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Abstract

Few empirical strategies have been developed that investigate public provision under major-

ity rule while taking explicit account of the constraints implied by mobility of households.

Previous empirical work by Epple, Romer, and Sieg (2001) has focused on necessary condi-

tions that observed expenditures, housing prices, and tax rates had to satisfy in a myopic

voting equilibrium. The results reported in that paper suggest that myopic voting behavior

is not consistent with the data. This finding is puzzling, especially given the prominence

that myopic voting plays in the theoretical literature. The goal of this paper is to clarify

these results and improve our understanding of the main limitations of myopic voting. We

develop a new empirical approach which allows us to impose all restrictions that arise from

locational equilibrium models with myopic voting simultaneously on the data generating

process. We can then analyze how close myopic models come in replicating the main reg-

ularities about expenditures, taxes, sorting by income and housing observed in the data.

We find that our baseline myopic model performs reasonably well in explaining variation

in housing expenditures and educational expenditures across communities, but it performs

poorly in explaining variation in tax rates. An extension of the model that incorporates

peer effects fits all dimensions of the data reasonably well.

JEL classification: C51, H31, R12



1 Introduction

Models of interjurisdictional equilibrium take as their starting point the idea that house-

holds are (at least potentially) mobile. Communities may differ according to their levels

of public good provision, tax rates (usually property tax rates), and local housing market

conditions. Each household takes these factors into account in choosing a community. If

local public good provision is decentralized, for example via local majority rule, then in each

community, the level of public goods will depend on characteristics (tastes, endowments) of

the community’s residents. Households will sort among communities according tastes and

endowments, so that households with similar preferences for local public goods will tend to

live in the same community. Because the population of each community is endogenous, the

set of households who live in the community and the decisive voters in the community are

jointly determined in equilibrium.

An important issue in modeling this interaction of locational and political decisions has

to do with what it is that voters take into account. In particular, when voting, and thereby

collectively determining the level of public good provision within a community, do voters

take into consideration the interaction among housing market equilibrium, mobility and

public good provision? Almost all models of locational equilibrium rest on the assumption

that voters are myopic: voters in each community ignore all effects of migration. Under this

assumption, voters treat the populations of the communities as fixed and believe that the

distribution of households across communities is not affected by a change in public good

provision.

Few empirical strategies have been developed that investigate public provision under

majority rule while taking explicit account of the constraints implied by mobility of house-

holds. Epple, Romer, and Sieg (2001) (ERS) developed an equilibrium framework that

allows one to make a variety of assumptions about voter sophistication. They found little

empirical support for the hypothesis that myopic voting behavior is consistent with the

data. This finding deserves further scrutiny, especially given the prominence that myopic
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voting plays in the theoretical literature.1

ERS used an approach that focused on necessary conditions that allocations must satisfy

in equilibrium. Here we take a different approach. To better understand the empirical

implications of the myopic voting assumption, we need to impose all restrictions that arise

from the locational equilibrium model simultaneously. We can then ask whether our model

can replicate some of the main stylized facts about expenditures, taxes, sorting by income,

and housing. This approach thus differs significantly from the previous work of ERS. In

this paper, we completely specify a generic locational equilibrium model, characterize its

equilibrium properties, and solve for equilibria for different parameter values.

We estimate the parameters of the model by matching the observed outcomes to those

predicted by our model. In contrast, most previous empirical work has either ignored lo-

cational equilibrium or, more recently, has relied on partial solution algorithms of the type

suggested in Epple and Sieg (1999) (ES) and Sieg, Smith, Banzhaf, and Walsh (2004).2

Using full solution techniques allows us to impose all relevant restrictions that arise from

locational equilibrium models simultaneously on the data generating process. This allows

us to evaluate the main questions of interest: which dimensions of the data are explained

reasonably well by a myopic voting model and which ones are not? This approach is only

feasible if we can easily compute equilibria for models with large numbers of communities.

We therefore provide a careful discussion of computational issues and provide a new algo-

rithm that allows us to compute equilibria for a model with a large number of communities.

This algorithm is also appealing since it exploits local uniqueness of equilibrium, a result

which has not been established in prior research.

The data set we use in this paper includes the communities that constitute the Boston

Metropolitan Area. Massachusetts is convenient to study because cities and school districts

are coterminous. Hence a single residential tax rate applies within a community’s boundary.

1See for example Epple, Filimon, and Romer (1984), Nechyba (1997a), Nechyba (1997b), and Fernandez
and Rogerson (1998).

2The most notable exception is Ferreyra (2003) who estimates the parameters of a model with public and
private schooling using a full solution algorithm.
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We therefore avoid problems that may arise due to overlapping jurisdictions. Property

taxes are also the primary source of local revenues in Massachusetts, which avoids the need

to model other revenue sources. Our data set is from the 1980 US Census. This time

period predates a Massachusetts law that restricts property taxation (usually referred to as

Proposition 21
2). This law, which was passed in 1981, limited property tax rates to two-and-

a-half percent (after some adjustment period). Since many jurisdictions had property taxes

in the period leading up to 1981 that were higher than the limits set in Proposition 21
2 ,

the law imposed for all practical purposes a binding constraint on these communities. We

model the political process within each community as unconstrained choices determined by

majority rule and we estimate the parameters of the model using data prior to Proposition

21
2 .

There are 92 communities in our data set, and one of the main contributions of this

paper is that it provides a method for estimating full equilibrium for a large number of

communities. Moreover, we do this in a context when households differ in two dimensions:

income and taste for the local public goods. To accomplish this, we also developed a solution

algorithm that makes it feasible to solve for equilibrium rapidly a large number of times in

the process of estimating the model’s parameters.

Our main findings indicate that the simple myopic model considered in this paper fits

the observed distribution of households by income across communities well. It can generate

a distribution of local expenditures that fits the data well. On the other hand, the myopic

model does not fit the observed tax rates. So the model performs well in explaining the

locational pattern of households and less well in explaining the pattern of local political

choices. We, therefore, explore plausible extensions of our baseline model. We find that an

extension of the myopic voting model, which also allows for peer effects in the production

of educational quality, fits the data much better.

The rest of the paper is organized as follows. Section 2 reviews the theoretical model on

which the analysis is based. Section 3 introduces a parameterization of the model. Section

4 discusses existence and uniqueness of equilibrium. It also discusses computational issues.
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The estimation strategy is developed in Section 5. Section 6 discusses the data and Section

7 reports the main empirical findings. Section 8 concludes the paper. Appendices A and B

provide details about the computation of equilibrium and some technical matters.

2 The Theoretical Framework

2.1 A Baseline Model

The theoretical framework is that of ERS and we reproduce it here.

The economy consists of a continuum of households, C, living in a metropolitan area.

Throughout the paper we will refer to a household as the decision-making unit, though

for variety we will sometimes also use the terms “individual”, “voter”, and “agent” to

mean the same thing. The homogeneous land in the metropolitan area is divided among J

communities, each of which has fixed boundaries. Jurisdictions may differ in the amount of

land contained within their boundaries. We also assume that households behave as price-

takers. A household that lives in community j has preferences defined over a local public

good, g, a local housing good, h, and a composite private good, b. Let p denote the relative

gross-of-tax price of a unit of housing services in community j, ph the net-of-tax price,

and let y be the household’s endowment of the composite private good. Households pay

taxes that are levied on the consumption of housing services. Let t be an ad valorem tax

on housing in community j. Households differ in their endowed income, y, and in a taste

parameter, α, which reflects the household’s valuation of the public good. The continuum

of households, C, is implicitly described by the joint distribution of y and α. We assume

that this distribution has a continuous density, f(α, y), with respect to Lebesgue measure.

