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Abstract

I develop a model of competition between charter schools and traditional public
schools and estimate the model using administrative data from North Carolina. I use
the model to quantify how existing charter schools have affected test scores for both
charter and public school students and simulate charter school entry and student test
scores were binding caps on charters lifted. I find that i) the mean effect of charter
schools on attendant students (direct effect) is 25% of a standard deviation, ii) there
is substantial heterogeneity in the mean direct effect by market, iii) the mean spillover
effect on public school students is marginal, and iv) lifting caps on charter schools
would more than double entry and cause increases in mean test scores similar to those
under the capped scenario.
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1 Introduction

The provision of school choice is often proposed as a way to improve educational outcomes

for students in poorly performing public schools.1 Charter schools have been at the center

of much of the recent debate and policy focus concerning school choice, such as President

Obama’s education reform initiative, Race to the Top, which rewards states that lift restric-

tions on charter school growth (White (2009)).2,3

Nationally, there has been rapid growth in the number of charter schools since they first

opened in Minnesota in 1991; in 2008 about 1 million students attended over 3,000 charter

schools in 40 states. This growth has arguably been constrained by legislative caps on the

statewide number of charter schools in two-thirds of the states with charters. Policymakers

in North Carolina, where 30,000 students are enrolled in about 100 charter schools, are

currently debating whether to increase or eliminate the statewide cap on the total number of

charter schools, which has been binding since 2002 (Wilder (2010)).4 Policymakers would like

to know how expanding the role charter schools play in the public education system would

affect the distribution of student test scores. Charter school advocates argue that charter

schools improve the performance of both students attending charters (“direct effect”) and

also have a positive effect on the performance of students attending competing public schools

(“spillover effect”).

This theoretical ambiguity highlights how difficult it is to determine how charter schools

affect student outcomes. To begin with, previous research suggests that the direct and

spillover effects of charter schools are heterogeneous.5 Therefore, estimates of either effect

that are based on a subset of charter schools may not generalize to other existing charter

schools, let alone those that would enter in the absence of entry caps. The problem is

complicated even within a particular market. Public schools may behave differently in the

presence of a charter school than they would have as monopolists, meaning that students

1“School choice” is a collective term which refers to charter schools, magnet and alternative public schools,
and private schools coupled with voucher schemes.

2Charter schools are publicly funded schools that compete with traditional public schools for students
and which, like public schools, cannot selectively admit students. Charter schools typically have considerably
more autonomy than public schools regarding personnel decisions, curricula, school hours, and pedagogical
methods, but they often have lower per-pupil resources due to a lack of separate capital funding streams. All
students have access to a public school, but not all students have access to charter schools because charter
schools enter certain markets and not others.

3Although charter schools are technically a type of public school, I refer to them as “charter schools” and
traditional public schools as “public schools” for brevity.

4In fact, the North Carolina state legislature voted to eliminate the statewide cap in June, 2011, though
the measure may be overturned by the State Board of Education (Robertson (2011)).

5Authors have directly studied the heterogeneity of charter schools (Gleason et al. (2010)) and this
heterogeneity in part may explain the mixed estimates of direct and spillover effects.
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attending them no longer serve as a suitable control group for students at the charter school,

even in the case of random assignment. Equilibrium interactions between charter and public

schools may bias estimates of the direct effect of charter school entry if not taken into account.

Additionally, student sorting on ability creates an inferential problem if student ability affects

both school choices and test scores. Estimates of the effects of charter schools on the test

score distribution must take into account the non-random assignment of students to charter

schools.6 Furthermore, if charter and public schools take into account the composition of

students in their markets when making decisions, differences in these compositions make it

difficult to generalize treatment effects from one market to another.

In this paper I develop and estimate a model of competition between charter and public

schools to quantify how charter schools affect the distribution of student test scores. I

endogenize three key variables: i) charter school entry decisions, ii) charter and public school

inputs, and iii) student school choices. i) Charter school entry decisions determine which

populations of students will be affected. This is vital when we consider how lifting caps

on charter schools may affect the distribution of test scores because it tells us how many

more would open and in which markets they would open, which is important if the effects of

charter schools are heterogeneous across markets. ii) By endogenizing school inputs, I can

predict what inputs for public schools would have been in the absence of charters, which is

necessary to quantify how charter schools have changed student performance relative to the

monopoly scenario. In addition to quantifying how existing charter schools have affected the

statewide distribution of test scores, endogenizing school effort choices allows me to quantify

how lifting entry caps would further affect the distribution of test scores. iii) I model student

school choices to capture the relationships between student ability, student school choices,

and test scores. By modeling student school choices as a function of both student and

school characteristics I can then naturally generalize estimates based on existing charter

schools to charter schools that might enter in new markets were caps lifted. Both charter

and public schools take student school choices into account when choosing inputs to test

score production, which determine direct and spillover effects. The equilibrium framework I

develop provides an internally consistent method to quantify both spillover effects and the

bias introduced by ignoring equilibrium responses by public schools - indeed they are the

same for a student with a given ability.

I fit the model to administrative data from the North Carolina public school system.

The data are quite rich–they contain the universe of schools and students in the North

Carolina public school system (including charter schools) from 1997 to 2005– and contain

6Even lottery-based charter school assignment schemes randomize among a group of students who applied
to attend an oversubscribed charter school.
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variables that enable my estimation of the model’s demand and supply sides. I observe public

and charter school locations, charter school entry decisions, and detailed per-pupil school

resources, which enter the model as a per-pupil capital index. School attendance, average

weekly hours of homework reported done, and standardized test scores are recorded for each

student in each year. Weekly hours of homework done comprise the second school input to

test score production. The student-level data also contain student locations, which enter the

model through the distance cost of attending a school and exogenously shift the probability a

student will attend a charter school. I estimate the model using maximum likelihood, which

fits observed patterns of charter school entry and continued operation, charter and public

school effort choices, and student school choices and test scores.

Previous work on the effects of school choice programs typically adopts one of two strate-

gies of addressing potential non-random student participation: 1) compare outcomes of

applicants to oversubscribed programs who are randomized by lottery into the treatment

(either public school choice program or charter schools) to those of applicants who are ran-

domized out of the treatment; or 2) for charter schools, estimate student fixed effects using

panel data to compare test score growth for students attending charter and public schools

in markets with charters.

Hoxby and Rockoff (2004) and Angrist et al. (2010) find that charter school students

who attend over-subscribed schools on average enjoy larger test score growth than students

who were randomized to attend local public schools, but they note their results may not be

generalizable to charter schools that are not in such high demand as to be oversubscribed.

Cullen et al. (2006) study the effects of a Chicago public school choice program using an

oversubscribed lottery randomization design and find that applicants randomized into the

program fare no better on later standardized tests than those randomized out of the program.

Both Cullen et al. (2006) and Angrist et al. (2010) note that their findings do not take into

account potential equilibrium responses of public schools to the introduction of school choice

programs, which I address in this paper.

Hanushek et al. (2007), Sass (2006), and Bifulco and Ladd (2006) estimate Value-Added

models of test score growth using statewide student panel data for Texas, Florida, and North

Carolina, respectively.7 All three find that the charter school dummy variable in a fixed-effect

regression of student test score growth on school type has a negative sign, which authors

interpret as a negative effect of charter schools on test score growth.8 Sass (2006) and Bifulco

and Ladd (2006) also estimate the spillover effect of charter school entry by examining how

7I use the same dataset used by Bifulco and Ladd (2006).
8These results are not easily compared with lottery-based designs or this paper, which look at levels of

test scores, not changes in growth rates of test scores.
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school fixed effects change in public schools close to and far from new charter schools, and

find mixed results.9

This paper differs from most of the literature by modeling charter school entry and

is the first to build and structurally estimate an equilibrium model of endogenous school

inputs and student sorting.10 It also complements a related literature, where authors build

and calibrate or estimate equilibrium models of competition between public and private

schools. Epple and Romano (1998) develop and calibrate an equilibrium model of public

and private school interactions to examine the effects of vouchers using aggregate data.

Ferreyra (2007) builds on and structurally estimates Nechyba (2000)’s calibrated general

equilibrium model of household sorting, public good provision, private schools, and housing

prices in an equilibrium framework. The focus of these papers is on student sorting due

to peer effects, the effectiveness of private school vouchers, and competition between public

schools and private schools; none of them explore competition between public (or public

and charter) schools, which they assume are monolithic and do not make input choices or

any other decisions.11 School quality in these papers is a function of the average household

income for students attending the school, as their focus is on residential location decisions

and/or provision of public goods more than on school input provision and specific educational

outcomes.

The model is structured as a sequence of one-period games played in each market and

time period.12 There are three types of players in each period game: a measure of students, a

public school, and a potential charter school entrant. In the Nash equilibrium in effort levels

of the period game, even though neither charter nor public schools are allowed to explicitly

admit the best students, they may be able to induce differences in the ability distributions of

their students by choosing higher effort levels. Proponents of charter schools argue that such

changes in effort levels are an important feature of competition between charter and public

schools.13 Additionally, the model can accommodate either a positive or negative spillover

effect of the presence of a charter school on the test scores of public school students.

9Imberman (2011) uses empty buildings per capita as instrument for charter school location and finds
a negative spillover effect. Bettinger (2005) finds a negative direct effect and positive, yet imprecisely
estimated, spillover effect of charter schools.

10Epple et al. (2011) have developed and are calibrating a model focusing on charter school location and
input decisions without public school input choices for Washington DC. A working paper was not available
when this manuscript was written.

11One exception is Chakrabarti (2008), where the author models competition between public schools and
private voucher schools, and estimates implications of the model using a difference-and-differences approach.

12A market is the attendance zone for a public school, which captures the idea that students are typically
assigned to attend a public school based on where they live.

13For example, Knowledge Is Power Program (KIPP) schools require parents to sign contracts to do
homework with their children (KIPP (2010)).
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I estimate a mean direct effect of charter school entry of 25% of a standard deviation

(sd) in test scores on students attending charter schools and a positive, though marginal

spillover effect of 1.4% sd on public school students in those markets. I also find evidence

of considerable heterogeneity by market in the direct effect of attending a charter school –

the 75th percentile market average direct effect is twice that of the 25th percentile market.

Moreover, I find evidence that the direct effect is a function of the measure of students who

would attend the charter school, which cautions policymakers seeking to generalize results

from oversubscribed charter schools if oversubscribed charters are, on average, more likely

to have higher demand than charters at or below capacity. Simulations for the model in the

absence of statewide caps on the number of charter schools during 2002-2005 (when in the

data caps appear to have been binding) show that the number of charter schools in North

Carolina would double in the absence of caps. Both average direct and spillover effects would

be similar in new markets to what they were in markets entered while caps were binding.

2 Model

The model is a sequence of one-period games, each of which has three stages. First, the

charter school decides whether to enter the market. If the charter school enters the market,

the public school and the charter school simultaneously choose effort levels. Otherwise, the

public school is a monopolist and chooses the monopolist level of effort. In the last stage,

if the charter school has entered, students choose between schools. Otherwise, all students

are assigned to the public school. The following exposition is for the period game, i.e. that

played in one market and one time period, so I exclude market and time subscripts. Note

that I use charter school “entry” to indicate entry or continued operation within a market.

I discuss in Section 4.1 how consecutive periods within a market are linked together.

2.1 Notation

There is one public school in each market, denoted tps (for “traditional public school”).

There is one potential charter school entrant in each market, denoted ch. Schools and

student are indexed by s and i, respectively. Variables in bold denote the pair of variables

for both schools in a market, for example k = (kch, ktps) is the vector of school capital levels

for the market. The natural logarithm of a variable is denoted ·̃. I start with students because

they take school actions as given and it is most natural to solve the game backwards.
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2.2 Students

There is a continuum of students of measure µ in the market. A student i ∈ I has ability

ai, where ai ∼ F (ai) with density f(ai). Students have only one decision each period – they

choose a school s ∈ Si, their school choice set. If there is a charter school in student i’s

market then Si = {tps, ch}, otherwise Si = {tps}. Denote student i’s school choice si = ch

if i chooses to attend the charter school.

