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Abstract

We consider a nonlinear pricing model, in which consumers’ marginal willingness to

pay and absolute ability to pay are unobserved, to explain the nonlinearity of unit prices

of basic food items (bulk discounting) in developing countries. We model consumers as

budget-constrained and allow their outside option to trading with a seller to depend on

their private information. We show that, under certain conditions, a nonlinear pricing

problem with budget-constrained consumers is equivalent to a nonlinear pricing problem

with so-called countervailing incentives, in which consumers are not budget-constrained but

their reservation utility depends on their type. Hence, by applying standard techniques,

we obtain a simple characterization of optimal nonlinear pricing. Based on this charac-

terization, we show that, contrary to the prediction of standard nonlinear pricing models,

nonlinear pricing can positively affect the level of consumption and the surplus enjoyed

by the purchasers of the smallest quantities, typically the poorest consumers, compared to

linear pricing. In particular, purchasers of small quantities can be offered larger quanti-

ties than under first best. Lastly, we prove that our model is nonparametrically identified

and derive nonparametric estimators of the model primitives that can be used to assess

the impact of nonlinear pricing on welfare. These estimators can be easily implemented

using individual-level data commonly available for beneficiaries of conditional cash transfer

programs in developing countries.
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1 Introduction

In this paper we propose a model of price discrimination to rationalize the pricing patterns of

basic food items in rural Mexico and Colombia, in particular the occurrence of quantity discounts

in the form of unit prices declining in quantity. We allow consumers to differ in their marginal

willingness to pay and absolute ability to pay for a good. We explicitly model consumers’

budget-constraints and allow consumers’ outside options to trading with a seller to depend on

their private information.

We first prove that the model can be formally thought of as an instance of a screening model

with countervailing incentives, that is, a model in which consumers are not budget-constrained

but their reservation utility depends on their type. Based on known techniques for these prob-

lems, we show that a simple characterization of the optimal (nonlinear) pricing contract can be

obtained. By relying on this characterization, we then prove that nonlinear pricing can posi-

tively affect the level of consumption and the surplus enjoyed by the purchasers of the smallest

quantities, typically the poorest consumers.

Next, we show that the model is nonparametrically identified and can be nonparametrically

estimated using individual-level purchasing data, typically available for beneficiaries of condi-

tional cash transfer programs in developing countries. The goal of the paper is to quantify the

relative importance of second- versus third-degree price discrimination for the observed patterns

of purchases (quantities and prices) and to measure the impact of asymmetric information, out-

side options, and budget constraints on consumer surplus, producer surplus, and welfare. Based

on the estimated model, we can also evaluate the impact on prices and welfare of alternative pric-

ing mechanisms, like linear pricing schemes, and food subsidization measures aimed at softening

the budget constraints of the poorest households.

2 A Nonlinear Pricing Model

2.1 Environment

Consider a market populated by one producer/seller and one consumer/buyer, who enter into a

contract to trade a quantity q ∈ [0,∞) for the monetary transfer t.1 Benefits from trade depend

1This formulation is analogous to one in which there are many buyers. As discussed below, the optimal
selling mechanism we derive is robust to many aspects of collusion behavior. However, the consumer may have
preferences for other goods, some of which may be offered by the seller. Our formulation with budget constraints,
as we discuss below, captures the fact that the consumer may have preferences for other goods not purchased
from the seller. As for the case of other goods sold by the seller, we are implicitly assuming that the consumer’s
utility is separable in the price and quantity of each such good and that the seller prices his goods independently.
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on a parameter θ privately known by the consumer and continuously distributed between θ and

θ, with cumulative distribution function F (θ) and density f(θ), positive for θ ∈ (θ, θ). (We

maintain that θ > 0.) We assume that the consumer has a fixed amount of resources available to

purchase the good. We denote by I(θ) the budget of the consumer for the good, which depends

on the consumer’s type θ. We assume that I(·) is C2 and I ′(θ) ≥ 0.

Upon trade, the consumer obtains utility v(θ, q) − t, where v(·) is C2, vq(θ, ·) > 0, and

vqq(θ, ·) ≤ 0. Let u(θ) indicate the consumer’s utility from not purchasing the good. Our problem

differs from a standard nonlinear pricing problem in two ways: (a) we allow the reservation utility

of a consumer to depend on her type, as in so-called countervailing incentives models; and (b)

we explicitly model the consumer’s budget constraint. The consumer’s type θ, thus, can be

interpreted as an index that summarizes information about the consumer’s marginal willingness

to pay, absolute ability to pay, and consumption possibilities alternative to trading with the seller.

We think of θ as a single index capturing potentially multiple characteristics of a consumer with

appropriate weights.

The seller, who is uninformed about the value of θ, obtains profit t − c(q), where c(·) is

C2. We normalize the seller’s reservation profit to zero. Observe that the seller’s payoff is not

directly affected by θ. The total surplus from the trade between the seller and the consumer is

s(θ, q) = v(θ, q)−c(q), maximal at the first-best quantity qFB(θ). As usual, we assume that types

can be ranked according to their marginal utility from trade, as stated in the next assumption.

(A1) vθq(θ, q) > 0 for q positive.

Timing is as follows. The seller proposes a contract to the consumer on a take-it-or-leave-

it basis, where the verifiable variables are the transfer t(θ), that is, the payment for the total

quantity purchased, and the quantity q(θ). The consumer is said to participate when she accepts

the seller’s offer to trade under the terms of the contract. The consumer then chooses a quantity

for a corresponding transfer/quantity pair as long as the required payment does not exceed her

budget and allows her to reach at least the level of utility u(θ). Otherwise, no trade takes place.

If no contract is signed, the consumer obtains her reservation utility level u(θ), whereas the

seller obtains his reservation profit of zero.2 Let x(θ) ∈ {0, 1} denote the probability that type θ

participates. Then, the consumer’s utility when her type is θ is u(θ) = x(θ)[v(θ, q(θ))−t(θ)]+[1−
x(θ)]u(θ). We assume that when a given type participates, that type trades a single quantity q(θ)

See Stole (2006) for a discussion of situations in which this component pricing is indeed optimal.
2Because of fixed costs, asset specialization, or exclusivity rules that may limit the consumer’s ability to trade

with other parties, the situation where no contract is enforced is not necessarily equivalent to trading q = 0 with
no transfer. In this setup q = 0 should be interpreted as the limit when the contracted quantity becomes small.
See also Jullien (2000) on this.
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with probability one. As we will discuss, under our assumptions the restriction to deterministic

contracts is without loss. We denote an allocation with exclusion by {u(θ), q(θ), x(θ)} and

an allocation with full participation by {u(θ), q(θ)}. We say that an allocation induces full

participation if all types participate.

By the revelation principle, a contract can be summarized by a menu {t(θ), q(θ), x(θ)} such

that the consumer’s best choice within the menu is to announce her type θ (incentive com-

patibility), the consumer receives utility at least equal to u(θ) (individual rationality), and she

is required to pay not more than I(θ) (budget constraint compatibility). Using the fact that

u(θ) = v(θ, q(θ)) − t(θ) when x(θ) = 1, we rewrite the standard incentive compatibility con-

straint v(θ, q(θ))− t(θ) ≥ v(θ, q(θ′))− t(θ′) with x(θ) = 1 as

u(θ) ≥ v(θ, q(θ′))− t(θ′) + u(θ′)− u(θ′) = u(θ′) + v(θ, q(θ′))− v(θ′, q(θ′))

for all θ and θ′. The incentive compatibility and individual rationality constraints are then given

by

(IC) u(θ) ≥ u(θ′) + v(θ, q(θ′))− v(θ′, q(θ′)) for any θ, θ′, if x(θ) = 1

(IR) u(θ) ≥ max{u(θ), u}, if x(θ) = 1.

We will maintain that u(θ) ≥ u, where u is an exogenous constant reservation utility level. The

formulation of the consumer’s participation constraint as (IR) is simply to facilitate comparisons

of the properties of the optimal nonlinear pricing contract across different environments in which

the consumer’s reservation utility may or may not depend on her type. Analogously, by using

the fact that the seller’s profit from trade when x(θ) = 1 can be rewritten as

t(θ)− c(q(θ)) = v(θ, q(θ))− c(q(θ)) + t(θ)− v(θ, q(θ)) = s(θ, q(θ))− u(θ)

we can express the seller’s profit from a consumer of type θ as x(θ)[s(θ, q(θ))− u(θ)]. Then, the

seller’s optimal contract solves the program

(P1) max
{u(θ),q(θ),x(θ)}

∫
θ

x(θ)[s(θ, q(θ))− u(θ)]f(θ)dθ

subject to

(IC) u(θ) ≥ u(θ′) + v(θ, q(θ′))− v(θ′, q(θ′)) for any θ, θ′, if x(θ) = 1

(IR) u(θ) ≥ max{u(θ), u}, if x(θ) = 1

3



(BC) I(θ) ≥ t(θ), if x(θ) = 1

(EX) u(θ) = u(θ), if x(θ) = 0.

The constraint (BC) captures the fact that the consumer is budget constrained. The constraint

(EX) prescribes that types excluded from trade receive their reservation utility. We say that

an allocation {u(θ), q(θ), x(θ)} is implementable if it satisfies all the above constraints. Finally,

note that abstracting from transfers when trade does not take place is immaterial. If the seller

paid any transfer to all excluded types, he could reduce the amount of the transfer to each such

type by any small amount without affecting the consumer’s behavior. We will also maintain the

following assumption:

(A2) Homogeneity. There exists a quantity profile q(θ) such that the allocation with full par-

ticipation {u(θ), q(θ)} is incentive compatible, that is, u′(θ) = vθ(θ, q(θ)) and q(θ) is increasing.

Note that assumption (A1) implies that u′(θ) is positive. So, a sufficient condition for u(θ) ≥ u

is u(θ) ≥ u. Moreover, since

u′′(θ) = vθθ(θ, q(θ)) + vθq(θ, q(θ))dq(θ)/dθ

the requirement that q(θ) be increasing implies that u(θ) is convex when vθθ(θ, q(θ)) ≥ 0. This

will be the case of interest in our empirical analysis where, for reasons of model identification,

we will specialize the consumer’s utility function as v(θ, q) = θν(q), as common in the literature

on second-degree price discrimination.

2.2 Discussion

Here we first discuss how to interpret the budget constraint (BC) in our framework, we then

discuss the way our framework captures the possibility of competition among sellers, and, lastly,

we discuss the likely importance of income effects in our setting.

The Budget Constraint. Consider a static utility maximization problem over two goods, good

q and the numeraire c, and suppose the consumer faces a standard budget constraint on their

purchase and a subsistance-level constraint on the consumption of c. We show here that this

problem can be formally reinterpreted as a maximization problem over one good, in which the

consumer faces a budget constraint for the purchase of that good only and this budget constraint

may or may not bind at the consumer’s chosen quantity of q.

Specifically, consider a consumer with quasi-linear preferences over good q and the numeraire
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c. Suppose that the consumer is characterized by a parameter θ that affects her valuation for q,

u(q, θ), and her budget, Y (θ). The consumer’s problem is

max
q,c
{u(q, θ) + c}

s.t. T (q) + c ≤ Y (θ) and c ≥ c(θ).

Since at an optimum T (q) + c = Y (θ), it follows c = Y (θ) − T (q), so the problem can be

equivalently restated as

max
q
{u(q, θ) + Y (θ)− T (q)}

s.t. T (q) ≤ Y (θ)− c(θ).

Redefine the consumer’s utility as v(q, θ) = u(q, θ) + Y (θ) and let I(θ) = Y (θ)− c(θ). Then, the

consumer’s problem can be equivalently restated as

max
q
{v(q, θ)− T (q)}

s.t. T (q) ≤ I(θ)

which is the case we consider. Note that the dependence of I(θ) on θ may be due to the

dependence of the consumer’s total income, Y (θ), on θ or of her ‘required’ level of consumption

of the numeraire, c(θ), on θ. In the special case in which u(q, θ) = θu(q) and Y (θ) = Y + yθ, it

follows

v(q, θ) = u(q, θ) + Y (θ) = θ[u(q) + y] + Y.

Letting ν(q) = u(q) + y, the consumer’s problem can be rewritten as

max
q
{θν(q) + Y − T (q)}

s.t. T (q) ≤ I(θ)

where Y is an irrelevant constant. The case in which utility is multiplicatively separable in type

and valuation for quantity is the one we will primarily focus on for reasons of model identification.

We discuss this in detail below.

The Competitive Case. Suppose now that there exist multiple sellers, who behave as local

monopolists in separate geographical markets. Let T f (q) denote the tariff of the seller’s com-

petitor f ∈ {1, . . . , F}. By interpreting u(θ) as u(θ) = maxf{v(θ, qf (θ))−T f (q)}, that is, as the
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consumer’s utility when purchasing the quantity qf (θ) at price T f (q) from seller f , it is immedi-

ate that our model naturally nests the best-response problem of a firm in an oligopoly model of

price competition (under vertical product differentiation, given our homogeneity assumption).

Income Effects. For simplicity we abstract from income effects. Wilson (1993; Chapter 7)

shows that the optimal price schedule is quite sensitive to consumers’ incomes if consumers mainly

differ in their income elasticities of demand. Instead, consumers’ marginal rate of substitutions

and the optimal price schedule are insensitive to the optimal tariff when income elasticities are

small and/or consumers’ residual incomes are large in relation to their expenditures on the seller’s

good. In intermediate cases, income effects can influence the magnitude of the seller’s profit

margins but do not necessarily alter the basic form of the tariff. Allowing for the dependence of

the optimal tariff on the range of customers’ incomes in the presence of income effects represents

an important departure from standard (linear utility) tariff design. We interpret our explicit

accounting of consumers’ budget constraints as a first step towards analyzing the importance of

consumer’s resources for optimal pricing strategies.3

3 A Relaxed Problem

Given primitives v(θ, q), F (θ), c(q), u(θ), and I(θ), consider an allocation {u(θ), q(θ)} that

is a full-participation solution to problem (P1). To characterize it, we will proceed following

the approach commonly used to solve the standard nonlinear pricing problem without type-

dependent reservation utilities or budget constraints. Namely, we will first consider a relaxed

problem in which the constraint (BC) is dropped, problem (P2). We will then show that, under

assumptions, a solution to this relaxed problem satisfies (BC) and, hence, it is also a solution to

(P1). We will then consider a relaxed problem in which the constraint (IR) is replaced by the

constraint u(θ) ≥ u, problem (P3), and show that under conditions a solution to this relaxed

problem satisfies (IR) and, hence, it is also a solution to (P1). Hence, in a formal sense the

nonlinear pricing problem in which consumers have type-dependent reservation utilities and the

one in which they are budget-constrained are equivalent.

Differently from the standard nonlinear pricing problem, however, in our case the relaxed

problem (P2) is of interest per se. As we show here, (P2) formally captures both instances in

which consumers have access to more attractive options than trading with the seller, in which case

3See Leslie (1998) for a welfare analysis of second- and third-degree discrimination in the pricing of tickets for
Broadway shows within a structural model that accounts for income effects. In his model the quality of theater
seats (the counterpart of our quantity dimension) is taken as given. Instead, we solve for the optimal price and
quantity schedules and take into account changes in them when we conduct our counterfactual exercises.
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their reservation utility naturally depends on θ, and situations in which a consumer’s reservation

utility is independent of her type but consumers are budget-constrained. Therefore, (P2) is

empirically the problem of interest because, as we will show below, estimating it allows us to

verify in a particular context whether: (a) the standard nonlinear pricing model applies; (b) if

it does not, whether budget constraints or type-dependent reservation utilities are the source of

the departure from the standard model.

Observe, as mentioned, that the relaxed problem in which (BC) is dropped is a nonlinear

pricing problem with countervailing incentives in which the consumer’s reservation utility depends

on θ. The characterization of an optimal pricing contract for this problem is straightforward based

on known techniques. We will rely on the methods developed by Jullien (2000).

3.1 Implementability of Outside Utility: A Specialization

Note that assumption (A2) requires u′(θ) = vθ(θ, q(θ)) and q(θ) increasing. We provide here a

specialization of u(θ) to show that u(θ) can be easily constructed in a way that is consistent

with our notion, discussed above, that u(θ) captures alternative consumption possibilities for the

consumer, one particular example being trading with other sellers.

Specifically, suppose that the reservation utility u(θ) ≥ u is achieved by the consumer when

she faces the price schedule c(q). Then, by consumer’s optimality,

u(θ) = max
q
{v(θ, q)− c(q)} = v(θ, q(θ))− c(q(θ)) ≥ u (1)

where q(θ) = arg maxq{v(θ, q)− c(q)} and c(·) satisfies{
c′(q) = vq(θ, q)

c(q(θ)) = I(θ).
(2)

Observe that the allocation with full participation {u(θ), q(θ)} is implementable under this spe-

cialization of u(θ). To see this, note that (IR) is satisfied by construction at the allocation

{u(θ), q(θ)}. Further, note that

u′(θ) = vθ(θ, q(θ)) + [vq(θ, q(θ))− c′(q(θ))] q′(θ) = vθ(θ, q(θ)) (3)

by the definition of q(θ) and (2). Moreover, since c′(q) = vq(θ, q) > 0 and q′(θ) = I ′(θ)/c′(q(θ)),

if I ′(θ) ≥ 0 then q(θ) is increasing. So, assumption (A2) is satisfied.

Note that it must be u(θ) = u. To see this, note that given all (IC)’s hold, the constraint
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v(θ, q(θ)) − t(θ) ≥ u can be replaced by v(θ, q(θ)) − t(θ) ≥ u. Hence, at the optimum, the

participation constraint of the lowest type is binding. When v(θ, q) = θν(q) it follows that

u(θ) = θν(q(θ))− I(θ) = u, so

q(θ) = (ν)−1

(
u+ I(θ)

θ

)
. (4)

We provide next an example of how to construct c(q) based on v(θ, q) and I(θ), when I(θ) is

a linear function of θ. (An example in which I(θ) is a polynomial function of θ is included in

Appendix A.)

Example with Income Linear in Type. Suppose that v(θ, q) = θν(q) and I(θ) = I + iθ with

i > 0. Define the function C(θ) as C(θ) = c(q(θ)). Thus, C(θ) = I + iθ. Let θ(q) be the inverse

mapping of q = q(θ), which is well-defined given that q′(θ) > 0 by assumption (A2). In this case,

we have {
c′(q) = θ(q)ν ′(q)

c(q) = I + iθ(q).

From the first expression in the above system it follows θ(q) = c′(q)/ν ′(q) and substituting this

into the expression for c(q) in the above, we obtain

c(q) = I + iθ(q) = I + i
c′(q)

ν ′(q)
⇔ c′(q)

c(q)− I
=
ν ′(q)

i
. (5)

Integrating both sides of (5) from q(θ) to q, we obtain

log[c(x)− I]qq(θ) =
1

i
[ν(x)]qq(θ) ⇔ log[c(q)− I]− log[c(q(θ))− I] =

1

i
ν(q)− 1

i
ν(q(θ))

or, equivalently,
c(q)− I
c(q(θ))− I

= exp

{
1

i
[ν(q)− ν(q(θ))]

}
. (6)

Using the fact that, by definition, c(q(θ))− I = iθ and the expression in (4), (6) can be rewritten

as

c(q) = I + iθ exp

{
ν(q)− ν(q(θ))

i

}
= I + iθ exp

{
θν(q)− I − iθ − u

iθ

}
. (7)

Substituting this expression for c(q) into the condition c(q) = I + iθ, we also obtain

q = q(θ) = (ν)−1

(
i log

(
θ

θ

)
+
I + iθ + u

θ

)
(8)
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and

θ = θ(q) = θ exp

{
ν(q)

i
− I + iθ + u

iθ

}
so when q = q(θ), we have

c(q(θ)) = I + iθ exp

θν
(

(ν)−1
(
i log

(
θ
θ

)
+ I+iθ+u

θ

))
− I − iθ − u

iθ

 = I + iθ.

Also,

u(θ) = θν(q(θ))− I(θ) = θ

(
i log

(
θ

θ

)
+
I + iθ + u

θ

)
− I − iθ

In the special case in which ν(q) = log(q), c(q) becomes

c(q) = I + iθ exp

{
θ log(q)− u− I − iθ

iθ

}
= I + iθq

1
i exp

{
−u+ I + iθ

iθ

}
.

Note that if the function q = q(θ) is known, we can alternatively proceed as follows: (1)

invert the function q = q(θ) to obtain θ(q); (2) plug θ(q) into the expression c′(q) = θ(q)ν ′(q);

(3) integrate both sides of c′(q) = θ(q)ν ′(q) with respect to q to obtain c(q), using the boundary

condition c(q) = I + iθ(q). Specifically, plugging θ(q) into the expression c′(q) = θ(q)ν ′(q), we

obtain

c′(q) = θ exp

{
ν(q)

i
− I + iθ + u

iθ

}
ν ′(q)

which needs to be integrated to get c(q). In particular,

c(x) = iθ exp

{
ν(x)

i
− I + iθ + u

iθ

}
+ C

and using the fact that c(q) = I + iθ(q) it follows

iθ exp

{
ν(q)

i
− I + iθ + u

iθ

}
+ C = I + iθ(q)⇒ C = I

and

c(q) = I + iθ exp

{
ν(q)

i
− I + iθ + u

iθ

}
= I + iθ exp

{
θν(q)− I − iθ − u

iθ

}
as obtained above. In particular, different functions q = q(θ) will lead to different functions c(q).
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Further, observe that (6) implies

c′(q) = θ exp

{
1

i
[ν(q)− ν(q(θ))]

}
ν ′(q)

so
∂c′(q)

∂I
= −c′(q)1

i
ν ′(q(θ))

∂q(θ)

∂I
.

From u(θ) = u, it follows θν(q(θ))− I − iθ − u = 0, so

∂q(θ)

∂I
= − −1

θν ′(q(θ))
> 0

if θ > 0. Then, ∂c′(q)/∂I < 0. This result will be important for our comparative statics results

below.

3.2 The Relaxed Problem Without Budget Constraints

Denote by (P2) the version of (P1) in which the constraint (BC) is dropped. So, (P2) is given by

(P2) max
{u(θ),q(θ),x(θ)}

∫
θ

x(θ)[s(θ, q(θ))− u(θ)]f(θ)dθ

subject to

(IC) u(θ) ≥ u(θ′) + v(θ, q(θ′))− v(θ′, q(θ′)) for any θ, θ′, if x(θ) = 1

(IR) u(θ) ≥ u(θ), if x(θ) = 1

(EX) u(θ) = u(θ), if x(θ) = 0

where we maintain that u(θ) = u.

