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Abstract

While contemporaneous consumption growth is known not to price the cross section of stock

returns, we find that suitable sub-components (or details) of consumption growth with period-

icities corresponding to the business cycle do. Specifically, we disaggregate consumption growth

into details with different levels of persistence and show that those corresponding to business

cycle scales can explain the differences in risk premia across book-to-market and size-sorted port-

folios. We argue that accounting for persistence heterogeneity in consumption is important for

interpreting risk compensations in financial markets but also for capturing the joint dynamics of

consumption and returns across horizons (for instance, the hump-shaped pricing ability of the

covariance between ultimate consumption and returns, the hump-shaped structure of long-run

risk premia as well as the decaying pattern in consumption growth predictability).
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1 Introduction

It is a basic tenet of economic theory that agents care about their consumption stream. A traditional

implication, for asset valuation in financial markets, of this accepted premise is that the risk of any

asset should depend on its covariance with consumption growth. Assets which pay off in adverse

states of nature (those in which consumption growth is lower) are assets which should be perceived

as being less risky and should therefore provide, in equilibrium, lower expected returns. Conversely,

those assets whose returns are positively correlated with consumption growth are assets with inferior

hedging abilities. Their demand should be lower, thereby justifying their lower prices, and their

higher expected returns.

This logic, grounded in the classical Consumption CAPM (CCAPM) model of Rubinstein (1976)

and Breeden (1979), is known not to be supported by economic data. Differences in expected returns

across risky securities are empirically not attributable to sheer differences in the variability of the

returns of these securities with respect to changes in aggregate consumption.1 This failure has

lead to alternative models of economic behavior in which a prominent role is given to suitable

modifications of the conventional time-separable utility paradigm.2

Is the traditional CCAPM truly limited? This paper argues that aggregate consumption growth,

the subject of much investigation, can be separated into a variety of components, layers, or details.

These details operate at different frequencies, thereby representing features of the overall consump-

tion stream with cycles of different lengths. While the covariance between aggregate consumption

growth and individual assets’ returns does not explain the cross-sectional dispersion of expected

excess returns, we show that the covariance between specific details of the consumption growth

process and assets’ returns is an important determinant of risk in financial markets.

In essence, investors may not focus on very high-frequency components of the consumption

process. For the purpose of asset pricing, these components may just amount to short-term noise.

Lower frequency components of consumption growth with various degrees of persistence may, how-

1Campbell (2003) and Cochrane (2001) provide comprehensive discussions.
2Fundamental contributions are Abel’s external habit as in Abel (1990), Constantinides (1990), Detemple and

Zapatero (1991), Campbell and Cochrane (1999) and Mezly, Santos and Veronesi (2004), inter alia, Epstein and Zin’s
recursive utility as in Epstein and Zin (1989, 1991), Bansal and Yaron (2002), and Hansen, Heaton, and Li (2008),
among others, and loss aversion as in Barberis, Huang and Santos (2001). For an interesting discussion of their
unified interpretation as preference theories defined over consumption and a suitable reference factor, as well as for
further extensions in an expected utility framework, we refer the interested reader to the work of Garcia, Renault,
and Semenov (2004).
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ever, be important drivers of risk premia. A suitable noise-to-signal extraction mechanism, along

with the application of conventional pricing techniques, allows us to identify these priced compo-

nents. In the size and book-to-market space represented by the traditional Fama-French portfolios,

we find that the main consumption detail driving risk compensations is a business-cycle component

with periodicity between 4 and 8 years. When used in isolation, this component yields a value for

the coefficient of determination (R2) close to 30% and insignificant pricing errors. The addition of

a component with periodicity between 2 and 4 years increases the coefficient of determination to

42% and improves the performance of the model along a variety of additional dimensions. Taken

together, these results point to the importance, for the cross-sectional pricing of financial assets, of

low-frequency components of the consumption process spanning between 2 and 8 years of economic

activity (the usual length of the business cycle according to Burns and Mitchell, 1946; see also the

implicit taxonomy in Comin and Gertler, 2006).

Our analysis begins with a model for consumption growth gt+1 = log ct+1

ct
which expresses it as

gt =
∑J

j=1 g
(j)
t +π

(J)
t , where the g

(j)
t s are scale-specific consumption details with various persistence

properties and π
(J)
t is a long-run trend. Each detail is associated with fluctuations between 2j−1

and 2j quarters. Importantly, the shocks determining individual components are, in general, not

aggregates of high-frequency shocks. They are, instead, scale-specific as well as time-specific. This

modeling device represents an important departure from classical time series specifications (see

Bandi, Perron, Tamoni and Tebaldi, 2012, BPTT henceforth), one which represents the idea that

different layers of the consumption process may be the result of random shocks with different sizes

and different half-lives. The separation into J+1 details with J > 1 gives us more granularity in the

analysis of fluctuations with different cycles that is the case with more traditional (2-component)

decompositions of the Beveridge-Nelson type. This granularity is, of course, crucial to evaluate the

differential impact of various consumption details on risk premia. Write the generic asset i’s excess

return as Reit,t+1 =
∑J

j=1R
ei(j)
t,t+1 +η

(J)
t+1, where the symbols have the same interpretation as for gt. We

find that that size and book-to-market portfolios are suitably priced by Cov
[
g

(j)
t+1, R

ei(j)
t,t+1

]
with j = 4

and j = 5, i.e., two sub-components of the classical aggregate covariance Cov
[
gt+1, R

ei
t,t+1

]
, the sub-

components corresponding - as pointed out earlier - with (business-cycle) fluctuations between 2 to

8 years.

In essence, we find that accounting for persistence heterogeneity in consumption is key for

interpreting differences in risk compensation across assets. We also show that it is key for capturing
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the joint dynamics of consumption growth and returns across different time horizons. To this

extent, the paper uses a variety of metrics intended to evaluate the pricing ability of a model

in which business-cycle components of the consumption process are the main determinants of the

cross-sectional dispersion in risk premia.

First, the model generates positive consumption growth autocorrelations up three lags (quarters)

and largely insignificant autocorrelations thereafter. This finding is consistent with data.

Second, following Parker and Julliard (2005) who define risk in terms of covariances with respect

to ultimate consumption (Cov
[
gt,t+h+1, R

ei
t,t+1

]
with h large), we show that the proposed pricing

model closely reproduces their documented hump-shape pattern of R2s with a peak corresponding

to a time period between 2.5 and 3 years. Averaging, as in the definition of ultimate consumption,

reveals persistent components by eliminating short-term fluctuations (BPTT, 2012, for a formal

treatment). Thus, there is an important conceptual link between ultimate consumption and a data

generating process, like the one we propose, in which persistent components of the consumption

process with business-cycle fluctuations drive risk premia.

Third, we look at predictability of consumption growth as in Piazzesi (2001). In this context,

we report the (average, across stocks) covariance between future consumption growth and current

excess returns (Cov
[
gt+h,t+h+1, R

ei
t,t+1

]
) to show that, barring short-term seasonal patterns, the

component model yields the consumption predictability found in the data.

Finally, as suggested by Cochrane and Hansen (1992), we examine the equity premium at long

horizons, namely the (average, across stocks) covariance between long-run consumption growth and

long-run excess returns divided by the horizon ( 1
hCov

[
gt,t+h, R

ei
t,t+h

]
). In the data this standardized

covariance is typically found to be hump-shaped: it increases up to about 2 years before decreasing

monotonically. Our component model for consumption reproduces this pattern satisfactorily.

The proposed approach has several important features. First, our analysis of the pricing abilities

of consumption details keeps us within the economically-appealing framework of the CCAPM in

its traditional format. We are however emphasizing that risk can be thought of as being driven

by individual component(s) of Cov
[
gt+1, R

ei
t,t+1

]
rather than by the full covariance. Having made

this point, our choice not to depart from the typical paradigm with time-separable utilities is by

no means a refusal of alternative utility models whose potential has been widely documented. It

is, similarly, not a tacit endorsement of conventional utility specifications. It is, however, a useful

way for us to push the boundaries of the classical time-separable specification and highlight the
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ability of consumption itself to price risky assets without enriching preferences. Second, through

(business cycle-like) fluctuations in the consumption components, we generate directly (business

cycle-like) fluctuations in the stochastic discount factor, a feature which was discussed by Alvarez

and Jermann (2002) and Parker and Julliard (2005) as being empirically warranted and theoretically

meaningful. Finally, we provide an alternative, but rather natural, channel through which hard-to-

detect persistent components in the consumption process affect asset prices. The role of persistence

in consumption for asset pricing has been highlighted in influential, recent work (e.g., Alvarez and

Jermann, 2002, Bansal and Yaron, 2005, and Hansen, Heaton, and Li, 2008).

