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Abstract

Many countries use college-major-speci�c admissions policies that require

a student to choose a college-major pair upon college enrollment. Motivated

by potential student-major mismatches under such policies, we explore the

equilibrium e¤ects of postponing student choice of major. To do so, we develop

an equilibrium model of college-major choices under the college-major-speci�c

admissions regime and estimate its structural parameters using data from Chile.

Then we introduce the counterfactual policy regime as a Stackelberg game in

which a social planner chooses college-speci�c admissions policies and students

make enrollment decisions, learn about their �ts to various majors and then

choose their majors. We compare educational outcomes and welfare under the

current and the counterfactual policy regimes.

1 Introduction

In countries such as Canada1 and the U.S., students are admitted to colleges without

declaring their majors until later years in their college life. Peer students in the same

�We thank Joe Altonji, Peter Arcidiacono, Steven Durlauf, John Kennan, Rasmus Lentz, Fei Li,
Costas Meghir, Robert Miller, Antonio Penta, Xiaoxia Shi, Chris Taber, Xi Weng, Matt Wiswall
and Ken Wolpin for their insightful discussions. We thank workshop participants at the Cowles
Summer Conference 2012, S&M Workshop at Chicago Fed, Econometric Society summer meeting
2012, IRP-UW and CDE-UW for helpful comments. All errors are ours.

yBordon and Fu: Department of Economics, University of Wisconsin-Madison. Please send
correspondence to Chao Fu, 1180 Observatory Dr. Madison, WI 53706. Email: cfu@ssc.wisc.edu

1With the exception of Quebec province.
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classes during early college years may end up choosing very di¤erent majors later on.

In contrast, many countries in Asia, Europe and Latin America use college-major-

speci�c admissions rules. A student is admitted to a speci�c college-major pair and

attends classes with peers (mostly) from his/her own major upon college enrollment.

We label the �rst system where students choose majors after college enrollment by

Sys.S (for sequential), and the second system where students have to make a joint

college-major choice by Sys.J (for joint).

Which system is more e¢ cient? This is a natural and policy-relevant question, yet

one without a simple answer. To the extent that college education is aimed at provid-

ing a society with specialized personnel, Sys.J may be more e¢ cient if potential college

enrollees have su¢ cient information about their suitability to di¤erent majors. It fa-

cilitates the allocation of resources across majors, allows for more specialized training,

and maximizes the interaction among students with similar comparative advantages.

However, if students are uncertain about their major-speci�c �ts, Sys.J may lead to

serious mismatch problems. E¢ ciency comparisons across these two admissions sys-

tems depend critically on the degree of uncertainty faced by students, the relative

importance of peer e¤ects, and student sorting behavior that determines equilibrium

peer quality. Simple cross-system comparisons are unlikely to be informative because

of the potential unobserved di¤erences between student populations under di¤erent

systems. Without observing the same population of students under two di¤erent sys-

tems, this paper aims at conducting e¢ ciency comparisons via a structural approach,

thus providing necessary information for policy makers before conducting admissions

policy reforms.

Speci�cally, we develop an equilibrium model of student sorting under Sys.J, al-

lowing for post-enrollment uncertainties and peer e¤ects. We apply it to the case of

Chile, where we have obtained detailed micro-level data on college enrollment from

the Chilean Department of Evaluation and Educational Testing Service, and on job

market returns from the Ministry of Education of Chile. Our �rst goal is to recover

the structural parameters underlying the observed equilibrium sorting among Chilean

students. Our second goal is to examine changes in student welfare and the distrib-

ution of educational outcomes if, instead of college-major-speci�c admissions, Chile

were to adopt college-speci�c admissions and allow students to learn about them-

selves before declaring majors. Although our empirical analysis focuses on the case of

Chile, our framework is general enough to be applied to other countries with similar
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admissions systems.

In our model, students di¤er in their (multi-dimensional) abilities and educational

preferences, and they face uncertainty about their suitability to various majors. The

cost of and return to college education not only depend on one�s own characteristics,

but may also depend on the quality of one�s peers attending the same program.2

In the baseline case (Sys.J), there are two decision periods. First, a student makes

college-major enrollment decision, based on his/her expectations about peer quality

across di¤erent academic programs and about how well suited he/she is to various

majors. The choices of individual students, in turn, determine the equilibrium peer

quality. In the second period, a college enrollee learns about his/her �t to the chosen

major and decides whether or not to continue his/her studies.

In our counterfactual policy experiments (Sys.S), a planner chooses optimal college-

speci�c, rather than college-major-speci�c, admissions policies; students make enroll-

ment decisions and postpone their choices of majors until after they learn about

their �ts to various majors. Although individual students always maximize their own

welfare, the eventual sorting need not be e¢ cient due to the existence of peer ef-

fects. Using optimal admissions policies, the planner guides student sorting toward

the maximization of their overall welfare.

Several factors have major implications on the changes in equilibrium outcomes

as Sys.J switches into Sys.S. The �rst is the degree of uncertainty students face about

their major-speci�c �ts, which we �nd to be nontrivial. Indeed, postponing the choice

of majors increases the overall college retention rate from 75% in the baseline to 90%

in the counterfactual.

Second, in contrast to Sys.J, where peer students are from the same major upon

college enrollment, Sys.S features a much broader student body in �rst-period classes.

While students di¤er in their comparative advantages, some students have advantages

over others in multiple majors, and some majors have superior student quality. With

the switch from Sys.J to Sys.S, on the one hand, the quality of �rst-period peers in

"elite" majors will decline; on the other hand, "non-elite" majors will bene�t from

having "elite" students in their �rst-period classes. The overall e¢ ciency depends

on, among other factors, which of the two e¤ects dominates. Our estimation results

show that for "elite" majors, such as medicine, law and engineering, own ability

2In this paper, we use a "broad" de�nition of peer e¤ects that compounds various venues through
which peer quality might matter.
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is more important than peer ability in determining one�s market return, while the

opposite is true for "non-elite" majors such as education. Combining this fact with the

improvement in student-major match quality, we �nd that the average productivity

of college graduates improves in all majors when Sys.S is adopted.

Finally, as students spend time trying out di¤erent majors, their specialized train-

ing is postponed as the price. Welfare comparisons vary with how high this price is.

We �nd that average student welfare will increase by a monetary equivalent of 4:6

million pesos or 5%; if delayed specialization under Sys.S does not reduce the amount

of marketable skills one obtains in college compared to Sys.J.3 At the other extreme, if

the �rst period in college contributes zero to one�s skills under Sys.S, and if a student

has to make up for this loss by extending his/her college life accordingly, a 0:9% loss

in mean welfare will result. In an alternative design, instead of extending the duration

of college education for all majors, we allow students in most majors to graduate in

time and spend only their upper college years specializing. Under this framework,

if the shortened speci�c training causes a 20% loss of human capital ceteris paribus,

average student welfare equalizes across the two systems.

Our paper is closely related to studies that treat education as a sequential choice

made under uncertainty and stress the importance of speci�city of human capital.4

For example, Altonji (1993) introduces a model in which students learn their pref-

erences and probabilities of completion in two �elds of study during college years.

Arcidiacono (2004) estimates a structural dynamic model of college and major choice

in the U.S., where students learn about their abilities via test scores in college before

settling down to their majors. As in our paper, he allows peer quality to a¤ect one�s

return to college.5 Given his focus on individual decisions, peer quality is treated as

exogenous.6

31 USD is about 484 Chilean pesos.
4Examples of theoretical papers in this regard include Manski (1989) and Comay, Melnick, and

Pollachek (1973).
5There is a large and controversial literature on peer e¤ects. Methodological issues are discussed in

Manski (1993), Mo¢ tt (2001), Brock and Durlauf (2001), and Blume, Brock, Durlauf and Ioannides
(2011). Limiting discussion to recent research on peer e¤ects in higher education, Sacerdote (2001)
and Zimmerman (2003) �nd peer e¤ects between roommates on grade point averages. Betts and
Morell (1999) �nd that high-school peer groups a¤ect college grade point average. Arcidiacono and
Nicholson (2005) �nd no peer e¤ects among medical students. Dale and Krueger (1998) have mixed
�ndings.

6Stinebrickner and Stinebrickner (2011) use expectation data to study student�s choice of major.
For a comprehensive survey of the literature on the demand for and return to education by �eld
of study in the U.S., see Altonji, Blom and Meghir (2011). As an example of non-U.S. studies,

4



While this literature has focused on individual decision problems, our goal is to

study the educational and labor market outcomes for the population of students, and

to provide predictions about these outcomes under counterfactual policy regimes.

One cannot achieve this goal without modeling student sorting in an equilibrium

framework, because peer quality may change as students re-sort themselves under

di¤erent policy regimes.

In its emphasis on equilibrium structure, our paper is related to Epple, Romano

and Sieg (2006) and Fu (2011). Both papers study college enrollment in a decentral-

ized market, where colleges compete for better students.7 Given our goal of addressing

e¢ ciency-related issues, and the fact that colleges in Sys.J countries are often coor-

dinated, we study a di¤erent type of equilibrium, where the players include students

and a single planner. In this centralized environment, we abstract from the deter-

mination of tuition, which is likely to be more important in decentralized market

equilibria studied by Epple, Romano and Sieg (2006) and Fu (2011); instead, we

emphasize some other aspects of college education that are absent in these two pre-

vious studies but are more essential to our purpose. In particular, we emphasize the

multi-dimensionality of abilities and uncertainties over major-student �ts, and relate

college education to job market outcomes.

The rest of the paper is organized as follows: Section 2 provides some background

information about education in Chile. Section 3 lays out the model. Section 4 de-

scribes our data. Section 5 describes our estimation followed by the empirical results.

Section 7 conducts counterfactual policy experiments. The last section concludes the

paper. The appendix contains additional details and tables.

2 Background: Education in Chile

There are three types of high schools in Chile: scienti�c-humanist (regular), technical-

professional (vocational) and artistic. Most students who want to pursue a college

degree attend the �rst type. In their 11th grade, students choose to follow a certain

academic track based on their general interests, where a track can be humanities,

Malamud (2010) compares the labor market consequences across the English (Sys.J) and Scottish
(Sys.S) undergraduate systems using a regression approach and �nds that the average earnings are
not signi�cantly di¤erent between the two countries.

