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Abstract

A model of knowledge-based production hierarchies based on Garicano (2000) generates
Zipf’s Law for firm sizes in the upper tail, with very minimal assumptions on the underly-
ing distribution of agents’ skills. When the density distribution of higher skills is bounded
away from zero, the span of control of managers follows a Pareto distribution of endoge-
nous tail coefficient equal to two in the upper tail between adjacent levels of hierarchical
organization, four thirds between two of these levels, and in general 2L/(2L − 1) between L
levels, converging to one, or Zipf’s law, when the number of levels increases. These ancillary
predictions for span of control of intermediary managers are verified in the French matched
employer-employee data, with a very good degree of precision. The model attributes firms’
size unbounded heterogeneity as well as high labor income inequality to a potentially arbi-
trarily small heterogeneity in agents’ skills, without any functional form assumption. The
microfoundations of this model suggest that firm sizes’ distributions have no direct implica-
tions for the productivity distribution of firms, and a well-defined upper tail behavior for the
labor income distribution consistent with preliminary evidence.
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Introduction

It is well known that firm size’s distribution approximately follows Zipf’s law in the upper

tail. Models explaining this Pareto distribution all at some level rely on a stochastic random

growth process with statistical frictions, following Gibrat (1931)’s law, or on some other Pareto

distribution underlying the economy’s primitives, whether it be entrepreneurial skill or firm’s

productivity. In this paper, I propose a static mechanism, able to microfound the existence

of Zipf’s law, based on a static production hierarchies model a la Garicano (2000), and which

makes no functional form on the underlying distribution of primitives, in this model agents’

skills. The model makes ancillary predictions about the distribution of span of controls between

intermediary levels of management, which are borne out by the French data, as Figure 1 below

shows. In theory, the span of control of managers over employees down one level of hierarchical

organization should follow a Pareto distribution in the upper tail with a coefficient equal to two,

4/3 ≈ 1.33 down two levels of management, 8/7 ≈ 1.14 down three levels, getting closer to

a Pareto with coefficient one, or Zipf’s law, as the number of levels of management increases.

In the French data, the point estimates for the corresponding numbers are 1.96, 1.30 and 1.14

respectively.

It is also well known that Zipf’s law holds only approximately in the data. In particular, the

coefficient on the Pareto is slightly higher than one, the Pareto holds only for the upper tail of

the distribution, while the lognormal is a better fit for the bulk of the distribution. And very big

firms are too small relative to what Zipf’s law would suggest, which is usually interpreted as a

consequence of antitrust regulation, in the random growth literature.1 Furthermore, Gibrat’s law

does not hold so well in the data, as the variance of growth rates decreases with size. Moreover,

establishment size also is Pareto distributed in the upper tail with a higher coefficient equal to

approximately 1.30, not just in the French data but also in the US Data (Figure 2), something

the random growth model cannot really account for, unless statistical frictions (the height of the

"reflecting barrier") are higher for establishments than for firms. In contrast to random growth

models, the static hierarchies model I will present can make sense of all these empirical facts.

Microfounding Zipf’s law is not just important for its own sake but because many issues cru-

cially rely on understanding why firm sizes are so heterogeneous in the economy. Trade models

often assume that productivities are distributed Pareto, while span of control models sometimes

assume that managers’ talents are. The fact that heterogeneity in productivities across firms

is very large is crucial to finding large effects of reallocation across firms after trade openness

as in Melitz (2003) type models, or large potential costs of misallocation of capital across firms

and of size dependent regulations. This paper, in contrast, would suggest that the heterogene-

ity underlying the economy can very well be bounded, and even infinitesimal, and nonetheless

generate Zipf’s law for firms in the upper tail. Moreover, if the reason why Zipf’s law holds in

the data is static, then the dynamics of firm growth need no longer be constrained by the overall
1Note that one cannot see this on the graph presented below for confidentiality reasons: the biggest of the

firms are not shown.
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Figure 1: French Production Hierarchies
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Note: Source: French matched employer-employee Data (DADS) reproduced in Liegey (2014). "Size" is

defined in terms of employment. The theoretical Pareto coefficients are given by 2L/(2L − 1) for span of

control between L levels of hierarchical organization, as section 3 will show. "teams" (L = 1), "plants"

(L = 2), and "firms" (L = 3) follow Caliendo et al. (2014)’s terminology.

distribution of firm sizes we observe. In particular, the model can reconcile the deviations from

Gibrat’s law that economists have long been observing in the data with the overall firm size

distribution. Furthermore, the mechanism put forward in this model can generate a very large

amount of labor income inequality, even resulting from an initially very homogenous skill distri-

bution. This is because, to paraphrase Rosen (1982), slight improvements in upper level decisions

have an enormous influence as a whole by affecting the productivity of lesser ranking workers,

as in the competitive equilibrium even slightly more talented individuals command many more

employees. This contrasts greatly with existing theories of inequalities, which attribute Pareto

distributions in incomes to very heterogeneous skills, or equivalently to an unlikely very long

sequence of good idiosynchratic shocks to human capital at the individual level, following the

random growth tradition applied to income by Champernowne (1953). The contribution of this

paper to the "superstars" literature is to derive the distribution of firm sizes and of top man-

agers’ income in the upper tail jointly from a general underlying talent distribution; it shows for

example that decreasing communication costs lead both to an increase in the size of firms and to

growing labor income inequality. Finally, understanding what determines firm sizes is important
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Figure 2: US Firm and Establishment Sizes
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Note: Source: Census Bureau, Statistics of US Businesses, 1990. I show the cross-sectional distribution of US

firm and establishment sizes in 1990, but the Pareto coefficients do not vary across years. In the US case, I do

not have data on hierarchies directly, but the model allows to interpret the size distribution of establishments

as characteristic of two levels of hierarchy (4/3 ≈ 1.33). The number of hierarchical organization is given as a

function of the measured Pareto coefficient α by: log2

(
α
α−1

)
≈ 7.

for industrial organization theory at large and for antitrust policy in particular. The boundaries

of the firm in this model are not determined by economies of scale or of scope or otherwise, but

by the indivisibility of a top manager’s time. The model and its empirical success seem to lend

support to a knowledge-based hierarchy view of the firm, with labor markets organized internally.