An interesting question to ask is whether there are subsets of frequencies over which pricing

models, like the traditional CCAPM, fare satisfactorily. This question has been addressed in the time

domain (Daniel and Marshall, 1997) and, as is natural, in the frequency domain (e.g., Berkowitz,

2001, and Cogley, 2001). A consistent conclusion of this line of work is that the fit of the model

improves as the horizon increases, thereby providing support for the implication that asset pricing

puzzles are largely short-term phenomena having to do with frictions. A related, but different,

question is: at which frequency do the shocks that matter to price short-term returns of the kind

routinely used in asset pricing tests operate? This issue has also been addressed in the time domain

(e.g., Bansal and Yaron, 2005, and Hansen, Heaton and Li, 2008) as well as in the frequency domain

(Dew-Becker and Giglio, 2013), and, more recently, in the joint time-scale domain (Ortu, Tamoni

and Tebaldi, 2013). We operate in the time domain and provide an explicit consumption/return

data generating process which expresses all processes as sums of components (and, therefore, shocks)

with periodicity of different length. Our decomposition, and the resulting decomposition of the

overall covariance between consumption growth and asset returns into sub-covariances (one for each

scale), is explicit about the role of consumption shocks operating at different frequencies for the

pricing of short-term returns. Importantly, since aggregation reveals low-frequency relations (and

consumption betas defined on low-frequency components are shown in the paper to capture cross-

sectional risk premia), the proposed framework also translates into a price formation mechanism

yielding effective cross-sectional pricing for low-frequency returns. In this sense, our scale-based

decompositions nicely tie low-frequency consumption dynamics to both the pricing of long-run

returns (as in, e.g., Daniel and Marshall, 1997) and that of short-run returns (as in, e.g., Bansal

and Yaron, 2005).
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2 A scale-based decomposition of the CCAPM

The most classical asset pricing formula states that

Et[R
i
t,t+1mt+1] = 1, (1)

where mt+1 = β u
′(ct+1)
u′(ct)

. In Eq. (1), Rit,t+1 is a generic asset i’s uncertain return, u(·) is the period

utility function defined over the consumption stream, and β is a discount factor. One implication

of Eq. (1) is that, after taking dividends into account, prices are martingales (and are, therefore,

unpredictable) under the natural probability measure only when investors are risk neutral. If

investors are not risk neutral, prices are martingales once the true probabilities are suitably modified

by the change of measure mt+1.

Alternatively, in terms of risk compensations in excess of the risk-free asset Rf , one could write

Et[(R
i
t,t+1 −Rf )mt+1] = Et[R

ei
t,t+1mt+1] = 0, (2)

or, equivalently,

Et[R
ei
t,t+1] = −

Covt
[
mt+1, R

ei
t,t+1

]
Et[mt+1]

,

which is a beta representation for expected excess returns.

Under a constant relative risk aversion utility function u(ct) =
c1−θt
1−θ and a simple approximation,3

this representation leads to

Et[R
ei
t,t+1] ≈

small ∆ct+1

θCovt

[
log

ct+1

ct
, Reit,t+1

]
= θCovt

[
gt+1, R

ei
t,t+1

]
= θβit.

4 (3)

The interpretation of Eq. (3) is standard: the risk of any asset should be measured by the covariance

of the asset’s return with respect to consumption growth. Assets whose returns are relatively lower in

states of nature in which consumption growth is lower are perceived as riskier and should, therefore,

require a higher risk compensation, leading to higher expected returns in excess of the risk-free rate.

In spite of its economic purity and its emphasis on consumption as the main driver of agent’s

3Ignoring the discount factor, write mt+1 =
u′(ct+1)

u′(ct)
=
(
ct+1

ct

)θ
=
(

∆ct+1

ct
+ 1
)θ
≈ (∆ log ct+1 + 1)θ ≈ 1 +

θ∆ log ct+1 when ∆ct+1 is small.
4We use the convention of defining beta as a covariance, rather than as a covariance divided by the variance of the

factor.
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hedging decisions, this simple intuition is not validated by data. Regardless of the sampling period,

a broad literature has documented that differences in average excess returns across US assets do

not appear to be justifiable based on the corresponding differences in the covariance of the assets’

returns with respect to consumption growth.

Using data on the 25 Fama-French (FF) portfolios sorted on size and book-to-market between

1963:Q1 and 2012:Q4 as well as data on consumption of nondurables and services, seasonally ad-

justed in 1996 chain weighted dollars,5 we confirm this standard result.

Figure 1 plots the average returns on the portfolios. It shows the typical decreasing pattern

across size (from small to large) with the sole (also typical) exception of the first value quintile

for which the trend is largely reversed. We will return to the first value quintile in what follows.

Similarly, the figure displays an increasing pattern of average portfolio returns along the book-to-

market dimension, i.e., the well-known value premium.

Figure 2–Panel A plots average excess portfolio returns (on the vertical axis) against expected

excess returns implied by an unconditional version of the model in Eq. (3), i.e.,

E[Reit,t+1] = θCov
[
gt+1, R

ei
t,t+1

]
= θβi (4)

a traditional CCAPM. Predicted returns do not align with historical returns, the largest deviations

corresponding with portfolios in the first and in the last value quintile.

Is aggregate consumption growth too coarse a measure to deliver meaningful quantities of risk

and, consequently, to ”imply” meaningful expected returns? We address this issue by working with

multi-scale decompositions for both consumption growth and excess returns on the test assets. Since

the data spans a time frame of about 50 years, our chosen lowest frequency component (J = 6, in

the notation used above) strikes a compromise between identifiability (higher frequency details are

easier to identify) and richness of the overall decomposition (the larger the number of details, the

richer the decomposition). Such a component captures fluctuations between 8 years and 16 years.

We will show that a large percentage of the pricing ability of consumption growth is associated with

higher (than J = 6) frequency details. Write

gt+1 =
6∑
j=1

g
(j)
t+1 + π

(6)
t+1 (5)

5For complete information on the data, we refer the interested reader to Appendix B.
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and

Reit,t+1 =

6∑
j=1

R
ei(j)
t,t+1 + η

(6)
t+1. (6)

The components or details
{
g

(j)
t+1, R

ei(j)
t,t+1

}
are extracted using Haar wavelets. They can be thought of

as cross-sectionally uncorrelated linear autoregressive processes, with a scale specific autoregressive

parameter ρj and scale specific shocks, on the dilated time t − 2j of each individual scale. Since

j is measured in terms of quarters, each detail is associated with periodic fluctuations between

2j−1 and 2j quarters. The decompositions in Eqs. (5) and Eqs. (6), along with the autoregressive

dynamics of the details, translate into aggregated processes
{
gt+1, R

ei
t,t+1

}
for which a generalized

Wold representation holds, one in which the time series are linear combinations of shocks that are

both time and scale specific. This representation captures the idea that economic time series may

be suitably interpreted as the result of a cascade of shocks occurring at different times and different

frequencies. BPTT (2012) discuss the extraction mechanism and the properties of the extracted

details and the aggregated process. A summary of the approach is in Appendix A.

Returning to the unconditional CAPM specification in Eq. (4), we notice that

βi =
6∑
j=1

βi(j), (7)

where βi(j) = Cov
[
g

(j)
t+1, R

ei(j)
t,t+1

]
provided Cov

[
g

(j)
t+1, R

ei(k)
t,t+1

]
= 0 with j 6= k. While unnecessary for

our treatment, the zero condition on the cross-covariances is roughly satisfied for our data. This

observation leads to a beta formulation conveniently expressed in terms of covariances between

contemporaneous details of the consumption growth and return processes, namely

E[Reit,t+1] =
6∑
j=1

λjβ
i(j). (8)

Eq. (8) can now be interpreted as an “unconstrained” CCAPM model. The prices of risk (λj) are,

in fact, not constrained, as implied by the classical formulation in Eq. (4), to be the same across

components of the covariance of aggregate consumption with returns. They are, instead, treated as

free parameters.

As is customary in the literature, to evaluate the relative price of risk (λj) associated with
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different scale-specific betas (βi(j)), we first run time-series regressions of the type

R
ei(j)

k2j ,k2j+2j
= β0 + βi(j)g

(j)

k2j ,k2j+2j
+ εk2j+2j , (9)

with k ∈ Z. The difference here between the standard time series approach and our (scale-wise)

approach is that the regressions are run on details sampled every 2j times. BPTT (2012) refer to

these sub-series of the original details defined on chronological time as decimated series. For each

scale, the decimated series are designed to capture all relevant information about dynamics at the

corresponding frequency (see Appendix A for more details).