7Epple, Romano and Sieg (2006) model equilibrium admissions, �nancial aid and enrollment. Fu
(2011) models equilibrium tuition, applications, admissions and enrollment.
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sciences or arts. From then on, students receive more advanced training in subjects

corresponding to their chosen tracks.

The higher education system in Chile consists of three types of institutions: uni-

versities, professional institutes, and technical formation centers. Universities o¤er

licentiate degree programs and award academic degrees. In 2011, for example, total

enrollment in universities accounts for over 60% of all Chilean students enrolled in the

higher education system.8 There are two main categories of universities: the 25 tra-

ditional universities and the over 30 non-traditional private universities. Traditional

universities comprise the oldest and most prestigious universities, and institutions

derived from these old universities. They are coordinated by the Council of Chancel-

lors of Chilean Universities (CRUCH), and are eligible to obtain partial funding from

the state. In 2011, traditional universities accommodated about 50% of all college

students pursuing a bachelor�s degree.

The traditional universities employ a single admission process: the University

Selection Test (PSU), which is very similar to the United States�SAT test. The test

consists of two mandatory exams, one in math and one in language. There are two

additional speci�c exams, sciences and social sciences. Taking the PSU involves a

�xed fee but the marginal cost of each exam is zero.9 Students following di¤erent

academic tracks in high school will take either one or both speci�c exam(s). Together

with the cumulative grade point average achieved during high school, the various PSU

test scores are the only components of an index used in the admissions process. This

index is formed by taking a weighted average of its components, where the weights

di¤er across college programs. A student is admitted to a speci�c college-major pair if

his/her index, calculated using the relevant weights, is above the cuto¤ index required

by this program. That is, college admissions are college-major speci�c. A student

must choose a college-major pair in making his/her enrollment decision.

In our analysis, colleges refer only to the traditional universities for several reasons.

First, our �nal goal is to examine the consequences of a centralized reform to the

Chilean admissions process. This experiment is more applicable to the traditional

universities, which are coordinated and state-funded, and follow a single admissions

process. Second, although non-traditional private universities are growing in numbers,

8Enrollments in professional institutes and technical formation centers account for 25:7% and
13:7% respectively.

9In 2011, the fee was 23; 500 pesos, or 45 USD.
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they are usually considered inferior to the traditional universities. Moreover, most

of these private colleges follow (almost) open-admissions policies; and we consider

it more appropriate to treat them as part of the outside option for students in our

model. Finally, we have enrollment data only for traditional universities.

3 Model

3.1 Primitives

There is a continuum of students with di¤erent gender, family income, abilities and

academic interests. There are J colleges, each with M majors; and we denote each

academic program as a pair (j;m). Admissions to these programs are subject to

program-speci�c standards. There is also an outside option available to all students.

3.1.1 Student Characteristics

A student may come from one of the family income groups y 2 flow; highg :10 He/She
has multi-dimensional knowledge in subjects such as math, language, social science

and science, measured by s = [s1; s2; :::; sS], the vector of test scores.11 Various

elements of such knowledge are combined with major-speci�c weights to form major-

speci�c ability

am =
SX
l=1

!mlsl;

where !m = [!m1; :::; !mS] is the vector of major�m-speci�c weights and
PS

l=1 !ml =

1. !m�s di¤er across majors: for example, an engineer uses math knowledge more and

language knowledge less than a journalist. As multi-dimensional knowledge is used

in various majors, abilities are correlated across majors.

Given the di¤erent academic tracks they follow in high school, some students will

consider only majors that emphasize knowledge in science subjects, some will consider

only majors that emphasize knowledge in social science subjects, and some are open

to all majors. Such general interests are re�ected in their test scores, hence in their

10Empirically, a student is said to come from a low income family if his/her family income is lower
than the median among Chilean households.
11In this paper, we treat the knowledge and tastes of high school graduates as pre-determined.
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abilities.12 Let the observable characteristics of a student be x = [a; y; g] ; where a

is the vector of major-speci�c abilities, and g stands for gender. Denote the joint

distribution of these variables by Fx(�):

3.1.2 Consumption Values and Costs

The consumption value of a particular major enters one�s utility both in college and

in workforce. This value depends on one�s ability: an individual with higher ability

am may �nd it more enjoyable (less costly) to study in majorm and work in major�m
related jobs. We also allow for di¤erences in preferences across genders: some majors

may appeal more to an average female student than to an average male student.13 In

addition, each student has his/her own idiosyncratic tastes for majors, represented by

a random vector �1 = f�1mgm :14 In sum, the per-period consumption value of major
m is

vm(x; �1m) = �mI(female) + �1mam + �2ma
2
m + �1m;

where we have normalized the mean major-speci�c consumption values for males

to zero, �m is the mean major�m value for females, and �m�s measure how one�s

consumption value in major m changes with one�s major-speci�c ability.15

Besides the consumption value one attaches to his/her major, a student also de-

rives consumption value provided by his/her academic program while in college. Net

of cost, the per-period consumption value of attending program (j;m) is

vjm(x; �; Ajm) = vm(x; �1m) + �2jm � Cjm(x;Ajm);

where �2jm is one�s taste for program (j;m). Let F� (�) denote the joint distribution
of the unobserved idiosyncratic tastes for major and for academic programs [�1; �2] :

An individual student�s tastes are correlated across majors within a college, and

12Without increasing the test fee, taking both the science and the social science exams will only
enlarge a student�s opportunity set. A student who does not take the science exam will not be
considered by programs that require science scores, but his/her admissions to programs that do not
require science scores will not be a¤ected even if he/she scores poorly in science. However, some
students only take either the science or the social science exam, we view this as indication of their
general academic interest.
13Gender-speci�c preferences may arise from not only individual tastes, but also social norms and

other channels. We label the combination of all these potential factors as "gender-speci�c tastes."
14We will adopt the convention that �1m = �1 if m is not in one�s general interest.
15In the estimation, we restrict �2m to be the same across majors.
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across colleges given the same major. Cjm (x;Ajm) is the cost of attending program

(j;m) ; which is a function of own characteristics x and peer quality Ajm, the average

major�m ability of enrollees in (j;m) :16 For example, it may be more challenging to

attend a class with high-ability peers because of direct peer pressure and/or because

of curriculum designs that cater to average student ability. In either case, individuals

with di¤erent own abilities are likely to feel this e¤ect di¤erently.

3.1.3 Skills and Wages

The level of skills one builds up in college depends on one�s major speci�c ability (am),

the quality of the one�s peers (Ajm) ; and how e¢ cient one is at his/her major.17 The

last determinant, the major-speci�c e¢ ciency, is revealed to a student only after

he/she takes courses in that major. Denote one�s major-speci�c e¢ ciency levels as

f�mgm ~i:i:d:F�(�). The human capital production function reads18

hm (am; �m; Ajm) = a1mm A
2m
jm �m:

Wage is major-speci�c and it is a stochastic function of one�s human capital (hence

of am; �m; Ajm), work experience (�) and one�s other observable characteristics, where

the randomness comes from a transitory wage shock �� : In particular, the wage rate

for a graduate from program (j;m) is given by wm (� ; x; �m; Ajm; �� ) :

3.1.4 Timing:

There are three stages in this model.

Stage 1: Students make college-major enrollment decisions, subject to admissions

policies:

Stage 2: A college enrollee in major m observes his/her major-speci�c e¢ ciency �m,

16Arguably, the entire distribution of peer ability may a¤ect the cost of and return to education.
For feasibility reasons, we follow the common practice in the literature and assume that only the
average peer quality matters.
17There are di¤erent channels through which peer ability a¤ects one�s market return, including

direct e¤ects on human capital production, statistical discrimination on the labor market, social
network, etc. Our data does not allow us to distinguish among various channels. For ease of
illustration, we will label peer e¤ect as if it a¤ects one�s human capital production.
18Notice that hm (�) represents the total amount of marketable skills. As such, hm (�) may be a

combination of pure major-speci�c skill and general skill.
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and chooses to stay or to drop out at the end the �rst period in college:19 ;20

Stage 3: Students who chose to stay in Stage 2 stay one more period in college and

then enter the labor market.21

3.2 Student Problem

This subsection solves the student�s problem backwards.

3.2.1 Continuation Decision

After his/her �rst period in college, an enrollee in (j;m) observes his/her major-

speci�c e¢ ciency level �m, and decides whether to continue studying or to drop out,

given peer quality Ajm. Let Vd (x) be the value of dropping out for student x.22 A

student�s second-period problem reads

ujm(x; �; �mjAjm) =

max

(
vjm(x; �; Ajm) +

TX
� 0=3

��
0�2 [E� (wm(� � 3; x; �m; Ajm; �)) + vm(x; �)] ; Vd (x)

)
:

If the student chooses to continue his/her education, he/she will stay one more period

in college, obtaining the net consumption value vjm(x; �; Ajm); and then enjoy the

monetary and consumption value of his/her major after college from period 3 to

retirement period T = 45; discounted at rate �. Let �2jm(x; �; �m) = 1 if an enrollee

in program (j;m) chooses to continue his/her study.

19We assume that an enrollee fully observes her e¢ ciency in her major by the end of Stage 2. It will
be interesting to allow for gradual learning. Given the lack of information on student performance
in college, we leave such extensions to future work.
20Transfers across programs are rare in Chile. "..., students must choose an academic �eld at the

inception of their studies. With a few exceptions, lateral mobility between academic programmes
is not permitted, even within institutions." (Reviews of National Policies for Education: Tertiary
Education in Chile (2009) OECD, page 146)
21We treat the �rst two years in college as the �rst college period in the model, and the rest of

college years as the second period, which di¤ers across majors. Student value functions are adjusted
accordingly.
22See Appendix A1 for speci�c functional form assumptions on Vd (x) and V0 (x) :
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3.2.2 College-Major Choice

Denote  jm (a) = 1 if a student of ability a is admitted to program (j;m) : Under

the Chilean system,  jm (a) = 1 if only if am � a�jm; where a
�
jm is the (j;m)-speci�c

cuto¤. Given the peer quality of each program fAjmgjm, a student chooses the best
among the programs he/she is admitted to and the outside option with value V0 (x).