We refer to a household with taste parameter α and income y as (α, y).

The preferences of a household are represented by a utility function, U(α, g, h, b), which

is strictly quasi-concave and twice differentiable in its arguments. Households maximize
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their utility with respect to the budget constraint, which is given by:

(1 + t) ph h = y − b (1)

and choose their preferred location of residence by comparing maximum attainable utility

levels among communities. We can represent the preferences of a household by specifying

the indirect utility function. Let

V (α, g, p, y) = U(α, g, h(p, y, α), y − p h(p, y, α)) (2)

denote the indirect utility function of a household, where p = (1 + t) ph.3 We assume

that the indirect utility function satisfies standard single-crossing properties. In particular,

indifference curves in the (g, p) plane have slopes increasing in y for given α and increasing

in α for given y.

Let Cj ⊂ C denote the population living in community j. The set of border households

between communities j and j + 1 is characterized by the following expression:

V (α, gj , pj , y) = V (α, gj+1, pj+1, y) (3)

This boundary indifference condition defines loci yj(α). The single crossing properties imply

that the population, Cj living in community j is thus given by

Cj = {(α, y)| yj−1(α) ≤ y ≤ yj(α)} (4)

We also assume that the budget of community j must be balanced.4 This implies that:

t ph
∫
Cj

h(p, y, α) f(α, y) dy dα
/
P (Cj) = c(g) (5)

3Here we anticipate a simplification adopted in our empirical analysis. Preferences are assumed separable
in g and (h, b) so that housing demand does not depend on g.

4The analysis can be extended to incorporate lump sum transfers, for example, from the state government
to the local governments.
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where c(g) is the cost per household of providing g and

nj = P (Cj) =
∫
Cj

f(α, y) dy dα (6)

is the size of community j.

Furthermore, we assume that housing is produced from land and non-land factors with

constant returns to scale, so that housing per household is given by:

Hj = h(Aj , Zj) (7)

where Aj is the fixed amount of land area in community j and Zj is a mobile factor used

in production. Assume that pz is the same in all communities. Profit maximization by

price-taking producers implies that the per-household housing supply function is given by:

Hs
j = Hs

j (pj , tj) (8)

Total housing demand is given by:

Hd
j (gj , pj , tj) =

∫
Cj

h(pj , y, α) f(α, y) dy dα (9)

Following most previous positive studies in the literature, we assume that the pair (t, g)

in each community is chosen by majority rule. In each community, voters take the (t, g)

pairs in all other communities as given when making their decisions. One can make a variety

of assumptions about voter sophistication regarding anticipation of the way changes in the

community’s own (t, g) pair affect the community’s housing prices and migration into or out

of the community. For example, voters might take the community’s net-of-tax price and the

community tax base as given, and then deduce from the budget constraint the link between

gross-of-tax price and expenditures on local public goods. This is the simplest and most

commonly adopted approach (Epple, Filimon, and Romer, 1984).5 Alternatively, voters in

5Fernandez and Rogerson (1996) provide a formalization of the timing of moving and voting that ratio-
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a community might take the (t, g) pairs in other communities as given and then predict how

changes in their community’s tax and expenditure policy will affect the price of housing in

their community.6 The myopic model is used extensively both in theoretical models and in

empirical analysis. Our focus in this paper is on investigating in our equilibrium framework

whether the myopic voting assumption provides a good fit of the data.

The community budget constraint, housing market clearing, and perceived migration

effects define a locus of (g, p) pairs that determine the government-services possibility fron-

tier, i.e. GPF = {g(t), p(t) |t ∈ R+}. For given tax and expenditure policies in other

communities, a point on the GPF that cannot be beaten in a majority vote is a majority

equilibrium. Let yj(α) be the implicit function defined by equation (3). Consider a point

(g∗j , p
∗
j ) on community j’s GPF, and let ỹj(α) define a set of voters who weakly prefer (g∗j , p

∗
j )

to any other (gj , pj) on the GPF. It follows that (g∗j , p
∗
j ) is a majority voting equilibrium

for the given GPF if

∫ ∞

0

∫ ỹj(α)

yj−1(α)
f(α, y) dy dα =

1
2

∫ ∞

0

∫ yj(α)

yj−1(α)
f(α, y) dy dα (10)

Note that ỹj(α) defines a locus of pivotal voters.7

In order to characterize pivotal voters in a community, we need to derive an expression

for the slope of the GPF. Recall that the GPF is defined as the locus of (gj , pj) such that

housing markets are in equilibrium:

Fj(gj , pj , tj) = Hd
j (gj , pj , tj) − Hs

j (pj , tj) = 0 (11)

and the community budget is balanced:

Gj(gj , pj , tj) = c(gj) − pj
tj

1 + tj

Hd
j (gj , pj , tj)

nj
= 0 (12)

nalizes this assumption on the part of the voters.
6This approach is developed in Epple and Romer (1991) and also adopted in Epple and Platt (1998).
7A formal proof of a similar result is in Epple and Platt (1998) and the same argument applies in this

model.
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given the perceived migration effects. Totally differentiating (11) and (12) and solving for

dpj/dgj yields:

dpj
dgj

∣∣∣
GPF

= −
Gjg

Gjt
− Fjg

Fjt

Gjp

Gjt
− Fjp

Fjt

(13)

The right-hand side of (13) does not have a simple closed form solution in general.

If voters are myopic, they ignore all effects of migration; i.e., voters treat the popula-

tion boundaries of the communities as fixed. Hence, voters believe that the distribution of

households across communities is not affected by a change in public good provision. Fur-

thermore, if voters also treat the housing demand as fixed when voting, then we obtain the

simple myopic voting model:

dpj
dgj

∣∣∣
MV

=
c′(gj)
Hj/nj

(14)

The right hand side of equation (14) gives the slope of the GPF as perceived by a my-

opic voter. This is equivalent to the assumption that when voting, each resident of the

community takes the net-of-tax price of housing, community population, and the aggregate

housing demand as fixed. The main technical advantage of the myopic voting model is

that the slope of the GPF is basically a function of only two variables: the marginal cost

of providing the public good and the housing demand. This formulation is implicit in all

prior empirical work estimating demand functions for local public goods and traces to the

pioneering work by Barr and Davis (1966) and Bergstrom and Goodman (1973).