Using the first-pass estimates βi(j), we then estimate the regression

E[Re,it,t+1] = λ0 +

6∑
j=1

λjβ
i(j) + αi (10)

with and without an intercept and, when appropriate, with zero restrictions on the λj ’s. We begin

by analyzing the behavior of β(j) and λj across alternative scales and portfolios.

3 Scale-specific betas and lambdas

In this section we quantify first the exposures of the 25 FF portfolios returns to consumption over

alternative scales, and then the corresponding prices or investors’ compensations.

Figure 3 plots the betas of the 25 FF portfolios associated with different scales. Going from the

highest frequency scale to our chosen lowest frequency scale (j = 6), we witness a rotation from

size to value. In particular, the consumption detail corresponding to scale j = 2 (i.e., 6 months

to 1 year) translates into betas which align very effectively with average returns (as reported in

Figure 1) in the size dimension (higher betas for small firm portfolios, lower betas for large firm

portfolios) while failing to capture the second dimension, i.e., value. The betas corresponding to

lower frequency details of the consumption process (j = 3, 4, and 5) display improved alignment

in the value space without losing their ability to capture cross-sectional variability in risk premia

across size. The scale j = 5, among them, is the one for which the visual alignment of the betas

across both dimensions appears to be the best. The value premium, in particular, is captured rather

effectively at this low frequency (4 to 8 years). An important size tilt is, however, also present.
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While it is not hard to conjecture that the betas corresponding to scale j = 5 may be the most

effective in explaining cross-sectional variability in average returns, the preceding scale j = 4 may

represent an improvement in the size space. Interestingly, such an improvement is expected to be

brought about even by portfolios in the first value quintile. As documented in Figure 1, these are

portfolios for which the typical decreasing trend with size increases does not hold. Consistently, at

scale j = 4, the betas associated with the first value quintile have the same hump-shaped pattern

which characterizes average historical returns.

Figure 2–Panel B plots average excess portfolio returns (on the vertical axis) against returns

implied by the model in Eq. (10) with all lambdas restricted to zero with the exception of the lambda

associated with a specific scale. Confirming the intuition drawn from the corresponding betas,

the scale j = 5 appears to be the most effective in representing cross-sectional variability in risk

compensations in the size/value space. Higher frequency details of the consumption growth process

(j < 5) generate betas which, as shown, replicate dispersion in risk premia along one dimension -

generally size - but fail to provide - in spite of their mild rotation to value - a justification for both.

Table 1 contains univariate (one beta at a time) estimates of the model in Eq. (10) corresponding

to j = 1, ..., 6. In agreement with the previous visual evidence, the scale j = 5 yields the maximum

value for the coefficient of determination (28%). The prices of risk are very significant whether or

not an intercept is inserted. When introduced, the intercept is insignificant. With and without an

intercept, the difference between root mean square alpha (RMSA) and mean absolute alpha (MAA)

is very small. These results contrast sharply with what is found for all other scales, even for those

(like j = 2) for which the size effect is nicely reproduced. In their case, the reported failure across

the value dimension leads to poor performance. Not surprisingly, in spite of its inability to capture

value effectively, the scale j = 4 represents a meaningful transitions from less informative scales to

j = 5. Without an intercept, the price of risk is sensible. In this case, however, the addition of an

intercept leads to an insignificant lambda and a significant constant.

We now turn to bivariate specifications in which one lambda at a time is added to the lambda

corresponding to j = 5. Table 2 provides the results. For all models, the constant is insignificant.

This effect is due to the inclusion of the 5th scale and is independent of all other components. Along

all dimensions, the specification with j = 4 and j = 5 outperforms the other specifications. The

increase in R2, in addition to what is yielded by the 5th scale, is sizeable (from 28% to 42%). When

inserting an intercept, the intercept is insignificant but the contribution of the higher frequency
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factor (β(4)) appears to be significant. This specification has a low MAA of 1.64% per year which is

comparable to the 10bp per month MAA (1.2% per year) of the Fama-French 3-factor model. The

specification with j = 1 and j = 3, on the other hand, has an unreasonable sign for the price of

risk attached to β(3) (i.e., a negative sign along with a positive beta). The model with j = 6 has a

negative sign for the price of risk associated, this time, with negative values of β(6) (see Figure 3).

In this sense, the 6th detail resembles a liquidity or a volatility effect (see Tamoni, 2011).

Do investors fear two sources of risk occurring at different scales of time (one at frequencies

of about 2 − 4 years and the other at lower frequencies up to 8 years) and, therefore, price them

differently? Or, are fluctuations evolving at business-cycle frequencies contributing equally to the

demanded premium? To answer this question, we test a single-beta model in which the beta

measures exposures to the fourth and the fifth consumption components:

E[Re,it,t+1] = λ0 + λ45

(
βi(4) + βi(5)

)
+ αi. (11)

Table 3 reports the results. For the reader’s convenience, Panel A also reports the prediction of

the model with different prices of risk on the consumption’s detail covariances, βi(4) and βi(5).

Essentially, restricting the price of risk on the fourth and the fifth consumption components to be

the same does not eliminate significant information about excess returns. In fact, the pricing errors

are only between 5 and 7 basis point, per year, higher than in the unrestricted case, with an overall

fit of 39%. In addition, the constant stays insignificant.6

In sum, there are sound economic reasons to place emphasis on both the 4th and the 5th scale.

They capture size and value effects in different, but complementary, ways. Reflecting the rotation

of the scale-specific betas from size to value as we transition from higher frequency details of

the consumption process to lower frequency details, the 4th scale is quite effective along the size

dimension whereas, while offering an appealing size tilt, the best-performing 5th scale is more

effective along the value dimension. As pointed out earlier, these two contiguous scales jointly span

the accepted length of the business cycle capturing fluctuations in consumption growth between 2

and 8 years.

6More formally, one can use a likelihood ratio test to examine the hypothesis implied by the restricted model
against the unrestricted model. When we consider the model with no constant included, a test of over-identifying
restrictions yields a statistics of 2.438 with an associated p-val of 0.12; hence we cannot reject the hypothesis that the
two fluctuations, the one with half-life between two and four years, and the one with four and eight years, have the
same price of risk at 10% conventional level.
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We now turn to several metrics intended to evaluate the empirical importance of a component

model for consumption. In this context, we provide an additional assessment of the relative contri-

bution, to asset pricing, of shorter (2 to 4 year) cycles in consumption (as represented by g
(4)
t+1) in

addition to the 4 to 8 year cycles represented by the main component g
(5)
t+1.

4 The dynamics of returns and consumption growth: some met-

rics

What are the implications of the presence of heterogeneous details in consumption growth for the

joint dynamic properties of consumption and asset returns? In order to address this issue, we

simulate return/consumption processes according to a component model motivated by the previous

empirical analysis. We then employ the simulated process to verify the extent to which an array

of stylized facts about the joint behavior of asset returns and consumption growth over horizons of

different lengths are satisfied by the model.

The return details relate to the consumption details based on the specification

R
i(j)
t,t+1 =


βi(j)g

(j)
t+1 for j = 4, 5,

ε
(j)
i,t otherwise

,

where ε
(j)
t is N(0, σi(j)) and σi(j) is chosen so as to match the variance of the component R

i(j)
t,t+1 at

scale j for asset i. In other words, aggregate returns are generated solely based on two details of

the consumption process along with noise components at all other scales. For consistency with a

pricing model which includes the 4th and the 5th scale, we further impose

E[Rit,t+1] = βi(4)λ4 + βi(5)λ5, (12)

where the betas and the lambdas are estimated from the data. Since the consumption details are

mean zero, the restriction implied by Eq. (12) is imposed by simply adding a constant term to all

simulated return series. We begin with the autocorrelation of consumption growth.
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4.1 Autocorrelation of consumption growth

In the data, the consumption growth autocorrelation is positive and significant up to the third

quarter. The values implied by the model are very plausible. Figure 4 provides the empirical auto-

correlations along with 95% confidence bands and their model-implied counterparts. The first and

the second quarter autocorrelations are very closely matched. The third quarter autocorrelation

implied by the model is slightly lower than that in the data and outside of the corresponding confi-

dence bands. However, it is clearly positive just like in the data. Keeping in mind that the addition

of components, or details, of the consumption process may easily reconcile these small differences, a

simple specification with two details (the 4th and the 5th) appears to capture fundamental first-order

effects in the consumption dynamics.

4.2 Parker and Julliard’s effects

Parker and Julliard (2005) find that consumption growth measured over long horizons (dubbed

ultimate consumption) is an effective driver of risk premia. In other words, it leads to covariances

Cov
[
gt,t+h+1, R

ei
t,t+1

]
which, for appropriate values of h (corresponding to about 3 years in their

framework), nicely align with historical average returns in the same size/value space investigated

here and, ubiquitously, in much of the literature. Parker and Julliard (2005) report a hump-shape

in the coefficients of determination of their pricing model as a function of the horizon over which

consumption growth is calculated. Their R2s are monotonically increasing up to 11 quarters before

decreasing steadily thereafter. For their efficient GMM estimates, the reported R2 at the peak is

around 38%.