U(x; �j (a)) = max

�
max
(j;m)

f�E�m(ujm(x; �; �mjAjm)) + vjm(x; �; Ajm)g; V0 (x)
�

s:t: E�m(ujm(x; �; �mjAjm)) = �1 if  jm(a) = 0:

Let �1jm(x; �j (a)) = 1 if program (j;m) is chosen.23

3.3 Equilibrium

De�nition 1 Given the admissions rule
�
 jm (a)

	
jm
; an equilibrium consists of a

set of student enrollment and continuation strategies
�
�1jm(x; �); �

2
jm(x; �; �m)

	
jm
; and

the enrollment and peer quality of each academic program f�jm; Ajmgjm ; such that
(a) Given Ajm; �

2
jm(x; �; �m) is an optimal continuation decision for every (x; �; �m);

(b) Given
�
Ajm;  jm (a)

	
jm
;
�
�1jm (x; �j (a))

	
jm
is an optimal enrollment decision

for every (x; �) ;

(c) Consistency condition holds: f�jm; Ajmgjm is consistent with individual decisions
such that

�jm =

Z
x

Z
�

 jm(a)�
1
jm(x; �j (a))dF� (�) dFx(x);

Ajm =

R
x

R
�
 jm(a)�

1
jm(x; �j (a))amdF� (�) dFx(x)

�jm
:

An equilibrium of this model can be viewed as a classical �xed-point of an equi-

librium correspondence that maps the support of f�jm; Ajmgjm onto itself: Such a

�xed point exists under suitable regularity conditions. In the appendix, we outline

the algorithm we use to search for equilibria, which we always �nd in practice.24

23For a student, the enrollment choice is generically unique.
24There are potential multiple equilibria. However, all equilibrium objects are observed in the

data and our estimation utilizes this fact. See the Appendix A2 for details.
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4 Data

4.1 Data Sources and Sample Selection

Our �rst data source is the Chilean Department of Evaluation and Educational Test-

ing Service, which records the PSU scores and high school GPA of all test takers

and the college-major enrollment information if a student was enrolled in one of the

25 traditional universities. Although macro-level information is available for mul-

tiple years, we obtained micro-level information only for the 2011 freshmen cohort.

There are 247; 360 PSU test takers in 2011. We focus on the 159; 365 students, who

met the minimum requirement for admission to at least one college-major program

and who were not admitted based on special talents such as athletes.25 From the

159; 365 students, we draw 10; 000 students as our �nal sample due to computational

considerations.26 ;27

Our second data source is Futuro Laboral, a project of the Ministry of Education

that follows a random sample of college graduates (classes 1995, 1998, 2000 and 2001).

This panel data set matches tax returns with students�college admissions informa-

tion, so we observe the worker�s annual earnings, months worked, high school GPA,

PSU scores, and the college-major he/she graduated from. For each cohort, earnings

information is available from graduation until 2005. We calculated the monthly real

wage based on annual earnings and months worked, then we calculated the annual

wage as 12 times the monthly wage, measured in thousands of pesos.28 For each

major, we trimmed our wage data at the 2nd and the 98th percentiles. The two most

recent cohorts have the largest numbers of observations without missing information,

and they have very similar observable characteristics. We combined these two co-

horts to obtain our measures of abilities and annual wage levels among graduates

from di¤erent college-major pairs. We also use the wage information from the two

25Ineligible students can only choose the outside option and will not contribute to the estimation
of the model.
26For each parameter con�guration, we have to solve for equilibrium via an iterative procedure

as discussed in the appendix. Each iteration involves solving every student�s problem, since each
of them has a di¤erent set of observables x; and there is no analytical solution to student problem.
Moreover, we have to numerically integrate out the unobserved tastes for each student.
27Some options are chosen by students at much lower frequency than others. To improve e¢ ciency,

we conduct choice-based sampling with weights calculated from the distribution of choices in the
population of 159; 365 students. The weighted sample is representative. See Manski and McFadden
(1981).
28Student utility is also measured in thousands of pesos.
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earlier cohorts to obtain information on major-speci�c wage growth at higher work

experience levels. In our �nal sample, there are 19; 201 individuals from the combined

2000-2001 cohorts, and 10; 618 from the earlier cohorts.

The enrollment data contains information on individual ability, enrollment and

peer quality, but not the market return to college education. The wage data, on

the other hand, contains wages for college graduates, but not the quality of their

peers while in college. We combine these two data sets in our empirical analysis.

We standardized the test scores according to the cohort-speci�c mean and standard

deviation to make the test scores comparable across cohorts. As such, we have created

a synthetic cohort, the empirical counterpart of students in our model.29

Our graduate wage data only allows us to observe one�s wage path in the early

stage of his/her career. In order to obtain information on wage growth at higher

experience levels, we resort to cross-sectional data from the Chilean Characterization

Socioeconomic Survey (CASEN), which is similar to the Current Population Survey
in the U.S. We compare the average wages across di¤erent cohorts of college graduates

to obtain measures of wage growth at di¤erent experience levels. Although they are

not from panel data, such measures restrict the model from predicting unrealistic

wage paths in one�s later career in order to �t other aspects of the data.

Our last data source is the Indices database from the Ministry of Education

of Chile. In this data set, we obtain information on college-major-speci�c tuition,

weights
��
!lm
	�
used to form the admission score index, the admission cuto¤s

��
a�jm

	�
;

as well as enrollment sizes in consecutive years.

4.2 Aggregation of Academic Programs

For both sample size (of the wage data) and computational reasons, we have aggre-

gated the speci�c majors into 8 categories according to the area of study, coursework,

PSU requirements and average wage levels.30 The 8 aggregated majors are: Busi-

ness, Education, Arts and Social Sciences, Sciences, Engineering, Health, Medicine

29Given data availability, we have to make the assumption that there exists no systematic di¤erence
across cohorts conditional on comparable test scores. This assumption rules out, for example, the
possibility that di¤erent cohorts may face di¤erent degrees of uncertainties over student-major match
quality �.
30Although we can enlarge the sample size of the enrollment data by including more than 10; 000

students from the population, we are restricted by the sample size of the wage data, where we have
included all observations in the estimation. Finer division of academic programs will lead to too few
observations in each program.
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and Law.31 We also aggregated individual traditional universities into 3 tiers based

on admissions criteria, student quality and university prestige. As such, students

are faced with 25 options, including the outside option, in making their enrollment

decisions.

The �rst column in Table 1 shows the number of colleges in each tier. The second

column shows the quality of students within each tier, measured by the average of

math and language scores. In the parentheses, we show the cross-college standard

deviations of the within-college mean scores. In columns 3 and 4, we show similar

statistics for total enrollment and tuition. Cross-tier di¤erences are clear: higher-

ranked colleges have better students, larger enrollment and higher tuition.

Table 1 Aggregation of Colleges

Tier No. Colleges Mean Scorea Total Enrollment Tuitionb

1 2 702 (4.2) 21440 (2171) 3609 (568.7)

2 10 616 (17.7) 10239 (4416) 2560 (337.2)

3 13 568 (7.2) 5276 (2043) 2219 (304.2)
aThe average of math+language

2
across freshmen within a college.

bThe average tuition (in 1000 pesos) across majors within a college.
cCross-college std. deviation shown in parenthesis.

4.3 Summary Statistics

In this subsection, we provide summary statistics for the aggregated tier-major cat-

egories based on our �nal sample. Table 2 shows summary statistics by enrollment

status. The �rst three columns show that both test scores and graduate wage levels

are consistently ranked across tiers. The next two columns show the fractions of

students who chose the corresponding options among, respectively, all students and

females. Over 71% of students in the sample were not enrolled in any of the tradi-

tional universities and only 5% were enrolled in the top tier.32 Compared to males,

females are less likely to enroll in college and even less so in better colleges.33

31All these majors, including law and medicine, are o¤ered as undergraduate majors in Chile.
32For students not enrolled in the traditional universities, we have no information on where they

went.
3353:2% of the sample are females.
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Table 2 Summary Statistics By Tier (All Students)

Matha Language Log Wageb Dist. for All (%) Dist. for Female (%)

Tier 1 709 (80.9) 692 (58.5) 8.91 (0.59) 5.1 4.5

Tier 2 624 (69.0) 611 (68.9) 8.57 (0.66) 14.1 12.2

Tier 3 572 (58.8) 570 (62.4) 8.32 (0.69) 9.0 9.1

Outside 533 (67.5) 532 (67.4) - 71.8 74.2
aThe maximum score for each subject is 850. Std. deviation among students is in parenthesis.
bLog of starting wage in 1000 pesos. We only have wage info for CRUCH college grads.

Table 3 shows the characteristics of enrollees by major. We list the majors in the

order of average starting wages as we observe in the data.34 This rank is also roughly

consistent with the rank of average test scores across majors. For example, medical

students have absolute advantages over all other students, while education students

are at the other extreme. Comparative advantages di¤er across majors. For example,

law and social science majors have clear comparative advantage in language, while

the opposite is true for engineering and science majors. The last two columns show

the fraction of students in each major among, respectively, all enrollees and female

enrollees. Females are signi�cantly more likely to major in education and health but

much less likely to major in engineering. Di¤erent enrollment patterns across genders

may arise both from unobserved tastes and from comparative advantages, which will

be illustrated later.