Suppose that u(θ) ≥ v(θ, q) − I(θ) for each type. In this case it follows that if (IR) is

satisfied, then (BC) is also satisfied. Assume that q(θ) ≤ q(θ). Since v(θ, ·) is strictly increasing

by assumption, it follows that v(θ, q(θ)) ≤ v(θ, q(θ)), which by (1) and (2) implies

u(θ) = max
q
{v(θ, q)− c(q)} = v(θ, q(θ))− c(q(θ)) ≥ v(θ, q(θ))− I(θ). (9)

Hence, q(θ) ≤ q(θ) is a sufficient condition for (IR) to imply (BC). When q(θ) ≤ q(θ), a solution

to (P2) is also a solution to (P1). In the next section we identify conditions under which a
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solution to (P2) satisfies q(θ) ≤ q(θ) and, thus, it is also a solution to (P1).

4 Optimal Nonlinear Pricing

4.1 The Problem Without Budget Constraints

Here we characterize the solution to problem (P2), since we will focus on it. The analysis in this

subsection is borrowed from Jullien (2000). Our first result is to show that, in characterizing

the optimal contract for (P2), we can abstract from the possibility that the seller may find it

optimal to exclude some types, say, by offering an unattractive quantity and price combination.

Formally, we can prove that for any implementable allocation that entails exclusion, we can find

an implementable allocation with full participation in which all consumer types purchase from the

seller (and, naturally, viceversa). Based on this result, we can also show that full participation

holds if s(θ, q(θ)) ≥ u(θ) for all types, that is, if the seller makes a nonnegative profit from

each type when offering q(θ). By a slight abuse of notation, we denote an optimal contract by

{t(θ), q(θ), x(θ)} and an optimal allocation by {u(θ), q(θ), x(θ)}.
We formalize our first result in the next lemma. The proof of this result is in Appendix A.

Lemma 1. Suppose (1) and (2) hold. (a) An allocation {u(θ), q(θ), x(θ)} with exclusion is

implementable for (P2) if, and only if, the full participation allocation {u(θ), x(θ)q(θ) + [1 −
x(θ)]q(θ)} is implementable for (P2). (b) If s(θ, q(θ)) ≥ u(θ), then an allocation solution to (P2)

entails full participation.

As in a standard screening problem, the objective function of the seller can be equivalently

restated in terms of virtual surplus, the surplus adjusted to take into account the informational

rents induced by incentive compatibility. Of course, the main difference with respect to the

standard problem is that now the (IR) constraint need not just bind for the lowest type.

Consider an optimal allocation. Let γ(θ) denote the shadow value associated with a uniform

(marginal) reduction of the participation level u(θ) for all types between θ and θ. Observe that

γ(θ) has the properties of a cumulative distribution function: it is nonnegative, increasing, and

γ(θ) = 1. As such, it can be represented as a unit mass distribution over the set of types [θ, θ]:

γ(θ) puts a positive mass only on those types for which the participation constraint binds. Since

q(θ) is continuous, γ(θ) can only have mass points at θ or θ.4 Correspondingly, dγ(θ) is the

4This distribution may be discontinuous when (IR) binds at isolated points. For example, γ(θ) > 0 means
that (IR) binds at θ and that there is a finite mass at θ.
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shadow value of the individual rationality constraint at θ, implying dγ(θ) = 0 when u(θ) > u(θ).

Note that, as γ(·) is constant whenever (IR) does not bind, the support of the distribution γ(·)
is included in the set of types (with no informational rent) for which u(θ) = u(θ). The virtual

surplus in our case is given by

σ(γ, θ, q) = s(θ, q) + [(F (θ)− γ)/f(θ)]vθ(θ, q)

whereas in the standard screening problem it is given by σ(1, θ, q). For the solution to the seller’s

problem to be well-defined, we formulate a convexity and a type-separation assumption.

(A3) For all γ ∈ [0, 1], σ(γ, θ, q) is strictly quasi-concave in q.

This convexity property is verified, in particular, if sq(θ, ·)/vθq(θ, ·) is decreasing with q. Under

(A3) the virtual surplus is maximal at a single quantity denoted by l(γ, θ) = arg maxq σ(γ, θ, q),

which, when positive, is decreasing with γ.5

We now formulate a further assumption, assumption (A4), in addition to the homogeneity

assumption above, in order to ensure that the optimal solution does not display bunching. In

the standard model, a necessary and sufficient condition for bunching not to occur is that l(1, θ)

be nondecreasing. Assumption (A4) is a generalization of this requirement. Note also that the

homogeneity assumption, as stated, already requires the reservation profile u(θ) to be convex

enough. Since u′′(θ) = vθθ(θ, q(θ)) + vθq(θ, q(θ))dq(θ)/dθ, the term dq(θ)/dθ is a measure of the

curvature of u(θ).

(A4) For all γ ∈ [0, 1], l(γ, θ) is a nondecreasing function of θ.

Sufficient conditions for (A4) are

∂ (sq(θ, q)/vθq(θ, q)) /∂θ ≥ 0 and d (F (θ)/f(θ)) /dθ ≥ 0 ≥ d ([1− F (θ)]/f(θ)) /dθ. (10)

The first condition in (10) states that the marginal benefit of increasing the slope of the utility

profile is weakly increasing with the type. When this condition holds, convex quantity profiles

are optimal for the seller, implying that the monotonicity condition for incentive compatibility,

q(θ), is easier to satisfy. The second condition in (10) states that, as the type increases, the

relative weight of types above θ compared to types below θ decreases, and the seller becomes

progressively more concerned about the rents left below θ. A sufficient condition for this is the

5The standard condition for concavity, that is, the requirement that s(·) be concave in q and vθ(·) convex in
q, may not suffice. If vθ(·) is nonlinear, σ(γ, θ, q) cannot be concave for all distributions F (·) and all values of γ.
A general proof of existence of an optimal contract is in Jullien (2000).
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logconcavity of f .

Analogous to Jullien (2000), we consider two cases, which we term the weakly-convex and

the highly-convex case, since the optimal contract differs across these two cases in the degree of

convexity of the reservation utility profile, u(θ). We start by defining Θ to be the set of interior

types for which the (IR) constraint can bind,

Θ = {θ : l(1, θ) ≤ q(θ) ≤ l(0, θ)} .

Also, let γ(θ) be defined by q(θ) = l(γ(θ), θ). If q(θ) > 0, then γ(θ) is given by

γ(θ) = F (θ) + f(θ)sq(θ, q(θ))/vθq(θ, q(θ)) (11)

(since σq(γ, θ, q) = 0, γ(θ) as defined implies that q(θ) = l(γ(θ), θ) when γ(θ) = γ(θ)).

There are circumstances in which the set Θ has a simple structure. This is the case when

q(·) crosses l(γ, ·) for at most one type. Under such a single crossing property, it is easy to verify

that Θ is an interval (possibly empty). Then, the solution to the seller’s problem depends on

the comparison between the slope of q(θ) and the slope of l(γ, ·). In particular, borrowing the

same terminology as in Jullien (2000), we term the situation in which q(·) crosses each profile at

most once from above to below the weakly-convex case and the situation in which q(·) crosses

each profile at most once from below to above the highly-convex case. A crucial condition for

the following lemma to hold is that γ(θ) is increasing on Θ. Since q(θ) = l(γ(θ), θ) on Θ, by

total differentiation it follows

lγ(γ(θ), θ)dγ(θ)/dθ = dq(θ)/dθ − lθ(γ(θ), θ)

so a sufficient condition for γ(θ) to be increasing on Θ is that dq(θ)/dθ ≤ lθ(γ(θ), θ) on Θ.

Lemma 2. (Weakly-Convex Case) If q(·) is continuous, Θ is nonempty, and dq(θ)/dθ ≤ lθ(γ(θ), θ)

on Θ, then Θ is an interval [θ1, θ2], (IR) binds on Θ, and q(θ) = l(0, θ) if θ < θ1, q(θ) = q(θ) if

θ ∈ [θ1, θ2], and q(θ) = l(1, θ) if θ > θ2.

Proof : The proof follows from the proofs of Propositions 1 and 3 and Lemma 3 in Jullien

(2000).

In the standard nonlinear pricing model, the incentive issue consists in preventing the con-

sumer from understating her type, that is, incentive constraints are downward binding. Here

the consumer may, instead, prefer to overstate her type, that is, incentive constraints can be
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upward binding, when the reservation utility is large for high levels of θ. Preventing an under-

statement is achieved by reducing the quantity (and the transfer) for smaller types: as larger

types face a higher marginal benefit from trade, this makes the understatement less attractive to

them. Preventing an overstatement, instead, is best achieved by increasing the quantity for larger

types, taking again advantage of the fact that the consumer’s marginal valuation of quantity is

increasing with θ: larger and larger quantities are less and less attractive to smaller types.

Intuitively, from these observations it follows that the optimal contract in our case can exhibit

overproduction as well as underproduction compared to the first-best level, contrary to sole

underproduction implied by the standard model. Indeed, the sign of F (θ) − γ(θ) tracks the

direction where the incentive constraints matter more: it is negative if the downward incentive

constraints dominate and positive if the upward incentive constraints dominate at θ. Therefore,

the optimal contract displays overproduction when γ(θ) < F (θ) and underproduction otherwise.

In particular, in the weakly-convex case the participation constraint binds for a single interval

of types and there is overproduction for low types (θ < θ1) and underproduction for high types

(θ > θ2). We now turn to consider the highly-convex case.

Lemma 3. (Highly-Convex Case) If dq(θ)/dθ ≥ lθ(γ(θ), θ) on Θ, then there exists a constant γ

such that q(θ) = l(γ, θ). If 0 < γ < 1, then (IR) binds both at θ and at θ.

Proof : The proof follows from the proof of Proposition 2 in Jullien (2000).

This result applies when the slope of u(·) is high or low in which case Θ is empty. For

instance, the standard nonlinear pricing model à la Baron-Myerson (1982) is one such special

case: if q(θ) is uniformly smaller than l(1, θ), then the (IR) constraint binds only at the lowest

type and the quantity traded is q(θ) = l(1, θ). The opposite case may also occur: if q(θ) is

uniformly larger than l(0, θ), then the (IR) constraint binds at the highest type and the quantity

traded is q(θ) = l(0, θ). Notice, in particular, that if q(θ) is uniformly larger than l(0, θ), there is

overproduction for all types. In all other intermediate cases in which γ is constant but different

from 0 or 1, the optimal contract induces underproduction for low types and overproduction for

high types.

4.2 An Equivalence Between Participation and Budget Constraints

Consider problem (P2). Here we first show that, under conditions, an optimal solution to (P2)

satisfies (BC). Moreover, consumer types who are indifferent between participating and not

participating, that is, for which u(θ) = u(θ), purchase from the seller the quantity q(θ) at price
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I(θ). In a precise sense, then, there are situations in which the participation constraint tracks

consumer types whose budget constraints bind at an optimal solution.

In this Subsection we maintain that only two cases apply:

(a) either q(·) is continuous, Θ is nonempty, and dq(θ)/dθ ≤ lθ(γ(θ), θ) on Θ; or

(b) dq(θ)/dθ ≥ lθ(γ(θ), θ) on Θ.

Observe that, by the derivations above, under (a) the weakly-convex case applies whereas under

(b) the highly-convex case applies.

For convenience, define by q the lowest quantity purchased and by q the largest quantity

purchased in a solution to (P2). Note that, since the optimal quantity schedule is increasing, it

follows q = q(θ) and q = q(θ).

Proposition 1. Consider problem (P2). Suppose (1) and (2) hold. Assume that vq(θ, q) = c′(q),

vq(θ, q) = c′(q), and q(θ) ≥ l(1, θ) for each θ. Then, q(θ) ≤ q(θ) so when the constraint u(θ) ≥
u(θ) is satisfied, the constraint t(θ) ≤ I(θ) is also satisfied and when u(θ) = u(θ), the constraint

t(θ) = I(θ) is also satisfied with q(θ) = q(θ). Hence, a solution to (P2) is also a solution to (P1).

Proof : Consider a solution to (P2) and let θ = θ(q) be the inverse of the function q = q(θ). Note

that θ = θ(q) is well-defined given that q(θ) is increasing. Define T (q) = t(θ(q)). Observe first

that T ′(q(θ)) = vq(θ, q(θ)) by local incentive compatibility. Consider now the seller’s first-order

condition for the optimal choice of quantity,

σq(γ(θ), θ, q(θ)) = vq(θ, q(θ))− c′(q(θ))−
γ(θ)− F (θ)

f(θ)
vθq(θ, q(θ)) = 0. (12)

Since, by assumption, vq(θ, q(θ)) = c′(q(θ)), it follows that T ′(q(θ)) = c′(q(θ)). Hence, γ(θ) = 1.

Similarly, T ′(q(θ)) = vq(θ, q(θ)) = c′(q(θ)) implies γ(θ) = 0 by (12). These observations together

imply that the weakly-convex case applies. By the properties of the weakly-convex case, we

know that q(θ) < q(θ) for θ ∈ [θ, θ1), q(θ) = q(θ) for θ ∈ [θ1, θ2], and q(θ) > q(θ) for θ ∈ (θ2, θ].

However, by the proof of Proposition 3 in Jullien (2000) (ADD), if q(θ) ≥ l(1, θ) for each θ,

then θ ≤ θ2 for each θ. In particular, θ2 ≥ θ. But since (IR) binds for all types between θ1 and

θ2, it follows that γ(θ) = 1, which implies θ2 = θ. Thus, q(θ) ≤ q(θ) for all types, which also

implies that u(θ) ≥ v(θ, q(θ)) − I(θ), by the definition of u(θ) and the increasingness of v(θ, ·).
Combining u(θ) = v(θ, q(θ)) − t(θ) ≥ u(θ) and u(θ) ≥ v(θ, q(θ)) − I(θ), we obtain t(θ) ≤ I(θ)

as desired. Lastly, recall that q(θ) is incentive compatible when (IR) binds by (2), so when

u(θ) = u(θ) it follows that q(θ) = q(θ) and T (q(θ)) = c(q(θ)) = I(θ).

Recall that q(θ) ≤ q(θ) for all types implies that the constraint (BC) is satisfied at an optimal

15



solution to (P2). This is key to showing that a solution to (P2) is also a solution to (P1). Consider

now a relaxed version of (P1) without (IR); we term this problem (P3). We next show that at an

optimal solution to (P3) the constraint (IR) is also satisfied. Specifically, in the next proposition

we show that a solution to the relaxed version of (P1) in which (IR) is dropped and substituted

by the standard individual rationality constraint u(θ) ≥ u is also a solution to (P1). Hence,

under assumptions, the two constraints (IR) and (BC) are equivalent.

Proposition 2. Consider problem (P3). Suppose that q(θ) and t(θ) are strictly increasing, t(θ) is

continuous, and I ′(θ) > 0. Then, if θ with I(θ) ∈ [t(θ), t(θ)] there exists u(θ) satisfying conditions

(1) and (2) with u(θ) ≥ u(θ) and q(θ) ≤ q(θ). In particular, u(θ) = u(θ) and q(θ) = q(θ) when

(BC) binds.

Proof : Here we show that based on the primitives of (P3) and standard properties of its solution,

we can construct q(θ) and u(θ) satisfying (1) and (2) so that the constraint u(θ) ≥ u(θ) with

q(θ) ≤ q(θ) is satisfied at an optimal solution to (P3). Moreover, u(θ) = u(θ) with q(θ) = q(θ)

when (BC) binds at an optimal solution to (P3). To start, observe that it is impossible that at

an optimal solution to (P3) we have I(θ) < t(θ) for some type θ, since the fact that I(θ) < t(θ)

would imply I(θ) < t(θ) ≤ t(θ) by increasingness of t(·). Thus, (BC) would be violated for type

θ. Contradiction. Consider now a type θ for which I(θ) ∈ [t(θ), t(θ)] at an optimal solution to

(P3). There exists a type θ′ such that t(θ′) = I(θ) (by the intermediate value theorem) who

is offered by the seller the quantity q(θ′) ∈ [q(θ), q(θ)]. Using the fact that t(θ′) = I(θ), the

relationship θ′ = t−1(I(θ)) determine such type θ′ for each type θ.

Now, (BC) for type θ implies that t(θ) ≤ I(θ) = t(θ′), which, in turn, yields that θ ≤ θ′,

by increasingness of t(·), and q(θ) ≤ q(θ′), by increasingness of q(·). Note that the incentive-

compatibility constraint for type θ implies v(θ, q(θ))− t(θ) ≥ v(θ, q(θ′))− T (q(θ′)). Let{
c′(q(t−1(I(θ)))) = vq(θ, q(t

−1(I(θ))))

c(q(t−1(I(θ)))) = I(θ)

where q(θ′) = q(t−1(I(θ))). Specifically, construct c(q) as follows: (1) invert the function q(θ′) =

q(t−1(I(θ))), which corresponds to the function q = q(θ), to obtain the function θ(q), that is,

θ = θ(q) = I−1(t(q−1(q(θ′)))); (2) plug θ(q) into the expression c′(q) = vq(θ(q), q); (3) integrate

both sides of c′(q) = vq(θ(q), q) with respect to q to obtain c(q), using the boundary condition

c(q) = I + i(θ(q)). (See v(θ, q) = θν(q) for a straightforward example.)

Now, recall the fact that c′(q(θ)) = vq(θ, q(θ)) > 0, that c(q(θ)) = I(θ), and that I ′(θ) > 0.
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By applying the implicit function theorem to c′(q(θ))− vq(θ, q(θ)) = 0, we obtain

q′(θ) = − vθq(θ, q)

vqq(θ, q)− c′′(q)

whereas by applying the implicit function theorem to c(q(θ))− I(θ) = 0, we obtain

q′(θ) =
I ′(θ)

c′(q(θ))
.

These observations imply

− vθq(θ, q)

vqq(θ, q)− c′′(q)
=

I ′(θ)

c′(q(θ))
> 0

so vqq(θ, q)−c′′(q) < 0. Hence, the difference v(θ, q)−c(q) reaches a maximum at q(θ′). Combining

this observation and the fact that c(q(θ′)) = I(θ), we obtain

u(θ) ≥ v(θ, q(θ′))− T (q(θ′)) = max
q
{v(θ, q)− c(q)} = v(θ, q(θ))− I(θ) = u(θ).

Hence, conditions (1) and (2) are satisfied with q(θ) = q(θ′) ≥ q(θ). Repeating this argument

for each θ, if follows that q(θ) ≤ q(θ) and u(θ) ≥ u(θ) with the desired properties.

In the proof of Proposition 2, q(θ) is constructed so as to map θ into q(θ) (when t(θ) = I(θ))

or q(θ′) (when t(θ) < I(θ)) for each type θ with I(θ) ∈ [t(θ), t(θ)], that is

q(θ) =

{
q(θ), if t(θ) = I(θ) ∈ [t(θ), t(θ)]

q(t−1(I(θ))), if t(θ) < t(θ′) = I(θ) ∈ [t(θ), t(θ)].

So, c(q) = I(θ(q)) which is well-defined since, as constructed, q(θ) is an increasing function of θ.

Observe that q(θ) and t(θ) solutions to (P3) are continuous (by the theorem of the maximum)

if the relevant ‘virtual surplus’ function for (P3) is strictly quasi-concave and the constraint set

in (P3) is convex. Increasingness of q(θ) and t(θ) solution to (P3) follows from (IC) by local

incentive-compatibility.

Propositions 1 and 2 jointly imply that, under conditions, the problems (P2) and (P3) admit

the same solution. This is because both (P2) and (P3) are relaxed versions of (P1) and, by

Proposition 1, a solution to (P2) is also a solution to (P1) and, by Proposition 2, a solution to

(P3) is also a solution to (P1). In this precise sense, under the joint conditions of Propositions 1

and 2, problems (P2) and (P3) are equivalent. (Recall that in the standard problem, this logic

applies as follows: first, a solution to a relaxed version of the problem, in which the monotonicity
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condition for incentive compatibility is dropped, is determined. Next, it is proved that such

solution also satisfies the monotonicity condition.)

Based on these results, in the rest of the paper we will focus on the solution to (P2). Then,

in our empirical analysis we will verify whether the conditions of Propositions 1 (and 2) are

satisfied, so that a solution to (P2) is also a solution to (P1) and, hence, (P3).

4.3 A Basis for Empirical Analysis

Consider then problem (P2). Observe that the optimal quantity schedule q(θ) = l(γ(θ), θ)

satisfies

σq(γ(θ), θ, q(θ)) = vq(θ, q(θ))− c′(q(θ))−
γ(θ)− F (θ)

f(θ)
vθq(θ, q(θ)) = 0. (13)

In the data we typically do not observe t(θ) but, instead, a price for each offered quantity, which

we denote by T (q). The schedule T (q) is obtained from t(θ) by substituting q for θ based on the

inverse relationship θ = θ(q), with θ(q) ≡ (q)−1(q), derived from the optimal quantity schedule

q = q(θ). Note that this inverse function, relating observed quantities to unobserved types, is

well-defined since q(θ) is increasing in θ by incentive compatibility. This relationship will prove

central to the identification of the model. Hence, we can rewrite (13) as

T ′(q(θ))− c′(q(θ))
T ′(q(θ))

=
γ(θ)− F (θ)

f(θ)

vθq(θ, q(θ))

vq(θ, q(θ))
(14)

since T ′(q(θ)) = vq(θ, q(θ)). Consider the special case, standard in the literature, in which

v(θ, q) = θν(q). We will focus on this specification of utility in our empirical analysis. Since

in this case T ′(q) = θν ′(q) and vθq(θ, q(θ)) = ν ′(q), necessary (and sufficient) conditions for an

optimal solution are
T ′(q(θ))− c′(q(θ))

T ′(q(θ))
=
γ(θ)− F (θ)

θf(θ)
(15)

and

T ′(q(θ)) = θν ′(q(θ)). (16)

Equations (15) and (16) will form the basis of our identification and estimation strategy. We

formulate a further assumption.

(A5) q(·) crosses l(γ, ·) for at most one type.

In the following we maintain that only the weakly-convex or the highly-convex case applies.
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5 Nonlinear Pricing and Consumer Surplus

Consider the complete information version of our problem in which consumers are not budget-

constrained and their reservation utility is independent of their type. Suppose for simplicity

that the seller’s cost function entails no fixed cost and a constant marginal cost, c. If the seller

was allowed to fully (third-degree) price discriminate, surplus would be maximal at the first-best

quantity qFB(θ) but fully appropriated by the seller. On the other hand, if the seller behaved

perfectly competitively and offered each consumer type her first-best quantity qFB(θ) at marginal

cost per unit, the first-best linear price, consumer surplus would be maximal and producer surplus

zero.

Consider next the incomplete information environment of problem (P2) but assume that

the consumer’s reservation utility is independent of her type. This is the standard nonlinear

pricing problem with γ(θ) = 1 for all types, since in this case u(θ) = u for each θ and the

participation constraint binds only for the lowest type. Recall that the optimal price schedule

in this case is nonlinear and implies that the consumption of all types, apart from the highest

one, is distorted downward compared to first best. That is, the optimal contract trades off the

allocative distortion imposed to all consumers types, apart from the highest one, against the

informational rent granted to all consumer types, apart from the lowest one, to induce them to

reveal their type. As a result, the optimal contract prescribes underconsumption and levels of

utility for all types, except for the highest one, below first best.