Students care about the test score they would receive at a school s, yis, and the non-

pecuniary cost of attending a school cis.
14 They also receive a choice-specific preference

shock ηis ∼ N
(
0, σ2

η

)
. Student choice-specific utility is uis = yis − cis + ηis.

Students take realized effort, eos, and per-pupil capital, ks as given.15 The test score yis

is a function of ability ai, school inputs eos and ks, and a productivity shock νyis, which is

realized after the students choose schools

yis = aiωs
(
αs(e

o
s)
βs + (1− αs)kβss

)τs/βs︸ ︷︷ ︸
Eys(eos,ai,ks)

+νyis, (1)

where νyis ∼ i.i.d.N (0, σ2
νy) and Eys(es, ai, ks) is the deterministic portion of the test score

given ability, school inputs, and school test score production function parameters. The first

portion of the test score in equation (1) is a CES production function where ability is a

student-specific Hicks-neutral productivity parameter and ωs is a school-type Hicks-neutral

productivity parameter.16 The parameter τs controls the degree of homogeneity, where

τs = 1 indicates constant returns to scale and τs < 1 indicates decreasing returns to scale,

and βs = 1/(1 − σs), where σs is the elasticity of substitution between eos and ks. It will

sometimes be convenient to write the test score as yis = aiEys(e
o
s, 1, ks) + νyis.

Student i’s cost of attending school s depends on school effort, eos, distance from the

student to the school, ris, a fixed cost of attending the charter school, cch, and an ability-

specific cost of attending the charter school cch,a, according to17

cis = cee
o
s + crris + cch1{s=ch} + aicch,a1{s=ch}, (2)

where 1{·} is 1 if · is true and 0 otherwise. Denote i’s optimal school choice policy γi =

14Neither traditional public schools nor charter schools may charge admission.
15I distinguish between “realized” or “observed” effort, eos, and that chosen by the school, es, because there

is a productivity shock on the chosen level of school effort. I show how this enters in the next subsection.
16As will be clear in Section 4.2.1 on identification of market ability distributions, the public school is

without loss of generality normalized to have school Hicks-neutral productivity ωtps = 1.
17None of the parameters ce, cr, cch, or cch,a are assumed to be “costs” in the estimation of the model in

the sense that their signs are unrestricted.
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arg max s∈Si{uis}. Note that student utility satisfies the single-crossing property in ability:

a high-ability student enjoys a larger increase in utility than a low-ability student from an

increase in effort. This will affect school effort choices.

2.3 Schools

Each market is endowed with a public school, so public schools have no entry decision.

Denote the charter school’s entry decision z ∈ Z = {0, 1}, where z = 1 indicates entry. Each

school is endowed with a capital level and location within the market, and the potential

charter school entrant knows both schools’ capital levels and locations before making its

entry decision. If the charter school has entered the market, both types of schools make an

effort decision, es. The school’s cost of exerting effort allows for interactions between effort

and both capital and school size

ces = ψs1e
o
s + (eos)

ψs2 + ψs3e
o
sµs + ψs4e

o
sks + 1{s=ch}ψfr.BlackµBlack, (3)

where ψfr.Black is the valuation of the charter school places on being located in a market with

Black students and µBlack is the share of Black students in the market.18 This last term

allows the model to capture the fact that charter schools may want to serve Black students,

which is sometimes explicitly part of their mission statements (Bifulco and Ladd (2007)).

School size, µs, enters the school objective with a coefficient of 1, which means that the

remaining school parameters are denominated in the school’s size.

The school’s objective is a weighted average of three elements: school size (µs), average

test score of students at the school (ȳs), and the cost of exerting the realized (i.e. observed)

level of effort (ces):
19

vs(es, e−s|νe) = µs + δysȳs − ces, (4)

where νe = (νech, ν
e
tps) is a pair of independently distributed effort productivity shocks that

are realized after schools choose their effort levels. Each shock νes determines observed effort

according to eos = esν
e
s , where ν̃es ∼ N (0, σ2

νe). Although I suppress dependence on the them,

the pairs of observed school efforts, eo, effort productivity shocks, νe, and capital levels, k,

enter each school’s objective because students take them into account when choosing schools

– affecting the school’s average test score and size.20

School incentives may be thought of from the perspective of the school principal – if no

18Note that the fraction of Black students in the market affects only the level of the charter school’s
equilibrium value of operating, not the optimal effort level once it has entered.

19I suppress the dependence of the cost function on school effort choices and the effort productivity shocks.
20I also suppress the dependence of average test score and school size on (eo,k) for notional ease.
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students attend the school she may be fired. A school’s direct preferences for average test

score δys captures the idea that, in addition to caring about the size of their school, principals

want the students to do well. If the average test score did not directly enter the school’s

objective function (δys = 0), the model would predict that monopoly public schools would

exert no effort if the cost of effort is positive, because they would draw all students in their

market and could avoid paying any effort exertion cost by doing so.

The charter school enters if and only if Eνe [v∗ch|νe] ≥ v, where v∗ch is the value of entry for

the charter school in the entry subgame equilibrium, given a chosen effort pair (see Section

2.4 for equilibrium definition and derivation) and v is a random variable known to the charter

school, which denotes an exogenous fixed cost of entry and operating.21

Because students in monopoly markets have no school choice, the average ability for

students attending the monopoly public school is the market average, ā, and the measure of

students attending is µ, the market size: vtps(etps|νetps)mono = µ+ δy,tpsȳtps − ctps.
If there is a charter school in the market, each school has a policy γs = arg max es Eνe [vs(es, e−s|νe)],

which says that each school chooses its own effort, es, to maximize its expected objective,

given the action of the other school, e−s and the pair of effort productivity shocks, νe.22 If

there is only a public school it has a policy γmonotps = arg max etps Eνetps

[
vmonotps (etps|νetps)

]
.

2.4 Equilibrium

2.4.1 Equilibrium Characterization

I now show how I solve for the equilibrium of the period game after the entry decision.

Figure 1 shows the timing of school decisions. The solution concept is subgame perfect Nash

equilibrium, where the potential charter school entrant makes an entry decision in the first

stage based on the expected payoff in the entry subgame. The Law of Large Numbers implies

that the measure of students attending each school and school average test scores are known

exactly, given productivity shocks νe.

LetM denote the set of measures of students, Fa denote the set of ability distributions,

R denote the set of student distance distributions, K be the set of school capital levels, E

the set of chosen effort levels for schools, A denote the set of abilities, R the set of student

distances, Eo denote the set of observed effort levels for schools, ETA be the set of preference

shocks, and S be the set of schools.

21The shock is drawn per market and time period, i.e. vtm.
22For estimation, to ease the computational burden I solve a slightly modified version of the school’s

problem where I do not integrate over the distribution of effort productivity shocks νe in solving for effort
and entry decisions. I have verified that the solutions to the school problems are similar with and without
this integration. I could have instead allowed schools to condition on νe, but this would have significantly
increased the burden of computing the likelihood.
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Figure 1: Extensive Form for Charter School Entry Decision and Subsequent School Effort
Choice Subgame

v

etps

ech

Public School

Charter School

Charter School z=1 z=0

Nature

νech, ν
e
tps realized

Students

νetps realizedNature

v entry cost shock

z charter entry (z = 1 is entry)

ech charter effort

etps public effort

emono
tps public monopoly effort

νech charter effort prod. shock

νetps public effort prod. shock

Player

School choice subgame

eoch, e
o
tps emono,o

tps

emono
tps

The strategies of students and schools in the entry subgame are

Schools: γs :M×Fa ×R2 × (K)2 × E 7→ E

Students: γi : A×R2 ×K2 × (Eo)2 × ETA2 7→ S

Definition 1. An Entry Subgame Equilibrium is a vector of student choices s∗i and school

effort levels e∗ = (e∗ch, e
∗
tps) such that

1. s∗i = γi (ai, ri,k, (e
o)∗, ηi) maximizes student utility for students i ∈ I and

2. e∗s = γs
(
µ, Fa,R,k, e

∗
−s
)

is the best response for schools s ∈ {tps, ch}.

Proposition 1. Existence of Entry Subgame Equilibrium

Proof. See Appendix A.

Definition 2. A Monopoly Subgame Equilibrium is a vector of student choices s∗monoi and

public school effort level e∗monotps such that

1. s∗monoi = tps for students i ∈ I and
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2. e∗monotps = γmonotps

Definition 3. A subgame perfect Nash equilibrium for the period game is an entry decision

z∗ and student and school decisions (s∗i , e
∗, s∗monoi , e∗monotps ) such that

1. Given an entry cost shock v and entry subgame decisions (s∗i , e
∗), z∗ = 1 if Eνe [v∗ch|νe] ≥

v and 0 otherwise,

2. for z∗ = 1, the subgame equilibrium is an Entry Subgame Equilibrium, and

3. for z∗ = 0, the subgame equilibrium is a Monopoly Subgame Equilibrium.

I solve the model by first computing the market equilibrium for the entry subgame and

then comparing the equilibrium value to the charter school with its entry cost shock to

determine the entry decision. In the subgame, I first solve for student demand as a function

of school effort choices, given capital levels, ability, and distances both schools. Note that,

because I need to know how far a student is from both schools to compute student school

choice probabilities, I solve the model, given school effort choices, for students of each distance

bin and then compute school size and average abilities at each school by summing over all

bins in the market using the market distance distribution. I then plug the school size and

average ability at each school into the school objectives (they enter through the measure of

students attending each school µs and the average test scores at each school ȳs) and solve

for the Nash equilibrium in school effort, given charter school entry.
A student with ability ai chooses a charter school if and only if

Eνy [yi,ch]−ci,ch + ηi,ch ≥ Eνy [yi,tps]−ci,tps + ηi,tps

⇔

ai (Eych(ech, 1, kch)− cch,a − Eytps(etps, 1, ktps))︸ ︷︷ ︸
∆(xβx)

+ (ηi,ch − ηi,tps)︸ ︷︷ ︸
∆εi

≥ ce(eoch − eotps)︸ ︷︷ ︸
∆ce

+ cr (ri,ch − ri,tps)︸ ︷︷ ︸
∆cri

+ cch︸︷︷︸
∆cch

⇔

ai∆(xβx) + ∆εi ≥ ∆ce + ∆cri + ∆cch︸ ︷︷ ︸
∆ci

,

(5)

where ∆εi ∼ N (0, σ2
∆ε) and σ2

∆ε = 2σ2
η. Equation (5) says that if the charter school has higher

net effective school inputs, i.e. ∆(xβ) > 0, higher ability students are more likely to attend

it than low ability students because students of all abilities pay the same non-pecuniary cost

of attending either school.

Because I assume ability is distributed normally within the market according to F (ai) =

N (a, σ2
a), the left hand side of (5) is the sum of two independent normals and is distributed
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according to

ai∆(xβx) + ∆εi ∼ N
(
a∆(xβx), σ

2
a∆(xβx)

2 + σ2
∆ε

)
. (6)

This provides an analytical expression for the share of students attending the charter school,

given a distance difference ∆cri, µr,ch:

µr,ch(∆cri) = 1− Φ

(
∆ce + ∆cri + ∆cch − a∆(xβx)√

σ2
a∆(xβx)2 + σ2

∆ε

)
, (7)

where Φ denotes the standard cumulative normal distribution.23

There are ρ ∈ 1, . . . , R separate distance pairs in the market, each with a measure µρ.

Therefore, the total measure of students at the charter school is the sum of the shares of

students of each distance, weighted by the measure of students in each distance bin, µρ

µch =
R∑
ρ=1

µρµρ,ch(∆cρi). (8)

A student with ability ai and relative charter distance cost ∆cri will choose the charter if

and only if

∆εi ≥ ∆ci − ai∆(xtβ),

which happens with probability Φ
(
ai∆(xtβ)−∆ci

σ∆ε

)
. By Bayes’ Rule, the average ability of

student attending the charter school is

ār,ch(∆cri) =

∫
ai

aifr(ai|si = ch)dai, (9)

where

fr(ai|si = ch) =
Φ
(
ai∆(xtβ)−∆ci

σ∆ε

)
f(ai)

µr,ch(∆cri)
(10)

is the density of the ability of students at the charter school, which takes into account their

probability of selecting it. As with the measure of students attending the charter, the average

ability of students attending the charter school is the weighted average of the average abilities

of students attending the charter school from each bin:

āch =
R∑
ρ=1

µρµρ,chār,ch(∆cri)/
R∑
ρ=1

µρµρ,ch. (11)

23In estimation each market has a separate ability distribution, Fm(ai).
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I solve for µtps and ātps analogously. After solving for ās, the average test score at school s

is ȳs = āsωs
(
αs(e

o
s)
βs + (1− αs)kβss

)τs/βs
= āsEys(e

o
s, 1, ks), which, along with µs, is substi-

tuted into school objectives when I solve for optimal effort levels.