We apply the same methodology as in Parker and Julliard (2005) to our simulated data (Figure

5(a) and 5(b)). When using only one dominant component (the 5th), the hump-shape is reproduced

with a peak between 9 and 10 quarters and a corresponding R2 of about 23% (Figure 6 a). Adding

only one additional component (the 4th) preserves the location of the peak and raises the R2 to

about 29% (Figure 6 b). Said differently, with two details only, the 4th and the 5th, the adopted

specification translates into R2 spikes at horizons around two years and a half and very close to the

11-quarter time frame emphasized by Parker and Julliard (2005).

As illustrated formally by BPTT (2012), averaging is an effective mechanism to bring to light

persistent details while eliminating contaminations with more frequent cyclical fluctuations. In
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this sense, the mapping between Parker and Julliard’s 3-year horizon and components with cycles

between 2 and 8 years is not surprising. On the one hand, ultimate consumption can be justified, at

a fundamental level, by a data generating process, like the one we propose, in which business-cycle

components of the consumption process play a dominant role in the determination of risk premia.

On the other hand, the averaging implicit in the definition of ultimate consumption may provide

information about the frequency at which the relevant (for asset pricing) details of the consumption

process operate. Their 3-year horizon is suggestive of the importance of business-cycle fluctuations

in consumption. These fluctuations are captured explicitly by our reported 4th and 5th detail.

4.3 Predictability of consumption growth

A related object of interest, focusing on risk rather than on its pricing, is the cumulative covari-

ance of the portfolio returns Reit,t+1 with respect to future consumption growth gt+h,t+h+1, namely

Cov
[
gt+h,t+h+1, R

ei
t,t+1

]
. Figure 6 plots this quantity over time along with 95% confidence bands

constructed using Newey-West standard errors (dotted lines). The contemporaneous covariance

(h = 0) is non-zero. Its value increases up to 7 quarters. Beyond that time, the numbers decrease

slightly with the horizon, but the confidence bands become larger.

The figure shows that the covariance pattern in the data is well replicated by the adopted

specification. In a model with only the 5th component, the implied covariances are hump-shaped,

as in the data, and close to the empirical ones, but with a peak around 10 quarters (Figure 6–Panel

A). Remarkably, the addition of the 4th component (in Figure 6–Panel B) leads to a close replication

of the trend in the empirical covariances up to 16 quarters (including the hump around 7 quarters).

As suggested by Piazzesi (2001), this long-run risk measure can be decomposed into its individual

elements, i.e.,

Cov [gt,t+h+1, Rt,t+1] =

h∑
i=0

Cov [gt+i+1, Rt,t+1] .

Figure 7 plots the individual elements under the summation sign divided by the corresponding

horizon, i.e., the slopes of the cumulative covariance function in Figure 6. In the data, these slopes

are positive up to horizon 8. Barring seasonal fluctuations, a model solely inclusive of the 5th

detail would fare quite well in replicating this pattern of covariances (Figure 7–Panel A). It would,

however, yield an excessively flat structure at high frequencies. As earlier, the addition of the 4th

component is successful in providing a solution to this issue (Figure 7–Panel B). This component
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raises the value of the simulated covariances precisely where needed (namely, at short horizons),

thereby closely replicating the convex pattern of the empirical covariances.

4.4 The equity premium at long horizons

Following Cochrane and Hansen (1992), we conclude this section by focusing on the long-run co-

variance between consumption growth and stock returns divided by the horizon, i.e.,

1

h
Cov

[
gt,t+h, R

ei
t,t+h

]
.

For our data, this normalized covariance is hump-shaped with a peak around 2 years (Figure 8).

Using only the 5th detail gives us a hump at 3.5 years (Figure 8(a)). Introducing the 4th detail

improves, as before, matters, especially at short horizons (Figure 8(b)). In particular, it relocates

the hump around the correct time frame. Not only does the model capture the location of the peak,

it also does not predict a somewhat counterfactual high covariance of consumption growth and stock

returns at long horizons, an implication of the long-run risk model or models entailing monitoring

costs and heterogeneous agents in which only a fraction of households adjusts consumption over

discrete intervals.

5 Scale-specific betas and long-run aggregation

In this section, we show the sense in which our proposed (risk-detection and pricing) framework is

linked to classical temporal aggregation as used in the long-run asset pricing literature. To do so,

we use the fact that our decomposition in Eqs. (5) and (6) satisfies the following property

gt,t+2s =
6∑

j=s+1

g
(j)
t+2s + π

(6)
t+2s (13)

and

Reit,t+2s =
6∑

j=s+1

R
ei(j)
t+2s + η

(6)
t+2s , (14)

where s = 0, 1, . . . , 5 denotes the aggregation level.7 This property implies that aggregation of the

time series uncovers information at different scales or, more precisely, for scales that are higher

7When s = 0 we obtain again Eqs. (5) and (6).
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than the one corresponding to the aggregation level (BPTT, 2012, for a thorough treatment). The

property also makes apparent the link between the scaled-wise time-series regression in Eq. (9)

(reported here for the reader’s convenience)

R
ei(s)
t,t+2s = β0 + βi(s)g

(s)
t,t+2s + εt+2s ,

and the long-horizon regression

Reit,t+h = β0,h + βihgt,t+h + wt+h. (15)

Letting h = 2s−1, and using Eqs. (13) and (14), it turns out that long-horizon regressions filter

out noisy high-frequency components at scales j < s, thereby capturing co-movements of the com-

ponents g
(s)
t and R

ei,(s)
t . In this sense, we expect the long-horizon betas βih to behave similarly

to the βi(s) at scale s. The main difference is that βih is also influenced by the (co-movement of

the) components g
(j)
t and R

ei,(j)
t at higher scales j > s. Hence, it should reflect lower frequency

fluctuations as well.

In essence, the previous discussion suggests an alternative way to study the C-CAPM. Specifi-

cally, to measure risk exposure, one may run long-horizon regressions to filter out the noisy compo-

nents in consumption and returns. In order to explore this avenue, one has to choose the aggregation

horizon. Our previous results document that business cycle frequencies between 2 and 8 years, i.e.,

the frequencies captured by the components j = 4 and j = 5, are key to explaining the cross-section

of average returns on portfolio sorted by size and book-to-market. Therefore, we choose s = 4, so

that the long-horizon regression in Eq. (15) relies on 2-years (i.e. h = 2s−1 = 8 quarters) aggregated

returns and consumption growth. Since we know that, at this horizon, temporal aggregation filters

out the components at scale j = 1, 2, 3, one may wonder how close is 2-years consumption growth

to the components at scale j = 4 and j = 5? Figure 9 displays the aggregated series of consumption

growth, along with the sum of its components at business-cycle scales. We observe that the two

series strongly co-move, a fact also confirmed by a high correlation of 0.86. More formally, setting

s = 3 in Eq.(13), one obtains

gt,t+23 − (g
(4)
t,t+23 + g

(5)
t,t+23) = g

(6)
t,t+23 + π

(6)
t+2s
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i.e., the difference between the two series is driven by a component at longer than business cycle

frequencies (scale j = 6). When this very persistent component is relatively small in volatility, then

aggregation does a very good job in extracting risk.

Motivated by this analysis one would expect, similarly to our scale-based CCAPM, a CCAPM

model based on long-horizon betas to explain short-term returns. This is, as shown, an implication

of our component-based data generating process. To this extent, we test the model

E[Re,it,t+1] = λ0 + λhβ
i
h + αi (16)

and compare it to

E[Re,it,t+1] = λ0 + λ45

(
βi(4) + βi(5)

)
+ αi.

Figure 10 displays the results for the scale-based CCAPM (Panel A) and for the long-horizon

CCAPM (Panel B). The Figure 10-Panel B reveals that the average returns are well explained by

the β
(i)
h ’s. In particular, the model achieves an R2 of 26%, with a mean absolute pricing error of 1.78

percent per year, while the constant λ0 is not significant (results available upon request). These

findings are comparable to the ones in Table 3-Panel B where the consumption betas are defined

on business-cycle frequency components only.8

In sum, we have shown how one can use - and, importantly, justify - long-horizon betas to

study the short-run premium. The relevant role of these betas may be induced by a component

model of the type we propose. Since long-run average returns have the same structure as short-run

average returns, our proposed model provides a justification for long-horizons returns on long-run

betas as well. In this sense, our scale-based consumption decomposition nicely ties low-frequency

consumption dynamics to both the pricing of long-run returns (as in, e.g., Daniel and Marshall,

1997) and to that of short-run returns (as in, e.g., Bansal and Yaron, 2005).

