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Abstract

In this paper I develop a dynamic supermodular game of parent-child interaction
with multiple equilibria. I allow households to select different equilibria, which I com-
pute using a numerical algorithm developed by Echenique (2007). I use the model to
assess the impact of parental incentives on the formation of skills, to characterize the
equilibria which are more likely to generate the data and how they are related to family
background characteristics.
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1 Introduction to the parenting game

In order to place the parent-child game within the context of the child’s develop-
ment it is useful to distinguish two main phases. In the first phase, the passive phase,
the child does not respond to parental inputs which mechanically determine his human
capital and parents also determine his preferences which also evolve dynamically. In
the second stage of life, the active phase, the child’s preferences are more stable and
the child maximizes his expected utility acting in a forward-looking fashion. In partic-
ular he reacts to parental inputs contributing to his own development. The game I will
describe is suited to understand the role of parenting styles during the active phase,
which typically coincide with adolescence. The willingness to pursue conflicting objec-
tives generates the strategic interaction which is analyzed in this article.

General set-up. I analyze the strategic behavior of parents and children within a dy-
namic stochastic game of complete information with strategic complementarities 1. There
are two players, the child (he) and the parent (she). Time is discrete and the stage game
is repeated T times. The state variables of the game are given by the child’s skills which
evolve over time according to a Markov process. Following the literature on skills for-
mation 2. I distinguish between cognitive (θc) and noncognitive skills (θnc).
All the parameters of the game as well as the child’s skills are common knowledge. The
initial condition of the game is θ1, and it is taken as given and fully known by the play-
ers. Players are rational and forward looking and discount the future at rate δ3. At
the beginning of each t−stage game, the parent selects a parenting style pst which is
given by a pair (c, s): c ∈ [0,1] is the share of parental income y the child receives each
period, s ∈ [0,1] is a measure of the degree of supervision and support parents give to
their children in the knowledge acquisition process. Simultaneously the child selects an
effort level at which, which is conceptualized in term of the time the child spends ac-
quiring new knowledge, e.g. learning time. Because total available time is normalized to
one leisure lt equals 1−at . Given the skills of the child θt and the players’ actions a new
state θt+1 realizes stochastically. The stage game is then repeated until the last period T .

Evolution of skills New knowledge -θct+1- is a function of the child’s effort, of the cur-
rent stock of human capital and of level of parental supervision s. The child’s cognitive
skills take Jc finite number of values, i.e. θct ∈ 〈θc1, . . . , θcJc〉. I model the (stochastic) law
of motion of the cognitive skills using an ordered logit framework:

θct+1 = θcj a qcj−1 ≤ θ
c
t ≤ qcj (1)

1See vives for an introduction.
2See Cunha and Heckman (2007), Cunha and Heckman (2008) and Cunha, Heckman, and Schennach (2010).
3It might be sensitive to assume that the child is more myopic than the parent. In practice I do not estimate

the discount factor, which is not separately identified from the other parameters of the primitives. Therefore
for ease of exposition, the parent and the child share the same δ.



where the qcj are critical cut-offs and the index θ
c
t is given by

θ
c
t = ηc1at + η2st + ηc3θct

The ordered logit model implies that

Pr(θct+1 = θcj |θ
c
t ) =

[ exp(qcj − θ
c
t )

1+ exp(qcj − θ
c
t )
−

exp(qcj−1 − θ
c
t )

1+ exp(qcj−1 − θ
c
t )

]
(2)

It is easy to check that for any increasing function V

• E[V(θct+1)|θ
c
t ] is increasing in (at, st, θnct )

• E[V(θct+1)|θ
c
t ] has increasing differences for any pair of variables in (at, st, θnct )

which means that the distribution F(·|a, s, θnc) has increasing differences in any pair of
variables. I conceptualize noncognitve skills in terms of the stock of effort habits, in short
the child’s habits. The law of motion of the habits is given by

θnct = θnct−1 + λ(at−1 − θnct−1) (3)