Table 3 Summary Statistics By Major (Conditional on Enrollment)

Math Language Dist. for All (%) Dist. for Female (%)

Medicine 750 (66.0) 719 (55.5) 3.4 3.2

Law 607 (74.2) 671 (72.1) 4.6 4.8

Engineering 644 (79.7) 597 (75.4) 36.6 23.4

Business 620 (87.3) 605 (73.9) 9.9 10.5

Health 628 (58.3) 632 (64.3) 11.7 17.1

Science 631 (78.2) 606 (82.1) 8.5 8.3

Arts&Social 578 (70.7) 624 (72.4) 11.2 14.1

Education 569 (59.5) 593 (64.2) 14.0 18.6

34See Figures 1 to 8 for wage paths by major.
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5 Estimation

We estimate the structural parameters of the model via simulated generalized method

of moment (SGMM).35 For a given parameter con�guration, we solve for the equilib-

rium and compute the model-predicted moments.36 The parameter estimates min-

imize the distance between the model-predicted moments (M (X; �)) and the data

moments
�
Md (X)

�
:

b� = argmin
�

n�
M (X; �)�Md (X)

�0
W
�
M (X; �)�Md (X)

�o
;

whereW is a positive-de�nite weighting matrix. Given that the equilibrium peer qual-

ity is observed and used as target moments, we have also estimated the model without

imposing equilibrium conditions. By imposing equilibrium conditions in the estima-

tion, we have chosen to favor parameters that guarantee equilibrium consistency over

those that may sacri�ce consistency for better values of the SGMM objective func-

tion.37

5.1 Target Moments

The moments we target come from di¤erent data sources and capture various key

predictions from the model. The PSU data allows us to compute enrollment and peer

quality, the key variables that summarize equilibrium student sorting. It also provides

other information critical for the identi�cation of students�preferences. For example,

to pursue the same major, some students chose to attend a lower-ranked college while

others chose to attend a higher-ranked one although they have similar observables.

This informs us about students� dispersed preferences for colleges. Similarly, the

fraction of students who chose a less lucrative major although they could get in a

more lucrative one informs us about the dispersion of tastes for majors. The wage

data provides key information about major-speci�c market returns, human capital

production technology, as well as the quality of college graduates. In total, we estimate

35Given that we do not observe the same cohort from enrollment to labor market outcomes, we
choose not to use maximum likelihood estimation method.
36In early iterations of the estimation, model moments are calculated from individual decisions

only; the equilibrium conditions are imposed only when the parameters are closer to the truth.
37Di¤erences between the estimates from these two estimation approaches exist but are not big

enough to generate signi�cant di¤erences in model �ts. The results from the alternative estimation
approach are available upon request.
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88 free parameters by matching the following 448 moments.

5.1.1 PSU Data and College Data

(1) Enrollment status:

Fractions of students across tier-major (j;m) pairs overall, for females and for low

income group.

(2) Ability by enrollment status:

First and second moments of major-m ability (am) by (j;m) :

Mean test scores among students who chose the outside option.

(3) Taste dispersion:

Fractions of students enrolled in (j;m) with am � a�j0m where j
0 is a tier ranked

higher than j:

Fractions of students enrolled in j with am � a�jm by (j;m) :

(4) Retention rates by (j;m) calculated from aggregated enrollments in the college

data.

5.1.2 Wage Data

(1) Graduate ability:

First and second moments of major-m ability among graduates by (j;m) :

(2) Starting wage:

First and second moments of log starting wage by (j;m).

First moments of log starting wage by (j;m) for females.

Cross moments of log starting wage and major-speci�c ability by (j;m) :

(3) Wage growth:

Mean of the �rst di¤erences of log wage by major for experience level t = 1; :::; 9:

From the CASEN data: �rst di¤erence of the mean log wage at experience level

t = 10; :::; 40.

6 Results

6.1 Parameter Estimates

In this section, we report the estimates of parameters of major interests. The appendix

reports the estimates for other parameters. The standard errors (in parentheses) are
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calculated via bootstrapping.38

Table 4 Human Capital Production

1m Own Ability 2m Peer Ability

Medicine 0.18 (0.007) 0.01 (0.002)

Law 1.26 (0.002) 0.58 (0.004)

Engineering 1.53 (0.001) 0.70 (0.001)

Business 1.52 (0.001) 1.48 (0.001)

Health 0.48 (0.003) 0.53 (0.003)

Science 1.62 (0.001) 1.44 (0.001)

Arts&Social 1.03 (0.003) 0.91 (0.002)

Education 0.55 (0.002) 1.08 (0.001)

Table 4 shows parameters governing the production of human capital, which also

measure the elasticities of wage with respect to own ability and to peer ability.39

Focusing on the right panel �rst, we �nd signi�cant di¤erences in the importance

of peer ability across majors: the elasticity of wage with respect to peer quality

ranges from 0:01 in medicine to 1:48 in business.40 Considering both the left and the

right panels, we �nd that the relative importance of peer ability versus own ability

di¤ers systematically across majors although no restriction has been imposed in this

respect. In particular, for majors with the highest average wages, medicine, law and

engineering, the elasticity of wage with respect to peer ability is at most half of that

with respect to own ability, while the opposite is true for education, the major with

the lowest average wage. For the other four majors, peer ability is as important

as one�s own ability. This �nding has major implications for welfare analysis as we

switch from Sys.J to Sys.S, because the quality of �rst-period peers will decline for

"elite" majors, while increase for "non-elite" majors. Table 4 suggests that the former

negative e¤ect is likely to be small, while the latter positive e¤ect may be signi�cant.

38Standard �rst-order Taylor expansions yield very small standard errors that might be problem-
atic because we have to use numerical method to calculate the derivatives of our GMM objective
function.
39Own ability refers to the major-speci�c ability am in the corresponding major m; not the whole

vector a. Peer ability refers to the average major-speci�c ability among peers in the same program
Ajm:
40As mentioned earlier, our model is silent about why peer ability a¤ects one�s market return.

These reasons are likely to di¤er across majors, for example, the high elasticity of peer ability in
business major may arise because the social network one forms in college is highly valued in the
business profession.
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Another interesting �nding from Table 4 is that wages are very inelastic to both

own ability and peer ability in medicine. In other words, although medical students

face a very high rental rate of their human capital (as shown in Table A2.4 in the ap-

pendix), their wages are concave in ability measures. This implies that although pre-

college ability measures can largely distinguish bad doctors from mediocre doctors,

it is individual suitability realized after enrollment that most e¤ectively distinguishes

mediocre doctors from good doctors. The former is consistent with the high admis-

sions standards for medicine major; while the latter is consistent with the practice of

internship and strict licensing in the medical profession.41

Table 5 focuses on parameters that govern major-speci�c consumption values.

The �rst two columns show how these values vary with own ability and peer ability.

The three majors with highest average wages and social science major are the most

satisfying for high ability individuals. Except for engineering, e¤ort costs in these

majors are also the most responsive to peer abilities. Relative to other majors, the

consumption value of business major is not very responsive to one�s own ability,

however, high peer ability signi�cantly increases the e¤ort cost for business students.

The last column of Table 5 shows that compared to average male students, average

female students have higher tastes for the conventional "feminine" majors: health

and education, but lower tastes for all the other majors.

Table 5 Consumption Value (Major-Speci�c Parameters)

Major Own Ability Peer Ability Female

Medicine 6.33 (0.37) -6.11 (0.62) -1982.2 (155.8)

Law 2.13 (0.14) -17.46 (0.30) -196.9 (63.8)

Engineering 2.22 (0.01) -0.01 (0.002) -1719.5 (29.7)

Business 0.004 (0.006) -2.52 (0.02) -196.6 (23.5)

Health 0.006 (0.004) -0.24 (0.02) 1668.6 (16.6)

Science 0.001 (0.003) -0.001 (0.0002) -376.6 (20.6)

Arts&Social 1.50 (0.08) -4.14 (0.16) -393.3 (19.4)

Education 0.003 (0.008) -0.001 (0.022) 1302.5 (17.9)

41Another possible reason relates to the relatively small variation in abilities among medical stu-
dents.
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6.2 Model Fit

Overall, the model �ts the data well. The �rst two columns of Table 6 show the

fraction of all students enrolled in each tier. The model slightly under-predicts the

enrollment in the top tier and over-predicts that in the other two tiers. The last two

columns of Table 6 show the same statistics among females.42

Table 6 Enrollment by Tier (%)

All Females

Data Model Data Model

Tier 1 5:1 4:5 4.5 3.4

Tier 2 14:1 14:7 12.2 12.1

Tier 3 9:0 9:9 9.1 8.8

Table 7 shows the distribution of enrollees across majors, where each column

adds up to 100%. For all enrollees, the discrepancy is most obvious in the two

smallest majors: the enrollment in medicine is over-predicted and that in law is under-

predicted. For female enrollees, the model underpredicts the fraction of enrollees in

social sciences and overpredicts that in education.

Table 7 Enrollee Distribution Across Majors (%)

All Females

Data Model Data Model

Medicine 3.4 5.0 3.2 2.9

Law 4.6 3.9 4.8 3.6

Engineering 36.6 36.5 23.4 24.2

Business 9.9 9.9 10.5 10.6

Health 11.7 10.7 17.1 17.9

Science 8.5 9.0 8.3 8.0

Arts&Social 11.2 11.0 14.1 10.8

Education 14.0 14.1 18.6 21.8

Table 8 (Table 9) shows the �t of average student ability and retention rates by

tier (major). By tier, the ability measures are closely matched but the retention rate

for Tier 3 is overpredicted by about 5%: By major, ability is under-predicted for social

science and retention rate is over-predicted for science.
42The �ts of enrollment patterns for students with low family income are in the appendix.
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Figures 1 to 8 show the �t of major-speci�c wage patterns. The biggest discrep-

ancy occurs in health major, where the model consistently underpredicts the wage.

Table 8 Ability & Retention (by Tier)

Abilitya Retention (%)

Tier Data Model Data Model

1 701 701 79.3 79.6

2 624 626 76.5 75.5

3 581 583 68.1 73.2
aThe average of major-speci�c ability across majors in each tier.

