bounels idbntification fails
[similar to Doko Tchatoka and Dufour (2010)]. We now study the propeudighe tests under the
alternative hypothesid +# 0.



3.2.  Asymptotic power

We distinguish two cases for the characterization of the power of the t@sthe(parameter rep-
resenting the level of endogeneihyis fixed and different from zero; (ii) the endogeneity is local to
zero,i.e, & converges to zero at rafe 2 as the sample size increasés=+ 6o/v/T, d is given).
Theorem3.2below presents the results forfixed.

Theorem 3.2 ASYMPTOTIC POWER Suppose the assumptiof&1) - (2.3) and (2.5) - (2.12)
hold. If [T, = 12 is fixed, the necessary and sufficient conditions under which DWH BinexB-
geneity tests are consistentlTé’a =# 0, where a= 2\716. More precisely,

A5 o, TS 0 2t b o, (3:32)

fori=1,2,3 andI=1,2, 3,4, ifand only if[1Ja # 0.

Theorem3.2 above provides the necessary and sufficient condition for consystéadl DWH
and RH exogeneity tests whey, is fixed. The result shows that exogeneity tests can detect an
exogeneity problem even if not all model parameters are identified, ma\drtial identification
holds. In particular, we have the following result when model parametergdantified (strong
instruments).

Theorem 3.3 ASYMPTOTIC DISTRIBUTIONS UNDER THE NULL HYPOTHESIS Suppose the as-
sumptiong2.1) - (2.3) and(2.5) - (2.12) hold. If ranK 19) = G, then all DWH and RH exogeneity
tests are consistent.

Clearly, exogeneity tests may be inconsistent only when identification is defitMhen iden-
tification is strong, the tests always detect an endogeneity problem. Weweashow the following
result concerning the asymptotic behaviour of the tests vﬂh: 0.

Corollary 3.4 ASYMPTOTIC DISTRIBUTIONS UNDER THE NULL HYPOTHESIS Suppose the
assumption$2.1) - (2.3) and(2.5) - (2.12) hold and letr7, = 12 fixed. IfT,a=0, and ranK1J) =
G, then

A5 x3(G),i=1,2,3, (3.33)
75 F(G, k—G), %béxz(e), 75 x%(G),1 =3, 4, (3.34)
L 1 2
RA = XK. (3.35)
2
If M,a= 0, and rank12) < G, then
A NG 3 S0 < X(O), 1 = 1,2, 755 XE(G), (3.36)
u
L L1,



1

To = XA(G), Ts = 23 NGS5 S2 e < XP(G), (3.37)
u
25 Zx?(o) (3.38)
k2 2 b .

where&ﬁ, N8, Y2 and.«/ are defined in Theore® 1.

When ranKI‘IS) =G, I‘Iga = 0 if and only if & = 0. Hence, the null hypothesis is satisfied.
Since identification is strong, all DWH and RH statistics are pivotal. Howevieen rankr1?) <
G, M%a =0 does not entails thal = 0. The results of the above corollary indicate that when
identification is deficient ano!'lga = 0, the asymptotic distribution of the statistics is the same
under the null hypothesi®(= 0) and the alternative hypothesis £ 0). Consequently, exogeneity
tests have no asymptotic power in this case.

We now characterize the asymptotic distributions of the statistics tests whendibgesrity is
local to zero 6 = 6¢/+/T) and ranKI‘IS) = G (strong identification). The results are presented in
the following theorem.

Theorem 3.5 ASYMPTOTIC POWER  Suppose that the assumptiofisl) - (2.3) and (2.5) -
(2.12) hold, and letd = 6o/+/T. We have:

‘% : X2(67 U50)7 I = 17 27 37 (339)
1
A 5 F(Gke—Gils), 7= GX(G. Ha) T = X*(G, Hs,), | = 3.4, (3.40)
1
RA 5 Xtk Vo), (3.41)

if rank(M9) = G, where

ey = 52068 251+ 50) 05418 57,1+ 5) 56
Vs, = ;aag<ng222ng+zv>1ngz22:;21222ng<ng222ng+zv>150 (3.42)
and
A NG 4 S0 < X(O), 1 =12, 755 XF(G), (3.43)

u

7 5 FGk-G), %5 2x©)

1
&3

L

T 5 XAG), B S M Foe < XA(G), (3.44)
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RA = x2(k2), (3.45)

if rank(l‘lg) <G, Where(”fﬁ, 8, 2 and/ are defined in Theore@® 1.

First, we note that when identification is strong, all exogeneity tests haveanompower against
local alternatives. However, the tests are not consistent whedevey,/ VT — 0, asT — +oo. If
d¢ # 0, the distributions of all exogeneity tests are non central chi-squaresewienon centrality
parameters are given in (3.42). Second, when identification is deficierdjgtribution of the tests
remain the same as whén= 0. In this case, all tests have no power against local alternatives. So,
OLS procedure is used with a high probability in the second stage if oneauses-stagd-test
based on a DWH or RH pre-tests. Unlike Guggenberger (2010), weesilirsSection 5 that this is
a good new in the view point of estimation. In fact, when identification is defigied endogeneity
local to zero, OLS estimator is preferable to 2SLS. Since pre-test estirbatoase like OLS in this
case, they are also preferable to 2SLS. Clearly, the practice of piregtebould not be abandoned,
as recommended by Guggenberger (2010).

We now focus on weak instruments setup.

4. Asymptotic behaviour of exogeneity tests when IV are asymptoti-
cally weak

In this section, we focus on weak instruments setup and characterizehtgnédng of DWH and RH

tests under the null hypothesid £ 0) and the alternative hypothesid # 0). Weak instruments

are characterized as in Staiger and Stock (199F)(1; = 19/v/T whererllJ is ak, x G constant

matrix andl‘lg =0 is allowed. The subsection 4.1 studies the properties of the tests undettithe n
hypothesis.

4.1. Asymptotic distributions under the null hypothesis

Following Staiger and Stock (1997), weak instruments are characteyzibe fbocal to zero condi-
tion for the reduced form matriki,:

My=n2/VT, (4.1)

whereflyJ is ak, x G constant matrix and1 = 0 is allowed. Theorem.1 below shows that all
exogeneity are valid when instruments are weak.

Theorem 4.1 ASYMPTOTIC DISTRIBUTIONS UNDER THE NULL HYPOTHESIS Suppose that the
assumption$2.1) - (2.3) and(2.5) - (2.12) hold. If [T, = M12/+/T (M2 = 0 is allowed, then under
the null hypothesi® = 0, all DWH and RH tests are valid (level is controlled). In particular, we

12



have

,%? b ?§ZUZAS_2U S XZ(G)7 = 11 27 % L) XZ(G)7 (42)
u
HSF L1y =% R AN
1=F(Gk=0), %=x%(C), Z=Xx(G), B= SSuTaSu<X(G), (43)
u
L1 2

Sy is defined in(2.16) - (2.19), g2 and 3, are defined in(3.13) - (3.25).

We observe that when identification is weak (weak 1Vs), the statistics7,, .7, and .73 are
asymptotically pivotal under the null hypothesis £ 0). However, the asymptotic distributions
of 73, 74 and % depend on model parameters, but are bounded by a central che sejtiaG
degrees of freedom. Henc&;, 573 and.7# are conservative [similar to Doko Tchatoka and Dufour
(2010)]. We now study the properties of the tests under the alternatpahgsisd = 0.

4.2. Asymptotic power

We will now examine the properties of exogeneity tests under the alterngfpattesisd = 0. The
following theorem presents the results.

Theorem 4.2 ASYMPTOTIC POWER  Suppose that the assumptiofisl) - (2.3) and (2.5) -
(2.12) hold. If [, = M2 //T (N2 =0is allowed, then, fori= 1,2, 3 and | =1, 2, 3, 4, we have

L1 = o
T %'(I‘Ié)a— 221215_25)%\/(/7381— 22:21528)7 | =1,2 3,4, (4.6)
(E3
L 1 = = 1
RA = o (S = 2258 278G — 25, T50) ~ X e). (4D)

wherepg = a1y 37, M%, k1 = (ko — G)/G, k2 =1/G andks = k4 = 1. Furthermore, we have,

S b o (Ma- 27150 By 5150/ < G ) 1=1.2. (49)
5|5+ X2(G, by ), TiISiv — F(G, ke —G; iy, Av), (4.9)
CASYES éx2<G, W), JalS = X2(G, my), (4.10)

TSy & 6’? (MPa—25"Se) v (Ma— 251 )|Sv < X2(G, iy, (4.11)
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S, S are defined in(2.16)-(2.19), 02, i =1,2,3 &2, | =1,2,3,4, and Ay, Uy, Ay, are
defined in(3.13) - (3.25).

From the above theorem, we note that when identification is weak, exogésstiydo not con-
verge under the alternative hypothedist 0. The asymptotic distribution of the statistics converge
to finite non-degenerate distributions. Furthermore, the conditional limitinghdittns of .73,

T, Ty and R H# givenS_zv are noncentral chi-square distributions whifg follows a double non-
centralF-distribution. However71, %, and.Z3 are bounded upward by a non central chi square
distribution withG degrees of freedom and non centrality paramgter This suggests that exo-
geneity tests can have non zero power even in presence of weak ideiotifiqorovided the non
central parameters in the above theorem are different from zerowé&oan then characterize in
Theorem4.3 below, the necessary and sufficient condition under which exogenstsy tave no
power when identification is weak.

Theorem 4.3 AsYMPTOTIC POWER Under the assumption of Theoreh?, the power of DWH
and RH tests does not exceed the nominal levels if and onljaf= 0. More precisely, we have
underffa=0

15 = .
% b UT%SZRSZE S XZ(G)v I = 1) 27 % b XZ(G)7 (412)
O

L

F5F(Gk—-G), %5 =xAG), > xAG), (4.13)

1
G
Pt 1 g sog 2 L1,

3%@925&3& < X(G) 2 = X (k). (4.14)

wherea?,, =9 are defined in3.13) - (3.25) and S in (2.16) - (2.19).

Observe that wheflda = 0, the non centrality parameters in Theoréi® vanish so that the
statistics 73, 72, 94 andZ.7 have central chi-square limiting distributions whitg is asymp-
totically distributed as a Fisher witlk, — G, G) degrees of freedom. Furthermog#i, J# and. 73
are bounded by a central chi-square distribution ttegrees of freedom. Therefore, the asymp-
totic power ofs743, %, 4, 1 andZ ¢ equals the nominal levels while those##f, .7 and.73
cannot exceed the nominal level [similar to Doko Tchatoka and DufourQR0 Section 5 below
studies the asymptotic behaviour of pre-test estimators based on DWH atesRH

5. Pre-test estimators based on exogeneity tests

An important and practical problem in econometrics consists in using DWH=adtype tests to
pretest the exogeneity of regressors to decide whether one shoijdagipary least squares or in-
strumental variables methods for statistical inference. Although this prasemas to be prevalent
in applied research, some authors, including Guggenberger (20@),shown that the two-stage
t-test procedure based on DWH-and RH-tests is unreliable from the oietgd size control when

14



endogeneity is local to zero of ord€r1/2 and the instruments are weak. In both cases, exogene-
ity tests are inconsistent and the two-stagest procedure may be arbitrary size distorted. This is
showed by Guggenberger (2010), using some configurations of rpadaineters. Guggenberger
(2010) suggests to use a 2SLS bastsbt when instruments are strong and the identification-robust
procedures [Anderson and Rubin (1949, AR-test), KleibergenZ2Qaest), Moreira (2003, CLR-
test), projection-based techniques, see Dufour (1997, 2003),uD{@®05, 2007), split-sample
methods, see Dufour and Jasiak (2001)] when there are weak. Tgesis that the practice of
pretesting of the regressors should be abandoned. However, itideaothow behave the pre-test
estimators when instruments are weak. The framework of Guggenb@@fe)(focuses in testing
and does not deal with estimation. The main objective of this section is to studyettaviour
of pre-test estimators based on exogeneity tests, including when identificatieficient or weak
(weak instruments).