I numerically solve for the entry subgame equilibrium by iterating the best response

functions for charter and public schools.24 I cannot obtain an analytical expression for the

equilibrium because I am integrating over the probability of charter school attendance for

each student in (9).25 The assumption that there is only one potential charter school per

market per time period eliminates multiple equilibria where more than one charter may open

in a market in a period. Multiple equilibria of this type do not help explain variation in the

data because the story is about public and charter school competition and the determinants of

entry, not competition between charter schools.26 I do not have a proof that the equilibrium

in the entry subgame is unique but do not believe it poses a problem in the estimation. See

Appendix B for a discussion of uniqueness.

2.4.2 Properties of the Equilibrium

Students with the same abilities and pairs of distances from the schools have the same

probabilities of choosing the charter school. There are two benefits a school receives from

increasing its own effort levels, given the other school’s effort: there is a direct effect from

the increase in the average test score from higher effort and an equilibrium effect of higher

average ability at the school. As charter school effort increases from very low values, the gain

from higher average ability outweighs diminishing marginal returns on effort in the test score

production function. At higher values of effort, however, diminishing returns to additional

increases in effort outweigh additional gains in mean ability because most of the high ability

students already attend the charter school. Therefore, at higher charter school effort levels,

the average test score at the charter school exhibits decreasing returns in effort. Effort

choices between charter and public schools are neither strategic complements nor strategic

substitutes (Bulow et al. (1985)) globally because the school best response functions are

generally non-monotonic.

The entry subgame equilibrium allows for a negative or positive effect of charter school

entry on student test scores. If the charter school is much more productive per unit of effort

exerted than the public school, high ability students will attend it with very high probability.

24Solving the system of two first-order conditions (one for each school) gives the same answer.
25Even if I characterize the equilibrium with school first-order conditions I still need to integrate over

probabilities computed from the normal CDF because the average test score interacts with the measure of
students at each school.

26Most middle schools that compete with at least one charter school compete with exactly one charter
school.
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Depending on the weights public schools place on test scores and effort exertion, relative to

school size, a public school may not find it advantageous to try and retain these students

but rather may decrease its equilibrium effort from the monopoly level and cater to students

with below-average ability.

2.5 Discussion of Modeling Assumptions

In this section I discuss some of the modeling decisions regarding the model’s primitives,

test score production, and school objective functions.

2.5.1 Primitives

The model is structured as a sequence of one-period games, which precludes public schools

from investing in capital to deter charter school entry. This assumption is not as restrictive

as it may seem because individual schools have little control over per-pupil funding, which

is determined by property tax rates at the district level in North Carolina.27

For tractability of both the student and school problems, I only allow one charter school

entrant per market. This assumption is supported by observed competition patterns in the

data. Please see Section 3.1 for details and discussion of how I construct markets.

2.5.2 Test Score Production Function

The test score production function captures the idea that unobservable student ability may

play an important role in test score production and allows public and charter schools to

differ in the productivity of their inputs. When combined with the student school decision,

it allows students to sort on their own ability, given school inputs. This is the inferential

problem typically addressed in the literature on the effectiveness of school inputs on student

achievement. I address this problem by explicitly modeling student decisions, where students

choose schools based on their own ability, distance from schools, school inputs, and preference

shocks. Distance serves as a source of exogenous variation in the cost of attending a charter

school, which provides an exclusion restriction for the probability a student will choose to

attend the charter.

The test score production function implies that only the ability of a student, current

inputs, and the current productivity shock (not the previous test score) determine the test

score. This assumption not only makes the student problem easier to solve but, more impor-

tantly, makes the school’s problem tractable, as otherwise I would have to record the entire

27Were schools able to invest in building a reputation, which entered household demand, there might be
a role for preemptive investments by public schools. This is beyond the scope of this paper.
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distribution of previous test scores at the school and take it into account when considering

the current effort choice.28 29 This gain in tractability is weighed against the cost of effec-

tively assuming a Value-Added framework, where the lagged test score is restricted to not

affect test score growth.

Both capital and effort inputs are assumed to be the same for all students at the same

school. The assumption is innocuous for capital, because most school capital is applied

fairly evenly to students at the schools.30 Even were they not I do not have data on capital

expenditures within a school that would allow me to distinguish otherwise. By contrast, effort

choices for individual students are observed. Assuming that there is only one effort level per

school per year allows me to avoid solving for each student’s effort choice. I lose information

on the variation of effort at a school, which means that I may end up overestimating the

variance of ability distributions.

I do not include peer effects through ability in the test score production function. A

Hicks-neutral peer effect composed of average ability of attendant students would not even

be identified at traditional public schools, as it would only scale mean ability for market-level

ability distributions recovered in the estimation procedure.31

2.5.3 School Objective Functions

The effort productivity shock, νes , makes the model estimable. A school chooses a school-

wide effort level but, being a reasonably large entity with several teachers, etc., the realized

effort level may differ slightly from that chosen by the school in the beginning of the period.

3 Data

I use administrative panel data on schools and students panels in North Carolina to esti-

mate the model. The data are taken from the universe of all public and charter schools,

and were provided by the North Carolina Education Research Data Center, which collects

and processes data on the North Carolina public school system from the North Carolina

Department of Public Education and National Center for Education Statistics.32 The data

contain variables necessary to estimate student-level test score production functions based

28I do not have to record the previous test score in the student’s state.
29Although forward-looking behavior may be more realistic, estimates of the ability distribution and capital

and effort effectiveness from test score production functions with student fixed effects do not qualitatively
change when lagged test scores are included.

30Special education and gifted and talented student programs are notable exceptions. Charter schools
tend to have much smaller fractions of both types of students.

31Proof available upon request.
32Website http://www.childandfamilypolicy.duke.edu/project_detail.php?id=35
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on school-level inputs, and include detailed panels on teachers, students, and schools in the

North Carolina public school system, as well as data on charter schools. For teachers, the

data contain years of experience and the school in which they work. For students, the data

contain demographic characteristics, which school they attend, grade in school, standardized

reading and math test scores for students in grades 3-8 and grade 10, self-reported weekly

hours of homework done, and student household locations. I use school-level data to compute

computers per pupil and district per-pupil revenues.33

3.1 Definition of Markets

In the model, markets partition the state of North Carolina. The schools within a student’s

market constitute that student’s choice set. In order to estimate the model each student’s

school choice set must be defined. However, because North Carolina charter schools do

not have geographic cut-offs for attendance, I know neither which public school a student

would have attended had he not chosen the charter school, nor which charter school(s) a

student observed in a public school could have chosen to attend.34 I address this problem by

designating each charter school to be in the market of the public school closest in distance.35

Therefore every charter school competes with only one public school.

In theory, a public school could be competing with several charter schools, each of which

in turn could be competing with several public schools. The former (one public school

competing with several charters) would mean that a student’s choice set could include more

than two schools and would fundamentally change how I solve for student decisions in the

model.36 Sometimes one public school is the closest public school for more than one charter,

which would mean that students at these schools may be choosing from more than two

schools (the middle school and more than one charter school). The four times this occurs

in the estimation sample, I designate the charter school closer to the public school as the

charter school competitor and drop the other charter.

33Charter schools are considered to be their own school districts in North Carolina.
34I could use elementary school attendance to see which middle schools compete with charters by taking

elementary schools which send students to charters, and seeing which public middle schools those elementary
schools also send students to. However, more than half of charter school students in my data are never in
public schools, so it is difficult to say which public middle school they would have gone to based on their
elementary school attendance.

35I found the neighbors using the STATA module GEONEAR (Picard (2010)). The module gives the
closest geodesic distance school for each charter school. Five charter schools were missing latitude and
longitude, so I looked them up manually using their addresses from the NCES (NCES (1998)) and Google
Earth (Google (2010)).

36There is a simple expression for the probability that a student of a certain ability will choose the charter
school when there are two schools in the student’s choice set, which I use then solving for school best
responses. I could use a multinomial logit, but I would then have to expend more resources to solve for
school best responses when estimating the model.

16



I chose this method based on geographical restrictions because it provides a consistent

definition of markets. It is tempting to create markets based on observed competition pat-

terns. For example, if a charter school has many students in attendance who transferred

from two nearby public schools, one might combine the two public schools in one market.

However, this method poses a problem in counterfactual scenarios because it does not tell me

how to combine public schools in areas where there are no charter schools, which is necessary

in order to compute charter school entry probabilities for all markets.

3.2 Estimation Sample

Although the NCERDC data contain information on elementary, middle, and high schools

for the years 1995-2006, I restrict my analysis to middle schools, which includes grades 6-8.

There are three reasons for focusing on middle schools: 1) the three school types may have

different test score production functions, 2) I only observe standardized test scores for the

10th grade for high school students and 3) middle school provides a natural decision-point

for students because most students switch schools between grades 5 and 6. I restrict my

analysis to the years 1998-2001 because 1998 is the first year charter schools were allowed

in North Carolina, and the 100-school cap on charter schools was clearly not binding in

2001 (it comes close to binding in 2002 and 2003).37 This way I avoid having to model the

interdependence of charter school entry decisions that would be induced by the cap.

The NCERDC data contain 1,128,935 observations (student-year) for students in public

schools and 10,165 observations for students in charter schools in grades 6-8 during the years

1998-2001. I exclude markets where public schools (and the associated charter schools)

open or close during the observation period (leaving me with 1,007,917 and 7,594 public

and charter school students, respectively).38 This restricts the initial sample of 2,703 public

school observations and 126 charter school observations with at least one grade in the grades

6-8 to 2,366 public school observations and 108 charter school observations, after removing

charter schools associated with new or dead markets. I also removed public schools that

had no children attending, after removing children from the sample as detailed above in the

student sample restrictions. I also exclude students who are observed attending public schools

outside their designated market (leaving me with 1,005,966 public and 5,574 charter school

students).39 I further exclude students observed for only one year, or observed attending

37This is only for the likelihood for school and student outcomes. As I discuss in Section 4.2.1, I also use
data for the year 1997 to identify market ability distributions.

38I do this so markets remain stable during the observation period.
39Students who attend charter schools outside their markets have on average lower test scores and are

more likely to be Black. Please see Appendix F for more details on sample selection and for a calculation of
the bias the sample restrictions may introduce when I calculate the direct treatment effect.
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more than 2 schools in the 3 years of middle school because the latter students are moving,

which is also not part of the student’s choice set (leaving me with 956,509 public school and

5,073 charter school students). After I exclude students missing standardized test scores,

the estimation sample includes 912,748 observations for public school students and 4,911

observations for students in charter schools. This is associated with 81% of public school

observations and 48% of charter school observations from the initial sample. Finally, due to

the large number of student-year observations, I estimate the model on a random subsample

of students in markets that have never had charter schools, leaving me with a final estimation

sample of 78,294 observations in markets without charter schools, 63,216 observations of

students in public schools in markets with charter schools, and 4,911 observations of students

in charter schools over the years 1998 to 2001.40 The final estimation sample contains 496

public school markets per year over the period 1998-2001.41

3.3 Test Scores, Capital, and Effort

The NCERDC data contain standardized reading and math test scores for grades 6-8.42 The

test score used in the model is the average of the reading and math test scores, which is

then normalized to have mean 3 and standard deviation 1 by grade so they are comparable

across grades.43,44

School inputs used for the per-pupil capital index are computers per pupil, teachers per

pupil, and fraction of teachers at a school with high experience (4 or more years). I treat

experience in this way based on Rivkin et al. (2005), which argues that after the first three

years of experience, later years of teacher experience have little, if any, effect on student

achievement.45 I combine these into a per-pupil index.46 Capital is a per-pupil measure so

40The sample is 100% of students in markets with fewer than 100 students, 20% of students in markets
with at least 100 and fewer than 200 students, 15% of students in markets with at least 200 and fewer than
300 students, 10% of students in markets with at least 300 and fewer than 400 students, and 5% of students
in markets with 400 or more students.