The static model which forms the basis of this paper and generates a Zipf’s law for firm

sizes is a well-known Garicano (2000) production hierarchies model, where time can be used for

production as well as for communicating one’s knowledge. In such a model, production workers

encounter problems when producing. When they do not know the solution to this problem,

they can potentially ask someone more knowledgeable than them for a solution. If the time of

communicating knowledge, called "helping time", is lower than the time of producing by oneself,

higher production can sometimes be achieved by having more knowledgeable agents specialize in

communicating solutions to problems. Because workers ask these agents only when they do not

know the solution themselves, these agents are called managers. The theoretical contribution of
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this paper is to show that in general, the distribution of span of control for managers over agents

down L levels is a Pareto distribution of coefficient 2L/(2L− 1) in the upper tail, under minimal

assumptions for the distribution of problems as well as the distribution of workers’ skills. Hence,

Zipf’s law obtains in the upper tail with a sufficiently large number of hierarchical levels. While

Garicano (2000) and subsequent papers like Garicano and Rossi-Hansberg (2006) have looked

mostly at the impact of organization and decreases in costs of communication on wage inequality,

in models either with learning or with an exogenouly low number of hierarchical organization,

I show that taking the distribution of skills as exogenous as well as allowing for multiple layers

of management naturally gives rise to the Pareto properties described above. Incidentally, the

distribution of span of controls across firms will also have some implications for the upper tail

of the wage distribution, albeit in a less direct way than in Gabaix and Landier (2008). In

particular, because the level of complementarities is endogenous and varying across agents in

a Garicano (2000) model, the resulting wage distribution will not necessarily be Pareto, even

though it will potentially be very skewed.2

The intuition for why a Pareto distribution for span of control is obtained in the upper tail is

that the most knowledgeable managers work with the most knowledgeable workers in the com-

petitive equilibrium of this model. This is because of a complementarity between workers’ and

managers’ skills: at an optimal allocation, the most skilled managers must be shielded from an-

swering easy questions, as they can make a more productive use of their time. To the limit, when

heterogeneity goes to zero, or when the number of layers of hierarchical organization increases,

the most productive workers are able to solve almost all the problems by themselves, so that they

almost never ask managers. Those very productive managers can therefore handle many workers,

who could almost produce by themselves, and only ask for their help only when the question

is very difficult. However, not all managers can work with those very productive, almost self-

sufficient workers, for there is only a limited supply of very skilled workers. Less knowledgeable

managers therefore have to "tap" progressively into the knowledge of less knowledgeable workers.

The way in which they have to "tap" into this knowledge is given by a Pareto distribution of

tail coefficient equal to two, for the same mathematical reason as in Geerolf (2013).3 Just as in

Geerolf (2013), the distribution of the largest firms’ sizes corresponding to the most productive

workers and the most productive managers does not depend on the functional forms underlying

the primitives - distribution of arriving problems, and of agents’ skills - because relatively few

managers and few workers underly this distribution, so that to the limit, the distribution can

be approximated by a uniform distribution. When there are not just one, but many levels of

hierarchical organization, the formula for the Pareto’s endogenous tail coefficient is 2L/(2L−1) in

general. The intuition for that is that managers at the top of the firm manage other intermediary
2In contrast, Gabaix and Landier (2008) assume that firms’ sizes and managers’ skills interact in a linear way.

Their empirical strategy indeed does not allow to identify separately managers’ skills from complementarities.

Moreover, the size of firms is exogenous, while in this model it is endogenous.
3There is a clear analogy between lenders and borrowers’ leverage ratios in Geerolf (2013) and workers and

managers’ span of control in this paper.
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managers, who themselves manage other agents. The tail for span of control is thus thicker with

multiple levels of intermediary management than with just one of them. For example, in the case

of two layers of management, I show that the number of workers that the intermediary managers

supervise is given by a Pareto distribution of coefficient four in the space of top managers: there

are fewer managers than intermediary managers. Since their own span of control over interme-

diary management is given by a Pareto with coefficient two, total span of control therefore has

a tail Pareto exponent given by 1/(1/2 + 1/4) = 4/3, since it is just a multiplication of the two

above distributions. This reasoning generalizes straightforwardly to a case with L layers, with

an exponent of 2L/(2L − 1) in general.

One thing that crucially distinguishes this theory from a random growth mechanism is there-

fore that it not only predicts a Zipf’s law for firm sizes - the data lends support to both theories

in this respect - but that it also predicts Pareto distributions with endogenous tail coefficients

equal to 2L/(2L− 1) for L = 1, 2, ... between intermediary levels of management, something that

random growth theory does not. This is a very clear testable implication of the model. The

fact that these Pareto distributions are indeed observed in the French data for firms, with these

exact tail coefficients, as well as in the Census Data for establishments, seems to lend support

to the theory presented in this paper. Another empirical success of this theory is that the way

in which the distribution of spans of control with non zero heterogeneity and helping time differ

from the exact Pareto distribution is similar to what is actually found in the data.

An important take from the model is that heterogeneity in the primitives, here agents’ skills,

can very well have finite support, even a support with infinitesimally small measure, and yet het-

erogeneity in outcomes appear unbounded. To the best of my knowledge, this contrasts with all

existing literature which attributes outcomes with infinite support to very heterogeneous causes,

ones with infinite support as well. Among many examples, managers’ skills in Lucas (1978)

have unbounded support - they are even distributed Pareto; or productivities are Pareto dis-

tributed in some models of heterogeneous firms with decreasing returns to scale and fixed costs.

In contrast, the model will allow to map an empirically very unequal labor income distribution

to an underlying potentially very equal distribution in skills. Even on a purely methodological

ground, whether the "true model" of the economy has an unbounded dispersion of primitives

(productivity, demand, skills), or a bounded one, as this model would suggest, is likely to matter

not just quantitatively, but also qualitatively. I will come back to this point in the literature

review below when referring to the relevant literature on models with heterogenous firms.

The rest of the paper proceeds as follows. Section 1 presents eight stylized facts on the firm

size distribution and firm dynamics, seven of which the random growth literature has a hard

time explaining. Section 2 develops a Garicano (2000) model of production hierarchies. Section

3 focuses on the properties of the equilibrium span of control distribution, without reference to

equilibrium prices; and shows that the model can make sense of all eight stylized facts. Section

4 calculates the labor income distribution sustaining these allocations. Section 5 concludes.
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Literature. This model speaks to the random growth literature generating Zipf (1949)’s Law,

a survey of which is given for example in Gabaix (2009). The intuition in these models for why

heterogeneity in firm sizes, city sizes or incomes are very large is that firms, cities or individuals

in the tail of the Pareto distribution had a particularly long and unlikely continued sequence of

good idiosynchratic shocks. Models along these lines crucially assume Gibrat (1931)’s law holds4;

empirically, this law is not exactly verified, as the variance of firm growth rates decreases a bit

with size: Mansfield (1962) presents early evidence along these lines. Models generating Pareto

distributions from a random growth models comprise for example Champernowne (1953), Simon

(1955), Simon and Bonini (1958), Kesten (1973), Sutton (1997), Gabaix (1999), Axtell (2001),

Luttmer (2007), Rossi-Hansberg and Wright (2007). Importantly, these random growth models

are not usually considered as being microfounded, as the source of idiosynchratic random shocks

is not understood and more importantly, these shocks are assumed to be uninsured, even though

they come repeatedly. The paper also speaks to the literature on firm dynamics, among many

examples Jovanovic (1982), Hopenhayn (1992), Cooley and Quadrini (2001), Klette and Kortum

(2004), none of which however generates Pareto distributions.