Table 9 Ability & Retention (by Major)

Abilitya Retention (%)

Data Model Data Model

Medicine 738 727 87.6 87.0

Law 658 649 81.3 80.8

Engineering 623 625 71.8 74.4

Business 619 619 74.6 73.4

Health 641 636 79.8 78.0

Science 622 614 63.7 72.0

Arts&Social 612 597 74.3 75.1

Education 590 592 77.1 73.8
aAverage major-speci�c ability am in each major m:

6.3 Illustration: Gender Di¤erences

In this subsection, we explore the importance of gender-speci�c preferences in ex-

plaining di¤erent enrollment patterns across genders.43 We do so by comparing the

baseline model prediction with a new equilibrium where females have the same pref-

erences as males.44 Table 10 shows the distribution of enrollees within each gender

in the baseline equilibrium and the new equilibrium. When females share the same

preferences as males, gender di¤erences in the choice of majors almost disappear:

43The importance of gender-speci�c preferences has been noted in the literature. For example,
Zafar (2009) �nds that preferences play a strong role in the gender gap of major choices in the U.S.
44The purpose of this simulation is simply to understand the importance of preferences; the

simulation ignores potential changes in admission cuto¤s.
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there no longer exists a major that is obviously dominated by one gender. Di¤erences

between male and female choices still exist. For example, although college enrollment

rate among females increases from 24:3% to 27:1% (not shown in the Table); it is still

lower than that among males (35:9%) : Moreover, compared with males, females are

still less likely to enroll in medicine and science and more likely to enroll in social

science. One reason is that, on average, males have higher test scores than females;

and they have comparative advantage in majors that uses one�s math skill more than

one�s language skill.45

Table 10 Female Enrollee Distribution

(%) Baseline New

Male Female Male Female

Medicine 6.7 2.9 9.3 6.6

Law 4.0 3.6 3.9 3.6

Engineering 46.3 24.2 45.9 45.7

Business 9.2 10.6 9.2 9.7

Health 4.9 17.9 3.9 4.8

Science 9.8 8.0 9.1 8.4

Arts&Social 11.1 10.8 10.5 12.6

Education 8.0 21.8 8.1 8.5

7 Counterfactual Policy Experiments

In the counterfactual experiments, we introduce college-speci�c, rather than college-

major-speci�c, admissions to Chile. Students choose their majors after they learn

about their �ts.46 We solve a planner�s problem, one who aims at maximizing total

student welfare by setting admission policies.47 The constraints for the planner in-

clude: 1) a student admitted to a higher-tier college is also admitted to a lower-tier

college, and 2) the planner can use only ability a to distinguish students. These two

45The average math score for males (females) is 572 (547), and the average language score for
males (females) is 557 (553).
46A di¤erent yet interesting policy experiment would be to keep Sys.J but allow the student to

switch majors in the second period if the �rst choice turns out to be a mismatch. Restricted by
space, we lay out the basic conjectures for this experiment in Appendix A4.
47The planner takes into account the monetary cost of education via tuition, which di¤ers across

educational programs. If tuition re�ects the cost of providing college education, the planner also
maximizes total social welfare.
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restrictions keep our counterfactual experiments closer to the current practice in Chile

in dimensions other than the college-speci�c versus college-major-speci�c admissions.

Restriction 1 prevents the planner from assigning a student to the college that the

planner deems optimal, which is both far from the current Chilean practice and also

may lead to mismatches due to the heterogeneity in student tastes. Restriction 2

rules out discrimination based on gender or family income.

7.1 Counterfactual Model

There are four stages in this new environment:

Stage 1: The planner announces college-speci�c admissions policies:

Stage 2: Students make enrollment decisions:

Stage 3: An enrollee in college j takes courses in majors within his/her general

academic interests and learn his/her e¢ ciency levels in these majors. Then, he/she

chooses one of these majors or to drop out.

Stage 4: Students who chose to stay in college in Stage 3 stay one more period

studying in the major of choice and then enter the labor market.

The planner acts as the Stackelberg leader in this game, knowing that alternative

admissions decisions would lead to di¤erent sorting among students. Instead of simple

unidimensional cuto¤s, optimal admissions policies will be based on the whole vector

of student ability a. In the following, we describe the model formally, readers not

interested in the details may skip to the result section.

7.1.1 Student Problem

Denote Ma as the set of majors that are within the general academic interest of a

student with ability a; and jMaj as the number of majors in this set.

Continuation Decision After the �rst period, a student with ability a learn about

his/her abilities within Ma: Given
�
x; �; f�mgm2Ma

�
and Aj � fAjmgm ; an enrollee

in college j chooses one major of interest or to drop out:

uj(x; �; f�mgm2Ma
jAj) =

max

(
max
m2Ma

(
vjm(x; �; Ajm) + E

TX
� 0=3

��
0�2 (wm(� � 3; am; �m; Ajm) + vm(x; �))

)
; Vd (x)

)
:
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Let �2mjj
�
x; �; f�mgm2Ma

�
= 1 if an enrollee in j with

�
x; �; f�mgm2Ma

�
chooses major

m:

Enrollment Decision We assume that in the �rst period of college, an enrollee

pays the averaged cost for and derives the averaged consumption value from majors

within his/her general academic interest.48 At the enrollment stage, a student chooses

the best among colleges he/she is admitted to and the outside option:

U (x; �jq (a) ; A) =

max

(
max
j
f�E�uj(x; �; f�mgm2Ma

jAj) +
1

jMaj
X
m2Ma

vjm(x; �; Ajm)g; V0 (x)
)

s:t: E�uj(x; �; f�mgm2Ma
jAj) = �1 if  j (q (a)) = 0;

where q (a) is the planner�s admissions rule toward student with ability a; and  j (q (a)) =

1 if such a student is admitted to college j: Let �1j (x; �jq (a)) = 1 if a student with

characteristics (x; �) chooses college j under the admissions rule q (a) :

7.1.2 Planner�s Problem

One can show that in this environment, it is not optimal to use simple unidimensional

cuto¤s as admissions criteria. Instead, the whole vector of student ability a should

be taken into consideration. To calculate the bene�t of applying some q (a) to a

student of ability a; the planner has to consider the expected individual value for this

student, as well as his/her expected e¤ect on peer quality. Peer quality matters both

because it a¤ects the market return via the human capital production and because

it a¤ects student e¤ort cost. Both the student�s individual value and his/her e¤ect

on other students�welfare may di¤er with q (a) because his/her choices may change

with q (a) : Comparing across all possible q (a) for student a; the planner chooses

the optimal one. Overall, planner�s optimal admissions policies lead student sorting

toward the maximization of total student welfare. Formal discussions are provided in

the appendix.

48Presumably, there will be greater welfare gains if students are allowed more �exibility in their
choices of �rst-period courses. Our estimates provides a lower benchmark for potential welfare gains
from the switch of the admissions system. We leave the extension for future work.
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7.1.3 Equilibrium

De�nition 2 An equilibrium in this new system consists of a set of student enroll-

ment and continuation strategies
n
�1j(x; �jq (a));

�
�2mjj(x; �; f�mgm2Ma

)
	
m

o
j
; a set of

admissions policies fq (a)g ; and the characteristics of academic programs f
jmg ; in-
cluding enrollment and average student ability A = fAjmgjm, such that
(a) Given A;

�
�2mjj(x; �; f�mgm2Ma

)
	
m
is an optimal choice of major for every (x; �; f�mgm2Ma

);

(b) Given (A; q (a)) ;
�
�1j (x; �jq (a))

	
j
is an optimal enrollment decision for every

(x; �) ;

(c) q (a) is an optimal admissions policy for every a;

(d) Consistency condition holds: f
jmg is consistent with fq (a)g and individual stu-
dent decisions:

In the appendix, we provide formal theoretical details and describe our algorithms

to compute local equilibria and verify global optimality.

7.2 Results

7.2.1 Welfare

One of our major goals is to compare welfare under di¤erent admissions systems.49

One factor that deserves special attention is the amount of major-speci�c human cap-

ital that may be lost when specialized training is postponed.50 We consider various

possible scenarios and provide bounds on welfare gains under the counterfactual ad-

missions system.51 To this end, we conduct two sets of experiments, solving for new

equilibria to compare with the equilibrium under the baseline.

In the �rst set of experiments, we assume that to make up for the �rst period (2

years) of college spent without specialization, students have to spend, respectively, 0,

1 and 2 extra year(s) in college. Table C1 shows the equilibrium enrollment, retention

and student welfare under the baseline and the new admissions system with di¤erent

lengths of college life. In all cases, postponing major choices until after students

49As a caveat, our policy experiment assumes an open economy and holds the wage functions
unchanged. A more comprehensive model would consider the reactions of labor demand to the new
regime, which is beyond the scope of this paper.
50On the other hand, if the labor market values the width of one�s skill sets, one would expect

greater gains from the new system than those predicted in this paper.
51The data we have does not allow us to predict the exact change in human capital associated

with the shift of admissions regimes.
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learn about their �ts increases the overall retention rate from 75% to around 90% : a

signi�cant fraction of dropouts occur in the current system because of student-major

mismatches.52 In the �rst counterfactual case, enrollment increases from 29% to 39%;

and the mean student welfare increases by about 4:6 million pesos or 5%. When one

has to spend one more year in college, college enrollment decreases sharply to 28%

but welfare is still 1:2 million pesos higher than the baseline case. In the third case

where a student accumulates zero marketable human capital in the �rst period, the

new system causes a 0:9% welfare loss relative to the baseline case. However, we

believe the last case to be overly pessimistic.

Table C1 Di¤erent Lengths of College Life

Baseline 0 Extra Year 1 Extra Year 2 Extra Years

Enrollment (%) 29.1 39.1 27.5 19.2

Retention (%) 75.3 91.1 89.2 90.2

Mean Welfare (1000 Peso) 93931 98574 95185 93093

In the second set of experiments, instead of extending college life for all majors,

we take an arguably more realistic approach and treat majors di¤erently.53 For the

two most specialized and prestigious majors, law and medicine, students have to

spend extra time in college to make up for the non-specializing �rst period. For other

majors, the lengths of studies keep unchanged at the cost of potential losses of human

capital due to reduced years of specialization. Speci�cally, we assume that under the

new system, for a major other than law and medicine, the amount of human capital

achieved in college is given by (1� �)hm(am; Ajm; �m); where � is the fraction of

human capital lost ceteris paribus. Given this framework, we seek the combinations

of the number of extra years (up to two years) in law and medicine and the fraction

� for other majors that equalize student welfare between the old system and the

new system. The two combinations that satisfy this condition are either 1) law and

medicine majors extend for 1 year, and � = 23% for other majors; or 2) law and

medicine majors extend for 2 years, and � = 19:5% for other majors.

52If students face uncertainties other than major-speci�c e¢ ciency shocks, for example, shocks
that change the value of college in general, then we might be over-predicting the retention rate in
the new system.
53For example, in the U.S., for most majors, students receive specialized training only in upper

college years. For law and medicine, specialization usually starts after one has received more general
college training and lasts another 3 to 6 years.
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The �rst two rows of Table C2 show di¤erent con�gurations of year requirement

and �; the next two rows show the corresponding equilibrium enrollment and welfare.