Consider now the incomplete information environment in which consumers’ reservation utility

depends on their type. We have shown that in this case overproduction, compared to first best,

occurs when γ(θ) < F (θ). If so, then consumer types who are offered quantities larger than

first best pay marginal prices below the seller’s marginal cost. In any such case, the interplay

between price discrimination and incomplete information has a non-obvious impact on consumer

(and producer) surplus. The question we address here is under which conditions, if any, in this

case some consumers are better off when they face nonlinear prices than when they face the

linear monopoly price, under complete or incomplete information, or even the linear first-best

price c.

5.1 The Impact of Participation Constraints on Consumer Surplus

To this purpose, consider the weakly-convex case of our model. Note first that the linear

monopoly price under complete or incomplete information is higher than the marginal price

that a consumer of type θ faces in our setting when γ(θ) = 0. This result can be easily seen from
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the fact that when γ(θ) = 0 the optimal contract implies T ′(q(θ)) < c for all θ ∈ [θ, θ1]. Suppose

that vq(θ, ·) is strictly decreasing (it is decreasing by assumption). Recall that T (·) is increasing

by incentive compatibility, qFB(θ) solves vq(θ, q) = c, and q(θ) solves vq(θ, q) = T ′(q). These

observations imply that q(θ) ≥ qFB(θ) for all θ ∈ [θ, θ1].

Now, denote by qm(θ) the quantity purchased and by pm the price paid by a consumer

of type θ in the linear monopoly pricing solution under complete or incomplete information.

Obviously, the solution to the monopolist’s pricing problem typically differs across the complete

and incomplete information cases. However, the distinction between the two cases is immaterial

for the point we make here. Indeed, we will only rely on the fact that qFB(θ) ≥ qm(θ), regardless

of whether qm(θ) refers to the quantity demanded by a consumer of type θ when pm is the linear

monopoly price under complete or incomplete information. For this reason, we simply refer to

pm and qm(θ), respectively, as the monopolist’s linear price and the quantity demanded by type

θ.

Note that by local incentive compatibility, vq(θ, q(θ)) = T ′(q(θ)) = t′(θ)/q′(θ) and

u′(θ) = vθ(θ, q(θ)) + vq(θ, q(θ))q
′(θ)− t′(θ) = vθ(θ, q(θ)).

So, u(θ) = u(θ)+
∫ θ
θ
vθ(x, q(x))dx. A consumer of type θ is better-off under our nonlinear pricing

solution than under the linear monopoly pricing solution if, and only if,

u(θ) = u(θ) +

∫ θ

θ

vθ(x, q(x))dx > um(θ) ≡ v(θ, qm(θ))− pmqm(θ).

Let θ̃ be such that θ̃ ≤ θ1. By the mean value theorem, there exists θ′ ∈ (θ, θ̃) such that

∫ θ̃

θ

vθ(x, q(x))dx = (θ̃ − θ)vθ(θ′, q(θ′)). (17)

Now, let v(θ, q) = θν(q). As argued, for θ ∈ [θ, θ1], we have q(θ) ≥ qFB(θ) ≥ qm(θ). Suppose θ is

sufficiently small that θ̃ − θ > θ′. Hence, vθ(θ
′, q(θ′)) = ν(q(θ′)). Recall that u(θ) ≥ u. Then, by

(17)

u(θ′) ≥ (θ̃ − θ)ν(q(θ′)) > θ′ν(q(θ′)) ≥ θ′ν(qm(θ′)) > um(θ′) = θ′ν(qm(θ′))− pmqm(θ′). (18)

Then, u(θ′) > um(θ′). By continuity, there exists an interval of types close to θ′ for which

consumer surplus is higher under nonlinear monopoly pricing than under linear monopoly pricing.
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Proposition 3. Suppose v(θ, q) = θν(q), u(θ) ≥ 0, and that the weakly-convex case applies. If

θ is sufficiently small, then under nonlinear pricing, consumers of the smallest quantities enjoy

higher utility than under linear monopoly pricing and purchase quantities higher than under

first-best linear pricing.

This result has important implications for the distributional impact of nonlinear pricing. It

implies that, when consumers’ reservation utility is type-dependent or consumers are budget-

constrained, consumers of the smallest quantities are better off under nonlinear pricing than

under linear pricing. In particular, they may be able to achieve levels of utility close to first best

despite the presence of private information, in situations in which this would not be the case

if they were not budget-constrained. Hence, the presence of budget constraints fundamentally

alters the characteristics of an optimal contract in ways that can be beneficial to the poor, if the

poor are the purchasers of the smallest quantities.

6 Testable Implications

Consider the interpretation of the participation constraint as a budget constraint. In this case, the

model has implications for the relationship between properties of the distributions of consumer

budgets and types, on the one hand, and properties of the observed price schedule in a market

(village), on the other hand.

Specifically, below we address the following questions: What is the relationship between

properties of the income distribution in a village, interpreted as a proxy of demand conditions,

and properties of the price schedule? Do different distributions of income call for different

intensities of price discrimination?

We also explore how changes in F (θ) affect the seller’s price schedule. In anticipation of the

empirical analysis, we will maintain that v(θ, q) = θν(q) and that marginal cost is constant.

6.1 Changes in the Distribution of Consumer Budgets

Recall the seller’s first-order condition in (15). In the standard nonlinear pricing problem, the

multiplier γ(θ) is equal to one for each type, so changes in consumers’ budgets do not affect the

optimal price schedule. In our case, instead, γ(θ) is in general different from one. Hence, the fact

that consumers are budget-constrained affects the slope of the optimal price schedule at each

quantity, in particular at quantities purchased by consumer types whose budget constraints do

not bind.
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By inspection of (15), it follows that increases in γ(θ) are associated with increases in T ′(q).

Further, from the local incentive-compatibility condition θν ′(q) = T ′(q), the fact that ν ′(·) is

decreasing implies that increases in T ′(q) are associated with decreases in q for each θ. So,

increases in γ(θ) are associated with increases in T ′(q) and a downward shift in the schedule

q(θ).

Now suppose that I(θ) = I + i(θ) for some positive function i(θ) with i′(θ) > 0. Consider an

increase in I that results in the new budget schedule I∆(θ) with I∆(θ) ≥ I(θ) for all types. Denote

by γ∆I(θ) the new schedule of multipliers associated with the consumer’s budget constraint after

this increase in I(θ). Also, denote by T∆I(q) the new price schedule, by T ′∆I(q) the new marginal

price schedule, and by q∆I(θ) the new quantity schedule associated with γ∆I(θ). Since, by

construction, c(q(θ)) = I + i(θ), it follows that

∂q(θ)/∂I = I/c′(q(θ)) > 0.

In turn, the fact that u′(θ) = ν(q(θ)) implies that increases in q(θ) are associated with increases

in u′(θ) for each θ. Since, with u(θ) = u, we can express u(θ) as

u(θ) = u+

∫ θ

θ

u′(x)dx.

So, increases in I(θ) achieved through increases in I are associated with increases in u(θ).

Lemma 4. Assume that v(θ, q) = θν(q), marginal cost is constant, and I(θ) = I+i(θ), i′(θ) > 0.

Marginal increases in I are associated with marginal increases in q(θ) and u(θ) for each type.

Observe that the important step in this argument is the fact that the numerator of ∂q(θ)/∂I

is positive. Note that any positive function i(·) can, without loss, be thought of as a polynomial

i(θ) = i1θ + · · · + inθ
n. Suppose that ij ≥ 0, 1 ≤ j ≤ n. Then, with θ > 0 it follows that an

increase in any ij would result in an increase in q(θ) and, thus, in u(θ).

Consider first the weakly-convex case. Suppose I increases in a way that is still compatible

with the weakly-convex case. (For this it is enough that θν ′′(q(θ))− c′′(q(θ)) is sufficiently large;

see Appendix A for details.) By the properties of the weakly-convex case, at a new optimal

allocation γ∆I(θ) is constant at zero for θ ∈ [θ, θ′1), it is equal to [F (θ)− F (θ′1)]/[F (θ′2)− F (θ′1)]

for θ ∈ [θ′1, θ
′
2], and it is constant at one for θ ∈ (θ′2, θ]. Observe that increases in q(θ) are

associated with decreases in γ(θ), since from (11)

∂γ(θ)

∂q(θ)
=
cθ2f(θ)ν ′′(q(θ))

[θν ′(q(θ))]2
≤ 0 (19)
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given that ν ′′(·) ≤ 0. Thus, increases in I(θ) are associated with decreases in γ(θ). In turn, this

immediately implies that θ1 ≤ θ′1 and θ2 ≤ θ′2, which yields that γ∆I(θ) ≤ γ(θ). So, γ∆I(θ) first-

order stochastically dominates γ(θ). In turn, from γ∆I(θ) ≤ γ(θ) it follows that T ′∆I(q) ≤ T ′(q)

by (15) and, as argued, q∆I(θ) ≥ q(θ). Further, the fact that q∆I(θ) ≥ q(θ) for each θ implies

that the support of purchased quantity shifts to the right after the increase in I.

Consider now the highly-convex case. In analogy to the above, we focus on increases in I(θ)

through I that are still compatible with the highly-convex case. By Lemma 4, increases in I are

associated with increases in q(θ). This implies that for a type whose budget constraint binds,

the purchased quantity, q(θ), increases. Since γ is constant for all θ in the highly-convex case

and l(γ, θ) is nonincreasing in γ, it follows that γ decreases. Now, starting from γ = 1, as γ

decreases it follows that the budget constraint first binds either for the lowest type only (γ = 1)

or for the lowest and highest types only (γ ∈ (0, 1)) and eventually binds for all types (γ = 0).

Also, as in the weakly-convex case, a decrease in γ causes the entire marginal price schedule to

shift downward.

Lemma 5. Assume that v(θ, q) = θν(q), marginal cost is constant, and I(θ) = I+i(θ), i′(θ) > 0.

In the standard nonlinear pricing model, changes in consumer budgets do not affect the price

schedule. In the presence of budget constraints, a first-order stochastic dominant improvement

in the distribution of consumer budgets implies a lower marginal price of the good at each offered

quantity and a right-shift in the support of purchased quantities.

Lastly, we relate changes in consumers’ budgets to changes in the intensity of price discrim-

ination. In order to so, we start by relating changes in T ′(q) to changes in the intensity of

price discrimination. Observe that with T (q) = p(q)q, under linear pricing the price per unit

T (q)/q = p(q) = p and the marginal price T ′(q) = p are constant in quantity. Under nonlinear

pricing, instead, the price per unit T (q)/q = p(q) and the marginal price T ′(q) = p′(q)q + p(q)

are typically not constant in quantity. Thus, (the absolute value of) T ′′(q) provides a natural

measure of the intensity of price discrimination. (See Appendix A for a formal discussion of

the relationship between the curvature of the price schedule and the extent to which the price

schedule entails ‘bulk discounting’, that is, unit prices declining in quantity.)

To understand how changes in I(θ) affect T ′′(q), we proceed as follows. Recall that from

T ′(q(θ)) = θν ′(q(θ)) and the monotonicity of ν(·), it follows that both in the weakly-convex and

in the highly-convex cases, if T ′(q) shifts downward (respectively, upward), then the optimal

quantity schedule q(θ) shifts upward (respectively, downward). Denote by G(q) the cumulative

distribution function of observed quantity purchases and by g(q) the corresponding probability

density function of quantity purchases associated with the price schedule T (q). Similarly, denote
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by G∆I(q) the cumulative distribution function of observed quantity purchases and by g∆I(q)

the corresponding probability density function associated with the price schedule T∆I(q). Recall

that, by incentive-compatibility, the optimal quantity schedule q(θ) defines a mapping between

unobserved types and observed purchased quantities, q = q(θ). Since the function q(·) is in-

creasing, we can define the inverse function θ = θ(q), where θ(q) = q−1(q), that relates observed

quantities to unobserved types. Note that

G(q) = Pr(q̃ ≤ q) = Pr(θ̃ ≤ q−1(q) = θ) = F (θ)

so θ′(q) = g(q)/f(θ). From T ′(q) = θ(q)ν ′(q) it follows that T ′(q) > 0, since ν ′(·) > 0 by

assumption, and

T ′′(q) = θ′(q)ν ′(q) + θ(q)ν ′′(q).

By dividing the left-hand side and the right-hand sides of the above equality by T ′(q) = θ(q)ν ′(q)

and using the fact that θ′(q) = g(q)/f(θ), we obtain

T ′′(q)

T ′(q)
=
θ′(q)ν ′(q)

T ′(q)
+
θ(q)ν ′′(q)

T ′(q)
=
θ′(q)

θ(q)
+
ν ′′(q)

ν ′(q)
=

g(q)

θf(θ)
+
ν ′′(q)

ν ′(q)
(20)

where T ′′(q)/T ′(q) = ∂ log(T ′(q))/∂q. Note that −ν ′′(q)/ν ′(q) is the Arrow-Pratt measure of

absolute risk aversion of the consumer. Compare ∂ log(T ′(q))/∂q and ∂ log(T ′∆I(q))/∂q, where

∂ log(T ′∆I(q))

∂q
=
g∆I(q∆I)

θf(θ)
+
ν ′′(q∆I)

ν ′(q∆I)
.

Suppose that the base utility function ν(·) displays decreasing or constant absolute risk

aversion, that is, −ν ′′(q′)/ν ′(q′) ≤ −ν ′′(q)/ν ′(q) for any q′ > q. Assume that both T ′′(q) and

T ′′∆I(q) are negative, that is, the two price schedules imply quantity discounts. Then, T∆I(q)

implies a greater intensity of price discrimination than T (q) if, and only if,

∂ log(T ′∆I(q))

∂q
≤ ∂ log(T ′(q))

∂q
⇔ g∆I(q∆I)

θf(θ)
− g(q)

θf(θ)
≤ −ν

′′(q∆I)

ν ′(q∆I)
+
ν ′′(q)

ν ′(q)
. (21)

Recall that T ′∆I(q) ≤ T ′(q) implies q(θ) ≤ q∆I(θ), so −ν ′′(q∆I)/ν
′(q∆I) ≤ −ν ′′(q)/ν ′(q). Note

that, by construction, the two schedules q(θ) and q∆I(θ) are such that G(q) = F (θ) and

G∆I(q∆I) = F (θ). Compare now the two densities g∆I(q∆I) and g(q) of quantity purchases

at each pair of quantities (q, q∆I) such that G(q) = G∆I(q∆I), that is, at quantities in the sup-

port of G∆I(q∆I) such that q∆I = G−1
∆I(F (θ)) and at quantities in the support of G(q) such that
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q = G−1(F (θ)). By (21), if g∆I(q∆I) is sufficiently smaller than g(q) at each such pair of quan-

tities, then T∆I(q) implies a greater intensity of price discrimination than T (q).6 If both T ′′(q)

and T ′′∆I(q) are positive, that is, the two price schedules imply quantity premia, then

∂ log(T ′(q))

∂q
≤ ∂ log(T ′∆I(q))

∂q
⇔ −ν

′′(q∆I)

ν ′(q∆I)
+
ν ′′(q)

ν ′(q)
≤ g∆I(q∆I)

θf(θ)
− g(q)

θf(θ)
(22)

so if g∆I(q∆I) ≥ g(q) at each pair of quantities (q, q∆I) selected as described, then T∆I(q) implies

a greater intensity of price discrimination than T (q).

Finally, suppose the base utility function ν(·) displays increasing or constant absolute risk

aversion. Hence, q(θ) ≤ q∆I(θ) implies −ν ′′(q)/ν ′(q) ≤ −ν ′′(q∆I)/ν
′(q∆I). Now, if both T ′′(q)

and T ′′∆I(q) are negative, then by (21)

∂ log(T ′∆I(q))

∂q
≤ ∂ log(T ′(q))

∂q
⇔ −ν

′′(q)

ν ′(q)
+
ν ′′(q∆I)

ν ′(q∆I)
≤ g(q)

θf(θ)
− g∆I(q∆I)

θf(θ)

which is satisfied if g(q) ≥ g∆I(q∆I) at each pair of quantities (q, q∆I) selected as described.

Instead, if T ′′(q) and T ′′∆I(q) are positive, then by (22)

∂ log(T ′(q))

∂q
≤ ∂ log(T ′∆I(q))

∂q
⇔ g(q)

θf(θ)
− g∆I(q∆I)

θf(θ)
≤ −ν

′′(q)

ν ′(q)
+
ν ′′(q∆I)

ν ′(q∆I)

which is satisfied if g(q) is sufficiently smaller than g∆I(q∆I) at each pair of quantities (q, q∆I)

selected as described.

We summarize these results in the following Lemmas. We first consider the case in which the

utility function displays constant or decreasing absolute risk aversion.

Lemma 6. Assume marginal cost is constant and I(θ) = I + i(θ), i′(θ) > 0. Suppose v(θ, q) =

θν(q) and ν(q) displays constant or decreasing absolute risk aversion. Suppose T ′(q) > 0 and

T ′∆I(q) > 0. Consider a first-order stochastic dominant improvement in the distribution of con-

sumer budgets.

(a) If T (q) and T∆I(q) imply quantity discounts and T∆I(q) is associated with a large enough

decrease in the density of quantity purchases, T∆I(q) implies a greater intensity of price discrim-

ination.

(b) If T (q) and T∆I(q) imply quantity premia and T∆I(q) is associated with an increase in the

density of quantity purchases, T∆I(q) implies a greater intensity of price discrimination.

6Since g(q) = f(θ)/q′(θ), improvements in I(θ) lead to an increase in g(q) for all q if increases in q(θ) are
associated with decreases in q′(θ).
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We now consider the case in which the utility function displays constant or increasing absolute

risk aversion.

Lemma 7. Assume marginal cost is constant and I(θ) = I + i(θ), i′(θ) > 0. Suppose v(θ, q) =

θν(q) and ν(q) displays constant or increasing absolute risk aversion. Suppose T ′(q) > 0 and

T ′∆I(q) > 0. Consider a first-order stochastic dominant improvement in the distribution of con-

sumer budgets.

(a) If T (q) and T∆I(q) imply quantity discounts and T∆I(q) is associated with a decrease in the

density of quantity purchases, T∆I(q) implies a greater intensity of price discrimination.

(b) In T (q) and T∆I(q) imply quantity premia and T∆I(q) is associated with a large enough

increase in the density of quantity purchases, T∆I(q) implies a greater intensity of price discrim-

ination.

6.2 Changes in the Distribution of Types

Consider now the impact of changes in the type distribution. We maintain that the support of

F (θ) does not change in this comparative statics exercise, only its probability density function.

Because of the interaction between γ(θ) and f(θ) in the seller’s first-order condition (15), our

model leads to different comparative statics results, compared to the standard nonlinear pricing

model in which γ(θ) = 1 for all types, when the type distribution changes.

Formally, denote by TF (q) the price schedule and by GF (q) the associated cumulative dis-

tribution function of quantity purchases under the type distribution F (θ). Similarly, denote by

TH(q) the price schedule and by GH(q) the associated cumulative distribution function of quan-

tity purchases under the type distribution H(θ), a distribution with the same support as F (θ)

but different probability density function, which we denote by h(θ). Note that F (θ) = GF (q)

and H(θ) = GH(q). Let λF (θ) and λH(θ) denote the hazard rates of F (θ) and H(θ), respectively.

Recall that a distribution F (θ) is said to dominate a distribution H(θ) according to the hazard

rate order if f(θ)/[1− F (θ)] ≤ h(θ)/[1−H(θ)] for each θ. Note that hazard rate dominance is

a weaker ordering criterion than likelihood ratio dominance: in fact, it is implied by likelihood

ratio dominance. Moreover, if F (θ) dominates H(θ) in the likelihood ratio or hazard rate order,

then F (θ) also first-order (and, thus, second-order) stochastically dominates H(θ). Examples of

parametric families of distributions that can be ordered according to monotone likelihood ratio

dominance, and, thus, hazard rate dominance, are the exponential, the binomial, the Poisson,

and the normal distribution. Lastly, note that since q(θ) is increasing by incentive compatibility,

if F (θ) dominates H(θ) in the likelihood ratio order (or hazard rate order), then GF (q) dominates
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GH(q) in the first-order stochastic dominance sense.7

Suppose that the seller’s marginal cost is constant. Consider the standard nonlinear pricing

model. By (15), under this model T ′F (q) ≥ T ′H(q) at each q if, and only if,

λ−1
F (θ) =

1− F (θ)

f(θ)
≥ λ−1

H (θ) =
1−H(θ)

h(θ)

at each θ, that is, if, and only if, F (θ) dominates H(θ) according to the hazard rate order.

Moreover, since F (θ) = GF (q) and H(θ) = GH(q), it also follows that GF (q) dominates GH(q)

according to first-order stochastic dominance.

Consider now our model. Since hazard rate dominance implies first-order stochastic domi-

nance, it follows that if F (θ) dominates H(θ) according to the hazard rate order we also have

F (θ) ≤ H(θ). In turn, (apart from the trivial case) the fact that F (θ) first-order stochasti-

cally dominates H(θ) implies that h(θ) > f(θ) at low (enough) types and h(θ) < f(θ) at high

(enough) types. Denote by γF (θ) and γH(θ), respectively, the multipliers under F (θ) and H(θ),

respectively. By (15) we have

T ′F (q)− c
T ′F (q)

=
γF (θ)− F (θ)

θf(θ)
=
λ−1
F (θ)

θ
− 1− γF (θ)

θf(θ)

and
T ′H(q)− c
T ′H(q)

=
γH(θ)−H(θ)

θh(θ)
=
λ−1
H (θ)

θ
− 1− γH(θ)

θh(θ)

so in our model T ′F (q) ≥ T ′H(q) if, and only if,

λ−1
F (θ)− λ−1

H (θ) =
1− F (θ)

f(θ)
− 1−H(θ)

h(θ)
≥ 1− γF (θ)

f(θ)
− 1− γH(θ)

h(θ)
. (23)

Suppose F (θ) dominates H(θ) in the hazard rate order and that the weakly-convex case

applies both under F (θ) and H(θ). Then, γF (θ) = γH(θ) = 1, which implies that (23) is

certainly satisfied in a neighborhood of θ. At types θ in (θ, θ1), instead, if F (θ) and H(θ) are

sufficiently close to each other, then

1− F (θ)

f(θ)
− 1−H(θ)

h(θ)
=
h(θ)[1− F (θ)]− f(θ)[1−H(θ)]

f(θ)h(θ)
≤ h(θ)− f(θ)

f(θ)h(θ)
=

1

f(θ)
− 1

h(θ)
(24)

at low enough θ’s, with strict inequality at some small θ > θ. Therefore, it can be T ′F (q) < T ′H(q)

7See Müller and Stoyan (2002) for a standard reference on stochastic orders and their relationships.
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at some q even if λ−1
F (θ) ≥ λ−1

H (θ).