The paper most chiefly belongs to the span of control literature, developed since Lucas (1978),

who assumes Pareto distribution in skills of managers together with homogeneity of workers’

skills to explain Pareto distributions in span of control; and to the literature on the "economics

of superstars", initiated by Rosen (1981). It also speaks to the literature on organizational

structure, a survey of which is given in Radner (1992) for the older literature. The paper builds

on Garicano (2000)’s production hierarchies model to investigate the distribution of firm sizes

in the economy. More precisely, it draws heavily from the applied production hierarchies models

developed in Garicano and Rossi-Hansberg (2004), Garicano and Rossi-Hansberg (2006) and

Antràs et al. (2006), and Caliendo and Rossi-Hansberg (2012). It uses the same intuition, and a

similar methodology, as Geerolf (2013) to generate a Pareto distribution of tail coefficient equal

to two. However, the mechanism to generate more skewed Pareto distributions (with lower tail

coefficients) is different, and here relies on a static mechanism, and not from a dynamic one

as in Geerolf (2013). The use of French data for production hierarchies, and in particular the

occupation code as an indication of workers’ position in a firm’s hierarchical structure follows

Caliendo et al. (2014) and Liegey (2014).

The model is part of the competitive assignment literature, comprising Roy (1950), Rosen

(1974), Sattinger (1975), Rosen (1981), Teulings (1995), Terviö (2008) and Gabaix and Landier

(2008). In particular, a crucial assumption underlying Garicano (2000) as well as in similar

models of sorting is that quality and quality of workers are imperfect substitutes, and that there

is no such thing as a concept of "efficiency units of labor" (see Eeckhout and Kircher (2012) for

a unified treatment). Note that in contrast to Lucas (1978), Gabaix and Landier (2008) take

firm sizes as exogenous. Because the distribution of CEOs income is less skewed than Zipf, they
4Gibrat (1931) wanted to explain why the distribution of firm sizes was approximately log-normal, so he did not

need statistical frictions. We now know that Pareto fits the distribution much better in the upper tail, although

log-normal gives a better fit for the rest of the distribution.
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interpret it as evidence that the distribution of talents goes to zero relatively rapidly for top

talents, which follows from the assignment equation. Terviö (2008) develops a similar line of

reasoning, without being explicit on the functional form for talent. More generally, it has been

known for a long time that competitive assignment models were able to create some inequality in

earnings, which were convex in the underlying heterogeneity in agents, because of the amplifying

nature of the assignment process. What this paper shows, is that under minimal assumptions,

higher skills can command a lot more ressources than very close skills. Unlike in Gabaix and

Landier (2008), the levels of complementarities is however not assumed to be fixed and output

linear in managers’ talents, but comes from the fact that managers must "complement" workers’

production by solving the problems they pass on to them. The link between span of control and

equilibrium wages therefore is not mechanic, and in particular Pareto distributions in span of

control will not mechanically result in Pareto distributions for labor incomes.

The paper is an alternative to random growth theory to microfound with a very limited

number of assumptions on primitives why firms’ sizes tend to be distributed Pareto. It is there-

fore potentially relevant to far more distant pieces of the economics literature, since research

on firm heterogeneity takes place at the intersection of macroeconomics, labor economics, trade

and industrial organization. For example a very large literature in trade with heterogenous

firms following Melitz (2003) uses evidence of Pareto firm sizes to justify Pareto distributions in

productivity: Antràs and Helpman (2004), Helpman et al. (2004), Ghironi and Melitz (2005),

Bernard, Redding and Schott (2007), Melitz and Ottaviano (2008), Chaney (2008), Atkeson and

Burstein (2010), Arkolakis (2010), Helpman et al. (2010), Eaton et al. (2011), among many other

examples - see Bernard, Jensen, Redding and Schott (2007) and Melitz and Trefler (2012) for sur-

veys of the trade literature.5 The rather general results in Arkolakis et al. (2012) on the welfare

consequences of trade are valid for heterogenous firms models only under the Pareto functional

form assumption on productivity.6 There is also a large literature in macroeconomics on misallo-

cation, speaking to the welfare consequences of microeconomic and macroeconomic distortions,

using abundantly the firm size distribution to back out productivity differences, among which

Hopenhayn and Rogerson (1993), Restuccia and Rogerson (2008), Hsieh and Klenow (2007).7 In

the light of this paper, it seems on the contrary that the shape of firm size’s distribution says

very little on the underlying distribution of productivity across them, even on the relative im-

portance of their dispersion. More generally, the fact that primitives can exhibit only a bounded

distribution, even one with an arbitrarily small dispersion, and yet generate very heterogenous

outcomes, is a potentially useful insight for many strands of the literature.
5More rarely, a Pareto distribution in some other primitive is used: for example, a Pareto distribution in

demand shifters in Caliendo and Rossi-Hansberg (2012).
6In Arkolakis et al. (2012), assumption R3, see p. 103.
7For example, in Restuccia and Rogerson (2008), the productivity differences between the most and the least

productive firms, which are crucial for the welfare results, are calibrated to be in a ratio of 1 to 3.98 from the 1

over 100, 000 ratio observed on the firm size distribution. Similarly, Hopenhayn and Rogerson (1993) use the size

distribution of firms aged 0-6 years to back out productivity differences between entering firms.
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1 Evidence on the Firm Size Distribution and Firm Dynamics

I first lay out eight stylized facts regarding the firm size distribution and the distribution of

firms’ growth rates. All of them but one (Stylized Facts 1 to 7) are already well known in the

literature. Stylized Fact 8 is new and concerns French production hierarchies mentioned in the

introduction. Only Stylized Fact 1 is consistent with random growth theory. All the others are

at some level inconsistent with the theory of random growth with statistical frictions, but will

be consistent with the model developed in the rest of the paper.