Although by construction the average welfare under Combinations 1 and 2 is the

same as the baseline, enrollment rates under both combinations are about 7% lower

than the baseline. It follows that under Combinations 1 and 2, some former enrollees

choose the outside option and experience welfare loss. In contrast, average enrollees

in the new system gain because they are able to choose the best match after learning

about their �ts.

Table C2 Di¤erent Treatments Across Majors

Baseline Combination 1 Combination 2 Combination 3

Extra Years in Law & Med - 1 2 1

�: Loss in Other Majors (%) - 23.0 19.5 8.5

Enrollment (%) 29.1 22.7 22.3 29.1

Mean Welfare (1000 Peso) 93931 93934 93935 96312

The last column of Table C2 shows results from a third (year, �) combination

such that the overall enrollment rate in the new system equals that in the baseline.

Arguably, it is overly pessimistic to think that the �rst two years are totally unpro-

ductive for law and medical students, we therefore examine the medium case, where

these students have to spend one more year in college to �nish their specialized train-

ing. Given this time line, we �nd that a reduction � = 8:5% in other majors will keep

enrollment at the baseline level. Given the same total enrollment, the following sub-

section compares the distribution of students under the baseline and the new system

Combination 3.

7.2.2 Enrollment and Major Choice Distribution

Table C3 displays enrollment and retention rates by tier. Compared to the baseline

case, the new system features more students enrolled in both the top tier (Tier 1) and

the bottom tier (Tier 3), and fewer in the middle tier. What explains the growth of

Tier 1 relative to Tier 2? Under the old system, a nontrivial fraction of students were

eligible to enroll in Tier 1 but only for majors other than their ex-ante most desirable

ones. Among these students, some opted for their favorite majors in Tier 2 rather

than a di¤erent major in Tier 1. Under the new system, the planner still deem (some
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of) these students suitable for Tier 1, and some of them will matriculate.54 This

is because, regardless whether or not these students eventually choose their ex-ante

favorite majors, given their relatively high ability, enrolling them in Tier 1 does not

have a signi�cant negative e¤ect on peer quality, while the improved match quality

signi�cantly increases the bene�t of doing so.

What explains the growth of Tier 3 relative to Tier 2? Although the total enroll-

ment remains the same, the composition of enrollees changes as the system shifts. On

the one hand, some former outsiders choose to enroll given the prospect of a better

match. A large fraction of them are students with relatively low ability, whom are

deemed suitable only for hence admitted only to Tier 3 by the planner. On the other

hand, some former enrollees choose the outside option because of the potential loss of

either time or human capital embedded in Combination 3. Since one�s outside value

increases with one�s ability, a lot of students in this group are former Tier 2 enrollees

who have middle-level abilities.

Table C3 Enrollment and Retention (%)

Baseline Combination 3

Enrollment Retention Enrollment Retention

Tier 1 4.5 79.6 5.1 93.6

Tier 2 14.7 75.5 12.2 92.5

Tier 3 9.9 73.2 11.7 89.3

All 29.1 75.3 29.1 91.4

Table C3 also shows that retention rates in all three tiers improve signi�cantly

with the change of the system. In fact, even the worst case under the new system

(Tier 3) features a retention rate that is 10% higher than the best case under the old

system (Tier 1).

Table C4 displays the distribution of students across majors in the �rst and second

period in college.55 Focusing on the �rst four columns, we see some changes that might

have been expected. For example, without major-speci�c barriers to enrollment, the

fraction of students increases in law and medicine, the two most prestigious majors;

while both social science and education majors lose students. Some changes are,

however, less expected. For example, the fraction in engineering decreases and that

54Some of these students will opt for a lower-ranked tier due to tastes.
55For the �rst period in college, the distribution across majors is de�ned only for the baseline case,

since in the new system students do not declare majors until the second period.
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in science increases, both of which use similar combinations of skills. This arises

because some former engineering students opt for even more lucrative majors even

if they are suitable for engineering, and some �nd out that they are not suitable

for engineering. It is also related to the human capital production technology: the

market return to science major is very responsive to both own ability and peer ability

(see Table 4). In the new system, the �rst-period peers for a would-be science student

include some of the best students who have very high science ability although whose

�nal best choices may not be science. The enhanced peer quality, reinforced by the

strong complementarity between own ability and peer ability for science major, makes

it a more attractive major.

Table C4 Distribution Across Majors (%)

Baseline Combination 3 Rationed Combination 3

1st Period 2nd Period 1st Period 2nd Period 1st Period 2nd Period

Medicine 1.5 1.3 - 3.3 - 1.5

Law 1.1 0.9 - 1.6 - 1.1

Engineering 10.6 7.9 - 7.3 - 7.2

Business 2.9 2.1 - 3.4 - 3.5

Health 3.1 2.4 - 2.8 - 2.6

Science 2.6 1.9 - 3.6 - 3.5

Arts&Social 3.2 2.4 - 2.1 - 2.1

Education 4.1 3.0 - 2.5 - 2.5

All 29.1 21.9 29.1 26.6 26.5 24.1

7.2.3 Rationing

Without constraints on student major choices, the new system leads to a large increase

in the number of students majoring in law and medicine. However, enrollment in

these two majors are often strictly rationed regardless of the admissions system. In

the following experiment, we mimic such rationing by adding one more constraint to

the new system Combination 3. In particular, among all enrollees in college j; only

those with law-speci�c (medicine-speci�c) ability that meets a certain cuto¤ have the

option to major in law (medicine). We conduct a series of experiments with di¤erent

cuto¤s and report results from the one where the �nal number of students in each law
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(medicine) program equals the number of available slots as proxied by the enrollment

size of the corresponding program under the baseline.

The last two columns of Table C4 show the equilibrium enrollment with ra-

tioning.56 By construction, the fraction of students majoring in law (medicine) is

cut down to its capacity. It is not clear a priori how enrollment in unrationed majors

may change because two con�icting e¤ects coexist. On the one hand, given total en-

rollment, enrollments in unrationed majors should increase as rationed-out students

reallocate themselves. On the other hand, some students who would enroll without

rationing may be discouraged from enrolling at all as they are denied of the option

to major in law and medicine. Indeed, as shown in the last row of Table C4, 2:7%

fewer students are enrolled in the �rst period when rationing is imposed. Due to the

domination of this second e¤ect, engineering, health and science majors all become

smaller compared to the case without rationing. The only major where the �rst e¤ect

dominates is business, which becomes slightly larger.

Table C5 Log Starting Wage

Baseline Combination 3 Rationed Combination 3

Medicine 9.10 9.17 9.18

Law 9.20 9.59 9.63

Engineering 8.97 9.03 9.03

Business 8.51 8.74 8.76

Health 8.38 8.89 8.90

Science 8.36 9.07 9.08

Arts&Social 8.32 8.79 8.80

Education 8.06 8.35 8.35

Table C5 shows the mean log starting wages (in 1000 pesos) by major, which also

re�ects the average productivity by major. With or without rationing, allowing stu-

dents to learn their �ts before choosing their majors improves the quality of matches

and hence productivity in all majors compared to the baseline case. This is true

even though Combination 3 assumes a 8:5% loss of human capital ceteris paribus for

majors other than law and medicine.

When enrollment in law and medicine is rationed, the average productivity in-

creases even further in both majors, which consist of only the very best students. As
56Compared to the unrationed case, rationing decreases student welfare by 132 thousand pesos,

or 0:1%:
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students who are rationed out of law and medicine reallocate themselves, two con-

�icting e¤ects occur for the average productivity in other majors. On the one hand,

some rationed-out students have higher abilities in multiple majors over an average

student; even if their comparative advantages are in law or medicine, they will im-

prove the average productivity in the majors they �ow into. On the other hand, some

rationed-out students are ill suited for other majors and they will drag down the av-

erage productivity in the majors they �ow into. Comparing the last two columns of

Table C5, we see that the resulting changes in the productivity of unrationed majors

are marginal. However, at least in one major we can see the dominance of the second

e¤ect: the major of business gains not only in size (shown in Table C4), but also in

average productivity due to the in�ow of high-ability students.

8 Conclusion

In many countries, college admissions are college-major-speci�c: a student has to

choose a college-major pair in making his/her enrollment decision. When students are

uncertain about their �ts across majors, serious mismatches may occur. We explore

the equilibrium e¤ects of postponing students�choices of majors until after they have

learned about their �ts. To do so, we develop an equilibrium college-major choice

model under the college-major-speci�c admissions system, allowing for uncertainty

and peer e¤ects. We apply our model to the case of Chile and recover the structural

parameters underlying the equilibrium sorting among Chilean students. Our model

is able to capture most of the patterns observed in the data.

We model our counterfactual policy regime as a Stackelberg game in which a social

planner chooses college-speci�c admissions policies and students make enrollment

decisions, learn about their �ts to various majors and then choose their majors. We

have showed changes in the distribution of student educational outcomes and provided

bounds on potential welfare gains from adopting the new system.

Although our empirical application is based on the case of Chile, our framework is

general enough to be applied to other countries with similar admissions systems. We

view the methods developed in this paper and our main empirical results as promis-

ing for future research. Due to data limitations, we can only provide bounds on

the welfare gains from adopting new admissions policies. A natural and interesting

extension is to model human capital production explicitly as a cumulative process
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and to measure achievement at each stage of one�s college life. This extension would

allow for a more precise estimate of the loss of speci�c human capital due to de-

layed specialization and hence a sharper prediction of the impacts on student welfare

when the admissions system changes. This extension requires information on student

performance in college and/or market returns to partial college training. With such

data, it is also feasible to model learning as a gradual process where students update

their beliefs about their major-speci�c suitability by observing college performance

overtime.57

Another extension is to introduce heterogeneity across colleges besides their stu-

dent quality, both of which a¤ect market returns. One modeling approach is to

introduce exogenous college �xed e¤ect, however, as is true for student quality, col-

lege "�xed e¤ect" is likely to change with admissions regimes, for example, via in-

structional investment. Therefore, a more comprehensive model will allow the social

planner to choose college investment together with admissions policies. To implement

this extension, information on college investment becomes necessary.