Suppose now that the highly-convex case applies both under F (θ) and H(θ). Note that if

1− γF < 1− γH , then at θ we have

λ−1
F (θ)− λ−1

H (θ) =
h(θ)− f(θ)

f(θ)h(θ)
≥ h(θ)(1− γF )− f(θ)(1− γH)

f(θ)h(θ)
=

1− γF
f(θ)

− 1− γH
h(θ)

so T ′F (q) ≥ T ′H(q) at the lowest quantity. Assume now that 1− γF ≥ 1− γH , so

(1− γH)

[
h(θ)− f(θ)

f(θ)h(θ)

]
≤ h(θ)(1− γF )− f(θ)(1− γH)

f(θ)h(θ)
.

In this case, if γH is sufficiently small and F (θ) and H(θ) are sufficiently close to each other,

then at low θ’s we have

h(θ)[1− F (θ)]− f(θ)[1−H(θ)]

f(θ)h(θ)
≤ (1− γH)

[
h(θ)− f(θ)

f(θ)h(θ)

]
(25)

with strict inequality at some small θ > θ if γH is close enough to zero. By the same logic as in

(24), this argument implies that it can be T ′F (q) < T ′H(q) at some q even if λ−1
F (θ) ≥ λ−1

H (θ).

Lemma 8. Assume marginal cost is constant. Suppose that the distribution F (θ) dominates

the distribution H(θ) according to the hazard rate order. Then, GF (q) first-order stochastically

dominates GH(q). Then, under the standard nonlinear pricing model, T ′F (q) is larger than T ′H(q).

Under our model, T ′F (q) can be larger or smaller than T ′H(q) at small quantities.

Contrary to the standard model, then, in our model an improvement (in the likelihood ratio

sense) of the type distribution and, thus, of the distribution of quantity purchases does not

necessarily imply an increase in the slope of the price schedule.

7 Data

In this section, we describe our data and present some descriptive evidence based on them. We

use data from the surveys collected to evaluate the Conditional Cash Transfer (CCT) programs

that were implemented in Mexico, PROGRESA/Oportunidades, and in Colombia, Familias en

Acción. For this reason, our data is not representative of rural Mexico or Colombia. Our

justification for using these data sources is the richness of the surveys and the fact that they

constitute a longitudinal data base that covers, in the case of Mexico, a long time period. We

will now discuss the cases of the two countries in turn.
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Mexico: PROGRESA/ Oportunidades

Mexico is a middle income country that in the last few decades has witnessed many changes,

including a strong process of urbanization. Its rural population, however, remains an important

fraction of the total and one that is disproportionately affected by poverty. The rural poor are

also perceived to be particularly vulnerable to external shocks, such as the increases in food

prices and their distinctive nonlinearity in quantity. Since 1997, the Mexican government has

used a Conditional Cash Transfer program as its main strategy to fight poverty in rural areas.

The program was started under the Zedillo administration and was first known as PROGRESA.

The program consolidated and replaced many pre-existing programs, including some consisting

of in-kind transfers. PROGRESA was expanded since its inception in 1997 to cover about 50,000

localities in 2000 and has become the largest welfare program of the Mexican government ef-

fectively covering almost all of rural Mexico. Two types of rural localities were not covered by

PROGRESA. The first set is constituted of localities that were perceived as not being ‘marginal-

ized’ and ‘poor enough’ to need this type of intervention. Some of these localities were included

in subsequent expansions of the program. The second set of localities were places that did not

have access to enough health and education infrastructure to allow the beneficiary households to

comply with the conditionalities imposed by the program at a reasonable cost. These localities

were covered by other programs. These details are important for us because we use data from

the evaluation of the rural component of PROGRESA/Oportunidades and therefore only include

localities targeted by this program. In principle it would be important to perform a similar

exercise for the very marginal localities not covered by PROGRESA.

Unlike many other programs targeted at rural areas, PROGRESA survived the 2000 change

of administration and only changed in name, becoming Oportunidades under the Fox adminis-

tration. In 2002, the program was expanded to some urban areas, excluding only the largest

cities. While the urban program is identical to the rural one in terms of the size of the grants

provided, the registration mechanism is very different. In this paper we do not study households

covered by the program in urban areas, partly because they constitute a very different reality

which should probably be the object of a different study and partly because the data available

do not include the same detail of information on prices and unit values that is available in the

rural survey.

In order to evaluate PROGRESA and estimate its impact, several large surveys were con-

ducted in some rural areas. The so-called ‘ENCEL’ surveys collect extensive information on

all households living in 506 rural localities from seven Mexican states. (Because of the way

PROGRESA and then Oportunidades are targeted, the program performs a census of all the
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households living in all rural localities where the program operates. This survey, labeled EN-

CASEH, contains information on several variables, but not on consumption and expenditure.)

These 506 villages were randomly allocated to two groups of 320 and 186. In the first group of

localities, PROGRESA began operation in mid 1998, while in the rest of the sample the program

started to operate at the end of 1999. Data were collected in March and October 1998, in May

and November 1999, and in April and November 2000 in villages from both groups.

In October 2003 an additional survey was collected, which included the 506 localities and an

additional 150 localities in which Oportunidades was still not operating in 2003. This last subset

of localities belong to the set of localities that were not ‘poor enough’ to be included in the first

expansion of PROGRESA. They are therefore systematically different from those in the original

sample. This is one of the reasons why we concentrate on the (May) 1999 survey. Finally, a large

fraction of the localities in the 2003 ENCEL sample were visited and households re-contacted in

October 2007 for a follow-up survey. On this last occasion, localities in Chiapas were added to

the sample.

The ENCEL surveys constitute the bulk of the data we use for our analysis. Our sample

consists of the May 1999 survey. As mentioned above, we excluded data from the urban program

roll-out to ensure a relatively homogenous sample and because price data were not available for

those surveys. For this reason we also exclude the additional localities surveyed in the 2003 and

2007 ENCEL survey and use only the original 506 localities originally in the 1998 ENCEL. As

we mentioned, all households living in a locality are interviewed. A large fraction of them is

constituted by households who are eligible for PROGRESA/Oportunidades. On average, 78%

of the households in our localities are beneficiaries. There is a substantial amount of variability

in eligibility rates across localities. Obviously, beneficiary households are ‘poorer’ than non-

beneficiary ones. This can be verified in a variety of dimensions, from the ownership of durables

to the fraction of total consumption devoted to food. In any case, the large majority of the

households in our sample are quite poor. On average, for instance, food accounts for nearly 70%

of their total budget.

The ENCEL surveys contain information on a number of demographic and socio-economic

variables. In what follows we make use of the following variables: the sex, age and ethnicity of the

head of household, the household size, the number of children and the earnings of the household

head. The locality-level average of head-earnings is calculated and used as an instrument for total

food consumption. One of the main reasons for our use of the ENCEL survey is the richness

of the consumption and expenditure data. In the case of food and drink (alcoholic and non

alcoholic), the survey contains information on weekly expenditure and quantity purchased, for
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36 goods, together with the quantity consumed and home produced. The foods included and

their share in the budget can be found in Table 1 (ADD), and cover fruits and vegetables, grains

and pulses, meat and animal products, and other foods. The list is supposed to be exhaustive

of the foods consumed by these households. Table 2 (ADD) reports, for the same foods, the

percentage of households consuming the food during the survey week.

In addition to information on food consumed and/or purchased in the last week, the survey

contains information about several other items, over different time intervals. In the case of some

items, such as utilities, questions are asked about expenditure in the last month, while for some

others, such as clothing and furniture, the questions in the survey refer to the last six months.

On all these items, however, there is only information on values spent, not on quantities. One,

therefore, cannot compute unit values, as in the case of food.

Given that the survey contains information on quantities purchased and consumed as well as

the value of expenditure, it is in theory possible to observe prices, or to be more precise, unit

values. There are, however, a number of measurement issues. They are discussed in detail in

Attanasio, Di Maro, Lechene, and Phillips (2009) (CONTINUE).

Colombia: Familias en Acción. This program, inspired by PROGRESA in Mexico, consists

mainly of conditional cash transfers meant to improve the accumulation of human capital among

the poorest households in rural Colombia. Beneficiaries are the poorest 20% of households living

in towns with less than 100,000 inhabitants and with enough health and education infrastructure.

The sample includes towns where the program started to operate in 2002 and towns where the

program does not operate because they did not satisfy some of the conditions for its operation

(like the presence of a bank). The data were collected from a total of 122 municipalities in rural

parts of Colombia between June and October 2002.

Our sample includes clusters of households in the urban center of town as well as in rural areas

(which, in turn, are divided between rural and dispersed rural, the latter being more isolated).

The towns in our sample are relatively small: the median population is 20,300. Our towns

are also varied: the smallest town has just over 1,000 people, while the largest has just over

120,000 inhabitants. At the household level, the sample consists of families that are potential

beneficiaries of the program—that is, households with children from the poorest sectors of society.

The household survey contains 11,497 households. Data were collected at both the household

and the individual level (CONTINUE).

31



8 Empirical Analysis

The focus of this section is to provide an empirical assessment of the importance of asymmetric

information and limited participation for observed pricing and purchasing patterns, as well as for

consumer and producer surplus, in the context of rural markets for basic food items, specifically

rice. One goal of our empirical exercise is to determine whether poor consumers, who tend to

be purchasers of the smallest quantities (see Attanasio, Di Maro, Lechene, and Phillips (2009)),

benefit from nonlinear pricing.

To this purpose, we first prove that model primitives are nonparametrically identified. Second,

we show that nonparametric estimators can be easily obtained based on our identification results.

Our strategy for the recovery of model primitives is based on Guerre, Perrigne, and Vuong

(2000) (henceforth, GPV) and Perrigne and Vuong (2007) (henceforth, PV). Third, we compare

nonparametric estimates, obtained from these estimators, from the standard nonlinear pricing

model and from our model, when it applies, and their distributional implications.

We assume that in the data we observe the outcomes of the optimal pricing decisions on the

part of sellers and of the optimal participation and purchasing choices on the part of consumers,

which we characterized in previous sections. We assume that exclusion of consumers occurs only

when inefficient (s(θ, q(θ)) < u(θ)). Hence, without loss, we maintain that the full participation

solution characterized above applies to the set of participating consumers (see Jullien (2000) for

details).

8.1 Preliminaries

Note first that in the data we do not observe t(θ) but, instead, T (q). In the following we treat

the price schedule T (q) as observed. The reason is that our data provide information about unit

prices from stores in different geographical areas. We also have available unit values constructed

based on extensive information on quantity purchased and expenditure on food items at the

household level (see Attanasio (2006), Attanasio, Di Maro, Lechene, and Phillips (2009) for

details). Thus, denoting the observed price per unit or unit value for quantity q by p(q), we can

compute the price schedule T (q) as T (q) = p(q)q. The primitives defining the model structure

are v(·), F (·), c(·), and u(·). In recovering them, we maintain the following assumptions:

(IA1): The seller makes non-negative profits from each consumer’s type.

(IA2): Observed prices and quantities correspond to the full participation solution of (P2), either

under the weakly-convex or the highly-convex case.

(IA3): The consumer’s utility function is v(θ, q) = θν(q).
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(IA4): The seller’s cost function entails a constant marginal cost.

(IA5): θ > 0.

By Lemma 1, assumption (IA1) is an immediate consequence of seller optimality and the fact

that the consumer’s private information does not directly affect the seller’s profit. Assumption

(IA2) defines the case under consideration. As discussed above, we can assess whether the

participation constraint stands in for a budget constraint by comparing the schedules q(θ) and

q(θ). We maintain (IA3) for consistency with most of the literature on nonlinear pricing and

for reasons of model identification. The motivation for (IA4) is that, as we will argue, the cost

function appears in the seller’s first-order condition, equation (15), only through its derivative.

Since (15) provides our estimating equation for c(·), we can at most identify c′(·). Finally, again

for reasons of identification, we normalize θ. We choose a positive value for convenience.

The relationship between observed quantities and unobserved (to the seller and the econo-

metrician) types implied by the model will prove central to our empirical strategy. The fact that

q(θ) is increasing (by incentive compatibility) guarantees the existence of a unique monotone

mapping between a consumer’s type and that type’s purchased quantity (this observation is due

to Maskin and Riley (1984)). As in GPV and PV, let G(q) denote the fraction of consumers

purchasing at most quantity q, G(q) = Pr(q̃ ≤ q) with density function g(q). From q = q(θ) it

follows θ = q−1(q) and

G(q) = Pr(q̃ ≤ q) = Pr(θ̃ ≤ q−1(q) = θ) = F (θ)

which implies g(q) = f(θ)/q′(θ) = f(θ)θ′(q). Intuitively, a scale normalization is necessary

because two observationally equivalent structures can be obtained by transforming type θ into

type θ̃ = λθ, for any λ > 0, and the unknown base marginal utility function ν ′(·) into ν̃ ′(·) =

ν ′(·)/λ (see also PV on this). Let also q ≡ q(θ) and q ≡ q(θ), where q and q denote, respectively,

the smallest and largest observed quantity purchased in a market. In our case a market will

correspond to a village (a municipality) in Mexico (for the moment being).

8.2 Identification

Here we provide conditions for the nonparametric identification of the model primitives, ν(·),
F (·), c, and u(·) (with the caveat that u(·), and, hence, I(·) when the problem corresponds

to one in which consumers are budget-constrained, are only identified for types for which the
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relevant constraint binds).8 We start by discussing how to determine the type of pricing contract

that applies to a particular market based solely on information on observed prices and quantities.

Following the derivations above, we distinguish two cases, the weakly-convex case and the highly-

convex case.

To start, observe that the seller’s first-order condition (15) can be rewritten as

T ′(q)− c
T ′(q)

=
γ(θ)− F (θ)

θf(θ)
=
γ(θ)−G(q)

θg(q)q′(θ)
(26)

where the last equality follows from the fact that F (θ) = G(q) and f(θ) = g(q)q′(θ). Recall from

Lemma 2 that in the weakly-convex case γ(θ) = 0 and γ(θ) = 1, so T ′(q) − c = T ′(q) − c = 0

since F (θ) = 0 and F (θ) = 1. Hence, T ′(q) = T ′(q), which can easily be tested in the data. If

the restriction T ′(q) = T ′(q) is rejected, then the highly-convex applies. We detail below how

γ(θ) = γ can be recovered from T ′(q), G(q), and g(q).

Lemma 9. If T ′(q) = T ′(q), then observed prices and quantities correspond to the weakly-convex

case. Otherwise, observed prices and quantities correspond to the highly-convex case.

Recall that the standard model is a special instance of the highly-convex case in which γ = 1.

Now, (26) can be alternatively rewritten as

G(q) = γ − θq′(θ)[T ′(q)− c] g(q)

T ′(q)
= γ − θ(q)

θ′(q)
g(q) + c

θ(q)

θ′(q)

g(q)

T ′(q)

so, since a one-to-one relationship exists between q and θ, we can specify an additive nonpara-

metric regression model in which the partial regression functions f1(·) and f2(·) are estimated

from the data

G(q) = γ + f1 (g(q)) + f2

(
g(q)

T ′(q)

)
(27)

where θq′(θ) > 0. Suppose we regress G(q) on a constant, g(q), and g(q)/T ′(q). Then, the

estimated constant provides an estimate of γ. Key to this argument for the recovery of γ is that

q can be treated as exogenous given that all variables and functions in (27) are deterministic.

If so, no correlation between any included parameter or variable and the error term can arise

(assuming measurement error is negligible). If the estimated value of γ is significantly different

from one, we can reject the hypothesis that the standard nonlinear pricing model applies.

8Note that if we interpret I(θ) as the difference between the consumer’s income and expenditure on all other
goods, consistent with our formulation of the two-good utility maximization problem leading to the constraint
t(θ) ≤ I(θ), then I(θ(q)) = Υ(q). Υ(q) can be nonparametrically identified and estimated from our data on
household expenditure.
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Lemma 10. If the constant term in a regression of G(q) on g(q) and g(q)/T ′(q) as in (27) is

significantly different from one, then the standard nonlinear pricing model does not apply.

Note that our approach below in the highly-convex case also allows us to identify and estimate

the primitives of the standard nonlinear pricing model, ν(·), F (·), and c, nonparametrically.

8.2.1 Weakly-Convex Case

Recall that the weakly-convex case includes both the case in which the constraint (IR) binds for

one interval of interior types, [θ1, θ2], and the cases in which it binds for one interval of types

including the lowest one, that is, θ1 = θ, or one interval of types including the highest one, that

is, θ2 = θ. Moreover, under our single-crossing assumption between q(θ) and l(γ, θ), assumption

(A5), such an interval is nonempty and unique. Let q1 = q(θ1) and q2 = q(θ2), where q(θ) denotes

the optimal quantity schedule. Recall also that in the weakly-convex case, γ(θ) = 0 for q ∈ [q, q1)

and γ(θ) = 1 for q ∈ (q2, q] (with obvious modifications if q = q1 or q2 = q), so T ′(q) = T ′(q) = c.

Lemma 11. In the weakly-convex case, the marginal cost c is identified by the slope of the price

schedule at the smallest or largest quantity purchased in the market considered.

Over the interval of quantities [q1, q2] at which (IR) binds, γ(θ) coincides with the truncated

type distribution over [q1, q2], so γ(θ) = [F (θ)− F (θ1)] / [F (θ2)− F (θ1)] or, equivalently,

γ(θ(q)) = [G(q)−G(q1)] / [G(q2)−G(q1)] . (28)

Note that γ(θ(q1)) = 0 and γ(θ(q2)) = 1. Hence, γ(θ(q1)) ≤ G(q1) and γ(θ(q2)) ≥ G(q2), with

strict inequalities if q1 > q and q2 < q. Also, the difference

γ(θ(q))−G(q) =
G(q) {1− [G(q2)−G(q1)]} −G(q1)

G(q2)−G(q1)

is strictly increasing, since its slope, g(q) {1− [G(q2)−G(q1)]} /[G(q2)−G(q1)], is strictly posi-

tive. This is because if [θ1, θ2] is nonempty, then G(q2) − G(q1) > 0 and, since it cannot simul-

taneously be that q1 = q and q2 = q without violating the assumptions of the case ((IR) cannot

bind for all types in the weakly-convex case), then G(q2) − G(q1) < 1. Also, γ(θ) is continuous

at θ1 and θ2. (If not, then γ(θ) would have a mass point at either θ1 or θ2 or both. But since the

optimal quantity is continuous, γ(θ) can only have mass points at θ = θ or θ = θ.) Therefore,

[T ′(q)− c]/T ′(q) equals zero also at a unique interior quantity q̃, which can be computed as the
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quantity at which γ(θ(q)) equals G(q) or, equivalently,

G(q̃) {1− [G(q2)−G(q1)]} −G(q1)

G(q2)−G(q1)
= 0.

This implies

G(q2) = 1−G(q1)

[
1

G(q̃)
− 1

]
. (29)

We can recover q1 as follows. When q ∈ [q, q1), from (26) it follows

q∫
q

T ′(q)− c
T ′(q)

g(q)dq = −
q∫
q

F (θ)

θf(θ)
g(q)dq = −

θ∫
θ

F (θ)

θf(θ)

f(θ)

q′(θ)
q′(θ)dθ = −

θ∫
θ

F (θ)

θ
dθ < 0 (30)

by substitution, the fact that f(θ) = g(q)q′(θ), and that dq = q′(θ)dθ. Instead, when q ∈ [q1, q2],

from (26) and (28) we have

T ′(q)− c
T ′(q)

=
γ(θ)− F (θ)

θf(θ)
=

F (θ)− F (θ1)

θf(θ)[F (θ2)− F (θ1)]
− F (θ)

θf(θ)
=
F (θ) {1− [F (θ2)− F (θ1)]} − F (θ1)

θf(θ)[F (θ2)− F (θ1)]
.

From this, again using the rule of integration by substitution, the fact that g(q) = f(θ)/q′(θ),

and that dq = q′(θ)dθ, it follows

q∫
q1

T ′(q)− c
T ′(q)

g(q)dq =

θ∫
θ1

F (θ) {1− [F (θ2)− F (θ1)]} − F (θ1)

θ[F (θ2)− F (θ1)]
dθ > 0.

Observe that the integral of [T ′(q)− c]g(q)/T ′(q) over quantities above q2 is also positive. Then,

on the basis of these observations we can conclude

q1 = sup

{
q ∈ [q, q] :

∫ q

q

[T ′(q)− c]/T ′(q)dG(q) ≤ 0

}
. (31)

In practice, (31) is straightforward to compute. The reason is as follows. Since the support of

observed purchased quantities is discrete, the observed cumulative distribution function G(q) is

a step function, which implies that the integral in (31) simplifies to a summation.

Thus, to recover q1 and q2 we follow a three-step procedure:

(1) determine q1 as in (31);
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(2) determine q̃ as the (interior) quantity greater than q1 at which T ′(q) equals (in practice, is

closest to) T ′(q) or T ′(q);

(3) given q1 and q̃, use (29) to determine q2.

With straightforward modifications, the same argument would apply even if q1 = q or q2 = q.

Once c, q1, q2, and γ(θ) are identified, we can identify ν ′(·) and θ(·) as shown in the following

lemma.

Lemma 12. Suppose the weakly-convex case applies. The first-order condition (15) can be rewrit-

ten as follows:

(a) when q ∈ (q, q1], we have γ(θ(q)) = 0 and

ν ′(q) =
T ′(q)G(q)

1− c
T ′(q)

θ1G(q1)
1− c

T ′(q1)
exp

{
c

∫ q1

q

log [G(x)]T ′′(x)

[T ′(x)]2
dx

}
; (32)

(b) when q ∈ [q1, q̃), we have γ(θ(q)) < G(q) and

ν ′(q) =
T ′(q) {G(q) [G(q2)−G(q1)− 1] +G(q1)}

G(q2)−G(q1)
G(q2)−G(q1)−1

[
1− c

T ′(q)

]

θ1 {G(q1) [G(q2)−G(q1)− 1] +G(q1)}
G(q2)−G(q1)
G(q2)−G(q1)−1

[
1− c

T ′(q1)

]

· exp

(
− c [G(q2)−G(q1)]

G(q2)−G(q1)− 1

∫ q

q1

log {G(x) [G(q2)−G(q1)− 1] +G(q1)}T ′′(x)

[T ′(x)]2
dx

)
; (33)

(c) when q ∈ [q̃ + ε, q2), we have γ(θ(q)) > G(q) and

ν ′(q) =
T ′(q) {[1−G(q2) +G(q1)]G(q̃ + ε)−G(q1)}

G(q2)−G(q1)
1−G(q2)+G(q1)

[
1− c

T ′(q̃+ε)

]

(θ̃ + εθ) {[1−G(q2) +G(q1)]G(q)−G(q1)}
G(q2)−G(q1)

1−G(q2)+G(q1)

[
1− c

T ′(q)

]

· exp

{
c[G(q2)−G(q1)]

1−G(q2) +G(q1)

∫ q

q̃+ε

log {[1−G(q2) +G(q1)]G(x)−G(q1)}T ′′(x)

[T ′(x)]2

}
(34)

where εθ is such that q̃ + ε = q(θ̃ + εθ), ε, εθ > 0;

(d) q ∈ [q2, q), we have γ(θ(q)) = 1 and

ν ′(q) =
T ′(q) [1−G(q)]

1− c
T ′(q)

θ2 [1−G(q2)]
1− c

T ′(q2)
exp

{
−c
∫ q

q2

log [1−G(x)]T ′′(x)

[T ′(x)]2
dx

}
. (35)

In each case, θ(q) = T ′(q)/ν ′(q) for the relevant ν ′(q).