To summarize, voters in each community decide about the level of provision of the public

good, g, and the tax level, t. Mobility among communities is costless, and in equilibrium

every household lives in his or her preferred community. Having specified all components

of a (generic) equilibrium model, we define an intercommunity equilibrium as follows:

Definition 1 An intercommunity equilibrium consists of a set of communities,

{1, ..., J}; a continuum of households, C; a distribution, P , of household characteristics
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α and y; and a partition of C across communities {C1, ..., CJ}, such that every community

has a positive population, i.e. 0 < nj < 1; a vector of prices and taxes, (p∗1, t
∗
1, ..., p

∗
J , t

∗
J);

an allocation of public goods, (g∗1, ..., g
∗
J); and an allocation, (h∗, b∗), for every household

(α, y), such that:

1. Every household (α, y), living in community j maximizes its utility subject to the

budget constraint:8

(h∗, b∗) = arg max
(h,b)

U(α, g∗j , h, b)

s.t. p∗j h = y − b

2. Each household lives in one community and no household wants to move to a different

community, i.e. for a household living in community j, the following holds:

V (α, g∗j , p
∗
j , y) ≥ max

i6=j
V (α, g∗i , p

∗
i , y) (15)

3. The housing market clears in every community:

∫
Cj

h∗(p∗j , y, α) f(α, y) dy dα = Hs
j (

p∗j
1 + t∗j

) (16)

4. The budget of every community is balanced:

t∗j
1 + t∗j

p∗j

∫
Cj

h∗(p∗j , y, α) f(α, y) dy dα
/
nj = c(g∗j ) (17)

5. There is a myopic voting equilibrium in each community: Over all levels of (gj , tj)

that are perceived to be feasible allocations by the voters in community j, at least half

of the voters prefer (g∗j , t
∗
j ) over any other feasible (gj , tj).

8Strictly speaking, all statements only have to hold for almost every household; deviations of behavior of
sets of households with measure zero are possible.
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2.2 Extensions

From the analysis in ERS, we know that the simple myopic voting model discussed in the

previous section is unlikely to fit all relevant dimensions of the data. We, therefore, also

consider an extension of the model to incorporate peer effects. Peer effects may be im-

portant to understand sorting of households among communities for a variety of different

reasons. First, one of the most important local public goods is educational quality. Educat-

ing economically disadvantaged children may be more costly than educating children from

higher income families. Second, social interactions may enhance or detract from student

performance. Third, parental involvement in local schools may be a function of household

income. Finally, peer effects may pick up other differences in the quality of public good

provision that are not related to education. For example, peer effects may be used to proxy

for (unobserved) differences in public safety, since the propensity to commit crime is often

inversely related to income

In our extended model, we therefore distinguish between the quality of local public good

provision denoted by q, publicly provided public goods (i.e. expenditures per household),

g, and a measure of peer quality, denoted by ȳ. We assume that the quality of public good

provision satisfies an index assumption and can be expressed as q = q(g, ȳ). Finally, we

assume that peer quality can be measured by the mean income in a community, which is

given by:

ȳj =
∫
Cj

y f(α, y) dy dα
/
nj (18)

It is straightforward to generalize the theoretical model presented in the previous section

to account for peer effects. For example, household preferences in the extended model are

now defined as

V (α, q(g, ȳ), p, y) = U(α, q(g, ȳ), h(p, y, α), y − p h(p, y, α)) (19)

Similarly, we can modify the other elements of the model and define a locational equilibrium
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with peer effects.9

3 A Parameterization

Since we are interested in empirical and computational analysis, it is necessary to param-

eterize the model. Let the joint distribution of ln(α) and ln(y) be bivariate normal. The

means of the distribution are denoted by µln(y) and µln(α). The variances are σ2
ln(y) and

σ2
ln(α), and the correlation is denoted by λ. Furthermore, assume that the indirect utility

function is given by:

V (q, p, y, α) =
{
α qρ +

[
e

y1−ν−1
1−ν e

−Bpη+1−1
1+η

]ρ} 1
ρ (20)

where the quality index q is given by:

qj = gj

(
ȳj
ȳ

)φ
(21)

and ρ < 0, α > 0, η < 0, ν > 0, φ ≥ 0 and B > 0. ȳ is mean income in the population.

We assume that while α can vary across households, ν, η, ρ, B and φ are the same for all

agents. Roy’s Identity applied to equation (20) implies that the individual housing demand

function can be written as h(pj , y) = B pη yν . Given the utility function above, the locus

of households indifferent between communities j and j + 1 can be written as:

ln(α) − ρ

(
y1−ν − 1

1− ν

)
= ln

(
Qj+1 −Qj
qρj − qρj+1

)
≡ Kj (22)

9The role of peer effects in choice of schools and jurisdictions has been the subject of increasing theoretical
research. Recent research includes Benabou (1993, 1996), Caucutt (2002), deBartolome (1990), Durlauf
(1996), Epple and Romano (1998, 2003), Nechyba (1999, 2000). Ferreyra (2003) has incorporated peer effects
in an econometric model of multi-district equilibrium. Bayer, McMillan, and Reuben (2003) also estimate
a sorting model with peer effects. There is also a burgeoning empirical literature seeking to document the
presence and magnitude of peer effects. See Epple and Romano (2003, footnote 12) for a brief summary
and references. We emphasize that the model that we propose is consistent either with the presence of
peer effects or with a preference for high-income neighbors. We use the term ”peer effects” as a convenient
shorthand.
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where

Qj = e
− ρ

Bp
η+1
j

−1

1+η (23)

The first-order condition of the voting problem can be expressed as:

ln(α) − ρ

(
y1−ν − 1

1− ν

)
= Lj (24)

where the intercept, Lj , is given by

Lj = ln

B e
−ρ

Bp
η+1
j

−1

1+η pηj
dpj

dgj

qρ−1
j

∂qj
∂gj

 (25)

We also assume that the production function for housing is Cobb-Douglas with expo-

nents s and 1 − s on land and non-land inputs respectively. Hence we obtain the housing

supply function:

Hs
j (pj , tj) = Aj

(
pj

1 + tj

)ψ
(26)

where ψ = (1− s)/s and units of Z are chosen such that pz is scaled conveniently to equal

(1− s). The cost function is linear:

c(gj) = gj (27)

Thus the 11 parameters of the model are µln(y), µln(α), σln(y), σln(α), λ, ρ, η, ν,B, φ, and ψ.

In much of what follows, we assume that peer effects are absent (φ = 0), so that q = g. We

return to more explicit consideration of peer effects at the end of section 7.
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4 Existence, Uniqueness, and Computation of Equilibrium

If household preferences satisfy single-crossing properties, the existence of an intercommu-

nity equilibrium has been shown in somewhat simpler versions of this model, e.g. models

without taste variation and peer effects considered in Epple, Filimon, and Romer (1993)

(EFR). Moreover, we believe the strategy used to prove existence of equilibrium in EFR

can be modified in a straightforward way to establish existence of equilibrium in this model.

In EFR existence follows under a set of regularity assumptions by applying a fixed point

argument on a mapping of the community boundaries. In that model, there is no taste

heterogeneity and communities consist of an interval of the type [yj−1, yj ]. In this model,

community boundaries are characterized by the slope of the boundary indifference curve

and the community specific intercept Kj . Instead of defining a mapping on the yj ’s, we can

define a similar mapping on the Kj ’s. Under the similar regularity conditions used in EFR,

we conjecture that this alternative mapping will also have a fixed point.10

Equilibria cannot be computed analytically. Instead we rely on numerical algorithms to

find them.11 Computing an equilibrium for models without peer effects requires us to solve

a system of 3J nonlinear equations: J housing market equations, J budget equations, and

J equations characterizing pivotal voters.12 Thus computation of equilibria only exploits

necessary conditions that equilibria must satisfy. Once the algorithm has found such an

allocation, one still needs to make sure that all second order conditions are satisfied.13

From the perspective of empirical analysis, land that is available for residential use in

communities is not easily measured. By contrast, community populations are measured with

a relatively high degree of accuracy. Hence our approach in this paper is to take observed

community populations as equilibrium outcomes from the model that we have described.

