Prelim Examination Friday June 6, 2014 Time limit: 150 minutes

Instructions:

- (i) The exam consists of two parts. The total number of points for each part is 50. The number of points for each question is given below.
- (ii) The exam is closed book and closed notes.
- (iii) To receive full credit for your answers you have to explain your calculations.You may state additional assumptions.

Part I

Question 1: TRUE or FALSE Questions (9 Points)

- (i) (3 points) TRUE or FALSE? $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$ implies that the random variables X and Y are independent. Explain your answer.
- (ii) (3 Points) Consider the regression $y_i = \theta x_i + u_i$, where x_i is scalar. Suppose that $u_i | x_i \sim N(0, \sigma^2)$. TRUE or FALSE? The larger σ^2 , the more precise is the OLS estimator. Explain your answer.
- (iii) (3 Points) Suppose that X is a random variable with cdf $F_X(x)$. TRUE or FALSE? Then the transformed random variable $Y = F_X(X) \sim U[0, 1]$, where U[0, 1] is the uniform distribution on the unit interval. Explain your answer by deriving the distribution of Y.

Question 2: Point Estimation (21 Points)

Consider the model given by the conditional distribution $Y|\theta \sim N(\theta, 1)$ and the marginal distribution $\theta \sim N(0, 1/\lambda)$. Note that the sample size is n = 1.

This question involves three different estimators of θ , denoted by $\hat{\theta}_B$, $\hat{\theta}_*$, and $\hat{\theta}_{mle}$. Throughout this question, we will consider the quadratic loss function

$$L(\theta, \delta) = (\theta - \delta)^2.$$
(1)

- (i) (4 Points) Derive the posterior distribution of $\theta | Y$.
- (ii) (3 Points) Derive the Bayes estimator $\hat{\theta}_B$ under the loss function in (1).
- (iii) (2 Points) Is the Bayes estimator $\hat{\theta}_B$ an unbiased estimator of θ ?
- (iv) (4 Points) Now consider the alternative estimator

$$\hat{\theta}_* = \begin{cases} 0 & \text{if } |Y| < 1\\ 1 & \text{otherwise} \end{cases}$$
(2)

Derive the distribution $\hat{\theta}_* | \theta$.

- (v) (4 Points) TRUE or FALSE? $\hat{\theta}_*$ attains a lower integrated risk than $\hat{\theta}_B$. Provide a detailed explanation for your answer.
- (vi) (4 Points) Is there an unambiguous ranking of the maximum likelihood (MLE) estimator $\hat{\theta}_{mle} = Y$ and the estimator $\hat{\theta}_*$ (defined in (2)) based on their frequentist risk properties. Provide a detailed explanation for your answer.

Question 3: Testing and Asymptotics (20 Points)

Consider a regression model with a single regressor:

$$y_i = x_i \theta + u_i, \quad u_i | x_i \sim N(0, 1), \quad i = 1, \dots, n$$
 (3)

where (x_i, u_i) are *iid*. You may assume the existence of higher-order moments of (x_i, u_i) .

- (i) (4 Points) Derive the likelihood function for θ as well as the maximum likelihood estimator (MLE) $\hat{\theta}_{mle}$.
- (ii) (5 Points) Show that the MLE is consistent and derive its limit distribution.
- (iii) (6 Points) Show that the likelihood ratio test for the hypothesis H_0 : $\theta = \theta_0$ against the alternative H_1 : $\theta \neq \theta_0$ is equivalent to the *t*-test for H_0 : $\theta = \theta_0$. Here "equivalent" means that the acceptance and rejection regions of the two tests are identical.
- (iv) (5 Points) Show that the power of the *t*-test (and hence the likelihood ratio test) against any fixed alternative $\theta_1 \neq \theta_0$ converges to one as $n \longrightarrow \infty$.

Part II

Question 4: Linear Instrumental Variable Regression (10 Points)

Consider the instrumental variable problem:

$$Y_i = \alpha_0 + X_i \beta_0 + X_i^2 \gamma_0 + e_i,$$

where Y_i and X_i are both scalar, $\mathbb{E}(e_i) = 0$. Suppose $\mathbb{E}(X_i e_i) \neq 0$ and $\mathbb{E}(X_i^2 e_i) \neq 0$, but there exists a scalar valued random variable Z_i such that $\mathbb{E}(e_i|Z_i) = 0$.