The argument for the identification of ν ′(·) and θ(·) relies on ν ′(·) and θ(·) being known or
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estimable functions of observables. In turn, this fact also implies that F (θ) and f(θ) are identified

by G(q) and θ(q). Based on Lemma 12, we can also provide useful restatements of the above

conditions and express ν ′(·) and θ(·) as (known) functions of T ′(q), T ′′(q), G(q), c, θ, and q. See

Appendix B for proof and details.

Observe that ν ′(·) and θ(·) are identified up to θ1 and θ2. We now show how we only need

to normalize θ in order to identify (and estimate) θ1 and θ2. To see this, start by normal-

izing θ to one. In practice, the empirical distribution function G(q) is a step function with

steps at q1, . . . , qN in (q, q1]. On each of these intervals G(·) is constant whereas the integral of

T ′′(·)/[T ′(·)]2 is −1/T ′(·). By the above argument, the integral in (32) can be rewritten as the

finite sum of integrals from qi to qi+1 where i = 1, . . . , i1 − 1 and i1 is the index of the observed

quantity qi1 with associated type θi1 . Formally, let

qi1 = max{qi ∈ {q1, . . . , qN} :
i∑

j=1

[T ′(qj)− c]/T ′(qj) Pr(qj) ≤ 0}

where Pr(qj) = G(qj)−G(qj−1). Thus, ν ′(q) in (32) can be rewritten as

ν ′(q) =
T ′(q)G(qi)

1− c
T ′(q)

θi1G(qi1)
1− c

T ′(qi1 )

exp

{
c
∑i1−1

j=i+1
log [G(qj)]

[
1

T ′(qj)
− 1

T ′(qj+1)

]

+c log [G(qi)]

[
1

T ′(q)
− 1

T ′(qi+1)

]}
for q ∈ [qi, qi+1), i = 1, . . . , i1 − 1. In particular, note that G(q1) = Pr(q ≤ q1) = Pr(q = q1) > 0,

so

ν ′(q1) =
T ′(q1)G(q1)

1− c
T ′(q1)

θi1G(qi1)
1− c

T ′(qi1 )

exp

{
c
∑i1−1

j=1
log [G(qj)]

[
1

T ′(qj)
− 1

T ′(qj+1)

]}
.

From the fact that θ1ν
′(q1) = T ′(q1) and that θ = θ1 = 1, we can express θi1 as

θi1 =
G(q1)

1− c
T ′(q1)

G(qi1)
1− c

T ′(qi1 )

exp

{
c
∑i1−1

j=1
log [G(qj)]

[
1

T ′(qj)
− 1

T ′(qj+1)

]}
.

Consider now the interval [q1, q̃i). Since G(·) is in practice a discrete distribution, q̃i is defined

as q̃i = max{q ∈ {q1, . . . , qN} : γ(θ(qi)) ≤ G(q)}. In general, no point in the support of G(·)
satisfies γ = G(q). So, ν ′(q) can be computed exactly over its entire support, that is, over the

intervals [qi, qi+1), i ∈ {i1, . . . , ĩ− 1}, and over the intervals [qi, qi+1), i ∈ {̃i, . . . , N − 1}. In other

words, ε and εθ in (34) can be taken to be zero. (In the knife-edged case in which there exists a

38



point in the support of G(·) such that γ = G(q), note that ν ′(q) can still be computed exactly

but only over the intervals [qi, qi+1), i ∈ {i1, . . . , ĩ− 1}, and [qi, qi+1), i ∈ {̃i+ 1, . . . , N − 1}.) Let

qi2 be the empirical counterpart of q2 (see Appendix C for details). From Appendix B we know

that if q ∈ [q1, q̃) then γ(θ(q)) < G(q) and ν ′(q) can be written as

ν ′(q) =
T ′(q) {G(qi) [G(qi2)−G(qi1)− 1] +G(qi1)}

G(qi2
)−G(qi1

)

G(qi2
)−G(qi1

)−1

[
1− c

T ′(q)

]

θi1 {G(qi1) [G(qi2)−G(qi1)− 1] +G(qi1)}
G(qi2

)−G(qi1
)

G(qi2
)−G(qi1

)−1

[
1− c

T ′(qi1 )

]

· exp

(
− c [G(c)−G(qi1)]

G(qi2)−G(qi1)− 1

∑i−1

j=i1
log {G(qj) [G(qi2)−G(qi1)− 1] +G(qi1)}

[
1

T ′(qj)
− 1

T ′(qj+1)

]
− c [G(qi2)−G(qi1)]

G(qi2)−G(qi1)− 1
log {G(qi) [G(qi2)−G(qi1)− 1] +G(qi1)}

[
1

T ′(qi)
− 1

T ′(q)

])
for q ∈ [qi, qi+1) where i = i1, . . . , ĩ− 1. Note that when q ↑ q̃i with q ∈ [q̃i−1, q̃i) we have

lim
q↑q̃i
{G(q) [G(qi2)−G(qi1)− 1] +G(qi1)} = G(q̃i−1) [G(qi2)−G(qi1)− 1] +G(qi1)

since G(·) is continuous from the right, whereas limq↑q̃i [1− c/T
′(q)] ≈ 0. (This in an approxima-

tion: the limit is exactly zero if there exists a point in the support of G(·) such that γ = G(q).)

So,

lim
q↑q̃i

ν ′(q) ≈ T ′(q̃i)

θi1 {G(qi1) [G(qi2)−G(qi1)− 1] +G(qi1)}
G(qi2

)−G(qi1
)

G(qi2
)−G(qi1

)−1

[
1− c

T ′(qi1 )

]

· exp

(
− c [G(qi2)−G(qi1)]

G(qi2)−G(qi1)− 1

∑ĩ−1

j=i1
log {G(qj) [G(qi2)−G(qi1)− 1] +G(qi1)}

[
1

T ′(qj)
− 1

T ′(qj+1)

])
.

From this, the fact that θ̃iν
′(q̃i) = T ′(q̃i), and the expression for θi1 , we can also identify θ̃i.

Now, from Appendix B when q ∈ [q̃i, qi2) we know that γ(θ(q)) > G(q) and that ν ′(q) in (34)

can alternatively be expressed as

ν ′(q) =
T ′(q) {[1−G(qi2) +G(qi1)]G(q̃i + ε)−G(qi1)}

G(qi2
)−G(qi1

)

1−G(qi2
)+G(qi1

)

[
1− c

T ′(q̃i+ε)

]

(θ̃i + εθ) {[1−G(qi2) +G(qi1)]G(qi)−G(qi1)}
G(qi2

)−G(qi1
)

1−G(qi2
)+G(qi1

)

[
1− c

T ′(q)

]

· exp

{
c[G(qi2)−G(qi1)]

1−G(qi2) +G(qi1)

∑i−1

j=ĩ
log {[1−G(qi2) +G(qi1)]G(qj)−G(qi1)}

[
1

T ′(qj)
− 1

T ′(qj+1)

]
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+
c[G(qi2)−G(qi1)]

1−G(qi2) +G(qi1)
log {[1−G(qi2) +G(qi1)]G(qi)−G(qi1)}

[
1

T ′(qi)
− 1

T ′(q)

]}
(36)

for q ∈ [qi, qi+1) where i = ĩ, . . . , i2 − 1 and i2 is the index of the quantity qi2 corresponding to

q2. Given θi2 = T ′(qi2)/ν
′(qi2), by the above argument we can compute

ν ′(qi2) =
T ′(qi2) {[1−G(qi2) +G(qi1)]G(q̃i)−G(qi1)}

G(qi2
)−G(qi1

)

1−G(qi2
)+G(qi1

)

[
1− c

T ′(q̃i+ε)

]

(θ̃i + εθ) {[1−G(qi2) +G(qi1)]G(qi2)−G(qi1)}
G(qi2

)−G(qi1
)

1−G(qi2
)+G(qi1

)

[
1− c

T ′(qi2 )

]

· exp

{
c[G(qi2)−G(qi1)]

1−G(qi2) +G(qi1)

∑i2−1

j=ĩ
log {[1−G(qi2) +G(qi1)]G(qj)−G(qi1)}

[
1

T ′(qj)
− 1

T ′(qj+1)

]}
and obtain θi2 from θi2 = T ′(qi2)/ν

′(qi2). Lastly, when q ∈ [qi2 , qN) we can show that ν ′(q) can

be rewritten as

ν ′(q) =
T ′(q) [1−G(qi)]

1− c
T ′(q)

θi2 [1−G(qi2)]
1− c

T ′(qi2 )

exp

{
−c
∑i−1

j=i2
log [1−G(qj)]

[
1

T ′(qj)
− 1

T ′(qj+1)

]

−c log [1−G(qi)]

[
1

T ′(qi)
− 1

T ′(q)

]}
for q ∈ [qi, qi+1) where i = i2, . . . , N − 1. Note that when q ↑ qN with q ∈ [qN−1, qN), we have

G(q) = G(qN−1) = Pr(q ≤ qN−1) ∈ (0, 1) whereas limq↑qN [1− c/T ′(q)] = 0, so

lim
q↑qN

ν ′(q) =
T ′(qN) exp

{
−c
∑N−1

j=i2
log [1−G(qj)]

[
1

T ′(qj)
− 1

T ′(qj+1)

]}
θi2 [1−G(qi2)]

1− c
T ′(qi2 )

and from θNν
′(qN) = T ′(qN), θN can be obtained in a straightforward manner.

8.2.2 Highly-Convex Case

Recall that in the highly-convex case, (IR) binds for one or both of the extreme types θ and

θ, and γ(θ) is constant for all types. Consider first the case in which γ(θ) = γ = 1, as in the

standard model. Then, from (26) it follows

T ′(q) ≥ c = T ′(q) (37)
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with equality at q, since F (θ) ≤ 1, f(θ) > 0 by assumption, and θ > 0 by (IA5). Consider now

the case in which γ(θ) = γ = 0. From (26) it follows

T ′(q) ≤ T ′(q) = c (38)

with equality at q, since F (θ) ≥ 0, f(θ) > 0 by assumption, and θ > 0 by (IA5). Consider now the

general case in which γ ∈ (0, 1). By the same argument, (26) implies that T ′(q)−c > 0 > T ′(q)−c,
which yields T ′(q) > c > T ′(q). Rewrite (26) as

T ′(q) = c+
1

θq′(θ)

[γ̂(θ(q))−G(q)]T ′(q)

g(q)

so we can specify an additive nonparametric regression model in which the partial regression

function fR(·) is estimated from the data

T ′(q) = c+ fR

(
[γ̂(θ(q))−G(q)]T ′(q)

g(q)

)
. (39)

Hence, if we regress T ′(q) on a constant and T ′(q)/g(q), the value of the estimated constant

provides an estimate of c. Again, q can be treated as exogenous given that all relevant functions

are deterministic. Recall from (27) we can also identify (and estimate) γ (DICUSS BOUNDARY

CONDITIONS).

Lastly, recall that q̃ denotes the quantity in [q, q] such that γ equals G(q). Formally, the

quantity q̃ is defined as q̃ = inf{q ∈ [q, q] : γ ≤ G(q)}. Once γ is determined, q̃ can be easily

determined from G(q). We summarize these observations in the following lemma.

Lemma 13. Suppose the highly-convex case applies. The estimated constant of a regression of

G(q) on g(q)/T ′(q) provides an estimate of γ whereas the estimated constant of a regression of

T ′(q) on [γ̂(θ(q)) − G(q)]T ′(q)/g(q) provides an estimate of c. The first-order condition (15) is

equivalent to

ν ′(q) =
T ′(q)

θ
exp

{
−
∫ q

q

g(x)

γ −G(x)

[
1− c

T ′(x)

]
dx

}
(40)

when q ∈ [q, q̃), q̃ = inf{q ∈ [q, q] : γ ≤ G(q)}, and to

ν ′(q) =
T ′(q)

(θ̃ + εθ)
exp

{∫ q

q̃+ε

g(x)

G(x)− γ

[
1− c

T ′(x)

]
dx

}
(41)

when q ∈ [q̃ + ε, q), where q̃ + ε = q(θ̃ + εθ) with ε, εθ > 0. In each case, θ(q) = T ′(q)/ν ′(q) for
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the relevant ν ′(q).

As in the weakly-convex case, based on this lemma we can provide useful restatements of

the above conditions so that ν ′(·) and θ(·) can be expressed as known functions of T ′(q), T ′′(q),

G(q), c, θ, q, θ̃, and q̃. See Appendix B for details.

Since G(·) is in practice a discrete distribution, q̃i is defined as q̃i = min{q ∈ {q1, . . . , qN} :

γ ≤ G(qi)}. Then, in general, no point in the support of G(·) satisfies γ = G(qi). So, ν ′(q) can be

computed exactly over its entire support, that is, over the intervals [qi, qi+1), i ∈ {i1, . . . , ĩ− 1},
according to (40) and over the intervals [qi, qi+1), i ∈ {̃i, . . . , N − 1}, according to (41). In other

words, ε and εθ in (41) can be taken to be zero. In the knife-edged case in which there exists a

point in the support of G(·) such that γ = G(q), observe that ν ′(q) can still be computed exactly

but only over the intervals [qi, qi+1), i ∈ {i1, . . . , ĩ− 1}, according to (40) and over the intervals

[qi, qi+1), i ∈ {̃i+ 1, . . . , N − 1}, according to (41).

As before, we manipulate the conditions in Lemma 13 to obtain convenient estimators of the

model’s primitives. We proceed by first normalizing θ to one. Recall that we order the observed

quantities purchased in a market from smallest, q = q1, to largest, q = qN . For any γ > 0, when

q ∈ [q1, q̃i), we know that γ > G(q), so we can express ν ′(q) from (40) as

ν ′(q) =
T ′(q) [γ −G(qi)]

1− c
T ′(q)

γ
1− c

T ′(q1)
exp

{
−c
∑i−1

j=1
log [γ −G(qj)]

[
1

T ′(qj)
− 1

T ′(qj+1)

]

−c log [γ −G(qi)]

[
1

T ′(qi)
− 1

T ′(q)

]}
for q ∈ [qi, qi+1), i = 1, . . . , ĩ− 1. Since

lim
q↑q̃i

[γ −G(q)]
1− c

T ′(q) = lim
q↑q̃i

[γ −G(q̃i−1)]
1− c

T ′(q) ≈ 1

it follows

lim
q↑q̃i

ν ′(q) ≈ T ′(q̃i)

γ
1− c

T ′(q1)
exp

{
−c
∑ĩ−1

j=1
log [γ −G(qj)]

[
1

T ′(qj)
− 1

T ′(qj+1)

]}

and using the fact that θ̃iν
′(q̃i) = T ′(q̃i), we obtain

θ̃i ≈ γ
1− c

T ′(q1) exp

{
c
∑ĩ−1

j=1
log [γ −G(qj)]

[
1

T ′(qj)
− 1

T ′(qj+1)

]}
.
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When q ∈ [q̃i, q] (ignoring for simplicity the knife-edged case in which G(q̃i) = γ) but γ < 1,

we know that γ < G(q) and we can express ν ′(q) from (41) also as

ν ′(q) =
T ′(q)[G(qi)− γ]

1− c
T ′(q)

θ̃i[G(q̃i)− γ]
1− c

T ′(q̃i)
exp

{
−c
∑i−1

j=ĩ
log [G(qj)− γ]

[
1

T ′(qj)
− 1

T ′(qj+1)

]

−c log [G(qi)− γ]

[
1

T ′(qi)
− 1

T ′(q)

]}
with q ∈ [qi, qi+1), i = ĩ, . . . , N − 1 and

ν ′(qN) =
T ′(qN)[G(qN)− γ]

1− c
T ′(qN )

θ̃i[G(q̃i)− γ]
1− c

T ′(q̃i)
exp

{
−c
∑N−1

j=ĩ
log [G(qj)− γ]

[
1

T ′(qj)
− 1

T ′(qj+1)

]}
.

From this, θ = T ′(qN)/ν ′(qN) immediately follows. Now, if γ = 1, then for q ↑ qN with q ∈
[qN−1, qN) we have G(q) = G(qN−1) = Pr(q ≤ qN−1) ∈ (0, 1) whereas limq↑qN [1 − c/T ′(q)] = 0.

Therefore,

lim
q↑qN

ν ′(q) = T ′(qN) exp

{
−c
∑N−1

j=1
log [1−G(qj)]

[
1

T ′(qj)
− 1

T ′(qj+1)

]}
and using the fact that θν ′(qN) = T ′(qN), we obtain

θ = exp

{
c
∑N−1

j=1
log [1−G(qj)]

[
1

T ′(qj)
− 1

T ′(qj+1)

]}
.

Lastly, note that the case in which γ = 0 is just a special case of this with q̃i = q1. From

these derivations, it follows that f(θ) is also straightforwardly identified.

8.3 Nonparametric Estimation

The parameters and functions of the model to be recovered are: ν(·), F (·), c, and u(·). Estimation

involves three steps and is based on GPV and PV. In the first step, we estimate the distribution of

types for which (IR) binds γ(θ), the (constant) marginal cost c, and the distribution of quantity

purchases G(q). Based on the recovered γ(θ), we can determine q(θ) and, by comparison with

q(θ), whether or not budget constraints are likely to matter. In the second step, we estimate the

base marginal utility functions ν ′(q) and u′(·). Different estimators can be obtained depending

on the type of optimal contract identified in the previous step. In the third step, we estimate the
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distribution of consumer types F (θ) based on the sample of pseudo-types derived in the previous

step from the structural relationship θ(q) = T ′(q)/ν ′(q) (local incentive compatibility). We now

turn to discuss each step in more detail. We denote an estimated quantity x by x̂.

Price Schedule. In our data we have direct information on unit prices and quantity purchased

by each consumer (household) in a market (village). Then, the price schedule can be simply

obtained by fitting observed prices on quantities, for instance by least squares,

l̂og(T ) = t̂0 + t̂1 log(q) + t̂2(log(q))2.

The reason the quantity q can be treated as exogenous is that having information on the quantity

purchased by each consumer is equivalent to having information on the price schedule of the seller

(see PV). Also, according to the model, T (q) is a deterministic function. If the fit is good, then

the measurement error that fitting may cause can be considered minimal and, thus, ignored.

Contract Type. By Lemma 9, we can determine whether the price schedule observed in each

market, as constructed above, corresponds to the weakly-convex case or the highly-convex case,

a special case being the standard case with γ(θ) = 1 for all θ. Depending on the case that proves

relevant, we estimate γ(θ) as detailed above.

Quantity Distribution. Denote by N the number of consumers purchasing a positive quantity

and by qi the quantity purchased by consumer i. Note that G(q) can be estimated as an empirical

distribution using a counting process as in PV, where for q ∈ [q, q],

Ĝ(q) =
1

N

N∑
i=1

1(qi ≤ q)

and 1(·) is an indicator function. Since, as argued, Ĝ(q) is a step function, ĝ(q) can also be easily

estimated.9 Note that, as mentioned at the end of Lemmas 12 and 13, alternative estimators

of ν ′(qi) and θ(qi) can be derived that do not require estimation of ĝ(q). See Appendix B for

details.

Base Marginal Utility Function. The estimation of ν ′(qi) and θ(qi) in the weakly-convex

case and in the highly-convex case follows immediately from Lemmas 12 and 13. Given our

homogeneity assumption, at this step we can also recover u′(·).

Type Distribution. Following GPV and PV, given an estimate for ν̂ ′(qi), a sample of pseudo-

9Alternative nonparametric smoothed kernel density/estimator methods are also possible.
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types can be constructed from θ̂i = θ̂(qi) = T ′(qi)/ν̂
′(qi). Then, the density f(θ) can be estimated

nonparametrically as

f̂(θ) =
1

Nh

N∑
i=1

K

(
θ − θ̂i
h

)
for a suitable choice of (symmetric) kernel function K(·) and bandwidth h. Additional details

are provided in Appendix C.

9 Conclusion

We have proposed a model of nonlinear pricing in which consumers have private information

about their taste for a good, their consumption possibilities, and their budgets. In this case

the properties of an optimal allocation under adverse selection can be fundamentally different

from those of an optimal allocation according to the standard nonlinear pricing model, in which

consumers are assumed unconstrained in their purchasing choices. In particular, in our environ-

ment quantity discounts for large volumes can be associated with overprovision of quantity at

low volumes. Depending on the shape of consumers’ reservation utility profile, overproduction

can occur for high types or for low types or for all types of consumers. In these latter two cases,

nonlinear pricing can positively affect the purchasers of the smallest quantities, typically the

poorest consumers.

We have shown that a nonlinear pricing problem in which consumers are budget-constrained

is an instance of one in which consumers are not budget-constrained but their outside option to

trading with a particular seller depends on their private information. We have proved that this

more general model in which reservation utility is type-dependent is nonparametrically identified.

We have also derived nonparametric estimators of the model primitives that can be readily

implemented using publicly available data from conditional cash transfer programs, common in

several developing countries. Hence, this framework provides a useful structure to assess the

impact of asymmetric information, outside options, and budget constraints on consumer and

producer surplus.

A Appendix A

Proof of Lemma 1: (a) The argument is an application of the proofs of Lemma 1 and Lemma
2 in Jullien (2000). We first prove the ‘only if’ part of the claim. Under the assumptions of
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the lemma, there exists a tariff c(q) such that, when faced with it, the consumer chooses to
purchase q(θ) and obtains the utility u(θ). Let t(q) be a tariff that implements the allocation
{u(θ), q(θ), x(θ)}. If the seller offers the consumer the tariff inf{t(q), c(q)}, then it is optimal for
the consumer to participate, choose the quantity x(θ)q(θ) + [1−x(θ)]q(θ), and obtain the utility
max{u(θ), u(θ)} = u(θ). The ‘if part’ of the claim is immediate, as it amounts to excluding
some types receiving their reservation utility, which cannot affect incentives. (b) Consider an
implementable allocation {u(θ), q(θ), x(θ)} and the full participation allocation {u(θ), x(θ)q(θ)+
(1− x(θ))q(θ)}. The welfare levels coincide in the two allocations for a type θ who participates.
If x(θ) = 0, then the seller’s profit from this type under the full participation allocation is
s(θ, q(θ)) ≥ u(θ). So, the full participation allocation weakly dominates the allocation with
exclusion. Therefore, any optimal allocation must include all types.