We consider eight pre-test estimators associated to DWH and RH preaéstddby equations
(5.1) - (5.3) below:

Bui = BLUA<cyas+BLA > Cpyag),i=1,23 (5.1)
BTI = B]l[‘% < C:ﬁ,lff] +B1[‘% > Cﬂ,lfd 7| = 17 27 37 47 (52)
Bru = BURA <Caypi e +BLURH > Chpi g, (5.3)

(5.4)

Whereﬁ andf% are the OLS and 2SLS estimatorghfl[.] is the indicator functionand ,,, 1 _¢,i=
1,2,3,¢cz1-¢1=1,2 3,4, andc 4, 1_¢ are the usual £ ¢ quantile of the standard distributions
of DWH and RH statistics respectively. It is important to observe that thégsteestimators defined
by (5.1)-(5.3) are convex combinations of OLS and 2SLS estimators. Efghtvallocated to each
estimator is determined by the outcome of the underline pre-test in the first stage

Lemmab.1 below characterizes the probability limit of OLS and 2SLS estimators wheis
fixed.

Lemma5.1 ASYMPTOTIC POWER  Suppose the assumptio(®1) - (2.3) and (2.5) - (2.12)
hold. If 1, is fixed, then

glimﬁ = Bis=B+(My=z Mo+ 2v) 13, (5.5)
glimle = Bl,gnmfszzﬁﬁws, (5.6)
pimB = By =B+-%2M8 (5.7)

T—o0
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where

0if rank(l,) = G,
N8

(5.8)
Sya+ B 1S3y (251 — Mor(Myy 7, Mo1) 15y Spe if rank(Mz) < G,

Nlg, ~ N[F3a, 0287, B = 73S (251 — Ma(M3157,M21) 2 1M31]Swv. 75, .75 is defined in
(3.6)-(3.9) and a= >, 'o.

We make the following observations concerning Lentria
(i) From (5.7)-(5.8), we have

plimB =B +a+ %ML = B + SN

T—o00

Oif rank(z) =G,
wheref* =B +aand ML=
B LSS (25 — MMy 37, MMa1) M)y Spe if rank(IM) < G.

Furthermore, by using the generalization of matrix inversion lemma [see Kylaval Sohie (1986,
Equation (1d))], we have

(3v + M35, M) =5, — 5,1 (1 + M35, M5, ) 557, M5t
so that

(My2z,M+3y) 10 = 5,10 -5, M1+ M535, M5, 11355,M,5, 15
= a- 5, (1 + M35 M5, 1335, Mha.

Thus (5.5) can be written as

plimB = B* — 5,11 + M3z, M5, ) L1555, Ma.

T—oo

(i) If r,a= 0, we have

giTB - B'=B+a, $IiTB:B*+Y2J1§0, (5.9)
AMSERB) = gﬂim[MSE(fB)]:HaH:6’2\726, (5.10)
AMSEB) = plimMSE(B)] = [la+ 7245’ = lal] + |72 45| + 28724

= 85,204+ N Sy T o N+ 2d SoNL, (5.11)
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whereAMSE(é) is the asymptotic mean square errorfo& {B, B}. Hence OLS is always con-
sistent under the hypothesis of exogenetly= 0), but 2SLS may not provided identification is
deficient [rank/T,) < GJ.

Suppose that rarfkl;) = G. Then, we havél,a= 0 if and only ifa= 0. By using (5.9), we get

pimB = B, plimB =B, (5.12)
T—oo T—o0
AMSEB) = AMSEJp)=0. (5.13)

Both OLS and 2SLS estimators are consistent if strong is identification (astex)).

Suppose now that rafkl;) < G (i.e. identification is deficient or weak). Sindéa = 0 =
a= 0, if endogeneity is presena & 0), OLS converges to a pseudo vagie= 8 +a while 2SLS
converges t@” plus a non degenerate random variable. More interestingly, the pseiu®i/
is observationally equivalertb the true valugB. To see this latter point, consider equations (2.1)-
(2.3). From (2.2) and (2.3), we have=Y — Z1I1 — Z»l1, andu = Va+ €. Substituting these
expressions in (2.1) gives

y = YB*+Zzﬂ2a+ le+£, (5.14)
wheref* = B +aandy* = y+ Ma. If Mya= 0, (5.14) becomes
y = YB' +Ziy +e, (5.15)

and ﬁ* = [3 Clearly, the pseudo valug® is observationally equivalent to the true val@eThis
means that when identification fails, unlike 2SLS estimator, the inconsister@y $festimator is
not too problematic as one should think. Now, define

AMSEy 5(B*) = gnmuﬁ —B*|| and AMSEy(B*) = gnmufz ~Bl.  (5.16)
If Ma= 0, then we have
AMSE@LS(B*) = 0, AMSEy ([3*) = Hszl/BOH > 0. (5.17)

Hence, OLS is preferable to 2SLS if identification is deficient. Of coursd4{-(5.17) remain
valid if I, = 0 (complete non identification ¢).

(i) If I,a # 0, then both OLS and 2SLS estimators are biased and their respective asymp-
totic biases and mean square errors (center@d)are given by

plim(B—B7) = =5, (14535, M5, ") 1355, Ma,

T—oo

AMSEy.§(B*) = d%a, (5.18)
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where? = M3z Mo(1 + My 37, M5, 1) 715, 2(1 + N335, M,5, 1) 7111355, M, and

piim(B—p") = 245, AMSBoLs(B") = 7248l (5.19)
So, unlike 2SLS, we observe that the asymptotic bias and mean squarefe@®baS, centered
at B*, depend on the degree of endogeneity Furthermore, sinc& > 0, AMSEk g(B8") is a
nondecreasing and unbounded functionaofThis suggests that ifl,a £ 0 and endogeneity is
large, 2SLS is preferable to OLS.

(iv) Finally, we note that[Bl is still consistent even if identification is deficient or weak,
while Bz is consistent only when IV are strong. Hence, the inconsistenﬁyanimes fron‘ﬁz.

We can state a similar lemma concerning the behaviour of OLS and 2SLS estimatms
instruments are asymptotically weakl{ = ﬂzo/ﬁ ]. The results are presented in Lemb&
below.

Lemma 5.2 ASYMPTOTIC POWER Suppose that the assumptid@sl) - (2.3) and(2.5) - (2.12)
hold. If M, = M2/+/T, wherel? is a k x G constant matriX/12 = Ois allowed, then

pimB = B~ (5.20)
T—ow
pimB = B*+. 4V, (5.21)
T—o

where W, = (2,19 + S 22125, + Sy ), A = W H(Z5M3 + Sv) 2.1 (See — 25,1152,
AN, ~N—®, (zzzn0+szv) 1zzzn0a oW andB* =B +a

So, we see that the observations in Lenbria(ii) still hold.
We can now prove the above results on the behaviour of pre-test essrdafored in (5.1)-(5.3).

Theorem 5.3 ASYMPTOTIC POWER Suppose the assumptiof&1) - (2.3) and (2.5) - (2.12)
hold. If 1, is fixed, then

im (B, —B") = —py 3y 1+ M55, a3, Y) 133 Mot
T—oo
(1= py) L2, (5.22)
where %, is defined by(5.8). If M, = M12/+/T, then

pim(B, —B") = (1—py)s), (5.23)

T—o

where.#3" is defined in Lemm&.2and

py = lim P[V/<c>//l ¢ (5.24)

T—o00
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and? € {Hi, TI,RH}, i=1,2,31=1,2 3 4.

We make the following remarks:

(i) whenT s is fixed, if furtherlM,a = 0, we have

plim (B, —B") = (1—py)S2M < So N5, (5.25)

T—oo

AMSEy (B") = (1—py)*AMSEy(B") < AMSEy(8"). (5.26)

In particular, when identification is deficient, the two-stage estimator is jtadfeto 2SLS. If1,a #
0, we havepy = 0 (consistency of DWH and RH tests) and

pim(B, —B") = M, (5.27)

T—o00

AMSE, (B) = AMSEy(B"). (5.28)

So, pre-test estimators based on exogeneity tests behave like 2SLS2Sitgds preferable to
OLS whenlT,a # 0 and endogeneity is large, pre-test estimators estimators are also Ipeefera
OLS in this cases;

@iy if i, = ng/ﬁ (instruments are asymptotically weak), the results are simildija = 0.
Thus, pre-test estimators based on exogeneity tests are preferablesto 2S

Overall, pre-test estimators based on exogeneity have an excelleatnpanice compared to
OLS and 2SLS estimators.

Section 6 below presents the Monte Carlo experiment.

6. Monte Carlo experiment

In this section, we perform two Monte Carlo experiments. The first expetistedy the effects
of weak 1Vs on DWH and RH tests. In this experiment, we consider thre@:s€ty Strong iden-

tification of model parameters; (2) partial identification; and (3) weak ideatifin. The second
experiment analyzes the performance (bias and MSE) of the pre-tiesa&ss based on DWH and
RH exogeneity tests. The framework of this experiment is similar to Gugggabé010).

6.1. Size and power of DWH and RH tests

Consider the two endogenous variables model described by the followiagydnerating process:

y=Y1B1+YoBs+u, (Y1,Y2) = (Zol21,2Z20M22) + (V1,Va), (6.29)
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whereZ; is aT x ky matrix of instruments such tha follow i.i.d N(O, I,) fort =1, ..., T, I
and[1,;, are vectors of dimensidkg. We assume that

u=Va+¢&=Via; +Voar+¢, (6.30)

wherea; anda, are 2x 1 vectors anc is independent witlv = (V1,V2), Vi andV, areT x 1
vectors. Through this experimei,ande are drawn as

1t, V) ~ , and & ~ ,1), forall t=1,...,T. .
Vi, V) 29N 0 0 1 d &*N(,1), forall 1,...,T (6.31)

The above setup allows us to take into account situations wheréB,, 3,)’ is partially identified.
In particular, if 121 = 0 and det/75,/M22) # 0, the instrument&, cannot identifyB3,. However,3,
is identified. We define

31 =n1Co, M= N,Cy, (6.32)

wheren, andn, take the value 0 (design of complete non identificatiof}, (design of weak
identification) or.5 (design of strong identification)Co,C1] is aky x 2 matrix obtained by taking

the first two columns of the identity matrix of ordis. The number of instruments varies in
{5,10,20} and the true value @ is set aif3, = (2,5)’. Itis worthwhile to note that when, andn,
belong to{0, .01}, the instrument&, are weak and both ordinary least squares and two stage least
squares estimators @ in (6.29) are biased and inconsistent unless- a, = 0. The simulations

are run the sampl&€ = 500, and the number of replications = 10,000. The endogeneity is
chosen such that

a=(a,a) € {(-20,0),(-5,5),(0,0),(.5,.2)", (100,100} . (6.33)
From the above setup, the exogeneity hypothesi¥ fisrexpressed as
Ho:a= (as,a2)’ = (0,0)". (6.34)

The nominal level of the tests is 5%. For each value of the vegtave compute the empirical
rejection probability of exogeneity test statistics. Wtees: 0, the rejection frequencies are the
empirical levels of the tests. Howevergit 0, the rejection frequencies represent the power of the
tests.

The results are presented in Table 1 below. In the first column of the tablepert the statistics
while in the second column, we report the valuekofnumber of excluded instruments). Finally
in the other columns, we report for each value of the endogeaeityd instrument qualitieg; and
1, the rejection frequencies at nominal level 5%.

First, we note that all exogeneity tests are valid whether the instruments arg straveak. In
particular,. 71, 9, T4, 53 andRH control the level while73, .74 and.>% are conservative when
IVs are weak. HoweverZs, Hi and .77 do not exhibit this problem when identification is strong
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[see the columria;,a;)’ = (0,0)" in Table 1 below].