The parameter λ ∈ [0,1] indexes the speed with which leisure impacts habits; if λ = 1
habits in the current period collapse to the previous period effort time, while if λ = 0 the
behavior of the child has not effect on future habits. In short θnct can be thought has the
child’s discipline, a measure of how much he is used to work. To better understand how
parental incentives interact with the child’s habits and his actions it is useful describe
the child’s preferences. I conceptualize noncognitve skills in terms of the stock of effort
habits, in short the child’s habits. To better understand how parental incentives interact
with the child’s habits and his actions it is useful describe the child’s preferences. For
future references it is useful to denote by Fc(θct+1|θct , at, st) and by Fnc(θnct+1|θnct , at) the
law of motion of the cognitive/noncognitive skills respectively. The probability distribu-
tion of the skills is written in a compact way as F(θt+1|θt, at, pst).

Children’s preferences The child cares about his leisure, his consumption and his
adult human capital. The payoff function of the child is given by:

vt =

u(ct, θnct , at) if t < T + 1

Ξ(θT+1) if t = T + 1 (the game is over)
(4)

I parametrize u as follows

u(ct, θnct , at) = − exp
[
− τ0ct − τ1(1− at + γθnct )] (5)

with τ0, τ1 > 0 and γ > 0. As it is standard in the habit formation literature, the
term γθnct acts as a reference point in evaluating the disutility of a: higher θnc lower the
negative impact of study time on the child’s utility. Besides displaying constant absolute



relative risk aversion in cand l, the utility function has the following properties

1. u is increasing in consumption and leisure (decreasing in a)

2. the marginal disutility of effort (utility of leisure) is a) decreasing in the habits and
b) decreasing in consumption

3. the level of utility is decreasing in the habits

Property 1) is obvious and generates the trade-off the child faces between increasing
his adult human capital and enjoying leisure time. Property 2b)-the payoff function
has decreasing differences in consumption and leisure- is at the heart of the mechanism
through which parental transfers generates a positive feedback on the child’s current be-
havior. In short, it is as if the parent can “purchase" study time by transfering monetary
resources to the child. Property 2a) allows for a propagation effect on future periods:
higher the parameter γ more effective parental transfer are in letting the child to get
used to work. Therefore there are both static and dynamic strategic complementarities
between a and c. Property 3) is standard in habit formation models and it implies that
if the child enjoyed a great deal of leisure in the past, learning is a particularly costly
activity.

The final payoff of the child is a function of the skills cumulated at the end of the
game. The valuation function Ξ can be thought as a proxy for future wages/lifetime
income or, in the language of Cunha and Heckman, the child’s “adult human capital".
Following the CES example of Cunha and Heckman (2008) and Cunha et al. (2010):

Ξ(θ) =
[
τa(θc)φ + (1− τa)(θnc)φ

] 1
φ

(6)

with τa ∈ [0,1] and φ ∈ (−∞,1].
Parent’s preferences The utility she enjoys at the end period t is given by the follow-

ing formula:

wt =

ωy(1− c)− βs if t < T + 1

Π(θT ) if t = T + 1 (the game is over)
(7)

with β and ω strictly positive. According to this specification providing supervision to
the child entails a psychic cost, while high transfers imply a higher opportunity cost in
terms of private consumption.

To conserve on parameter the value parents attach to the child’s adult human capital,
is given by:

Π(θT ) = ιΞ(θT ) (8)

where Ξ(θT ) is written in (6) and ι > 0.

To sum-up the effort of the child is increasing in his cognitive (noncognitive) skills



through the positive interaction in Fc (u) between a and θc (θnc). Parental support has
a indirect effect on future θc by increasing a’s marginal productivity in Fc , and a di-
rect effect given by it’s own impact on future cognitive skills. Monetary transfers affect
the child’s cognitive skills through its impact on the effort which will then affect fu-
ture noncognitive skills. Therefore I allow for an an endogenous cross-productivity of
noncognitive skills on cognitive skills4.