Finally, one can also incorporate ex-ante unobserved heterogeneity in student

abilities into the framework. The planner will need to infer students�ability from

their observed test scores in making her admissions decisions. For the econometrician,

this extension will be straight forward if the unobserved component of student ability

is "private" and does not a¤ect peer quality. In this case, the unobserved ability will

play a role similar to student�s individual tastes except that the former will directly

a¤ect individual�s wages. If the unobserved component of ability also contributes

to peer quality, then the estimation strategy needs to deal with the fact that the

equilibrium objects are no longer observed from the data.
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Appendix

A1 Detailed Functional Form and Distributional Assumptions
A1.1 Cost of college for students:

Cjm(x;Ajm) = pjm + c1pjmI(y = low) + c2p
2
jmI(y = low) + c3mAjm + c4(Ajm � am)

2;

where pjm is the tuition and fee for attending program (j;m). c1 and c2 allow tuition

to have di¤erent impacts on students from low-income families. c3m and c4 measure

the e¤ect of peer quality on e¤ort cost.

A1.2 The value of the outside option and that of dropout depend on one�s test

scores as well as one�s family income. We assume that the intercepts of outside values

di¤er across income groups, and that the value of dropout is proportional to the value

34



of the outside option, with

V0 (x) =
LX
l=1

�ls
l + �01(1� I(y = low)) + �01�02I(y = low);

Vd (x) = �V0 (x) :

A1.3 Idiosyncratic tastes:

For major: each element in �1 is independent and �1m~i:i:d:N(0; �2major):

For academic programs: �2jm = "j+"jm; where "j~i:i:d:N(�j; �2col) and "jm~i:i:d:N(0; �
2
prog):

�j is the consumption value of college j for an average student.

A1.4 Log wage function:

ln (wm (� ; x; �m; Ajm; �� )) = �0m + �1m� � �2m�
2 + �3mI(female) + ln(hm (am; �m; Ajm)) + �� ;

hm (am; �m; Ajm) = a1mm A
2m
jm �m:

��~N
�
�0:5�2� ; �2�

�
is an i.i.d. transitory wage shock: Elements in the vector � are

assumed to be independent and each element �m~i:i:d: lnN(�0:5�2�; �2�): That is, al-
though student abilities across majors are correlated, their e¢ ciency levels are inde-

pendent across majors, which are aggregated into broad categories in our estimation.

We make the independence assumption for identi�cation concerns. Because a student

cannot observe � in making enrollment decisions, and because she can only choose

between continuing the chosen major and dropping out after the realization of �;

the correlation between elements in � does not a¤ect student decisions and therefore

cannot be identi�ed. If e¢ ciency shocks are positively correlated, we may over-state

college retention rates in our counterfactual experiments.

A2 Estimation and Equilibrium-Searching Algorithm
Without analytical solutions to student problem, we resort to numerical procedure

to integrate out their unobserved tastes: for every student with observable character-

istics x; we draw R sets of taste vectors �; which are �xed throughout. The estimation

involves an outer loop searching over the parameter space and an inner loop searching

for equilibrium. Finding a local equilibrium can be viewed as a classical �xed-point

problem of an equilibrium correspondence � : O ) O; where O =
�
[0; 1]�

�
0; A

��JM
;

o = f�jm; Ajmgjm : Such a mapping exists, based on this mapping, we design the fol-
lowing algorithm to compute equilibria numerically.
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0) For each parameter con�guration, set the initial guess of o at the level we observe

from the data, which is the realized equilibrium.

1) Given o; solve student problem backwards for every (x; �) pair, and obtain enroll-

ment decision
�
�1jm (x; �j (a))

	
jm
:58

2) Integrate over � to calculate the expected enrollment for each student x:

4) Integrate over all students to calculate the aggregate f�jm; Ajmgjm ; yielding onew:
5) If konew � ok < �; where � is a small number, step out of the inner loop. Otherwise,

set o = onew and go to step 1).

This algorithm uses the fact that all equilibrium objects are observed to deal with

potential multiple equilibria: we always start the initial guess of o at the realized

equilibrium level and the algorithm should converge to o at the true parameter values,

moreover, the realized equilibrium o also serves as part of the moments we target.

A3 Counterfactual Model
A3.1 Planner�s Problem
To formalize the constraint on the planner�s strategy space, we introduce the fol-

lowing notation. Let � � f�1; �2; �3; �4g = f[1; 1; 1] ; [0; 1; 1] ; [0; 0; 1] ; [0; 0; 0]g ; where
the j-th component of each �n represents the admissions to college j; i.e., �nj = 1 if

a student is admitted to college j: Denote the planner�s admissions policy for student

with ability a as q (a) ; we restrict the planner�s strategy space to be probabilities over

�. That is, for all a; q (a) 2 Q � �([1; 1; 1] ; [0; 1; 1] ; [0; 0; 1] ; [0; 0; 0]) : As such, the
probability that a student is admitted to college j, denoted as  j (q (a)), is given by

 j (q (a)) =

4X
n=1

qn (a)�nj:

Consistent with the assumptions on student course taking, we assume that in

the �rst period in college, a student with interest set Ma will take 1
jMaj slot in each

m 2Ma; and that in the second period in college, he/she will take one slot in his/her

chosen major and zero slot in other majors. Let z = [y; g] be the part of x that is not

58Conditional on enrollment in (j;m) ; the solution to a student�s continuation problem fol-
lows a cuto¤ rule on the level of e¢ ciency shock �m, which yields closed-form expressions for
E�m(ujm(x; �; �m)):
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observable to the planner, the planner�s problem reads:

� = max
fq(a)2Qg

�Z
a

eU (ajq (a) ; A) fa(a)da�
where eU (ajq (a) ; A) = R

z

R
�
U (x; �jq (a) ; A) dF� (�) dFz (zja) is the expected utility of

student with ability a; integrating out student characteristics that are unobservable

to the planner.59

For each a; one can take the �rst order conditions with respect to fqn(a)g4n=1 ;
subject to the constraint that q (a) 2 Q. Given the nature of this model, the solution
is generically at a corner with one of the qn (a)�s being one. As such, we use the

following algorithm to solve the planner�s problem. For each student a; we check the

net bene�t of each of the four pure strategies ([1; 1; 1] ; [0; 1; 1] ; [0; 0; 1] ; [0; 0; 0]). The

(generically unique) strategy that generates the highest net bene�t is the optimal

admissions policy for this student: Let "�" stand for (q (a) ; A) ; it can be shown that
the net bene�t of applying some q (a) to student with ability a is:

fa(a)

Z
z

Z
�

U (x; �j�) dF�(�)dFzja (z) (1)

+fa(a)
X
j

 j(�)�1j(aj�)
X
m2Ma

(am � Ajm)

jMaj
bm2mA

2m�1
jm Kjm

�fa(a)
X
j

 j(�)�1j(aj�)
X
m2Ma

(am � Ajm)

jMaj

0@ c3m(1 +
P2

� 0=1 �
� 0�1 �2jm

�1jm
)

+2c4
P2

� 0=1 �
� 0�1 �2jm

�1jm
(Ajm � A0jm)

1A :

The �rst line of (1) is the expected individual net bene�t for student a: An individual

student has e¤ect on his/her peer�s net bene�ts because of his/her e¤ect on peer

quality: the second line calculates his/her e¤ect on his/her peers�market return; the

third line calculates his/her e¤ect on his/her peers e¤ort costs. Peers of student a

are those who study in the programs he/she takes courses in. Student a0s e¤ect on

his/her peers is weighted by his/her course-taking intensity 1
jMaj .

To be more speci�c, �1j(aj�) =
R
z

R
�
�1j(x; �j�)dF�(�)dFzja (z) is the probability that

a student with ability a matriculates in college j:  j(�)�1j(aj�) is the probability that
59Given that test scores are continuous variables, we nonparametrically approximate Fzja (z) by

discretizing test scores and calculating the data distribution of z conditional on discretized scores. In
particular, we divide math and language test scores each into n narrowly de�ned ranges and hence
generate n2 bins of test scores. All a0s in the same bin share the same Fzja (z) :
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student a is enrolled in college j: �1jm is the size of program (j;m) in the �rst period,

where each student a takes 1
jMaj seat in major m 2 Ma: Ajm is the average ability

among these students.

�1jm =

Z
a

�1j(aj�) j(�)I(m 2Ma)
1

jMaj
fa(a)da;

Ajm =

R
a
 j(�)�1j(aj�)I(m 2Ma)

1
jMajamfa(a)da

�1jm
:

The second line of (1) relates to market return. bm is the part of expected lifetime

income that is common to all graduates from majorm:60 Kjm is the average individual

contribution to the total market return among students who take courses in (j;m) :

Kjm �
R
a
 j(�)I (m 2Ma) kjm (a) fa(a)da

�1jm
;

where kjm (a) =

Z
z

e�3mI(female)
Z
�

�1j(x; �j�)
Z
�

�2mjj (x; �; �) a
1m
m �mdF� (�) dF�(�)dFzja (z) :

The higher am is relative to Ajm; the bigger one�s marginal contribution to the total

market return of one�s peers.

The third line of (1) relates to e¤ort cost. �2jm is the size of program (j;m) in

the second period: A
0
jm is the average ability among students enrolled in (j;m) in the

second period. Formally,

�2jm =

Z
a

�1j(aj�) j(�)�2mjj (aj�) fa(a)da;

A0jm =

R
a
 j(�)�1j(aj�)�2mjj (aj�) amfa(a)da

�2jm
;

60bm = E
�
e�
�PT

� 0=3 �
� 0�1e(�0m+�1m(�

0�3)��2m(� 0�3)2), so that the expected major-m market
value of student with ability a can be written as

bm

Z
z

e�3mI(female)
Z
�

�1j (x; �j�)
Z
�

�2mjj (x; �; �)h (am; Ajm; �) dF� (�) dF�(�)dFzja (z)

= bm

Z
z

e�3mI(female)
Z
�

�1j (x; �j�)
Z
�

�2mjj (x; �; �) a
1m
m A

2m
jm �mdF� (�) dF�(�)dFzja (z)

= bmA
2m
jm

Z
z

e�3mI(female)
Z
�

�1j (x; �j�)
Z
�

�2mjj (x; �; �) a
1m
m �mdF� (�) dF�(�)dFzja (z) :
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where �2mjj (aj�) =
R
z

R
� �

1
j (x;�j�)

R
� �

2
mjj(x;�;�)dF�(�)dF�(�)dFzja(z)

�1j (aj�)
is the probability that student

a will take a full slot in (j;m) in the second period conditional on enrollment in j:

A3.2 Counterfactual Model: Equilibrium
A3.2.1 The characteristics of each program is


jm =
n
�1jm; �

2
jm; Kjm; Ajm; A

0

jm

o
;

where the components of 
jm are as de�ned in A3.1.