Second, all exogeneity tests have a low power when Betand 3, are not identified even in
large-sample Nevertheless, when at least one compong@rnisaélentified [Table 1 (continued)], all
exogeneity tests exhibit power.
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Table 1. Power of exogeneity tests at nominal level 8%; 2, T = 500

(a,a2)" = (—20,0)

(a1,8)" = (=5,5)

(a]_,az)/ = (0, 0)/

(al,az)’ = (.57 .2)/

(a1,a2)’ = (100, 100/

ke | ny=0 ny=.01 n;=5{nm=0 n,=01 n=5|n=0 n=.01 n=5|n=0 =01 ny=5n,=0 nN=01 ;=25
N2=0 np=0 nNp=0nNp,=0 np=0 np=01np,=0 1n;=0 np=0]n,=0 1np,=0 1n,=0]n,=0 np=0 1np,=0
A 5 5.24 6.23 100 5.12 5.35 100 5.06 4.76 4.73 4.8 4.98 9491 | 491 5.96 100
) 5 4.66 91.92 100 511 27.86 100 511 491 4.43 5.35 5.09 100 4.92 98.13 100
T3 5 0.02 13.61 100 0.04 0.51 99.98 0 0 0.99 0.02 0.03 99.45| 0.01 19.26 99.99
T 5 4.64 91.89 100 5.06 27.79 100 5.03 4.89 4.38 5.29 5.09 100 4.88 98.13 100
JA 5 0.02 13.26 99.93| 0.04 0.45 99.86 0 0 0.64 0.02 0.03 98.25| 0.01 18.87 99.88
R Z) 5 0.02 13.72 100 0.05 0.53 99.98 0 0 1.01 0.02 0.03 99.46| 0.01 19.39 99.99
%) 5 4.68 91.94 100 5.14 27.96 100 5.12 494 4.44 5.39 5.12 100 4.98 98.13 100
R | 5 4.76 100 100 5.04 45.45 100 5.02 5.02 4.74 5.05 5.59 100 5.34 100 100
A 10| 5.26 6.71 100 5.46 6.32 100 5 5.37 4.96 5.16 5.15 100 5.23 7.52 100
D 10 4.63 86.64 100 4.75 30.49 100 4.84 5.6 491 4.74 5.53 100 491 95.81 100
T3 10| 0.16 46.63 100 0.17 4.49 100 0.14 0.2 1.7 0.12 0.24 100 0.19 64.18 100
T 10| 4.62 86.63 100 4.7 30.45 100 4.84 5.57 4.9 4.68 5.48 100 491 95.81 100
s | 10| 0.15 45.96 100 0.17 4.26 100 0.14 0.2 0.92 0.12 0.23 99.99 | 0.19 63.68 100
6 | 10| 0.16 46.97 100 0.17 4.62 100 0.15 0.2 1.72 0.15 0.25 100 0.19 64.5 100
65 | 10| 4.68 86.67 100 4.77 30.55 100 4.87 5.65 4.93 4.78 5.56 100 4.96 95.83 100
%7 | 10 4.7 100 100 4.5 67.61 100 5.01 5.44 4.89 4.78 5.69 100 4.85 100 100
A 20| 5.07 10.67 100 5.27 8.1 100 4.84 5.15 5.03 4.82 5.45 100 4.99 11 100
T 20| 5.07 86.47 100 5.17 31.8 100 4.79 5.3 5.07 5.16 5.51 100 4.87 93.16 100
I3 | 20 1.2 79.4 100 1.38 17.44 100 11 1.46 2.87 1.22 1.52 100 1.28 89.05 100
T 20| 5.03 86.43 100 5.13 31.71 100 4.78 5.23 5.06 5.14 5.46 100 4.87 93.16 100
s | 20 1.16 79.11 100 1.28 17.08 100 1.03 1.42 1.44 1.11 1.43 100 1.2 88.91 100
I | 20 1.21 79.52 100 1.43 17.58 100 1.13 1.48 2.91 1.26 1.56 100 1.32 89.1 100
3 | 20| 5.08 86.49 100 5.22 31.83 100 4.83 5.33 5.13 5.17 5.54 100 4.88 93.16 100
X | 20 | 5.27 100 100 5.06 86.37 100 5.01 5.07 4.99 4.97 5.84 100 5.26 100 100




€¢c

Table 1 (continued). Power of exogeneity tests at nominal level®%2, T = 500

(a]_, az)/ = (—20, 0)/

(a]_, az)/ = (—57 5)/

(a1,@2) = (0,0)

(a]_,az)/ = (.5, .2)/

(81,a2)/ = (lOQ 100)/

ke | 1,=0 n;=.01 nm=5|n=0 n=01 n=5)n=0 n=01 n=5|n=0 n=01 nN=5|n=0 nNy=01 ny=2=
N2=5 Np=5 Np=5|Np=5 Np=5 Np=5|Np=5 1N=5 Np=5|N=5 Np=5 Np=5|Np=5 Np=5 1MNp=-"-

A 5 4.72 5.64 99.56 5.1 5.28 99.49 5.17 5.04 5.33 5.25 4.95 57.68 5.07 5.33 99.5°
) 5 4.59 90.91 100 4.96 64.46 100 5.26 4.94 5.02 5.34 5.79 99.35 5.32 94.61 100
T3 5 0.82 27.15 100 0.91 9.89 100 0.84 0.92 4.31 0.78 0.99 99.18 1.04 30.41 100
T 5 4.55 90.9 100 491 64.42 100 5.25 4.9 5 5.33 5.79 99.35 5.26 94.59 100
JA 5 0.75 26.34 100 0.8 9.38 100 0.74 0.8 4.21 0.63 0.87 99.16 | 0.87 29.62 100
R Z) 5 0.84 27.37 100 0.95 10.1 100 0.86 0.94 4.36 0.81 1.03 99.21| 1.06 30.64 100
%) 5 4.63 90.94 100 5 64.52 100 5.29 4.98 5.04 5.38 5.82 99.35| 5.35 94.64 100
R | 5 4.7 100 100 4.98 99.1 100 5.07 5 4.86 5.54 6.46 97.45 541 100 100
A 10 5.19 7.33 100 4.93 6.55 100 4.83 4.97 5.13 5.2 4.85 91.46 5.19 7.75 100
D 10 531 86.33 100 5.32 50.06 100 4.99 4.95 4.87 5.28 5.7 99.56 | 4.99 91.52 100
T3 10 1.59 61.19 100 1.58 21.63 100 1.42 1.69 4.34 1.63 1.96 99.39 1.61 69.56 100
T 10 5.3 86.32 100 5.29 49.98 100 4.96 4.94 4.83 5.24 5.66 9955| 4.94 91.51 100
s | 10 1.45 59.83 100 1.43 20.57 100 1.22 1.44 4.21 1.46 1.67 99.36 1.41 68.37 100
6 | 10 1.62 61.44 100 1.63 21.73 100 1.44 1.71 4.38 1.69 2.01 99.41 1.62 69.85 100
65 | 10 5.36 86.34 100 5.35 50.17 100 5.02 5.02 4.92 5.3 5.75 99.56| 5.01 91.54 100
%7 | 10 4.44 100 100 5.06 98.91 100 5.34 4.9 4.84 5 5.95 95.38 5.01 100 100
A 20 511 7.85 100 4.94 6.22 100 4,93 5.05 5.35 51 5.02 94.32 5.25 8.1 100
T 20 5.42 76.16 100 4.85 30.65 100 4.76 5.25 5.59 5.02 491 98.81 5.24 84.89 100
I3 | 20 2.77 70.09 100 2.59 20.47 100 2.56 2.77 4.9 2.67 2.84 98.6 2.84 80.64 100
T 20 5.39 76.12 100 4.84 30.55 100 4.73 5.2 5.57 5 4.89 98.8 5.2 84.85 100
s | 20 2.65 69.59 100 24 19.9 100 2.36 2.57 4.76 251 2.61 98.52 2.68 80.17 100
I | 20 2.85 70.24 100 2.64 20.63 100 2.58 2.83 4.93 2.7 2.88 98.62 2.85 80.7 100
5 | 20 5.43 76.19 100 4.88 30.7 100 4.78 531 5.6 5.04 4,92 98.82 5.25 84.92 100
X | 20 5.19 100 100 4.61 94.7 100 4.66 5.12 5.32 5.03 5.29 86.39 5.59 100 100




6.2. Performance of OLS, 2SLS and two-stage estimators

Consider the single simultaneous equations system described by the foll0GiRAg

y=YB+u,

Y =202+,

(6.35)

wherey andY are T x 1 random vectorsZ, is a T x ko matrix of instruments such that

i.i.d

Zx ~ N(O,ly,), t=1,....T, and I, is a vector of dimensiok, such that1, = #ECHC’
where C is a ko, x 1 vector of ones andi? is a concentration parameter.
{0, 13, 200, 100Q 2000000, where the values gii less than 613 correspond to weak instruments
setup while the values greater than 613 are for strong identification [seeeHaHausman and
Newey (2008)]. The correlation betwearandV also varies in{0, .05, .1, .5, .6, .95} and the true
value of B is et at 10. We takdé, = 5 instruments to guarantee the existence of finite moments
for both 2SLS and OLS estimators (note alternative choicds gfeater than 3 lead to the same
conclusions). The sample sizelis= 500 and the number of replicationdNs= 10,000 The results

are presented in Tables 2- 7 above.

We vany in

In the first column of the tables, we report the different estimators while isgbend, we report
the concentration parameteud which represents the quality of the IV. Finally, the other columns
report the correlatiop between the errors and (possibly) endogenous regressors.

Our major findings can be summarized into two points: (1) over a wide rarggs canclud-

ing weak IV and moderate endogeneity, OLS performs better than 2Sldnfisimilar to Kiviet

and Niemczyk (2007)]; (2) pretest-estimators based on exogeneityamaggcellent overall per-
formance compared with usual IV estimator. This suggests that the pratpoetesting based on
exogeneity tests is not to bad (at least in the viewpoint of estimation) as claiyn@ddgenberger

(2010).
Table 2:: Absolute bias of OLS, 2SLS and two-stage estimators.

Estimators U2, p— 0 .05 1 5 6 .95
0 -1.2E-04 5.1E-02 1.0E-01 4.5E-01 5.1E-01 6.9E:{01
13 2.1E-05 5.0E-02 1.0E-01 45E-01 5.1E-01 6.9E:01

OLS 200 -4.6E-05 5.1E-02 9.9E-02 4.5E-01 5.1E-01 6.9E:01
1000 -8.0E-04 4.9E-02 9.8E-02 4.5E-01 5.1E-01 6.9E:01
2000000 | -1.6E-05 5.7E-03 1.1E-02 4.9E-02 5.7E-02 7.6E:02
0 5.6E-03 5.3E-02 1.4E-02 45E-01 5.1E-01 6.9E:{01
13 2.7E-03 5.0E-02 9.8E-02 4.4E-01 5.1E-01 6.9E:01

2SLS 200 3.1E-03 5.4E-02 8.9E-02 4.1E-01 4.8E-01 6.4E:01
1000 14E-03 3.9E-02 7.1E-02 3.1E-01 3.7E-01 4.8E:01
2000000 | -3.4E-05 2.4E-04 -1.1E-05 1.3E-04 4.1E-04 4.9E:04

Continued on next page

24



Table 2 — continued from previous page

Estimators w2l p—]| O .05 1 5 6 .95
Pre-tests 0 45E-03 5.0E-02 10E-01 4.5E-01 5.1E-01 6.8E
Two-stage 13 2.2E-03 4.7E-02 9.9E-02 45E-01 5.1E-01 6.9E
T 200 1.6E-03 5.5E-02 9.9E-02 4.4E-01 5.0E-01 6.8E
1000 1.1E-03 4.7E-02 9.2E-02 4.2E-01 4.8E-01 6.4E
2000000 | -4.6E-05 4.3E-03 5.5E-03 1.3E-04 4.1E-04 4.9E

