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Abstract. We propose Monte Carlo Markov Chain (MCMC) methods for estimation and in-

ference in incomplete game-theoretic models with a particular focus on settings in which only a

small number of observations for a given type of game is available. In particular we do not assume

that it is possible to concentrate out or estimate consistently an equilibrium selection mechanism

linking a parametric distribution of unobserved payoffs to observable choices. The algorithm de-

veloped in this paper can in particular be used to analyze structural models of social interactions

with multiple equilibria using data augmentation techniques. This study adapts the multiple

prior framework from Gilboa and Schmeidler (1989) to compute Gamma-posterior expected loss

(GPEL) optimal decisions that are robust with respect to assumptions on equilibrium selection,

and gives conditions under which it is possible to solve the GPEL problem using one single

Markov chain. The practical usefulness of the generic MCMC algorithm is illustrated with an

application to revealed preference analysis of two-sided marriage markets with non-transferable

utilities.
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1. Introduction

The defining feature of economic models of social interactions is that individuals’ payoffs are

affected by other agents’ actions. Relevant examples include models of firm competition, network

formation, matching markets, or individual choice in the presence of social spillovers.

As has been noticed in the literature, this interdependence raises two important practical prob-

lems for estimation of structural parameters in this context: for one, standard economic solution

concepts - as e.g. Nash equilibrium or match stability - may allow for multiple solutions of the

model for a given set state of nature (including both observable and unobservable characteris-

tics). In addition, even when a likelihood of the structural model is defined, interdependencies

between individual actions and preferences often make it very difficult to evaluate a likelihood

of a structural model directly, especially in models with a large number of participants.
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Even though in general observed outcomes of a game are informative about the equilibrium

selection rule that generated the data, there are many settings in which it cannot be estimated

consistently under realistic sampling assumptions. For one, we may in some cases only observe

a very small number of instances of a game (e.g. realization of a network or marriage market),

furthermore, if the game has a large number of players or rich action spaces, the number of

potential equilibria may be very large, so that a very rich parameter space would be needed

to characterize the equilibrium selection mechanism. Finally the researcher may in general be

reluctant to impose too many restrictions across observed instances of the game if equilibrium

selection may be related to a very rich set of other explanatory variables.

We can view the difficulty in dealing with the unknown equilibrium selection rule with a small

number of observations of a game as an instance of the incidental parameters problem (Neyman

and Scott (1948)). Most of the recent frequentist approaches to the problem concentrate out the

nuisance parameter explicitly or in other cases implicitly as we will argue in section 2, see e.g.

Chen, Tamer, and Torgovitsky (2011), Galichon and Henry (2011), and Beresteanu, Molchanov,

and Molinari (2009). Imposing a specific prior or parametric distribution over equilibrium selec-

tion rules will in general require that we solve for all equilibria of the game, and any particular

choice will in general be difficult to justify on economic or statistical considerations.

Instead we opt for a robust Bayes approach which is conservative with respect to the nuisance

parameter. More specifically we consider decisions that are optimal with respect to Gamma

posterior expected loss with respect to a class of priors over the equilibrium selection rule. A

computational advantage arises from that evaluation of robust criteria often only depends on

particular ”extremal” points in the parameter space for the nuisance component. In particular,

the methods considered in this paper require only verification of stability and uniqueness condi-

tions instead of finding the full set of equilibria for a given realization of payoffs. However, the

simulation methods described in this paper can also be adapted for a concentrated likelihood

approach.

The main aim of this paper is to propose an approach that exploits some of the practical

advantages of Bayesian computation - especially the use of MCMC simulation techniques - while

maintaining a full set of likelihood functions arising from different selection rules for selecting

from a multiplicity of predictions of the economic model. An important motivation for a Bayesian

approach to structural estimation is that it often leads to computationally attractive procedures,

especially in the context of latent variable models, see e.g. Tanner and Wong (1987), McCulloch

and Rossi (1994), and Norets (2009). In particular, multi-stage sampling techniques and data

augmentation procedures can simplify the evaluation of complex likelihood functions, especially

if a closed form of the model is only available conditional on a latent variable.

As a motivating empirical application, we consider revealed-preference analysis in a model of

a two-sided marriage market, where the observed marriages are assumed to constitute a stable

matching as in the theoretical analysis of Gale and Shapley (1962). This model has previously
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been analyzed by Logan, Hoff, and Newton (2008), and the procedure proposed in this paper

leads to a modification of their approach which accounts for the multiplicity of stable matchings.

In general the matching market model without transferable utilities will not be point-identified

unless we impose a rule for selecting among multiple stable matchings.

Structural models of social interactions have been considered in many contexts in economics,

prominent examples are firm entry decisions in concentrated markets (e.g. Bresnahan and Reiss

(1990) and Ciliberto and Tamer (2009)), firm mergers (Fox (2010)), neighborhood effects and

spillovers (see Brock and Durlauf (2001) and references therein), or network formation (Chris-

takis, Fowler, Imbens, and Kalyanaraman (2010)). Many of these models have the structure

of a simultaneous discrete choice model which was first analyzed by Heckman (1978). A cen-

tral difficulty in many of these models is the existence of multiple equilibria, that is a failure

of the solution concept used for the econometric model to generate a unique prediction given

the underlying state of nature (see e.g. Jovanovic (1989),Bresnahan and Reiss (1991a),Tamer

(2003)). Bajari, Hong, and Ryan (2010) analyze identification and estimation of an equilibrium

selection mechanism for a discrete, complete information game where all equilibria are computed

explicitly.

Some of the most influential papers in the recent literature on games estimate structural pa-

rameters by only imposing best response or other stability conditions that are only necessary but

not sufficient for determining the observed profile of actions (most importantly Pakes, Porter, Ho,

and Ishii (2006) and Fox (2010)). In the framework of this paper, this approach can be loosely

interpreted as estimation based on the upper probability, or alternatively, the most favorable

equilibrium selection mechanism for generating the observed market outcome. A potential ad-

vantage for following a (computationally more cumbersome) procedure based on a full likelihood

rather than a moment-based method is that it becomes more natural to incorporate a paramet-

ric model for unobserved heterogeneity and link the structural parameters in payoff functions to

empirical counterparts like choice probabilities or substitution elasticities.

Logan, Hoff, and Newton (2008) estimate a model for a matching market, and Christakis,

Fowler, Imbens, and Kalyanaraman (2010) use MCMC techniques to estimate a model of strategic

network formation, but do not explicitly account for the possibility of multiple equilibria. The

matching market model analyzed in this paper is different from that in Fox (2010) and Galichon

and Salanié (2010) in that I do not assume transferable utilities, so that stable matchings do not

necessarily maximize joint surplus across matched pairs. Another approach by Echenique, Lee,

and Shum (2010) considers inference based on empirical implications of an aggregate matching

model.

There is a vast literature on robustness for Bayesian decisions with respect to prior information,

see e.g. Kudō (1967), Berger (1984), and Berger, Insua, and Ruggeri (2000) and references

therein for an overview. Robust approaches to decisions under Uncertainty have also been

used in prescriptive analysis of economic decisions and modeling of individual choice behavior,
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see e.g. Gilboa and Schmeidler (1989), Hansen and Sargent (2008), Strzalecky (2011), and

references therein. We are going to cast the statistical problem of estimation and inference in

the maxmin expected utility framework with multiple priors proposed by Gilboa and Schmeidler

(1989) which can be interpreted as reflecting a group decision among agents with different prior

beliefs, or representing true ambiguity - as opposed to risk - regarding the choice of a correct

model for the observed data on the true state of nature. Kitagawa (2010) analyzes Gamma-

posterior expected loss and Gamma-minimax decisions for partially identified models based on

the posterior distribution for a sufficient parameter and an inverse mapping from this sufficient

parameter to the ”structural” parameters of interest. In contrast the approach taken in this

study does not presuppose such a formulation for the statistical decision problem but sets up

the decision problem by parameterizing explicitly the ”completion” of the model without placing

any restrictions on the prior over this auxiliary parameter.

While this paper is mainly aiming at providing computational tools, the question of optimal

decisions in incompletely specified models is an important area of research of its own right. For

example Manski (2000), and subsequently Stoye (2009) and Song (2009) consider settings that

are not point-identified from a frequentist’s perspective and analyze optimal point decisions and

inference. Liao and Jiang (2010) imposed a specific prior on the unspecified component of the

model. Moon and Schorfheide (2010) consider Bayesian inference when the decision maker has a

prior for the parameter of interest, but maintains a set of models for the data-generating process.

They point out that for large samples, Bayesian credible sets will typically be strict subsets of

the identification region. Our procedure is going to share that feature since we assume a prior

over the structural parameter.

The next section characterizes a class of statistical decision problems arising in estimation

and inference with incomplete models, and discusses optimal statistical decisions using Gamma-

posterior expected loss (GPEL). Section 3 proposes a generic algorithm for simulating the integral

corresponding to GPEL and establishes consistency for GPEL-optimal decisions, and section 4

shows how to incorporate independence restrictions in the class of priors. In section 5 we illustrate

the practical usefulness of our method with an empirical analysis of mate preference parameters

based on marriage outcomes in a two-sided matching market. Section 6 concludes.

2. Equilibrium Selection and Likelihood

This paper considers structural latent variable models that may be incomplete in the sense

that for some states there is no well-defined reduced form for the observable outcomes in that

the model does not map each state to a unique observable outcome. We observe M instances of

the game (”markets”), i.e. an element y = (y1, . . . , yM) of the sample space Y = Y1 × . . . ,YM ,

where ym ∈ Ym contains information about players’ characteristics and other payoff-relevant

information as well as the actions chosen by the players in the mth instance of that game. More

specifically we let the data be of the form ym = (s′m, x
′
m), where given the action space for the
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mth market Sm, sm ∈ Sm is the observed action profile in game m, and xm is a vector of observed

agent- and game-level covariates. For the purposes of this paper, we restrict our attention to the

case in which Sm :=
{

s
(1)
m , . . . , s

(pm)
m

}

is finite and denote the number of action profiles for the

mth game with pm := ♯Sm.

For the mth game, suppose there is a set Nm of nm players, and we denote player i’s pay-

off from action profile sm ∈ Sm with Umi(sm). We stack the vector of payoffs as Um :=

(Um1(s1), . . . , Umnm
(s1), . . . , Um1(spi), . . . , Umnm

(spi)) and denote the payoff space for the game

Um ⊂ Rnmpm. We assume a parametric model for the distribution of Um

Um ∼ gm(u|xm, θ)

where θ ∈ Θ is a k-dimensional parameter. Let ∆Sm ⊂ [0, 1]pm be the set of probability distri-

butions over Sm, so that an equilibrium selection rule for game m corresponds to a measurable

map

λm :

{

Um → ∆Sm

u 7→ λm(u) =
(

λm(u, s
(1)
m ), . . . , λm(u, s

(pi)
m )

)′

Denoting the set of Nash equilibria for a given payoff profile u with S∗
m(u) ⊂ Sm, the parameter

space for λ := (λ1, . . . , λM)′ is given by

Λ :=
{

λ : λm(u, s
(p)
m ) = 0 if s(p)m /∈ S∗

m(u), for all u ∈ Um, p = 1, . . . , pm, and m = 1, . . . ,M
}

Then the likelihood of y = y1, . . . , ym can be written as

f(y|θ, λ) =
M
∏

m=1

(
∫

Um

λm(u, sm)gm(u|xm, θ)du

)

h(x)

where h(x) is the joint density of x1, . . . , xM . The resulting family of distributions of y is indexed

by two parameters, the parameter of interest θ ∈ Θ which will be taken to be a k-dimensional

vector, and we also parameterize the model incompleteness with λ ∈ Λ, a general parameter

space depending on the particular problem at hand. Hence for any fixed value of λ we have a

fully parametric likelihood, i.e. there is a set of distributions that is indexed with (θ, λ),

y ∼ f(y|θ, λ) θ ∈ Θ, λ ∈ Λ (2.1)

Note that in this formulation, there is no formal difference between the roles of θ and λ. However

in the following, θ will be the parameter of interest for which we specify a prior that does not

depend on λ, whereas λ will be treated as nuisance parameter for which we do not want to

impose a specific prior, but only a number of restrictions on its parameter space Λ.

In order to develop the main ideas, we will first consider the bivariate game with stochastic

payoffs developed in Tamer (2003).

Example 2.1. (Bivariate Game) Suppose there are two players, each of whom can choose from

two actions, s1 ∈ {0, 1} and s2 ∈ {0, 1}, and players’ payoffs are given by ui(s1, s2) = (x′iβ +
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∆is−i + εi)si for i = 1, 2, where (ε1, ε2) ∼ N(0, I). It is possible to verify, along the lines of the

argument in Tamer (2003), that for ∆1∆2 ≤ 0, the equilibrium is unique for any realization of

(ε1, ε2), whereas if ∆1∆2 > 0, there is a rectangular region in the support of the random shocks

for which there are three equilibria.1 If equilibrium selection is assumed not to depend on payoffs

and covariates, Λ is the probability simplex D3 :=
{

(λ1, λ2, λ3) ∈ [0, 1]3 :
∑3

k=1 λk = 1
}

. More

generally, an equilibrium selection rule will be given by λ : X1 × X2 × R2 → D3, specifying the

probability of either of the pure equilibria for each payoff profile in the region of multiplicity for

the cases ∆1,∆2 > 0 and ∆1,∆2 < 0, respectively.