1.1 Overall Firm Size Distribution

Stylized facts 1-4 concern the overall firm size distribution and are illustrated on Figure 13 taken

from Axtell (2001). Stylized fact 1 states the Zipf’s law character of the firm size distribution,

that random growth theory seeks to explain.

Stylized Fact 1 (Overall Firm Size Distribution). The distribution of firm sizes is approximately

a Pareto distribution of coefficient equal to one (Zipf ’s law).

The overall firm size distribution however exhibits three deviations from Zipf’s law: the fitted

Pareto coefficient is not exactly one, Zipf’s does not apply for the very upper nor for the lower

tail of the distribution, but only for firms with a number of employees between 50 and 100, 000.

Stylized Fact 2 (Deviation: Pareto Coefficient). The best fit of the Pareto distribution to the

distribution of firm sizes is a Pareto with a coefficient equal to 1.059 for the United States.

Stylized Fact 3 (Deviation: Large Firms). The firm size distribution is bounded unlike the

Pareto distribution, and has a thinner tail than the Pareto distribution.

Stylized Fact 4 (Deviation: Small Firms). Pareto is a good approximation only for the upper

tail of the firm size distribution. For the bulk of the distribution, log normal is a much better fit.

1.2 Firm Dynamics

Ever since the random growth literature, Zipf (1949)’s law has been seen as indirect evidence for

scale independance in the growth of firms. However, it has been known for a long time, at least

since Mansfield (1962), that Gibrat’s law for firm growth does not hold so well in the data. For

example, Figures 15a and 15b are taken from Rossi-Hansberg and Wright (2007).

Stylized Fact 5 (Deviation from Gibrat’s Law). Firm growth does not follow Gibrat’s law. In

particular, the variance of growth rates decreases with firm’s size.

Cabral and Mata (2003) present even more direct evidence which tends to cast some doubt

on the random growth model as an explanation for the firm size distribution. They show on

Portuguese micro level data that the distribution of firm sizes is already very skewed to the left

at the time of birth. More importantly, the fact that small firms conditional on survival grow at
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a faster rate than large firms has been argued to be consistent with Gibrat’s law if there is a lot

of firm exit (for example, because firms gradually learn how productive they are, as in Jovanovic

(1982)). However, Cabral and Mata (2003) show that selection only accounts for a very small

fraction of the evolution of firm sizes.

Stylized Fact 6 (Size Distribution by age). The distribution of firm sizes is already very skewed

to the left at the time of birth.

1.3 Disagreggated Size of Production Units

The perhaps most important stylized facts that this paper is after concern the disaggregated

size of production units. Stylized fact 7 concerns the distribution of plant sizes in the US data,

highlighted in particular in Rossi-Hansberg and Wright (2007) (pp 1948), and illustrated on

Figure 2. To be precise, Rossi-Hansberg and Wright (2007) do not make explicit the exact Pareto

coefficient on the distribution of establishments. Only do they note that the size distribution of

establishments in general has a thinner tail than the Pareto distribution of firms.8

Stylized Fact 7 (Establishments). The size distribution of establishments has a thinner tail

than the size distribution of firms. In the Census US data, the upper tail of the establishment

size follows a Pareto with a coefficient close to 1.33.

Stylized fact 8 is based on the use of French micro-level data, and the methodology of Caliendo

et al. (2014) to delimit production hierarchies, and is illustrated on Figure 1.

Stylized Fact 8 (Hierarchies). In the French data, the distribution of span of control down

one level of hierarchy follows a Pareto distribution of coefficient 1.96. The distribution of span

of control down two levels of hierarchy follows a Pareto distribution of coefficient 1.33. The

distribution of span of control down three levels of hierarchy follows a Pareto distribution with

coefficient 1.14.

The model developed in the next section will be able to make sense of all the above stylized

facts, not just of Stylized Fact 1.

2 Model

In this section and the following, I develop and study the upper tail properties of a Garicano

(2000) model of production hierarchies. In order to get quickly at the main results of the model,

I will assume a fixed, exogenous distribution of skills - although endogenous skill acquisition is

potentially a fruitful extension. Unlike Antràs et al. (2006) however, I will not here "force" agents
8Rossi-Hansberg and Wright (2007) write: "It is worth noting that the size distribution of enterprises is much

closer to the Pareto, especially if we focus attention on enterprises with between 50 and 10,000 employees. The

differences between the size distributions for establishments and enterprises may shed light on the forces that

determine the boundaries of the firm. Our theory focuses, however, on the technology of a single production unit

and does not address questions of ownership or control."
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to join teams. They will work in cooperation with others only when they have an interest in doing

so, that is when they gain more in team than by being self-employed: I will show this is the case

when heterogeneity in skills, or the cost of communicating solutions to problems, is sufficiently

low. Since occupational choice is a crucial element for the formation of Pareto distributions for

span of control, I don’t want to restrict the choice set exogenously in this dimension. Again, unlike

in Antràs et al. (2006), I do not here restrict the number of layers of hierarchical organization

to be one in the maximum, but the number of layers L will be determined endogenously. This

higher number of layers is crucial to getting the Pareto results.

I consider a static economy, with a continuum of agents indexed by i. All agents value

consumption in the same way according to a linear utility function. Agents are endowed with

one unit of time, which they supply for production or for helping others solve problems. When

producing, they encounter problems, whose set is indexed on [0, 1]. The arrival of these prob-

lems is uniformly distributed on this interval, and the problems’ indexes are higher when these

problems are harder to solve - that is, less agents know how to solve them. This is without loss

of generality, as from any initial draw of problems and their probability distributions, one can

just relabel them such that this is verified. As in this literature, I shall denote the cumulative

distribution function for the arrival of problems by F (x) = x on [0, 1].

Agents’ heterogeneity. Agents i are assumed to be heterogeneous in terms of how many

problems they can solve by themselves: they generally do not know everything. It is assumed

that knowledge is cumulative, as in Garicano and Rossi-Hansberg (2004) or Antràs et al. (2006),

so that an agent with a higher skill knows everything that an agent with lower skill knows - see

Garicano (2000) for a discussion.