0 2.5E-03 4.8E-02 1.0E-01 4.5E-01 5.1E-01 6.8E

13 1.5E-03 5.0E-02 9.9E-02 45E-01 5.2E-01 6.9E

P 200 2.9E-03 5.3E-02 9.6E-02 4.4E-01 5.1E-01 6.7E
1000 2.9E-03 4.8E-02 9.0E-02 4.0E-01 4.6E-01 6.0E
2000000 | -4.2E-05 3.4E-03 2.8E-03 1.3E-04 4.1E-04 4.9E

0 1.4E-04 5.1E-02 1.0E-01 45E-01 5.1E-01 6.9E

13 -3.7E-04 5.1E-02 1.0E-01 4.5E-01 5.1E-01 6.9E

P 200 5.4E-05 5.1E-02 9.9E-02 4.5E-01 5.1E-01 6.9E
1000 2.0E-04 4.9E-02 9.7E-02 4.4E-01 5.0E-01 6.7E
2000000 | -4.2E-05 3.4E-03 2.8E-03 1.3E-04 4.1E-04 4.9E

0 25E-03 4.8E-02 1.0E-01 4.5E-01 5.1E-01 6.8E

13 1.6E-03 5.0E-02 9.9E-02 45E-01 5.2E-01 6.9E

T 200 2.9E-03 5.3E-02 9.6E-02 4.4E-01 5.1E-01 6.7E
1000 -2.8E-03 4.7E-02 9.0E-02 4.0E-01 4.6E-01 6.0E
2000000 | -4.2E-05 3.4E-03 2.8E-03 1.3E-04 4.1E-04 4.9E

0 8.6E-05 5.0E-02 1.0E-01 4.5E-01 5.1E-01 6.9E

13 -3.7E-04 5.1E-02 1.0E-01 4.5E-01 5.1E-01 6.9E

S 200 5.4E-05 5.1E-02 9.9E-02 4.5E-01 5.1E-01 6.9E
1000 3.8E-04 4.9E-02 9.6E-02 4.4E-01 5.0E-01 6.7E
2000000 | -4.4E-05 3.4E-03 2.8E-03 1.3E-04 4.1E-04 4.9E

0 6.7E-05 5.1E-02 1.0E-01 4.5E-01 5.1E-01 6.9E

13 3.7E-04 5.1E-02 1.0E-01 4.5E-01 5.1E-01 6.9E

4 200 5.4E-05 5.1E-02 9.9E-02 4.5E-01 5.1E-01 6.9E
1000 1.3E-04 4.9E-02 9.7E-02 4.4E-01 5.0E-01 6.7E
2000000 | -4.3E-05 3.4E-03 2.8E-03 1.3E-04 4.1E-04 4.9E

01
01
01
01
04

01
01
01
01
04

01
01
01
01
04

01
01
01
01
04

01
01
01
01
04

01
01
01
01
04
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Table 2 — continued from previous page

Estimators U2, p— 0 .05 1 5 6 .95
0 2.6E-03 4.86-02 1.0E-01 4.5E-01 5.1E-01 6.8E
13 1.5E-03 5.0E-02 9.9E-02 4.5E-01 5.2E-01 6.9E
W4 200 2.8E-03 5.3E-02 9.6E-02 4.4E-01 5.1E-01 6.7E
1000 -2.8E-03 4.8E-02 9.0E-02 4.0E-01 4.6E-01 6.0E
2000000 | -4.4E-05 3.4E-03 2.8E-03 1.3E-04 4.1E-04 4.9E
0 -1.4E-03 5.1E-02 1.0E-01 4.5E-01 5.1E-01 6.9E
13 1.3E-03 4.9E-02 9.9E-02 4.5E-01 5.2E-01 6.9E
R 200 1.0E-03 5.3E-02 9.7E-02 4.4E-01 5.1E-01 6.8E
1000 -1.3E-03 4.8E-02 9.3E-02 4.2E-01 4.9E-01 6.3E
2000000 | -3.2E-05 4.6E-03 5.9E-03 1.3E-04 4.1E-04 4.9E
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Table 3:: Absolute MSE of OLS, 2SLS and two-stage estimators.

Estimators ul, p— 0 .05 1 5 6 .95
0 2.0E-03 4.6E-03 1.2E-02 2.0E-01 2.7E-01 4.8E
0 2.0E-03 4.6E-03 1.2E-02 2.0E-01 2.7E-01 4.8E
13 2.0E-03 4.5E-03 1.2E-02 2.0E-01 2.7E-01 4.8E
OLS 200 2.1E-03 4.6E-03 1.2E-02 2.0E-01 2.7E-01 4.8E
1000 2.0E-03 4.4E-03 1.2E-02 2.0E-01 2.6E-01 4.7E
2000000 | 2.2E-04 2.5E-04 3.4E-04 2.6E-03 3.5E-03 6.0E
0 3.4E-01 3.5E-01 3.4E-01 4.7E-01 4.9E-01 6.5E
13 3.3E-01 3.3E-01 3.5E-01 4.6E-01 5.0E-01 6.5E
2SLS 200 3.1E-01 3.2E-01 3.2E-01 4.3E-01 4.6E-01 5.8E
1000 2.2E-01 2.3E-01 2.3E-01 29E-01 3.2E-01 3.8E
2000000 | 2.5E-04 2.5E-04 2.5E-04 25E-04 25E-04 2.5E
Pre-tests 0 6.4E-02 6.9E-02 7.7E-02 2.5E-01 3.1E-01 5.1E
Two-stage 13 7.3E-02 6.3E-02 7.2E-02 2.5E-01 3.1E-01 5.1E
A 200 6.8E-02 6.1E-02 7.5E-02 2.4E-01 3.0E-01 5.0E
1000 3.9E-02 4.2E-02 5.3E-02 2.2E-01 2.8E-01 4.6E
2000000 | 2.3E-04 2.6E-04 3.2E-04 25E-04 25E-04 2.5E
0 9.4E-02 1.0E-01 1.1E-01 2.7E-01 3.2E-01 5.2E
13 9.4E-02 8.7E-02 9.8E-02 2.7E-01 3.3E-01 5.3E
) 200 8.9E-02 9.9E-02 9.8E-02 2.7E-01 3.2E-01 5.1E
1000 5.3E-02 6.8E-02 7.1E-02 2.3E-01 2.9E-01 4.5E
2000000 | 2.3E-04 2.6E-04 2.9E-04 25E-04 25E-04 2.5E
0 4.2E-03 7.7E-03 1.5E-02 2.0E-01 2.7E-01 4.8E
13 4.6E-03 6.5E-03 1.4E-02 2.0E-01 2.7E-01 4.8E
A 200 3.8E-03 7.8E-03 1.5E-02 2.0E-01 2.7E-01 4.8E
1000 6.7E-03 9.1E-03 1.6E-02 2.0E-01 2.6E-01 4.6E
2000000 | 2.3E-04 2.6E-04 29E-04 25E-04 25E-04 2.5E
0 9.4E-02 1.0E-01 1.1E-01 2.7E-01 3.2E-01 5.2E
13 9.4E-02 8.7E-02 9.8E-02 2.7E-01 3.3E-01 5.3E
T 200 8.9E-02 9.9E-02 9.8E-02 2.7E-01 3.2E-01 5.1E
1000 5.3E-02 6.7E-02 7.1E-02 2.3E-01 2.9E-01 4.5E
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Table 3 — continued from previous page

Estimators U2, p— 0 .05 1 5 6 .95
2000000 | 2.3E-04 2.6E-04 2.9E-04 2.5E-04 25E-04 2.5E
0 4.2E-03 7.5E-03 1.5E-02 2.0E-01 2.7E-01 4.8E
13 4.6E-03 6.3E-03 14E-02 2.0E-01 2.7E-01 4.8E
J4 200 3.86-03 7.6E-03 1.5E-02 2.0E-01 2.7E-01 4.8E
1000 6.4E-03 9.1E-03 1.6E-02 2.0E-01 2.6E-01 4.6E
2000000 | 2.3E-04 2.6E-04 2.9E-04 2.5E-04 25E-04 2.5E
0 4.3E-03 7.7E-03 1.5E-02 2.0E-01 2.7E-01 4.8E
13 4.6E-03 6.5E-03 1.4E-02 2.0E-01 2.7E-01 4.8E
W2 200 3.8E-03 7.8E-03 1.5E-02 2.0E-01 2.7E-01 4.8E
1000 6.8E-03 9.1E-03 1.6E-02 2.0E-01 2.6E-01 4.6E
2000000 | 2.3E-04 2.6E-04 2.9E-04 2.5E-04 25E-04 2.5E
0 9.4E-02 1.0E-01 1.1E-01 2.8E-01 3.2E-01 5.2E
13 9.4E-02 8.7E-02 9.9E-02 2.7E-01 3.3E-01 5.3E
W4 200 9.0E-02 9.9E-02 9.8E-02 2.7E-01 3.2E-01 5.1E
1000 5.3E-02 6.8E-02 7.1E-02 2.3E-01 2.9E-01 4.5E
2000000 | 2.3E-04 2.6E-04 2.9E-04 2.5E-04 25E-04 2.5E
0 5.0E-02 5.1E-02 5.2E-02 2.4E-01 3.0E-01 5.0E
RA 200 4.7E-02 5.1E-02 5.7E-02 2.3E-01 2.9E-01 4.9E
1000 2.7E-02 3.7E-02 4.2E-02 2.2E-01 2.8E-01 4.6E
2000000 | 2.2E-04 2.6E-04 3.2E-04 2.5E-04 25E-04 2.5E
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Table 4:: Relative bias of OLS and two-stage estimators compared

D

76

to 2SLS.
Estimators wl,p—| O .05 1 5 6 .95
0 -0.02 0.96 7.02 0.99 1.01 1.00
13 0.01 1.00 37.35 8.96 192.59 13.80
OLS 200 -0.01 16.57 32.10 144.92 166.48 223.16
1000 -0.56 34.04 68.02 308.08 353.88 474.02
2000000 | 0.47 -168.17 -322.79 -1455.03 -1683.21 -2249,
Pre-tests 0 0.81 0.95 7.12 0.99 1.01 1.00
Two-stage 13 0.81 094 1.01 1.01 1.00 1.00
AN 200 0.52 1.03 1.12 1.06 1.06 1.06
1000 -0.75 1.19 1.30 1.36 1.32 1.34
2000000 | 1.35 17.72 -522.69 1.00 1.00 1.00
0 0.45 0.91 6.97 1.00 1.00 0.99
13 0.57 1.00 1.01 1.01 1.01 1.00
T 200 0.93 0.99 1.08 1.06 1.06 1.05
1000 -2.02 1.22 1.27 1.30 1.26 1.25
2000000 | 1.25 14.12 -262.32 1.00 1.00 1.00
0 0.03 0.96 6.98 0.99 1.01 1.00
13 -0.14 1.02 1.02 1.01 1.01 0.99
T3 200 -0.02 0.94 1.11 1.08 1.08 1.08
1000 0.14 1.26 1.36 1.42 1.37 1.40
2000000 | 1.25 14.14 -263.08 1.00 1.00 1.00
0 045 0.91 6.97 1.00 1.00 0.99
13 0.60 1.00 1.01 1.01 1.01 1.00
T4 200 0.93 0.99 1.08 1.06 1.06 1.05
1000 -1.96 1.21 1.27 1.30 1.26 1.25
2000000 | 1.25 14.14 -262.70 1.00 1.00 1.00
0 0.02 0.95 6.97 0.99 1.01 1.00
13 -0.14 1.02 1.02 1.01 1.01 0.99
A4 200 -0.02 0.94 1.11 1.08 1.08 1.08
1000 0.26 1.26 1.36 1.42 1.37 1.40
2000000 | 1.28 14.21 -264.63 1.00 1.00 1.00