10The only technical difficulty which arises in the extension of the proof in EFR is that we need to
guarantee that the housing consumption is also monotonically increasing in the community rank. In EFR
this condition is trivially satisfied. Here it requires some additional assumptions.

11In Appendix A, we describe in detail how to compute equilibria numerically for models without peer
effects.

12Adding peer effects to the model implies that we need to add J equations to the system.
13An appendix which derives the second order conditions is available upon request from the authors.
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Following ES, we take these populations as measured without error. This permits us to

focus on household location and voting in our empirical analysis. More formally, we focus

on allocations that satisfy the J budget equalities, the J equations characterizing pivotal

voters, and J − 1 equations that constrain the observed populations to equal the predicted

population sizes. These allocations are equilibria in the following sense. For any allocation

that satisfies the 3J − 1 equations above, there exist housing supply functions for each

community such that housing markets are in equilibrium.14 An interesting extension, which

we do not pursue in this paper, is to investigate the housing supply implied by the model.

The algorithm to compute equilibria takes observed community populations and the

hierarchy of communities (ordered by mean income) as known (i.e. observed in the data).

One advantage of this approach is that we can prove uniqueness of the equilibrium that

gives rise to a given set of community populations and ordering of communities, taking

voters to be myopic. We have the following result:

Proposition 1 Given a set of equilibrium community populations, the associated equilib-

rium ordering of communities, and myopic voters, the equilibrium is unique.

A proof is given in Appendix B.

This uniqueness result is useful in justifying our estimation approach. Estimation is

based on a full solution approach, i.e. at each parameter vector we compute the equilibrium

of the model and match the predicted equilibrium to the one observed in the data. If the

equilibrium were not unique, we would need to compute all equilibria at each parameter

vector and find the one that matches the data the best. Proposition 1 establishes that at

each parameter vector, there is only one equilibrium that is consistent with the observed

community sizes and the observed hierarchy.

14Since we are going from a system with 3J equations in 3J unknowns to a system with 3J − 1 equations
in 3J unknowns, one equilibrium variable is not determined. We solve this problem by normalizing the price
of housing in the lowest community to be equal to 1.
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5 Estimation

The estimation procedure can be implemented in two stages. The first stage uses the

model’s implications regarding locational equilibrium, while the second stage incorporates

voting equilibrium. We will briefly describe the first stage of the estimation procedure

implemented in Epple and Sieg (1999), which we apply in this paper. We have made

parametric assumptions on the joint distribution of income and tastes for the population

of the metropolitan area and the indirect utility function of the households. With these

assumptions, the model determines a joint distribution of income and taste parameters for

every community. If the model is evaluated at the correct parameter values, the difference

between the empirical quantiles of the income distributions observed in the data and the

quantiles predicted by the model should be small. This provides the rationale for the first

stage of the estimation.

Equation (22) implies that quantiles of the income distribution of community j depend

on (qj , pj) only through the community-specific intercepts Kj . We can, therefore, solve

equation (6) recursively to obtain the community-specific intercepts, Kj , as a function of the

parameters of the bivariate distribution of income and tastes, (µln(y), µln(α), λ, σln(y), σln(α)),

the parameters (ν, ρ), and the community sizes, n1, ..., nJ . These community size restrictions

in the estimation procedure pin down the values for the community-specific intercepts. We

then estimate the parameters that are identified from community populations and income

distributions by matching the quantiles of the income distributions subject to the constraint

that community-specific intercepts are chosen to replicate observed community sizes.

Heterogeneity in tastes and income in the metropolitan population, together with self-

selection of households into municipalities, means that income distributions will differ across

municipalities in the metropolitan area. In equilibrium, the self-selection of the metropolitan

population into municipalities results in boundary loci in the (α, y) plane that divide the

metropolitan population into the various municipalities in the metropolitan area. The

within-community income distributions that result thus depend on the shape and position

of the boundary loci and on the parameters of the joint distribution of (α, y). The empirical
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differences in the within-community distributions of income across municipalities prove to

be sufficient to identify the parameters that determine the slope and shape of the boundary

loci (ρ/σln(α), ν) and the correlation between tastes and income (λ). The mean and variance

of tastes are not identified in this stage because we do not exploit information on public good

provision. The parameter ρ determines the slope of the indifference curve and hence affects

sorting in equilibrium. Less obviously, the lack of identification of σln(α) also implies that

we can identify only the ratio ρ/σln(α) in the first stage. Finally, ν determines the curvature

of the boundary indifference curves and hence the composition of populations within and

among communities. Identification of ν thus rests on functional form assumptions of the

indirect utility function since we do not exploit housing expenditure data at this stage of

the analysis.

To summarize, in the first stage of the estimation procedure the following parameters,

denoted by θ1, are identified: the mean and the standard deviation of the income distri-

bution (µln(y), σln(y)), the correlation between income and tastes (λ), the income elasticity

of demand for housing (ν), and the ratio of ρ to the standard deviation of the taste for

public goods (σln(α)). The estimates from this stage typically have a relatively high degree

of precision because the relevant sample size is not the number of communities (J) but

rather the number of households (N) sampled by the U.S. Census; i.e., the asymptotics of

the first stage estimator only require N to go to infinity, for any given value of J .

That leaves us with five parameters to be estimated: the two remaining parameters of

the housing demand equation η and B, as well as the mean and the standard deviation of

the distribution of α and φ.15 In the absence of housing price data, it is hard to estimate

η. We, therefore, set η = −0.3 and conduct some sensitivity analysis to demonstrate that

our main results do not depend on the choice of η. Thus, in the second stage, we need to

estimate the following parameters θ2 = (µln(α), σln(α), B, φ). The rest of this section focuses

on the second stage of the estimator which differs from our previous work. ERS derived

necessary conditions that local public expenditures, housing prices, and tax rates had to

15Given our computation approach, the parameter of the housing supply function ψ is not needed to
compute the type of equilibria considered in this paper.
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satisfy in equilibrium. That paper found that the observed equilibrium in the data did not

satisfy necessary conditions implied by locational equilibrium and myopic voting. Here we

follow a different approach. We compute equilibria, thus forcing our predicted outcomes to

satisfy all restrictions implied by theory. We then investigate how closely our model can

predict the observed outcomes.

In the estimation, we incorporate the implications of the myopic voter assumptions.

These are embodied in equations (14), (24), and (25). Together they imply that the first-

order condition determining the level of expenditures in community j depends on (gj , pj)

but not directly on the property tax rate tj . Using the parameters and J − 1 boundary

loci estimated in the first stage of the estimation and given values for θ = (θ1, θ2), we can

calculate the implied equilibrium (gj , pj) for j = 1, ..., J, up to an arbitrary normalization.