Interpretation and relationship to the literature. The source of conflict in the model
between the parent and the child stems from a miscongruence in preferences. In par-
ticular the parent cares about the human capital of the child more than he does while
holding a lower private valuation of the child’s leisure.5 This approach is consistent with
the existing literature, see Weinberg (2001) and Akabyashi (2006). There are two main
points of departure. The first regards the typical assumption that children are myopic,
namely have a discount factor of zero. On the contrary the parent is forward looking and
knows the child will eventually recognize the benefits of investing on her human capital.
Although it capture the insight that parents “know better", a less extreme assumption-
i.e. the child is more (not totally) myopic than the parent- seems more a realistic basis
to model adolescent behavior. In this set-up the dynamic nature of the child’s optimiza-
tion problem allows the parent to credibly threaten of taking away privileges in case of
poor performances. Obviously such a threat would not be effective if the child does not
internalize the cost of future punishments.
The second difference regards the timing. These two papers model the game in terms
of a principal-agent model6 with the parent acting as leader, while I propose a simul-
taneous move game. Either way the researcher is making an assumption and there is
really no compelling protocol to stick to. Finally for what concerns link between the
parent and the child, I rely on strategic complementarities 7. The role of my parenting
style is closed in spirit to the “incentive schedule" of Akabyashi (2006) and allows the
parent to influence the child’s behavior even in absence of binding contracts, as in Wein-
berg (2001). The presence of dynamics has also implications for the optimal timing of
parental incentives as in the literature on the technology of skills formation8. In par-
ticular the patterns of parenting across ages of the child -more supervision is in place
at earlier ages- is consistent with a positive complementarity between effort and human
capital: the parent stimulates effort which increases the child’s future human capital
and habits creating a virtuous circle. Having acquired a strong working habit the child
will not need external incentives at later ages. This is why in this context the implica-
tions for the optimal timing of incentives is also a result of the dynamic behavior of the
child, and not only of the features of skills production function as in the literature on

4The reverse type of cross productivity would be allowed if θc would affect the child’s habits.
5In the words of Amy Chua:“To get good at anything you have to work and children on their own never

want to work, which is why it is crucial to override their preferences. This often requires fortitude on the part of
parents because the child will resist."

6 In Weinberg (2001) commitment is possible while Akabyashi (2006) does not.
7 A a linear specification of the specification of the child’s flow utility (1−a)µε enables to interpret parenting

styles in terms of a proportional composite tax the parent imposes on the child’s leisure. Such a tax is given
by the combination of a subsidy (the allowances) and of “specific" taxes on leisure activities (the schedule of
rules. I thank Lance Lochner for suggesting such an interpretation.

8See Cunha and Heckman (2007) and Cunha et al. (2010).



early intervention.

2 Markov Equilibria

In order to define the equilibrium it is useful to write the problem in sequential
fashion. The history of the game is given by the sequences of actions and skills real-
izations H t = (at, θt, pst), where as in the standard notation the vector xt is given by
xt = (x1, . . . , xt). The problem solved by the child reads as follows:

max
aT

T∑
t=1

E[vt|psT ,H t] (9)

s.t at ∈ [0,1] ∀at ∈ aT (10)

where the expectation is taken over the shocks appearing into the skills productions
functions. The problem solved by the parent is to find a sequence of parenting styles in
order to:

max
psT

T∑
t=1

E[wt|aT ,H t] (11)

s.t. pst ∈ [0,1]× [0,1] ∀pst ∈ psT

A pure strategy Nash equilibrium of the game is given by a sequence of effort levels
and parental incentives 〈aT ,mT )〉Tt=1 such that i) aT is a best response to the sequence
µT after any historyH t , and viceversa; ii) the strategies are a Nash equilibrium for every
subgame subsequent to any historyH t . The set E which contains all the Nash equilibria
of the game may not be a singleton. The game admits multiple equilibria because it is
one of simultaneous moves, therefore multiplicity arises as in any coordination game.
Second, the objective functions of the players are not quasi-concave9. For tractability, as
it is custom in dynamic stochastic games, I focus my attention to Markov equilibria. In
particular I take θt -the child’s skills at the beginning of the stage game- as a sufficient
statistics for the history H t .

