Prelim Examination Friday August 17, 2012, Time limit: 150 minutes

Instructions:

- (i) The exam consists of two parts. The total number of points for each part is 50. The number of points for each question is given below.
- (ii) The exam is closed book and closed notes.
- (iii) To receive full credit for your answers you have to explain your calculations.You may state additional assumptions.

Part I

Question 1: Change of Variables (11 Points)

Suppose that $X \sim N(\mu, \sigma^2)$. Let $Y = \exp(X)$.

- (i) (4 Points) Suppose that $X \sim N(\mu, \sigma^2)$. Let $Y = \exp(X)$. Compute the expected value $\mathbb{E}[Y]$.
- (ii) (3 Points) Suppose that $X \sim N(\mu, \sigma^2)$. Let $Y = \exp(X)$. Derive the probability density function of Y.
- (iii) (4 Points) Suppose that X_1 and X_2 are independent and have N(0,1) distributions. Define $Y_1 = X_1 + X_2$ and $Y_2 = X_1 X_2$. Use a change-of-variables argument to obtain the joint probability density for (Y_1, Y_2) . Then compute the pdf for the marginal distribution of Y_1 . What is the distribution of X_1+X_2 ?

Question 2: Linear Regression Model (14 Points)

Consider the linear regression model

 $y_i = x_i \theta + u_i, \quad u_i | x_i \sim iid(0, 1), \quad x_i \ge \epsilon > 0, \quad \mathbb{E}[x_i^2] = Q, \quad i = 1, \dots, n$

Moreover, the x_i 's are also independent across *i*. Notice that we assumed that the conditional variance of *u* given *x* is known to be one. Moreover, k = 1 and both x_i and θ_i are scalar.

- (i) (3 Points) Derive the likelihood function and the maximum likelihood estimator $\hat{\theta}$ under the assumption that the u_i 's are in fact normally distributed.
- (ii) (3 Points) Show that the MLE $\hat{\theta}$ is consistent even if the observations are not normally distributed.
- (iii) (6 Points) Based on the assumption of normality, define the likelihood-ratio test statistic for the null hypothesis that $\theta = \theta_0$ and derive the large sample distribution of the likelihood ratio statistic (under the null hypothesis, without assuming that the data are normally distributed).
- (iv) (2 Points) What are the acceptance and rejection regions for the LR test given a type-I error of $\alpha = 0.05$?

Question 3: Frequentist Inference on a Bounded Parameter Space (13 Points) Consider the following experiment:

$$X \sim N(\theta, 1), \quad \theta \in \mathbb{R}^+$$

Be aware of the constraint $\theta \ge 0$. You can use $\Phi(x)$ to denote the cumulative density function of a N(0, 1).

- (i) (2 Points) Derive the likelihood function and the maximum likelihood estimator for this experiment.
- (ii) (3 Points) What is the sampling distribution of the maximum likelihood estimator? Hint: it might be helpful to draw a graph.
- (iii) (8 Points) Propose a test for the null hypotheses (i) $H_0: \theta = 0$; (ii) $H_0: \theta = 10$ versus the alternative that $\theta \neq 0$. For each test, report
 - the test statistic;
 - the sampling distribution of the test statistic under H_0 ;
 - the critical value that guarantees a type-I error α ;
 - the power of the test against alternatives $\theta = \delta$ (for hypothesis (i)) and $\theta = 10 + \delta$ (for hypothesis (ii)).

Question 4: Bayesian Inference on a Bounded Parameter Space (12 Points) Consider the following experiment:

$$X \sim N(\theta, 1), \quad 0 \le \theta \le C.$$

Be aware of the constraints on θ . The prior distribution of θ is uniform on the interval [0, C]. You can use $\Phi(x)$ to denote the cumulative density function of a N(0, 1).