2.1. Upper and Lower Likelihood. Of particular interest are the upper and the lower likeli-

hood of the sample y, which we define as

f ∗(y|θ) := sup
λ∈Λ

f(y|θ, λ), and f∗(y|θ) := inf
λ∈Λ

f(y|θ, λ)

respectively. Furthermore let λ∗(θ; y) ∈ argminλ∈Λ f(y|θ, λ) and λ∗(θ; y) ∈ argmaxλ∈Λ f(y|θ, λ).

Since the dimension of Λ may be infinite, these extrema need not always exist, but we will

show how to construct the upper and lower likelihoods for some classes of problems, and assume

existence for our formal results.

Example 2.2. We will now use the bivariate game from Example 2.1 to illustrate our general

approach to simulating upper and lower probabilities in latent variable models with set-valued

predictions. As figure 2.2 illustrates, the distribution of the latent states conditional on the

observed outcome changes according to how nature selects among the multiple predictions of the

model if the latent utilities fall into the intersection of the shaded areas corresponding to the

outcomes (0, 1) and (1, 0).

If we leave the equilibrium selection rule across the n instances of the game unrestricted, then

we can obtain the bounds on the likelihood by considering only the two extremal points of the set Λ:

(i) the ”most favorable” selection mechanism in which nature produces the observed outcome if it

constitutes one out of possible many equilibria given the realization of (ε1, ε2), and (ii) the ”least

favorable” selection rule in which nature chooses any other possible equilibrium over the observed

outcome. E.g. if our data set records the outcome (1, 0), then a simulation rule based on the first

selection rule allows for all points in the state space for which (1, 0) is a Nash equilibrium (i.e.

the shaded rectangle in the left graph in Figure 3), whereas in the second case we only consider

states for which (1, 0) is the unique Nash equilibrium, excluding the region of multiplicity.

This example shows that instead of having to consider the class of all possible selection mech-

anisms which may be difficult to parameterize, it is in many cases sufficient to simulate from

distributions that correspond to the lower and the upper probabilities for the observed outcomes,

1If ∆1,∆2 > 0, the region of multiplicity takes the form of ”battle of the sexes” with the pure equilibria (0, 0), (1, 1)
and a mixed equilibrium. For ∆1,∆2 < 0, the region of multiplicity consists of games that are strategic equivalents
of ”chicken” with pure equilibria (0, 1), (1, 0) and one mixed equilibrium.
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ε2

ε1

(1,1)(0,1) (1,1)

(1,0)

(0,0)

Figure 1. Pure Nash equilibria in the bivariate discrete game

(1,1)

(1,0)

(0,1)

(0,0)

ε2

ε1

(1,1)

(1,0)

(0,1)

(0,0)

ε2

ε1

Figure 2. Most and least favorable equilibrium selection with respect to the
outcome (1, 0) given the unobserved state

which correspond to the probability bounds derived in Ciliberto and Tamer (2009). Clearly, this

particular problem is fairly basic, and there is no compelling reason to favor the use of simulation

techniques over explicit evaluation of the relevant choice probabilities in this case - e.g. Ciliberto

and Tamer (2009) estimated a six-player version of this game for the US airline market using a

minimum distance approach.

Another way to interpret the role of the equilibrium selection mechanism in estimation is that

the most favorable selection rule generates the observed outcome whenever the (necessary) Nash

conditions hold. Hence the upper probability results from imposing the same set of stochastic

restrictions that have been used in moment-based estimation of games, most importantly Pakes,

Porter, Ho, and Ishii (2006) and Fox (2010), but also in work following a Bayesian approach

Christakis, Fowler, Imbens, and Kalyanaraman (2010) and Logan, Hoff, and Newton (2008).
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Especially the last approach can be directly interpreted as conducting inference based on the

concentrated likelihood with respect to the equilibrium selection rule.

2.2. Exchangeability. We will now discuss a particular type of restrictions on the likelihood

that reflect a particular kind of symmetry among different components of the observable data

from the econometrician’s point of view. For one, the identity of individual agents in a game may

be unknown or irrelevant from the econometrician’s point of view, so that the likelihood f(y|θ, λ)

should be invariant under permutations of, or within subsets of, the set of agents for each instance

of the game. On the other hand, we may want to treat different instances y1, . . . , yM of the game

as exchangeable.2

More specifically, let N := {(m, i) : m = 1, . . . ,M ; i = 1, . . . , nm} be the index set for the M

games and nm players in the mth market. Now let σ denote a permutation of N , and we let

Σ∗ denote the set of permutations σ such that the model is invariant with respect to σ in the

following sense:

Assumption 2.1. (Exchangeability) There is a set of permutations Σ∗ of the set N such that

for all λ ∈ Λ and σ ∈ Σ∗, there exists λσ such that f(y|θ, λ) = f(σ(y)|θ, λσ).

Note that this is an invariance property for the family of models {f(y|θ, λ)}λ∈Λ as a whole,

and is also substantially weaker than exchangeability for every λ ∈ Λ.

Many previous papers in the literature on estimation of games have assumed that the observed

sample consists of i.i.d. draws of markets (see e.g. Ciliberto and Tamer (2009), Galichon and

Henry (2011) and Beresteanu, Molchanov, and Molinari (2009)), which implies exchangeability

of observed instances of the game. If the econometric analysis doesn’t distinguish between

individuals players’ identities, then Σ∗ contains all permutations of agents within a given market.

For example, Bresnahan and Reiss (1991b) treat potential entrants in a game of market entry

with Cournot competition as symmetric so that for the purposes of the econometric analysis, the

number of market entrants is a sufficient statistic for the actual equilibrium played in the game.

In order to impose the symmetry implied by the permutations in the set Σ∗ for any equilibrium

selection rule λ ∈ Λ, our analysis will be based on the invariant likelihood, which we define as

finv(y|θ, λ) :=
1

|Σ∗|

∑

σ∈Σ

f(σ(y)|θ, λ) =
1

|Σ∗|

∑

σ∈Σ∗

∫

U

λ(u; σ(s))g(u|σ(x), θ)duh(x) (2.2)

In practice the number of permutations |Σ∗| can be very large, so that we may choose to approx-

imate the average in (2.2) by an average over several random draws from a uniform distribution

over Σ∗. We can now define the upper and lower invariant likelihood, respectively, as

f ∗
inv(y|θ) = sup

λ∈Λ
finv(y|θ, λ), and finv,∗(y|θ) = inf

λ∈Λ
finv(y|θ, λ) (2.3)

2Recall that for a random sample Z = (Z1, . . . , Zn) with joint distribution f(z1, . . . , zn),
we say that zi and zj are exchangeable if f(z1, . . . , zi−1, zi, zi+1, . . . , zj−1, zj , zj+1, . . . , zn) =
f(z1, . . . , zi−1, zj , zi+1, . . . , zj−1, zi, zj+1, . . . , zn).
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In particular, the upper invariant likelihood is given by

f ∗
inv(y|θ) =

1

|Σ∗|

∫

U

v(u, σ, y)du

where for S̃(s,Σ∗) := {s ∈ S : ∃σ : σ(s̃) ∈ S∗(u)},

v(u, σ, y) := max
s̃∈S(s,Σ∗)

∑

σ:σ(s)=s̃

g(u|σ(x), θ)1l{σ(s) ∈ S∗(u)}

, and we take the minimum and the maximum over an empty set to be equal to zero since if

u does not support the equilibrium s, it does not contribute to the likelihood. Hence if for all

u ∈ U we have S(u) ⊂ {σ(s) : σ ∈ Σ∗}, and in the absence of agent-specific covariates, the

invariant likelihood ratio between the most and least favorable model is equal to 1 so that the

invariant likelihood finv(y|θ, λ) is the same for all λ ∈ Λ despite the multiplicity of equilibria.

For example in the symmetric entry game considered by Bresnahan and Reiss (1991b), for

every payoff profile u the number of entrants is the same for all equilibria in S∗(u) implying

S(u) ⊂ {σ(s) : σ ∈ Σ∗}. Furthermore there are market-level but no firm-specific characteristics,

so that the invariant likelihood is uniquely defined and inference is not conservative with respect

to equilibrium selection.

As in the baseline case, the maximization and minimization, respectively, in (2.3) can be

done pointwise given the draws of u and the corresponding likelihood ratios g(u|σ(x),θ)
g(u|x,θ)

, and for

a Gaussian conditional distribution, this results in a constrained quadratic assignment problem

which is in general known to be NP-hard but a solution to which can be approximated in

polynomial time, and some special cases have solutions that are easier to compute.

Example 2.3. (Binary Action Game with Exchangeable Agents) Let ym be an observa-

tion of a game with nm players, each of whom can choose an action si ∈ {0, 1}. Suppose the dif-

ference in player i’s payoff from choosing action si = 0 is normalized to zero, and her payoff from

choosing si = 1 is given by ui = µ(xi, θ)+∆
∑

j 6=i sj+ εi, where εi, i = 1, . . . , nm are independent

draws from a standard normal distribution. Then if Σ∗ allows for all permutations of {1, . . . , nm},
the permutations σ∗ := argmaxσ(s)∈S∗(u) g(u|σ(x), θ) and σ∗ := argminσ(s)∈S∗(u) g(u|σ(x), θ) are

given by a (ascending and descending, respectively) assortative matching of ui −∆
∑nm

j=1 sj with

the conditional means µ(xi, θ) subject to the Nash conditions. The computational complexity of

sorting the observations is of the order O(nm log nm), and the cost of finding the optimal assign-

ment based on an ordered list is linear in nm.

In section 5, we will describe a procedure for sampling from a posterior with respect to the

upper and lower invariant likelihoods in more detail for the problem of structural estimation of

matching markets.

The invariant likelihood ratio, or its logarithm

LRinv(θ) := log f ∗
inv(y|θ)− log finv,∗(y|θ)
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is not only useful for the methods considered in this paper, but the likelihood ratio statistic

LRinv(θ) may be of interest for frequentist inference in settings for which it is not possible to

concentrate out the equilibrium selection rule consistently - e.g. when only one realization of

a game with a large number of players is observed. Note that by de Finetti’s theorem, infinite

exchangeable sequences can be represented as i.i.d. conditional on a common sigma-algebra F∞,

so that for a fixed selection rule λ conditional LLNs and CLTs can be obtained using martingale

convergence theory, see Loève (1963). This sigma-algebra may in general contain information

about the equilibrium selection rule, so it is not obvious whether exchangeability of individual

players can justify inference based on a concentrated likelihood alone. However establishing

procedures for construction of critical values and a frequentist asymptotic theory for inference

based on LRinv(θ) under appropriate exchangeability conditions is beyond the scope of this paper

and will be left for future research.

There are two potential limitations to the approach in this paper: for one it may be very

difficult to verify or impose uniqueness of an equilibrium for a given realization of payoffs. For

games with strategic complementarities, uniqueness of a given equilibrium can be verified sys-

tematically by checking whether tâtonnement from both the supremum and the infimum of the

strategy set converges to the same profile (see e.g. Theorem 8 in Milgrom and Roberts (1990)).

For the two-sided matching market model considered in our empirical application, we can exploit

the structure of the problem in a very similar fashion and check whether the stable matching is

unique using the deferred acceptance algorithm (see section 4 of this paper). However in general

an efficient implementation of our method will require a good understanding of the structure of

the economic model to find such shortcuts.

The other potential pitfall of the procedure arises from the maximization step in the definition

of (3.1): if the likelihood of the observed outcome, f(y|θ, λ), varies too much between the most

and least favorable selection rule λ∗ and λ∗, respectively, then the simulated approximation to

GPEL will put nonzero weight only on a small fraction of the simulated sample of parameter

values, so that the effective number of simulation draws can be very small. This is reflected in the

requirement of Assumption 4.3 below, which restricts the range of likelihood ratios for different

values of λ ∈ Λ to be uniformly bounded in θ. If the probability of the observed equilibrium

being unique is very small relative to the probability of the outcome being an equilibrium, the

bounding constant in that assumption would have to be chosen very small and likely lead to a

poor performance of the simulation algorithm.

Both issues are particularly relevant for ”large” models of social interactions, but it should

be expected that alternative approaches would be affected by these problems to a comparable

degree.
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3. Robust Decision Rules

We consider the problem of a decision-maker who takes an action after observing a sample y,

and who is concerned whether a statistical decision is robust with respect to her beliefs about

the model incompleteness λ ∈ Λ. The literature on Bayes decisions has proposed a number of

optimality and evaluative criteria that capture various notions of local and global robustness

(see e.g. Berger (1985) for a discussion). The main focus of this paper is on a class of statistical

decision rules that minimize Gamma-posterior expected loss, a modification of Bayes risk that is

globally robust with respect to the model incompleteness. This approach will allow us to exploit

some computational advantages of Bayes procedures without imposing priors on how the model

incompleteness is resolved in the observed sample.

