Prelim Examination Friday August 9, 2013, Time limit: 150 minutes

Instructions:

- (i) The exam consists of two parts. The total number of points for each part is 50. The number of points for each question is given below.
- (ii) The exam is closed book and closed notes.
- (iii) To receive full credit for your answers you have to explain your calculations.You may state additional assumptions.

Part I

Question 1: Testing and Coverage Sets (12 Points)

- (i) (4 Points) Suppose you have a test $\varphi(Y; \theta_0)$ of a null hypothesis H_0 : $\theta = \theta_0$ with type-I error α . Explain how this test can be "inverted" to obtain a 1α confidence set.
- (ii) (4 Points) Consider the location model $Y \sim N(\theta, 1)$. Propose a test for the hypothesis H_0 : $\theta = 0$ with type-I error α and derive its power against the alternative $\theta = \tilde{\theta} \neq 0$.
- (iii) (4 Points) Provide an example in which Bayesians and frequentists would report credible and confidence sets that are numerically identical. Explain carefully.

Question 2: Point Estimation in a Non-standard Setting (20 Points)

Consider the model

$$Y \sim N(\theta, 1)$$

with the constraint on the parameter space $\theta \geq 0$. Moreover, for the Bayesian analysis below suppose the prior distribution is $\theta \sim U[0, M]$ where $M < \infty$ is a large number.

- (i) (3 Points) Derive the posterior distribution $p(\theta|Y)$.
- (ii) (2 Points) Derive the sampling distribution of $\hat{\theta}|\theta$, where $\hat{\theta}$ is the maximum likelihood estimator of θ . (Make sure to consider the constraint on the parameter space: $\theta \ge 0$).
- (iii) (5 Points) Now consider the following form of "limited-information" Bayesian inference. Derive a limited-information posterior by inverting the sampling distribution of $\hat{\theta}|\theta$:

$$p(\theta|\hat{\theta}) \propto p(\hat{\theta}|\theta) p(\theta)$$

where \propto denotes proportionality and $\hat{\theta}$ is the MLE from Part (ii). Hint: when deriving $p(\theta|\hat{\theta})$ distinguish the case $\hat{\theta} = 0$ from the case $\hat{\theta} > 0$.

- (iv) (2 Points) Compare the actual posterior $p(\theta|Y)$ and the limited-information posterior $p(\theta|\hat{\theta})$ for Y = 0 and Y = -1. What is a key difference?
- (v) (3 Points) Consider the loss function $L(\theta, \delta) = (\theta \delta)^2$ and characterize the Bayes estimator based on the actual posterior, denoted by $\hat{\theta}_B$, and based on the limited-information posterior, denoted by $\hat{\theta}_{LI}$.
- (vi) (5 Points) Provide a ranking of $\hat{\theta}$ (the MLE), $\hat{\theta}_B$, and $\hat{\theta}_{LI}$ in terms of the integrated risk $r(\mathbb{P}^{\theta}, \delta(\cdot))$.

Problem 3: Linear Regression Model (18 Points)

Consider the linear regression model

$$y_i = x'_i \theta + u_i, \quad u_i | x_i \sim iidN(0, 1), \quad x_i \sim iidN(0, Q).$$
 (1)

Notice that we assumed that the conditional variance of u given x is known to be one. Suppose that k = 2 and we can write $x_i = [x_{1,i}, x_{2,i}]'$ and $\theta = [\theta_1, \theta_2]'$. Our goal is to test the null hypothesis $H_0: \theta_2 = 1$.

(i) (2 Points) Derive the unconstrained maximum likelihood estimator (MLE)

$$\hat{\theta} = \operatorname{argmax}_{\theta \in \mathbb{R}^2} l(\theta | Y).$$

(ii) (3 Points) Derive the constrained MLE of θ_1 , imposing that $\theta_2 = 1$:

$$\bar{\theta}_1 = \operatorname{argmax}_{\theta_1 \in \mathbb{R}} l([\theta_1, 1]'|Y).$$

- (iii) (3 Points) Provide an explicit formula for the likelihood ratio statistic.
- (iv) (10 Points) Under the null hypothesis that $\theta_2 = 1$, i.e., $Y = X_1\theta_1 + X_2 + U$) derive an expression for the likelihood ratio statistic of the form

$$LR = U'(??)U,$$

where ?? does not depend on U. Then derive the limit distribution for the likelihood ratio statistic under the null hypothesis:

$$LR \Longrightarrow ???.$$

Hint: use the Frisch-Waugh-Lovell Theorem.