An agent i has a skill which is indexed by the hardest problem he can solve: an agent i

with skill zi can solve all problems contained in set [0, zi]. The distribution of agents’ skills over

problems is given by a cumulative distribution function G(.), with density g(.) over [0, 1]. It is

assumed that the complexity of producing the good in the economy is such that only the most

skilled of them would know how to produce the good by themselves. In other words that the

density function has support [1 −∆, 1], where ∆ indexes, without summarizing in general, the

level of skill heterogeneity in the economy.9

Production. The organization of production closely follows Garicano (2000): apart from

producing with their time as a factor of production, agents can also transmit solutions to other

agents. When production workers know the solution to these problems, they can produce one

unit of output per unit of time. But if they do not, they can ask their managers. Regardless of
9One could generalize this to having a non-trivial measure of agents able to solve all problems, but this would

only add subcases, without adding much intuition to the model. On the other hand, the results rely on some

agents being able to solve all problems arising in production, at least to the limit. It is doubtful that agents would

in equilibrium agree to produce a good which would pose unsolvable problems in production even to the most

skilled of them. Another option would be to endogenize the choice of the good being produced.
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whether the manager knows the solution or not, it takes h < 1 units of time for a manager to

communicate a solution to the worker. h < 1 is assumed for agents to find it (sometimes) optimal

to form teams: if the time of communicating knowledge is greater than the time of producing,

then it is always better to engage in self-production. h is called the helping time. Potentially,

managers can also ask other agents to solve the problems if they do not know the solutions to

them, so that hierarchies can form.

A crucial assumption is that workers cannot diagnose or "label" problems when they cannot

solve them and therefore do not know who may know the solution to problems they cannot solve,

otherwise the organization would never have a pyramidal structure, and agents would directly go

to the agents who know. I call manager of type l a manager who answers questions which have

been transmitted l times: managers of type 1 directly supervise production workers, managers

of type 2 answer questions of managers of type 2, and so on.

Equilibrium. In equilibrium, agent i with skill zi chooses to allocate his time being a

production worker, a manager of type l (with potentially any l ∈ {1, 2, ...}), or self-employed in

order to maximize his expected utility - that is, his income since utility is linear. Denote by L

the maximum number of layers of hierarchical organization in this economy - I will show later

than under an indivisibility assumption on managers’ time leads to L to be a finite number.

Formally, an agent is denoted as having a negative position in production worker time tiW (.)

when he hires workers, and a positive one tiW (zi) when producing as a production worker. Sym-

metrically, an agent can hire managers of lower levels who pass on problems they cannot solve,

so that the manager of type l time tiMl
(zi) can be positive or negative for any l ∈ {1, ..., L− 1}.

In contrast, an upper level manager by definition cannot be hired by anyone. An agent can also

spend time tiS being self-employed.

Denoting by w0(z) the wage from being a production worker when of skill z (or the price of

production time at that skill level), and similarly by wl(z) the wage from being a manager of

type l ∈ {1, ..., L − 1}, and given that self-employment gives z as income, the agent chooses to

occupy his time so as to maximize his income (I) subject to his total time constraint of one unit

(TC) and his communication time constraints (CTC0) and (CTCl) given by the unit time of

communicating h multiplied by the number of time he will have to answer his workers’ questions:

max(
tiW (.),{tiMl (.)}

L−1
l=1 ,t

i
S

) zitiM + zitiS +

∫
z
w0(z)tiW (z)dz +

L−1∑
l=1

∫
z
wl(z)t

i
Ml

(z)dz (I)

s.t. tiM + tiS +

∫
z

max{tiW (z), 0}dz +

L−1∑
l=1

∫
z

max{tiMl
(z), 0}dz ≤ 1 (TC)

s.t.
∫
z 6=zi

h(1− z)tiW (z)dz ≤ tiM1
(CTC0)

s.t. ∀l ∈ {1, ..., L− 1},
∫
z 6=zi

h(1− z)tiMl
(z)dz ≤ tiMl+1

(CTCl)

s.t. ∀z 6= zi, tiW (z) ≤ 0

s.t. ∀l ∈ {1, ..., L− 1},∀z 6= zi, tiMl
(z) ≤ 0

12



Note that if tiW (z) > 0, then agent i is a production worker, if tiMl
> 0, then agent i is a

manager of type l, and if tiS > 0, then agent i is self-employed. The before last constraint states

that an agent can hire any type of production worker, but can only supply a positive amount

of time tiW (zi) with his skill. This is why all other tiW (z) for z 6= zi must be non positive.

Similarly, an agent can hire any type of intermediary manager in principle, but can only supply

a positive amount of intermediary time tiMl
(zi) for l ∈ {1, ..., L−1} with his skill. A Competitive

Equilibrium of this production economy E1 is then defined as follows.

Definition 1 (Competitive Equilibrium of E1). A Competitive Equilibrium for Economy E1 is

a wage function for production workers w0(.) and allocations of time
(
tiW (.), {tiMl

(.)}L−1
l=1 , t

i
S

)
for all agents i such that agents maximize their income (I) under the time constraint (TC),

the communication time constraints (CTCl) for l ∈ {0, ..., L − 1}, taking the wage functions

wl(.) for l ∈ {0, ..., L− 1} as given, and the market for work time, and lower-level managers’

time clears for all skill levels, that is:

∀z,
∫
i
tiW (z)di = 0. (MC0)

∀l ∈ {1, ..., L− 1}, ∀z,
∫
i
tiMl

(z)di = 0. (MCl)

Because the program is linear in
(
tiW (.), {tiMl

(.)}L−1
l=1 , t

i
S

)
, it will be optimal in equilibrium

for agents to do one of three things: use their whole time producing in a team, or managing and

communicating solutions at a given level of management, or engage in self-employment. In other

words, the model I am working with is very similar to that in the seminal Garicano (2000), or

Garicano and Rossi-Hansberg (2006). I will now solve for the equilibrium of this model and state

the main result of the paper about the distribution for spans of control of managers. Following

Caliendo and Rossi-Hansberg (2012), I will assume that a top manager can only work in one

firm, and not manage multiple firms.10

Assumption 1 (Indivisibility). A firm is run by a manager working full time at the top of

his organization.

Finally, a lot in this paper will revolve around the uniform distribution of skills. In the paper,

I will refer to the uniform distribution of skills with heterogeneity ∆ which corresponds to the

distribution in Definition 2.
10I could as well assume that firms can be run by two or three agents, or that agents can run at most an integer

number of firms, as long as it is a fixed number. In practice, conflict of interest or management issue would

certainly arise in that case, so that the constraint can be thought of as a reduced form of an upper level model

with an explicit decision-making process.
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Definition 2 (Uniform Distribution). The uniform distribution of skills with heterogeneity

parameter ∆ is defined as a function of ∆ by:

g(x) =



0 if x < 1−∆

1/∆ if x ∈ [1−∆, 1]

0 if x > 1.

g(.)