Weakly-Convex and Highly-Convex Case: Applying the implicit function theorem to (13)
on Θ, it follows

lθ(γ(θ), θ) =
∂l(γ(θ), θ)

∂θ
= −∂σq(γ(θ), θ, q)/∂θ

∂σq(γ(θ), θ, q)/∂q
=

−
sqθ(θ, l(γ(θ), θ)) +

{
f2(θ)−γ′(θ)f(θ)−[F (θ)−γ(θ)]f ′(θ)

f2(θ)

}
vθq(θ, l(γ(θ), θ)) + F (θ)−γ(θ)

f(θ)
vθθq(θ, l(γ(θ), θ))

sqq(θ, l(γ(θ), θ)) + F (θ)−γ(θ)
f(θ)

vθqq(θ, l(γ(θ), θ))
.

Substituting γ(θ) = F (θ) + f(θ) sq(θ,q(θ))
vθq(θ,q(θ))

from (11), we obtain lθ(γ(θ), θ) equals

−
sqθ(θ, l(γ(θ), θ)) +

[
1− γ′(θ)

f(θ)
+ f ′(θ)

f(θ)
· sq(θ,q(θ))
vθq(θ,q(θ))

]
vθq(θ, l(γ(θ), θ))− sq(θ,q(θ))

vθq(θ,q(θ))
vθθq(θ, l(γ(θ), θ))

sqq(θ, l(γ(θ), θ))− sq(θ,q(θ))

vθq(θ,q(θ))
vθqq(θ, l(γ(θ), θ))

.

With sqθ(θ, q) = vθq(θ, q) and sqq(θ, q) = vqq(θ, q)− c′′(q), we can rewrite lθ(γ(θ), θ) as

lθ(γ(θ), θ) = −

[
2− γ′(θ)

f(θ)
+ f ′(θ)

f(θ)
· sq(θ,q(θ))
vθq(θ,q(θ))

]
vθq(θ, l(γ(θ), θ))− sq(θ,q(θ))

vθq(θ,q(θ))
vθθq(θ, l(γ(θ), θ))

vqq(θ, l(γ(θ), θ))− c′′(l(γ(θ), θ))− sq(θ,q(θ))

vθq(θ,q(θ))
vθqq(θ, l(γ(θ), θ))

= −

[(
2− γ′(θ)

f(θ)

)
vθq(θ, q(θ)) + f ′(θ)sq(θ,q(θ))

f(θ)

]
vθq(θ, l(γ(θ), θ))− sq(θ, q(θ))vθθq(θ, l(γ(θ), θ))

vθq(θ, q(θ)) [vqq(θ, l(γ(θ), θ))− c′′(l(γ(θ), θ))]− sq(θ, q(θ))vθqq(θ, l(γ(θ), θ))
.

Finally, substituting q(θ) for l(γ(θ), θ), we obtain lθ(γ(θ), θ) equals

−

[(
2− γ′(θ)

f(θ)

)
vθq(θ, q(θ)) + f ′(θ)sq(θ, q(θ))/f(θ)

]
vθq(θ, q(θ))− sq(θ, q(θ))vθθq(θ, q(θ))

vθq(θ, q(θ)) [vqq(θ, q(θ))− c′′(q(θ))]− sq(θ, q(θ))vθqq(θ, q(θ))
.

Instead, by applying again the implicit function theorem to sq(θ, q) = vq(θ, q) − c′(q) = 0, we
obtain

∂q(θ)

∂θ
= −∂sq(θ, q)/∂θ

∂sq(θ, q)/∂q
= − vθq(θ, q)

vqq(θ, q)− c′′(q)
= − vθq(θ, q(θ))

vqq(θ, q(θ))− c′′(q(θ))
.
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Hence, the weakly-convex case applies if

lθ(γ(θ), θ) =
∂l(γ(θ), θ)

∂θ
≥ ∂q(θ)

∂θ
= q′(θ)

which is satisfied if, and only if,

−

(
2− γ′(θ)

f(θ)

)
vθq(θ, q(θ)) + f ′(θ)sq(θ, q(θ))/f(θ)− sq(θ, q(θ))vθθq(θ, q(θ))/vθq(θ, q(θ))

vθq(θ, q(θ)) [vqq(θ, q(θ))− c′′(q(θ))]− sq(θ, q(θ))vθqq(θ, q(θ))
≥

− 1

vqq(θ, q(θ))− c′′(q(θ))
. (42)

Consider our leading example, with v(θ, q) = θ log(q), I(θ) = I + iθ. By (7),

c(q) = I + iθ exp

{
θν(q)− I − iθ − u

iθ

}
= I + iθ exp

{
−I + iθ + u

iθ

}
q

1
i

so

c′(q) = θ exp

{
−I + iθ + u

iθ

}
q

1−i
i

and

c′′(q) =

(
1− i
i

)
θ exp

{
−I + iθ + u

iθ

}
q

1−2i
i .

Also, by (8)

q(θ) = (ν)−1

(
i log

(
θ

θ

)
+
I + iθ + u

θ

)
= (ν)−1

(
log

[(
θ

θ

)i]
+ log

[
exp

(
I + iθ + u

θ

)])

it follows

q(θ) = exp

(
I + iθ + u

θ

)(
θ

θ

)i
and

c′′(q(θ)) =

(
1− i
i

)
θ exp

[
−2(I + iθ + u)

θ

](
θ

θ

)1−2i

.

Assume that θ is uniformly distributed on [θ, θ], so f(θ) = 1/(θ − θ) and F (θ) = (θ − θ) /(θ −
θ), and that the seller’s marginal cost is constant. Note that vθ(θ, q) = log(q), vθθ(θ, q) = 0,
vθθq(θ, q) = 0, vθq(θ, q) = 1/q, vθqq(θ, q) = −1/q2, vq(θ, q) = θ/q, and vqq(θ, q) = −θ/q2 =
θvθqq(θ, q), so

sq(θ, q) = vq(θ, q)− c′(q) =
θ

q
− c
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and
sq(θ, q)

vθq(θ, q)
=
θν ′(q)− c
ν ′(q)

= θ − c

ν ′(q)
= θ − cq.

Then, since since f ′(θ) = 0, vθθq(·, ·) = 0, and marginal cost is constant, (42) can be rewritten as

−
[
2− (θ − θ)γ′(θ)

]
vθq(θ, q(θ))

vθq(θ, q(θ))vqq(θ, q(θ))− sq(θ, q(θ))vθqq(θ, q(θ))
≥ − 1

vqq(θ, q(θ))− c′′(q(θ))

or, equivalently,[
2− (θ − θ)γ′(θ)

]
1
q(θ)

c
q2(θ)

≥ 1
θ

q2(θ)
+ c′′(q(θ))

⇔
[
2− (θ − θ)γ′(θ)

]
q(θ)

c
≥ q2(θ)

θ + q2(θ)c′′(q(θ))
.

which, substituting the expression for q(θ) and γ′(θ) = 1/(θ − θ), can be rewritten as(
θ
θ

)i
c
≥
i exp

(
I+iθ+u

θ

)(
θ
θ

)2i

θ

or, using the fact that θ > 0 by (IA5), as

1 ≥ ci

θi
exp

(
I + iθ + u

θ

)
θi−1. (43)

Condition (43) is certainly satisfied for c small enough for any given positive i.

Construction of the Auxiliary Tariff when Income is Nonlinear in Type: Suppose the
consumer’s utility function is given by v(θ, q) = θν(q). In this case, the two conditions in (2)
specialize to {

c′(q) = θ(q)ν ′(q)

c(q) = I + i(θ(q)).

From the second expression, it follows c′(q) = i′(θ(q))θ
′
(q) and substituting this latter expression

into the first expression above, it follows

i′(θ(q))θ
′
(q)

θ(q)
= ν ′(q). (44)

Suppose, without loss, that i(θ(q)) = i1θ(q) + i2θ
2
(q) + i3θ

3
(q) + · · · + inθ

n
(q) for some n large

enough. Then, (44) can be rewritten as[
i1

θ(q)
+ 2i2 + 3i3θ(q) + · · ·+ ninθ

n−2
(q)

]
θ
′
(q) = ν ′(q).
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Integrating both sides of this expression from q(θ) to q, we obtain[
i1 log[θ(x)] + 2i2θ(x) +

3

2
i3θ

2
(x) + · · ·+ nin

n− 1
θ
n−1

(x)

]q
q(θ)

= [ν(x)]qq(θ)

which implies

i1 log[θ(q)] + 2i2θ(q) + · · ·+ nin
n− 1

θ
n−1

(q)

−i1 log[θ(q(θ))]− 2i2θ(q(θ))− · · · −
nin
n− 1

θ
n−1

(q(θ)) = ν(q)− ν(q(θ))

or, equivalently, by using q(θ) = (ν)−1
(
u+I(θ)

θ

)
and the fact that θ(q(θ)) = θ,

i1 log[θ(q)] + 2i2θ(q) + · · ·+ nin
n− 1

θ
n−1

(q)

= ν(q)− u+ I(θ)

θ
+ i1 log(θ) + 2i2θ + · · ·+ nin

n− 1
θn−1. (45)

Since

i1 log[θ(q)] ≈ i1 log[θ(q0)] +
i1
[
θ(q)− θ(q0)

]
θ(q0)

− i1
[
θ(q)− θ(q0)

]2
2θ

2
(q0)

+ · · ·

it follows that, for given ν(q), as long as I is large enough and the slope of I(θ) is not too large
or, alternatively, as long as I is not too large and the slope of I(θ) is sufficiently large, then θ(q)
is uniquely defined by (45).

Curvature of the Price Schedule: Recall that the seller’s first-order condition for the optimal
choice of quantity is

σq(γ, θ, q) = vq(θ, q(θ))− c′(q(θ))−
γ(θ)− F (θ)

f(θ)
vθq(θ, q(θ)) = 0

which can be rewritten as

vq(θ, q(θ))−
γ(θ)− F (θ)

f(θ)
vθq(θ, q(θ)) = c′(q(θ))⇔ vq(θ, q(θ))− c′(q(θ))

vθq(θ, q(θ))
− γ(θ)− F (θ)

f(θ)
= 0 (46)

or, equivalently, using the fact that sq(θ, q(θ)) = vq(θ, q(θ))− c′(q(θ)), as

sq(θ, q(θ))

vθq(θ, q(θ))
=
γ(θ)− F (θ)

f(θ)
.
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So, by the implicit function theorem,

q′(θ) =
dq

dθ
=

∂
∂θ

(
sq(θ,q(θ))

vθq(θ,q(θ))

)
− ∂

∂θ

(
γ(θ)−F (θ)

f(θ)

)
− ∂
∂q

(
sq(θ,q(θ))

vθq(θ,q(θ))

) > 0

and

γ′(θ) =
dγ

dθ
=

∂
∂θ

(
sq(θ,q(θ))

vθq(θ,q(θ))

)
+ γ(θ)f ′(θ)

f2(θ)
+ ∂

∂θ

(
F (θ)
f(θ)

)
1

f(θ)

> 0. (47)

Suppose that v(θ, q) = θν(q) and that the seller’s marginal cost is constant. Then, (46) can be
rewritten as [

θ +
F (θ)

f(θ)
− γ(θ)

f(θ)

]
ν ′(q(θ)) = c (48)

which also implies
γ(θ)

f(θ)
= θ +

F (θ)

f(θ)
− c

ν ′(q(θ))
. (49)

Note that, with 0 ≤ γ(θ) ≤ 1, it follows

m(θ) ≡ θ +
F (θ)− γ(θ)

f(θ)
≥ θ − 1− F (θ)

f(θ)
> 0

where the last inequality follows from the fact that

θ − 1− F (θ)

f(θ)
> 0⇔ 1 >

1− F (θ)

θf(θ)
.

To see why [1− F (θ)]/θf(θ) < 1, note that, by contradiction, if [1− F (θ)]/θf(θ) ≥ 1, then

T ′(q)− c
T ′(q)

=
1− F (θ)

θf(θ)
≥ 1

which would imply that at an optimal solution in the standard model, in which γ(θ) = 1 at all
θ’s, c ≤ 0. Hence, if c > 0, then θ − [1− F (θ)]/f(θ) > 0, so m(θ) > 0.

Also, from (46) we obtain

q′(θ) =
dq

dθ
=
m′(θ)

m(θ)

[
− ν

′(q(θ))

ν ′′(q(θ))

]
(50)

so for q(θ) to be increasing in θ (or l(γ, θ) to be increasing in θ for each γ), it must be m′(θ) > 0,
where

m′(θ) =
∂

∂θ

(
θ +

F (θ)− γ(θ)

f(θ)

)
.
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Note that from T ′(q) = θ(q)ν ′(q) it follows that T ′(q) > 0 an, by using (50),

T ′′(q) = θ′(q)ν ′(q) + θ(q)ν ′′(q) =
ν ′(q)

q′(θ)
+ θ(q)ν ′′(q) =

m(θ)

m′(θ)
(−ν ′′(q)) + θν ′′(q). (51)

So,

T ′′(q) ≤ 0⇔ −ν ′′(q)
[
m(θ)

m′(θ)
− θ
]
≤ 0

which is trivially satisfied if ν ′′(q) = 0. If, instead, ν ′′(q) < 0, then

T ′′(q) ≤ 0⇔ m(θ)

m′(θ)
=

θ + F (θ)
f(θ)
− γ(θ)

f(θ)

∂
∂θ

(
θ + F (θ)−γ(θ)

f(θ)

) ≤ θ

so a sufficient condition for T ′′(q) ≤ 0 is

1+
F (θ)

θf(θ)
≤ ∂

∂θ

(
θ +

F (θ)− γ(θ)

f(θ)

)
= 1+

∂

∂θ

(
F (θ)− γ(θ)

f(θ)

)
≤ 1+

∂

∂θ

(
F (θ)

f(θ)

)
+min

{
0,
f ′(θ)

f 2(θ)

}
since 0 ≤ γ(θ) ≤ 1. Similarly, since γ(θ) ≤ 1, m(θ) > 0 and m′(θ) > 0,

T ′′(q) = −ν ′′(q)

 θ + F (θ)−γ(θ)
f(θ)

∂
∂θ

(
θ + F (θ)−γ(θ)

f(θ)

) − θ
 ≥ −ν ′′(q)

 θ − 1−F (θ)
f(θ)

∂
∂θ

(
θ + F (θ)−γ(θ)

f(θ)

) − θ


so a sufficient condition for T ′′(q) ≥ 0 is

−ν ′′(q)

 θ − 1−F (θ)
f(θ)

∂
∂θ

(
θ + F (θ)−γ(θ)

f(θ)

) − θ
 ≥ 0

and, if ν ′′(q) < 0, a sufficient condition for T ′′(q) ≥ 0 is

θ − 1− F (θ)

f(θ)
≥ θ

[
∂

∂θ

(
θ +

F (θ)− γ(θ)

f(θ)

)]
⇔ −1− F (θ)

θf(θ)
≥ ∂

∂θ

(
F (θ)− γ(θ)

f(θ)

)
. (52)

Lastly, note that from (48) it follows

T ′′(q) = −ν ′′(q)

 θ + F (θ)−γ(θ)
f(θ)

∂
∂θ

(
θ + F (θ)−γ(θ)

f(θ)

) − θ
 =

 −ν′′(q)c
ν′(q)

∂
∂θ

(
θ + F (θ)−γ(θ)

f(θ)

) − θ (−ν ′′(q))


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so T ′′(q) ≤ 0 if, and only if,

c

θ

(
−ν

′′(q)

ν ′(q)

)
≤ (−ν ′′(q)) ∂

∂θ

(
θ +

F (θ)− γ(θ)

f(θ)

)
= (−ν ′′(q))

[
1 +

∂

∂θ

(
F (θ)− γ(θ)

f(θ)

)]
. (53)

Now, observe that (47) implies

γ′(θ)

f(θ)
=

∂

∂θ

(
sq(θ, q(θ))

vθq(θ, q(θ))

)
+
γ(θ)f ′(θ)

f 2(θ)
+
∂

∂θ

(
F (θ)

f(θ)

)
= 1− ∂

∂θ

(
c

ν ′(q)

)
+
γ(θ)f ′(θ)

f 2(θ)
+
∂

∂θ

(
F (θ)

f(θ)

)
so when ν ′′(q) < 0, (53) can be rewritten as

c

ν ′(q)
≤ θ

[
1 +

∂

∂θ

(
F (θ)− γ(θ)

f(θ)

)]
= θ

[
1 +

∂

∂θ

(
F (θ)

f(θ)

)
− γ′(θ)

f(θ)
+
γ(θ)f ′(θ)

f 2(θ)

]
or, equivalently, using (47) and (49),

c

ν ′(q)
≤ θ

{
1 +

∂

∂θ

(
F (θ)

f(θ)

)
−
[
1− ∂

∂θ

(
c

ν ′(q)

)
+
γ(θ)f ′(θ)

f 2(θ)
+

∂

∂θ

(
F (θ)

f(θ)

)]
+
γ(θ)f ′(θ)

f 2(θ)

}
= θ

[
∂

∂θ

(
c

ν ′(q)

)
− γ(θ)f ′(θ)

f 2(θ)
+
γ(θ)f ′(θ)

f 2(θ)

]
= θ

[
∂

∂θ

(
c

ν ′(q)

)]
.

From this we can conclude that when ν ′′(q) < 0, then T ′′(q) ≥ 0 if, and only if,

c

θν ′(q)
≤ ∂

∂θ

(
c

ν ′(q)

)
.

Lemma 14. Assume that the seller’s marginal cost is constant and v(θ, q) = θν(q). The price
schedule T (q) exhibits quantity discounts if ν ′′(q) ≤ 0 and

F (θ)

θf(θ)
≤ ∂

∂θ

(
F (θ)

f(θ)

)
+ min

{
0,
f ′(θ)

f 2(θ)

}
. (54)

In general, when ν ′′(q) < 0 the price schedule T (q) exhibits quantity discounts if, and only if,

c

θν ′(q)
≤ ∂

∂θ

(
c

ν ′(q)

)
. (55)

To understand the restriction under (54), assume that θ is uniformly distributed on [θ, θ], so
f(θ) = 1/(θ − θ) and F (θ) = (θ − θ) /(θ − θ). Then, (54) is

(θ − θ)(θ − θ)
θ(θ − θ)

≤ ∂

∂θ

(
(θ − θ)(θ − θ)

(θ − θ)

)
⇔ 0 ≤ θ

θ

which is certainly satisfied when θ > 0, as we assume.
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Note that the curvature of the price schedule formally reflects the extent to which the price
schedule displays ‘bulk discounting’, that is, unit prices declining in quantity. To see this, observe
that, by definition, the unit price p(q) is given by p(q) = T (q)/q, so unit prices decline in quantity
if, and only if,

p′(q) =
T ′(q)q − T (q)

q2
≤ 0⇔ T ′(q)q ≤ T (q).

Observe now that if a function f(x) is concave, then at any point (x2, f(x2)), f(x) ≤ f ′(x2)(x−
x2) + f(x2), where y(x) = f ′(x2)(x − x2) + f(x2) is the equation of the tangent line to f(x)
at x = x2. This differential characterization of concavity requires continuous differentiability
of f(·) (see Theorem M.C.1 in Mas-Colell, Whinston, and Green (1995)). Now, the condition
f(x) ≤ f ′(x2)(x− x2) + f(x2) at x = 0 can be rewritten as

f ′(x2)x2 ≤ f(x2)− f(0) ≤ f(x2)

where the last inequality holds if f(0) ≥ 0. So, if f is concave and f(0) ≥ 0, then f ′(x2)x2 ≤ f(x2)
and f(x2)/x2 is declining in x2. Interpret f(·) as T (·) and note that, without loss, we can rule
out positive transfers from the consumer to the seller (we argued that such transfers can only
occur between the seller and consumer types that do not trade, but in this case such transfers are
not optimal for the seller). Thus, these observations immediately imply that if T (·) is concave,
then unit prices decline in quantity.

B Appendix B

Proof of Lemma 12: From (26), g(q) = f(θ)/q′(θ) = f(θ)θ′(q), and θ(q) = T ′(q)/ν ′(q), it
follows

T ′(q) = c+
[γ(θ(q))− F (θ(q))]T ′(q)

θ(q)f(θ(q))
= c+

θ′(q)[γ(θ(q))−G(q)]v′(q)

g(q)

which implies

θ′(q)v′(q) =
g(q) [T ′(q)− c]
γ(θ(q))−G(q)

. (56)

Differentiating T ′(q) = θ(q)ν ′(q) with respect to q, we obtain

T ′′(q) = θ′(q)ν ′(q) + θ(q)ν ′′(q)⇔ θ′(q)ν ′(q) = T ′′(q)− θ(q)ν ′′(q).

Substituting the resulting expression for θ′(q)ν ′(q) in (56), it follows

θ(q)ν ′′(q) = T ′′(q)− g(q) [T ′(q)− c]
γ(θ(q))−G(q)

.
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By dividing the left-hand side of the above equality by θ(q)ν ′(q) and the right-hand side by T ′(q)
(recall that θ(q)ν ′(q) = T ′(q)), we obtain

ν ′′(q)

ν ′(q)
=
T ′′(q)

T ′(q)
− g(q)

γ(θ(q))−G(q)

[
1− c

T ′(q)

]
. (57)

By integrating this expression from q > q to q1, it follows

log

[
ν ′(q1)

ν ′(q)

]
= log

[
T ′(q1)

T ′(q)

]
−
∫ q1

q

g(x)

γ(θ(x))−G(x)

[
1− c

T ′(x)

]
dx.

Taking the exponential of this last expression and, then, dividing the left-hand side of it by
θ1ν
′(q1) and the right-hand side by T ′(q1) (recall that θ1ν

′(q1) = T ′(q1)), it follows

1

θ1ν ′(q)
=

1

T ′(q)
exp

{
−
∫ q1

q

g(x)

γ(θ(x))−G(x)

[
1− c

T ′(x)

]
dx

}
or, equivalently,

ν ′(q) =
T ′(q)

θ1

exp

{
−
∫ q1

q

g(x)

G(x)

[
1− c

T ′(x)

]
dx

}
since γ(θ(x)) = 0 for any q ≤ q1. Now, integrating (57) from q2 to q < q, it follows

log

[
ν ′(q)

ν ′(q2)

]
= log

[
T ′(q)

T ′(q2)

]
−
∫ q

q2

g(x)

γ(θ(x))−G(x)

[
1− c

T ′(x)

]
dx.

Taking the exponential of both sides of this latter equality and, then, multiplying the left-hand
side of it by θ2ν

′(q2) and the right-hand side by T ′(q2), we obtain

ν ′(q) =
T ′(q)

θ2

exp

{
−
∫ q

q2

g(x)

1−G(x)

[
1− c

T ′(x)

]
dx

}
since γ(θ(x)) = 1 for any q ≥ q2. Similarly, integrating (57) from q1 to q < q̃, we obtain

log

[
ν ′(q)

ν ′(q1)

]
= log

[
T ′(q)

T ′(q1)

]
−
∫ q

q1

g(x)

γ(θ(x))−G(x)

[
1− c

T ′(x)

]
dx.