41There were not enough students at some schools to calculate mean effort, which is required of both
public and charter schools to calculate student school choices, leaving 98 charter and public schools in entry
markets for estimation.

42The tests are vertically scaled, which means that students in the 7th grade have average test scores that
are higher than the average of those in the 6th grade and lower than the average for those in the 8th grade.

43The estimation sample has a mean test score of 3.05, since some observations are lost while making
sample restrictions. The standard deviation of the test score in the estimation sample is 0.95.

44I set the average test score to 3 to ensure that all markets have ability distributions with positive means,
otherwise the model would predict that effort for any school in such a market would be zero if schools face
positive effort costs.

45Wiswall (2011) finds evidence that teacher quality does improve in later years, using a less restrictive
framework. I maintain my assumption for simplicity.

46The details of how I construct the index are in Appendix C.
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there are no capital scale effects.47

A school makes its decisions knowing the per-pupil level of capital it would receive. The

measure of capital used in estimation is a predicted value based on per-pupil revenue and

school type (please see Appendix C for details). I treat per-pupil capital in this manner

because I need to know what it would have been for charter schools in markets charters have

not entered, where computers, teachers, and experienced teachers per pupil are not observed.

By using the predicted per-pupil capital levels as inputs for both types of schools, I treat

per-pupil capital for public and charter schools similarly.

I measure student effort with self-reported data on the hours of homework students say

they typically do per week. I then average these data within each school-year, to create a

school-wide effort variable per school-year.48 This is meant to capture broad differences in

workloads between charter schools and public schools.

3.4 Distance Between Students and Schools

The distance between a student and each school in its choice set plays an important role in

identification of the test score production function parameters because it shifts the probabil-

ity a student will attend the charter school without directly affecting the test score (unlike

student ability). Moreover, each school takes into account the distance distribution (that

is, the fraction of students that are rch km away from the charter school and rtps km from

the public school) of students in the market when choosing its effort level, and the charter

school takes it into account when making its entry decision. I convert both student and

school latitude and longitude into geodesic distances using the Stata module VICENTY

(Nichols (2003).)

Because I need a distance distribution for every market, including markets where I never

observe charter school entry and therefore lack data on student distances from charter

schools, I discretize the distance distribution for each market and model the relationship

between the distance distribution for public schools and charter schools, assuming that pub-

lic school, charter schools, and students are all endowed with locations within markets, and

that all locations are observed by both types of schools and students (the details of the dis-

cretization are in Appendix D.) This market distance distribution, in addition to closing the

model from the school’s perspective, also allows me to deal with missing student distances,

which is of particular importance for students who only ever attend charter schools because

charter schools typically do not report locations for their students.49 If I observe a student’s

47State funding is also per-pupil in North Carolina.
48Recall that effort in my model is a school-wide, not individual, choice.
49Telephone conversations with NCDPI indicate that charter schools often fill in less paperwork because
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location at least once and it is missing in another year I assume the student did not move

and assign it the previous location, so long as it attends a school in the same city as before.

3.5 Facts about Charter Schools in North Carolina

Table 1 shows the descriptive statistics for capital and effort by market and school type.

Charter schools also have about three-quarters of the per-pupil capital levels of public schools

(0.43 versus 0.54 and 0.56 for monopolist and competitor public schools, respectively), while

effort is significantly higher for both charter and public schools in entry markets than it is

for public schools in non-entry markets. Charter schools are much more likely to stay in a

market once they have entered it (probability of entry given entry last period is 95.29%),

and unlikely to enter markets they have not previously entered (probability of entry given

no entry last period is 2.57%). Almost two-thirds of markets that have a charter school this

period had one last period. Charter schools in North Carolina are much smaller than public

schools, on average comprising 9% of a market.

Table 1: Descriptive Statistics for Capital and Effort, by Market and School Type

Capital Effort
Entry Mean SD N Mean SD N
Charter 0.43 0.03 98 2.66 0.95 98
Public 0.56 0.02 98 2.69 0.62 98
No Entry
Public 0.54 0.02 1652 2.43 0.50 1652

The following facts show patterns for charter school entry, endogenous school effort, and

student outcomes. First, charter schools enter larger markets and markets in which where

they would have more resources (Table 2). Second, the amount of time spent doing homework

is higher in markets in charters (Table 3). Third, student choices suggest sorting on ability.

In the year before a charter school enters a market, students who attend charters in the

following year have 5% of a standard deviation higher test scores than those who do not

attend the charter in the following year. Finally, students in charter schools have the highest

test scores, followed by students in public schools in markets charters have entered, followed

by students in public schools in markets without charters (Table 4).50

they are understaffed relative to public schools.
50Please see Appendix F for a discussion of how sample selection affects test score distributions.
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Table 2: Charter School Entry Patterns by Market Characteristics

All markets 0.056

Charter per-pupil capital
above median kch 0.095
below median kch 0.017

Market size
above median µ 0.067
below median µ 0.045

Table 3: Average Hours of Homework

No Charter in Market Charter in Market
Public School 2.43∗ hours 2.69 hours
Charter School – 2.66 hours
∗ Monopoly average hours are different from those of public
and charter schools in entry markets (p-value < 0.001)

Table 4: Average Test Scores of Students by School Type

No Charter in Market Charter in Market
Public School 3.028∗ 3.075∗

Charter School – 3.137∗
∗ All means are significantly different from each other
(pair-wise t-tests, p-value < 0.0001)
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4 Estimation

4.1 Likelihood

The one-period game is played in every market m ∈ 1, . . . ,M and time period t ∈ 1, . . . , T .

In every time period there is a new measure of students with abilities and locations within

the market and a new public school and potential charter school entrant with exogenous

per-pupil capital levels and locations within the market. The only links between two periods

in the same market are the ability distribution, which is unchanged within a market over

time, and whether a charter entered in the previous period in the market, which affects the

entry cost shock distribution. Refer to the extensive form of the period game in Figure 1 for

timing details within a period.

The likelihood includes probability (or likelihood) statements for charter school entry

decisions, school effort levels, student school choices, and student test scores. I assume that

entry cost shocks vtm, effort productivity shocks νestm, test score productivity shocks νyistm,

and preference shocks ηistm are independently distributed.

4.1.1 School Contribution to Likelihood

The potential charter school entrant in each market compares the expected value of entry

Eνe
[
v∗ch,tm

]
, which is a function of market size µtm, distance distribution Rtm, school capital

levels ktm and the market ability distribution Fm(ai), with the period-specific entry cost

shock ventry. In the first period of the model, or if the potential charter school entrant did

not enter in the market in the previous period, there was no prior observed entry (zot−1,m = 0).

The potential charter school entrant enters (ztm = 1) with probability

Pr{ztm = 1|zot−1,m = 0} = Φ

(
Eνe

[
v∗ch,tm

]
−µv

σv

)
. (12)

The potential charter school entrant in a market where there was previously a charter

school entrant solves a similar problem, but the entry cost shock is drawn from a different

distribution. Note that the assumption is that a different potential entrant makes an entry

decision in each year – the previous entrant’s decision enters only through the parameters of

the entry cost shock distribution. Its probability of entry is

Pr{ztm = 1|zot−1,m = 1} = Φ

(
Eνe

[
v∗ch,tm

]
−µv,given entry

σvgiven entry

)
. (13)

The likelihood of the observed effort in markets where charter schools have entered is
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simply the density of the difference between effort predicted by the model (i.e., that chosen

in equilibrium by each school) and the observed effort (i.e., chosen effort augmented by the

effort productivity shock):

L{eostm|zotm = 1} =
1

σνes
φ

(
ẽostm − ẽ∗stm

σνes

)
(14)

where .̃ denotes the natural logarithm of a variable and e∗stm is the duopoly equilibrium effort

level. The likelihood of the observed monopoly effort level is similar:

L{eotps,tm|zotm = 0} =
1

σνetps
φ

(
ẽotps,tm − ẽ

∗monopoly
tps,tm

σνetps

)
(15)

4.1.2 Student Contribution to Likelihood

Student likelihood statements are all conditional on ability ai, which is integrated out in the

likelihood function according to the market ability distribution.

The probability student i with ability ai attends the charter school (sitm = ch) is a

function of observed school inputs (ktm, e
o
tm), which enter ∆(xtmβx), and the pair of distances

from the student to both schools ritm, which enter ∆citm, and own ability ai:
51

Pr{sitm = ch|zotm = 1, ai} = Φ

(
ai∆(xtmβx)−∆citm

σ∆ε

)
. (16)

The observed test score yoistm is a function of ability ai, school inputs eostm and kstm, and

a productivity shock νyistm. From the test score production function, the distribution of the

observed test score of a student with ability ai attending the charter school is yoi,ch,tm ∼
N
(
Eych(e

o
ch,tm, ai, kch,tm), σ2

νy

)
, which results in a likelihood of observed charter school test

score of

L{yoi,ch,tm|zotm = 1, soitm = ch, ai} =
1

σνy
φ

(
yoi,ch,tm − Eych(eoch,t,m, ai, kch,t,m)

σνy

)
. (17)

The test score for a student attending the public school in a market with charter school

entry uses the public school’s production function and inputs:

L{yoi,tps,tm|zotm = 1, soitm = tps, ai} =
1

σνy
φ

(
yoi,tps,tm − Eytps(eotps,t,m, ai, ktps,t,m)

σνy

)
, (18)

51This was derived in equation (5), but now ∆(xβ) has market and time subscripts, ∆(xtmβx).
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as does the test score for a student attending a monopolist public school:

L{yoi,tps,tm|zotm = 0, soitm = tps, ai} =
1

σνy
φ

(
yoi,tps,tm − Eytps(e

mono,o
tps,t,m , ai, ktps,t,m)

σνy

)
. (19)

The likelihood function combines the previous probability and likelihood statements for

markets and students and integrates over the ability distribution in a market, given all the

data X and parameters θ (X and θ are suppressed in the right-hand-side):

L(θ|X) = (
∏
m∈M

∏
t∈2,...,T

Pr{ztm = 1|zot−1,m}z
o
tm(1− Pr{ztm = 1|zot−1,m})(1−zotm))

Pr{z1m = 1|zo0m = 0}zo1m(1− Pr{z1m = 1|zo0m = 0})(1−zo1m)·

(
∏
m∈M

∏
s∈Stm

∏
t∈T

(
L(eoch,tm|zotm = 1)L(eotps,tm|zotm = 1)

)zotm ·
L(eotps,tm|zotm = 0)1−zotm)·

(
∏
m∈M

∫
ai∈Am

(
∏
i∈Itm

∏
t∈T

((Pr{sitm = ch|zotm = 1, ai}L(yoi,ch,tm|zotm = 1, soitm = ch, ai))
1{so

itm
=ch}·

((1− Pr{sitm = ch|zotm = 1, ai})L(yoi,tps,tm|zotm = 1, soitm = tps, ai))
1{so

itm
=tps})z

o
tm·

L(yoi,tps,tm|zotm = 0, soitm = tps, ai)
1−zotm)dFm(ai)) (20)

I maximize the likelihood using APPSPACK (Gray and Kolda (2006)), which is a derivative-

free optimization program that is designed for easy parallelization. I compute standard er-

rors using the sum of the outer product of the observation-level scores. An observation is a

market-level or household-level likelihood statement, where entry probabilities are included

in the market-level statements.