1/∆

1−∆ 1

∆

skill

1/∆

3 Span of Control

As can be inferred from Definition 1, a Competitive Equilibrium of the model defined above is

potentially a high dimensional object. In this section, I will study independantly allocations in

this model with no mention of the equilibrium prices sustaining these allocations. As in Garicano

(2000), all of these allocations are Pareto-optimal and can be decentralized using labor markets

inside the firm something I turn to in Section 4.

3.1 Ruling out Self-Employment

The following lemma states the first result: for helping time h and hetereogeneity ∆ sufficiently

low, there is no self-employment in the equilibrium of this model.

Lemma 1 (No self-employment Condition). For a sufficiently low value of skill heterogeneity

∆ and of communication time h, there is no self-employment in equilibrium.

Proof. See Appendix C.1.

In the rest of the paper, I assume that ∆ and h are indeed sufficiently low. An alternative

would be to assume as in Antràs et al. (2006) that self-employment is not an option from the

outset.

Assumption 2 (No self-employment). ∆ and/or h are low enough, so that there is no self-

employment in equilibrium.

To get an idea of how restrictive this assumption might be, one can look at the shape of

Assumption 2 in the case of a uniform distribution of skills with disagreement ∆ (see Definition
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2). The set A2 of (∆, h) values such that the assumption is verified can then be expressed in

closed form:

A2 =

{
(∆, h); (∆, h) ∈ [0, 1]2; h >

2
√

1 + 2∆− 2∆2 − 1−∆

1 + 2∆− 3∆2

}

Figure 3: Validity of Assumption 2 in the Uniform Case
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Note: The parameter space for which there is no self-employment is the upper-right panel of this Figure.

Note that for any value of helping time h, even one very close to production time (h = 100%), there

exists some upper bound on heterogeneity so that if heterogeneity is lower than this threshold, there is no

self-employment in equilibrium.

This particular expression is derived in Appendix C.4. The self-employment and no self-

employment regions are drawn on Figure 3 as a function of the heterogeneity parameter ∆.

Assumption 2 is valid across most of the parameter space. In particular, for any h < 1, there

exists ∆ > 0 such that for any heterogeneity ∆ lower than this threshold, the assumption is

verified.

3.2 Allocations

Proposition 1 describes, given a maximum number of layers of management, the allocations in

this model: the occupational choice of agents, and who works for whom (defining the boundaries

of the firm). Proposition 2 gives the equilibrium number of layers, for a finite number of workers

- and when the skill distribution with probability distribution function given by G(.) is the
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continuous limit of the underlying discrete skill distribution. Together, Propositions 1 and 2

uniquely define the allocations of a Competitive Equilibrium defined in Definition 1.

Before stating Proposition 1, it is convenient to denote the limiting bounds for the support

of beliefs for any number of layers L as [zL0 , z
L
L+1] = [1−∆, 1].

Definition 3 (zL0 , zLL+1). Let z
L
0 and zLL+1 denote the bounds of the support of skills:

zL0 = 1−∆ zLL+1 = 1.

Proposition 1 (Allocations, given L). Assume a maximum number of layers L of hierar-

chical organization. There exists L endogeneous cutoffs {zLl }Ll=1 uniquely given by a set of L

equations:

∀l ∈ {0, ..., L− 1}, G(zLl+2)−G(zLl+1) = h

∫ zLl+1

zLl

(1− u)g(u)du,

such that agents with skills in [zL0 , z
L
1 ] are production workers, and pass on problems to man-

agers of type 1 with skills in [zL1 , z
L
2 ] and so on, until managers of type L in [zLL , z

L
L+1], the

top managers of the firm. Workers and different levels of managers pass on problems to each

other according to increasing matching functions {ml(.)}L−1
l=0 , respectively defined on [zLl , z

L
l+1]

with values in [zLl+1, z
L
l+2] through:

∀l ∈ {0, ..., L− 1}, ∀xl ∈ [zLl , z
L
l+1], m′l(xl)g(ml(xl)) = h(1− xl)g(xl) and ml(z

L
l ) = zLl+1.

Proof. See Appendix C.2.

Figure 4: Equilibrium Allocations: Notations

1−∆ 1 skill level

. . . . . zLLzL2 zLL+1zL1zL0 x0 x1 xL

x1 = m0(x0)

workers managers managers
of type 1 of type L

Note that the matching functions depend on the assumed maximum number of layers L,

just as the cutoffs, and so should normally be denoted by {mL
l (.)}L−1

l=0 , but this is omitted for

conciseness (see Figure 4 above for the detail of the notations).

A second result from the paper is that the equilibrium number of layers is given in this

Garicano (2000) model endogenously by equation (L) in Proposition 2 below. This result is

intuitive: when the number of layers increases, the number of agents in the upper layer becomes

smaller and smaller, and tends to zero, as stated in the following Lemma 2.
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Lemma 2 (Size of Top Layer). zL+1
L − zLL → 0 when L→∞.

Proof. This results straightforwardly from Proposition 1. See Appendix C.3.

When the number of agents in this upper-level layer becomes lower than one, this add-in of

a new layer becomes irrelevant, under the indivisibility assumption 1. Lemma 2 thus leads to

Proposition 2.

Proposition 2 (Equilibrium L). For any finite number of workers Nw, the maximum levels

of hierarchical organization is given by:

L = max
L∈N

{
L s.t. 1− zLL ≥

1

Nw

}
(L)

It is useful to look at some numbers to get an idea of the speed of convergence. For example,

the case of a uniform distribution over the maximum support of skill hetereogeneity [0, 1] (that

is, hetereogeneity is ∆ = 1) is investigated in Table 1. From this table, one notes that if the

number of workers is one million, that is Nw = 1, 000, 000 then the integer constraint becomes

binding for L = 4, so that the maximum levels of hierarchical organization is given by L = 3. In

this model, the limited amount of time that a top manager is what determines the boundaries

of the firm; and even the industrial organization of the economy. This is potentially interesting

because scholars have long been interested in the distribution of firm sizes to know for example

whether, if anything, something ought to be done about the high number of big firms. In this

theory, both the number of firms and the number of employees in each firm are endogenously

determined by the indivisibility of managers’ time; and so is the industrial organization structure

of a sector, even if the underlying technology has constant returns.

Proposition 1 and Proposition 2 together fully characterize the equilibrium allocations in

the model. The main results from the paper then pertain to the endogenous span of control

distributions that result from these allocations, which I turn to in the next section.