(We adopt the normalization p1 = 1.) Note that the equilibrium (gj , pj) pairs can be

calculated without using any information about community land areas or parameters of

the housing supply function. These are the key consequences of the property of myopic

voting noted above. Having calculated the (gj , pj) pairs for all communities, the community

budget constraints can be solved to obtain tax rates. In particular, the budget constraint

for community j is

tj p
h
j h̄j(pj) = gj (28)

where

hj(pj) =
∫ ∞

−∞

∫ yj(α)

yj−1(α)
h(pj , y) f(α, y) dydα

/
nj (29)

is per-household housing consumption in j. This and the identity pj = phj (1 + tj) imply:

tj pj h̄j(pj) / (1 + tj) = gj (30)

Given (gj , pj) and the community boundary loci, equation (30) can be solved for each

j to obtain tj . We do not observe the price per unit of housing services, phj . Hence, we
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calculate the per capita annualized rental value of housing consumed in each community:

Rj = phj h̄j(pj).

Let tj(θ2|θ̂1), gj(θ2|θ̂1), Rj(θ2|θ̂1) denote, respectively, the tax rate, expenditure level,

and mean housing expenditures predicted by the model as a function of the parameters that

have been estimated in the first round θ̂1 and the parameters that need to be estimated

in the second round θ2. We assume that the observed levels of these three variables differ

from the ones predicted by our model because of measurement error:

tj = tj(θ2| θ̂1) + εtj

gj = gj(θ2| θ̂1) + εgj (31)

Rj = Rj(θ2| θ̂1) + εRj

We assume that the measurement errors, (εtj , ε
g
j , ε

R
j ), are jointly normally distributed. For

each set of trial values of θ2, and given the first stage estimator θ̂1, we solve for (gj , tj , Rj)

in each community.16 We can then estimate the remaining parameters of the model using

a maximum likelihood estimator.17 Obtaining these maximum likelihood estimates is the

second stage of our estimation procedure.

We view the above estimation procedure as appealing for two reasons. First, it does not

require estimates of the amount of land in each community that is available for residential

development. Such measures are likely to be subject to substantial measurement error.

Instead, we use community populations and income distributions. While these are also

subject to measurement error, such measurement errors are likely to be small relative to

16Precise details of the computation of equilibrium for a given set of parameter values are given in Appendix
A.

17Our model may be misspecified. One of the main objectives of the analysis is to determine and evaluate
the fit of the model. This exercise is well-defined even if our model is misspecified. In that case, it makes more
sense to interpret the MLE as a quasi-maximum-likelihood estimator. Basic asymptotic theory suggests that
the quasi- maximum-likelihood estimator is still well defined and converges almost surely to the parameter
vector that minimizes the Kullback-Leibler discrepancy which measures the distance between our class of
models and the true data generating process. Moreover, the limiting distribution of the quasi MLE is still
asymptotically normal.Of course, the standard formula that we use for estimating asymptotic standard errors
would need to be modified in this case to account for misspecification problems. For an introduction to the
theory of misspecified MLE see, for example, Gallant (1997).
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errors in measuring land areas. Second, the two-stage approach permits us to exploit,

in the first stage, the large sample (five percent of the metropolitan population) that is

available for estimating community income boundaries and parameters of the distribution

of income. The second stage then exploits the implications of household location and voting

in determining community property values and local government expenditures and tax rates.

6 The Data Set

The data set used in this paper builds on the one used in ES and ERS on the Boston

Metropolitan area in 1980. In addition, we also use data on residential property values in

each community. Table 1 reports some descriptive statistics of the most important variables

in the sample. The sample size of 92 equals the number of cities and townships in the Boston

Metropolitan Area. Since a detailed discussion of the data is published in ES and ERS, we

provide details here only on issues that have not been previously discussed.

Table 1: Descriptive Statistics of the Sample

Variable Mean Std. Deviation

Population size 30036 59719

Number of households 10769 23335

Mean incomea 27402 8024

Median incomea 24108 6481

Education expenditurea 1479 435

Property tax rateb 0.031 0.009

Median property valuea 64923 21515

Median gross renta 314.35 58.22

Fraction of renters 0.28 0.16

Notation: a per household. b per dollar of value

First, consider the relationship of the community budget constraint to residential prop-

erty tax revenue. We have plotted residential property tax revenue and educational expen-

diture per household in Figure 1. As the lower two lines of the plot below show, residential
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property tax revenue and education expenditures per household track relatively well across

the communities. The correlation coefficient is 0.73. This is striking given that the data

come from different sources. The expenditure data are from the U.S. Census of Governments

while data for tax rates and assessed residential property tax bases are from state govern-

ment sources. Thus, we will view the residential property tax as earmarked for education

and property tax as the only source of revenue for education.

Figure 1: Residential Property Tax Revenue and Educational Expenditure per Household
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Notation: — expenditures per household on education, - - property taxes per household

Next, recall that housing consumption in our model is framed in terms of the flow of

housing services. We consider the conversion of property values to annualized implicit rental

values for the 1980 Boston data. Let R be annualized implicit rent and V be the housing

value. These are related by the following identity:

R = kpV (32)
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where, kp is the user-cost factor (Poterba, 1992) given by the following expression:

kp = (1− ty)(i+ tv) + ζ (33)

where ty is the income tax rate, tv is the tax rate on property value, i is the nominal

interest rate, and ζ = β +m+ δ − π where β is the risk premium for housing investments,

m and δ are maintenance and depreciation costs, and π is the inflation rate. We wish to

calculate implicit rents net of the property tax, so we remove tv from the previous expression.

Following Poterba, let ζ = −.02 and i = .1286. We set ty = .15. Then,

kp = .85 ∗ (.1286)− .02. (34)

Thus, the average user-cost factor for these communities is then:

kp = .85 ∗ (.1286)− .02. = .0893. (35)

It is natural to question whether the assessed values (”equalized residential values”

or ERV) provide an adequate measure of actual property values in communities. While

this cannot be answered definitely, we can check the consistency between these values and

values that community residents report to the U.S. Census. We converted rents into housing

values using Poterba’s formula, as discussed above. We then regressed equalized residential

property value per household on aggregate owner-occupied property values (Census) and

the imputed values from aggregate rents (Census).18 The overall fit is high, with R2 = .94.

The coefficients on each of the right-hand side variables should be 1. For owner-occupied

housing, we find that the estimated coefficient is 1.039 with an estimated standard error of

0.031. Thus we fail to reject the null hypothesis that the coefficient is equal to 1. For rental

housing, we find that the coefficient is equal to 0.7117 with an estimated standard error of

0.147. The null hypothesis that the coefficient equals 1 has p-value = .058.

18The regression results are available upon request from the authors.
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We thus find that the user-cost factor seems to understate the extent to which rentals are

converted to property values. If we add .05 to the user-cost factor (i.e., let ζ = .03 instead

of -.02), then we get a coefficient on the rental variable very close to 1 in our regression.

Such an increase could be motivated by greater depreciation and maintenance costs than

Poterba assumed or greater risk factor in housing investments. Alternatively, it may be that

rental properties are under-assessed relative to owner-occupied properties. All in all, these

regressions are overall relatively reassuring about the alternative house value measures that

we have. In the empirical analysis of this paper, we use ERV as our measure of value.

Figure 2: Equalized Residential Tax on Imputed Rental Values
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Finally, we also need to convert tax rates on property values to rates on annualized

implicit rental values to get a tax rate on the flow of housing services. The property tax

rate on implicit rental, R, is related to the property tax rate on value, V by the following

identity:

trR = tvV (36)
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Thus,

tr = tvV/R = tv/kp = tv/[(1− ty)i+ ζ] (37)

= tv/[.85 ∗ .1286− .02]

Figure 2 plots the implied rates on rental expenditures.