A3.2.2 Equilibrium-Searching Algorithm:

To integrate over unobserved tastes, we use the same random taste vectors � for

each student as we did for the estimation. In the new model, student continuation

problem does not have analytical solution, so we also drawK sets of random e¢ ciency

vectors �, �xed throughout.

Finding a local equilibrium can be viewed as a classical �xed-point problem of a

correspondence � : O ) O; where O =
�
[0; 1]� [0; 1]�

�
0; A

�
�
�
0; A

�
�
�
0; K

��JM
;

o =
�
�1jm; �

2
jm; Kjm; Ajm; A

0
jm

	
jm
2 O: Such a mapping exists, based on this map-

ping, we design the following algorithm to compute equilibria numerically.

0) Guess o =
�
�1jm; �

2
jm; Kjm; Ajm; A

0
jm

	
jm
:

1) Given o; for every (x; �) and every pure strategy q (a) ; solve the student problem

backwards, where the continuation decision involves numerical integration over e¢ -

ciency shocks �: Obtain �2mjj (x; �jq (a)) and �1j (x; �jq (a)) :
2) Integrate over (�; z) to obtain �2mjj (ajq (a)) ; �1j (ajq (a)) and eU (ajq (a) ; A) :
3) Compute the net bene�t of each q (a) ; and pick the best q (a) and the associated

student strategies, yielding onew:

4) If konew � ok < �; where � is a small number, stop. Otherwise, set o = onew and

go to step 1).

A3.3.3 Global Optimality:61

After �nding the local equilibrium, we verify ex post that the planner�s decisions

satisfy global optimality. Since it is infeasible to check all possible deviations, we

use the following algorithm to check global optimality. Given an old local equilib-

rium o =
�
�1jm; �

2
jm; Kjm; Ajm; A

0
jm

	
jm
; we perturb o by changing its components

61Epple, Romano and Sieg (2006) use a similar method to verify global optimality ex post.
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for a random program (j;m) and search for a new equilibrium using the algorithm

described in A3.2.2. If the algorithm converges to a new equilibrium with higher

welfare, global optimality is violated. After a substantial random perturbations with

di¤erent magnitudes, we have not found a new equilibrium. This suggests that our

local equilibrium is a true equilibrium.

A4. Alternative Counterfactual Experiment
An alternative counterfactual policy experiment would keep the current Sys.J but

allow students to switch majors in the second period. Assuming that students can

always drop out, and that they can only switch majors once, we lay out the basic

conjectures for this experiment.

Student Strategy: A student make decisions in three periods.

Period 1: A student make a (college,major) choice subject to admissions cuto¤s.

Period 2: A college enrollee observes her e¢ ciency level in her chosen major (�m)

and chooses between 1) staying, 2) switching majors, and 3) dropping out. Those

observing a high enough �m will stay. Those who observe low �m and have low abilities

and/or preferences for all the other majors will drop out. The rest will switch to their

second ex-ante most preferred majors.

Period 3: Most stayers will continue to stay.62 A switcher drops out if the e¢ ciency

level in his/her new major falls below certain individual-speci�c threshold.

Admissions Rules: In the second period, it is necessary to impose cuto¤ rules to

prevent "arbitrage" opportunities, where a student switches into a program she/he is

denied access to in the �rst period. The �rst period cuto¤s also need to be adjusted

to satisfy the capacity constraints, since colleges become more attractive given the

opportunity to switch majors.

Intuitively, this experiment will lead to retention rates and welfare that lay be-

tween the baseline and Counterfactual Sys.S.

Additional Tables

1. Data
62A rare but possible exception is a dropout that was "planned" in Period 2. This may happen

for someone who likes the original major and wanted to enjoy one more period of college life but
whose e¢ ciency level is not high enough to justify the stay in Period 3.
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Table A1.1 Score Weights (!) and Length of Study

Weightsa (%) Length

Language Math GPA Social Sc Science max(Social Sc., Science)b (years)

Medicine 22 30 25 0 23 0 7

Law 33 19 27 21 0 0 5

Engineering 18 40 27 0 15 0 6

Business 21 36 31 0 0 12 5

Health 23 29 28 0 20 0 5

Science 19 36 30 0 15 0 5

Arts&Social 31 23 28 18 0 0 5

Education 30 25 30 0 0 15 5
aWeights used to form the index in admissions decisions, weights on the six components add to 100%:
bBusiness and education majors allow student to use either social science or science scores to form

their indices, students use the higher score if they took both tests.

Table A1.2 College-Major-Speci�c Cuto¤ Index

Medicine Law Engineering Business Health Science Arts&Social Education

Tier 1 716 679 597 609 640 597 578 602

Tier 2 663 546 449 494 520 442 459 468

Tier 3 643 475 444 450 469 438 447 460

The lowest admissible major-speci�c index across all programs within each tier-major category.

Table A1.3 College-Major-Speci�c Annual Tuition (1000 Peso)

Medicine Law Engineering Business Health Science Arts&Social Education

Tier 1 4546 3606 4000 3811 3085 3297 3086 3012

Tier 2 4066 2845 2869 2869 2547 2121 2292 1728

Tier 3 4229 2703 2366 2366 2391 2323 2032 1763

The average tuition and fee across all programs within each tier-major category.

2. Parameter Estimates
We �x the annual discount rate at 0:9.63 Table A2.1 shows how the value of one�s

outside option varies with one�s characteristics. The constant term of the outside

value for a student from a low income family is only 70% of that for one from a high

63Annual discount rates used in other Chilean studies range from 0:8 to 0:96:
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income family. Math and language scores increases one�s outside value by about the

same magnitude.64 The last row of Table A2.1 shows that relative to the outside

value a high school graduate faces, the outside value faced by a college dropout is

about 3% higher.

Table A2.1 Outside Value

Constant (�01) 8919.8 (98.1)

Low Income (�02) 0.70 (0.01)

Language (�1) 131.2 (9.8)

Math (�2) 133.3 (17.0)

Dropout (�) 1.03 (0.01)

Table A2.2 displays major-independent parameters that govern one�s consumption

value. The left panel shows parameters for the consumption value one attaches to a

college program and the right panel for the consumption value of majors. Relative

to Tier 3 colleges, Tier 2 colleges are more attractive to an average student, while

top-tier colleges are less attractive. One possible explanation is that the two top tier

colleges are both located in the city of Santiago, where the living expenses are much

higher than the rest of Chile. As shown by the standard deviations of student tastes,

there exists substantial unobserved heterogeneity in student educational preferences.

Table A2.2 Consumption Value (Major-Independent Parameters)

College Value Major Value

Tier 1 (�1) -3311.1 (248.8) a2m (�2m) 0.011 (0.0003)

Tier 2 (�2) 1126.7 (141.1)

�col 3197.1 (386.0) �major 2344.3 (86.1)

�prog 1618.5 (242.8)

�3 is normalized to 0:

Table A2.3 shows major-independent parameters that govern the cost of college.

Table A2.3 College Cost (Major-Independent Parameters)

I(Low Inc)*Tuition (c1) 3.68 (0.19)

I(Low Inc)*Tuition2 (c2) -0.001 (0.00004)

(am � Ajm)
2 (c4) 6.74 (0.61)

64We cannot reject the hypothesis that the outside value depends only on math and language
scores, therefore, we restrict �l for other test scores to be zero.
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Table A2.4 shows other parameters entering the log wage function. The last two

rows shows the dispersions of transitory wage shocks and permanent e¢ ciency shocks

realized after enrollment, each of which explains about 50% of log wage variance.

Table A2.4 Other Parameters in Log Wage Functions

Constant (�0m) Experience (�1m) Experience2 (�2m) female (�3m)

Medicine 7.78 (0.02) 0.09 (0.003) -0.002 (0.0001) -0.37 (0.09)

Law -2.63 (0.03) 0.11 (0.004) -0.007 (0.0002) -0.08 (0.03)

Engineering -5.38 (0.01) 0.10 (0.001) -0.002 (0.0003) -0.19 (0.01)

Business -10.67 (0.02) 0.11 (0.001) -0.003 (0.0001) -0.19 (0.02)

Health 2.30 (0.02) 0.02 (0.002) -0.0003 (0.0001) -0.19 (0.02)

Science -10.94 (0.01) 0.05 (0.001) -0.0007 (0.0001) -0.29 (0.03)

Arts&Social -3.80 (0.01) 0.02 (0.001) -0.0005 (0.0001) -0.11 (0.02)

Education -2.23 (0.02) 0.07 (0.002) -0.001 (0.0001) -0.30 (0.04)

Transitory Shock (��) 0.683 (0.04)

E¢ ciency Shock (��) 0.602 (0.02)

3. Model Fits

Table A3.1 Enrollment (Low Income) (%)

Data Model

Tier 1 2.3 2.6

Tier 2 12.6 12.4

Tier 3 9.7 9.7

Enrollment among students with low family income.
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Table A3.2 Enrollee Distribution Across Majors (Low Income) (%)

Data Model

Medicine 1.7 3.0

Law 3.4 3.2

Engineering 35.1 34.8

Business 10.0 9.9

Health 12.2 10.4

Science 8.2 9.6

Arts&Social 11.0 12.6

Education 18.5 16.4

Distribution across majors among enrollees with low family income.

Table A3.3 Mean Test Scores Among Outsiders

Data Model

Math 533 531

Language 532 532

HS GPA 542 541

Max(Science, Soc Science) 531 530

Mean test scores among students who chose the outside option.
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