We will now develop the decision-theoretic framework motivating the main simulation proce-

dure, and we will in general follow the exposition from Ferguson (1967); for a general treatment

of the standard Bayesian framework, see also Berger (1985): The action space A is the set of

actions available to the decision maker, where for example for the construction of confidence sets

for the parameter θ, the action space is a suitable collection of subsets of Θ, or for the estimation

of lower bounds for a component of θ, A is a subset of the real line. A (deterministic) decision

rule d : Y → A prescribes an action a for every point y in the sample space.

Finally we have to choose a loss function L : Θ× A → R to evaluate an action a ∈ A if the

true parameter is θ. In particular, we will assume that the decision maker’s objective does not

depend on the ”true” value of the nuisance parameter λ. I will now give a few examples of loss

functions corresponding to some important statistical problems in estimation of bounds and set

inference.

Bounds on the Posterior Mean. Let b ∈ Rl. For an l-tuple r = (r1, . . . , rl) of indices in {1, . . . , k},
let θ(r) be the subvector (θr1 , . . . , θrl)

′ of components of θ corresponding to the indices in r. Then

the loss function corresponding to a joint lower bound for the posterior mean of the subvector

θ(r) is

L(θ, b) = ‖θ(r) − b‖2−

where ‖x‖− denotes the norm of the (component-wise) negative parts of x, ‖x‖− :=
∑dim(x)

i=1 |min{xi, 0}|

Quadratic Loss. Given a prior on θ we might want to find an optimal point decision on the true

parameter θ0 with respect to quadratic loss,

L(θ, a) = (θ − a)′W (θ − a)

for a positive semi-definite matrix W .

Credible Sets. For a value α ∈ [0, 1], an 1−α Bayesian confidence set is a set C(1−α) ⊂ Θ such

that 1 − α ≤ Pn (θ ∈ C(1− α)|Y = y) =
∫

C(1−α)
pn(θ, C(1 − α))dθ. The problem of constructing
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credible sets is associated with the loss function

L(θ, C(1− α)) = 1− 1l {θ ∈ C(1 − α)} =

{

0 if θ ∈ C(1 − α)

1 otherwise

From a more conceptual perspective, we can also apply our approach to loss functions that

are direct measures of the (negative of the) welfare effect of a policy recommendation a if the

true state of nature is θ. However, for the purposes of this paper, we will primarily consider

statistical decision problems related to estimation and inference.

For a given loss function, we can define the risk function as the expected loss from following

a decision rule d(y) for each value of θ,

R(θ, λ; d) := Eθ,λ [L(θ, d(Y ))] =
∫

Y

L(θ, d(y))f(y|θ;λ)dy

where the expectation is taken over a random variable Y with realizations in Y which is dis-

tributed according to (2.1).

It will in general not be possible to rank decision rules unambiguously according to R(θ, λ; d)

unless we assume a particular value for the parameter θ, λ. We will therefore define a new

criterion resulting from taking a suitable average over the parameter space.

More specifically, suppose that the marginal prior with respect to θ is given by π0(θ), and

there is a set Γ of joint priors π(θ, λ) for θ and λ whose marginals with respect to λ equal π0(θ),

i.e.

Γ :=

{

π(θ, λ) ∈ Mθ,λ :

∫

π(θ, dλ) = π0(θ) π0-a.s. in θ

}

where Mθ,λ denotes the set of probability measures over θ, λ. Our decision theoretic framework

will not presuppose one single prior π(θ, λ) but allow for an set of priors that the decision maker

all regards as equally ”reasonable” but does not want to assign respective probabilities.

3.1. Gamma-Posterior Expected Loss. Gamma-posterior expected loss (GEPL) is moti-

vated as a robust version of Bayes average risk over the family of priors, Γ. Let π(θ, λ) ∈ Γ be a

prior distribution for (θ, λ). Then we can define the average risk with respect to π as

r∗(d, π) :=

∫

Θ×Λ

R(θ, λ; d)dπ(θ, λ)

By a change of variables

r∗(d, π) =

∫

Θ×Λ

∫

Y

L(θ, d(y))f(y|θ, λ)dydπ(θ, λ)

=

∫

Y

∫

Θ×Λ

L(θ, d(y))f(y|θ, λ)dπ(θ, λ)dy
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so that for a given value of y, the average-risk optimal decision d(y) with respect to a particular

prior π(θ, λ) solves

d∗(y, π) := argmin
a∈A

∫

Θ×Λ

L(θ, a)f(y|θ, λ)π(dθ, dλ) ≡ argmin
a∈A

∫

Θ×Λ

L(θ, a)p(dθ, dλ; y, π)

where

p(θ, λ; y, π) :=
f(y|θ, λ)π(θ, λ)
∫

f(y|θ, λ)dπ(θ, λ)

is the joint posterior for (θ, λ) given y and prior π. In the following we denote

Q :=

{

p(θ) :

∫

f(y|θ, λ)π(θ, dλ)
∫ ∫

f(y|θ, λ)dπ(θ, λ)
: π ∈ Γ

}

the set of posteriors obtained after updating each prior in the set Γ.

We now define the main criterion for evaluating statistical procedures in the context of this

study:

Definition 3.1. The Gamma-Posterior Expected Loss (GPEL) of an action a ∈ A at a point

y ∈ Y in the sample space is given by

̺(y, a,Γ) := sup
π(θ,λ)∈Γ

∫

Θ×Λ
L(θ, a)f(y|θ;λ)dπ(λ, θ)

∫

Θ×Λ
f(y|θ;λ)dπ(λ, θ)

(3.1)

Here we adopt the terminology from the literature on robustness in Bayes decisions, in which

”Gamma-” refers to the class of priors Γ - usually denoted by Λ - rather than the parameter

space Λ in the notation of this paper. In accordance with the literature, we will also refer to

Gamma-posterior expected loss as conditionally minimax (i.e. minimax given the sample y ∈ Y)

with respect to the set of priors Γ.

We will show in section 3 that under the assumptions of this paper, the supremum in (3.1)

is attained at one particular element in Γ which we will call the least favorable prior which we

will denote by π∗(θ, λ; a, y). It is important to note that the least favorable prior will in general

depend on the loss function and the particular action a ∈ A and the observed point in the sample

space, y ∈ Y . In particular, minimization over the set Γ gives rise to a dynamic inconsistency:

the prior implicitly chosen in the calculation of GPEL, i.e. conditional on the sample, will in

general be different from the (unconditional) minimax decision with respect to Γ which minimizes

average risk r∗(d, π) over π ∈ Γ.

This dynamic inconsistency does not arise in the framework considered by Kitagawa (2010) who

considers decisions minimizing GPEL and Gamma-minimax risk under a smaller class of priors Γ̃

for which the sampling distribution f(y, π) :=
∫

f(y|θ, λ)dπ(θ, λ) is held fixed across π ∈ Γ̃. We

prefer not to impose such a restriction on the set of priors, so that the procedures arising from

minimizing GPEL will in general not have minimax properties, but be more conservative with
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respect to the model incompleteness λ ∈ Λ.3 However, if the parameter θ is sufficient for the

distribution of y, GPEL-optimal actions will also be Gamma-minimax by the same arguments

as in Kitagawa (2010).

There are two main reasons why we choose to focus on Gamma-posterior loss rather than

(unconditional) Gamma-minimax risk as a decision criterion: for one, in the Bayesian approach

it is very natural to consider a rule that is robust given the observed sample, and therefore

the researcher’s information set, rather than considering a notion of ”ex-ante” robustness with

respect to a sampling experiment. There is also a direct connection to the Maximin Expected

Utility framework for decisions under ambiguity analyzed by Gilboa and Schmeidler (1989). The

other advantage of a conditional minimax rule is computational in that the conditional Gamma-

minimax rule is determined by extremal points of Λ that are relatively easy to find in many

practically relevant cases as we will argue below. In particular, conditional Gamma-minimax

does not require averaging over the sample space Y which makes it easier to adapt simulation

algorithms from (non-robust) Bayesian statistics.

The main motivation for the Monte Carlo algorithms in this paper is to provide computa-

tionally tractable uniform approximations to the GPEL objective that can be used to determine

the optimal action given the data at hand. More broadly, the procedures analyzed in section 3

can be used to simulate Choquet integrals over a capacity whose core is given by the posteriors

obtained from updating the class of priors Γ element by element.

In addition to decision problems defined by minimization of GPEL for some loss function, we

can extend the same ideas to problems in which GPEL plays the role of a size constraint, as e.g.

in the following definition of a Gamma-posterior credible set for the parameter θ:

Definition 3.2. We define a Gamma-posterior 1 − α credible set with respect to the family of

measures Q as C∗(1− α) ⊂ Θ such that infQ∈QQ (θ ∈ C∗(1− α)) ≥ 1− α.

For a Gamma-posterior (1− α)-credible set we have that the Gamma-posterior expected loss

̺(y, C(1− α),Γ) =

∫

L(θ, C(1 − α))dT (θ,Q) = inf
Q∈Q

∫

C(1−α)

dP = inf
Q∈Q

Q (θ ∈ C(1− α))

To compare this to the frequentist literature on bounds, it should be pointed out that since we

do impose a prior over the parameter θ, for very ”informative” samples credible sets are going to

be strict subsets of the identification region with large probability, whereas minimax confidence

sets are constructed to cover the entire identification region with a pre-specified probability. On

3Note that by Jensen’s Inequality,

sup
π∈Γ

r∗(d, π) := sup
π∈Γ

{
∫

Y

∫

Θ×Λ

L(d(y), θ)p(dθ, dλ; y, π)dy

}

≤

∫

Y

sup
π∈Γ

{
∫

Θ×Λ

L(d(y), θ)p(dθ, dλ; y, π)

}

dy =

∫

Y

̺(y, d(y),Γ)dy
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the other hand, as pointed out above, GPEL-optimal decisions are conditionally minimax, and

therefore more conservative with respect to the model incompleteness λ ∈ Λ than a frequentist

unconditional minimax rule.

3.2. Capacities and Choquet Integrals. The concept of Gamma-posterior expected loss in-

troduced before can be linked to the notion of the Choquet integral for capacities (for a general

reference, see Molchanov (2005)) and is a direct adaptation of the framework in Gilboa and

Schmeidler (1989) for decisions under ambiguity. This subsection gives a brief discussion of the

links to these two literatures and is not essential for the exposition of our computational results.

Definition 3.3. (Upper and Lower Expectation) Let f : Θ → R+ be a nonnegative function.

We then define the lower expectation of f(θ) with respect to the family of distributions Q over

θ as
∫

fdT (θ,Q) := inf
Q∈Q

∫

f(θ)Q(dθ) = inf
Q∈Q

EQ [f(θ)]

Similarly we define the upper expectation of f(θ) over Q
∫

fdC(θ,Q) := sup
Q∈Q

∫

f(θ)Q(dθ) = sup
Q∈Q

EQ [f(θ)]

The representation of Gamma-posterior expected loss as a sub-additive monotone capacity

functional follows from Lemmata 3.2 and 3.3 in Gilboa and Schmeidler (1989). On a technical

note, the lower and upper expectations are Choquet integrals with respect to the capacities T

and C, and can be represented as hitting and containment functionals, respectively, of a compact

random subset of Θ. Hence, GPEL is a Choquet integral with respect to a convex capacity C

that corresponds to the infimum over the class Q.

While a capacity T (K) is defined over all compact subsets K ⊂ Θ, for the computation of the

Choquet integral of a nonnegative function f(θ), we only need to determine capacity on level sets

of the Choquet integrand. Furthermore, by proposition 5.14 in Molchanov (2005) there exists a

proper probability measure p(θ; f) in the core of TX such that
∫

fdTX =

∫

f(θ)p(θ; f)dθ

where the choice of that probability measure depends on the integrand.

Since the core of the capacity in the choice model consists of the posteriors for θ for a family

of priors with respect to λ, given a action a ∈ A there exists a prior π∗(θ, λ; a) such that the

Choquet integral of L(d; θ) can be represented as the expectation of L(·, a) over the posterior

p(θ; y, π∗(θ, λ; a)).
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3.3. Generic Algorithm. The main difficulty in simulating the integral in (3.1) consists in that

the posterior

p∗(θ; a, y) =
π0(θ)

∫

fY (y|θ, λ)π∗(dλ|θ; y, a)
∫ ∫

fY (y|θ̃, λ)π∗(dλ|θ̃; y, a)π0(θ)dθ

results from a minimization problem and therefore depends on the Choquet integrand L(·, a).