The relationships postulated so far can be summarized as follows

• The payoff of the players display increasing differences in the opponent’s action

9Starting from the last period notice how, even assuming that the all the primitive functions are concave,
there is no guarantee that the objective function of the parent is quasi-concave in (a, µ). This is the case even
if the effort function a(µ, θ) is concave in µ, because concavity is not an ordinal property. Relying on quasi-
concavity is also problematic because the property is non closed under summation. Hence even if the future
component of the payoff function is quasi-concave there is no guarantee that summing it to the flow utility
delivers a quasi-concave function. The conditions provided by Quah and Strulovici (2010) to check the quasi-
concavity did not prove useful. The non-concavity of the player’s objective functions prevents the applicability
of the first order approach in the principal-agent model. Cosconati (2011) provides sufficient conditions for
the uniqueness of the equilibrium in the context of a simpler model using the CDFC condition.



• The payoff of the players display increasing differences in their own actions and
the states

• The payoff of the players are increasing in the opponent’s action

These properties, coupled with other technical properties such as the boundedness of
the payoff functions and the stochastic nature of the transition function, are such that
the existence of a MPE in ensured by Amir (2011)’s theorem10.

2.1 Multiple equilibria across families

The estimation of games with multiple equilibria is a complicated matter, due to the
well known indeterminacy (or incompleteness) problem, which makes the map from the
structural parameters to the likelihood of observed events a correspondence rather than
a function11. There are two prevalent approaches. In the context of discrete games, both
static and dynamic, the approach developed by Hotz and Miller (1993) can be fruitfully
applied to games, as done by Bajari, Benkard, and Levin (2007). The convenience of this
approach relies on the fact that there is no need to solve for the equilibria of the game at
any given parameter trial. Therefore the typical inner loop of the standard full-solution
method, is not performed. In the context of static games, exploiting the particular struc-
ture of his game, Moro (2003) develops a two step estimator which also does not require
to compute all the equilibria of the game 12. The starting point of these papers is that
computing all the equilibria can be undoable for large games. Both approaches hinge
on the assumption that a unique equilibrium is played across markets/families. Bajari,
Hong, and Ryan (2010) develop an algorithm which relaxes this assumption and allows
the data generating process to be a mixture of likelihood functions, each associated
to a specific equilibrium. They estimate a game of entry in auctions by computing all
the pure and mixed strategy equilibria. This is achieved by using the software Gambit,
developed by which solves systems of polynomial equations and inequalities. The au-
thors provide conditions for the semi-parametric identification of the payoff function
and of the selection’s mechanism. Moreover they model and estimate the equilibrium
selection rule. They allow the equilibria to be characterized by three “attributes". An
equilibrium can be a pure or a mixed strategy equilibrium, Pareto optimal or inefficient
and to maximize the sum of the utilities of the players or not. This approach, while
allowing to understand how equilibria are selected, enables to simulate the model and
run counterfactuals experiment without having to impose an equilibrium selection rule.
My estimation procedure can be seen as a variant of their approach. I model (parametri-
cally) the mechanism that maps those variables into the probability that an equilibrium
is played.
Because the data on parent-child interaction are allowed to be generated by different
equilibria I can use the model to address the following question: 1) what are the char-

10Curtat (1996) establishes existence for the case of infinite horizon. See also Vives (2007) for a characteri-
zation of the equilibria in dynamic games with complementarities.

11see Tamer (2003) for an explanation of the issue of incompleteness and Bajari, Hong, and Nekipelov (2010)
for a survey of the methods in empirical IO.

12See Moro, Bisin, and Topa (2011) for an application to social interaction.



acteristics of the equilibria which are more likely to be played in American families? 2)
How is the probability of selecting a given class of equilibria related to observable family
characteristics (such as family income and race)?
The theory of supermodular games is extremely useful both in providing sensitive crite-
ria to “classify" the equilibria over which the selection mechanism places a probability
distribution, as well as in computing the set of equilibria. Roughly speaking finding
Nash equilibria implies solving numerically a system of non-linear equations, typically
equilibrium conditions, which admits more than one solution. From the computational
point of view this can be a daunting task 13. I approach the problem by implementing on
a larger scale the algorithm developed by Echenique (2007), which I will describe later,
showing how it can be applied to my setting.