3.3 Span of Control Distributions

Denote by N l3
l1→l2(xl3) the equilibrium span of control of layer l1 over layer l2 < l1, expressed

as a function of workers of layer l3 skills, or in the "space" of workers of layer l3 skills. For

example, the time constraint of a team manager in layer l + 1 with skill xl+1 helping a number

N l
l+1→l(xl) of workers of skill xl gives his equilibrium span of control N l

l+1→l(xl) through his

time communicating constraint (CTCl), which holds with equality at the optimum:

h (1− xl)N l
l+1→l(xl) = 1 ⇒ N l+1

l+1→l(xl+1) =
1

h
(
1−m−1

l (xl+1)
) .

All the other span of control functions N l3
l1→l2(xl3) result from these fundamental span of

control functions between intermediary levels of management, up sometimes to a small change of
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Table 1: Uniform Skill Distributions: Cutoffs for Different values of L, with

∆ = 100% and h = 75%

zL1 zL2 zL3 zL4 zL5 zL6

L = 1 0.666667

L = 2 0.625993 0.948538

L = 3 0.625000 0.947266 0.998958

L = 4 0.625000 0.947266 0.998957 1.000000

L = 5 0.625000 0.947266 0.998957 1.000000 1.000000

L = 6 0.625000 0.947266 0.998957 1.000000 1.000000 1.000000

Note: In this table, the cutoffs are calculated with distribution of skills in the population given by

G(z) = z−(1−∆)
∆

1 (1−∆, 1) (z) + 1 (1,+∞) (z). Precision up to 6 digits is displayed. Successively, the

maximum number of levels is restricted to being L = 1, L = 2, L = 3, L = 4, L = 5, L = 6. Heterogeneity

in skills is taken to be maximal ∆ = 100% and so is helping time h = 75%. For comparative statics on h

and ∆, and the resulting cutoffs, refer to Table 2 in Appendix B for numerical values and Figures 7 and

20 for a graphical illustration.

variable through matching functions ml(.) for some l ∈ {1, ..., L− 1}. The notations for different
span of control distributions are illustrated in the case of a firm with L = 2 layers on Figure 4,

inspired by Figure 1 in Rosen (1982)’s seminal contribution.

Note that we do not need the wage function to solve for the span of control distribution in

this economy, unlike in Geerolf (2013).11 This is why the order of differential equations in this

paper never is greater than one, which simplifies the problem considerably.

As can be seen in Table 1, the measure of top managers becomes very small when the number

of layers increases. The measure of managers of type L− 1 also becomes very small. Intuitively,

this is the reason why the model’s predictions on Pareto distributions do not depend on the

underlying distribution of skills: the support of the distribution of skills which really matters

for values of high span of controls is very small, and any smooth bounded away from zero,

distribution, in such a region can as a first approximation be approximated by a uniform. Given

that all the limit results shown in the following will always be given with respect to the uniform

distributions, it is therefore useful first to solve for the case with a uniform distribution of skills,

where all allocations and span of control distributions obtain in closed form.

3.3.1 Special Case: Uniform Distribution of Skills

Let us look first at the span of control distribution of managers down one level of hierarchical

organization, and then generalize to multiple levels.
11This is because in Geerolf (2013), the leverage factor depended on the price of bond contracts sold, which

were a equilibrium outcome of the assignment process.
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Figure 5: Span of Control: Notations - Example with one Firm, L = 2 Layers

bb b b b

b b bb b bb b b

1

1 2
N1

2→1(x1)
N2

2→1(x2)

x2

x1 x1 x1

x0 x0 x0 x0 x0 x0x0x0 x0

N0
1→0(x0)1 2

N1
1→0(x1)

N2
1→0(x2)

N0
1→0(x0)1 2

N1
1→0(x1)

N2
1→0(x2)

Top Managers

Managers of Type 1

Workers

1 2 N0
1→0(x0)

N1
1→0(x1)

N2
1→0(x2)

Intermediary

Span of Control

Total
Span of Control

1 2 N2
1→0(x2) 2 ∗N2

1→0(x2) N2
2→1(x2) ∗N2

1→0(x2)b b b b b b

x2 = m1(x1)

x1 = m0(x0)

Note: This chart is inspired from Rosen (1982)’s Figure 1. It represents a firm with L = 2 layers, whose

top manager (or manager of type-2) has skill x2, supervises intermediary managers (managers of type-2) of

skill x1 = m−1
1 (x2), who themselves supervise workers of skill x0 = m−1

0 (x1). The span of control of the top

managers over intermediary managers is denoted by N1
2→1(x1) as a function of intermediary managers’ skills,

and N2
2→1(x2) as a function of their own skill (so that N2

2→1 ◦m1 = N1
2→1). Total Span of Control of a top

manager over both intermediary managers and workers is given by N2
2→1(x2)∗(N2

1→0(x2)+1) which is behaves

like N2
2→1(x2) ∗N2

1→0(x2) when span of control N2
1→0(x2) is large.

One Level of Hierarchical Organization. In the uniform case, the primitives of the

model are summarized by the heterogeneity in skills ∆ and the helping time h (see Definition 2).

In particular, the inverse of the equilibrium matching functions is given in closed form through:

zLl+2 −ml(xl) = h

∫ zLl+1

xl

(1− u)du ⇒ 1−m−1
l (xl+1) =

√
(1− zLl+1)2 − 2

h
(zLl+2 − xl+1).

This allows to express the span of control between adjacent levels of hierarchical organization

in the following Lemma 3.

Lemma 3 (One Level, Uniform Case). Let the density of skills g(.) be uniform with hetero-

geneity ∆. The span of control between adjacent levels of hierarchical organization is then

given by a shifted Pareto distribution of coefficient equal to two:

N l+1
l+1→l(xl+1) =

1

h
√

(1− zLl+1)2 + 2
h(zLl+2 − xl+1)

∼ Pareto(2).
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Figure 6: Matching Function from Workers to Team Managers, h = 70% - Uniform

Distribution
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Note: This figure gives the matching function from workers to team managers derived in Section 2, with

the assumption that the distribution of skills in the population is given by G(z) = z−(1−∆)
∆

1 (1−∆, 1) (z)+

1 (1,+∞) (z). As heterogeneity ∆ becomes small, this assignment function ml(xl) becomes flat for xl ∼
zLl+1. This is because to the limit, the measure of managers dy = dml(x) = m′l(xl)dx corresponding to a

given measure dx of workers becomes small, as the most skilled managers work with workers who almost

never ask for their help, which economizes on their valuable time.