Therefore, instead of sampling directly from p∗(θ; a, y), we will draw an initial Markov chain

from the posterior p(θ, λ; y, πI) where πI := πI(θ, λ; y) is an appropriately chosen (and possi-

bly data-dependent) ”instrumental” prior over Θ × Λ - see e.g. Robert and Casella (2004) on

techniques for sampling from a posterior distribution.

We can then rewrite the least favorable posterior of θ for action a and given the sample y in

terms of the ”instrumental” posterior p(θ, λ; y, πI) using the Radon-Nikodym derivative of the

least favorable prior with respect to the instrumental prior as importance weights

p∗(θ; y, a) =

∫

π∗(θ, λ; a)

πI(θ, λ; y)
p(θ, dλ; y, πI)

/

(

∫ ∫

π∗(θ̃, λ; a)

πI(θ̃, λ; y)
p(θ̃, dλ; y, πI)dθ̃

)

Hence the least favorable prior π∗(θ, λ; a) solves

sup
π̃(θ,λ)

∫

L(θ; a)
π̃(θ, λ)

πI(θ, λ; y)
p(θ, dλ; y, πI) s.t.

∫

π̃(dλ|θ) = 1

and π̃(λ|θ) ≥ 0

For every value of a ∈ A, this is a linear programming problem that can be solved using standard

algorithms.

L( ;a)θ

θ

f*( ;a)θ

L( ;a)θ

θ

f*( ;a)θ
L*(a,y)

Figure 3. Choice of the least favorable model for zero-one loss (left) and quadratic
loss (right).

As we will show in section 4, the solution to the problem (3.2) is attained at ”extremal points”

of the set of priors Γ. More specifically under our assumptions the least favorable prior conditional

on θ vanishes on Λ except for the values of λ that maximize or minimize the likelihood f(y|θ, λ).

The construction of the least favorable prior will follow a simple cut-off rule on the loss function

L(θ, a), where the prior for θ is updated using the smallest value of the conditional likelihood
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for values of θ with L(θ, a) below the cutoff, and according to the largest value when L(θ, a) is

above that cutoff - see figure 1 for a graphical illustration.

4. Simulation Algorithm

In this section, we will discuss an algorithm for computing Gamma-posterior expected loss

and optimal actions. The formal results in this section will be proven in the appendix.

4.1. Main Assumptions. We will first impose conditions on the underlying decision problem

in order for Gamma-posterior expected loss to be well-defined and to ensure that simulated

integrals converge in probability to their expectations uniformly in the action a ∈ A as the size

of the simulated sample increases.

In the following, we will take the measure space for θ to be (Θ,B, π0) for one fixed prior

π0(θ) on Θ, where B denotes the Borel σ-algebra on Θ. We want to avoid imposing any special

structure on the parameter set Λ, but we also assume that we can construct a suitable measure

space (Λ,A, µ) depending on the nature of the problem - e.g. if Λ denotes the set of (possibly

stochastic) equilibrium selection rules in a finite discrete game, we can take A to be the Borel

algebra on the corresponding probability simplex. For joint distributions over (θ, λ), we consider

the product measure space (Θ × Λ,B ⊗ A, π0 × µ), and we let Mθ,λ and Mλ denote the set of

probability measures on Θ× Λ and Λ, respectively.

Assumption 4.1. (Loss Function) The set of actions A is compact. Furthermore, for every

value of a the loss function is bounded, quasi-convex, and measurable in θ, and the set L :=

{L(a, ·) : a ∈ A} is a Glivenko-Cantelli class for distributions that are absolutely continuous with

respect to the Lebesgue measure on Θ.

By standard arguments on smooth classes of functions, Assumption 4.1 allows for the quadratic

and ”one-sided” loss functions with A = Θ compact. However, if we consider zero-one loss for

the construction of confidence sets, the requirement that the class of loss functions L is Glivenko-

Cantelli limits the complexity of the family of sets C that we can evaluate. From a result by Eddy

and Hartigan (1977), the class of indicator functions for convex subsets of Θ is Glivenko-Cantelli

for measures that are absolutely continuous with respect to Lebesgue measure. If in addition we

need the class of sets to be Donsker, we either have to restrict our attention to problems for which

C ⊂ R2, or all confidence sets satisfy additional smoothness restrictions, e.g. if we only consider

ellipsoids whose boundaries have bounded derivatives up to any order - see e.g. Corollary 8.2.25

in Dudley (1999).

The GPEL-optimal decision depends crucially on the set of priors maintained by the decision

maker. For our purposes we choose a class of priors that is rather large and does not restrict

the possible forms of dependence between θ and λ. This feature is crucial for the ”bang-bang”

solution to the maximization problem (3.1), but I will argue below that this choice is also justified

on normative grounds in many economic applications.
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Assumption 4.2. (Class of Priors) The marginal prior over θ is fixed at π0(θ) which is

absolutely continuous with respect to Lebesgue measure on Θ. Furthermore, the class of priors

over (θ, λ) is given by

Γ :=

{

π(θ, λ)

∣

∣

∣

∣

∫

π(θ, dλ) = π0(θ) π0-a.s. in θ

}

In particular, there are no further restrictions on the conditional prior distribution πλ|θ(λ|θ).

This restriction on the class of priors is motivated by the sharp distinction between the roles

of the parameters θ and λ in our model: in most problems the parameters θ will correspond

to features of preferences, profit or cost functions or other economic fundamentals that the

researcher may well have other prior knowledge about from other sources.

In contrast, the lack of restrictions on the conditional prior for λ given θ reflects that we want

to be completely agnostic about that nuisance parameter.

As we will show, this lack of restrictions on Γ regarding the conditional priors over λ will also

result in a great simplification of the computational problem in settings in which the parameter

space Λ is very rich. E.g. for the marriage market problem in the next section, the number

of stable matchings increases exponentially in the size of the market, so that it will in general

be difficult to determine the full set of stable matchings for a given set of preferences, let alone

formulate plausible beliefs about the selection mechanism.

Because of the minimization step in (3.1), it is also necessary to restrict the behavior for the

likelihood f(y|θ, λ) as we vary λ in order to guarantee uniform convergence of GPEL across

values a ∈ A.

Assumption 4.3. (Likelihood) (i) The parameter set Θ ⊂ Rk is compact, (ii) the p.d.f.

f(y|θ, λ) is continuous, bounded from above uniformly in (θ, λ) for all y ∈ Y, and bounded

away from zero on a set B ⊂ Θ with
∫

B
π0(dθ) > 0. (iii) There exists a finite constant c > 0

such that c < f(y|θ,λ1)
f(y|θ,λ2)

< 1
c
for all θ ∈ Θ, λ1, λ2 ∈ Λ, and y ∈ Y, and (iv) infλ∈Λ f(y|θ, λ) and

supλ∈Λ f(y|θ, λ) are attained for π0-almost all values of θ ∈ Θ and for each y ∈ Y.

This condition will be used to ensure that the posterior p(θ; y, a) resulting from the maximiza-

tion problem (3.1) is absolutely continuous with respect to the marginal distribution
∫

p(θ, λ; y, πI)dλ

for any loss function and instrumental prior πI(θ, λ). If this condition is only satisfied for very

small values of c, this will typically result in a small effective sample size (and therefore a large

variance for simulated GPEL) for a given number of draws from the distribution.

In a simulation study, Bajari, Hong, Krainer, and Nekipelov (2006) find that in a particular

non-cooperative static discrete game the probability of multiplicity of equilibria appears to de-

crease in the number of players even though the maximal number of equilibria across different

payoff draws increases very fast. This would be a very favorable setting for our algorithm to work
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well, whereas in the marriage market problem considered in our application, the probability of

uniqueness vanishes very fast as both sides of the market grow large.

In principle, the bound in Assumption could be weakened somewhat for any given loss function

L(·, ·), but I prefer to formulate the restriction on the data-generating process independently of

the decision problem.

Part (iv) of the assumption holds if Λ is compact, but we can also allow for more general

cases. E.g. in Example 2.1 the supremum corresponds to the probability that the latent state

satisfies the Nash conditions for y to be an equilibrium, whereas the infimum is given by the

probability of y being the unique Nash equilibrium, so that both the infimum and the supremum

are attained even though the set Λ of mappings from the observed and unobserved states to

probability distributions over three outcomes is not compact.

In the following, we will denote the upper and lower likelihood of the sample y by

f∗(y|θ) := inf
λ∈Λ

f(y|θ, λ), and f ∗(y|θ) := inf
λ∈Λ

f(y|θ, λ)

respectively. By Assumptions 4.3, the minimum over λ always exists. Furthermore let λ∗(θ; y) ∈

argminλ∈Λ f(y|θ, λ) and λ∗(θ; y) ∈ argmaxλ∈Λ f(y|θ, λ). If the minimizer λ∗(·) (and maximizer

λ∗(·), respectively) is not unique, we define λ∗ and λ∗ as any convenient choice from the set of

minimizers.

Proposition 4.1. Under Assumptions 4.1-4.2, for all a ∈ A, and all y ∈ Y satisfying
∫

f(y|θ, λ)π0(θ)dθ >

0 for some λ there exists a solution to the maximization problem in (3.1). Furthermore Gamma-

Posterior Expected Loss is of the form

̺(a, y,Γ) =

∫

Θ
L(θ, a)1l{L(θ,a)≤L∗}f

∗(y|θ)dπ0(θ) +
∫

Θ
L(θ, a)1l{L(θ,a)>L∗}f

∗(y|θ)dπ0(θ)
∫

Θ
1l{L(θ,a)≤L∗}f ∗(y|θ)dπ0(θ) +

∫

Θ
1l{L(θ,a)>L∗}f ∗(y|θ)dπ0(θ)

where L∗ := ̺(a, y,Γ).

In particular the maximum over the set of priors Γ is achieved by a simple cut-off rule in

L(θ, a). In order to solve the maximization problem (3.1) using one single initial random sam-

ple (θ1, λ1), . . . , (θB, λB) generated by imposing a (possibly data-dependent) instrumental prior

πI(θ, λ; y), that prior does not need to have positive density on the full support of every member

of the class of priors Γ, but only the priors corresponding to GPEL for the decision problem at

hand.

Assumption 4.4. (Instrumental Prior) The instrumental prior πI(θ, λ; y) is chosen in a

way such that for all y ∈ Yn and actions a ∈ A, π∗(θ, λ; a, y) is absolutely continuous with

respect to πI(θ, λ; y).

Ideally, we would like to choose an instrumental prior for which the variance of the likelihood

ratio π∗(θ,λ;a,y)
πI(θ,λ;y)

is as small as possible, but in practice, such a prior is difficult to construct because

we want to ”recycle” the Markov chain for different Choquet integrands, and even for a given
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loss function and values for a and y, the form of the least favorable prior is in general difficult to

guess beforehand. The marginal distribution of θ under πI(θ, λ; y) doesn’t have to coincide with

the actual prior π0(θ), but we will in fact argue that in practice the instrumental prior should

be chosen to be flatter than π0(θ).

From Proposition 4.1 it follows that an instrumental prior πI(θ, λ; y) can be chosen indepen-

dently of the loss function, so that in practice it is straightforward to impose Assumption 4.4

as long as Assumption 4.2 holds as well. More specifically, the following result establishes that

under Assumption 4.2, this requirement can be satisfied by a prior that conditional on θ puts

nonzero probability mass on the two values of λ that minimize and maximize the likelihood of

the observed outcome y.

Proposition 4.2. Suppose Assumptions 4.2 and 4.4 hold, then

̺(y, a,Γ) = sup
ψ∈Ψ

∫

L(θ; a)ψ(θ, λ)p(dθ, dλ; y, πI)
∫

ψ(θ, λ)p(dθ, dλ; y, πI)

where Ψ is the set of measurable functions ψ : Θ×Λ → R+ such that
∫

ψ(θ,λ)
π0(θ)

πI(θ, dλ; y) = 1 for

all θ ∈ Θ.

From the previous discussion, the interpretation of ψ(θ, λ) is that of a conditional likelihood

ratio between the most pessimistic and the instrumental prior for λ given θ.

Note that we can solve this maximization problem for any Choquet integrand without having

to compute the likelihood function f(y|θ, λ) and using one single sample of draws from the

posterior corresponding to the instrumental prior πI(θ, λ; y). This representation is therefore a

key result for the derivation of the generic simulation algorithm proposed in this paper.

Finally, we assume that we have an algorithm which allows us to draw from the posterior

distribution corresponding to the instrumental prior πI(θ, λ; y). For the second version of this

assumption recall that a Markov chain (Xb) = (X1, X2, . . . ) is called irreducible if for any non-

null Borel set A the return time to A from any given initial state x is finite with strictly positive

probability. Furthermore, the chain is called Harris recurrent if in addition A is visited by (Xb)

infinitely many times with probability 1 from any initial state x ∈ A.4

Assumption 4.5. (Sampling Procedure under πI) The sample (θ1, λ1), . . . , (θB, λB) consists

of either (i) B i.i.d. draws from the posterior distribution p(θ, λ; y, πI) given the instrumental

prior πI(θ, λ; y), or (ii) a Harris recurrent Markov chain with an invariant distribution equal to

p(θ, λ; y, πI).