2.2 Solution Method

Some Preliminaries
Before describing the algorithm it is useful to recall the following properties of GSC
games. Consider a GSC with strategy space S = [0,1] × [0,1], call it Γ . The games has
the following properties:

• Each player has a largest σ i(s−i) and a smallest σ i(s−i) best reply, for i = {c,p},
which are increasing in the strategy of the opponent (Topkis (1979) and Milgrom
and Roberts (1990)) (increasing best responses).

• There exists a largest (s) and a smallest equilibrium (s) (ordering of equilibria).

• The equilibria can be Pareto ranked because the payoff of the parent is increasing
in the effort of the child. Therefore s is the Pareto best equilibrium and s is the
smallest one is the Pareto worste (welfare).

• Best-reply dynamics approach the interval [s, s]. Therefore starting from (0,0) and
(1,1) best-reply dynamic converge to s and (s), respectively. (Global stability of the
extremal equilibria)

• The largest and the smallest equilibrium points increase with an in increase in θ
(comparative statics of equilibria)

• Let Γ(si) denote the game with an action space s ≥ si. First, if Γ is GSC then Γ(si) is a
GSC. Moreover if s is a Nash equilibrium of Γ and z ≤ s then s is a Nash equilibrium
of Γ(z) (robustness to “truncation").

For the time being let’s assume that the researcher is able to solve for the equilibria of
any static GSC. LetN be the number of points in the state space Θ. Let 〈V cT (θ|e), V

p
T (θ|e)〉

denote the value functions of the child/parent in state θ associated to equilibrium e ∈
ET (θ), where ET (θ) is the equilibrium set in state θ and ET (Θ) the set of equilibria in
all the states. Let’s define the following

13 As stated in Press, Teukolosky, Vetterling, and Flannery (2007) “there are no good, general methods for
solving systems of more than one nonlinear equations.". See McKelvey and McLennan (1996) for a survey on
available algorithms.



Definition 1. A sequence of equilibria 〈et(θi)〉Ni=1 is an increasing sequence or has the
increasing property if the associated value functions 〈V ct (θi), V

p
t (θi)〉Ni=1 are such that

V ct (θi) ≥ V ct (θj) V
p
t (θi) ≥ V

p
t (θj) for any θi > θj .

Notice that the set of equilibria of the game with the increasing property, call it Ei(Θ),
is a subset of the all the pure strategy equilibria of the game. Therefore the increasing
sequence criterion is effectively a refinement. The set Ei(Θ) can be computed as follows:

• Proceeding backward, consider the T -period game. Compute, for every θ ET (θ)
using Echenique’s algorithm (decribed in section 2.2.1), which provides the equilib-
rium set ET (Θ).
Construct EiT (Θ). Notice that EiT (Θ) is non empty because the highest equilibrium
in ET (Θ) is Pareto optimal and increasing in θ (the game has positive externalities,
i.e. the payoff functions of the players is increasing in the opponent’s action). The
number of continuation values I consider in the next step equals the cardinality of
the set EiT (Θ)

• At T − 1 at a given state θ, for all the possible continuation values induced by
EiT (Θ), use Echenique’s algorithm to compute eT−1(θ). Refine ET−1(Θ) to obtain
EiT−1(Θ)

• Keep iterating this procedure for periods T − 2, T − 2, . . . ,1

After applying the admissible sequences refinement the total number of equilibria equals
the number of elements in Ei1(Θ). It is legitimate to wonder on which basis such a refine-
ment can be justified. Roughly speaking the increasing sequence criterion (IS) is a way of
“supermodularizing" the game. As argued by Echenique (2003) static complementarities
not necessarily translate into dynamic complemementarities. Restricting the attention
to equilibria in which the continuation value is increasing in the states is akin to con-
struct sequences of supemodular payoffs in which the future components (the value
functions) are indeed supermodular.
Further, given the existence of positive externalities, the IS requirement can be inter-
preted as requiring the equilibria to be non decreasing in the state. In other words if,
counterfactually with respect to the timing of the game, the amount of skills exoge-
nously increased at a given time period, it has to be that the child increases his effort
and the parent selects a “higher" parenting style, e.g. a parenting style which increases
the parent’s expected utility. In this sense the Pareto-increasing property of the IS cri-
terion is a way of ordering the choice set of the parent. For instance if the parent’s
choice set was an interval of the real line, the IS criterion would be equivalent to ask that
Samuelson’s correspondence principle (CP) holds. Because Echenique (2002) shows that
(CP) holds in GSC, the AP criterion is also a way making (CP) operational.