Continued on next pag
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Table 4 — continued from previous page

Estimators w2l p—| 0 .05 1 5 6 .95
0 0.01 0.96 6.98 0.99 1.01 1.00

13 -0.14 1.02 1.02 1.01 1.01 0.99

¥ 200 -0.02 0.94 1.11 1.08 1.08 1.08
1000 0.09 1.26 1.36 1.42 1.37 1.40
2000000 | 1.28 14.12 -262.21 1.00 1.00 1.00

0 0.47 0.1 6.97 1.00 1.00 0.99

13 0.55 1.00 1.01 1.01 1.01 1.00

H 200 091 0.98 1.08 1.06 1.06 1.05
1000 -1.93 1.22 1.27 1.30 1.26 1.25
2000000 | 1.28 14.10 -262.21 1.00 1.00 1.00

0 -0.25 0.96 7.19 0.99 1.01 1.00

13 0.50 0.99 1.01 1.00 1.01 1.00

RA | 200 0.33 0.98 1.09 1.07 1.07 1.07
1000 091 1.22 1.31 1.35 1.33 1.32
2000000 | 0.94 18.98 -558.08 1.00 1.00 1.00

30




Table 5:: Relative bias of 2SLS and two-stage estimators compared

to OLS.
Estimators U2, p— 0 05 .1 5 6 .95
0 -4595 1.04 0.14 1.01 0.99 1.00
13 12794 1.00 0.98 0.99 0.99 1.01
2SLS 200 -67.27 1.05 090 0.92 0.93 0.93
1000 -1.80 0.79 0.72 0.69 0.72 0.70
2000000 | 2.11 0.04 0.00 0.00 0.01 o0.01
Pre-tests| 0 -37.41 099 1.01 1.00 1.00 0.99
Two-stage 13 103.22 094 0.99 1.00 1.00 1.01
N 200 -35.00 1.08 1.00 0.98 0.98 0.98
1000 1.34 095 094 094 094 093
2000000 | 2.84 0.75 050 0.00 0.01 o0.01
0 -20.87 0.95 099 1.01 0.99 0.99
13 73.16 1.00 099 100 1.00 1.01
) 200 -62.63 1.04 0.97 0.98 0.98 0.98
1000 3.64 0.97 091 0.90 0.90 0.87
2000000 | 2.63 0.60 0.25 0.00 0.01 o0.01
0 -1.17 1.00 099 1.00 1.00 1.00
13 -17.59 1.02 1.00 1.00 1.00 1.00
T3 200 1.18 099 1.00 1.00 1.00 1.00
1000 -0.25 1.00 0.98 0.98 0.98 0.97
2000000 | 2.63 0.60 0.25 0.00 0.01 o0.01
0 -20.87 0.95 099 101 0.99 0.99
13 77.13 1.00 099 100 1.00 1.01
T4 200 -62.63 1.04 0.97 0.98 0.98 0.98
1000 3.52 096 091 0.90 0.91 0.87
2000000 | 2.63 0.60 0.25 0.00 0.01 o0.01
0 -0.71 099 0.99 1.00 1.00 1.00
13 -17.59 1.02 1.00 1.00 1.00 1.00
A 200 1.18 099 1.00 1.00 1.00 1.00
1000 -0.47 1.00 0.98 0.99 0.98 0.97
2000000 | 2.70 0.60 0.25 0.00 0.01 o0.01
Continued on next page
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Table 5 — continued from previous page

P N O O O

P N ® P ©

Estimators [ wlp—] o© 05 1 5 6 .95
0 056 1.00 0.99 1.00 1.00 1.

13 1759 1.02 1.00 1.00 1.00 1.

o 200 1.18 099 1.00 1.00 1.00 1.
1000 -0.16 1.00 0.98 0.98 0.98 O.
2000000 | 2.69 0.60 0.25 0.00 0.01 O.

0 21,70 095 099 1.01 0.99 O.

13 7027 1.00 099 1.00 1.00 1.

s 200 61.32 1.04 097 0098 098 O.
1000 3.47 096 0.91 0.90 0.90 O.
2000000 | 2.70 0.60 0.25 0.00 0.01 O.

0 11.68 1.00 1.02 1.01 1.00 1.

13 63.41 099 099 1.00 1.00 1.

RA 200 2229 1.03 098 0.99 0.99 O.
1000 1.63 0.97 0.94 094 0.95 O.
2000000 | 1.98 0.80 0.54 0.00 0.01 O.

R N © O O
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Table 6:: Relative MSE of OLS and two-stage estimators com-

pared to 2SLS.
Estimators uwl,p—| 0 05 1 5 6 .95
0 0.01 0.01 0.04 043 054 0.73
13 0.01 0.01 0.04 062 081 1.45
oLS 200 0.01 0.01 0.04 065 085 153
1000 0.01 0.02 005 091 120 215
2000000 | 0.89 1.03 1.39 10.75 14.08 24.43
Pre-tests| 0 0.19 0.20 0.23 055 062 0.7
Two-stage 13 0.22 0.19 0.21 055 0.62 0.7
7N 200 0.22 0.19 024 057 066 0.8
1000 0.18 0.18 0.23 0.75 086 1.1
2000000 | 091 1.03 125 1.00 100 1.0
0 028 029 031 059 066 0.8
13 0.29 0.27 028 058 065 0.8
T 200 029 031 031 063 0.70 0.8
1000 024 030 031 079 089 1.1
2000000 | 0.92 1.03 1.16 1.00 1.00 1.0
0 0.01 0.02 0.05 044 054 0.7
13 0.01 0.02 0.04 044 053 0.7
T3 200 0.01 0.02 0.05 047 058 0.8
1000 0.03 0.04 0.07 068 082 1.2
2000000 | 0.92 1.03 1.16 1.00 1.00 1.0
0 028 0.29 031 059 066 0.8
13 0.29 0.27 028 058 065 0.8
T 200 029 031 031 063 0.70 0.8
1000 024 029 031 079 089 1.1
2000000 | 0.92 1.03 116 1.00 100 1.0
0 0.01 0.02 0.05 044 054 0.73
13 0.01 0.02 0.04 0.44 053 0.73
A 200 0.01 0.02 0.05 0.47 058 0.83
1000 0.03 0.04 0.07 0.68 0.82 1.20

Continued on next pag
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Table 6 — continued from previous page

Estimators uw’l,p—| 0 05 1 5 6 .95
2000000 | 092 1.03 1.16 1.00 1.00 1.00

0 0.01 0.02 0.05 044 054 0.7

13 0.01 0.02 0.04 044 053 0.7

2 200 0.01 0.02 005 047 058 0.8

1000 0.03 0.04 0.07r 0.68 0.82 1.2

2000000 | 092 103 1.16 100 1.00 1.0

0 028 0.29 031 059 0.66 0.8

13 0.29 0.27 0.28 058 0.65 0.8

W %) 200 0.29 031 031 063 0.70 0.8

1000 0.24 030 031 0.79 089 11

2000000 {092 103 1.16 100 100 10

0 0.15 0.15 0.15 051 0.60 0.7

13 0.14 0.15 0.17 050 059 0.7

R 200 0.15 0.16 0.18 054 0.65 0.8

1000 0.12 0.16 0.18 0.76 0.87 1.1

2000000 | 091 103 126 100 1.00 1.0
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Table 7:: Relative MSE of 2SLS and two-stage estimators com-

pared to OLS.
Estimators U2, p— 0 .05 1 5 6 .95
0 169.09 76.96 28.18 232 1.85 1.37
13 163.78 72.86 28.97 228 1.90 1.38
2SLS 200 150.90 68.59 27.02 212 1.72 121
1000 109.10 52.27 19.84 1.47 1.22 0.82
2000000 | 1.12 099 0.74 0.09 0.07 0.04
Pre-tests 0 3215 1526 6.36 1.26 1.15 1.07
Two-stage 13 36.17 1392 6.04 126 117 1.08
N 200 33.08 1333 6.40 121 1.13 1.05
1000 19.29 957 457 110 1.05 0.97
2000000 | 1.02 1.01 092 0.09 0.07 0.04
0 47.15 2247 875 136 1.22 1.10
13 46.84 19.37 8.23 133 124 112
D 200 43.37 2154 833 133 121 1.08
1000 26.25 1543 6.12 117 1.09 0.95
2000000 | 1.03 1.02 0.85 0.09 0.07 0.04
0 2.11 169 128 1.01 1.01 1.00
13 2.28 144 113 1.01 1.01 1.00
T3 200 1.82 170 127 1.00 1.00 1.00
1000 3.33 207 139 1.00 1.00 0.98
2000000 | 1.03 1.02 0.85 0.09 0.07 0.04
0 4715 2244 874 136 122 1.10
13 46.80 19.37 8.23 133 124 112
T4 200 43.37 2150 833 133 1.21 1.08
1000 26.22 1530 6.11 1.17 1.09 0.95
2000000 | 1.03 1.02 0.85 0.09 0.07 0.04
0 2.10 165 127 1.01 1.01 1.00
13 2.28 141 113 1.01 1.01 1.00
T4 200 1.82 165 126 1.00 1.00 1.00
1000 3.17 205 138 1.00 1.00 0.98
Continued on next page
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Table 7 — continued from previous page

Estimators U2, p— 0 .05 1 5 6 .95
2000000 | 1.03 1.02 0.86 0.09 0.07 0.04
0 2.15 169 128 1.01 1.01 1.00
13 2.28 144 113 101 1.01 1.00
Wiz 200 1.82 1.70 1.27 1.00 1.00 1.00
1000 3.36 207 139 100 1.00 0.98
2000000 | 1.03 1.02 085 0.09 0.07 0.04
0 4720 2247 875 1.37 1.22 1.10
13 46.85 19.37 8.24 1.33 124 1.12
Wz 200 43.39 2155 833 1.33 121 1.08
1000 26.30 1545 6.12 1.17 1.09 0.95
2000000 | 1.03 1.02 085 0.09 0.07 0.04
0 25.09 1118 431 119 1.11 1.06
13 23.51 10.66 4.83 1.14 1.12 1.06
R 200 22.59 11.05 4.83 1.15 1.11 1.04
1000 1348 834 356 1.12 1.06 0.97
2000000 | 1.01 1.02 093 0.09 0.07 0.04
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7. Empirical illustrations

This section illustrates the behaviour of exogeneity tests through two empgipphatations related
to important issues in macroeconomics and labor economics literature: therréatiwseen trade
and growth [see, Dufour and Taamouti (2007), Irwin and Tervio 220Brankel and Romer (1999),
Harrison (1996), Mankiw et al. (1992)] and the widely studied probldmeturns to education
[Dufour and Taamouti (2007), Angrist and Krueger (1991), Artgaisd Krueger (1995), Angrist
and al. (1999), Mankiw et al. (1992)].