- (i) (3 points) Propose instruments for estimating β_0 and γ_0 and show they satisfy the necessary exogeneity restrictions.
- (ii) (3 points) For the instruments proposed above, state the relevant rank condition.
- (iii) (4 points) State how to construct an efficient GMM estimator with the optimal weight matrix.

Question 5: Linear Model with Binary Endogenous Variable (20 Points)

Consider the following model

$$Y_i = X_i\beta + e_i,$$

where $X_i \in R$ is an endogenous dummy variable. We assume

$$X_i = 1\{Z_i\delta_0 + v_i > 0\},\$$

where $Z_i \in R$ is independent of e_i and v_i , $\mathbb{E}(Z_i X_i) \neq 0$, $\mathbb{E}(e_i) = \mathbb{E}(v_i) = 0$, e_i and v_i are possibly correlated. We have i.i.d. observations $\{X_i, Z_i, Y_i\}_{i=1}^n$.

(i) (4 Points) Consider the IV estimator of β_0 :

$$\widehat{\beta}_{IV} = \frac{\sum_{i=1}^{n} Z_i Y_i}{\sum_{i=1}^{n} Z_i X_i}.$$

Is this estimator consistent without any distribution assumption on v? Explain your reasoning in detail.

- (ii) (4 points) What is the asymptotic distribution of $\hat{\beta}_{IV}$?
- (iii) (6 points) Now assume v has a standard normal distribution. We estimate $W_i(\delta_0) = \Phi(Z_i\delta_0) = \mathbb{E}(X_i|Z_i)$ by probit. Let $\hat{\delta}$ be the maximum likelihood estimator of δ_0 in the probit model. Consider the two stage least squares estimator

$$\widehat{\beta}_{TSLS} = \frac{\sum_{i=1}^{n} W_i(\widehat{\delta}) Y_i}{\sum_{i=1}^{n} W_i(\widehat{\delta})^2}.$$

Is this estimator consistent? Explain your reasoning in detail.

- (iv) (3 points) What will happen to $\hat{\beta}_{TSLS}$ if the distribution of v is not standard normal but a probit model is used? Explain.
- (v) (3 points) Maintain the assumption that v has a standard normal distribution and consider the infeasible estimator $\hat{\beta}_{TSLS}(\delta_0)$. Are $\hat{\beta}_{TSLS}(\delta_0)$ and $\hat{\beta}_{TSLS}$ asymptotically equivalent? Explain.

Question 6: Censored Regression Model (20 points)

Consider a censored regression model

$$Y_i^* = \alpha_0 + X_i'\beta_0 + e_i,$$

where e_i is independent of X_i and $e_i \sim N(0, 1)$. The dependent variable Y_i^* is not always observable. Instead, we observe the censored random variable Y_i , where

$$Y_i = \begin{cases} Y_i^* \text{ if } e_i > c, \\ 0 \text{ if } e_i \le c, \end{cases}$$

for some known scalar constant c.

Recall that if $Z \sim N(0,1)$, $\mathbb{E}(Z|Z > c) = \lambda(-c)$, where $\lambda(c) = \phi(c)/\Phi(c)$ and Φ, ϕ are the cdf and pdf of a standard normal distribution, respectively.

- (i) (2 points) Compute $P(Y_i = 0 | X_i)$ under the assumption of the model.
- (ii) (4 points) Compute $\mathbb{E}(Y_i|X_i, Y_i \neq 0)$ and $\mathbb{E}(Y_i|X_i)$ in the model.
- (iii) (4 points) Suppose you run OLS using only the observations $\{Y_i, X_i\}_{i=1}^n$ for which Y_i^* is uncensored. The regression equation is

$$Y_i = \alpha + X'_i \beta + v_i.$$

Find the probability limit of your OLS estimator.

(iv) (5 points) Instead of the censoring form above, suppose it takes the form

$$Y_i = \begin{cases} Y_i^* \text{ if } Y_i^* > 0, \\ 0 \text{ if } Y_i^* \le 0. \end{cases}$$

Is the OLS estimator on the uncensored sample deliver a consistent estimator for β_0 ? Explain.

(v) (5 points) For the new censoring form in part (iv), construct the maximum likelihood estimator.

END OF EXAM