Taking the exponential of this last expression, multiplying the left-hand side of the above by
θ1ν
′(q1) and the right-hand side by T ′(q1), we obtain

ν ′(q) =
T ′(q)

θ1

exp

{
−
∫ q

q1

g(x)

γ(θ(x))−G(x)

[
1− c

T ′(x)

]
dx

}
.
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Finally, integrating (57) from q > q̃ to q2, it follows

log

[
ν ′(q2)

ν ′(q)

]
= log

[
T ′(q2)

T ′(q)

]
−
∫ q2

q

g(x)

γ(θ(x))−G(x)

[
1− c

T ′(x)

]
dx.

Then, taking the exponential of this last expression, dividing the left-hand side of it by θ2ν
′(q2)

and the right-hand side by T ′(q2), we obtain

1

θ2ν ′(q)
=

1

T ′(q)
exp

{
−
∫ q2

q

g(x)

γ(θ(x))−G(x)

[
1− c

T ′(x)

]
dx

}
or, equivalently,

ν ′(q) =
T ′(q)

θ2

exp

{∫ q2

q

g(x)

γ(θ(x))−G(x)

[
1− c

T ′(x)

]
dx

}
.

Proof of Lemma 13: As stated in the main text, we only need to prove the second part of
the result, related to the identifiability of ν ′(q) and θ(q) and, thus, f(θ). Repeat the argument
in the proof of Lemma 12 until expression (57) is derived. Integrating this expression from q to
q < q̃, it follows

log

[
ν ′(q)

ν ′(q)

]
= log

[
T ′(q)

T ′(q)

]
−
∫ q

q

g(x)

γ −G(x)

[
1− c

T ′(x)

]
dx.

Taking the exponential of both sides of this equality, and then multiplying the resulting left-hand
side by θν ′(q) and the resulting right-hand side by T ′(q), we obtain

ν ′(q) =
T ′(q)

θ
exp

{
−
∫ q

q

g(x)

γ −G(x)

[
1− c

T ′(x)

]
dx

}
.

Similarly, integrating (57) from q̃ + ε to q with q̃ + ε = q(θ̃ + εθ), where ε, εθ > 0, it follows

log

[
ν ′(q)

ν ′(q̃ + ε)

]
= log

[
T ′(q)

T ′(q̃ + ε)

]
+

∫ q

q̃+ε

g(x)

G(x)− γ

[
1− c

T ′(x)

]
dx.

Again, taking the exponential of the above expression, and then dividing the resulting left-hand
side by (θ̃ + εθ)ν

′(q̃ + ε) and the resulting right-hand side by T ′(q̃ + ε), we obtain

ν ′(q) =
T ′(q)

(θ̃ + εθ)
exp

{∫ q

q̃+ε

g(x)

G(x)− γ

[
1− c

T ′(x)

]
dx

}
.

Alternative Estimators of Base Marginal Utility: Consider first the weakly-convex case.
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When q ∈ (q, q1) we can show that

ν ′(q) =
T ′(q)G(q)

1− c
T ′(q)

θ1G(q1)
1− c

T ′(q1)
exp

{
c

∫ q1

q

log [G(x)]T ′′(x)

[T ′(x)]2
dx

}
.

When q ∈ (q2, q) we can show that

ν ′(q) =
T ′(q) [1−G(q)]

1− c
T ′(q)

θ2 [1−G(q2)]
1− c

T ′(q2)
exp

{
−c
∫ q

q2

log [1−G(x)]T ′′(x)

[T ′(x)]2
dx

}
.

When q ∈ [q1, q2] such that γ(θ(q)) > G(q) or, equivalently, G(q) > G(q1)/[1−G(q2) +G(q1)],

ν ′(q) =
T ′(q) {G(q2) [1−G(q2) +G(q1)]−G(q1)}

G(q2)−G(q1)
1−G(q2)+G(q1)

[
1− c

T ′(q2)

]

θ2 {G(q) [1−G(q2) +G(q1)]−G(q1)}
G(q2)−G(q1)

1−G(q2)+G(q1)

[
1− c

T ′(q)

]

· exp

(
− c [G(q2)−G(q1)]

1−G(q2) +G(q1)

∫ q2

q

log {G(x) [1−G(q2) +G(q1)]−G(q1)}T ′′(x)

[T ′(x)]2
dx

)
.

For all q ∈ [q1, q2] such that γ(θ(q)) < G(q) or, equivalently, G(q) < G(q1)/[1−G(q2) +G(q1)],

ν ′(q) =
T ′(q) {G(q) [G(q2)−G(q1)− 1] +G(q1)}

G(q2)−G(q1)
G(q2)−G(q1)−1

[
1− c

T ′(q)

]

θ1 {G(q1) [G(q2)−G(q1)− 1] +G(q1)}
G(q2)−G(q1)
G(q2)−G(q1)−1

[
1− c

T ′(q1)

]

· exp

(
− c [G(q2)−G(q1)]

G(q2)−G(q1)− 1

∫ q

q1

log {G(x) [G(q2)−G(q1)− 1] +G(q1)}T ′′(x)

[T ′(x)]2
dx

)
.

Recall that, for q ∈ [q1, q2], γ(q) = [G(q)−G(q1)]/[G(q2)−G(q1)], so

γ(q) =
G(q)−G(q1)

G(q2)−G(q1)
≷ G(q)⇔ G(q) ≷

G(q1)

1−G(q2) +G(q1)
.

First, note that for all q such that γ(q) > G(q) or G(q) > G(q1)/[1− G(q2) + G(q1)], εθ is such

that q̃ + ε = q(θ̃ + εθ), ε, εθ > 0,

ν ′(q) =
T ′(q)

(θ̃ + εθ)
exp

{
−
∫ q

q̃+ε

g(x)
G(x)−G(q1)
G(q2)−G(q1)

−G(x)

[
1− c

T ′(x)

]
dx

}

=
T ′(q)

(θ̃ + εθ)
exp

{
− [G(q2)−G(q1)]

1−G(q2) +G(q1)

∫ q

q̃+ε

[1−G(q2) +G(q1)]g(x)

[1−G(q2) +G(q1)]G(x)−G(q1)
dx

}
· exp

{
G(q2)−G(q1)

1−G(q2) +G(q1)

∫ q

q̃+ε

[1−G(q2) +G(q1)]g(x)

[1−G(q2) +G(q1)]G(x)−G(q1)
· c

T ′(x)
dx

}
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or, equivalently

ν ′(q) =
T ′(q)

(θ̃ + εθ)
exp

{
− [G(q2)−G(q1)]

[1−G(q2) +G(q1)]
[log {[1−G(q2) +G(q1)]G(x)−G(q1)}]qq̃+ε

}
· exp

{
c[G(q2)−G(q1)]

1−G(q2) +G(q1)

[
log {[1−G(q2) +G(q1)]G(x)−G(q1)}

T ′(x)

]q
q̃+ε

}

· exp

{
c[G(q2)−G(q1)]

1−G(q2) +G(q1)

∫ q

q̃+ε

log {[1−G(q2) +G(q1)]G(x)−G(q1)}T ′′(x)

[T ′(x)]2

}
or, equivalently

ν ′(q) =
T ′(q)

(θ̃ + εθ)
· {[1−G(q2) +G(q1)]G(q)−G(q1)}−

G(q2)−G(q1)
[1−G(q2)+G(q1)]

{[1−G(q2) +G(q1)]G(q̃ + ε)−G(q1)}−
G(q2)−G(q1)

[1−G(q2)+G(q1)]

· exp

{
c[G(q2)−G(q1)]

[1−G(q2) +G(q1)]

[
log
(
{[1−G(q2) +G(q1)]G(x)−G(q1)}

1
T ′(x)

)]q
q̃+ε

}
· exp

{
c[G(q2)−G(q1)]

[1−G(q2) +G(q1)]

∫ q

q̃+ε

log {[1−G(q2) +G(q1)]G(x)−G(q1)}T ′′(x)

[T ′(x)]2

}
or, equivalently

ν ′(q) =
T ′(q)

(θ̃ + εθ)
· {[1−G(q2) +G(q1)]G(q)−G(q1)}−

G(q2)−G(q1)
1−G(q2)+G(q1)

{[1−G(q2) +G(q1)]G(q̃ + ε)−G(q1)}−
G(q2)−G(q1)

1−G(q2)+G(q1)

· {[1−G(q2) +G(q1)]G(q)−G(q1)}
c[G(q2)−G(q1)]

T ′(q)[1−G(q2)+G(q1)]

{[1−G(q2) +G(q1)]G(q̃ + ε)−G(q1)}
c[G(q2)−G(q1)]

T ′(q̃+ε)[1−G(q2)+G(q1)]

· exp

{
c[G(q2)−G(q1)]

[1−G(q2) +G(q1)]

∫ q

q̃+ε

log {[1−G(q2) +G(q1)]G(x)−G(q1)}T ′′(x)

[T ′(x)]2

}
or, equivalently

ν ′(q) =
T ′(q) {[1−G(q2) +G(q1)]G(q)−G(q1)}

G(q2)−G(q1)
1−G(q2)+G(q1)

[
c

T ′(q)−1
]

(θ̃ + εθ) {[1−G(q2) +G(q1)]G(q̃ + ε)−G(q1)}
G(q2)−G(q1)

1−G(q2)+G(q1)

[
c

T ′(q̃+ε)−1
]

· exp

{
c[G(q2)−G(q1)]

1−G(q2) +G(q1)

∫ q

q̃+ε

log {[1−G(q2) +G(q1)]G(x)−G(q1)}T ′′(x)

[T ′(x)]2

}
.

Consider now the highly-convex case. For all q and γ > G(q), with q ∈ [q, q̃) it follows

ν ′(q) =
T ′(q) [γ −G(q)]

1− c
T ′(q)

θγ
1− c

T ′(q)
exp

{
−c
∫ q

q

log [γ −G(x)]T ′′(x)

[T ′(x)]2
dx

}
.
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For quantities in [q̃ + ε, q), we have G(x) > γ and, with εθ is such that q̃ + ε = q(θ̃ + εθ), ε,
εθ > 0, that

ν ′(q) =
T ′(q)

(θ̃ + εθ)
exp

{
−
∫ q

q̃+ε

g(x)

γ −G(x)

[
1− c

T ′(x)

]
dx

}
or, equivalently,

ν ′(q) =
T ′(q)

(θ̃ + εθ)
exp

{
[log[G(x)− γ]]qq̃+ε

}
exp

{
−c
[

log[G(x)− γ]

T ′(x)

]q
q̃+ε

· −c
∫ q

q̃+ε

log[G(x)− γ]T ′′(x)

[T ′(x)]2
dx

}
or, equivalently,

ν ′(q) =
T ′(q)

(θ̃ + εθ)

[G(q)− γ]
1− c

T ′(q)

[G(q̃ + ε)− γ]
1− c

T ′(q̃+ε)
exp

{
−c
∫ q

q̃+ε

log[G(x)− γ]T ′′(x)

[T ′(x)]2
dx

}
.

In each case, the corresponding expression for θ(q) is obtained from θ(q) = T ′(q)/ν ′(q).

C Appendix C: Nonparametric Estimation

We start by constructing the price schedule in each village (municipality) with at least 200
observations on quantity consumed of rice.

Price Schedule. In our data we have direct information on unit prices and quantities purchased
by each consumer (household) in each market (village). Then, the price schedule can be simply
obtained by fitting, for instance by least squares, observed household expenditures, T (q), on
observed quantities, where T (q) = p(q)q, p(q) denotes the unit value or observed price for
quantity q, and q the observed quantity. (We restrict attention to quantities between 0 and
3 kilos consumed per week and sold at a (median) price per unit not higher than 12 pesos,
approximately one dollar (that is, 0.912 = (0.0760 · 12) dollars).) We consider six different
specifications: (1) T (q) = t0 + t1q+ t2q

2; (2) log(T (q)) = t0 + t1 log q+ t2(log q)2; (3) log(T (q)) =
t0 + t1 log q + t2(log q)2 + t3q; (4) log(T (q)) = t0 + t1 log(q); (5) T (q) = t0 + t1 log(q); and (6)
T (q) = log(t0 + t1q). The reason the quantity q in all these specifications can be treated as
exogenous is that having information on the quantity purchased by each consumer is equivalent
to having information on the price schedule of the seller. Also, according to the model, T (q) is
a deterministic function. If the fit is good, then the measurement error fitting may cause can be
considered minimal and, thus, ignored.

For simplicity, we omit here the notation for the fact that the price schedule is estimated.
Note that for the first specification, Specification 1,

T ′(q) = t1 + 2t2q
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and T ′′(q) = 2t2. For the second specification, Specification 2,

T (q) = exp{t0 + t1 log q + t2(log q)2}

so

T ′(q) = exp{t0 + t1 log q + t2(log q)2}
(
t1
q

+
2t2 log q

q

)
= T (q)

(
t1 + 2t2 log q

q

)
and

T ′′(q) = T (q) · (t1 + 2t2 log q)(t1 + 2t2 log q − 1) + 2t2
q2

.

For the third specification, Specification 3,

T (q) = exp{t0 + t1 log q + t2(log q)2 + t3q}

so

T ′(q) = exp{t0 + t1 log q + t2(log q)2 + t3q}
(
t1
q

+
2t2 log q

q
+ t3

)
= T (q)

(
t1 + 2t2 log q

q
+ t3

)
and

T ′′(q) = T (q)

[
(t1 + 2t2 log q + t3q)(t1 + 2t2 log q + t3q − 1) + 2t2 + t3q

q2

]
.

For the fourth specification, Specification 4, we consider

log(T (q)) = t0 + t1 log(q)

or T (q) = exp{t0 + t1 log(q)} with

T ′(q) = exp{t0 + t1 log(q)}t1
q

= T (q) · t1
q

and

T ′′(q) = T ′(q) · t1
q

+ T (q) · −t1
q2

= T (q) · t1(t1 − 1)

q2
.

For the fifth specification, Specification 5, we consider

T (q) = t0 + t1 log(q)

with T ′(q) = t1/q and T ′′(q) = −t1/q2. Finally, for the sixth Specification 6, we consider

T (q) = log(t0 + t1q)

with T ′(q) = t1/(t0 + t1q) and T ′′(q) = −t21/(t0 + t1q)
2.
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C.1 Standard Model

Recall that in this case γ(θ) = 1 for all θ, where γ(θ) is the multiplier associated with the
participation constraint/budget constraint of type θ. The standard model’s primitives are
{ν(q), F (θ), c}, where ν(q) denotes the ‘base’ utility function of the consumer (recall that v(θ, q) =
θν(q)), F (θ) denotes the cumulative distribution function of types, and c the seller’s marginal
cost, which we assume constant. From the necessary (and sufficient) conditions for optimality,
that is,

T ′(q)− c
T ′(q)

=
1− F (θ)

θf(θ)
(58)

it follows that T ′(q) = c, since F (θ) = 1. So c is identified by the price of the largest quantity
observed purchased in each village. Next, using integration by parts and by straightforward
algebraic manipulations of (58), it also follows

ν ′(q) =
T ′(q)

θ
exp

{
−
∫ q

q

g(x)

1−G(x)

[
1− c

T ′(x)

]
dx

}

and, through further manipulation,

ν ′(q) =
T ′(q) [1−G(q)]

1− c
T ′(q)

θ
exp

{
−c
∫ q

q

log [1−G(x)]T ′′(x)

[T ′(x)]2
dx

}
. (59)

Note that ν ′(·) is a known function of observables, known, or estimable functions (T ′(q), T ′′(q),
G(q), c, θ, and q). Then, types can be generated from the condition for local incentive compatibil-
ity, θ = T ′(q)/ν ′(q), with ν ′(q) computed as in (59). The density f(θ) can be nonparametrically
estimated from this pseudo-sample of types. Correspondingly, to estimate {ν(q), f(θ), c} we
proceed in a series of steps.

C.1.1 Estimation of Primitives

To recover the model’s primitives, we proceed according to the following seven steps.

Step 1. Set θ = 1, since it is not identified.

Step 2. Compute G(qi), T
′(qi), and T ′′(qi), i = 1, . . . , N from data on quantity purchases

and prices (unit values) in each village. In particular,

Ĝ(q) =
1

N

N∑
i=1

1(qi ≤ q)

where for q ∈ [q, q] and 1(·) is an indicator function.

Step 3. Recover c as
ĉ = T ′(q)

where q = maxi{qi} = max{q1, . . . , qN} from the fact that q = q(θ) and [T ′(q) − c]/T ′(q) =
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[1− F (θ)]/θf(θ).

Step 4. Let q = mini{qi} = min{q1, . . . , qN}. Note that because the empirical distribution
function of quantity purchases is a step function with steps at q1 < · · · < qN , the integral from
(59) can be rewritten as the finite sum of integrals from qi to qi+1, i = 1, . . . , N − 1. (See PV
(2010) on this.) On each of these intervals log [1−G(·)] is constant whereas the primitive of
T ′′(·)/[T ′(·)]2 is −1/T ′(·). Let q ∈ [q, q). We compute

ν̂ ′(q) = T ′(q) [1−G(qi)]
1− ĉ

T ′(q) exp

{
−ĉ

i−1∑
j=1

log [1−G(qj)]

[
1

T ′(qj)
− 1

T ′(qj+1)

]

−ĉ log [1−G(qi)]

[
1

T ′(qi)
− 1

T ′(q)

]}
(60)

with q ∈ [qi, qi+1), i = 1, . . . , N − 1, q1 = q, and qN = q. When i = 1, this expression reduces to

ν̂ ′(q1) = T ′(q1) [1−G(q1)]
1− ĉ

T ′(q1) .

When qN = q, compute marginal utility as

lim
q↑qN

ν̂ ′(q) = T ′(qN) [1−G(qN−1)]
1− ĉ

T ′(qN ) exp

{
−ĉ

N−1∑
j=1

log [1−G(qj)]

[
1

T ′(qj)
− 1

T ′(qj+1)

]}
.

Step 5. Compute θi, i = 1, . . . , N , as

θ̂i = T ′(qi)/ν̂ ′(qi).

Note that we obtain θ̂N−1 = θ̂N .

Step 6. Compute

f̂h(θ) =
1

N

N∑
i=1

Kh

(
θ − θ̂i
h

)
=

1

Nh

N∑
i=1

K

(
θ − θ̂i
h

)

i = 1, . . . , N − 1, for a suitable choice of (symmetric) kernel function K(·) and bandwidth h
(Kh(x) = 1/hK (x/h) is a scaled kernel). (Observe that we do not need to compute this step in
Fortran, given that in the calculations to follow we just rely on F (θ), which we know satisfies
F (θ) = G(q).)

Step 7. Compute consumer surplus under nonlinear pricing as CSnp(q) = θ(q)ν(q) − T (q),
that is,

CSnp =

∫ q

q

CSnp(x)dG(x) =

∫ q

q

[θ(x)ν(x)− T (x)]dG(x).

Recall that at the optimum the participation constraint of the lowest type must bind. We also
maintain that u = 0. So, θν(q) − T (q) = 0 and, with θ normalized at one, it follows that
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ν(q) = T (q). Hence,

ν(q) = ν(q) +

∫ q

q

ν ′(x)dx = T (q) +

∫ q

q

ν ′(x)dx.

Using the fact that all relevant variables are discrete, we compute for i = 1,

ν̂(q1) = T (q) + ν̂(q1) = T (q) + q1ν̂ ′(q1)

and for i > 1,

ν̂(qi) = T (q) + q1ν̂ ′(q1) +
i−1∑
j=1

(qj+1 − qj)ν̂ ′(qj+1). (61)

Specifically, note that

ν̂(q2) = T (q) + q1ν̂ ′(q1) +
1∑
j=1

(qj+1 − qj)ν̂ ′(qj+1) = T (q) + q1ν̂ ′(q1) + (q2 − q1)ν̂ ′(q2)

= ν̂(q1) + (q2 − q1)ν̂ ′(q2)

and

ν̂(q3) = T (q) + q1ν̂ ′(q1) +
2∑
j=1

(qj+1 − qj)ν̂ ′(qj+1)

= T (q) + q1ν̂ ′(q1) + (q2 − q1)ν̂ ′(q2) + (q3 − q2)ν̂ ′(q3) = ν̂(q2) + (q3 − q2)ν̂ ′(q3).

Therefore, for i = 1, we obtain
ν̂(q1) = T (q) + q1ν̂ ′(q1)

and for i > 1, we obtain
ν̂(qi) = ν̂(qi−1) + (qi − qi−1)ν̂ ′(qi).

We compute consumer surplus as

ĈSnp =
N∑
i=1

[θ̂(qi)ν̂(qi)− T (qi)]rq(qi)

where rq(q1) = G(q1) and, for i = 1, . . . , N−1, rq(qi+1) = G(qi+1)−G(qi). Similarly, we compute
producer surplus as

P̂Snp =
N∑
i=1

[T (qi)− cqi] rq(qi)

given our maintained assumption that the seller’s marginal cost is constant.
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C.1.2 Counterfactual Experiment: Linear Pricing Outcomes

Here we compare consumer and producer surplus under standard nonlinear pricing and under
(monopoly) linear pricing. To this purpose, we need to compute the seller’s linear price, the
corresponding individual quantity demanded by each type, and the aggregate quantity demanded
by all types. We start by computing the quantity q(pm, θ) demanded by a consumer of type θ as
a function of the linear monopoly price pm,

θν ′(q) = pm ⇒ q = q(pm, θ) = (ν ′)
−1
(pm
θ

)
. (62)

Let Q(pm) =
∫ θ
θ
q(pm, x)f(x)dx be the corresponding aggregate quantity demanded at price pm.

Then, pm solves the problem:
max
pm

[(pm − c)Q(pm)]

with F.O.C. for the optimal choice of pm given by

Q(pm) + (pm − c)Q′(pm) = 0. (63)

In particular,
pm − c
pm

= − Q(pm)

pmQ′(pm)
= − 1

|εQpm|
where εQpm is the price elasticisty of aggregate demand. Using the definition of Q(pm) and (62),
it follows

Q′(pm) =
∂Q(pm)

∂pm
=

∫ θ

θ

∂q(pm, x)

∂pm
f(x)dx =

∫ θ

θ

f(x)dx

ν ′′(q(pm, x))x

where the last equality in the above follows by applying the implicit function theorem to (62).
Note that

− Q(pm)

pmQ′(pm)
=

∫ θ
θ

(ν ′)−1 (pm
x

)
f(x)dx

θ
∫ θ
θ

f(x)dx
(−ν′′(q(pm,x)))x

≥ 1− F (θ)

θf(θ)

if, and only if, ∫ θ

θ

(ν ′)
−1
(pm
x

)
f(x)dx ≥ 1− F (θ)

f(θ)

∫ θ

θ

f(x)dx

(−ν ′′(q(pm, x)))x

and at θ this becomes∫ θ

θ

[
f(θ) (ν ′)

−1
(pm
x

)
− 1

(−ν ′′(q(pm, x)))x

]
f(x)dx ≥ 0.

Recall our normalization θ = 1. Then the marginal price price charged to the lowest type is
smaller than the monopoly price if f(θ) is large enough.
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Hence, consumer surplus under linear pricing is given by

CSlp =

∫ θ

θ

CSlp(x)f(x)dx =

∫ θ

θ

[xν(q(pm, x))− pmq(pm, x)] f(x)dx

and producer surplus by

PSlp = (pm − c)Q(pm) = (pm − c)
∫ θ

θ

q(pm, x)f(x)dx.