7.1. Trade and growth

The trade and growth model studies the relationship between standande@find openness. The
recent studies in this issue include Irwin and Tervio (2002), FrankelRomer (1999), Harrison
(1996), Mankiw et al. (1992) and the survey of Rodrik (1995). Eif@many studies conclude that
openness is conductive to higher growth, there is no evidence camgéine effect of openness on
income. Estimating the impact of openness on income through cross-cowgregsion often raises
the problem of finding a good proxy for openness. Frankel and R@880) argue that trade share
(ratio of imports or exports to GDP) which is the commonly used indicator of mgenshould be
viewed as endogenous variable, and similarly for the other indicatorsesutifade policies. So,
instrumental variables method should be applied for estimating the income-¢latienship. The
equation studied is

Yi = a+BTri+yNi + y,Ar 4+ u;, (7.1)

wherey; is log of income per capita in countryTr; the trade share (measured as a ratio of imports
and exports to GDP)); the logarithm of population, andir; the logarithm of country area. Since
the trade shar&r; may be endogenous, Frankel and Romer (1999) used an instrumsiructed

on the basis of geographic characteristics. The first stage equatimefistyi

Tri = a+bX +cN + CAr + v, (7.2)

whereX; is a constructed instrument from geographic characteristics. In thig,papeause the
sample of 150 countries and the data include for each country: the trade ish1985, the area
and population (1985), per capita income (1985), and the fitted trade €hatrument). In this
application, we focus on testing whether trade share is exogenous inlodever, it is not clear
how “weak "instruments are in this model. In fact, the F-statistic in the first segression (7.2)
is around 13 [see Frankel and Romer (1999, Table 2, p.385)], whigtind&cate a possible weak
identification problem [ Staiger-Stock (1997)]. Dufour and Taamou®{@@roposed to use directly
identification-robust procedures to draw inference on the coefficeémi®del (7.1). The projection
approach shows that there is a slight difference between the usual\@b/4e confidence sets and
the 95 % AR-based confidence sets of the coefficients of the structiuatien (7.1). The 95 %

1The data set and its sources are given in the Appendix of Frankel ameR1999)
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IV-type confidence interval for the trade share coefficienti€®1,3.95), while the corresponding
95 % AR-based confidence sefi884,4.652. However, since all the confidence sets are bounded,
we do not have a serious problem of identification in this model. We providdtamative way

to access whether the instrument used is weak by examining the behavibWidfand # .77
statistics. For example, if the test for exogeneity based on these statisticsataeject trade share
exogeneity, this may indicate that instrument are not “very poor ”. Notdhlieahodel contains only
one endogenous and one excluded instrument, HeneeG, and the statistid; is not considered

in this application because it is identically zero. Table 8 below summarizes thiestds the first
column of the table, we report the statistics while in the second and third coluvengport the
sample values and the sample p-value of these tests. In the other columepovid¢tre Monte Carlo

tests p-values for two data generating process where the disturhaamedrawn from normal and
Cauchy distributions.

Table 8. Tests for exogeneity of trade share in trade-income relation

Statistics| Sample value| Sample p-value (% MC-test p-value MC-test p-value
(normal distribution)| (Cauchy distribution)
RH 3.9221 4.95 5.0 2,74
JA 2.3883 12.23 6.15 2.93
I 2.4269 11.93 6.12 2.94
I 3.9505 4.67 5.49 2.85
D2 3.9221 4.95 5.49 2.85
T3 2.3622 12.43 6.12 2.94
T4 3.8451 4.99 5.49 2.85

Note — : Hg is rejected at nominal level = 5%.

First, we note from Table 8 tha¥3, .7, .7, andZ .57, reject trade share exogeneity whité,
6, and .73, cannot reject the null hypothesis. When we run exact Monte Carlo festSgdussian
and Cauchy type errors), we see that all statistics strongly reject thade exogeneity at level 5 %,
which means that the quality of the instrument is not too poor in this model as iopfedfour and
Taamouti (2007) . Our results also underscore the difference bexaehMonte Carlo exogeneity
procedures and earlier procedures.

7.2. Education and earnings

This application considers the well known problem of estimating returns twegidn. The literature
in this issue includes Angrist and Krueger (1991), Angrist and Kruég@95), Angrist and al.
(1999), (n.d.). The equation studies is a relationship where the log weakiyng is explained
by the number of years of education and several other covariatesa@geasquared, year of birth,
...). Since education can be viewed as an endogenous variable, Armgtigraeger (1991) used
the birth quarter as an instrument. The basic idea is that individuals born finghguarter of the
year start school at an older age, and can therefore drop outaftgsleting less schooling than
individuals born near the end of the year. Consequently, individuals &othe beginning of the
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year are likely to earn less than those born during the rest of thé.yidawever, it is well known

that the instruments used by Angrist and Krueger (1991) are weakxqhaires very little of the

variation in education; see (n.d.). So, standard IV-based inferencéésumreliable. As showed in
this paper, DWH or RH tests for the exogeneity of education will lead to a¢eemull hypothesis
of exogeneity of this variable. The model considered is specified as:

kq

y = BO+BlE+_ZlM><i+Ua (7.3)
ko - k1
E = n§+‘Zmzi+_pri>ﬁ+v, (7.4)

wherey is log-weekly earningsk: is the number of years of education (possibly endogenous),
contains the exogenous covariates (age, age squared, 10 dummiéshfaf lyear). Z contains
40 dummies obtained by interacting the quarter of birth with the year of birth.idmbdel, 3,
measures the return to education. The data set consists of the 5% pu@diaragle of the 1980 US
census for men born between 1930 and 1939. The sample size is 32B&9aiions. We test the
exogeneity of education in this model using DWH and RH statistics. The resalsuamarized
in Table 9. As showed in this table, all exogeneity tests cannot reject tlyeeeity of “education
"even at level 15%. This is true for earlier versions of the tests or the MSES.

The results can be interpreted as follow: (a) either the instruments arg stnsheducation
is effectively exogenous, (b) or education is endogenous but theiinsits are too poor and the
tests fail to detect that education is endogenous. Moreover, it is walhdected that the generated
instruments obtained by interacting the quarter of birth with the year of birthvaak, see e.g.,
(n.d.). So, our interpretation in (b) matter with these observations.

Table 9. Tests for exogeneity of education in income-education equation.

Statistics| Sample value Sample p-valug  MC-test p-value MC-test p-value
(normal distribution)| (Cauchy distribution)
R .6783 .93986 .6590 .9451
I 1.337 24757 2474 .2488
2 1.337 24756 2474 .2488
3 1.3492 .24542 2474 .2488
AN 2.0406 16111 .2302 .2308
D 1.3491 .24543 2474 .2488
T3 1.3369 . 224757 2474 .2488
T 1.3491 .24543 2474 .2488

2Other versions of the IV regression take as instruments interactions lreth@birth quarter
and regional and/or birth year dummies.
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8. Conclusion

Exogeneity tests of the type proposed by Durbin (1954), Wu (1973)sian (1978) (DWH) and,
Revankar and Hartley (1973) (RH) are built on the prerequisite of gastiong 1Vs. Not much is
known about their behaviour of such tests when identification is weak.pEpier proposes a large-
sample analysis of the distribution of these tests under the null hypothes§ fdad the alternative
hypothesis (power). Two main contributions is established.

First, the characterization of the large-sample distribution of the test statistias $shat DWH-
and RH-type tests are typically robust to weak 1V. We provide a providecagsary and sufficient
condition under which the tests have no power. In particular, the testsniogpewer when all IV
are weak [similar to Guggenberger (2010)]. But, power does exist@sas we have one strong IV.
The conclusions of Guggenberger (2010) focus on the case whéveasie weak (a case of little
practical interest).

Furthermore, we present simulation evidence indicating that: (1) Over arafgge cases, in-
cluding weak IV and moderate endogeneity, OLS performs better than EShflar to Kiviet
and Niemczyk (2007)]; (2) pretest-estimators based on exogeneity tastsah excellent overall
performance compared with OLS and IV estimators. We illustrate our thedretmats through
two empirical applications: the returns to education and the relation betwaetnara economic
growth. We find that exogeneity tests cannot reject the exogeneity obkey, indicating that 1Vs
are possibly weak in this model [ (n.d.)]. However, “trade share "is gadousij.e. IVs are not too
poor [similar to Dufour and Taamouti (2007)].
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APPENDIX

A. Proofs

PROOF OFTHEOREM3.1 Assume thad = 0. Then, we havea = 2\716 = 0. We shall distinguish
two cases: (A)T, = 12 wherellJ is ak, x G constant matrix with ranks; and (B) 1, = 19,
rank(19) < G.

(A) Suppose first thall, = 19, with rank(3) = G (strong identification). Then, we have:

On > ngszng, Qs> nd sz md+ 5y, (A.1)
YwyT2s = 0, YMuT25=0. (A.2)
From (A.1) - (A.2), we get
62T = 00/T =uu/T—(UMY/T)O LY Mu/T) 5 02, (A.3)
F2/T = Wu/T—2(UMY/T)O (Y (M —M)u/T)
(U (Mg —MY/T)QAY (M —M)u/T) & 02, (A.4)
. /u
Moreover, we can ert% as
Y'u ﬁzlu o Zu V/V(zvla) Ve _ —i+ndzzu V'e

VA R BV S ¢ T DRECVE Ve o

Wherez_z =M1, andl‘l_l =TI+ (Z/lzl)le/lZZI_lz. Sinceﬁl —p> I'I_01 = ﬂ1+221122122 I'Ig, it follows
that

Y/
F . n01$1u+n2 SZu+S/s
Thus, we get
YMu Yu <Y’Zl) (z’lzl>‘1z’1u
i oo \T)\UT ) om
L (ﬁéls]_u—i- I'IgS_QquS/E) - r_’(l)ls.Lu = ngS_ZU‘i‘S\/e’ (A.5)
L vi(Ms— M) Y2\ (B2 (D0 ngs, (A.6)
J— i f— —_— R — . .
JT ot T T VT 2=
We can then observe that
~ A Y’ Myu Y,(Ml— M) L
ﬁ(B—B) = -QLl \/» QMTH%, (A-7)
52 020n,8n = (NYzznd) 1 — (MY +5v) % i=1,23, (A.8)
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where

W= (N9 57,12+ 3) (NS S+ Sve) — (M 27,M9) "1 Sy, (A.9)
so that
H=VT(B-B)SVT(B-B) = zw’nAﬁlwmi:l, 2,3. (A.10)
IJ
Sincea = 0, we haveo? = g2, hence
M9 Sou+ Sve
2 ~NJ0, 052 . (A.11)
M5 Sy
where ’ ’
nYs; N9+, nNYz;n?
So=| 2RtV 225 (A12)
M3 2z,11; M3 2,113
This entails
W~ N{0,03(NY 55,19~ (3 + 1§ 52,719 Y} =N(0, 0%8n), (A1)
hence
5 x2(G),i=1,2,3. (A.14)
Applying the same arguments as above, we get
L 1 2 L 2 L 1 2
Z2= gX*(G), A= x*(G),1=3,4, and ZH = ~X"(ke).
2
We now derive the distribution df;. We can write
ke—GT(B—B)A (B

G T3

andT (B — B)A~Y(B — B) > W, Ar W, ~ 02x%(G). Furthermore, becaugs is orthogonal tZy,
we can observe that

T&7=U((M1—M)—PRy)u=U(M;—M)u—URyu,
whereY = (M; — M)Y. Thus, we have

%u 1SZU %unz ”gzzznz) l”2 SZU
= S5 1/2 I, —P(P'P)"'P']Z _1/25&1, (A.16)

1/2

whereP = 27/ 12 and the matriXy — P(P’'P)~1P’ is idempotent with rank, — G. Furthermore,

Uluzz—zl/zszu ~ N[O, li,], henceTd2 5 02x2(k, — G). Moreover, we can writd 52 = u'(My —
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~

M)Mg (Mg —M)uandT (8 — B)YA~L(B — B) = UAzu, where
1 - " - A gn
oy = ?(MlYQL‘Sl ~YOMHA MY M — QY

is symmetric, idempotent andlz((M; — M)Myl\ﬁl) = ((My —M)My (M1 —M))Az = 0. This en-
tails thatT &2 andT(B - [AB)’A*l(B - [3) are independent, hence asymptotically independent and
distributed as(? with k, — G andG degrees of freedom respectively. Consequently,

P 5F(G k—G). (A.17)

(B) Suppose now thalffl, = 19, where (19) < G. We shall only prove the validity of#3. The
validity of other statistics can be proved in a similar way. We recall that

A =T(B—-B)E(B-PB), (A.18)
whereZ;* = LAt with A = Q' — O/ d and Qi s and Qy are defined in (2.32).Using (3.9), we

can now write equation (A.18) as

[(B—B)—A(Br—B1) —-S2(Bo—Ba)'55 (B~ B) — F4(B1— B1) — 72(Ba — B2)IA.19)
(Bo—Bo) 7355 2(B, — Bz) 2/(B- B)—ylusl—Bm’i;*fz(Bz—Bz)
+[(B—B)— 1By~ B1)'E5 (B~ B) — 1By~ By)] (A.20)