2.2.1 Echenique’s algorithm

The algorithm to compute the pure strategy Nash equilibria is based on the properties
of the equilibria of supermodular games. Mixed equilibria are not considered on the



ground of some theoretical considerations 14. For ease of exposition consider the T -
period stage game. Fix a grid on the action spaces of the player of n points, so that
〈ai〉ni=1 and 〈psi〉ni=1 are the discretized versions of the actual action spaces of the child
and of the parent, respectively. In particular let πc(θ, s) be the payoff function of the
child in a state θ conditional on e = (a,ps) and πp(θ, s) be defined analogously. Let
βc,Γ (θ,ps) = arg maxaπc(θ, s) and let βp,Γ (θ,a) = arg maxp sπp(θ, s) and let βΓ (s, θ) =
βc,Γ (θ, s) × βp,Γ (θ, s) be the game’s best response correspondence. Let E(θ) be the set
of Nash equilibria of the game. The algorithm consists of the following steps:

step 1 Calculate infβi,Γ (θ, e) and supβi,Γ (θ, e), for i = c,p, that is the “lowest" and
“highest" optimal response of the players for each possible action (on the grid)
taken by the opponent. Approximate these best responses by interpolating the
functions I calculated at the grid points. Find the extremal equilibria by iterating
the best response correspondence. This is achieved by using the Robinson-Topkis
algorithm15:

• T(θ, e): starting from an initial guess s0 = s, the sequence 〈sk(θ)〉 with sk+1 =
infβΓ (ek) converges to the lowest equilibrium.

• T(θ, e): Given an initial guess s0 the sequence obtained from ek+1 = supβΓ (ek)
converges to the highest equilibrium.

Call the extremal equilibria e1 = (a1, ps1
) and e1 = (a1, ps1)

step 2 Consider the game Γ(θ, (a1 + 1, ps
1
)), where a1 + 1 is the point on the grid right

next to a1. Use T(e, θ) to find the smallest equilibrium of this restricted game, call
it e1 = (a1, ps1). At this point it needs to be checked that e1 is indeed an equi-
librium (Echenique calls this the “check phase"). This is accomplished by simply
checking that there is no profitable deviation for the child in the interval [a1, a1+1].
Why is it enough to consider this interval? Because s1 is an equilibrium of the game
Γ(θ, (a1+1, ps

1
)) strategies a > a1 cannot constitute a profitable deviation; on the

other hand βc,Γ (θ,ps1) ≥ βc,Γ (θ,ps2
) = a1, only strategies greater than a1 need

to be considered. If s1 passes this check, it is added to the set E. Analogously
consider the game Γ(θ, (a1, ps1

+ 1)) and apply T(e, θ) to this game to find a new

equilibrium (if there is one). Call it e2 = (a2, ps2).

step 3 Apply steps 2-3 to the games Γ(θ, (a1+1, ps1), Γ(θ, (a1, ps1+1), Γ(θ, (a2+1, ps2)
and Γ(θ, (a2, ps2 + 1)

step 4 Keep implementing steps 2-3 for each Nash equilibrium ek found, until ek = s.

Echenique (2007) shows that the algorithm computes all the pure Nash equilibria of
a GSC with finite strategies and that the algorithm is generally fast.

Efficient Application of the Algorithm GSC games are characterized by the following
property: the smallest and largest equilibrium, s(θ) and s(θ) are increasing in θ.

14See Vives (1990) and Echenique and Edlin (2004).
15The proof that iterating the best responses, is provided by Topkis (1998) and Robinson (1951).