In a future version of this paper, I am going to state primitive conditions for validity of standard

MCMC-based sampling techniques for this problem. The main case of interest will be that of

a Markov chain with a transition kernel defined by a multi-stage Gibbs or Metropolis-Hastings

sampler (or a hybrid), as e.g. for algorithms based on data augmentation.

4See Robert and Casella (2004) for precise definitions.
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4.2. Algorithm 1. In a first step, we obtain a sample (θ1, λ1), . . . , (θB, λB) of B draws from

the posterior p(θ, λ; y, πI) corresponding to the instrumental prior πI(θ, λ; y). Under Assumption

4.5, it is possible to draw a Markov chain whose marginal distribution is equal to p(θ, λ; y, πI)

using the Metropolis-Hastings algorithm or a Gibbs sampler, see Robert and Casella (2004) for

a discussion.

For any scalar L̃ ∈ R we can now define

ĴB(L̃, a) :=

∑B

b=1 L(θb, a)
[

1l{L(θb,a)≤L̃,λb=λ∗(θb)} +
πI(λ∗(θb)|θb)
πI(λ∗(θb)|θb)

1l{L(θb,a)>L̃,λb=λ∗(θb)}

]

π0(θb)
πI(θb,λ∗(θb);y)

∑B

b=1

[

1l{L(θb,a)≤L̃,λb=λ∗(θb)} +
πI(λ∗(θb)|θb)
πI(λ∗(θb)|θb)

1l{L(θb,a)>L̃,λb=λ∗(θb)}

]

π0(θb)
πI(θb,λ∗(θb);y)

(4.1)

In the second step of the algorithm, we compute minmax average risk given the B draws under

the instrumental prior by solving

ˆ̺B(y, a,Γ) = sup
L̃∈R

ĴB(L̃, a) (4.2)

Taken together the minimization steps in (4.1) and (4.2) implicitly solve for the most pessimistic

prior for evaluating average risk of a given data y by changing the importance weight of each

draw relative to the instrumental prior πI(θ, λ; y). The main simplification this approach gives us

consists in only manipulating these importance weights as we change the Choquet integrand in

(3.1) when comparing different actions a, a′ ∈ A or solving several different GPEL minimization

problems based on the same chain of parameter draws.

Given the regularity conditions assumed in this section, we can establish uniform consistency

of simulated GPEL as we increase the number B of draws from the posterior distribution for the

parameter:

Proposition 4.3. Suppose Assumptions 4.1-4.5 hold, then ˆ̺B(y, a,Γ)
p
→ ̺(y, a,Γ) uniformly in

a.

For the practical usefulness of this procedure, it is crucial that convergence in probability is

uniform in order to ensure that the minimizer of r̂B(y, a,Γ) converges in probability to one out

of possibly several GPEL-optimal statistical decisions as B → ∞.

4.3. Algorithm 2. As we will see in the empirical application in the section 5, in some cases it

may be substantially harder to draw from the missing data distribution conditional on θ, λ∗(θ)

than under θ, λ∗(θ), but it is feasible to simulate the likelihood ratio conditional on the augmented

data. Suppose that there is a particular choice of λ0 ∈ Λ such that for y = (s, x), we can sample

from the (augmented) posterior distribution p(θ, u|y, λ) ∝ λ(u; s)g(u|x, θ)π0(θ), e.g. using a

multi-stage Gibbs sampler, and the augmented distribution f(y|u, θ, λ) is absolutely continuous

with respect to f(y|u, θ, λ0) for all λ ∈ Λ and u such that y ∈ S(u).

Then we can generate a sample of parameter draws and importance weights:
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(1) draw a new value θb from the posterior arising from the prior π0(θ) and the likelihood

f(y|θ, λ0).
(2) construct two auxiliary variables containing the likelihood ratios for the augmented sam-

ple,

v∗b := v∗(θb, ub; y) =
f ∗(y|ub, θb)

f(y|ub, θb, λ0)
=
λ∗(u; s)

λ0(u; s)

v∗b := v∗(θb, ub; y) =
f∗(y|ub, θb)

f(y|ub, θb, λ0)

λ∗(u; s)

λ0(u; s)

In the application in section 4, we will draw θb from the upper likelihood f ∗(y|θ) and set

the importance weights in step 2 equal to v∗b = 1 and vb,∗ = 1 if ub satisfies the (determinis-

tic) constraints under λ∗(θ), and let vb,∗ = 0 otherwise. This procedure guarantees that, after

marginalizing over the conditional missing data distribution, the acceptance probability is equal

to the likelihood ratio without having to calculate or approximate it explicitly.

For any value of the scalar L̃ ∈ R we can now define

J̃B(L̃, a) :=

∑B

b=1 L(θb, a)
[

1l{L(θb,a)≤L̃}v∗(θb, ub) + 1l{L(θb,a)>L̃}v
∗(θb, ub)

]

∑B

b=1

[

1l{L(θb,a)≤L̃}v∗(θb, ub) + 1l{L(θb,a)>L̃}v
∗(θb, ub)

]

as for the standard algorithm, and maximize over L̃ ∈ R to obtain

˜̺B(y, a,Γ) = sup
L̃∈R

J̃B(L̃, a)

Again, under the same regularity conditions as for Algorithm 1, we obtain the following uniform

consistency result:

Proposition 4.4. Suppose Assumptions 4.1-4.5 hold, then ˜̺B(y, a,Γ)
p
→ ̺(y, a,Γ) uniformly in

a.

I do not attempt to compare the two algorithms in terms of their statistical properties, but in

many cases one of the two algorithms will be substantially easier to implement than the other.

5. Imposing Independence on Priors

Maximization of expected loss with respect the class of all possible joint priors for θ and λ

may in many cases be more conservative than necessary to incorporate our lack of knowledge

regarding the equilibrium selection rule into an estimation procedure. Instead we may be willing

to restrict our attention to priors that are independent for θ and λ.

More specifically, in this section we are going to replace Assumption 4.2 with
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Assumption 5.1. The marginal prior over θ is fixed at π0(θ) which is absolutely continuous

with respect to Lebesgue measure on Θ. Furthermore, the class of priors over (θ, λ) is given by

Γ⊥ := {π(θ, λ) = π0(θ)ν(λ) : ν ∈ Mλ}

To see why independence is a substantive restriction for the construction of Gamma poste-

rior expected loss, consider the priors achieving the maximum in (3.1) under the assumptions

of theorem: the maximum over Γ is achieved by a prior that put unit conditional mass on the

equilibrium selection rules determining the upper and the lower likelihood, respectively, depend-

ing on the value of θ, and can in particular not be replicated by a fixed prior distribution over

different values of λ ∈ Λ since the equilibrium selection rule may not depend on θ. Hence the

GEPL criterion with respect to Γ⊥ is less conservative than for the prior class Γ.

Solving for GEPL under the prior class Γ⊥ is computationally less straightforward in that

it requires explicit optimization over the space of selection rules that are fixed across Θ rather

than pointwise maximization and minimization of the likelihood function for each value of θ, the

parameter of the payoff distribution. But as Proposition 5.1 below shows, the maximum over Γ⊥

in (3.1) is attained at a prior which puts unit mass on one particular selection rule λ∗(u) which

can in turn be characterized by a cut-off rule in u. More specifically, define

Z(u, a) :=

∫

Θ
L(a, θ)

∏M

m=1 gm(um|xm, θ)dπ0(θ)
∫

Θ

∏M

m=1 gm(um|xm, θ)dπ0(θ)
(5.1)

for any u ∈ U and a ∈ A. Then we have the following characterization of GPEL with respect to

Γ⊥:

Proposition 5.1. Under Assumptions 4.1, 4.3 and 5.1, for all a ∈ A, and all y ∈ Y satisfying
∫

f(y|θ, λ)π0(θ)dθ > 0 for some λ there exists a prior π∗(θ, λ; a, y) := π0(θ)ν
∗(λ; a, y) ∈ Γ⊥

that solves (3.1), where ν∗(λ; a, y) is degenerate and puts mass only on a deterministic selection

rule λ∗ for all i = 1, . . . , n which may depend on a ∈ A and y ∈ Y. Furthermore, λ∗(u) is

characterized by a simple cutoff rule in u where
∏M

m=1 λ
∗
m(u, sm) = minλ∈Λ

∏M

m=1 λ
∗
m(u, sm) if

Z(u, a) < Z∗, and
∏M

m=1 λ
∗
m(u, sm) = maxλ∈Λ

∏M

m=1 λ
∗
m(u, sm) otherwise.

An important consequence of Proposition 5.1 is that the problem of calculating Gamma pos-

terior expected loss over Γ⊥ can be solved as a classification problem in the payoff space, U .

The structure of this optimization problem and conditions for consistency are similar to the

estimation of density contour clusters, see e.g. Polonik (1995) and references herein.

The function λ∗(u) is fully determined by the known components of the problem, i.e. the

loss function, the likelihood, and the prior distribution for θ. However calculating the least

favorable selection rule directly involves solving some of the integration problems our procedure

was supposed to sidestep in the first place, and will therefore in general not be practical in many

relevant settings. Instead we consider solving the maximization problem in (3.1) under weaker

shape restrictions on λ∗ that do not require previous knowledge of its exact functional form.



24 KONRAD MENZEL

Using the terminology from Polonik (1995), we say that a set D ⊂ U is k-constructible from

the class C of subsets of U if it can be constructed from at most k elements of C using the basic set

operations ∪,∩ and complement. In particular the Vapnik-Cervonenkis and Glivenko-Cantelli

properties of the class C are inherited by the class of all set that are k-constructible from C.

Condition 5.1. (i) For any fixed value of a ∈ A, the lower contour sets of the function Z(u, a)

with respect to u, LC(z̄, a) := {u ∈ U : Z(u, a) ≤ z̄} are k-constructible from a class of sets C for

some integer k < ∞, where (ii) C is a class of closed subsets of U that is Glivenko-Cantelli for

all measures that are absolutely continuous with respect to Lebesgue measure on U .

The restrictions on the shape of the clusters LC(z̄, a) should in general also be exploited in

the construction of the least favorable equilibrium selection rule, and we will discuss the case

of convex lower contour sets in more detail below. We will now state lower level assumptions

that imply Condition 5.1 and that hold for a broad range of practically relevant estimation

problems. For the following recall that a function f(x) is called log-concave if log(f(x)) is

concave - in particular any concave function is also log-concave, and any log-concave function is

also quasiconcave. Similarly, we call f(x) log-convex if log(f(x)) is convex.

Assumption 5.2. (i) The loss function L(θ, a) is either log-convex in θ for all a ∈ A or an

indicator function for the complement of a convex set, and (ii) the conditional distribution of θ

given u and x, h(θ|u, x) = g(u|θ,x)π0(θ)∫
Θ
g(u|θ,x)dπ0(θ)

, is log-concave in (u, θ) for all x ∈ X . Finally, (iii) for

all strategy profiles s ∈ S, the regions {u ∈ U : s ∈ S∗(u)} are convex.

The first part of this assumptions slightly strengthens the conditions on the loss function

compared to Assumption 4.1, but is satisfied by all examples given in section 3. Part (ii) of

Assumption 5.2 holds e.g. if the likelihood for u is Gaussian together with a normal prior on θ,

as e.g. in the matching market problem in section 5. Part (iii) holds for any discrete action game

since best responses are defined by linear inequality conditions on the payoff space. In particular,

for any strategy profile sm ∈ Sm, the subset of U such that u ∈ S∗
m(u) is an intersection of (linear)

half spaces, and therefore convex.

Proposition 5.2. Suppose Assumption 5.2 holds. Then condition 5.1 holds with k = 1, where

C is the set of convex subsets of U .

5.1. Algorithm. Using an appropriate sampling procedure, in a first step we obtain a sam-

ple (θ1, u1), . . . , (θB, uB) of B draws from the augmented posterior with respect to the prior

πI(θ, λ; y) := π0(θ)δλ=λ∗(θ) - note that πI /∈ Γ⊥. In contrast to the procedures in section 4, we

now also keep the auxiliary draws of latent utilities, ub.

In a second step we calculate

˘̺(y, a,Γ⊥) = sup
C∈C

∑B

b=1

[

minλ∈Λ

∏M
m=1

λm(um,b,sm)

maxλ∈Λ

∏M
m=1

λm(um,b,sm)
1l {ub ∈ C}+ 1l {ub /∈ C}

]

L(θb, a)

∑B

b=1
minλ∈Λ

∏M
m=1

λm(um,b,sm)

maxλ∈Λ

∏M
m=1

λm(um,b,sm)
1l {ub ∈ C}+ 1l {ub /∈ C}

(5.2)
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Maximization over C ∈ C is in general computationally demanding, and any efficient algorithm

has to exploit the specific structure of the set C. For the case in which C is a collection of convex

subsets of U maximization in (5.2) can be solved as a linear programming problem in combination

with a grid search over the unit interval. Also, since the dimension of U is typically much larger

than that of Θ, there will in general be a curse of dimensionality in the minimization step in

(5.2), however the size of the simulated sample (θb, ub) will usually also be very large.