8Overall the main difference between the two models is driven by the small growth portfolio. When this portfolio
is included, the scale-based model achieves a better fit. However, once we exclude the extreme portfolio the two
models fair the same both in terms of R2, which increases to 46%, and of pricing errors, which are now reduced to
1.54 percent per year.
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6 Extensions

We now turn to the consumption-based pricing of alternative portfolios. We first examine the

average returns on 10 portfolios sorted solely based on either size or book-to-market, rather than on

size and book-to-market jointly. This analysis will allow us to zoom in onto the relative contribution

of alternative consumption components in explaining well-known stylized facts, like the size premium

(Banz, 1981) and the value premium (Stattman, 1980, and Rosenberg, Reid and Lanstein, 1985).

We then turn to momentum (Jegadeesh and Titman, 1993) and portfolios constructed based on

(short-term) past winners and losers. As observed by Fama and French (1996), Carhart (1997) and

many others since, the momentum effect is known to represent a considerable challenge for otherwise

very successful pricing models, like the Fama-French three-factor model (Fama and French, 1993).

With few exceptions, consumption models have been traditionally tested along size and book-to-

market dimensions only. Here, we re-evaluate momentum in the context of our pure (scale-based)

consumption model. We begin with size.

6.1 Size-sorted portfolios

In agreement with Figure 3 and previous findings, the second detail of the consumption growth

process is very successful in explaining the cross-sectional pricing of the 10 size-sorted portfolios

(Table 4). This detail corresponds to economic fluctuations between 6 months and 1 year. Since

size is the only dimension being considered, fluctuations at frequencies lower than the business cycle

are sufficient to capture much of the dispersion in risk premia. With value in the picture, lower

frequency details would, however, be needed to also capture this additional dimension. We will

return to this issue.

When estimating the model in Eq. (9) and Eq. (10) on the second detail and with an intercept,

we find a very low root mean square alpha (RMSA) and a low mean absolute alpha (MAA). The

intercept is clearly statistically insignificant and the corresponding R2 value is a sizeable 88%. The

addition of a zero restriction on the intercept does not modify the pricing errors drastically. It does

increase slightly the numerical value of the price of risk on the second detail (and its statistical

significance) bringing it from 0.642 to 0.919.

Exploring now the remaining details, we notice that along a variety of different directions, such

as the magnitude of the coefficients of determination, the significance of the intercept, the sign of the
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lambdas, and those of the pricing errors, they fail to perform nearly as convincingly as the second

detail. The 5th detail and, to a lesser extent, the 4th detail have, however, a valuable size tilt as well.

In light of the ability, to which we now turn, of the 5th detail to capture value effectively, it is not

surprising that a combination of these low-frequency details leads, as shown earlier, to quantities of

risk capable of pricing classical test assets defined with respect to both size and book-to-market.

6.2 Book-to-market sorted portfolios

The 5th detail prices the 10 book-to-market portfolios with an R2 of 55% (Table 5). The intercept is

insignificant, the slope is significant and the corresponding MAA and RMSA are small. Restricting

the intercept to zero increases the pricing errors somewhat but, in light of the insignificance of

the estimated intercept, not drastically. A closer look at the remaining details shows that the

3rd and the 4th detail perform better than the 1st and the 2nd. In the latter cases, the signs are

incorrect and the pricing errors are large. This finding, obtained through the explicit isolation

of consumption cycles spanning between 2 and 8 years, yields an economically-appealing channel

through which long-run consumption risk relates positively to the value premium (Bansal and

Yaron, 2004, Hansen, Heaton, and Li, 2008, Malloy, Moskowitz, and Vissing-Jorgensen, 2009, and

Parker and Julliard, 2005, are recent influential contributions in this area). The implications of

our assumed (return) data generating process for the link between long-run consumption and value

were explored explicitly in Subsection 4.1.

While size is a ”high-frequency” phenomenon nicely captured by fluctuations in consumption

with 6 months to 1 year cycles, value has a marked business-cycle nature. When pricing both size

and value effects, the ”rotation” of the scale-specific betas from size (at low scales) to value (at

high scales) leads to a data generating process and a pricing model, like the one described above,

in which the high scales play an important role. These (business-cycle) scales capture the value

premium effectively while still containing a useful size tilt.

6.3 Momentum-sorted portfolios

We now focus on a different, rather challenging, dimension for asset pricing tests: momentum (Table

6). Stocks with high 12-month past returns (high positive momentum) are ubiquitously found

to outperform stocks with low 12-month past returns (low positive momentum). This classical
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evidence (Jegadeesh and Titman, 1993) has been confirmed for other asset classes, like currencies

and commodities, and has been described as pervasive across countries (Asness, Moskowitz and

Pedersen, 2013, for discussions).

The inability of successful pricing models to capture short-term momentum effects has generally

lead to the addition of suitable momentum factors. Differently from this approach, we ask the

question: can a pure consumption model price momentum-sorted portfolios? Equivalently in our

framework, are the higher mean returns of higher positive momentum portfolios the result of more

risk as given by a larger covariance of their returns with certain details of the consumption process?

When implementing the model in Eq. (9) and Eq. (10), the second and the third consumption

detail appear to perform well along a variety of dimensions (coefficient of determination, sign of the

slopes with and without a zero restriction on the intercept, similarity between the magnitude of the

pricing errors with and without a zero restriction on the intercept, insignificance of the intercepts

when estimated). All other component-wise models perform unsatisfactorily according to several of

these metrics. In all cases, for instance, not imposing a zero restriction on the intercept flips the sign

of the slope (as compared to the zero intercept specification) and yields intercept estimates which

are economically rather large and statistically very significant (with t-statistics in a neighborhood

of 6).

The pricing ability of the second and the third component, spanning consumption cycles be-

tween 6 months and 2 years, is of interest. The one-year horizon is, in fact, in between these two

components, in the sense that the second component ends with yearly cycles while the third one

begins with cycles of the same length. Motivated by this observation, we investigate the perfor-

mance of a model in which the second and the third component jointly explain average returns in

the cross section of momentum portfolios, namely

E[Reit,t+1] = λ0 + λ2β
i(2) + λ3β

i(3) + αi.

Table 7 displays the results. When focusing our attention on the model with no constant λ0, see

Panel A, the mean absolute alphas is 1.79 percent per year, a noticeable improvement as compared

to the pricing errors of 2.05 and 2.56 achieved by models in which only the second or the third

component are considered (see Table 6-Panel B and C). The prices of risk λ2 and λ3 are close in

magnitude, further reinforcing the hypotheses that the relevant consumption fluctuations for these
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test assets have a half-life of one-year, a frequency rightly at the intersection of those captured by

the second and the third component. If this is the case, a better measure of risk may be represented

by βi(2) +βi(3). Therefore, in Table 7-Panel B we investigate the performance of the following model

E[Reit,t+1] = λ0 + λ23

(
βi(2) + βi(3)

)
+ αi.

The results show that the intercept is insignificant, and that the pricing errors and the fit of the

model do not worsen. For instance, the mean absolute alphas is now 1.80, only one basis point

per year higher than the one obtained by allowing the coefficients on the details’ covariances βi(2)

and βi(3) to be different. Moreover, restricting the constant λ0 to be zero, we obtain a price of

risk of 0.649, a value nearly identical to those achieved in the model with two separately priced

components.9 Figure 11 summarizes graphically the results in Table 6 and 7. In particular, we

compare the fit of models with risk measured only by β2 (see Panel A), by β3 (see Panel B), or

by βi(2) + βi(3) (see Panel C). In all three cases cross-sectional average returns align well with

cross-sectional covariances at specific scales.10 However, the model with only the third component

requires a significant constant to explain 69% of average returns, whereas the model with only the

second component does not require a constant, at the cost of a lower explanatory power equal to

42% (see again Table 6). The best fit is achieved when we proxy for risk using βi(2) + βi(3), the

constant being insignificant and the R2 being 60%.

In sum, a single-beta model obtained with a combination of the second and the third consump-

tion component, i.e., those components with persistence between 6 months and 2 years, may justify

the momentum effect. Being that we are analyzing momentum portfolios constructed using 1-year

past returns, the close mapping between relevant (for pricing) consumption horizons and momentum

horizons appears intriguing.

7 Conclusions

The economic purity of the CCAPM has lead to a variety of approaches intended to reconcile the

appeal of consumption-based explanations of the pricing of risky assets with well-known empirical

9More formally, one can test for the coefficients on β2 and β3 to be the same. A test of over-identifying restrictions
yields a statistics of 0.0087 with an associated p-val of 0.925; hence we cannot reject the restricted model at any
conventional levels.