4.2 Identification

4.2.1 Market Ability Distributions

The ability distribution for each market is assumed to be normally distributed. The mar-

ket ability distribution is non-parametrically identified given the public school test score

production function and test score productivity shock distribution (Refer to Appendix E

for the proof). I assume market level ability is normally distributed to make some parts

of the school objective much easier to solve.52 The market ability distribution enters both

52This can be seen when I derive the school objective in Section 2.4, where the measure of students
attending a particular school from a certain distance bin can be written in terms of the normal distribution
function. The average ability of students from each bin still requires integration over the ability distribution,
which I do numerically when solving the model.
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the school problem through the charter school entry decision and subsequent school effort

choices and student likelihood statements. In this section I show how I recover the mean

and variance of each market’s ability distribution. The recovered market ability distribu-

tions are functions of the public school test score production function parameters, so they

must be recovered jointly with the estimation of the model. Market ability distributions

are inherently unobservable; by recovering them I can treat them as being observed when

I integrate over student ability in solving the school maximization problems and student

likelihood statements.

I use the public school production function for 1997, the year before charter school

authorization in North Carolina. Using the production function for public schools (1), the

mean test score for market m in 1997 ȳtps,1997,m is

ȳtps,1997,m =

∫
a

∫
νytps

yi,tps,1997,mfνy(ν
y
tps)fm(a)dνytpsda

=

∫
a

aEytps(e
o
tps,1997,m, 1, ktps,1997,m)fm(a)da+

∫
νytps

fνy(ν
y
tps)dν

y
tps

= Eytps(e
o
tps,1997,m, 1, ktps,1997,m)

∫
a

afm(a)da+ E
[
νyi,tps,1997,m

]︸ ︷︷ ︸
0

= āmEytps(e
o
tps,1997,m, 1, ktps,1997,m) (21)

where fm, the ability distribution of market m, is assumed to be invariant over time in each

market. The key here is that I can use the test score distribution before charter school

entry to recover the parameters of the ability distribution because there was no choice of

schools available in the year before entry, obviating controlling for selection on ability. Given

data on the observed inputs in the market in 1997, eotps,1997,m and ktps,1997,m, and the public

school’s test score production function parameters αtps, βtps, and τtps, I can recover the mean

ability for the market ām jointly while estimating the rest of the model. Note here that the

normalization of public school Hicks-neutral productivity parameter ωtps = 1 only affects the

mean of recovered ability distributions, which means that the charter school’s Hicks-neutral

productivity parameter ωch can be thought of as productivity relative to that of a public

school.

The variance of the test score σ2
y,tps,1997 is a function of the variances of ability in market

m, σ2
a,m and the test score productivity shock σ2

νy and observed inputs

σ2
y,tps,1997,m = σ2

a,m

(
Eytps(e

o
tps,1997,m, 1, ktps,1997,m)

)2
+ σ2

νy .
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If only data from 1997 are used for each market, the variance of the ability distribution

cannot be separated from that of the test score productivity shock. I therefore fix σ2
νy in the

estimation.53,54 The chosen level of σ2
νy affects the share of test score variance attributed to

the ability distribution, which may affect outcomes for counterfactual scenarios by empha-

sizing its role relative to test score productivity shocks.

4.2.2 School Effort

I have data on effort, average weekly hours of homework done by students at each school,

which means that it is trivially identified.

4.2.3 Test Score Production Functions

It is difficult to separate student ability from the productivity of school inputs in the presence

of student sorting on ability, which the model predicts will typically occur. The productivity

of inputs may be estimable due to restrictions imposed by functional form, but it is preferable

to identify test score production function parameters using an exclusion restriction. I use

data on the distance from a student to the public and charter schools in estimating the

probability a student will attend the charter school. Changes in these distances, so long

as they do not imply a change in the ability distribution, shift the probability a household

would attend the charter school without changing the test score. This approach has been

taken by others, such as Cullen et al. (2005), where the authors use distance from a school

as an instrument for the probability of school attendance.

4.3 Missing Data

I assume data are missing randomly. There are some charter school observations where

homework was not reported for any students, so those schools did not contribute to the

effort likelihood. As I discussed in the sample restriction section, about 5% of observations

in charter and public schools are missing test score data, so these students also do not

contribute to the likelihood as they are excluded.

More importantly, about two-thirds of the students in charter schools are never observed

attending public schools, which, when combined with the fact that charter schools tend

not to report student locations, means that it is unlikely that I observe their addresses.55

53I fix σνy for both public and charter schools to be 0.40.
54Although the variance of the test score productivity shock may be recovered using only the 1997 data,

it is in theory possible to use more than one year of data to estimate it.
55The assumption that these addresses are missing at random may be justified by the fact that an indicator

for whether the address is missing is not significantly associated with a student’s test score when controlling

26



I integrate the likelihood over market distance distributions for students missing location

data.

5 Estimation Results

5.1 Parameters

Table 5 shows the estimated parameters for the model. The first seven rows are the test

score production function parameters. Recall that all public schools share the same test

score production technology and all charter schools share (a different) test score production

technology. Both schools have effort shares in test score production that are higher than

capital shares. Charter schools are closer to constant returns to scale than public schools

τch = 0.488 > τtps = 0.060). The elasticity of substitution between capital and effort is 0.54

for charter schools and 0.52 for public schools.

Household utility is denominated in test scores, so utility parameters are interpretable in

terms of test scores, which have a standard deviation of 1. The disutility of effort is negative

(ce = −1.274), which means students prefer attending the school where they have to work

harder, even after taking into account increased test scores. The per-kilometer distance cost

is about one-fifth of a standard deviation (cr = 0.219) of test scores. The disutility from

attending a charter school is quite large (cch = 4.128), which is what allows the model to

fit student school choice probabilities given the higher productivity of charter schools and

the relatively small distance cost of commuting.56 This parameter may capture the fact that

charter schools often have fewer extracurricular activities and capacity constraints on charter

schools, which are not modeled. The disutility from attending a charter school increases with

ability (cch,a = 0.247), which attenuates sorting on ability to charter schools.

In the school effort cost functions, charter schools have much larger diseconomies of scale

from exerting effort than public schools (ψe,ch,3 = 3.192 > ψe,tps,3 = −0.041), although the

parameter is imprecisely estimated for both school types. Both schools pay a cost of exerting

effort that is mitigated by higher levels of capital (ψe,ch,4 = −4.894, ψe,tps,4 = −0.903).57

There may be an intuitive explanation for this: Higher per-pupil capital levels may make it

easier for the school to create, assign, and grade homework because there are more computers

per student or if there are smaller class sizes.58

for student ethnicity.
56The distance cost is on average effectively larger for students to attend a charter school.
57This parameter is imprecisely estimated for both school types.
58In addition to average test score ys, I also estimated a coefficient for total test score, µsys, at each school.

These variables were noisily estimated and were not quantitatively important.
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Finally, to capture the persistence of charter school entry in the data, the mean of the

entry cost shock distribution is much lower when there was a charter school in the market

in the previous period (µv,given entry = 66 < µv = 179). Charter schools are also more likely

to enter in markets the higher the share of the market is Black students (γfr.Black = 58),

though this parameter is somewhat imprecisely estimated.

5.2 Model Fit

The model fits basic charter school entry, charter and public school effort, student choice,

and student test score patterns for North Carolina. Table 6 shows the fraction of markets

of certain characteristics with charter schools. The first row is the observed and predicted

overall fraction of markets with charter schools over the estimation period 1998-2001. The

model also captures the facts that charter schools are more likely to enter markets where

they would receive higher per-pupil capital (rows 2 and 3) and that charter schools are more

likely to open in larger markets (rows 4 and 5).59 Note that I am not explicitly targeting

these moments in the data, but rather am trying to fit observed entry patterns for all markets

using maximum likelihood.

Table 7 shows that the model is capable of reproducing patterns of the observed school

effort levels in the data as measured by hours of homework: charter and public schools in

markets in which charter schools operate exert higher levels of effort than monopolist public

schools. This is because charter schools enter markets with both higher mean abilities and

higher per-pupil capital levels, as well as the competitive effect of charter school entry. The

table over-predicts effort levels of charter schools relative to their public school competitors,

but captures the fact that both schools in markets with charters have higher effort levels

than monopolist public schools. The table also shows that the model slightly over-predicts

the standard deviation of chosen effort levels of charter schools (columns 3 and 4), though

it captures the pattern that charter schools have more variation in chosen effort levels than

public schools across markets. Table 8 shows that the model also captures the relationship

between school capital and effort. Charter schools in markets where the charter schools have

above median per-pupil capital exert more effort than they do in markets with below median

per-pupil capital. The same is true for public schools both in markets with and without

charter school entry. In general, schools exert higher effort in markets where they have

higher per-pupil resources for two reasons: capital directly augments test score production

and also makes effort exertion less costly for schools through the interaction between capital

and effort in school effort cost functions. This latter effect is why public schools exert

59Recall that per-pupil capital at charter schools is based on a prediction, so it exists even in markets
where the charter school has not entered.
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Table 5: Parameter Estimates
Parameter Estimate Standard error Description

Test score production functions

ωch 1.612 0.064 productivity of charter school relative to public
αch 0.108 0.082 effort share, charter school
βch -0.852 0.805 substitution parameter, charter school
τch 0.488 0.038 return to scale, charter school
αtps 0.936 0.026 effort share, public school
βtps -0.929 0.311 substitution parameter, public school
τtps 0.060 0.005 return to scale, public school

Student cost

ce -1.274 0.276 student effort cost
cr 0.219 0.051 student distance cost
cch 4.128 0.904 student charter school cost
cch,a 0.247 0.052 student charter school cost interact ability

School preference shock

ση 2.499 0.559 st. dev. student school preference shock

School valuation of test scores

δy,ch 29.788 12.965 value of average test score, charter school
δy,tps 33.215 5.853 value of average test score, public school

School effort cost functions

ψe,ch,1 0.996 1.563 disutility of effort, charter school
ψe,tps,1 1.939 0.681 disutility of effort, public school
ψe,ch,2 1.212 0.352 convex disutility of effort, charter school
ψe,tps,2 0.720 0.710 convex disutility of effort, public school
ψe,ch,3 3.192 2.162 effort, school size interaction, charter school
ψe,tps,3 -0.041 0.028 effort, school size interaction, public school
ψe,ch,4 -4.894 3.189 effort, capital interaction, charter school
ψe,tps,4 -0.903 0.566 effort, capital interaction, public school

Entry cost

µv 179.036 78.623 mean entry cost distribution, no entry last period
σv 35.831 21.179 st. dev. entry cost distribution, no entry last period
µv,given entry 65.962 44.067 mean entry cost distribution, entry last period
σv,given entry 27.264 36.841 st. dev. entry cost distribution, entry last period
ψfr.Black 57.990 32.268 weight for fraction of Black students in market

Effort productivity shocks

σνech 0.427 0.025 st. dev. effort productivity shock, charter school

σνetps 0.170 0.003 st. dev. effort productivity shock, public school
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Table 6: Fit: Charter School Entry Patterns by Market Characteristics

Observed Predicted
All markets 0.056 0.061

Charter per-pupil capital
above median kch 0.095 0.077
below median kch 0.017 0.046

Market size
above median µ 0.067 0.067
below median µ 0.045 0.055

higher effort in markets where they have higher per-pupil capital in spite of the fact that the

coefficient on per-pupil capital in the public school test score production function is small.