Note: The Frisch-Waugh-Lovell theorem implies that the residuals from the regressions

$$Y = X_1\beta_1 + X_2\beta_2 + residuals$$

and

$$M_1Y = M_1X_2\beta_2 + residuals$$

are identical. Here $M_1 = I - X_1 (X'_1 X_1)^{-1} X'_1$.

Part II

Question 4: Linear Model with Endogeneity (25 points)

Consider the single equation

$$y_i = x_i\beta + e_i,$$
$$E(e_i|z_i) = 0.$$

The observations $\{(x_i, z'_i, y_i) : i = 1, ..., n\}$ are i.i.d., $x_i \in R, y_i \in R, z_i \in R^k$ with k > 1. Assume $E(e_i^2 | z_i) = \sigma^2$.

- (i) (2 points) Show how to construct a two-stage least squares (TSLS) estimator for β .
- (ii) (3 points) Show the TSLS estimator is consistent.
- (iii) (5 points) Develop the asymptotic distribution of the TSLS estimator.
- (iv) (5 points) Show how to construct a GMM estimator for β .
- (v) (5 points) Show the efficient GMM estimator is equivalent to the TSLS estimator in this problem.
- (vi) (3 points) How to test whether the instruments z_i are all exogeneous.
- (vii) (2 points) Suppose there is an extra variable z_i^* that is independent of z_i and x_i . Explain whether z_i^* should be used as an instrumental variable together with z_i .

Question 5: Covariance Matrix Estimation (5 Points)

Consider the model $y_i = x'_i\beta + e_i$, where $E(z_ie_i) = 0$. Let $\hat{e}_i = y_i - x'_i\beta$, where β is a consistent estimator of β . Define a GMM weighting matrix

$$W_n = n^{-1} \sum_{i=1}^n z_i z_i' \hat{e}_i^2.$$

The observations $\{(x'_i, z'_i, y_i) : i = 1, ..., n\}$ are i.i.d., $x_i \in R^{\ell}, y_i \in R, z_i \in R^k$ with $k > \ell$. Show

$$W_n \to_p \Omega$$
, where $\Omega = E z_i z'_i e_i^2$.

Question 6. Confidence Interval (10 points)

Consider the model

$$y_i = x_{1i}\beta_1 + x_{2i}\beta_2 + e_i,$$
$$E(x_ie_i) = 0,$$

where $x_{1i}, x_{2i} \in R$, $x_i = (x_{1i}, x_{2i})' \in R^2$. Define the parameter

$$\theta = \beta_1 \beta_2.$$

- (i) (2 points) What is the appropriate estimator of $\hat{\theta}$ for θ .
- (ii) (5 points) Find the asymptotic distribution for $\hat{\theta}$ under standard regularity conditions.
- (iii) (3 points) Show how to construct an asymptotic 95% confidence interval for θ .

Question 7: Censored Observations (10 Points)

Consider the following model

$$y_i^* = x_i'\beta + u_i, \ u_i | x_i \sim iid \ N(0, \sigma^2),$$

where $x_i \in \mathbb{R}^k$ with k > 1. We do not observe y_i^* , instead we observe

$$y_i = \begin{cases} y_i^* \text{ if } y_i^* < \tau \\ \tau \text{ if } y_i^* \ge \tau, \end{cases}$$

where τ is a known constant. Assume the observations are i.i.d.

- (i) (5 Point) Write down the log-likelihood function for the maximum likelihood estimator $\hat{\beta}$.
- (ii) (3 Points) Give the asymptotic distribution of the maximum likelihood estimator $\hat{\beta}$.
- (iii) (2 Points) Estimate the standard error of the maximum likelihood estimator.

END OF EXAM