10The only exception is the extreme loser portfolio.

21



regularities. The use of economically-motivated scaling factors in the definition of a stochastic

discount factor defined with respect to consumption (Lettau and Ludvingson, 2001) or the emphasis

on alternative utility specifications (and consumption dynamics) capable of suitably modifying a

stochastic discount factor, again, defined over consumption (Campbell and Cochrane, 1999, Bansal

and Yaron, 2002, and Hansen, Heaton, and Li, 2008, inter alia) are successful examples of this

reconciliation in the literature.

In this paper we step back a little and take an alternative view of the same issue. We suspect

that certain features (components) of the consumption process may matter for the purpose of asset

pricing, whereas the relative impact of other components may be drastically lower. Said differently, if

we separate the covariance between consumption growth and asset returns into sub-covariances (one

for each component of the consumption process and each component of the return process), it may

be the case that sub-components (i.e., sub-covariances) of the typical object of interest (the overall

covariance between consumption growth and asset returns) explain the observed cross-sectional

dispersion in average returns, whereas the overall covariance does not (the latter being a typical

finding). From a purely mathematical standpoint, this observation solely amounts to leaving the

prices of risk unrestricted across components of the overall covariance and evaluating which prices

of risk could be restricted to zero in deriving a data generating process for returns or, equivalently,

a consumption-based pricing model. From an economic standpoint, the observation derives from

the realization that consumption cycles of different length may affect the pricing of risky assets

differently. In particular, high-frequency consumption cycles may solely represent short-term noise

attenuating the explanatory power of the classical consumption betas.

Consistent with this logic, after careful separation of the consumption components and us-

ing portfolios sorted based on traditional dimensions like size and book-to-market, we find that

consumption risk may be defined in terms of the covariance of asset returns with consumption com-

ponents with periodicity between 2 and 8 years. In other words, the cross-sectional dispersion of the

risk premia of common test assets depends crucially on business-cycle fluctuations in consumption.

We show that, by zooming in onto the relevant (for pricing) layers of the consumption process,

explicit separation of heterogeneous (in terms of their persistence and periodicity) consumption

components leads to satisfactory quantities of risk, prices of risk, and pricing errors. While these

are ubiquitous, for good economic reasons, metrics, they are not the only ones. To address this

issue, we focus on suitable, alternative criteria, namely consumption growth autocorrelation, the

22



hump-shaped pricing ability of the covariance between ultimate consumption (as defined in Parker

and Julliard, 2005) and returns, the hump-shaped structure of long-run risk premia and the decaying

pattern in consumption growth predictability. According to all of these metrics, a heterogeneous-

component model for consumption growth fares very satisfactorily in addressing stylized facts about

the joint dynamics of consumption and asset returns over time. It does so while remaining within

the appealing confines of a CCAPM framework, one in which investors solely weigh different layers

of the consumption process differently.
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A Decomposing Time Series along the Persistence Dimension

This section shows how to decompose a time series into components with different levels of persistence. For

a deeper treatment and an application to structural asset pricing model, please refer to Ortu, Tamoni and

Tebaldi (2013).

Given a time series {gt}t∈Z we begin by constructing moving averages π
(j)
t of size 2j :

π
(j)
t =

1

2j

2j−1∑
p=0

gt−p (A.1)

where π
(0)
t ≡ gt. Given the choice of sample size, it is readily observed that these moving averages satisfy

the iterative relation:

π
(j)
t =

π
(j−1)
t + π

(j−1)
t−2j−1

2
(A.2)

In words each element π
(J)
t is the h−period moving average with h = 2J and time is consistently scaled

by a factor 2J . Next, we denote by g
(j)
t the difference between moving averages of sizes 2j−1 and 2j , i.e. :

g
(j)
t = π

(j−1)
t − π(j)

t (A.3)

Intuitively, g
(j)
t captures fluctuations that survive to averaging over 2j−1 terms but disappear when the

average involves 2j terms, i.e. fluctuations with half-life in the interval
[
2j−1, 2j

)
. Accordingly, the moving

average π
(j)
t includes fluctuations whose half-life exceeds 2j periods. From now on, we refer to the derived

time series
{
g
(j)
t

}
t∈Z

as to the component of the original time series {gt}t∈Z with level of persistence j. Since

π
(0)
t ≡ gt, by summing up over j it follows immediately from (A.3) that:

gt =

J∑
j=1

g
(j)
t + π

(J)
t (A.4)

for any J ≥ 1. In words, equation (A.4) decomposes the time series gt into a sum of components with half-life

belonging to a specific interval, plus a residual term that represents a long-run average.

Due to the overlap of the moving averages that define g
(j)
t , the decomposition (A.4) can lead to a biased

evaluation of the persistence of the time series gt. To address this issue we select the information in the

components g
(j)
t and π

(j)
t in a suitable manner. In particular, since by definition each component g

(j)
t is

a linear combination of the realizations gt, gt−1, ....., gt−2j+1, to remove any spurious serial correlation
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introduced by the overlapping of the moving averages we restrict our attention to the sub-series:

{
g
(j)
t , t = k2j , k ∈ Z

}
(A.5){

π
(j)
t , t = k2j , k ∈ Z

}
11 (A.6)

We refer to these sub-series as to the decimated components at level of persistence j of the original time series.

Clearly, persistence in a decimated component is not an artifact; rather, it represents an actual fluctuation

of the original series with an half-life in the interval
[
2j−1, 2j

)
.

The process of decimation controls for spurious persistence by deleting from the components g
(j)
t and

π
(j)
t all and only the information irrelevant to reconstruct the original time series gt. Formally, this follows

from observing that for any J ≥ 1 one can define a linear, invertible operator T (J) that maps the decimated

components
{
g
(j)
t , t = k2j , k ∈ Z

}
, j = 1, ..., J and

{
π
(j)
t , t = k2j , k ∈ Z

}
into the time series {gt}t∈Z. To

illustrate how this works for J = 2 we first observe that in this case (A.1) yields:

π
(2)
t =

gt + gt−1 + gt−2 + gt−3
4

(A.7)

Next we substitute (A.2) into (A.3) and let j = 1, 2 to obtain:

g
(2)
t =

π
(1)
t − π

(1)
t−1

2
=

1

2

(
gt + gt−1

2
− gt−2 + gt−3

2

)

g
(1)
t =

π
(0)
t − π

(0)
t−1

2
=

(
gt − gt−1

2

)

g
(1)
t−2 =

π
(0)
t−2 − π

(0)
t−3

2
=

(
gt−2 − gt−3

2

)
(A.8)

We then consider the system obtained by stacking (A.7) on top of (A.8), which in matrix notation becomes:


π
(2)
t

g
(2)
t

g
(1)
t

g
(1)
t−2

 =


1
4

1
4

1
4

1
4

1
4

1
4 − 1

4 − 1
4

1
2 − 1

2 0 0

0 0 1
2 − 1

2




gt

gt−1

gt−2

gt−3

 (A.9)

Denoting by T (2) the (4× 4) matrix in (A.9), we notice that T (2) is orthogonal, that is Λ(2) ≡ T (2)
(
T (2)

)>
is diagonal. Moreover, the diagonal elements of Λ(2) are non-vanishing so that

(
T (2)

)−1
=
(
T (2)

)> (
Λ(2)

)−1
11These sub-series are defined up to a translation factor, which results in 2j degrees of freedom. More precisely

for any h = 0, 1, . . . , 2j − 1 we could sample the realizations
{
g

(j)

h+k2j , k ∈ Z
}
,
{
π

(J)

h+k2J , k ∈ Z
}

. The approach

described in this section satisfies a translation invariant property, i.e. it is independent of the parameter h. This is
why in constructing (A.5) and (A.6) we let h = 0 without loss of generality.
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is well-defined, and hence: 
gt

gt−1

gt−2

gt−3

 =
(
T (2)

)−1


π
(2)
t

g
(2)
t

g
(1)
t

g
(1)
t−2

 (A.10)

By letting t vary in the set
{
t = k22, k ∈ Z

}
, equation (A.10) shows how to reconstruct uniquely the entire

time series {gt}t∈Z from the decimated components
{
g
(j)
t , t = k2j , k ∈ Z

}
, j = 1, 2 and

{
π
(2)
t , t = k22, k ∈ Z

}
.12

B Data

Our empirical exercise is conducted on data sampled on a quarterly frequency. The data cover the first

quarter of 1963 through fourth quarter of 2012. Following earlier work (e.g. Hansen and Singleton, 1983 and

Bansal and Yaron, 2004), we use data on U.S. real nondurables and services consumption per capita from

the Bureau of Economic Analysis. We make the standard end-of-period timing assumption that consumption

during period t takes place at the end of the period. Growth rates are constructed by taking the first difference

of the corresponding log series.