Table 7: Fit: Hours of Homework by School Type

Mean Standard Deviation
Entry Markets Observed Predicted Observed Predicted
Charter Schools 2.66 2.69 0.94 1.27
Public Schools 2.69 2.58 0.62 0.57

Monopoly Markets
Public Schools 2.43 2.43 0.47 0.49

Table 9 shows model fit for the fraction of students choosing charter schools. The model

fits the pattern that charter schools are smaller than the public schools in markets they have

entered. The first column, 0.0915, is the average for all markets with charter schools. The

second column presents the total fraction of students choosing the charter school in markets

with charters for the full simulation of the model – that is, first simulating charter school

entry decisions and then school effort choices, and simulating student school choices based

on predicted school effort choices. The last two columns are the observed and simulated

total shares of students in charter schools. The model slightly over-predicts the overall share

of charter schools in markets with entry and under-predicts the total number of students in

charter schools. This under-shooting stems from simulated charter schools entering small

markets more frequently than observed in the data (Table 6). This overall under-prediction

attenuates the estimated impact of charter schools on the aggregate test score distribution,

which is presented in the next section.
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Table 8: Fit: Mean Hours of Homework by School Type by Market Characteristics

Entry Markets Observed Predicted
Charter Schools
above median kch 2.74 hours 2.82 hours
below median kch 2.20 hours 2.49 hours

Public Schools
above median ktps 2.78 hours 2.66 hours
below median ktps 2.21 hours 2.43 hours

Monopoly Markets
Public Schools
above median ktps 2.51 hours 2.50 hours
below median ktps 2.35 hours 2.37 hours

Table 9: Fit: Fraction of Students Choosing Charter Schools

Entry Markets All Markets
Observed Predicted Observed Predicted

0.0915 0.1156 0.0382 0.0109

Table 10 shows that the model captures the ranking average of test scores in the esti-

mation sample: students at charter schools have the highest average test scores, followed

by students attending public schools in markets charter schools have entered, followed by

students in public schools in markets without charters. The fact that public schools are

monolithic in test score production may explain the difference between predicted and simu-

lated test scores: one test score production function must explain test scores in public schools

with and without charter school entry.60

60Charter school test scores must be even higher to rationalize the school choice patterns in the data. Note
that even though the model slightly over-predicts mean test scores for students attending charter schools,
rankings of average test scores of charter schools, public schools in markets with charters, and monopolist
public schools are recovered in the estimation. Nonetheless, this somewhat overstates the direct effect of
charter school entry on test scores, which is presented in the next section.
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Table 10: Fit: Student Test Scores

Mean Standard Deviation
Observed Predicted Observed Predicted

All Markets 3.053 3.049 0.9509 0.9434

Entry Markets
Charter Schools 3.137 3.243 0.9381 1.049
Public Schools 3.075 3.074 0.9995 0.966

Monopoly Markets
Public Schools 3.028 3.045 0.9087 0.9396

6 Counterfactual Simulations

I use the developed model to simulate charter school entry decisions and school effort choices

under entry and monopoly scenarios. I then simulate household school choices and test scores

(i.e. potential outcomes) for each household in the market’s charter school, traditional public

school competitor, and monopolist public school.61 I incorporate selection on student ability

in two ways: I model charter school entry decisions as a function of market-level ability

distributions, and within markets I model student sorting as a function of heterogeneous

student ability and differential effective school inputs.62

The additional structure provided by the developed model allows me to make several

contributions to the literature studying the effects of school choice. First, by providing a

model for potential outcomes for each student, I can take into account the competitive effects

of charter school entry on students in competing public schools.63

Second, I am not restricted to evaluating the effect of being in either charter or traditional

public schools for students in their chosen school or in markets where charter schools have

previously entered, but can estimate treatment effects for all students regardless of their

observed school choice or charter school entry decisions. This ability to generalize treatment

effects is useful for policymakers interested in expanding the scope of school choice programs

such as charter schools.

61I simulate the full model 50 times.
62By “differential effective school inputs” I mean the difference in expected test scores under a treatment

(attending a charter school or public school competing with a charter school) and under the monopoly sce-
nario for a student with ability 1, e.g. Eych(ech,m, 1, kch,m)− Eytps(emonotps,m, 1, ktps,m) for the direct treatment

and Eytps(etps,m, 1, ktps,m)− Eytps(emonotps,m, 1, ktps,m) for the spillover.
63Rosenbaum and Rubin (1983) discuss potential outcomes in the context of matching estimators. Heck-

man et al. (1997) discuss potential outcomes in the context of heterogeneous treatment impacts.
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Third, in my framework all treatment effects are inherently heterogeneous both within

markets, because students may differ by ability, and between markets, which may have dif-

ferent equilibrium charter school entry decisions, school inputs, and student characteristics.

Finally, I provide a framework that estimates both direct and spillover effects, in any

environment, in the absence of lotteries or even panel data on students. This framework

incorporates an administrative dataset of the kind increasingly being made available by

states.64

6.1 Definitions

There are two potential treatments: attending a charter school and attending a public school

which is competing with a charter school. I define the effect of being in a charter school

(“direct effect”) for student i who lives in market m as the difference between the test score

the student would have received at the charter school and that she would have received at a

monopolist public school in that market:65

∆direct
im = yi,ch,m − ymonoi,tps,m

= Eych (ech,m, ai, kch,m) + νyi,ch − Eytps
(
emonotps,m, ai, ktps,m

)
− νyi,tps,mono, (22)

where νyis is the (additively separable) ex-post test score productivity shock for i at school of

type s, ech,m is the equilibrium effort level chosen by the charter school in that market, and

emonotps,m is the effort level chosen by the monopoly public school in that market.66 The effect

of attending a public school that is competing with a charter school (“spillover effect”) for

this student is

∆spill
im = yi,tps,m − ymonoi,tps,m

= Eytps (etps,m, ai, ktps,m) + νyi,tps − Eytps
(
emonotps,m, ai, ktps,m

)
− νyi,tps,mono, (23)

where etps,m is the equilibrium effort level chosen by the traditional public school.

The model provides potential outcomes for all students, so the effects of either treatment

(the direct effect of being in a charter school or the spillover effect from being in a public

school competing with a charter school) can be calculated for any student regardless of

64Obama’s Race to the Top initiative incentivizes states to build and make public statewide school system
administrative datasets.

65In the model section there were no market or time subscripts because the analysis was done within
one market and one time period. I drop the time subscript here to unclutter exposition, but add a market
subscript to make clear comparisons across markets.

66In the model, chosen effort levels are then shocked with an effort productivity shock which I am abstract-
ing from in the current exposition. All simulations reported here incorporate effort productivity shocks.
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choice. Researchers typically focus on mean treatment effects, which are expected values of

∆direct and ∆spill for different (and possibly choice-based) populations of students. Consider

the treatment of attending a charter school. The mean direct effect of treatment on the

treated (direct TOT) is the mean effect of attending a charter school among students who

would choose it.67 In market m, the mean direct TOT is

∆
direct,TOT

m = E
[
∆direct|sim = ch

]
=

∫
∆direct
im fm(aim|sim = ch)daim, (24)

where fm(aim|sim = ch) is the density of ability for students choosing the charter school in

market m, which was derived in model equation (10).68,69 The mean direct effect of treatment

on the untreated (TOU) in m is the mean effect of attending a charter school among students

who would choose the public school, i.e.

∆
direct,TOU

m = E
[
∆direct|sim = tps

]
=

∫
∆direct
im fm(aim|sim = tps)daim, (25)

and the mean direct average treatment effect (ATE) in m averages over all students in the

market ∆
direct,ATE

m = E
[
∆direct

]
=
∫

∆direct
im fm(aim)daim, where fm is the density of ability

in market m. Market mean spillover effects are calculated analogously, substituting ∆spill
im

for ∆direct
im and switching tps and ch for student school choices.

To aggregate treatment effects across markets, I weigh market-level treatment effects by

market size and entry status. For example, the mean direct TOT across all entry markets is

∆
direct,TOT,entry

=
∑
m

1{zm=1}µch,m∆
direct,TOT

m /
∑
m

1{zm=1}µch,m,

where zm = 1 indicates that the charter school has entered m and µch,m is the measure of

students choosing the charter school in m. Other aggregated treatment effects are calculated

analogously.

Researchers who exploit lotteries among applicants to an over-subscribed charter school

compare test scores of students who applied to be in those charter schools and who were

randomized into the charter school with those who were randomized out (therefore attend-

67I refer to the effect of choosing a treatment as treatment on the treated even in the case where a charter
school has not entered (i.e. no students in that market have been treated).

68In the model, the derivation is presented by household distance from both schools, which I abstract from
in the current exposition. All simulations use household distance from schools.

69Note that additive test score productivity shocks average out when computing all mean treatment effects.
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ing the traditional public school competitor). Denote the treatment effect estimated for

household i in such a study as ∆̌direct
im , where

∆̌direct
im = yi,ch,m − yi,tps,m = ∆direct

im −∆spill
im , (26)

i.e. ∆̌direct
im is the difference between the direct and spillover effects of charter school entry

for i. Intuitively, the more a public school changes in response to charter school entry, the

more biased would be the lottery estimate of i’s direct effect of charter school entry. Were

a monopolist public school to drastically change its behavior due to charter school entry

such that ∆spill
im > ∆direct

im > 0, a researcher using a lottery design would surmise that the

treatment effect of being in that market’s charter school is negative for i, even though the

direct effect is positive. Theory gives us no a priori sign on the spillover effect, which means

even of sign this bias cannot be determined without further structure.

Even were there no spillover effect of charter school entry, researchers using lottery meth-

ods have noted that their estimates may not generalize to other existing charter schools or to

charter schools that have not yet opened, if oversubscribed schools are different from those

that are not oversubscribed.70 Later in this section I present evidence that suggests such

results may not generalize to charter schools in other markets.

6.2 Effects of Charter Schools on the Distribution of Test Scores,

1998-2001

Table 11 summarizes mean direct and spillover effects of charter schools on test scores for

different populations of students for the estimation sample, which covers the period 1998-

2001. It also reports the mean bias on the direct effect introduced by using an estimator

that ignores the spillover effect of charter school entry (such as the lottery estimator). All

results are reported in percentages of a standard deviation of the average of math and reading

test scores. The top half of the table (Entry markets) reports results for markets in which

charter schools are operating and the bottom half (Monopoly markets) report what results

would be in those markets in which charter schools are not operating.71 The row within

an entry status indicates which subset of households is being considered: all households

in such markets (ATE), households who would choose charters, or households who would

choose traditional public schools. For example, the number associated with the first column

(∆
direct

) and the row “Attend public” in the top half of the table is the the mean direct effect

70Angrist et al. (2010) note this in their paper on a Massachusetts charter school.
71Although there are no charter schools operating in monopoly markets, the treatment effects are computed

in the event a charter school were to enter and compete with the traditional public school.
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of treatment on the untreated in entry markets, ∆
direct,TOU,entry

, i.e. the mean direct effect

for students who did not choose the charter school, but instead chose the public school, in

markets where charter schools are present.

Table 11: Mean Direct and Spillover Treatment Effects by School Choice in Entry and
Monopoly Markets

Entry markets ∆
direct

∆̌
direct

(∆direct − ∆̌direct) ∆
spill

ATE 0.225 0.212 0.013 0.013
Attend charter 0.246 0.240 0.006 0.006
Attend public 0.222 0.208 0.014 0.014

Monopoly markets
ATE 0.192 0.185 0.007 0.007
Attend charter 0.208 0.208 0.000 0.000
Attend public 0.190 0.182 0.008 0.008

The first column shows the mean direct effect of charter school entry is highest for stu-

dents who choose to attend charter schools in markets in which charter schools are operating,

about 25% of a standard deviation in test scores. The third and fourth columns show the

mean bias induced in the estimation of direct effects by ignoring spillover effects (column

2) and spillover effects of charter school entry, and are therefore equal. The overall amount

of bias introduced by ignoring spillover effects is very small, on the order of (or even less

than) 1% of a standard deviation in test scores. Average treatment effects are much closer

to the estimated effects for students attending public schools because the share of students

attending charter schools is small (about 11% of entry markets). The ATE direct is almost

23% of a standard deviation. This table also shows that there is little evidence of sorting on

ability between charter and public schools in entry markets.

Most of the direct effect comes from charter school technology. The mean test score for

students in entry markets who attend charters is 3.243. If instead I simulate test scores for

the same group of students using charter school inputs and public school technology the test

score is reduced to 3.05. The mean test score is reduced by a much smaller amount if I also

use monopoly public school inputs, to 3.0.

Mean treatment effects are smaller in monopoly markets. The mean direct TOT of

charter schools would be about 4% of a standard deviation lower in monopoly markets than

they were in entry markets. Mean spillover effects are slightly smaller than they would have

been in entry markets. These differences are again driven mostly due to lower levels of public

and charter school inputs chosen in those markets. The average difference in effective inputs,
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Eych(ech, 1, kch)− Eytps(emonotps , 1, ktps), between charter schools and monopolist public school

in entry markets is 0.0886, while the same difference in monopoly markets is 0.072, an 18%

difference.