If there are no restrictions on equilibrium selection across the n observations, maximization

and minimization of the product
∏M

m=1 λm(u) requires in most cases only knowledge over whether

sm is an equilibrium given um, and whether it is unique, so that computational demands in this

aspect are comparable to the problem for the unrestricted prior class in section 4.

Proposition 5.3. Suppose Assumptions 4.1 and 4.3-4.5 and Condition 5.1 hold. Then for the

empirical risk function ˘̺(·) defined in (5.2) we have ˘̺(y, a,Γ⊥)
p
→ ̺(y, a,Γ⊥) uniformly in a.

6. Empirical Application: Matching Markets with Non-Transferable Utility

We will reconsider the setting in Logan, Hoff, and Newton (2008) of a two-sided marriage

market with non-transferable utility. There are nw women and nm men in the market, and the

model allows only for marriages between women and men, where any individual can also choose

to remain single. We assume that with probability one, every individual has strict preferences

over all potential spouses on the opposite side of the market, including the option not to get

married.

The most commonly applied solution concept for this problem is that of match stability.5 Under

our model assumptions, a stable matching is known to exist for all instances of the matching

market, but in general the stable matching is not unique so that an econometric model for mate

preferences alone does not define a reduced form for the observed market outcome. Furthermore,

the number of stable matchings increases very fast in order in the size of the market, so that

it will in general be computationally costly to determine the full set of stable matchings for a

given set of preferences.6 We will see that the approach proposed in this paper circumvents these

potential computational difficulties without having to impose any restrictions on which of all

possible stable matchings is selected in the observed market.

6.1. Preferences. We represent woman i’s preferences by utilities Uij , where j = 0, 1, . . . , nm,

where Ui0 is i’s utility from remaining single. Similarly, a man j’s preferences are given by

utilities Vji for i = 0, . . . , nw, where i = 0 stands for the outside option of not getting married.

5See Roth and Sotomayor (1990) for an overview of the theoretical literature on this subject
6Gusfield (1985) proposes an algorithm that finds all stable matchings in a market of n men and n women in time
O(n2 +n|S|) where |S| is the number of stable matchings, where for a market of this size there exists an instance
of at least |S| = O(2n−1) stable matchings (see Theorem 3.19 Roth and Sotomayor (1990)).
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More specifically, we assume that agents have random utilities

Uij = x′ijβw + εij
Vij = z′jiβm + ζji

, i = 1, . . . , nw and j = 1, . . . , nm (6.1)

where xij and zji are observable pair characteristics, and εij and ζji are pair-specific disturbances

not known to the researcher that reflect unobserved pair-specific characteristics that affect i’s

preference for j relative to other potential spouses, and j’s preference for i, respectively. For

each woman i = 1, . . . , nw and man j = 1, . . . , nm, the utility of remaining single is normalized

to zero, i.e. Ui0 = Vj0 = 0.

In our application, we assume that εij and ζji are i.i.d. draws from a standard normal dis-

tribution and independent of observable characteristics xij , zji. This model for preferences is

clearly very restrictive - for example, it might be desirable to allow for εij to be correlated across

i = 1, . . . , nw but uncorrelated across men in order to allow for unobserved heterogeneity in traits

that are perceived as attractive or unattractive by all women, and vice versa. While it is clearly

possible to incorporate parametric models for dependence into the model - e.g. by assuming a

factor structure for the disturbance, or a random coefficient model for the regression coefficients

- we will continue to work with i.i.d. pair-specific taste shocks for expositional purposes.

6.2. Solution Concept. We observe one realized matching µ̂ for the marriage market, that is

the sample space Y consists of the joint support for observable individual and pair-level charac-

teristics, and the possible matchings between the two sides. Our analysis is going to focus on

match stability as a solution concept for predicting the market outcome.

A man mi is acceptable a woman wj if wj would prefer to marry mi over remaining single. A

man mi is said to admire a woman wj at a matching µ if mi is acceptable to wj and prefers her

to his mate µ(mi) under µ. The definitions for the other side of the market are symmetric. The

matching µ is called stable if there is no pairing of a man mi and a woman wj that admire each

other, i.e. block the matching µ.

The matching µ1 is M-preferred to µ2, in symbols µ1 >M µ2 if all men (weakly) prefer their

partner under µ1 to that under µ2.

Constraint S. (Stable Matching) Given the observed matching µ̂, random utilities Uij and

Vji satisfy the following conditions: (i) if Uij > Uiµ̂(i), then Vjµ̂(j) > Vji, and (ii) if Vji > Vjµ̂(j),

then Uiµ̂(i) > Uij.

With strict preferences, according to Theorem 2.16 in Roth and Sotomayor (1990) the stable

matchings constitute a lattice. I.e. holding preferences fixed, for any two stable matchings µ1

and µ2 we can find a stable matching λ := µ1 ∨M µ2 such that all men (weakly) prefer both µ1

and µ2 over λ, and there is another stable matching ν := µ1∧M µ2 such that all men prefer ν over

µ1 and µ2. In particular there exists a unique M-optimal stable matching µM such that all men

prefer µM to any other stable match, and a W -optimal match µW such that µW >W µ for all
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stable matchings µ. Furthermore, the men and the women have opposite preferences over stable

matchings, i.e. if µ1 >M µ2, then by Theorem 2.13 in Roth and Sotomayor (1990) it follows that

µ2 >W µ1.

Given women’s and men’s preferences, a stable matching can be constructed using the deferred

acceptance algorithm by Gale and Shapley (1962):

• In the first round each woman proposes to her most preferred acceptable man.

• In the kth round, each man keeps his most preferred mate among the acceptable women

that proposed to him in the k− 1st round engaged, and rejects all other proposals. Each

rejected woman then proposes to their next highest choice.

• If in round K no proposal is rejected, the algorithm stops.

The matching resulting from this procedure is stable, furthermore it is the W -optimal stable

matching - see Theorem 2.12 in Roth and Sotomayor (1990). By symmetry, we can also construct

theM-optimal stable matching via the deferred acceptance algorithm in which the men propose.

The lower probability for the observed matching µ̂ corresponds to sets of preferences for which

it is the unique stable matching:

Constraint U. (Unique Stable Matching) Given the observed matching µ̂ we have that

for any alternative matching µ′ 6= µ̂ there exist woman i and man j 6= µ′(i) such that either (i)

Uij > Uiµ′(i) and Vji > Vjµ′(j) or (ii) Ui0 > Uiµ′(i), or (iii) Vj0 > Vjµ′(j).

This set of constraints is difficult to impose directly when drawing from the joint distribution

of (Uij , Vji)ij, but it turns out that it is much easier to verify ex post by exploiting the relationship

between the lattice structure of the set of stable matchings and the deferred acceptance algorithm.

I formalize this insight in the following lemma, which is a direct consequence of standard results

from the theoretical literature on stable matchings:

Lemma 6.1. Suppose preferences are strict. Then a matching µ̂ satisfies Constraint U given

preferences (Uij , Vji)i,j if and only if both the deferred acceptance algorithm with the women

proposing, and the deferred acceptance algorithm with the men proposing yield the matching µ̂.

Proof: Since preferences are strict, the main result of Gale and Shapley (Theorem 2.12 in

Roth and Sotomayor (1990)) implies that if µ̂ is produced by the deferred acceptance algorithm

with the male side proposing, it is stable and is weakly preferred by all men over any other stable

matching. By symmetry, if µ̂ is produced by the deferred acceptance algorithm with the women

proposing, it is stable and preferred over any other stable matching by all women.

Hence if the matching µ̂ is unique, it must be produced by any of the two algorithms. For

the converse, suppose that there is an alternative stable matching µ′ 6= µ̂. Since preferences are

strict, there must be at least one man or one woman strictly preferring his or her spouse under

µ′ to that under µ̂, contradicting that µ̂ is weakly preferred to any other stable matching by all

men and all women at the same time �
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In order to see that Assumption 4.3 holds for this model, consider an instance of the market

for which Uiµ̂(i) > 0 and Vj,µ̂(j) > 0, and Uij < 0 for all other pairs (i, j) (for notational simplicity

suppose that under µ̂ no individual remains single). Since in this case each individual’s spouse

under m̂u is his or her only acceptable partner and preferences are strict, µ̂ is also the unique

stable matching supported by this realization of preferences. Clearly given our assumptions,

the probability that the random preferences satisfy these conditions simultaneously is strictly

greater than zero, and can in fact be bounded away from zero if the support of xij , zji and Θ are

compact.

6.3. Analysis under Exchangeability. Especially for large matching markets, an analysis

based on Conditions S and U will likely not be very informative, but we may want to add the

assumption that women and men are exchangeable within their respective side of the market.

More specifically, let Assumption 2.1 hold with Σ∗ := Σw × Σm, where Σg is the set of all

permutations of indices i = 1, . . . , ng for g = m,w.

By Theorem 2.22 in Roth and Sotomayor (1990), for a given realization of (strict) preferences

u, the set of agents that remain single is the same for any stable matching. In particular, for

every pair s, s′ ∈ S(u), there exists a permutation σ′ ∈ Σ∗ such that s′ = σ′(s) which implies that

for every s ∈ S(u), S(u) ⊂ {σ(s) : σ ∈ Σ∗}. Hence it is possible to calculate the bounds on the

invariant likelihood with respect to Σ∗, finv,∗(y|θ), f ∗
inv(y|θ) by minimization or maximization,

respectively, over the permutations of observed pairs. Finding the exact solution to these two

combinatorial optimization problem is a computationally challenging task, but in a future version

of this paper, we are going to discuss approximate solutions and conservative bounds that can

be obtained at a reasonable computational cost.

6.4. Empirical Analysis. In order to implement the algorithm from section 3, we assume that

the marginal prior over θ = (θ′w, θ
′
m)

′ is multivariate normal with a given mean θ0 := (θ′w0, θ
′
m0)

′

and block-diagonal variance matrix Σ0 := diag (Σw0,Σm0),

π0(θ) = N(θ0,Σ0) (6.2)

We can now implement the first part of Algorithm 2 by iterating over the following steps:

(1) set λk+1 = λ∗ and draw a new parameter vector for women’s preferences θw,k+1|θm,k,Uk,Vk

(2) draw a new parameter vector for men’s preferences, θm,k+1|θw,k+1,Uk,Vk

(3) draw Uk+1|Vk, θk+1, λ
∗, i.e. imposing Constraints S

(4) draw Vk+1|Uk+1, θk+1, λ
∗, i.e. imposing Constraints S

(5) add a draw (θw,k+2, θm,k+2, λk+2) = (θw,k+1, θm,k+1, λ∗) if the draw of Vk+1|Uk+1 satisfies

constraints U , otherwise continue directly with step 1.

Note that in the first step, it is not necessary to condition on λ - i.e. whether the matching is stable

- explicitly because by construction of the algorithm, the latent utilities were drawn imposing
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the stability or uniqueness conditions in the preceding iteration. By the same argument, the

conditional distribution of λ depends on the latent utilities but not the value of θ.

Following Logan, Hoff, and Newton (2008), given the normal prior for θw in (6.2) the condi-

tional distribution of θk+1 given Uk,Vk is given by

θw,k+1|Uk,Vk ∼ N (ηwk,Ωwk)

where

Ω−1
wk :=

nw
∑

i=1

XiX
′
i + Σ−1

w0 and ηwk := Ωwk

[

nw
∑

i=1

XiUi + Σ−1
w0ηw0

]

where the matrix Xi = [Xi0, Xi1, . . . , Xinm
] is stacking the match-specific observables for woman

i, and the column vector Ui = [Ui1,k, . . . , Uinm,k]
′ contains the match-specific utilities from the

previous iteration of the algorithm. It is therefore possible to draw θw,k+1 directly from its

conditional distribution. The other component of the parameter, θm,k+1 can also be drawn from

its (multivariate normal) conditional distribution whose first two moments can be obtained in a

completely analogous manner.

In order to simulate from a multivariate normal distribution imposing the multiple inequality

constraints from constraint sets S and U efficiently, for steps 3 and 4 we modify the procedure

by Robert (1995) using an accept/reject algorithm with proposals from translations of mutually

independent exponential distributions with suitably chosen hazard rates. Since the blocks in

the last two steps are in general highly correlated, the performance of the algorithm will likely

improve substantively if we iterate between these steps several times before continuing with a

new draw of θk+1.

Step 5 can in principle be replaced by a proper Metropolis-Hastings step after repeating the

Gibbs steps 3 and 4 for the missing data several times, and accept the draw (θk+1, λ∗) if the

proportion of samples for Vk+1|Uk+1 from steps 3 and 4 satisfying Constraint U is larger than a

draw from the uniform distribution on the unit interval. This procedure should be expected to

decrease the variance in approximating the posterior distribution of θ conditional on λ = λ∗ and

reduce serial dependence within the Markov chain.