The portfolios employed in our empirical tests sort firms on dimensions that lead to cross-sectional

dispersion in measured risk premia. We first consider a 5 × 5 two-way sort on market capitalization and

book-to-market resulting in 25 portfolios (see Fama and French (1993)). We also consider one-way sorted

portfolio. The particular characteristics that we consider are firms’ market value, book-to-market ratio, and

past returns (momentum). Data on returns from these portfolio sorts are obtained from Ken French’s web

site at Dartmouth college.13 Portfolios comprise stocks listed on NYSE, AMEX and NASDAQ. Returns on

value weighted portfolios are used, but results are very similar when using equal weighted portfolios. The

market is the value-weight return on all NYSE, AMEX, and NASDAQ stocks (from CRSP) and the excess

returns are with respect to the one-month Treasury bill rate (from Ibbotson Associates). The returns on

equity and the risk-free rate are aggregated to a quarterly level by multiplying returns within a quarter.

12For an extension of this procedure to any J ≥ 2 and a recursive algorithm for the construction of the matrix T (J),
associated to an arbitrary level of persistence J , see e.g. Mallat, 1989.

13Details on how these portfolios are formed are available from
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
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Figure 1: Average realized returns of the 25 Fama-French portfolios sorted on Size and Book-to-
Market.
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(a) Standard C-CAPM

(b) Scale j = 5

Figure 2: Cross-Sectional Fit. Panel A: The figure plots fitted versus average actual excess
returns (% per year) of standard consumption-capm model for the 25 size and book-to-market
portfolios. Panel B: The figure plots fitted and average returns when the priced factors is the
consumption component at scale j = 5.
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Figure 3: Betas β
(j)
i for portfolios i = 1, . . . , N . Each Panel refers to a scale j = 1, . . . , J .
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Figure 4: Autocorrelation of consumption growth in the model.
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(a) Scale j = 5

(b) Scale j = 4, 5

Figure 5: Average (across portfolios) of R2 obtained from cross-sectional regressions a-la Parker
and Julliard.
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(a) Scale j = 5

(b) Scale j = 4, 5

Figure 6: Covariance of log(
Ct+h+1

Ct
) and Reit,t+1 divided by h (model with solid diamonds, j = 5 and

j = 4, 5).
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(a) Scale j = 5

(b) Scale j = 4, 5

Figure 7: Covariance of log(
Ct+h+1

Ct+h
) and Reit,t+1 divided by h (model with solid diamonds, j = 5 and

j = 4, 5).
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(a) Scale j = 5

(b) Scale j = 4, 5

Figure 8: Covariance of log(
Ct+h
Ct+1

) and Reit,t+h divided by h. Model with solid diamonds.
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Figure 9: Comparison between consumption growth aggregated over 2 years, gt,t+8, and the compo-

nens g
(4)
t and g

(5)
t capturing cycles between 2 and 4 years, and between 4 and 8 years, respectively.
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Figure 10: Cross-Sectional Fit. The figure plots fitted versus average actual excess returns (%
per year) of the scale-based CCAPM (j = 4, 5) and the long-run consumption-capm model (Panel
B) for the 25 Fama-French portfolios.

Figure 11: Cross-Sectional Fit. The figure plots fitted versus average actual excess returns (%
per year) of consumption-capm model across scales for the 10 momentum sorted portfolios.
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Panel A: β1 - second-pass regression

Constant λ1

√
α2 ‖α‖ χ2-stat DoF p-value R2

0 -2.663 7.26 5.61 68.406 25 0.000
(-) (0.737)
8.778 -0.161 2.79 2.43 62.358 24 0.000 0.01
(3.312) (0.388)

Panel B: β2 - second-pass regression

Constant λ2

√
α2 ‖α‖ χ2-stat DoF p-value R2

0 0.880 3.86 3.18 71.430 25 0.000
(-) (0.304)
9.584 -0.061 2.80 2.44 63.929 24 0.000 0.01
(2.578) (0.303)

Panel C: β3 - second-pass regression

Constant λ3

√
α2 ‖α‖ χ2-stat DoF p-value R2

0 2.210 3.62 3.10 71.118 25 0.000
(-) (0.710)
9.292 -0.073 2.81 2.42 63.959 24 0.000 0.00
(4.276) (0.486)

Panel D: β4 - second-pass regression

Constant λ4

√
α2 ‖α‖ χ2-stat DoF p-value R2

0 1.168 3.02 2.48 60.075 25 0.000
(-) (0.387)
6.692 0.308 2.78 2.37 56.915 24 0.000 0.02
(2.443) (2.443)

Panel E: β5 - second-pass regression

Constant λ5

√
α2 ‖α‖ χ2-stat DoF p-value R2

0 1.292 2.45 1.98 70.780 25 0.000
(-) (0.409)
2.512 0.945 2.39 1.96 63.909 24 0.000 0.28
(3.741) (0.342)

Panel D: β6 - second-pass regression

Constant λ6

√
α2 ‖α‖ χ2-stat DoF p-value R2

0 -1.047 6.12 5.30 67.460 25 0.000
(-) (0.368)
8.302 -0.138 2.74 2.30 61.359 24 0.000 0.05
(2.499) (0.134)

Table 1: One factor model - 25 Portfolios Formed on Size and Book-to-Market. Second-
pass regressions with a constant. The Table reports: the estimates of the prices of risk on the
consumption component and the constant term; the asymptotic standard errors (in parentheses)
for these estimates, ignoring the sampling error in the betas; and asymptotic test statistics for
the hypothesis that the alphas are all zero. The last column reports the R2 of cross-sectional
regression. We also report the root mean square alpha and the mean absolute alpha (MAPE)
across all securities. They are expressed in percent per year.
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Panel A: β1 and β5 - second-pass regression

Constant λ1 λ5

√
α2 ‖α‖ χ2-stat DoF p-value R2

0 -0.307 1.232 2.39 2.00 67.246 24 0.000
(-) (0.310) (0.435)
1.991 -0.241 0.970 2.35 1.97 62.235 23 0.000 0.30
(4.318) (0.398) (0.355)

Panel B: β2 and β5 - second-pass regression

Constant λ2 λ5

√
α2 ‖α‖ χ2-stat DoF p-value R2

0 0.166 1.080 2.36 1.92 70.497 24 0.000
(-) (0.267) (0.258)
0.651 0.139 1.026 2.36 1.92 63.881 23 0.000 0.29
(3.513) (0.320) (0.360)

Panel C: β3 and β5 - second-pass regression

Constant λ3 λ5

√
α2 ‖α‖ χ2-stat DoF p-value R2

0 -0.134 1.365 2.45 1.96 70.579 24 0.000
(-) (0.401) (0.421)
3.955 -0.556 1.044 2.33 1.83 63.883 23 0.000 0.31
(3.063) (0.338) (0.326)

Panel D: β4 and β5 - second-pass regression

Constant λ4 λ5

√
α2 ‖α‖ χ2-stat DoF p-value R2

0 0.403 0.879 2.23 1.80 57.346 24 0.000
(-) (0.347) (0.240)
-5.812 0.848 1.226 2.14 1.64 55.777 23 0.000 0.42
(3.686) (0.390) (0.370)

Panel E: β5 and β6 - second-pass regression

Constant λ5 λ6

√
α2 ‖α‖ χ2-stat DoF p-value R2

0 1.166 -0.180 2.30 1.83 67.131 24 0.000
(-) (0.325) (0.157)
1.492 0.974 -0.159 2.28 1.81 61.354 23 0.000 0.34
(3.362) (0.345) (0.135)

Table 2: Fifth Component is fixed - 25 Portfolios Formed on Size and Book-to-Market.
Second-pass regressions with a constant. The Table reports: the estimates of the prices of risk on the
consumption component and the constant term; the asymptotic standard errors (in parentheses)
for these estimates, ignoring the sampling error in the betas; and asymptotic test statistics for
the hypothesis that the alphas are all zero. The last column reports the R2 of cross-sectional
regression. We also report the root mean square alpha and the mean absolute alpha (MAPE)
across all securities. They are expressed in percent per year.
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Panel A: Unrestricted C-CAPM, E[Reit,t+1] = λ4β
i(4) + λ5β

i(5) - second-pass regression

Constant λ4 λ5

√
α2 ‖α‖ χ2-stat DoF p-value R2

0 0.403 0.879 2.23 1.80 57.346 24 0.000
(-) (0.347) (0.240)
-5.812 0.848 1.226 2.14 1.64 55.777 23 0.000 0.42
(3.686) (0.390) (0.370)