Although estimated treatment effects are a combination of state-level charter school au-

thorization laws and other institutional characteristics, market- and school-level characteris-

tics, student characteristics, and identification strategy, one may want to compare the results

presented here with those in lottery studies.72 Angrist et al. (2010) find using a lottery on an

oversubscribed Massachusetts KIPP school that students randomized into charters have 0.36

standard deviations higher math test scores and 0.12 standard deviations higher reading test

scores than applicants randomized into competing traditional public schools. The outcome

in this paper is the average of reading and math test score, so their finding of a 24% of a

standard deviation increase in test scores for ∆̌
direct

is similar to my finding of 25%. Again,

they estimate the direct effect of TOT on a selected set of charter school students in one

oversubscribed charter school, which they acknowledge may not generalize to other students

and charter schools in Massachusetts.

6.2.1 Heterogeneity of Treatment Effects by Market

Figure 2 plots mean market-level direct and spillover TOT for all markets, including those

where charter schools are not present. There is substantial variation in mean market-level

direct effects of TOT, although it is simulated to be negative in only a few markets. The

75th percentile mean market-level direct TOT is 0.22, double the 25th percentile value of

0.11. There is relatively much less variation in mean spillover TOT, which is due to the

relative ineffectiveness of public school inputs. Figure 3 is a histogram of mean market-level

direct TOTs. The distribution is quite heterogeneous.

One might expect those charter schools that would benefit students the most would be

in highest demand. Lottery studies basing direct TOT estimates on such charter schools

may therefore by design be considering only certain part of the distribution of charter school

treatment effects. Figure 4 plots mean direct TOT effects for each market as a function of

the measure of students within that market who would choose to attend the charter school

if available. In markets with below-median demand for charter schools (i.e. those with a

below-median measure of students who would choose the charter school, were it to enter),

the mean direct TOT is 16.7% of a standard deviation in test scores, compared with 18.1%

for markets with above-median demand – an 8% difference. This figure shows the difficulty

72Panel data studies such as Hanushek et al. (2007), Sass (2006), and Bifulco and Ladd (2006) effectively
compare differences in growth rates in test scores of students attending and not attending charter schools
and are difficult to interpret in my framework.
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Figure 2: Market-Level Mean TOT Direct vs
TOT Spillover
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in generalizing findings from studies of only very popular (and therefore highly demanded)

charter schools.73

6.2.2 Interpreting the Direct ATE

Upon seeing that the direct ATE is positive on average across markets both with and without

charter schools, and that very few charter schools have negative direct effects on attendant

students, one might be tempted to increase the market share of charter schools. However,

the results from Table 11 are all partial equilibrium in the sense that, even though they

take into account the equilibrium interactions of charter and public schools, both of which

are also taking into account household sorting on ability, the interpretation of the treatment

effects is only valid for an infinitesimal household switching from a treatment school to the

monopolist public school.74 In response to a policy intervention that ignores the general

equilibrium effects of increasing the share of students served by charter schools, I explore

here how making charter schools monopolists, by assigning all students in a market to them

after they have entered, would affect the distribution of student test scores.75 I allow charter

73The finding is qualitatively similar if I plot the market-level direct TOT by the fraction of students
within a market who would attend a charter school.

74Heckman et al. (1998) investigate general equilibrium effects of tuition subsidies, and find that equilib-
rium effects on prices drastically alter their results.

75Taber (2001) considers a similarly extreme counterfactual policy in his study of the rising college wage
premium.
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Figure 4: Mean TOT Direct by Demand for Charter School

● ●

●

●

●
●

●
●●

●

●

●

● ●

●

●●

●

●

●

●

● ●●

●

●

●

● ●

●

●

●

●

●

●

●

● ●●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●●
●●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
● ●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●●

●
●

●●
●

●
●

●
●

●

●

●

●

●

● ●

●
●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

● ●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●
●

●

●

●

●●

●
●

●

●
●

●

●

0.05 0.10 0.15

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Measure of students who would choose charter

TO
T

 d
ire

ct

schools to re-optimize both entry and effort decisions knowing that they will serve all students

in those markets they enter. In this scenario the direct effect of attending a charter school

for student i is defined as ∆direct
im = ymonoi,ch,m − ymonoi,tps,m, where ymonoi,ch,m is the test score for i at a

monopolist charter school exerting effort emonoch,m .

Table 12 compares entry patterns for charter schools under the duopoly scenario and

under the extreme case where they have been forced to serve all students in any markets

they enter. Charter schools enter far fewer markets and are much more likely to enter

markets with higher average test scores in 1997 (which are used to recover market ability

distributions).

Table 12: Fraction of Markets with Entry by 1997 Average Test Score, Partial vs General
Equilibrium

Partial Equilibrium General Equilibrium
Above median y1997 0.059 0.029
Below median y1997 0.063 0.007

Table 13 is a population-weighted presentation of the TOT results from Table 11 for mar-

kets where charter schools are operating.76 The rows indicate the relevant set of students

76I use µm, the measure of students in that market, as weights. The estimation sample used a random
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(those in entry markets, in charter schools or public schools in entry markets, and all stu-

dents). The first two columns are population weighted results from Table 11, with “partial

equilibrium” charter school entry patterns provided by the model as estimated under the

status quo. Within each pair of columns is first a column showing the share of all students

(statewide) in the relevant group and then a column indicating the average increase in test

score resulting from charter school entry for that group. The middle two columns assume

charter schools are now monopolists, but using entry simulated under the duopoly scenario.

The last two columns report results for the model solved when charter schools are both

forced to be monopolists where they enter, and entry patterns are subsequently affected.

Weighing the results of Table 11 by population does not significantly alter the results

(column 1), but due to the very small share of students statewide in charter schools (1.1%),

and fairly small spillover TOT, their overall effect on the test score distribution is negligible.

When charter schools are forced to enter where they would have in the duopoly scenario

(columns 3 and 4), they reduce effort inputs due to large diseconomies of scale in the charter

school effort cost function. This results in average test scores gains of 15% of a standard

deviation, which is lower than the direct ATE in entry markets from Table 11. In the last

two columns, charter schools enter far fewer markets and affect only 2.0% of students, yet

those markets that they do enter have higher mean abilities. This accounts for higher direct

TOT, even though charter school effort drops drastically (from 2.69 to 1.46 hours per week).

Table 13: Population Weighted TOT Effects, Partial vs General Equilibrium

Partial Equil. Entry, Partial Equil. Entry, General Equil. Entry,
Partial Equil. Effort General Equil. Effort General Equil. Effort

Group Share in Group TOT Share in Group TOT Share in Group TOT
Entry markets 0.105 0.042 0.105 0.146 0.027 0.190
Attend charter 0.011 0.254 0.105 0.146 0.027 0.190
Attend public 0.094 0.017 0.000 0.000 0.000 0.000
All markets 1.000 0.004 1.000 0.015 1.000 0.004

sample of students from monopoly markets and therefore needs to be re-weighted appropriately to incorporate
market size heterogeneity.
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6.3 The Effect of Allowing Unlimited Charter School Entry on

Test Scores

I now examine how lifting the cap on the total number of charter schools in North Carolina

would affect the fraction of markets with charter schools and distribution of test scores in

those markets and statewide. Recall from Section 3.2 that I avoid explicitly modeling the cap

on charter schools by estimating the model using data from years well before the statewide

cap in North Carolina started binding. Therefore, I can use the model as it was estimated

and solve it for the years 2002-2005–when the cap was binding in North Carolina–to quantify

the effect of allowing unrestricted charter school entry on the distribution of test scores.

The results suggest the cap on the total number of charter schools in North Carolina

was binding. On average, during 2002-2005 charter schools operate in 15% of markets, up

from 6% for the period 1998-2001. Table 14 shows that the mean direct and spillover TOT

impacts of charter schools in new entry markets are similar to those estimated for the first

four years of charter school authorization. A much larger share of students are now in

markets where charter schools operate (21% up from 11%) and that both TOT are slightly

lower on average than they were for the previous period. The statewide increase in mean test

scores is higher (0.6% of a standard deviation) due to the larger share of students affected

by either treatment.

Table 14: Population Weighted TOT Effects, 2002-2005

Group Share in Group TOT
Entry markets (avg. of direct and spillover TOT) 0.207 0.031
Attend charter (direct TOT) 0.019 0.211
Attend public (spillover TOT) 0.188 0.013
All markets 1.000 0.006

7 Conclusion

I developed and estimated a structural model of charter school entry, student school choices,

and endogenous school inputs. The model fits key patterns in the data. I demonstrate

that both the direct effect and spillover effects of charter school entry are positive, although

the direct effect is much larger than the spillover effect of charter schools on public school

students. The direct effect of charter school entry is quite heterogeneous across markets. I

also estimate that caps on the total number of charter schools were indeed binding, and that
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the test score distribution in new entry markets would be affected in a manner similar to

those entered before caps started to bind.
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A Existence of Equilibrium

The proofs are for the case where there are no productivity shocks to the school’s chosen

effort level. The results go through in the case where there are shocks.

In order to use Brouwer’s Fixed Point Theorem, the pair of best-response functions must

be continuous self-map on a compact and convex set. First, I prove there is a unique best

response of one school to another, then that this best response function is continuous, and

finally apply Brouwer’s Fixed Point Theorem. Note that for this I assume certain restrictions

on the parameter space: a production function with Inada conditions and a convex effort

cost.

Lemma 1. e∗ch = arg max e∈E vch(e|etps, x, θ) is strictly positive.

Proof. First, note that vch(0|etps, x, θ) = δµ,chµch(0, etps|x, θ), where µch(·) ≥ 0. Second,

limech→0
∂vch(0|etps,x,θ)

∂ech
=∞ due to the Inada conditions on the test score production function,

because there will always be some measure of students attending the charter school due to

the preference shocks.

Call v+
ch = max{vch, 0}. Note that v+

c is strictly quasi-concave, due to the strict concavity

of vch when it is above 0.

Lemma 2. The effort set E = [e, ē] is compact.

Proof. Let e = 0. Given any allowable vector of parameters θ there exists ēθ such that

vch(ê) < 0, all ê > ēθ. Let ē = maxθ ēθ. It exists, so the set is not empty.

Lemma 3. γch is continuous

Proof. Berge’s Maximum Theorem (Sundaram (1996)) requires a continuous objective v+
ch,

and compact and upper-hemicontinuous constraint set. Note first that the constraint set,

E, is a fixed connected interval, so it is trivially UHC. v+
ch is continuous, so the Maximum

Theorem says the resulting correspondence which is the argmax of v+
ch is UHC. Because v+

ch is

strictly quasi-concave, there is a unique argmax to v+
ch, which means that γch is a continuous

function.

Lemma 4. There exists an equilibrium to the entry subgame.

Proof. Since Γ (ech, etps|x, θ) = (γch(etps|x, θ), γtps(ech|x, θ)) is a continuous self map on the

compact and convex domain E2, there exists an equilibrium by Brouwer’s Fixed Point The-

orem.
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B Uniqueness of Equilibrium

I cannot prove uniqueness equilibrium in the entry subgame but can rule out multiplicity of

the charter school entry decision, given a unique equilibrium in the ensuing entry subgame.

Lemma 5. There is no multiplicity in the charter school entry decision given uniqueness of

equilibrium in the entry subgame.

Proof. The charter school only receives one shock vtm, which it knows. It enters if and only

if

Eνe
[
v∗ch,tm|νe

]
≥ vtm

where Eνe
[
v∗ch,tm|νe

]
is known since under the assumption of the lemma there is a unique

equilibrium in chosen effort levels of the entry subgame.

Although I do not have a proof that the entry subgame has a unique equilibrium, I have

searched for more than one equilibrium for a wide range of parameter values and have never

found more than one equilibrium in a market. Intuitively, there will not be multiple equilibria

in the entry subgame so long as schools are not too responsive to each other, which may be

satisfied if the effort cost is sufficiently convex. I assume for the sake of estimation that even

if there are multiple equilibria for the entry subgame both schools know which equilibrium

they are in, and that they always play the same equilibrium.