%:

where 55 = 67[(Y/(My — M)Y)~1 — 2(Y'MyY/T)%]. We first find the limit of 5. Since
(Y'M Y/T)—1 %, (M9 55,19 + 5v) %, hence, we havé (Y'M;Y,/T) 1 2 0. Itis also easy to see
thatd? 2 o2. We now focus orfY’(M; — M)Y] 1. We have

Yi

Y (M—M)Y. =
Ys

(M1—M) [ Y1 Y2 }

| YIiMi=M)Y1 Y{(M1—M)Y, (A.21)
oYM —MYL (M —M)Y, | '
So, the partitioned inverse of’Y'(M; — M)Y.¥ can be written as
P P
SN (M —M)Y] Ly = | 2
Pa P
where
Pi = [Y{(M{—M)Ys—Y{(M;—M)Ya(Ya(M1 —M)Yo) "o (M — MYy L, (A.22)
Pr = —(3(M1—M)Y2) Y5 (M1 — M)Y1Pyy, (A.23)

P = (Y(Mi—MYo) 14 (Y3(M1 — M)Y2) Y5 (Mg — M)Y1Pyy
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Y[ (M1 — M)¥2(Y;(M1 — M)Y2) 2. (A.24)
However, we have

Yi{(My = MY/ T B 115,57 M1, V(M — M)Y1/T 20, (A.25)
BMI-M)Y2 = 5S35 %, (ML~ MY /VT 5 #Sp Mar. (A.26)

So, we get
TRy & Pu = (M55, Ma1 — MasSv 2(S3S 25 Sov72) 73S Maal ™, (A27)
TR 5 Ppy=— 5/2@2\,2:18_2\,5/2 LS Ma1Piy, (A.28)
P = Po= (5S35 S ) "+ (#5825 S 72)
% S3Sy APy Sy S2(- S5 Sy 25 Sov ) . (A.29)
Hence, we have
0 O —
Y'(My—M)Y] 1 5.7 = | S = AP,
0 P»

Furthermore, unded = 0, we havef? —-B LA 0, and using (3.11), we can show that

Bi-B1 o 0.Y5(Mi—Mu- A4S, 521S, (A.30)
! _ _
Yl('\"lﬁ'\")” L S (A.31)

So, we have
By~ By 1 3Sy [51 — Mor(M157,Mo1) M3 S = S,

whereB = 5”232\, Z— n21(n21zz—2n21)—1n§1]§2\,y2. Moreover, because from (2.3) we have
Su = Syva+ S, we easny get

N = S3a+ B 1S3 25 — Mar(M3127,Ma1) 5] Spe.

UnderHyp : & = 0, Ng|s,, ~ N[0, 02B™1]. Hence, we have’2Ng|g, ~ N[0, 02A7Y], whereA™! =
B L7} Gx G. We then see easily that

o =Sy [Z5 b= M1(M3157,M21) 1515

Now, using Anderson (2003, Theorem A.3.3 and Theorem A.3.4), wavcide P>, as

[Y3(M1 — M)Y2 — Yz(Mz — M)Y1(Y] (M1 — M)Y1) Y] (M1 — M)Yo] 1
= (B 15 B =Py (A.32)

P
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And by noting tha(.#2P,.75) = (#5B~1.75) "1 = A, we have

L 1
- —
2
O%

A= —5 N S 3 SN
Since.#2Ns|s,, ~ N[0, 0ZA71], we get
Aot 5 I3 S M, ~ XO)
Because the conditional null distribution does not depend neith&s,0we have
A5 x2(G), (A.33)

andHs still is valid even if identification is deficient.

We will now focus orH; andH,. First, we note that

6'2
whered? 2 02 and
- u'u UMY =~ ~ A~
5 = =22 (B-B)+(B-B)AsB-P)
L 2= 02+ M. Sy(NY 55, N0+ 5y) tAp S > 02, (A.35)
Hence 1 1
A5 22 8T8 Lo Mo < NGS5 So N~ X¥(G). (A.36)
u €

Second, using (2.30), we can easily show that LA LA sothat
UU

1
&3

1
= NS S Mo < 3 M S5l Sa e~ XP(G). (A.37)
&
By using the relations betwed@handH;, we get the results fof,, T3 andTs. Finally, by following
the same steps as félz, we get the results fof; and RH. Clearly, all exogeneity tests are valid
even if identification is deficient. O

PROOF OFTHEOREM3.2  (A) SupposéT, = 12 with rank(19) = G. From the proof of Theorem
3.1, we have
On 2 ndzzng, Qs> sz md+ 5y,

/ / _
YM]_LI _p> Y(Ml M)U_p)o7

0, T

(A.38)
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52 Wu/T — (UMY /T)Q (Y Mu/T)

l=

028 (Ng z7,M9+5v)716 = &2, (A.39)
2 = Wu/T—2(UMY/T)O (Y (M —M)u/T)+
(U (M — MY /T)QA (Y (Mg — M)u/T) 2 a2, (A.40)

so that we get

(B—B) = Qr(Y'Mwu/T) — QA (Y' (M — Myu/T) 2 (119 5218 + 3) 18,

5 % o?an,an=(NYzznd) - (N5 n8 +5) L i=23, (A.41)
1 > Zin, Sin = 03(NY 55,M9) " — 52(NY 55,19+ 5v) 7, (A.42)

>

whereo? = 02 ando3 = §2. Let first focus on, i = 1, 2, 3. We recall that’# is defined as

H=TB-B)5 B~ B) (A.43)

~ A a ~ oA 1 .
(B-BYSTHB-B) = 38(N§52N3+3y)AgH(Ng 2N3 + 5y)*6,i=2.3,
1

B-BYSTMB-B) 2 &MY 5zN3+3) 1538 5213+ 3v) 8. (A.44)
Using Doko Tchatoka and Dufour (2010, Lemma A.1), we have
At = (M3 22M3) 2,1 (NF 2213 + ),
hence

5'(NY 273+ 5) A1 N9 5219 + 5v) 715
= dN3 5 M3(NY 52N3) 2,1 (N 5213) + N3 5,119 7'M 5zM%a. (A.45)

If Ma+# 0, then the RHS of (A.45) is positive and we havleb +oo for i =2, 3. The same
decomposition applies tﬁ{l andH; S By the same way, we also g'Eti +oforl=1,234
andRH 5 .

Now, suppose thdﬂga: 0, i.e. a= 0, because rar@k‘lg) = G. This entails thad = 0 (remem-
ber thata = 2\715). So, the null hypothesis of exogeneity is satisfied and all test statistigercmn
to non degenerate random variables as given in The8r&m

Overall, the testsl;, T andRH are consistent if and only iﬂga;& 0.

(B) Suppose now thafl, = 12 with rank(r19) < G. We shall only focus ons#. The proof
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is similar for the other statistics. Let writ&#3 as

A = TI(B-B)—(B-B)(Qy Q)M (B-B)—(B-B))/6?
= TB-B)( O~ ) B-B)/&*+T(B-B) (Q* - )Y (B-B)/6?
—2T(B-B)(Q3* - ) H(B-B)/6> (A.46)

We now study the asymptotic behaviour of the three terms in (A.46). First, wee ha

B-B = (YMY/T)HY'Mu/T) B (n9 55,19+ )75,
62 % 02=02-08'(NJ55M3+35v)715, (A.47)
and
- 1
TB—P) (@'~ QD HB-B)/G* = SN St (A48)
u

2B~ B) (O3t~ O B -B)/6> 5 ST 55 N84 5 el St (A4

c

Moreover, using (A.47) and the equality

Qv - Q! Qv (Qis— Q)1

l= |

(M9 22,N9) 571N 27,19+ 5v), (A.50)
if rM9a+ 0, we get
(B—B) (O — )M (B-B)/62 2 &8(NY 57,13+ 3) (MY 35,19) 5,25/ 2
= al(ng zzn3)z,* +|GJ 'ng szn%a/a?, (A51)

However, we have
a[(Nd =N s, +16) 7Y 57M%/a2 > 0

if and onlya ¢ Ker{[(MJ 22M9)%,* + 16711 =213}, Ker(L) denotes the null space spanned by
the columns of the matrix. Becausd (M3 >2M9)5, 1 +Ig]~* and =7 are nonsingular, we then
have

Ker{[(NMY 52N 5,1 +16] 7119 5219} = Ker(MY 52M9) = Ker(NY).

So, the last term in (A.51) is positive if and onlyaf¢ Ker(/19), i.e., M2a# 0. In this case, we get

A

T(B—B) (Ot — ) HB-B) /622 +oo,

which entails that73 RNy
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Suppose now thd@da = 0. We have

T(B—BY(O3' -0 B -B)/6% = (B—pYI(TOW) ™~ 20) ) (B - BIASY)
(A.53)

Since B — B & (NY3M9 + 5,)°15 and [(TOQy) 1 - 10 H Y15 o, where o =
(FoPonS3) = S5 1.7}, we get

T(B—B)(O - 0 B-p)/&® 5 8(N955m5+5) e x

(N9 27,13 + 3y)713. (A.54)

Thus from (A.48)-(A.49), we find

1 1
Ay = S8(NY 57, M+ 25) e (NG 27,1+ 2) 16+ S M8 750 S2 M6

u u

2
—?6’(/79 57 N2+ 3) Lt S M. (A.55)

u

With a little manipulation, we get

1 / .
yféb? [yz(/tgf(ngzzzn%zv)-la] ﬂ[ﬁZ%—(ngzizn§+zv) 15}.

u

hence

SoMelg sy ~ 0:.%2% L35 =N[5, 10, 0252517,

N[a,
#5775 = {SyEgt - MMy M) *MylS} =7 (A56)

It follows that
L o2 2
K3 — = X(G; Ua),
o-U

wherep, = 585, — (N9 27,N9+ 5y ) YA 5,1 — (N9 27,19+ ) ~]8. From Doko Tcha-
toka and Dufour (2010, Lemma A.1), we have

S (Y 509+ 5) "t = (N9 5219+ 5) (Y =zn9) 5,2

Sincela= 0, this entails that

1
Ha = 35’(”3222/754Zv)’1(”3222”3)2\71%’1(/73222178+Zv)’l><
&
nd sz Mda=0,
05 = 05-8(MY25M3+5y) 6 =02+ (51— (M9 25,13+ 2v) 18

= 0248 (N9 5z, +3)7tng 55, M%a= o2,
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wherea= 5,15 ando2 = 02+ §'5,15. HenceHs — x2(G). And Hs is not consistent. A similar
result holds for the other statistics.
Overall, exogeneity tests are consistent if and only$a # 0. Ol

PROOF OFTHEOREM 3.3  For anya # 0, we have rank,) = G if and only if [,a # 0 if and
only if DWH and RH tests are consistent. O

PROOF OFCOROLLARY 3.4 The proof follows directly from those of Theorednl and Theorem
3.2 O

PROOF OFTHEOREM3.5 Suppose thad = 8o/v/T and/T, = M2 is fixed. (A) If rank 112) = G,
From (A.1)-(A.6), we have

Qv > ndszng, Gs Y sz nd+ 5y, (A.57)
Y’M]_U p Y/(Ml—M)U p
Po T Py A.58
T ’ T : (A-58)
62 = Uu/T—(UMY/T)QE(Y'Mu/T) 2 02, (A.59)
G2 = Uu/T—2(UMY/T)Q Y (My—M)u/T) + (A.60)
(U (Mg — MY /T)QAY (ML —M)u/T) B 02, (A.61)
YMU L g Y(Mi—Mu L g
= MYSy+Sye+ 00, ————— = M9 Sy, A.62
\/T 2 SZu S\/s 0 \/T — Il SZu ( )
Since we have
A =VT(B-B)5 VT (B-B), (A.63)
and
VI(B-B) = Q3 (YM/VT)— QMY (ML~ M)u/VT)
5 (N 5719 + 5) " H(NY S+ Sve + 80) — (M9 52M2) 2119 Sy(A.64)
52 020,80 = (N¥zznd) - (Y7 M9 +5)7% i=123 (A.65)

So, following (A.11)-(A.13), we find

wherepts, = 00(M% 27,M2 + 5) 1A (NY 27,M2 + %) 180. By the same way, we can show

that
1

D5 ZxG, Us,), T = X2(G, Hg,), | = 3,4, 7 5 F (G, ke — G, 5,)-

@
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For the statisticZ77, its denominaton%u’Mgu converges t@?2. Its numerator is

1, 1u’sz_2<z_’sz_2)‘1z_’qu
ZU(My, —Mglu= — —22 2 1 2 2, A.66
k2 ( X1 X) k2 \/-T— T \/-T ( )
Moreover, we have
Z_,MX Z_Z P * - -
BT 5 3,=3,- M7 5+ 5y) N7 5,
ZMxu  Zu  ZjMhY (Y’M1Y>_1Y’M1u
VI JT T T VT
.- B g _
= Su— 37, M(NY 5319+ 5y) (N5 Sou+ Sve + o)
~ N[=2zM9(N7 213+ 2v) 80, 0525 ).
Thus, 1
RA = =X (ke V), (A.67)
2

wherevs, = 280(113 27,19 +2v) 'Y 27,5 37 M9(MY 57, M9+ 5v) L.