Panel B: Restricted C-CAPM, E[Reit,t+1] = λrestr(β
i(4) + βi(5)) - second-pass regression

Constant λrestr
√
α2 ‖α‖ χ2-stat DoF p-value R2

0 0.631 2.31 1.87 59.677 25 0.000
(-) (0.204)
-3.605 0.881 2.19 1.71 58.017 24 0.000 0.39
(3.137) (0.317)

Table 3: H0: λ4 = λ5 25 Portfolios Formed on Size and Book-to-Market Second-pass
regressions without and with a constant. The Table reports: the estimates of the prices of risk on the
consumption component j and the constant term; the asymptotic standard errors (in parentheses)
for these estimates, ignoring the sampling error in the betas; and asymptotic test statistics for
the hypothesis that the alphas are all zero. The last column reports the R2 of cross-sectional
regression. We also report the root mean square alpha and the mean absolute alpha (MAPE)
across all securities. They are expressed in percent per year. In Panel B, we restrict the two price
of risk to be the same.
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Panel A: Component j = 1 - second-pass regression

Constant λj

√
α2 ‖α‖ χ2-stat DoF p-value R2

0 -3.131 7.05 5.04 25.594 10 0.004
(-) (0.816)
9.932 0.476 0.98 0.76 21.733 9 0.010 0.31
(2.788) (0.393)

Panel B: Component j = 2 - second-pass regression

Constant λj

√
α2 ‖α‖ χ2-stat DoF p-value R2

0 0.919 0.63 0.48 20.491 10 0.025
(-) (0.246)
2.853 0.642 0.41 0.34 19.649 9 0.020 0.88
(2.923) (0.362)

Panel C: Component j = 3 - second-pass regression

Constant λj

√
α2 ‖α‖ χ2-stat DoF p-value R2

0 2.220 1.66 1.40 32.073 10 0.000
(-) (0.590)
11.975 -0.657 1.15 0.89 25.453 9 0.003 0.05
(4.178) (0.552)

Panel D: Component j = 4 - second-pass regression

Constant λj

√
α2 ‖α‖ χ2-stat DoF p-value R2

0 1.231 1.20 0.95 30.241 10 0.001
(-) (0.328)
5.088 0.557 1.13 0.87 25.712 9 0.002 0.09
(2.447) (0.316)

Panel E: Component j = 5 - second-pass regression

Constant λj

√
α2 ‖α‖ χ2-stat DoF p-value R2

0 1.405 1.08 0.97 24.307 10 0.007
(-) (0.376)
3.799 0.833 0.99 0.81 22.911 9 0.006 0.29
(3.673) (0.649)

Table 4: Portfolios Sorted by SIZE Second-pass regressions without and with a constant. The
Table reports: the estimates of the prices of risk on the consumption component j and the constant
term; the asymptotic standard errors (in parentheses) for these estimates, ignoring the sampling
error in the betas; and asymptotic test statistics for the hypothesis that the alphas are all zero. The
last column reports the R2 of cross-sectional regression. We also report the root mean square alpha
and the mean absolute alpha (MAPE) across all securities. They are expressed in percent per year.
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Panel A: Component j = 1 - second-pass regression

Constant λj

√
α2 ‖α‖ χ2-stat DoF p-value R2

0 -3.926 3.36 2.73 29.146 10 0.001
(-) (0.941)
8.648 -0.057 1.61 1.30 15.391 9 0.081 0.00
(2.163) (0.279)

Panel B: Component j = 2 - second-pass regression

Constant λj

√
α2 ‖α‖ χ2-stat DoF p-value R2

0 1.081 2.87 2.51 27.450 10 0.002
(-) (0.264)
10.772 -0.264 1.54 1.25 17.606 9 0.04 0.08
(2.455) (0.213)

Panel C: Component j = 3 - second-pass regression

Constant λj

√
α2 ‖α‖ χ2-stat DoF p-value R2

0 1.946 1.77 1.28 27.454 10 0.002
(-) (0.460)
5.018 0.856 1.36 1.13 17.677 9 0.039 0.28
(2.390) (0.364)

Panel D: Component j = 4 - second-pass regression

Constant λj

√
α2 ‖α‖ χ2-stat DoF p-value R2

0 1.282 2.11 1.81 26.099 10 0.000
(-) (0.308)
7.233 0.231 1.58 1.27 17.772 9 0.038 0.04
(2.246) (0.255)

Panel E: Component j = 5 - second-pass regression

Constant λj

√
α2 ‖α‖ χ2-stat DoF p-value R2

0 1.233 1.46 1.31 21.608 10 0.017
(-) (0.288)
4.021 0.686 1.08 0.95 17.077 9 0.048 0.55
(2.730) (0.286)

Table 5: Portfolios Sorted by Book-to-Market Second-pass regressions without and with a
constant. The Table reports: the estimates of the prices of risk on the consumption component j
and the constant term; the asymptotic standard errors (in parentheses) for these estimates, ignoring
the sampling error in the betas; and asymptotic test statistics for the hypothesis that the alphas
are all zero. The last column reports the R2 of cross-sectional regression. We also report the root
mean square alpha and the mean absolute alpha (MAPE) across all securities. They are expressed
in percent per year.
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Panel A: Component j = 1 - second-pass regression

Constant λj

√
α2 ‖α‖ χ2-stat DoF p-value R2

0 -2.398 5.79 4.22 62.204 10 0.004
(-) (0.831)
12.537 2.293 2.91 2.51 47.953 9 0.000 0.37
(2.411) (0.498)

Panel B: Component j = 2 - second-pass regression

Constant λj

√
α2 ‖α‖ χ2-stat DoF p-value R2

0 0.952 2.82 2.05 43.234 10 0.000
(-) (0.258)
0.863 0.852 2.80 2.00 37.100 9 0.000 0.42
(2.521) (0.204)

Panel C: Component j = 3 - second-pass regression

Constant λj

√
α2 ‖α‖ χ2-stat DoF p-value R2

0 1.727 3.43 2.56 56.987 10 0.000
(-) (0.374)
4.062 1.037 2.06 1.37 48.456 9 0.000 0.68
(2.440) (0.246)

Panel D: Component j = 4 - second-pass regression

Constant λj

√
α2 ‖α‖ χ2-stat DoF p-value R2

0 0.761 5.25 4.34 55.097 10 0.000
(-) (0.263)
14.736 -0.923 2.86 1.89 46.673 9 0.000 0.39
(2.413) (0.287)

Panel E: Component j = 5 - second-pass regression

Constant λj

√
α2 ‖α‖ χ2-stat DoF p-value R2

0 1.015 5.18 3.97 62.164 10 0.000
(-) (0.349)
19.674 -2.004 2.01 1.64 41.874 9 0.000 0.70
(3.101) (0.510)

Table 6: Portfolios Sorted by Momentum Second-pass regressions without and with a constant.
The Table reports: the estimates of the prices of risk on the consumption component j and the
constant term; the asymptotic standard errors (in parentheses) for these estimates, ignoring the
sampling error in the betas; and asymptotic test statistics for the hypothesis that the alphas are all
zero. The last column reports the R2 of cross-sectional regression. We also report the root mean
square alpha and the mean absolute alpha (MAPE) across all securities. They are expressed in
percent per year.
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Panel A: Unrestricted C-CAPM, E[Reit,t+1] = λ2β
i(2) + λ3β

i(3) - second-pass regression

Constant λ2 λ3

√
α2 ‖α‖ χ2-stat DoF p-value R2

0 0.689 0.628 2.44 1.79 43.229 9 0.000
(-) (0.454) (0.423)
4.607 -0.105 1.118 2.06 1.45 36.682 8 0.000 0.69
(1.897) (0.288) (0.378)

Panel B: Restricted C-CAPM, E[Reit,t+1] = λrestr(β
i(2) + βi(3)) - second-pass regression

Constant λrestr
√
α2 ‖α‖ χ2-stat DoF p-value R2

0 0.649 2.44 1.80 47.275 10 0.000
(-) (0.163)
1.702 0.523 2.32 1.55 41.939 9 0.000 0.60
(2.592) (0.121)

Table 7: H0: λ2 = λ3 - Portfolios Sorted by Momentum Second-pass regressions without
and with a constant. The Table reports: the estimates of the prices of risk on the consumption
component j and the constant term; the asymptotic standard errors (in parentheses) for these
estimates, ignoring the sampling error in the betas; and asymptotic test statistics for the hypothesis
that the alphas are all zero. The last column reports the R2 of cross-sectional regression. We also
report the root mean square alpha and the mean absolute alpha (MAPE) across all securities. They
are expressed in percent per year. Panel B restricts the two price of risk to be the same.
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