This characterization suggests an efficient way of calculating the equilibria through
Echenique’s algorithm. Given a discretization of the state spaceΘ =

(
(θc , θnc), . . . , (θci , θ

nc
j ), (θ

c
, θ

nc
)
)
,

with N grid points for both type of skills perform the following θnc-loop:

• iteration 1 Consider the smallest state θ = (θc , θnc) and apply T(e, θ) with an
initial guess e0 = (0,0) and compute the set of equilibria E(θ)

• iteration 2 Consider the state θ2 = (θc , θnc + 1) and use as initial guess e0 for the
operator T(e, θ2) the point e(θ). Let e(θ2 be the lowest equilibrium of the game.

...

• iteration j Consider the state θj−1 = (θc , θnc + j−1) and use as initial guess e0 for

the operator T(e, θj−1) the point e(θj−1)
...

• iteration N Consider the state θN−1 = (θc , θnc +N − 1) and use as initial guess e0

for the operator T(e, θN−1) the point e(θN−1)

Therefore, exploiting the comparative statics of the equilibrium set of GSC, the al-
gorithm provides more accurate guesses for generating the sequence which converges
to the smallest equilibrium of each game Γ(θ). As θnc increases the operator T(e, θ)
will (generically) need less iterations to find e. To compute the set E(θ) I perform an
analogous θc-loop.

2.3 Simulating the model

There are several advantages of adopting the approach of Bajari et al. (2010), e.g.
including the equilibrium selection as part of the econometric model. First, it allows to
gain a better understanding how equilibria are selected. For instance, in my application
one could compute, given the estimated parameters, which fraction of the equilibria is
the Pareto optimal. Secondly the inclusion of λ allows to simulate the model and per-
form counterfactuals. They specify an equilibrium selection probability which allows to
randomly draw an equilibrium which induces a probability distribution on the observed
outcomes. Taking many draws from the selection probability function one can simulate
the model multiple times and construct a simulated method of moments estimator. In
here however one has to take into account that not all the set of equilibria are taken into
account. Namely I consider only equilibria in which satisfy the IS criterion. As a result
the selection rule needs to be adjusted to take into account this initial refinement.
An intuitive way of taking advantage of the ranking among equilibria based on Pareto
optimality suggests the following procedure to pin down an equilibrium, consistently
with the IS restriction needed to compute the equilibria. Once an equilibrium has been
selected the model can be simulated many times and the parameters estimated by SML
or MSM. Let (θ1, . . . , θN) denote the points of the state space, ordered from the lowest
to the highest. Let #NT (θj) with j = 1, . . . ,N denote the number of equilibria in state θj
at time T and let ET (θj) = (e1

T (θj), . . . , e
#NT (θj)
T (θj)) be ordered according to their Pareto



ranking. An orderded logit/probit provides a natural equilibrium selection criterion. Let:

d = βX + ε (12)

denote the index which determines which equilibrium is played together with a set of
cut-offs which I denote by cj with j = 1, . . .#NT (θj) − 1 to be estimated along with the
other parameters. Let ε be distributed according to a logistic/normal distribution. The
β’s are themselves parameters of interest to be estimated with the other structural pa-
rameters. A positive β implies that a given family characteristics, say parental education,
increases the chances that an efficient outcome is reached. At time T the probability that
equilibrium j is played in state θ1 is given by

λ(ejT (θ1), β,X) = Pr(cj−1 ≤ d ≤ cj) with j ∈ (1, . . . ,#NT (θ1))

Consider then the value functions 〈V cT (e
j
T (θ1)), V

p
T (e

j
T (θ1)〉 associated to the equilibrium

selected in state θ1, eT (θ1). Let

n(θ2|eT (θ1)) ∈ (1, . . . ,#NT (θ2)) : VkT (e
j
T (θ2)) ≥ VkT (eT (θ1)) for any j ≥ nT (θ2|eT (θ1)); k = c,p

In words nT (θ2|eT (θ1)) is such that, given the equilibrium selected in state θ1, any equi-

librium ejT (θ2) with an index j lower than nT (θ2|eT (θ1)) does not satisfy the IS criterion.
To pin down an equilibrium at θ2 which satisfies the IS criterion I can take another draw
from the restricted set (nT (θ2|ejT (θ1)), . . . ,#NT (θ2)) using the truncated distribution

λr (ejT (θ2), β,X|eT (θ1)) =
λ(ejT (θ2), β,X)