In practice, we proceed as follows:

(a) Determine a grid of values for pm and denote it by pm = (pm1, . . . , pmP );

(b) For each θi, determine the quantity demanded by each type for each possible price in pm.

Denote the array of such quantities by q(pm, θ̂i), where

q(pm, θ̂i) = q((pm1, . . . , pmP ), θ̂i) = (q(pm1, θ̂i), . . . , q(pmP , θ̂i))

and for each type θ̂i, each quantity q(pmp, θ̂i) satisfies θ̂iν
′(q) = pm1p, p = 1, . . . , P . In practice,

to determine the quantity chosen by type θ̂i for each possible price pmp, p = 1, . . . , P ; we solve
the system 

θ̂iν
′(q1) = pm1

. . .

θ̂iν
′(qN) = pm1

. . .

θ̂iν
′(q1) = pmP

. . .

θ̂iν
′(qN) = pmP

where q = (q1, . . . , qN) is an array of candidate quantities (we chose a grid of 1,000 equidistant
points). For each village, we determine this grid as ranging from the minimum and maximum
observed quantity;

(c) Compute pm as follows. Let

Q(pm) = (Q(pm1), . . . , Q(pmP ))

where, for p = 1, . . . , P ,

Q(pmp) =
N∑
i=1

q(pmp, θ̂i)rθ(θ̂i) =
N∑
i=1

q(pmp, θ̂i)rq(qi),

and rθ(θ̂1) = rq(q1) = G(q1) whereas rθ(θ̂i+1) = rq(qi+1) = G(qi+1) − G(qi), i = 1, . . . , N − 1.
(This is due to the fact that, as discussed, the model implies G(qi) = F (θi), so there are as many
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‘exactly’ estimated types as observed quantities.) Then, for p = 1, . . . , P − 1 we compute

Q′(pmp) ≈
Q(pmp + h)−Q(pmp)

h
≈ Q(pmp+1)−Q(pmp)

pmp+1 − pmp

and for p = P we compute

Q′(pmP ) ≈ Q(pmP )−Q(pmP − h)

h
≈ Q(pmP )−Q(pmP−1)

pmP − pmP−1

.

Lastly, we determine the linear monopoly price as the price p∗m that solves the seller’s first-order
condition (63). In practice, we compute p∗m as

p∗m = min
p∈{pm1,...,pmP }

{|Q(p) + (p− c)Q′(p)|} ;

(d) From the above computation of the base utility function ν̂(·), interpolating it over quanti-

ties not in {q1, . . . , qN}, we can immediately compute θ̂iν̂(·) at each q(p∗m, θ̂i). We then calculate

ĈSlp as

ĈSlp =
N∑
i=1

[θ̂iν̂(q(p∗m, θ̂i))− p∗mq(p∗m, θ̂i)]rθ(θ̂i) =
N∑
i=1

θ̂iν̂(q(p∗m, θ̂i))rq(q(p
∗
m, θ̂i))− p∗mQ(p∗m).

Lastly, since rθ(θ̂i) = rq(q(p
∗
m, θ̂i)) by G(qi) = F (θi) and

Q(p∗m) =
N∑
i=1

q(p∗m, θ̂i)rq(q(p
∗
m, θ̂i)),

We compute producer surplus as

P̂Slp =
N∑
i=1

(p∗m − c) q(p∗m, θ̂i)rq(q(p∗m, θ̂i)) = (p∗m − c)Q(p∗m).

C.2 Model with Type Dependent Reservation Utility

Consider now our model, in which, due to outside consumption possibilities or budget constraints
that depend on the consumer’s type, the consumer’s reservation utility depends on θ, so the
multiplier associated with the participation constraint, γ(θ), is not necessarily equal to one.
Following our characterization of the optimal price schedule, we distinguish between the weakly-
convex and the highly-convex case. We start with the highly-convex case, given that it represents
a generalization of the standard model.

Result 1. If T ′(q) = T ′(q), then observed prices and quantities correspond to the weakly-convex
case. Otherwise, the highly-convex case applies.
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C.2.1 Highly-Convex Case

Suppose the highly-convex case applies. We proceed according to the following steps.

Step 1. Compute Ĝ(qi), T
′(qi), and T ′′(qi), i = 1, . . . , N and qi ∈ {q1, . . . , qN}, from data on

quantity purchases and prices (unit values) in each village. In particular, compute

Ĝ(q) =
1

N

N∑
i=1

1(qi ≤ q)

where q ∈ [q, q] and 1(·) is an indicator function.

Step 2. Recall that q1 = q, and qN = q. Note that when γ = 1, we have T ′(qi) ≥ T ′(qN) for all
qi ∈ {q1, . . . , qN} and c = T ′(qN). When γ = 0, we have T ′(qi) ≤ T ′(q1) for all qi ∈ {q1, . . . , qN}
and c = T ′(q1). In each village we recover c as the estimated constant β̂0 of the nonparametric
regression discussed in the body of the paper.

Step 3. From the fact that G(q) = γ − θq′(θ)[T ′(q)− c]g(q)/T ′(q), compute γ as detailed in
the main body of the paper.

Step 4. Recall that because the empirical distribution function of quantity purchases is a
step function with steps at q1 < · · · < qN , the integral in ν ′(q) can be rewritten as the finite sum

of integrals. (See Perrigne and Vuong (2010) on this.) On each of these intervals Ĝ(·) is constant
whereas the integral of T ′′(·)/[T ′(·)]2 is −1/T ′(·). We distinguish three cases.

Case 1 (0 < γ < 1). We proceed as follows:

(a) we normalize θ at one;

(b) we compute q̃i as q̃i = min{q ∈ {q1, . . . , qN} : γ ≤ Ĝ(qi)};
(c) when q ∈ [q1, q̃i), we know that γ > Ĝ(q), so we can estimate ν ′(q) as

ν̂ ′(q) =
T ′(q)

[
γ̂ − Ĝ(qi)

]1− ĉ
T ′(q)

γ̂
1− c

T ′(q1)
exp

{
−ĉ
∑i−1

j=1
log
[
γ̂ − Ĝ(qj)

] [ 1

T ′(qj)
− 1

T ′(qj+1)

]

−ĉ log
[
γ̂ − Ĝ(qi)

] [ 1

T ′(qi)
− 1

T ′(q)

]}
(64)

for q ∈ [qi, qi+1), i = 1, . . . , ĩ− 1;

(d) from limq↑q̃i [γ̂ − Ĝ(q)]
1− ĉ

T ′(q) = 1, at q̃i we compute

lim
q↑q̃i

ν̂ ′(q) =
T ′(q̃i)

γ̂
1− c

T ′(q1)
exp

{
−ĉ
∑ĩ−1

j=1
log
[
γ̂ − Ĝ(qj)

] [ 1

T ′(qj)
− 1

T ′(qj+1)

]}
.

(Even if there is no quantity at which γ̂ = Ĝ(q̃i), which means that no issue of singularity arises,

the problem still exists that, by construction, γ < Ĝ(q̃i) so log[γ̂ − Ĝ(q̃i)] would be ill-defined.
Computing ν ′(q̃i) as a left-limit as q ↑ q̃i addresses this issue and allows us to derive an estimate

for θ̃i, which we can use to estimate ν ′(q) at quantities above q̃i. See below for details.) Using
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the fact that θ̃iν
′(q̃i) = T ′(q̃i), we obtain

θ̂̃i = γ̂
1− ĉ

T ′(q1) exp

{
ĉ
∑ĩ−1

j=1
log
[
γ̂ − Ĝ(qj)

] [ 1

T ′(qj)
− 1

T ′(qj+1)

]}
.

For accuracy, we estimate instead

lim
q↑q̃i

ν̂ ′(q) =
T ′(q̃i)

[
γ̂ − Ĝ(q̃i−1)

]1− ĉ
T ′(q̃

i
)

γ̂
1− c

T ′(q1)
exp

{
−ĉ
∑ĩ−1

j=1
log
[
γ̂ − Ĝ(qj)

] [ 1

T ′(qj)
− 1

T ′(qj+1)

]}
and, from θ̂̃i = T ′(q̃i)/ limq↑q̃i ν̂

′(q), we obtain

θ̂̃i = γ̂
1− c

T ′(q1)
[
γ̂ − Ĝ(q̃i−1)

] ĉ
T ′(q̃

i
)
−1

exp

{
ĉ
∑ĩ−1

j=1
log
[
γ̂ − Ĝ(qj)

] [ 1

T ′(qj)
− 1

T ′(qj+1)

]}
whereas, from θ̂̃i−1 = T ′(q̃i−1)/ν̂ ′(q̃i−1), we obtain

θ̂̃i−1 = γ̂
1− ĉ

T ′(q1)
[
γ̂ − Ĝ(q̃i−1)

] ĉ
T ′(q̃

i−1
)
−1

exp

{
ĉ
∑ĩ−2

j=1
log
[
γ̂ − Ĝ(qj)

] [ 1

T ′(qj)
− 1

T ′(qj+1)

]}
;

(e) when q ∈ [q̃i, qN), we compute

ν̂ ′(q) =
T ′(q)[Ĝ(qi)− γ̂]

1− ĉ
T ′(q)

θ̂̃i[Ĝ(q̃i)− γ̂]
1− ĉ

T ′(q̃i)
exp

{
−ĉ
∑i−1

j=ĩ
log
[
Ĝ(qj)− γ̂

] [ 1

T ′(qj)
− 1

T ′(qj+1)

]

−ĉ log
[
Ĝ(qi)− γ̂

] [ 1

T ′(qi)
− 1

T ′(q)

]}
with q ∈ [qi, qi+1), i = ĩ, . . . , N − 1 (ignoring the knife-edged case in which γ = Ĝ(q̃i): if this case

arises, perform this calculation at i = ĩ+ 1, . . . , N − 1). At qN , we compute

ν̂ ′(qN) =
T ′(qN)[Ĝ(qN)− γ̂]

1− ĉ
T ′(qN )

θ̂̃i[Ĝ(q̃i)− γ̂]
1− ĉ

T ′(q̃i)
exp

{
−ĉ
∑N−1

j=ĩ
log
[
Ĝ(qj)− γ̂

] [ 1

T ′(qj)
− 1

T ′(qj+1)

]}
;

(f) we compute θ̂i, i = 1, . . . , N − 1, as θ̂i = T ′(qi)/ν̂ ′(qi).

Case 2 (γ = 0). Note that in this case q̃i = q1. Recall that Ĝ(q1) > 0. We proceed as under

(e)-(f) in Case 1. Since in this case θ̂̃i = θ1 = 1, we obtain

ν̂ ′(q) =
T ′(q)[Ĝ(qi)]

1− ĉ
T ′(q)

θ1[Ĝ(q1)]
1− ĉ

T ′(q1)
exp

{
−ĉ
∑i−1

j=1
log
[
Ĝ(qj)

] [ 1

T ′(qj)
− 1

T ′(qj+1)

]
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−ĉ log
[
Ĝ(qi)

] [ 1

T ′(qi)
− 1

T ′(q)

]}
with q ∈ [qi, qi+1), i = 1, . . . , N − 1, and

ν̂ ′(qN) =
T ′(qN)Ĝ(qN)

1− ĉ
T ′(qN )

θ1[Ĝ(q1)]
1− ĉ

T ′(q1)
exp

{
−ĉ
∑N−1

j=1
log
[
Ĝ(qj)

] [ 1

T ′(qj)
− 1

T ′(qj+1)

]}
.

Case 3 (γ = 1). We proceed as in the case of the standard nonlinear pricing model.

To compute consumer and producer surplus, and to perform the counterfactual experiment
in which the seller is restricted to linear prices, we proceed as detalied above in Subsection C.1.1
Step 7 and in Subsection C.1.2.

C.2.2 Weakly-Convex Case

Suppose the weakly-convex case applies. We proceed according to the following steps.

Step 1. Compute Ĝ(qi), T
′(qi), and T ′′(qi), i = 1, . . . , N from data on quantity purchases

and prices (unit values) in each village. In particular, we compute

Ĝ(q) =
1

N

N∑
i=1

1(qi ≤ q)

where for q ∈ [q, q] and 1(·) is an indicator function.

Step 2. Compute ĉ = T ′(q1) (it should be the same as ĉ = T ′(qN)) and qi1 as

qi1 = max{qi ∈ {q1, . . . , qN} :
i∑

j=1

[T ′(qj)− c]/T ′(qj) Pr(qj) ≤ 0}.

Step 3. Normalize θ = θ1 to one.

Step 4. For q ∈ [q, qi1) where γ = 0, proceed analogously to the highly-convex case (Case 2):

- compute ν̂ ′(q1) = T ′(q1) and from this obtain θ̂i1 as

θ̂i1 =
Ĝ(q1)

1− ĉ
T ′(q1)

Ĝ(qi1)
1− ĉ

T ′(qi1 )

exp

{
ĉ
∑i1−1

j=1
log
[
Ĝ(qj)

] [ 1

T ′(qj)
− 1

T ′(qj+1)

]}

since, by definition,

ν̂ ′(q1) =
T ′(q1)Ĝ(q1)

1− ĉ
T ′(q1)

θ̂i1Ĝ(qi1)
1− ĉ

T ′(qi1 )

exp

{
ĉ
∑i1−1

j=1
log
[
Ĝ(qj)

] [ 1

T ′(qj)
− 1

T ′(qj+1)

]}
;
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- at q ∈ [qi, qi+1), i = 1, . . . , i1 − 1, compute

ν̂ ′(q) =
T ′(q)Ĝ(qi)

1− ĉ
T ′(q)

θ̂i1Ĝ(qi1)
1− ĉ

T ′(qi1 )

exp

{
ĉ
∑i1−1

j=i+1
log
[
Ĝ(qj)

] [ 1

T ′(qj)
− 1

T ′(qj+1)

]

+ĉ log
[
Ĝ(qi)

] [ 1

T ′(q)
− 1

T ′(qi+1)

]}
;

- compute θ̂i = T ′(qi)/ν̂ ′(qi), i = 1, . . . , i1 − 1.

Step 5. For q ∈ [qi1 , q̃i) where γ(θ(q)) = [G(q)−G(qi1)]/[G(qi2)−G(qi1)] < G(q):

- compute (note the difference compared to the highly-convex case: here the pontential point
of singularity for γ(θ(q)) ≤ G(q) is approached from below)

q̃i = max{qi ∈ {q1, . . . , qN} : γ(θ(q)) ≤ G(q)};

- compute

qi2 = min
qi∈{q1,...,qN}

|G(qi)−
{

1−G(qi1)

[
1

G(q̃i)
− 1

]}
|;

- compute

Ĝ(q)− γ̂(θ(q)) =
Ĝ(q)

[
Ĝ(qi2)− Ĝ(qi1)− 1

]
+ Ĝ(qi1)

Ĝ(qi2)− Ĝ(qi1)
;

- at q ∈ [qi, qi+1), i = i1, . . . , ĩ− 1, compute

ν̂ ′(q) =
T ′(q)

{
Ĝ(qi)

[
Ĝ(qi2)− Ĝ(qi1)− 1

]
+ Ĝ(qi1)

} Ĝ(qi2
)−Ĝ(qi1

)

Ĝ(qi2
)−Ĝ(qi1

)−1

[
1− c

T ′(q)

]

θ̂i1

{
Ĝ(qi1)

[
Ĝ(qi2)− Ĝ(qi1)− 1

]
+ Ĝ(qi1)

} Ĝ(qi2
)−Ĝ(qi1

)

Ĝ(qi2
)−Ĝ(qi1

)−1

[
1− c

T ′(qi1 )

]

· exp

− ĉ
[
Ĝ(qi2)− Ĝ(qi1)

]
Ĝ(qi2)− Ĝ(qi1)− 1

∑i−1

j=i1
log
{
Ĝ(qj)

[
Ĝ(qi2)− Ĝ(qi1)− 1

]
+ Ĝ(qi1)

}[ 1

T ′(qj)
− 1

T ′(qj+1)

]

−
ĉ
[
Ĝ(qi2)− Ĝ(qi1)

]
Ĝ(qi2)− Ĝ(qi1)− 1

log
{
Ĝ(qi)

[
Ĝ(qi2)− Ĝ(qi1)− 1

]
+ Ĝ(qi1)

}[ 1

T ′(qi)
− 1

T ′(q)

]
and θ̂i = T ′(qi)/ν̂ ′(qi);
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- at q̃i: when γ(θ(q̃i)) < G(q̃i), we compute

ν̂ ′(q̃i) =
T ′(q̃i)

{
Ĝ(q̃i)

[
Ĝ(qi2)− Ĝ(qi1)− 1

]
+ Ĝ(qi1)

} Ĝ(qi2
)−Ĝ(qi1

)

Ĝ(qi2
)−Ĝ(qi1

)−1

[
1− c

T ′(q̃
i
)

]

θ̂i1

{
Ĝ(qi1)

[
Ĝ(qi2)− Ĝ(qi1)− 1

]
+ Ĝ(qi1)

} Ĝ(qi2
)−Ĝ(qi1

)

Ĝ(qi2
)−Ĝ(qi1

)−1

[
1− c

T ′(qi1 )

]

· exp

− ĉ
[
Ĝ(qi2)− Ĝ(qi1)

]
Ĝ(qi2)− Ĝ(qi1)− 1

∑ĩ−1

j=i1
log
{
Ĝ(qj)

[
Ĝ(qi2)− Ĝ(qi1)− 1

]
+ Ĝ(qi1)

}[ 1

T ′(qj)
− 1

T ′(qj+1)

]
and θ̂̃i = T ′(q̃i)/ν̂

′(q̃i);

- at q̃i: when γ(θ(q̃i)) = G(q̃i), we compute ν̂ ′(q̃i) as

lim
q↑q̃i

ν̂ ′(q) =
T ′(q̃i)

{
Ĝ(q̃i−1)

[
Ĝ(qi2)− Ĝ(qi1)− 1

]
+ Ĝ(qi1)

} Ĝ(qi2
)−Ĝ(qi1

)

Ĝ(qi2
)−Ĝ(qi1

)−1

[
1− c

T ′(q̃
i
)

]

θ̂i1

{
Ĝ(qi1)

[
Ĝ(qi2)− Ĝ(qi1)− 1

]
+ Ĝ(qi1)

} Ĝ(qi2
)−Ĝ(qi1

)

Ĝ(qi2
)−Ĝ(qi1

)−1

[
1− c

T ′(qi1 )

]

· exp

− ĉ
[
Ĝ(qi2)− Ĝ(qi1)

]
Ĝ(qi2)− Ĝ(qi1)− 1

∑ĩ−1

j=i1
log
{
Ĝ(qj)

[
Ĝ(qi2)− Ĝ(qi1)− 1

]
+ Ĝ(qi1)

}[ 1

T ′(qj)
− 1

T ′(qj+1)

]
and θ̂̃i = T ′(q̃i)/ limq↑q̃i ν̂

′(q).

Step 6. For q ∈ [q̃i, qi2) where γ(θ(q)) = [G(q)−G(qi1)]/[G(qi2)−G(qi1)] > G(q):

- compute the difference γ̂(θ(q))− Ĝ(q) as

γ̂(θ(q))− Ĝ(q) =
Ĝ(q)

[
1− Ĝ(qi2) + Ĝ(qi1)

]
− Ĝ(qi1)

Ĝ(qi2)− Ĝ(qi1)
;

- at q ∈ [qi, qi+1), i = ĩ, . . . , i2 − 1 (from Step 5: if q̃i is truly a point of singularity, then the

relevant intervals are indexed by i = ĩ+ 1, . . . , i2 − 1), compute marginal utility as

ν̂ ′(q) =
T ′(q) {[1−G(qi2) +G(qi1)]G(q̃i)−G(qi1)}

G(qi2
)−G(qi1

)

1−G(qi2
)+G(qi1

)

[
1− c

T ′(q̃
i
)

]

θ̂̃i {[1−G(qi2) +G(qi1)]G(qi)−G(qi1)}
G(qi2

)−G(qi1
)

1−G(qi2
)+G(qi1

)

[
1− c

T ′(q)

]

· exp

{
c[G(qi2)−G(qi1)]

1−G(qi2) +G(qi1)

∑i−1

j=ĩ
log {[1−G(qi2) +G(qi1)]G(qj)−G(qi1)}

[
1

T ′(qj)
− 1

T ′(qj+1)

]
+
c[G(qi2)−G(qi1)]

1−G(qi2) +G(qi1)
log {[1−G(qi2) +G(qi1)]G(qi)−G(qi1)}

[
1

T ′(qi)
− 1

T ′(q)

]}
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and to obtain ν̂ ′(q) at qi2 , compute

ν̂ ′(qi2) =
T ′(qi2) {[1−G(qi2) +G(qi1)]G(q̃i)−G(qi1)}

G(qi2
)−G(qi1

)

1−G(qi2
)+G(qi1

)

[
1− c

T ′(q̃
i
)

]

θ̂̃i {[1−G(qi2) +G(qi1)]G(qi2)−G(qi1)}
G(qi2

)−G(qi1
)

1−G(qi2
)+G(qi1

)

[
1− c

T ′(qi2 )

]

· exp

{
c[G(qi2)−G(qi1)]

1−G(qi2) +G(qi1)

∑i2−1

j=ĩ
log {[1−G(qi2) +G(qi1)]G(qj)−G(qi1)}

[
1

T ′(qj)
− 1

T ′(qj+1)

]}
;

- for i = ĩ, . . . , i2, compute θ̂i = T ′(q̃i)/ν̂
′(q̃i).

Step 7. For q ∈ [qi2 , qN) where γ(θ(q)) = 1 > G(q):

- compute marginal utility

ν̂ ′(q) =
T ′(q)

[
1− Ĝ(qi)

]1− ĉ
T ′(q)

θ̂i2

[
1− Ĝ(qi2)

]1− ĉ
T ′(qi2 )

exp

{
−ĉ
∑i−1

j=i2
log
[
1− Ĝ(qj)

] [ 1

T ′(qj)
− 1

T ′(qj+1)

]

−ĉ log
[
1− Ĝ(qi)

] [ 1

T ′(qi)
− 1

T ′(q)

]}
where

lim
q↑qN

ν ′(q) =
T ′(qN) exp

{
−ĉ
∑N−1

j=i2
log
[
1− Ĝ(qj)

] [
1

T ′(qj)
− 1

T ′(qj+1)

]}
θ̂i2

[
1− Ĝ(qi2)

]1− ĉ
T ′(qi2 )

;

- for i = i2, . . . , N − 1, compute types as θ̂i = T ′(q̃i)/ν̂
′(q̃i) and θ̂N = T ′(qN)/ limq↑qN ν

′(q).

To compute consumer and producer surplus, and to perform the counterfactual experiment
in which the seller is restricted to linear prices, we proceed as detailed above in Subsection C.1.1
Step 7 and in Subsection C.1.2.
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