Prelim Examination Friday August 7, 2015 Time limit: 150 minutes

Instructions:

- (i) The exam consists of two parts. The total number of points for each part is 50. The number of points for each question is given below.
- (ii) The exam is closed book and closed notes.
- (iii) To receive full credit for your answers you have to explain your calculations.You may state additional assumptions.

Part I

Question 1: Probability Density Functions (14 Points)

Two random variables, Y, and X, have a joint distribution characterized by the following probability density function (pdf):

$$p(y,x) = cx(x+y), \quad 0 < y < 1, \ 0 < x < 1.$$
(1)

- (i) (3 Points) Find the value of the normalization constant c that ensures that p(y, x) is a proper (pdf).
- (ii) (3 Points) Are the random variable Y and X independent? Explain.
- (iii) (8 Points) Suppose that (Y_i, X_i) are *iid* with density given by p(y, x) in (1). An econometrician observes a sample of *n* observations and runs a regression of the form

$$Y_i = \beta X_i + \operatorname{resid}_i \tag{2}$$

Derive the probability limit (as $n \to \infty$) of the OLS estimator of β .

Question 2: Statistical Inference (16 Points)

- (i) (4 Points) Suppose you have a test $\varphi(Y;\theta_0)$ of a null hypothesis $H_0: \theta = \theta_0$ with type-I error α . Explain how this test can be "inverted" to obtain a 1α confidence set.
- (ii) (6 Points) Consider the location model $Y \sim N(\theta, 1)$. Propose a test for the hypothesis $H_0: \theta \ge 0$ with size α and derive its power against the alternative $\theta = \tilde{\theta} < 0$. Note: this is a one-sided test. You need to verify that the type-I error of your test is less or equal than α for each $\theta \ge 0$.
- (iii) (6 Points) Consider the model $Y \sim N(\theta, 1)$ with the constraint $\theta \geq 1$. Is the maximum likelihood estimator identical to the posterior mean (you can assume an improper prior distribution that is uniform on \mathbb{R}^+ with density $p(\theta) \propto 1$ if $\theta \geq 0$; and $p(\theta) = 0$ if $\theta < 0$? To answer this question you should derive explicitly formulas for the MLE and the posterior mean.

Question 3: Linear Regression Model (20 Points)

Consider the linear regression model

$$y_i = x_i \theta + u_i, \quad u_i | x_i \sim iid(0, 1), \quad x_i \ge \epsilon > 0, \quad \mathbb{E}[x_i^2] = Q.$$
 (3)

The x_i 's are also independent across i, k = 1 and both x_i and θ_i are scalar.

- (i) (5 Points) Derive the limit distribution of the OLS estimator.
- (ii) (5 Points) Now consider the alternative estimator

$$\tilde{\beta} = \frac{1}{n} \sum_{i=1}^{n} \frac{y_i}{x_i} \tag{4}$$

Is this estimator consistent? Derive its limit distribution.

(iii) (2 Points) How would you rank two point estimators? According to your criterion, which estimator, $\hat{\beta}$ or $\tilde{\beta}$, is preferable? Explain.

For the remaining questions we change the assumption on the error term to

$$u_i | x_t \sim iid(0, x_i^2). \tag{5}$$

- (iv) (2 Points) Does the OLS estimator remain consistent if the error term follows the distribution in (5)?
- (v) (3 Points) Derive the limit distribution of the OLS estimator $\hat{\beta}$ under the assumption in (5).
- (vi) (5 Points) Derive the limit distribution of $\tilde{\beta}$ defined in (4). Which estimator, $\hat{\beta}$ or $\tilde{\beta}$, is preferable?

Part II

Question 4: Linear Instrumental Variable Regression (25 Points)

Take a linear instrumental variable equation

$$y_i = x_i\beta_1 + z_i\beta_2 + e_i,$$
$$E(e_i|z_i) = 0,$$

where both x_i and z_i are scalars and $E(x_i e_i) \neq 0$. Assume $\beta_2 \neq 0$.

- (i) (5 Points) Propose a method to estimate β_1 .
- (ii) (10 Points) Show the estimator you propose is consistent and derive its asymptotic distribution.
- (iii) (5 Points) How would you test the null hypothesis: $H_0: \beta_1 = 1$ and $\beta_2^2 = 1$ versus the alternative that H_0 does not hold? Provide the test statistic, its asymptotic distribution, and the critical value. The nominal level of the test is α .
- (iv) (5 Points) Now suppose you doubt the specification $E(e_i|z_i) = 0$. Propose a method to test one of its implications.

Question 5: Regression with Binary Dependent Variable (10 Points)

Consider the following model

$$Y_i^* = X_i'\beta + e_i,$$

where the error has a conditional distribution $e_i | X_i \sim N(0, \sigma^2)$. Only the sign of Y_i^* is reported. That is, the dataset contains the variable

$$Y_i = \begin{cases} 1 \text{ if } Y_i^* \ge 0\\ 0 \text{ if } Y_i^* < 0. \end{cases}$$

- (i) (2 Points) Explain why β is not identified.
- (ii) (3 Points) Provide an additional assumption under which β is identified.
- (iii) (5 Points) Given the identification of β , explain the maximum likelihood estimation of the parameter.

Question 6: Linear Model with Binary Endogenous Variable (15 Points)

Consider the following model

$$Y_i = X_i\beta + e_i,$$

where $X_i \in R$ is an endogenous dummy variable. We assume

$$X_i = 1\{W_i > v_i\},$$

where $W_i \in R$ is independent of e_i and v_i , $e_i \sim N(0, 1)$, $v_i \sim N(0, 1)$. We have i.i.d. observations $\{X_i, W_i, Y_i\}_{i=1}^n$.

- (i) (5 Points) Suppose e_i and v_i are independent, how would you estimate β ?
- (ii) (5 Points) Suppose e_i and v_i are correlated, how would you estimate β ?
- (iii) (5 Points) In both cases, provide the asymptotic distributions of the estimators of β .