#NT (θ2))∑
k=nT (θ2)

λ(ekT (θ2), β,X)
with j = nT (θ2|eT (θ1)), . . . ,#NT (θ2)

where
λ(ejT (θ2), β,X) = Pr(cj−1 ≤ q2 ≤ cj)

is calculate using the index d2 in (12) and the distribution of ε. The full steps to draw
an increasing equilibrium are:

• At time T

1. Start from θ1. Draw an equilibrium eT (θ1)

2. Move to θ2 and compute nT (θ2|eT (θ1)). Draw an equilibrium eT (θ2) using the
induced λr

3. Keep iterating step 2 until the state space has been exhausted

4. Store in memory the admissible sequence VT (Θ) given by the draws of the
equilibria obtained by performing steps 1-3

• Move to T − 1

1. Consider θ1 and given the continuation values in VT (Θ) draw an equilibrium

from the distribution λ(ejT−1(θ1), β,X) in the support (1, . . . ,#NT−1(θ1))



2. Move to θ2 and compute nT−1(θ2|eT−1(θ1)). Draw an equilibrium eT−1(θ2)
using the induced λr

3. Keep iterating step 3 until the state space has been exhausted

4. Store in memory the admissible sequence VT−1(Θ) given by the draws of the
equilibria obtained by performing steps 1-3

• Move to T − 2 and performs analogous steps 1-4.

• Proceed backwards until period 1 has been reached.

2.3.1 Constructing the likelihood function

Let Θ denote the set of parameters to be estimated through maximum likelihood,
which consists of structural parameters and the β’s parameters entering the equilib-
rium selection mechanism. The likelihood function is a mixture of likelihood functions,
each associated to a given equilibrium and weighted by the probability that a given equi-
librium is selected. Notice that because at any given equilibrium, there is no unobserved
state variable such as random shock to preferences, the map between the state θ and
the actions of the players is deterministic. Therefore the likelihood function associated
to each equilibrium is degenerate. To deal with this issue I assume that all the variables
are measured with error. I measure the effort exerted by the child using self-declared
time spent doing homework. I adopt an hurdle model to deal with the cases in which the
child declares not to study, e.g. the zeros. Let ao denote an observed value of the child’s
effort. The hurdle model requires to specify the following conditional probability:

Pr(ao = 0|a) = ρa =
1

1+ exp(γaa)

as well as a conditional probability of observing a strictly positive measure of effort. I
adopt a truncated normal distribution g(·|a) with mean λ0,a + λ1,aa and variance ξa.
The measurement error model is written as follows:

g(eo) =

ρa if ao = 0
1−ρa

1−G(0|a)g(e
o|a) if ao > 0

where G denotes the CDF of the density g(·|a).
An analog hurdle model is used to reconcile observed and endogenous parental trans-
fers, which are measured by the self-declared amount of allowances the child receives.
Parental support s is proxied by a number of variables obtained from the responses to
questions made in the Autonomy/Parental Control Section of the NLSY97 questionnaire.
The questions include how often the parent does each of the following:

• Praises the child for doing well

• Criticizes the child or the child’s ideas

• Helps the child to do things important for the child



• Blames the child for his/her ideas

• Makes plans with the respondent and cancels for no good reasons.

DEAL with the issue of discrete measures.

For what concerns the measurement of the cognitive skills I follow Cunha et al. (2010)
in specifying a linear factor model which allows to use multiple measures:

Yj =mj
0,c +m

j
1,cθc + εc for j = 1, . . . ,M (13)

where M is the number of available measurements for cognitive skills. the m’s are the
factor loading of measurement j; εc is a measurement error term distributed according
to a normal with zero mean and variance σ 2

c
16. The measures I use to proxy for θc are

the PIAT math test scores and the GPA achieved by the child at the end of the academic
year.
The likelihood function is then simulated by drawing an equilibrium from the set of all
increasing equilibria E1(Θ), calculating the associated likelihood using the measurement
error and averaging over draws. EXACT EXPRESSION TO BE WRITTEN

16Cunha et al. (2010) provide conditions for the identification of the parameters in (13) as well as of the
distribution of the θ’s and of the εc .
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