C Construction of Capital Variable

There are several measures of school resources for charter and public schools in the NCERDC

data, but many are missing for many schools – especially charters. Moreover, I do not observe

any school-specific resources for charter schools in markets where there was no charter school

entry, which are an input into the test score production function and are therefore necessary

for calculating the probability of charter school entry in a particular market. Finally, it is

not obvious how the different measures of school resources should enter into the test score

production function. What I need is a way to compute the subjunctive level of capital for

both charter and public schools given information that is always observable for the a market.

Here is how capital is constructed:

1. Convert measures (computers/pupil, teachers/pupil, experienced teachers/pupil) to

percentiles.

2. Average (unweighted) these percentiles into one index for each school.
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3. Regress this index on inflation-adjusted per-pupil expenditures for the public school in

each market, using separate regressions for charter and public schools.

4. Use the predicted value from the above regression as the capital measure for that school

type in that market.

This measure always exists, so long as I have data on the per-pupil expenditures for the

public school in that market.77 The last step obviates my having to integrate over the errors

in the cost functions when solving the charter school’s entry problem. Also, it precludes a

role for charter schools making entry decisions based on unobservable information – that is,

the predicted per-pupil capital levels are no different in expectation in entry and non-entry

markets with the same level of per-pupil expenditures. Although such variation may play a

role in charter school entry, I believe it is second order in understanding charter school entry

patterns. Finally, note that since capital is percentile-based, the model would predict that

rank-preserving changes in the capital distribution would have no effect in the economy.

D Construction of Distance Distribution

I need a distribution of distances for each market in order to solve for the equilibrium of the

entry subgame. There are two steps involved: 1) I discretize the distance distribution and 2)

I model what the distance distribution would be in a market where I do not observe charter

school entry, which is key for evaluating the probability that a charter school will enter a

market.

D.1 Discretization of Distance Distribution

The data provide me with a continuous distribution of student distances, but I discretize

this distribution to avoid making an expensive two-dimensional integration over both ability

and distance for students when computing the value of the school objective functions when

solving for entry subgame equilibria. I allocate each student in every market-time unit to

one of four bins, where each bin represents a different set of distances to charter and public

schools. A student is allocated to a bin if its distance to each school falls within the distance

cut-offs for that particular bin. For example, take a market with 3 students, j, k, and l,

77Details available upon request.
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where the distances ris are

Student ri,ch ri,tps

j 0.5 1.1

k 2 0.75

l 2.5 0.25

I use the the median distance to the public school, 0.75, as the cut-off, so the criteria for the

four bins are
Bin

1 {i : ri,ch ≤ 0.75, ri,tps ≤ 0.75}
2 {i : ri,ch > 0.75, ri,tps ≤ 0.75}
3 {i : ri,ch ≤ 0.75, ri,tps > 0.75}
4 {i : ri,ch > 0.75, ri,tps > 0.75}

The distance vectors and measure of the population in each bin are

~rch = [ −, 2.25, 0.5, − ]

~rtps = [ −, 0.50, 1.1, − ]

~µ = [ 0, 2
3
, 1

3
, 0 ]

where I average over all the students in a bin to obtain the distance vector for that bin. For

example, there are no students within 0.75 km from both the charter and public school, so

the first entry in ~µ is 0, and the first entries of ~rch and ~rtps are undefined. There are two

students (k and l) more than 0.75 km from the charter school and within 0.75 of the public

school, so the second element of ~µ is 2/3, and the average distance of students in the second

bin from the charter school is 2.25, while the average distance for students in the second bin

from the public school is 0.5 km.

D.2 Model for Distance Distribution

As with capital, I need to know what the distance distribution would be for all markets in

order to calculate the value the charter school would expect to obtain upon entry, which

then enters the expression for probability of entry. I first regress elements of ~rch and ~rtps

and ~µ on a 2-bin distribution (fraction of students within median distance to the public

school and further than median distance to the public school, and average the distance for

within-median and beyond-median students) for public schools in markets where I observe

charter school entry. I then normalize the elements of the predicted fraction of students in

each bin to sum to 1 for each market. I use the relationship as the distance distribution for

all markets because the 2-bin distribution for distance to the public school is available in all
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markets.

D.3 Discussion of My Assumptions about Distance

First, this in no way helps explain why charter schools locate where they do within a district.

In the data, they are, on average, however, further than public schools for most students

within a district. This may be so because districts are designed around public schools,

meaning charters may be relegated to locations not at the center of population mass.

Second, I could have had the schools integrate over the pair of continuous distance distri-

butions when solving their problems, but I discretize it when solving their problems because

I have to solve for the ability distribution for every point in the distance distribution.

Third, note that I assign all students in markets where charters do no enter the same

distance to the charter school, because otherwise this argument is missing. This simplification

does not effect the estimation, since within those districts, I do not observe students attending

charters (since there are no charters). What matters in such districts is the probability of

charter school entry, which is a function of the distribution of student distances for public

schools and charters. I could alternatively have given the charter schools the same distance

distribution as public schools when I do not observe charter school entry. Although simpler,

this may introduce a bias in the estimation of the charter school operating cost distribution,

because in the data charters are on average further from students than public schools.

Finally, note that, similar to my treatment of capital, these assumptions do not allow

schools to select districts based on unobservable information about distance. This may be

interesting, but it is not a first-order consideration because I am using distance as a demand

shifter for student school choice, and my model picks up many other determinants of charter

school entry.

E Nonparametric Identification of Market Ability Dis-

tributions

I now prove that the unobservable market-level ability distributions are non-parametrically

identified, given the public school’s test score production function. Recall that no charter

schools were open in 1997, so all students in all markets attended monopolist public schools

in that year. The test score production function for public schools in market m in 1997 is

yi,tps,1997,m = ai

(
αtps(e

o
tps,1997,m)βtps + (1− αtps)kβtpstps,1997,m

)τtps/βtps︸ ︷︷ ︸
x1997,m

+νyi,tps,1997,m
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where x1997,m > 0 is a known constant given production function parameters and inputs

eotps,t,m and ktps,t,m. The ex-post productivity shock νyi,tps,t,m is assumed to be distributed

independently from student ability and school inputs. This latter assumption is innocuous:

even were households of different ability levels to differentially sort on test score shocks

when charter schools were present there was no school choice in 1997. Let f y1997,m denote the

observed distribution of yi,tps,1997,m and fνy denote the distribution of νy.

The problem is that ability is unobserved and each market’s distribution of ability is a

primitive of the model. The above equation can be re-written as

ai =
yi,tps,1997,m

x1997,m

−
νyi,tps,1997,m

x1997,m

which is simply the sum of two independent random variables with known distributions

derived by dividing through by the known constant x1997,m: f
y|x1997,m

1997,m and fνy |x1997,m . The

sum can therefore be expressed as a convolution of
yi,tps,1997,m

x1997,m
and −νyi,tps,1997,m

x1997,m

fam(ai) =

∫ ∞
−∞

f
y|x1997,m

1997,m (ai − ε)fνy |x1997,m(ε)dε

which is computable once I assume a distribution for νy.78 These non-parametric market

ability distributions could then be recovered within the estimation algorithm that maximizes

the likelihood over (in part) public school test score production function parameters.

F Sample selection

Tables 15 and 16 compare selected variables for the full sample and estimation samples.

The means of most variables for public schools in the full and estimation samples are quite

similar. In both the full and estimation samples, markets with charter schools have higher

fractions of Black and Hispanic students, yet charter schools have lower fractions of both

types of students relative to public schools in such markets. In both samples, female students

comprise a smaller share of students at charter schools than they do for both types of public

schools, and students attending charter schools are much more likely to have had at least

one parent who has attended at least some college than students at either type of public

school (in the estimation sample, 75% for charter schools versus 60% for public schools in

markets with charters and 43% for public schools in markets without charters).

Table 17 shows that the sample restrictions do affect the test score distribution. In

78I assume νy is normally distributed.
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Table 15: Summary Statistics for Full Sample

All Markets Markets Markets
N with Charters without Charters
N Charter N Public N Public N

Markets1 1913 98 1785
Ethnicity

White 63.45 644300 61.75 4689 53.52 38214 64.22 601396
Black 29.44 298955 30.93 2349 37.89 27054 28.78 269552
Hispanic 3.08 31274 1.25 95 4.31 3077 3 28103
Other 4.03 40925 6.07 461 4.28 3056 4 37464

Female 49.09 1015511 46.93 7594 49.53 71402 49.07 936515
% Parent College 47.92 1015365 70.11 7591 56.92 71373 47.06 936401
Grade 6.97 1015511 6.81 7594 6.94 71402 6.97 936515
% Attending 0.75 1015511 1 7594 0 71402 0 936515
Charter
% With Charter 7.78 1015511 1 7594 1 71402 0 936515

in Market
1 These are market-time periods.

Table 16: Summary Statistics for Estimation Sample

All Markets Markets Markets
N with Charters without Charters
N Charter N Public N Public N

Markets1 1913 98 1785
Ethnicity
White 62.82 92080 68.40 3359 56.07 35443 67.85 53120
Black 30.02 44000 25.23 1239 36.47 23052 25.17 19709
Hispanic 2.74 4016 1.34 66 3.26 2064 2.40 1882
Other 4.43 6492 5.03 247 4.20 2657 4.58 3583
Female 49.62 146588 48.61 4911 50.33 63216 49.08 78294
% Parent College 51.48 146563 75.22 4911 60.07 63216 43.04 78276
Grade 6.89 146588 6.80 4911 6.97 63216 6.84 78294
% Attending 3.37 146588 1 4911 0 63216 0 78294
Charter
% With Charter 46.59 146588 1 4911 0 63216 0 78294

in Market
1 These are market-time periods.
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Table 17: Test Score Distribution for Full and Estimation Samples by Market and School
Type

Full Sample Estimation Sample
Entry Mean SD N Mean SD N
Charter 2.975 0.974 7376 3.1370 0.938 4941
Public 3.032 0.995 67219 3.0754 0.990 63216
No Entry
Public 3.002 0.933 893413 3.0278 0.915 65085

particular, removing students who attended a public school outside their market increases

the average test score for students attending charter schools.79 About 20% of excluded

students are from one charter school.

One concern with this restriction is that I am excluding charter school students who

on average have lower test scores, which affects both mean ability of students at charter

schools and school effort decisions. My estimation procedure may in effect be using an

ability distribution of students that is different than that in the population. This does not

in principle induce a bias in my estimates of test score production technologies at charter or

public schools, because so long as I adequately control for student ability in the estimation

of test score production functions those technology parameters will remain unbiased. School

objective parameters may in principle be affected by the fact that I am removing attendant

students from estimation and from the school decisions problems. This may not be a large

effect, however, as charter schools have on average 18% of their students attending from

outside their designated markets. Finally, note that the treatment effect of charters is positive

so long as effective charter inputs are higher than effective monopoly inputs.80

So as long as I have correctly estimated school effort choices and effective school inputs to

test score production, changes in the student ability distribution will change the scale of the

direct TOT but not alter its direction, so long as mean ability for students attending charter

schools is positive. If the treatment effect is positive, a lower mean of the charter school stu-

dent ability distribution would only diminish the total treatment effect, resulting in upwards

bias from excluding lower ability students. I solve for the direct treatment effect on excluded

students attending charters by aggregating them into one synthetic market, recovering that

79Note that the extent of the bias induced by using a subset of charter school students cannot be derived
from simple comparisons of the mean test scores of charter and public schools in entry markets. What
matters is instead the ability distribution of excluded households.

80I define “effective inputs” as the expected test score at a school for student with ability 1, i.e.

ωs
(
αs(e

o
s)
βs + (1− αs)kβs

s

)τs/βs
. Differences in student ability exacerbate differences in effective inputs

between schools.
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market’s ability distribution in a manner similar to Section 4.2.1, and computing treatment

effects as I did in Section 6. The treatment effect on excluded students is 22% of a standard

deviation in test scores, which brings the treatment effect over all charter school students

down from 25% of a standard deviation to 23% of a standard deviation.81

81Details available from author upon request.
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