7 Empirical Results

In the first stage of the estimation procedure, we match selected quantiles of the empirical

income distributions of the communities with their predicted counterparts. This part of

the estimation procedure is identical to the one in Epple and Sieg (1999). The mean of

log income, µln(y), is 9.790 with an estimated standard error of 0.002. The estimate of the

standard deviation of log income, σln(y), is 0.755 (0.004). The correlation between income

and tastes for local public goods is -0.019 (0.031). The ratio ρ/σln(α) is -0.283 (0.013).

Finally, the income elasticity of housing demand is estimated to be 0.938 (0.026).19 As

detailed in ES, the estimated quantiles of income for the 92 communities fit the observed

(Census) quantiles quite well.

In this paper, we estimate the remaining parameters by matching the observed distribu-

tion of tax rates, expenditures, and imputed rents as discussed in section 5. We set φ = 0;

i.e., we assume there are no peer effects. Column I of Table 2 reports the estimates for

the baseline model. We find that the estimate for σln(α) reaches the lower boundary of 0.1,

which is set in the estimation algorithm to keep σln(α) positive. This is our first indication

that the myopic model performs poorly. With σln(α) = .1, the implied value of ρ is given

by the first-stage coefficient restriction that ρ = −.283 ∗ σln(α) = −.0283. Our estimate for

µln(α) is -2.623. Our estimate for B is 0.325. These estimates are not of intrinsic interest

here, but they are needed to calculate the predicted equilibrium quantities of interest.20

19These estimates are reproduced from Table 1 in ES (1999).
20We have verified that the second-order conditions are satisfied for these estimates.

23



Figure 3: Observed versus predicted Expenditures, Rents, and Taxes: Baseline Model

10 20 30 40 50 60 70 80 90
0

500

1000

1500

2000

2500

3000

community

exp
end

itur
es

10 20 30 40 50 60 70 80 90
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

community

ren
ts

10 20 30 40 50 60 70 80 90
0.1

0.2

0.3

0.4

0.5

0.6

community

tax
 rat

es

Notation: * actual, – predicted

24



Table 2: Estimation Results

I II
parameters baseline model extended model
µln(α) -2.622 -2.643

(0.021) (0.017)
σln(α) 0.1 0.1

—– —–
B 0.325 0.175

(0.006) (0.007)
φ 0.0 2.623

—– (0.147)
likelihood function -1360.92 -996.51
R2 expenditures 0.680 0.739
R2 rents 0.786 0.930
R2 taxes - 0.301 0.728
Estimated standard errors are given in parentheses.

Next we focus on the goodness of fit of the myopic voter model. First, figure 3 plots

observed and predicted expenditures, rents, and tax rates. We find that the model fits

the observed expenditure patterns reasonably well, though with some overstatement of

expenditures in the poorer communities and some understatement in the higher-income

communities.21 The correlation between observed and predicted expenditures is 0.727.

Imputed rents are both equilibrium housing consumption and the tax base in our model.

The model somewhat over-predicts rents for poor communities and under-predicts rents for

high income communities. The correlation coefficient is 0.94. Finally, we consider observed

and predicted tax rates. Here the results are not favorable and point to a serious lack of

fit. The over-prediction of housing values in the poorer communities and under-prediction

of expenditures combine to create a severe under-prediction of tax rates in the poorer

communities. Similarly, in the wealthier communities, the under-prediction of housing

values and over-prediction of expenditures create an over-prediction of tax rates. Thus,

while observed tax rates decrease in community rank, the model predicts tax rates increasing

in community rank. The correlation between observed and predicted tax rates is -.67. This

21The term “expenditures” refers to local spending on education.
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failure to fit tax rates is a serious shortcoming of the model. We also conducted some

sensitivity analysis. Changing the price elasticity, η, from -.3 to -.5 has negligible effect on

the likelihood function.

Given these findings, it is useful to consider extensions of the simple myopic voting model

that may fit the data better. As we have seen in Section 2.2, we can assume that the quality

of public good provision not only depends on local expenditures, but also peer effects. The

parameter estimates of the extended model are shown in Column II of Table 2. We find

that the estimate of φ is large and statistically significant. Expressing the exponent of the

quality function in relative terms, our estimates imply that the peer effects are 2.5 times as

important as spending. Introducing peer effects into the model specification also improves

the fit of the model as documented in Figure 4. We find that a model with peer effects can

not only explain expenditures, but also tax rates and tax bases (rents) reasonably well. In

particular, we find that the correlation between actual and predicted tax rates is 0.747. We

thus conclude that the extended myopic voting model which allows for peer effects in public

good provision fits our data very well.

In the estimation, we treat housing prices as latent. Our model predicts that housing

prices (per unit of housing consumption) vary from 1.0 in the lowest community to 5.14

in the most expensive community.22 These price differences are similar compared to those

found by quite different methods in empirical work such as Epple and Sieg (1999) and Sieg,

Smith, Banzhaf, and Walsh (2002).

Our model presumes that the marginal source of funds for increasing a community’s

educational expenditures is the community’s residential property tax. It is natural to wonder

whether the poor fit of the baseline model (i.e., the model without peer effects) may be due

to failure to incorporate factors that affect incentives for local property taxation.

We explored whether intergovernmental aid formulas might have embodied features that

significantly affected marginal incentives for local taxation. After extensive investigation,

we concluded that this is not the case. The state aid formula applicable during the period

22In the model without peer effects prices ranged from 1 to 1.6.
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Figure 4: Observed versus predicted Expenditures, Rents, and Taxes: Extended Model
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Figure 5: Housing Prices
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from which our data are drawn specified aid as a function of the local property tax base

and school enrollment.23 The school enrollment variable in the formula gave higher weight

to disadvantaged students. In addition, greater aid went to districts with lower property

tax base per capita. Thus, both components of the aid formula had the effect of directing

greater aid to lower-income municipalities. A key aspect of the formula is that, beyond a

threshold, aid was not conditioned on the local tax rate or local expenditures. Thus, because

it was not tied to local taxation or expenditure, the aid provided by the state would tend

to induce localities to respond by lowering their tax rates. Moreover, since aid was higher

to lower-income communities, the associated tax rate reduction would tend to be higher in

poorer communities. Recall that a major shortcoming of the fit of the baseline model is

that the model substantially underpredicts tax rates in poorer communities. If anything,

incorporating state aid into the model would worsen the fit of the model to the data by

inducing even lower predicted tax rates in poorer communities.24

23The relevant statute is Acts and Resolves of Massachusetts, 1978, ch. 367, amending ch. 70, “School
Funds and State Aid for Public Schools.”

24There is one potentially important caveat to the preceding discussion. In order to receive the full amount
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We also explored a second possibility. Suppose poorer municipalities have proportion-

ately more non-residential property than wealthier municipalities. If localities were required

to impose the same tax rate on both residential and non-residential property, then poorer

municipalities might have an incentive to raise the property tax rate in order to extract

additional revenue from non-residential sources.25 During the time period from which our

data are drawn, Massachusetts state law did require that the same property tax rate be

imposed on both types of property. However, municipalities routinely circumvented this

requirement by assessing residential and non-residential properties at different rates (Brad-

bury, 1988). The poorest municipalities all imposed higher effective rates on non-residential

than on residential property. Thus, presence of non-residential property does not appear to

have created incentives for poor communities to increase tax rates on residential property.

