Microeconomic Theory I Preliminary Examination University of Pennsylvania

August 4, 2014

Instructions

This exam has 4 questions and a total of 100 points.

Answer each question in a **SEPARATE** exam book.

If you need to make additional assumptions, state them clearly.

Be concise.

Write clearly if you want partial credit.

Good luck!

- 1. (25 pts) There are two possible states of the world and one good, "money". It is commonly known that state s will occur with probability $\pi_s > 0$, for s = 1, 2. A state contingent allocation is a pair $(x_1, x_2) \in \mathbb{R}^2_+$. Consider a consumer who has a complete, transitive, and strongly monotonic ordering \succeq over these allocations. Assume \succeq is convex.
 - (a) (10 pt) Prove or disprove: This consumer must be weakly risk averse.
 - (b) (15 pts) Do the same as in (a), but under the assumption now that the consumer satisfies the expected utility hypothesis. Let u denote the consumer's Bernoulli utility function, and assume it is twice continuously differentiable, with u' > 0.
- 2. (25 pts) Consider a society $N = \{1, ..., n\}$ and a finite set X of alternatives. Assume $n \ge 2$ and $\#X \ge 3$. Let \mathfrak{R} be the set of complete and transitive binary relations on X. One alternative, $s \in X$, is the *status quo*. For each profile $\vec{R} \in \mathfrak{R}^n$, let G ("good") be the set of alternatives that are weakly Pareto preferred to s:

$$G = \{x \in X : xR_i s \ \forall i \in N\}.$$

(Note that $s \in G$.) Let B ("bad") be the complementary set, $B = X \setminus G$. For each $\vec{R} \in \mathfrak{R}^n$ define a binary relation $F(\vec{R})$ on X by

$$\forall x \in G, y \in B : xF(\vec{R})y \text{ and not } yF(\vec{R})x$$

$$\forall x, y \in G : xF(\vec{R})y \Leftrightarrow xR_ny$$

$$\forall x, y \in B : xF(\vec{R})y \Leftrightarrow xR_ny$$

Answer the following questions, and prove your answers:

- (a) (6 pts) Is F dictatorial?
- (b) (6 pts) Does F satisfy Unanimity?
- (c) (6 pts) Does F satisfy Independence of Irrelevant Alternatives?
- (d) (7 pts) Is F an (Arrow) Social Welfare Function?
- 3. (25 pts) Consider a pure exchange economy with ℓ goods and n agents.
 - (a) (5 pts) Define the core of this economy.
 - (b) (5 pts) State the core convergence theorem.
 - (c) (5 pts) Assume that each agent has a utility function that is strictly increasing, strictly concave and differentiable. Prove that a competitive equilibrium allocation is in the core.
 - (d) (10 pts) Suppose now that there are 2 goods and 4 agents. Agent 1 has utility function u^1 and endowment (w_1^1, w_2^1) , and agent 2 has utility function u^2 and endowment (w_1^2, w_2^2) . The functions u^1 and u^2 are strictly increasing and strictly concave. Agent 3 has the same utility function and endowment as agent 1, and agent 4 has the same utility function and endowment as agent 2. Prove that in any core allocation, agents 1 and 3 get the same allocation, and agents 2 and 4 get the same allocation.

4. (25 pts) Three hunters will hunt for deer tomorrow in a game park in which there is exactly one deer. Assume the deer will be caught. There are thus three possible states of the world: state s represents the event that hunter s catches the deer, for s = 1, 2, 3. The three initial endowment bundles of contingent deer meat are

$$\omega^1 = (1, 0, 0), \ \omega^2 = (0, 1, 0), \ \omega^3 = (0, 0, 1).$$

Today (date t = 0) the hunters arrange for how the meat from the deer will be shared tomorrow (date t = 1). The utility function of hunter *i* is

$$U^{i}(x_{i}) = \sum_{s=1}^{3} \pi^{i}_{s} u^{i}(x^{i}_{s}),$$

where x_s^i is his consumption of deer meat in state s, and π_s^i is his belief probability that state s will occur. Assume u^i is continuous, strictly concave, and strictly increasing.

(a) (8 pts) Suppose the hunters agree that the state probabilities are $(\frac{1}{2}, \frac{1}{4}, \frac{1}{4})$. (Hunter 1 is believed to be twice as likely to catch a deer as is either of the other two.) Show that at any interior Pareto efficient allocation, hunter 1 will consume the same amount of deer meat regardless of who catches the deer. (You can assume for this part that each u_i is differentiable.)

For the remaining parts (b) and (c): assume each hunter is so self-confident that he believes he will surely catch a deer: $\pi_i^i = 1$ for each *i* (and hence $\pi_s^i = 0$ for $s \neq i$.

- (b) (8 pts) Prove that if $x^* = (x^{1*}, x^{2*}, x^{3*})$ is Pareto efficient, then $x_i^{i*} = 1$ for each i.
- (c) (9 pts) What is the set of competitive equilibrium prices, letting p_s denote the price at date 0 for contingent deer meat in state s at date 1.