(B) Suppose now that ra(ﬂﬂg) < G. Sinced — 0 asT — +o, we can observe that equa-
tions (A.19)-(A.33) still hold so that we have

45 X%(G). (A.68)
By proceeding as in Theorefl, we get the results for the other statistics. O

PROOF OFTHEOREM4.1 Assume that = 0. Under the assumptions of the model andilif =
n//T wherefl? is ak x G constant matrixf19 = 0 is allowed), then we have

1 — —
TY’Mlu—p> 8=0,Y'(My—M)u= (37,1 + S ) 55 S, (A.70)
62 = Uu/T — (UMY /T)O (Y Mu/T) B 02— 85,6 = 02, (A.71)
B—B=(TQw) ™Y (M1~ M)u> & (359 + Sv) 55 S (A.72)
Thus, we get
~ du UMY » ~ A L ~ L 1, 4.
6% = 5 27 (B-B)+(B-B)AsB-B) = 05, % = =% Li=12
u
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whered? = 03+ 5,251 (27,19 + S ) K "2V K, (25,718 + S ) 25 Sou, S0 that
L 1= ~
%_) %SZUZASZm I = 17 27
GU
whereZa = 5122, M9 + Sw)®, (22,715 + S ) 25" Sinced > o, we have
15 = .
% < TSZUZASZw I = 1) 2.
GU
BecauseS, andSy are independent wheh= 0, it follows that

57,119+ Sv) 53 Slg,, ~N(0, 03W/) | (A73)

whereW; is defined in (A.69). Hence,
la sz 2
2 SuZaSuls, ~ X(G),
u

andH; < x4(G), i = 1,2. FurthermoreS; > Ly, !, which entails thats|g,, L5 x2(G), ie.

Hs 5 X?(G). By the same way, we can also show that

ASFGk-6), %=X (G, Zi—x6). (A74)
1= — 1

ZS —SuZasu < x%G), and %x# S o x2(ka) . (A.75)
u

O

PROOF OFTHEOREM4.2  Suppose thall, = 12/+/T wherel1 = 0 is allowed. Then we have

TOy 5 W = (25,1194 S0 ) 2155, M9 + S), Qus B 5, (A.76)

%Y’M1U—p> 5#0,Y (M —M)u> (5,19 +S)' 25 S, (A.77)

62 = Uu/T — (UMY /T)Q Y M/T) B 02— 85,6 = 02, (A.78)

B-B = (TQv)™Y(Mi—Mub &™E5M+Sy) 25 S (A.79)
o2 = W MG gy Bopyashp)

L &2 %ﬁi Lo2yti=123 (A.80)
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2 _ g2 _52 g2 _ 2
whereo?, = 05, = 0%, 05, = 0% and

52 = 02—26’4(,- (27,19 +Sv) 25 152u
+S,55 Z22’-’2 + S )W 1ZVL"(/ (52,18 +S)'= 1S2u

Furthermore, we have

~

B—B = OQRFUMY/T)—(TQv) Y (M —M)u
L oS- WL M9+ Sw)'s; > S (A.81)

By noting thatSy, = Syva+ Se = Sv 5, 16 + S, we easily get

B—[} 5 Zv15 K (222”2+SZV) 1SZVZV15 w (Zzzn2+52v) 1525

= Y 'va- (259 +Sw)'s 1525]
whereAy = W, — (22,13 + S ) 23Sy = (25,19 + Sw)'11§ anda = 5, '5. So,

1
yﬁb?(nza 5718 ) Oy (MYa— 5515),i=1,2,3,

(E3

whereo?, = 03, = 62, 03, = 02, andAy = (57,119 +Sv )W, 1 (Zz, M9+ Sv)'. Moreover, Sy ~
N(0, 0257,) andS; is independent witl,, whend = 0. Thus

— 1
ISy 5 X2(G, ty), py = —a ’72 Ay M3a. (A.82)

SinceTs = (k3/T)Hz, Ts=(Ka/T)Hz andks/T =k4/T = (T —G)/T — 1 asT — +oo, it follows
that

L 1 s s
T = %(nga— 551%) by (Ma—251S),
1
Ty 7(”23' 25 1325)/Av(nza 25 1325) (A.83)
f
By conditioning onS,y, we get
TalSv = XA(G, ). (A.84)

Moreover, by noting that plirtg3) = plim (62) = o2, we also find

T—oo T—o

L 1

T = G(nza 5 1525)Av(n2a 5 1525 ) and | Sy = X 2(G, uy)-

Furthermore, we can see that

T&3 = u' (M — M)My(M; — M)u 5 Su(; 1sz )s}u, (A.85)
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where the limit term in (A.85) can be written as
Su(Z5 — T30 TG = (55 vk 25750 0y (25 G+ 2517,

whered; = Iy, —Zzizl/zszzizl/z is symmetric idempotent with rarks — G. So, we havé'&%\s_zv L
02x?%(ko — G, Av), where

Av —aSZVZ_l/ZA\, _1/282va_—a8’,2\, S7Hv 5z Sva

Further, we havely, (55 /%A; 55 Y%) = Ay 351 — Ay 3574, 551 and sincedy 514y = Ay, itfol-

lows thatdy (27 l/ZAVZ 1/2) O. So, conditionally oSy, the quadratic forms

(252 Svat 35 %% ) (25 *Sva+ 35 7S) and(Mfa— 55'S.) Ay (Mfa— 535S
are independent and distributed as noncentral chi-squares. Thus
Fi|Sy 5 F (G, ka—G; iy, Av). (A.86)

For the statistidcRH, the denominator is

1 1 g — 1=
fU/MiU = f(U'Mxlu — UMy, Z2(Z5Mx, Z2) 1 Z5Mx, ), (A.87)
where
E/ _1/ _1/ / —1\/ P2 sis-1s5s_ 2
_I_qulu = _I_uMlu TuMlY(YMlY) Y'Miu— o, — 92,6 = 0%,

1 o _
and f(U'Mxlzz(zlexlzz)712/2MX1U) Lo

underd = 0. So, we findf u'Mgu % 02. For the numerator, we have

1l (M, —My)u = (A.88)
2

1 UMy, Z> (z_gl\/lxlz})lz_'zmxlu
ke VT T VT

M Zo  ZMhZo  ZMLY (Y “1ymz I Z-
Moreover, 2312 = 202 _ 2L (Y '\{'1Y) e LA 57, because 2 P 0. Now, we have

ZyMx,u  Zu  ZHMyY <Y’M1Y)1Y’M1u
VT VT VT T T

where% ZZIVZV15+ZQE—>SZE+SZ\/ZV16 (

-1 >
YMu P g1 ZMY L ¢ 0
) +— — 2y 0 and = 25+
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Sy . Hence we have

1 L1 = =
= (My, — Mg)u = E(SZS — 55,M8)' 551 (Se — 23,139) ,

ko
thus
RA 5 (S 52, M190) 55 NS — T2 11%8) ~ X2k, i)
ko2 2 22 2 ko PR
pp = angsz;nda

O]

PROOF OFTHEOREM 4.3 Let I'Iga: 0 in the proof of Theoren#.2 above. Then, we have
Uty = Ay = Ug = 0. Further, we can observe that

0i=05. = O +S37 S (SyIZ ) (S 2 ) TS 25 S (ABY)
> o2 (A.90)

and the matri>€Z:21 — ZzizlAVZZ:zl is positive semi-definitd,e.

1 s-1p s-1_ s—3 “3a sTBvsT3
S s = 5 (- 5 IS )2, >0,

1 _1
wherely, — 252 Ay 25 ? is idempotent of rank, — G. Then, the results of Theorefn3follow. [
2 T <7, Z

PrOOF OFLEMMA 5.1 Assume thafl; is fixed. We have

B = (YMY/T) "X (Y'Muy/T) =B+ (Y'MY/T) (Y Myu/T) (A.91)
B = ABi+75B,
= B+ ANEY/T) HYEWT)+ % (Ysd¥) " 1(Yadu), (A.92)

Wherefj’1 andfﬁ’2 are defined in (3.11). SincéM;Y /T LA M553,M>+ 2y andY'Myu/T 25, we
have
B—B L (My2z,Ma+2y) 715

irrespective of whether rariki;) = G or not. We now focus op. We have
YiEVi/T 2 115,57 M1, Y{EWT 2 0,

and we have
Bl_Bl _p> 07

irrespective of whether raiikl,) = G or not. Forﬁz, we distinguish 3 cases:
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(i) if rank(ry) = G, B reduces t¢3,; and we haveB LA B.
(ii) if rank (IT2) < G, (A.91) still holds and we have”1 (Y{EY,/T) 1(Y/Eu/T) 2.0, Then,

Zo(Y33Ye) Y40 S SN, By Byt N, .

hence
B —p>B+<72«/Wa-

[31 is always consistent even if identification is deficient wIﬁLeis consistent only when identifi-
cation is strong.
By putting (i)-(ii) together, we have

B g B +y2</1/87
where
0if rank(2) = G,
SoNg = _ L _
2B 1S3 [25 — Mar(M13127,Ma1) M3 Sy
if rank(MMy) < G,

where from (A.56), we have

— -1
So Mol 7 ~ NI 28, 02 { Sy 251 — Mas(Myu 7, M00) S } )

or equivalently
NG, 7, ~ N [S325,18, 02871

O]

PROOF OFLEMMA 5.2  Suppose thaftl, = ng/ﬁ (asymptotically weak instruments). We have
Y'MY/T LA andY’'Myu/T P, 5. Hence, we have

BLB+5,%6=B+a=p"
Now, we have

Y/ (Mg —M)Y] Y/ (Mg — M)y
= B+[Y (ML —M)Y] Y (M —M)u. (A.93)

=
I

Moreover, from (A.76)-(A.77), we have

Y(Mi—M)Y = TOyv 5 W,
W = (5N +S)'s; (Zzzl72+Szv), (A.94)
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V(M —Mu = (5718 +Sy) 55 S
= Wa+ (359 +S) 551 (Se — 55, M3a). (A.95)
Thus
[j - B* g ‘/VW7

where AV = W1(z509 + S_Z\/)/ZZ:21(§25 — 37, M%), and AY|5, ~ N[-® (519 +

Sw)' 25127, M3, 02K, . O

PROOF OFTHEOREM5.3 Theoremb.3follow from the definition of pre-test estimators given by
(5.1) - (5.3) and the results of Lemrbal and Lemméb.2 O
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