8 Conclusions

Few empirical strategies have been developed that investigate public provision under major-

ity rule while taking explicit account of the constraints implied by mobility of households.

Epple, Romer, and Sieg (2001) focused on necessary conditions that observed expenditures,

housing prices, and tax rates must satisfy in myopic voting equilibrium models. They found

that the observed expenditures and (estimated) housing prices do not simultaneously satisfy

boundary indifference conditions and the first order conditions implied by myopic voting.

This finding is puzzling and raises some issues about the widespread use of myopic voting

in theoretical models. In this paper, we have explored the implications of the myopic voter

model in further detail. We have specified a generic locational equilibrium model, char-

acterized its equilibrium properties, and derived a new algorithm to compute equilibria.

Moreover, we have developed a new empirical approach that imposes all restrictions that

arise from these equilibrium models on the data generating process. This allows us to study

of aid specified by the formula, a municipality was required to meet a threshold spending level from own
sources. Unfortunately, the data are not sufficient to permit us to determine whether that condition was
binding on any municipalities.

25The extent of any such incentive would depend on the relative ”exportability” of taxes on residential
and non-residential activities.
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the goodness of fit of the model and helps us determine which dimensions of the data can

or cannot be explained by myopic voting.

Our first set of findings reinforce the results in Epple, Romer, and Sieg (2001). While the

myopic voting model can replicate many important stylized features of the data including

the observed expenditure patterns, it yields distributions of property tax rates that differ

significantly from the ones observed in the data. Our model predicts that tax rates are

higher in high income communities than in low income communities. In the data, we

observe the opposite: high income communities have on average lower property tax rates

than poor communities. We also find that the implied mean housing expenditures are too

low in the predicted equilibrium for rich communities and too high for poor communities.

We, therefore, explore extensions of the simple myopic model and introduce peer effects into

the model specification. Our findings are encouraging and suggest that peer effects may be

important components in determining the quality of local public good provision. Moreover,

the extended model fits the data much better than the simple myopic model considered in

ERS. While the fit of the extended model is quite satisfactory, we note that the estimate

of one of the parameters, σlnα, converges to the lower bound constraint that we impose in

estimation.

Our analysis of myopic voting requires us to impose a number of additional assumptions

about the shape of preferences and the demand for housing, which in principle are not a

generic feature of the myopic voting model. Our results may therefore be partly due to our

specification of household preferences or the distribution of household characteristics. Thus

there seem to be two potential avenues which are promising for future research. First, one

would try to estimate myopic voting models imposing less restrictive assumptions about

household preferences and the distribution of household types. In particular, one could

generalize preferences for housing allowing for additional sources of observed and unobserved

heterogeneity. In our current specification, we allow for heterogeneity in the tastes for the

local public good but not in the taste for housing. As one allows for more general housing

demand functions, it should be easier to fit the observed pattern of housing consumption.

This may help to address the most obvious limitation of the current generation of equilibrium
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models.

Alternatively, one can abandon the myopic voting paradigm and focus on more sophisti-

cated voting models. Here the challenge would be to integrate the analysis of locational and

voting equilibrium along the lines suggested in this paper. Moreover, we know that home

ownership structure (renters vs owner-occupants) is important once we abandon the simple

myopic framework. One of the key remaining challenges is to incorporate more realistic

ownership structures into the empirical analysis of sophisticated voting models.
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Appendix A: Computation of Equilibrium

For simplicity, consider the model without peer effects, i.e. assume that q = g. Equilibrium

is an allocation of households across communities and goods across households such that all

individuals maximize utility in choice of consumption bundles and community of residence,

the housing market in each community clears, each community’s budget is in balance, and

each community’s tax and expenditure is chosen by majority rule of residents.

Recall that the population of community j is given by:

P (Cj) = nj =
∫ ∞

0

∫ αj(y)

αj−1(y)
f(y, α)dαdy j = 1, ..., J (38)

Note that nj depends on housing prices and public good provision levels in j and in the

community or pair of communities adjacent to j. Let P, Ph, G. and T be the J × 1 vectors

of community net- and gross-of-tax housing prices, public good provision levels, and tax

rates. Let N(P,G) be the J × 1 vector of functions obtained by “stacking” the nj .

Housing demand in j is given by:

Hj
d(P,G) =

∫ ∞

0

∫ αj(y)

αj−1(y)
h(p, y)f(y, α)dαdy j = 1, ..., J (39)

Let HD(P,G) be the J×1 vector of housing demands obtained by “stacking” the community

housing demand functions. Likewise, let HS(Ph) be the J × 1 vector of housing supply

functions. Then market clearing in housing markets in all communities requires:

HD(P,G) = HS(P./(1 + T )) (40)

where ./ denotes element-by-element division, and budget balance in all communities re-

quires:

T. ∗ Ph. ∗HD(P,G) = N(P,G). ∗G (41)

32



where .* denotes element-by-element multiplication.

Next, consider voting, focusing initially on the case in which all households are renters.

The necessary condition for an allocation to be a voting equilibrium is that there is a locus

α̃j(y) = α̃(y; pj , pj+1, gj , gj+1) (42)

satisfying

M(pj , gj , α̃j(y), y) =
dp

dg

∣∣∣∣
GPF

(43)

such that half the voters in a community are below α̃j(y)and half are above; hence voters

below the locus comprise half the population of the community:

∫ ∞

0

∫ α̃j(y)

αj−1(y)
f(y, α)dαdy =

1
2

∫ ∞

0

∫ αj(y)

αj−1(y)
f(y, α)dαdy j = 1, ..., J (44)

Above dp
dg

∣∣∣
GPF

is the voters’ belief about how a change in g will affect their community’s

housing price. Thus, the form of dp
dg

∣∣∣
GPF

depends on a characterization of how voters antic-

ipate the consequences of alternative community spending levels. The myopic case implies:

dp

dg

∣∣∣∣
GPF

=
nj

Hj
d

(45)

Let

ñj =
∫ ∞

0

∫ α̃j(y)

αj−1(y)
f(y, α)dαdy (46)

and let Ñ(P,G, T ) J × 1 vector of functions obtained by stacking the ñj . Thus voting

equilibrium in all communities requires:

Ñ(P,G, T ) = N(P,G)/2 (47)

Then a multi-community equilibrium is a J × 3 matrix (P,G,T) satisfying (40), (41), and
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(47). The latter have been written exploiting the identity P = Ph.*(1+T).

The following describes the strategy for computing equilibrium. By a standard change

of variables, rewrite community population as:

nj =
∫ ∞

−∞

∫ ln(αj(y))

ln(αj−1(y))
f(ln y, lnα)dαdy j = 1, ..., J (48)

The population of communities up to and including j is:

N j
c =

∫ ∞

−∞

∫ ln(αj(y))

−∞
f(ln y, lnα)dαdy j = 1, ..., J (49)

The integral in (49) can be rewritten as in Appendix B of ES:

N j
c =

∫ ∞

−∞
f(ln y)

[∫ zj(y)

−∞
φ(ξ)dξ

]
dy j = 1, ..., J (50)

Equation (50) follows from the left-hand-side of equation (B9) of ES appendix B and zj(y)

is defined following equation (B9). Next, rewrite (50) as:

N j
c =

∫ ∞

−∞
f(ln y)Φ(zj(y))dy j = 1, ..., J (51)

where Φ(.) is the unit normal CDF.