- (i) (4 Points) Derive the posterior density $p(\theta|X)$, including the normalization constants that ensure that the density integrates to one.
- (ii) (4 Points) Consider the loss function

$$L_{\epsilon}(\theta, \delta) = \begin{cases} 0 & \text{if } |\theta - \delta| \le \epsilon \\ 1 & \text{otherwise} \end{cases}$$

Find the Bayes estimator that minimizes the posterior expected loss. Hint: drawing the posterior for various choices of X might help.

(iii) (4 Points) Compare the posterior expected risk of the Bayes estimator and the maximum likelihood estimator for X = 0 and X = 10 (assuming that C >> 10).

Part II

Question 5: Linear Model with Endogeneity (20 points)

The model is

$$y_i = x'_i \beta + u_i, \qquad (1)$$
$$E(z_i u_i) = 0,$$

where $x_i, z_i, \beta \in \mathbb{R}^k$, $y_i, u_i \in \mathbb{R}$, $\{(x_i, z_i, y_i, u_i) : i = 1, ..., n\}$ are *iid*, and $Ex_i x'_i$ and $Ex_i z'_i$ both have full rank k. Let $\widehat{\beta}_n$ denote the least-squares estimator obtained by regressing y_i on x_i , and let $\widetilde{\beta}_n$ denote the two-stage-least-squares (TSLS) estimator using the instruments z_i .

- (i) (4 points) Define $\delta_n = \hat{\beta}_n \tilde{\beta}_n$. Derive the probability limit $\delta = \lim_{n \to \infty} \delta_n$.
- (ii) (2 points) Propose a condition under which $\delta = 0$ in (i).
- (iii) (5 points) Derive the asymptotic distribution of δ_n when $\delta = 0$.
- (iv) (2 points) Propose an estimator of the asymptotic variance derived in (iii).
- (v) (5 points) Suppose the condition in (1) is misspecified such that $E(z_i u_i) \neq 0$. Instead,

$$u_i = cn^{-1/2} + e_i$$
 and $E(z_i e_i) = 0$ for some constant $c \neq 0$

Under this misspecification condition, derive the asymptotic distribution of the TSLS estimator.

Question 6: GMM Estimation (14 points)

The equation of interest is

$$y_i = x'_i \beta + e_i$$
, where
 $E(x_i e_i) = 0,$
 $E(q_i e_i) = 0,$

 $y_i \in R, x_i \in R^l, q_i \in R^k$, and l, k > 3.

- (i) (5 points) Show how to construct an *efficient* GMM estimator for β . Be clear on how to construct a feasible optimal weight matrix.
- (ii) (5 points) Let $\beta_1, \beta_2, \beta_3$ denote the first three elements of β , respectively. We are interested in testing the null hypothesis:

$$H_0$$
 : $\beta_1 = -\beta_2^2$ and $\beta_1 = -\beta_3$ vs

 H_1 : at least one of the equalities does not hold.

Provide a Wald statistic for this test and derive the asymptotic distribution of this Wald statistic.

(iii) (4 points) How to conduct a specification test on the exogeneity of x_i and q_i . Be clear on the test statistic, the critical value, and the acceptable/rejection rule. Suppose the size of the test is α .

Question 7: Truncated Observations (16 Points)

Consider a model on the purchase of durable goods. The latent variable y_i^\ast satisfies

$$y_i^* = x_i'\beta + u_i, \ u_i | x_i \sim N(0, 1),$$

where $x_i \in \mathbb{R}^k$ and $\{(x_i, u_i) : i = 1, ..., n\}$ are *iid*. The observations y_i are truncated because only consumers who purchased durable goods are sampled, i.e.,

$$y_i = y_i^*$$
 if $y_i^* > 0$.

- (i) (5 Point) Write down the log-likelihood function for the maximum likelihood estimator $\hat{\beta}$.
- (ii) (5 Points) Give the limit distribution of the maximum likelihood estimator $\hat{\beta}$.
- (iii) (3 Points) Estimate the standard error of the maximum likelihood estimator.
- (iv) (3 Points) Write down the LR test statistic and its limit distribution for

$$H_0: \beta = 0 \ vs \ H_1: \beta \neq 0.$$

END OF EXAM