Given the Markov chain (θ1, λ1), . . . , (θB, λB) we can obtain optimal point decisions and cred-

ible sets by approximating the minmax risk integrals r∗(y, a,Γ) for the corresponding loss func-

tions. By Proposition 4.4, the statistical decision minimizing rB(y, a,Γ) over a ∈ A attains the

minimum of r∗(y, a,Γ) as B → ∞.

6.5. Data and Estimation Results. [to be added]

7. Discussion

[to be added]
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Appendix A. Proofs

A.1. Proof of Proposition 4.1: First, we are going to establish existence of a solution to the problem (3.1):

we can rewrite the problem as

̺(y, a,Γ) = sup
ω∈[ω∗,ω∗]

sup
π∈Γ

1

ω

∫

L(a, θ)f(y|θ, λ)dπ(θ, λ) s.t.

∫

f(y|θ, λ)dπ(θ, λ) = ω

where ω∗ :=
∫

f(y|θ, λ∗(θ))π0(θ)dθ and ω∗ :=
∫

f(y|θ, λ∗(θ))π0(θ)dθ.

The set Γ is convex by Assumption 4.2, so that for every fixed value of ω ∈ R a solution to the constrained max-

imization problem exists by the Hahn-Banach theorem. Since the loss function L(a, θ) is bounded by Assumption

4.1, the function

H∗(ω) := sup
π∈Γ

1

ω

∫

L(a, θ)f(y|θ, λ)dπ(θ, λ) s.t.

∫

f(y|θ, λ)dπ(θ, λ) = ω

is continuous in ω.

By assumption y ∈ Y was such that
∫

f(y|θ, λ)π0(θ)dθ > 0 for some λ, so that by Assumption 4.3 f∗ > 0.

Furthermore, since f(y|θ, λ) is uniformly bounded, we also have f∗ < ∞, so that the interval for ω is compact

and bounded away from zero. Hence the function 1
ωH

∗(ω) is also continuous on the interval [f∗, f
∗], so that the

solution to the problem (3.1) exists by Weierstrass’ Theorem.

Next we are going to establish that there is a solution to the problem that meets the requirements in (i) and

(ii) in the statement of the Proposition. In the following, denote Pθ(B) =
∫

B π0(θ)dθ for any set B ⊂ Θ. Suppose

the prior π̃(θ, λ) ∈ Γ solves the problem (3.1). Now we have to distinguish two cases:

If the set B ⊂ Θ on which π̃(θ, λ) does not satisfy properties (i) and (ii) has probability zero under the prior,

i.e. Pθ(B) = 0, then we can construct a prior π̃∗(θ, λ) ∈ Γ that differs from π̃(θ, λ) only on B and meets the

requirements in (i) and (ii). Assumptions 4.1 and 4.3 imply that
∫

Θ×Λ
L(θ, a)f(y|θ, λ)dπ̃∗(θ, λ)

∫

Θ×Λ f(y|θ, λ)dπ̃
∗(θ, λ)

=

∫

Θ×Λ
L(θ, a)f(y|θ, λ)dπ̃(θ, λ)

∫

Θ×Λ f(y|θ, λ)dπ̃(θ, λ)
= ̺(y, a,Γ)

so that the prior π̃∗(θ, λ) is also a solution to the problem (3.1).

Now suppose instead that there exists a subset B′ ⊂ Θ such that Pθ(B
′) > 0 such that for all θ ∈ B,

supportπ̃(λ|θ) * {λ∗(θ), λ∗(θ)}. Set L∗ = L∗(a, y) := ̺(y, a,Γ), and denote A := {θ ∈ Θ : L(a, θ) = L∗}. If

Pθ(A ∩B) = 0, then we can modify π̃ as in the previous step without changing the value of the objective.

Now consider the case Pθ(A ∩ B) 6= 0, where we assume without loss of generality that L(a, θ) > L∗ for all

θ ∈ B/A. Define the prior

π̌(θ, λ) :=

{

π0(θ)δλ∗(θ) if θ ∈ B

π̃(θ, λ) otherwise

where δλ′ denotes the (Dirac) delta-function for λ = λ′. Clearly, π̌(θ, λ) ∈ Γ.
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Define ω̌ :=
∫

B [f
∗(y|θ)− f(y|θ, λ)]π̃(dθ, dλ), and note that by definition of f∗(y|θ) and π̃ ∈ Γ, ω̌ ≥ 0. Now we

can bound

ˇ̺(y, a) :=

∫

B L(θ, a)f
∗(y|θ)π0(dθ) +

∫

Θ/B L(θ, a)f(y|θ, λ)π̃(dθ, dλ)
∫

B f
∗(y|θ)π0(dθ) +

∫

Θ/B f(y|θ, λ)π̃(dθ, dλ)

=

∫

B
L(θ, a)[f∗(y|θ)− f(y|θ, λ)]π̃(dθ, dλ) +

∫

Θ
L(θ, a)f(y|θ, λ)π̃(dθ, dλ)

∫

B
[f∗(y|θ)− f(y|θ, λ)]π̃(dθ, dλ) +

∫

Θ
f(y|θ, λ)π̃(dθ, dλ)

>

[

ω̌ +
∫

Θ f(y|θ, λ)π̃(dθ, dλ)
]

r∗(y, a,Γ)

ω̌ +
∫

Θ f(y|θ, λ)π̃(dθ, dλ)

= ̺(y, a,Γ)

contradicting that π̃(θ, λ) attains the supremum in (3.1). Hence we can rule out the case Pθ(A ∩ B), which

completes the proof �

A.2. Proof of Proposition 4.2: Note that we can write

sup
ψ∈Ψ

∫

L(θ; a)ψ(θ, λ)p(dθ, dλ; y, πI )
∫

ψ(θ, λ)p(dθ, dλ; y, πI )
= sup

ψ∈Ψ

∫

L(θ; a)f(y|θ, λ)ψ(θ, λ)πI (dθ, dλ; y)
∫

f(y|θ, λ)ψ(θ, λ)πI (dθ, dλ; y)

Since π∗(θ, λ; a, y) is absolutely continuous with respect to πI(θ, λ; y) for (a, y) by Assumption 4.4, it follows

from the Radon-Nikodym theorem that there exists a nonnegative measurable function ψ(λ, θ) such that for any

function h(θ, λ) that is integrable with respect to πI , we have
∫

hdπ∗ =
∫

hψdπI . Since π
∗ ∈ Γ, it is a probability

measure so that
∫

ψdπ0 =
∫

dπ∗ = 1, so that ψ ∈ Ψ. Hence

sup
ψ∈Ψ

∫

L(θ; a)ψ(θ, λ)p(dθ, dλ; y, πI )
∫

ψ(θ, λ)p(dθ, dλ; y, πI )
≥ sup

π(θ,λ)∈Γ

∫

Θ×Λ
L(θ, a)f(y|θ;λ)π(dλ, dθ)

∫

Θ×Λ f(y|θ;λ)π(dλ, dθ)
(A.1)

Conversely, since for any function ψ ∈ Ψ,
∫

ψ(θ, λ)πI (θ, dλ) = π0(θ) for all θ ∈ Θ, there is an element π̃ ∈ Γ

such that for any measurable function h on Θ× Λ,
∫

hdπ̃ =
∫

hψdπI . Hence we also have

sup
π(θ,λ)∈Γ

∫

Θ×Λ
L(θ, a)f(y|θ;λ)π(dλ, dθ)

∫

Θ×Λ f(y|θ;λ)π(dλ, dθ)
≥ sup

ψ∈Ψ

∫

L(θ; a)ψ(θ, λ)p(dθ, dλ; y, πI )
∫

ψ(θ, λ)p(dθ, dλ; y, πI )

which together with the inequality (A.1) establishes the claim �

A.3. Proof of Proposition 4.3: The proof of consistency will proceed in two steps: we will first show pointwise

convergence of ĴB(L̃, a) to its limit, and then strengthen this result to uniform convergence, and finally use

Propositions 4.1 and 4.2 show that the limit equals r(y, a,Γ).

Fix a ∈ A, let C(L̃) :=
{

θ ∈ Θ : L(θ, a) < L̃
}

, and define

J0(L̃, a) :=

∫

C(L̃) L(θ, a)f∗(y|θ)π(dθ) +
∫

Θ/C(L̃) L(θ, a)f
∗(y|θ)π(dθ)

∫

C(L̃)
f∗(y|θ)π(dθ) +

∫

Θ/C(L̃)
f∗(y|θ)π(dθ)

We will now show that ĴB(L̃, a)
p
→ J0(L̃, a) for all L̃ ∈ R.

First note that by Assumption 4.1, L(θ, a) is bounded, so that both ĴB(L̃, a) and J0(L̃, a) are constant for

L̃ < infa,θ L(θ, a) and L̃ > supa,θ L(θ, a), respectively. Now consider the numerator and denominator of the

expression for ĴB(L̃, a) separately, i.e. let

Q̂B(L̃, a) :=

B
∑

b=1

L(θb, a)

[

1l{L(θb, a) ≤ L̃, λb = λ∗(θb)} +
πI(λ∗(θb)|θb)

πI(λ∗(θb)|θb)
1l{L(θb, a) > L̃, λb = λ∗(θb)}

]

π0(θb)

πI(θb, λ∗(θb); y)
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and

R̂B(L̃, a) :=

B
∑

b=1

[

1l{L(θb, a) ≤ L̃, λb = λ∗(θb)} +
πI(λ∗(θb)|θb)

πI(λ∗(θb)|θb)
1l{L(θb, a) > L̃, λb = λ∗(θb)}

]

π0(θb)

πI(θb, λ∗(θb); y)

By Assumption 4.5 (θb, λb), b = 1, . . . , B are (not necessarily independent) draws from the posterior p(θ, λ; y, πI),

so that the expectation of Q̂B(L̃, a) with respect to (θ, λ) can be rewritten as

E
[

Q̂B(L̃, a)
]

=

∫

C(L̃)

L(θ, a)p(θ, λ∗(θ); y, πI)
π0(θ)

πI(θ, λ∗(θ); y)
dθ +

∫

Θ/C(L̃)

L(θ, a)p(θ, λ∗(θ); y, πI)
π0(θ)

πI(θ, λ∗(θb); y)
dθ

=

∫

C(L̃) L(θ, a)f∗(y|θ)π0(θ)dθ +
∫

Θ/C(L̃) L(θ, a)f
∗(y|θ)π0(θ)dθ

∫

f(y|θ, λ)πI(dθ, dλ; y)
(A.2)

Similarly,

E
[

R̂B(L̃, a)
]

=

∫

C(L̃) f∗(y|θ)π0(θ)dθ +
∫

Θ/C(L̃) f
∗(y|θ)π0(θ)dθ

∫

f(y|θ, λ)πI(dθ, dλ; y)
(A.3)

Using Assumptions 4.3 and 4.4, we can bound this expectation by
∫

C(L̃)
f∗(y|θ)π0(θ)dθ +

∫

Θ/C(L̃)
f∗(y|θ)π0(θ)dθ

∫

f(y|θ, λ)πI(dθ, dλ; y)
≥

∫

f∗(y|θ)π0(dθ)
∫

f∗(y|θ)πI(dθ)
>

∫

f∗(y|θ)π0(dθ)
∫

f∗(y|θ)πI(dθ)
> 0

where πI(θ; y) :=
∫

πI(θ, dλ; y). Furthermore, by Assumptions 4.1 and 4.3, L(θ, a) and f∗(y|θ) are uniformly

bounded and therefore also bounded under the L1(π0) norm.

Hence, in the first case of Assumption 4.5, a law of large numbers for Q̂B(L̃, a) and R̂B(L̃, a) together with

the continuous mapping theorem implies that

ĴB(L̃, a) =
Q̂B(L̃, a)

R̂B(L̃, a)

p
→

E
[

QB(L̃, a)
]

E
[

RB(L̃, a)
] = J0(L̃, a)

On the other hand, if the sample (θb, λb) is from a Harris recurrent Markov chain, the conclusion follows from

the Ergodic Theorem (e.g. Theorem 6.63 in Robert and Casella (2004)) using the same line of reasoning as in

the independent case.

Next, we establish that convergence is uniform in L̃ ∈ R and a ∈ A: Consider the class of indicator functions

for the lower contour sets of L(θ, a) in Θ,

G :=
{

θ 7→ 1l{L(θ, a) < L̃} : a ∈ A, L̃ ∈ R
}

. Since by Assumption 4.1, L(θ, a) the contour sets of L(θ, a) are convex, and furthermore, π0(θ) is absolutely

continuous with respect to Lebesgue measure on Θ by Assumption 4.2. Hence it follows from a result by Eddy

and Hartigan (1977) that G is Glivenko-Cantelli if Θ is a subset of a Euclidean space.