Let yv= [y1, y2,. . . ,yK ] be a row vector of K ordinates to be used for numerical integra-

tion. Then zjv = zj(yv) is a 1×K row vector of points on the locus zj(y).

Let Ij(y) denote the integrand of (50):

Ij(y) = f(ln y)Φ(zj(y)) (52)

Using Simpson’s rule, the integral in (50) will be approximated by the sum of K rectangles.

Rectangle i has height Ij(yi). Let wi be the width of the base of the rectangle, hence the

area of the rectangle is Ij(yi)wi. Let Wv = [w1, w2,. . . ,wK ] be the column vector vector of
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widths associated with yv. Then the integral in (50) is approximated by:

K∑
i=1

Ij(yi) · wi =Ij(yv) ·Wv (53)

Let zJv be a 1×K row vector all of whose elements are the upper bound on z, zmax.26 Let

Zm be the J ×K matrix obtained by “stacking” the zjv. Let I(yv) be the J ×K matrix of

functions obtained by “stacking” the Ij(yv) functions:

I(yv) = f(ln yv). ∗ Φ(zm) (54)

Stack theN j
c into a J × 1 vector, Nc. We then have that:

Nc = [f(ln yv). ∗ Φ(zm)] ·Wv (55)

Let N−J
c = [0, N1

c , N
2
c , ..., N

J−1
c ]. Then we have the numerically integrated counterpart to

N(P,G) , the J × 1 vector of community populations:

N(P,G) = Nc −N−J
c (56)

The housing demand function is: h(p,y)=Bpηyν . Thus, to calculate community housing

demand, we need the integral of yν for each community. Proceeding as above, noting that

yν = eνlny, let Yc be defined analogously to (55):

Yc =
[
eυ ln y. ∗ f(ln y). ∗ Φ(zm)

]
·Wv (57)

Let Y −Jc = [0, Y 1
c , Y

2
c , ..., Y

J−1
c ], and let Yν(P,G) be:

Y ν(P,G) = Yc − Y −Jc (58)

26The upper bound on z is infinity. For purposes of numerical integration, zmax can be set equal to a
value sufficiently large that only a small fraction of the integral in (51) lies above zmax.
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The J × 1 vector of community housing demands is then:

HD(P,G) = BP ηY ν(P,G) (59)

To do the computations for voting equilibrium, use Lj as defined in equation (2.18) of ERS:

Lj = −ρ
Bpη+1

j − 1
η+1

+ ln(Bpηj ) + ln

(
dpj
dgj

)
− (ρ− 1) ln gj (60)

In the above equation, the expression for voters’ perceptions of the response of pj to changes

in gj
(
dpj

dgj

)∣∣∣
RPF

is substituted in place of
(
dpj

dgj

)
. Let z̃j(y)be the locus of pivotal voters

for community j. This is defined analogously to zj(y)except that Lj appears in z̃j(y)where

Kj appears in zj(y). Define z̃m analogously to zm. Let:

Ñc = [f(ln yv). ∗ Φ(z̃m)] ·Wv (61)

Then the following vector gives the number of voter below the pivotal locus in each of the

J communities:

Ñ(P,G, T ) = Ñc −N−J
c (62)

Equations (56), (59), and (62) provide the results needed for computing the equilibrium

conditions in equations (40), (41) and (47).

For the empirical analysis in this paper, we replace equation (33) with the requirement

that populations implied by the model equal populations observed in the data. The pop-

ulation size equations yield J-1 conditions. The additional condition that we invoke is to

normalize the price in community one to be equal to one.
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Appendix B: Proof of Proposition 1

We prove Proposition 1 using the parameterization introduced in Section 3 and assuming

that q = g. Given community populations and the ordering of communities, the community-

specific intercepts, Kj , defined in equation (22) are uniquely determined by the recursion in

ES equation (14). Given the community-specific intercepts, the boundary loci delineating

communities are given by equations (22). This in turn implies that the distribution of (α, y)

types in each community is known. The community-specific voting intercepts, Lj , defined

in equations (25) are then uniquely determined by the recursion in ERS equation (2.19).

It remains to show that, given the preceding, the internal equilibrium in each community

is unique. For this, it suffices to show show that the conditions in Assumptions 7 and 8 of

EFR are satisfied for voters on the pivotal locus.

Assumption 7 requires:

i)
∂M

∂g
≤ 0

ii)
∂M

∂p
≤ 0

iii)
∂M

∂g
+
∂M

∂p
< 0 (63)

iv) lim
g→0

M = 0

v) lim
p→∞

M = 0

Assumption 8 requires:

∂ph(p, y)
∂p

≥ 0 for all p, y (64)

To verify the conditions of Assumption 7, consider a voter (α, y) on the pivotal locus. Since

M(·) is the same for all voters on the pivotal locus, it is sufficient to establish the results

for an arbitrarily chosen voter on the pivotal locus. For this voter, the slope of an indirect
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indifference curve in the (p, g) plane is given in ES Equation (9) and reproduced here:

M(p, g, y, α) = −∂V (p, g, y, α)/∂g
∂V (p, g, y, α)/∂y

=
αgρ−1

[
e

y1−ν−1
1−ν

]−ρ [
e
−Bp1+η−1

1+η

]−ρ
Bpη

> 0 (65)

Differentiating M , we obtain:

i)
∂M

∂g
= (ρ− 1)

M

g
< 0

ii)
∂M

∂p
= MρBpη < 0 (66)

The above inequalities are implied by ρ < 0, B > 0, and M > 0. Condition (iii) then

follows since both inequalities above are strict. Condition (iv) follows from inspection of

the expression for M .

To verify condition (v), simplify notation by letting:

z = αgρ−1
[
e

y1−ν−1
1−ν

]−ρ
(67)

Then

M(p, g, y, α) = −∂V (p, g, y, α)/∂g
∂V (p, g, y, α)/∂y

=
ze
ρBp1+η−1

1+η

Bpη
(68)

Condition (v) requires finding the limit of M as p→∞. Note that, for p sufficiently large,

e
−ρBp1+η−1

1+η >
−ρBp1+η

1 + η
(69)

The preceding inequality follows from observing that the right-hand side increases linearly

in p1+η while the left-hand side increases exponentially in p1+η. Hence, for p sufficiently
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large

M =
ze
ρBp1+η−1

1+η

Bpη
=

z

e
−ρBp1+η−1

1+η Bpη
<

z
−ρBp1+η

1+η Bpη
=

z
−ρB2p
1+η

(70)

By observation, the limit of the last expression above approaches zero as p approaches

infinity. This and M ≥ 0 imply Condition (v).

The housing demand function implied by our indirect utility function is

h(p, y) = Bpηyν (71)

Assumption 8 then follows from |η| < 1:

∂ph(p, y)
∂p

= (η + 1)h(p, y) > 0 (72)

Q.E.D.
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