Since the class L was also assumed to be Glivenko-Cantelli, we can apply Theorem 3 in van der Vaart and

Wellner (2000) on the permanence of the Glivenko-Cantelli property under continuous transformations to the class

φ(L,G) :=
{

L(a, θ)1l{L(a, θ) < L̃} : a ∈ A, L̃ ∈ R
}

. Since the two summands in Q̂B(L̃, a) can be represented as

averages of functions in L and φ(L,G), we get uniform convergence of the numerator. Similarly uniformity of

convergence of the denominator R̂B(L̃, a) follows directly from the Glivenko-Cantelli property of G.

By Assumption 4.3, R̂B(L̃, a) is bounded away from zero with probability approaching 1, so that ĴB(λ, a) =
Q̂B(L̃,a)

R̂B(L̃,a)
is Lipschitz, and therefore uniformly continuous in Q̂B(L̃, a) and R̂B(L̃, a) so that by the continuous

mapping theorem convergence of ĴB(L̃, a) is also uniform in L̃ ∈ R and a ∈ A.
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Now, by uniform convergence of ĴB(L̃, a) in (L̃, a), we have

sup
a∈A

∣

∣

∣

∣

∣

sup
L̃∈R

ĴB(L̃, a)− sup
L̃∈R

J0(L̃, a)

∣

∣

∣

∣

∣

p
→ 0

Since by Proposition 4.1, ̺(y, a,Γ) = supL̃∈R
J0(L̃, a), this completes the proof �

A.4. Proof of Proposition 4.4: The proof of validity of the second algorithm follows the same steps as the

argument in Proposition 4.3. We will therefore only need to show pointwise convergence for L̃ ∈ R and a ∈ A,

and the remainder of the proof is completely analogous to that of the previous result. Again, consider numerator

and denominator of J̃B(L̃, a) separately: for

Q̃B(L̃, a) :=
B
∑

b=1

L(θb, a)
[

1l{L(θb, a) ≤ L̃}v∗b + 1l{L(θb, a) > L̃}v∗b

]

we have

E[Q̃B(L̃, a)] =

∫

C(L̃)

L(θ, a)

∫

U

v∗(θ, u; y)λ0(u; s)g(u|x, θ)duπ0(dθ) +

∫

Θ/C(L̃)

L(θ, a)

∫

U

v∗(θ, u; y)λ0(u; s)g(u|x, θ)duπ0(dθ)

=

∫

C(L̃)

L(θ, a)

∫

U

λ∗(u; s)g(u|x, θ)duπ0(dθ) +

∫

Θ/C(L̃)

L(θ, a)

∫

U

λ∗(u; s)g(u|x, θ)duπ0(dθ)

=

∫

C(L̃)

L(θ, a)f∗(y|θ)π0(dθ) +

∫

Θ/C(L̃)

L(θ, a)f∗(y|θ)π0(dθ)

= E[Q̂B(L̃, a)]

Similarly, for the denominator

R̃B(L̃, a) :=

B
∑

b=1

[

1l{L(θb, a) ≤ L̃}v∗b + 1l{L(θb, a) > L̃}v∗b

]

we have E[R̃B(L̃, a)] = E[R̂B(L̃, a)], so that the argument can be completed using the same steps as in the proof

of Proposition 4.3 �

A.5. Proof of Proposition 5.1: Existence of a solution of the problem (3.1) can be shown using the same

arguments as in the proof of Proposition 4.1.

For any choice of ν(λ), we can rewrite

J(ν) =

∫

Λ

∫

Θ L(a, θ)f(y|θ, λ)dπ0(θ)dν(λ)
∫

Λ

∫

Θ
f(y|θ, λ)dπ0(θ)dν(λ)

=:
Q(ν)

R(ν)
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By Fubini’s theorem,

Q(ν) :=

∫

Λ

∫

Θ

L(a, θ)f(y|θ, λ)dπ0(θ)dν(λ)

=

∫

Λ

∫

Θ

L(a, θ)

∫

U

M
∏

m=1

λm(um, sm)gm(um|xm, θ)duM . . . du1dπ0(θ)dν(λ)

=

∫

Λ

∫

U

[

M
∏

m=1

λm(um, sm)

][

∫

Θ

L(a, θ)

M
∏

m=1

gm(um|xm, θ)dπ0(θ)

]

duM . . . du1dν(λ)

=:

∫

Λ

∫

U

[

M
∏

m=1

λm(um, sm)

]

H(u, a)dudν(λ)

for any m = 1, . . . ,M , where we define

H(u, a) :=

∫

Θ

L(a, θ)

M
∏

m=1

gm(um|xm, θ)dπ0(θ)

Similarly, defining

h(u) :=

∫

Θ

M
∏

m=1

gm(um|xm, θ)dπ0(θ)

we can write

R(ν) :=

∫

Λ

∫

Θ

f(y|θ, λ)dπ0(θ)dν(λ)

=

∫

Λ

∫

U

M
∏

m=1

λm(um, sm)h(u)dudν(λ)

By the same arguments as in the proof of Proposition 4.1, the function J(ν) is maximized at a prior ν∗(λ) which

puts unit mass on λ∗ = (λ∗1, . . . , λ
∗
M ) with

λ∗m(um) = max
λ∈Λ

M
∏

m=1

λm(um)1l {Z(u, a) ≥ Z∗}+min
λ∈Λ

M
∏

m=1

λm(um)1l {Z(u, a) < Z∗}

where Z(u, a) = H(u,a)
h(u) is as defined in (5.1), and Z∗ := ̺(y, a,Γ⊥) �

A.6. Proof of Proposition 5.2: Consider the ratio

Z(u, a) :=

∫

Θ L(θ, a)g(u|x, θ)dπ0(θ)
∫

Θ
g(u|x, θ)dπ0(θ)

By log-concavity of h(θ|u, x) and convexity of C, it follows from known properties of log-concave functions (see

e.g. Theorem 6 in Prékopa (1973)) that Z(u, a) is log-concave - and therefore in particular quasi-concave - in u

for all a ∈ A. Hence the lower contour set LC(z̄, a) = {u ∈ U : Z(u, a) ≤ z̄} is convex for any values of a and

z̄ ∈ R. Finally, the set of convex subsets of U is Glivenko-Cantelli for all measures that are absolutely continuous

with respect to Lebesgue measure on U , e.g. by the Theorem of Eddy and Hartigan (1977) so that Condition 5.1

holds with k = 1 �

A.7. Proof of Proposition 5.3: Consistency of the simulation algorithm can be established using similar ar-

guments as in the proofs for Proposition 4.3.
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For any C ∈ C denote

Ĵb(C, a) :=

∑B
b=1

[

minλ∈Λ

∏
M
m=1

λm(um,b,sm)

maxλ∈Λ

∏
M
m=1

λm(um,b,sm)
1l {ub ∈ C}+ 1l {ub /∈ C}

]

L(θb, a)

∑B
b=1

minλ∈Λ

∏
M
m=1

λm(um,b,sm)

maxλ∈Λ

∏
M
m=1

λm(um,b,sm)
1l {ub ∈ C}+ 1l {ub /∈ C}

=:
Q̂b(C, a)

R̂b(C, a)

For a given selection rule λ(u), the conditional likelihood ratio between f(y|u, θ, λ) and the distribution corre-

sponding to the most favorable selection rule f∗(y|u, θ) := maxλ∈Λ f(y|u, θ, λ) given u = (u′1, . . . , u
′
M )′ is of the

form

w(u, λ) :=
f(y|u, θ, λ)

f∗(y|u, θ)
=

∏M
m=1 λm(um, sm)

maxλ∈Λ

∏M
m=1 λm(um,b, sm)

and let λ∗(u, y) := maxλ∈Λ

∏M
m=1 λm(um, sm) and λ∗(u, y) := minλ∈Λ

∏M
m=1 λm(um, sm), respectively.

By Assumption 4.5, the sample (θ′b, u
′
b)

′ is drawn from a distribution with marginal density

h(θ, u|y) :=
1l{sm ∈ S∗

m(u),m = 1, . . . ,M}g(u|x, θ)π0(θ)
∫

U

∫

Θ
1l{sm ∈ S∗

m(u),m = 1, . . . ,M}g(u|x, θ)dπ0(θ)du
=

1l{sm ∈ S∗
m(u),m = 1, . . . ,M}g(u|x, θ)π0(θ)

∫

Θ
f∗(y|θ)dθ

Taking expectations,

E
[

Q̂b(C, a)
]

=

∫

Θ

∫

C

λ∗(u, y)

λ∗(u, y)
L(θ, a)dh(θ, u|y) +

∫

U/C

L(θ, a)ð(θ, u|y)

=

∫

Θ L(θ, a)
(

∫

C
λ∗(u,y)
λ∗(u,y)1l{sm ∈ S∗

m(u), ∀m}g(u|x, θ)du+
∫

U/C 1l{sm ∈ S∗
m(u), ∀m}g(u|x, θ)du

)

dπ0(θ)

∫

Θ

(

∫

C
λ∗(u,y)
λ∗(u,y)1l{sm ∈ S∗

m(u), ∀m}g(u|x, θ)du+
∫

U/C1l{sm∈S∗
m(u),∀m}g(u|x,θ)du

f∗(y|θ)
)

dπ0(θ)

=

∫

Θ
L(θ, a)

(

∫

C
f(y|u, θ, λ∗(u, y))dπ0(θ)du +

∫

U/C
f(y|u, θ, λ∗(u, y))du

)

dπ0(θ)
∫

Θ
f∗(y|θ)dπ0(θ)

Similarly,

E
[

R̂b(C, a)
]

=

∫

Θ

(

∫

C
f(y|u, θ, λ∗(u, y))du +

∫

U/C
f(y|u, θ, λ∗(u, y))du

)

dπ0(θ)
∫

Θ
f∗(y|θ)dπ0(θ)

(A.4)

By the same arguments as in the proof of Proposition 4.3,

Ĵb(C, a)
p
→

E
[

Q̂b(C, a)
]

E
[

R̂b(C, a)
] =

∫

Θ
L(θ, a)

(

∫

C
f(y|u, θ, λ∗(u, y))dπ0(θ)du +

∫

U/C
f(y|u, θ, λ∗(u, y))du

)

dπ0(θ)

∫

Θ

(

∫

C f(y|u, θ, λ∗(u, y))du +
∫

U/C f(y|u, θ, λ
∗(u, y))du

)

dπ0(θ)
=: J(C, a)

for any set C ∈ C. Since the assumptions of Proposition 5.1 are subsumed under those for this proposition, there is

a set C ⊂ U such that J(C, a) = ̺(y, a,Γ⊥). Since by Condition 5.1 C ∈ C, we have ̺(y, a,Γ⊥) ≤ supC∈C J(C, a).

Furthermore Assumption 5.1 implies that νC(λ)π0(θ) ∈ Γ⊥ for any set C ∈ C, where νC(λ) is a distribution

on Λ which puts unit mass on λ̃(C) with
∏M
m=1 λ̃m(um;C) := 1l{u ∈ C}minλ∈Λ

∏

m=1Mλm(um, sm) + 1l{u /∈

C}maxλ∈Λ

∏M
m=1 λm(um, sm). Hence we also have ̺(y, a,Γ⊥) ≥ supC∈C J(C, a), so that indeed ̺(y, a,Γ⊥) =

supC∈C J(C, a).

Since by assumption, Condition 5.1 holds, so that in particular the family of sets C is a Glivenko-Cantelli

class for measures that are absolutely continuous with respect to Lebesgue measure. Hence by Assumption 4.1,

convergence is also uniform in C ∈ C and a ∈ A, so that supC∈C Ĵb(C, a)
p
→ supC∈C J(C, a) = ̺(y, a,Γ⊥) uniformly

in a ∈ A, and the conclusion of Proposition 5.3 follows �
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Prékopa, A. (1973): “On Logarithmic Concave Measures and Functions,” Acta Scientiarum Mathematicarum,

34, 335–343.

Robert, C. (1995): “Simulation of Truncated Normal Variables,” Statistics and Computing, 5, 121–125.

Robert, C., and G. Casella (2004): Monte Carlo Statistical Methods. Springer.

Roth, A., and M. Sotomayor (1990): Two-Sided Matching: A Study in Game-Theoretic Modeling and

Analysis. Cambridge University Press.

Song, K. (2009): “Point Decisions for Interval-Identified Parameters,” working paper, University of Pennsylvania.

Stoye, J. (2009): “Minimax Regret Treatment Choice with Finite Samples,” Journal of Econometrics, 151,

70–81.

Strzalecky, T. (2011): “Axiomatic Foundations of Multiplier Preferences,” Econometrica, 79(1), 47–73.

Tamer, E. (2003): “Incomplete Simultaneous Discrete Response Model with Multiple Equilibria,” Review of

Economic Studies, 70, 147–165.

Tanner, M., and W. Wong (1987): “The Calculation of Posterior Distributions by Data Augmentation,”

Journal of the American Statistical Association, 82.

van der Vaart, A., and J. Wellner (2000): “Preservation Theorems for Glivenko-Cantelli and Uniform
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