When ∆ or h become small, or when the number of layers increases, this becomes arbitrarily

close to a Pareto distribution of tail coefficient equal to two, because in that case the cutoffs

zLl+1 and zLl+2 approach one, and so the span of control distribution becomes arbitrarily close to

a Pareto with a tail coefficient equal to 2, as for xl+1 ∈ [zLl+1, z
L
l+2]:

N l+1
l+1→l(xl+1) ∼ 1√

2h

1√
zLl+2 − xl+1

.

More precisely, it is a "shifted" Pareto in the sense that there is a maximum value for span

of control, since the denominator does not quite attain zero even for extreme values of skills.
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Figure 7: Occupational Choices for a Uniform Distribution of Skills, and h = 70%
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Note: This figure gives the occupational choices of agents when h = 70%, and the distribution of skills

in the population is given by G(z) = z−(1−∆)
∆

1 (1−∆, 1) (z) + 1 (1,+∞) (z). Note that the 3rd layer and

the 4th layer of management can barely be seen on the graph, because their measures are very small, even

for high heterogeneity. This gives an intuition for why the Pareto distribution for span of control obtains

for any value of overall skill heterogeneity: managers in the upper levels of management endogenously are

little different in terms of skills. Note that the decrease in the measure of team managers, plant managers,

is not an artefact due to the decrease in hetereogeneity ∆ (see the Online Appendix): the measure of

managers decreases faster than heterogeneity. In other work, the fraction of managers relative to that of

workers goes to zero: this is because production workers are now able to solve almost all problems by

themselves.

Note also that in that case, both zLl+1 and zLl+2 both go to one. One might of course worry

that this finding is very specific to having communication much more efficient than production

(h low) or that the finding does not hold in economies with some non negligible amount of skill

heterogeneity (∆ low). However, we shall see next that it is not the case. In fact, because when

new layers of management are added, the size of the new layers endogenously become small, this

in effect makes heterogeneity go to zero for the span of control of top managers over their direct

subordinates, without any assumption on the total distribution of skills. Moreover, convergence

is typically very fast (see Appendix C.6). I will come back to this point later.
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The intuition for why the span of control of top managers becomes very high, even more so

when there is an arbitrarily small heterogeneity in skills in the economy, comes from the fact

that all workers ask relatively few questions when heterogeneity goes to zero: they are then able

to solve almost all problems by themselves. The fraction of managers required to answer these

questions also goes to zero, in the limit, as can be seen on Figure 7. The marginal worker, who

is just indifferent between being a worker and a manager, then is really able to solve almost

all problems by himself, and the corresponding manager has a very high span of control. This

reasoning actually also holds for relatively high values of heterogeneity: again as in Figure 7,

adding new layers of management has the same effect as reducing heterogeneity in skills between

the upper layer.

Figure 8: Distribution of Span of Control Down One Level of Hierarchical Or-

ganization ("Teams"), Log-Log Scale, h = 70% - Uniform Skill Distribution
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Note: This figure gives the theoretical distribution of team sizes as derived in Section 2, for different

values of ∆. As heterogeneity ∆ goes to zero, the distribution approaches the full Pareto distribution in

the upper tail. When the number of layers of hierarchical organization is endogenous, the number of agents

in the last and before last layers endogenously go to zero, so that the full Pareto is obtained.
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The fact that span of control is the distributed like a shifted Pareto distribution in the

upper tail comes from the mathematical reasoning above: the span of control is an inversely

proportional function of the skill of the corresponding worker. This Pareto distribution has an

endogenous tail coefficient equal to two, which can be seen on Figure 8, even for relatively high

values of heterogeneity: on this Figure the slope of the linear part is −2 on a log-log scale when

the survivor function is plotted against the value for span of control. Intuitively, this coefficient

two comes from the shape of the matching function for the most skilled managers and workers,

which becomes flat for those agents when heterogeneity goes to zero, as can be seen on Figure

6 above. The intuition for why this function is flat is that managers with high skills, close to

one, are matched with workers who also have relatively high skills, and can in effect solve almost

all problems by themselves. It is all the more true that heterogeneity is relatively low. Again,

for non zero helping time or heterogeneity, the distribution of span of control we obtain could

reasonably be called a "shifted Pareto": in particular, it has an upper bound (though it is very

high for most values of the parameters) and does not quite have the Pareto property in the very

upper tail. This fact can also be seen on Figure 6, the matching function is not exactly flat for

non-zero heterogeneity. Note that this behavior is exactly what is observed in the data, where

real economic variables are bounded, and the distribution of firms indeed has fewer firms in the

upper tail than the Pareto benchmark would suggest (Stylized Fact 3).12 The way in which

the distribution of span of control differs from the full Pareto distribution is illustrated through

comparative statics exercices in Figures 21, 22, and 23 in Appendix B.

Two Levels of Hierarchical Organization. Now that we have established that span of

control down one level of hierarchical organization is a shifted Pareto of coefficient two in the

uniform case, let us generalize this for the case of two layers of hierarchical organization. In

particular, a case of interest is for the span of control of top managers, which pins down the

equilibrium size distribution of firms, since each firm is run by a top manager:

NL
L→L−1(xL) =

1

h
√

(1− zLL)2 + 2
h(1− xL)

∼ 1√
2h

1√
1− xL

.

Of course, when L > 1, the agents below the top managers themselves manage other workers.

Their span of control in turn is given by:

NL−1
L−1→L−2(xL−1) =

1

h
√

(1− zL−1
L−1)2 + 2

h(zL−1
L − xL−1)

12There is an ongoing fierce debate in the literature about whether the distribution of firm sizes is Pareto

or log-normal. The same debate rages about the distribution of city sizes (see Eeckhout (2004), Levy (2009),

Eeckhout (2009)), as well as about that of trade flows (Head et al. (2014)). The model presented here generates

a shifted Pareto only in the upper tail: in particular, the distribution of small firms depends on the distribution

of skills; and the way in which the Pareto is shifted in the upper tail depends on the level of skill heterogeneity

as well as on helping time.
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Expressed as a function of managers beliefs, this span of control function is given by:

NL
L−1→L−2(xL) = NL−1

L−1→L−2

(
m−1
L (xL)

)
NL
L−1→L−2(xL) =

1

h

√
(1− zLL−1)2 − 2

h(1− zLL) + 2
h

√
(1− zLL)2 + 2

h(1− xL)

.

Similarly, this is becomes arbitrarily close to a Pareto distribution of tail coefficient equal to

four, when ∆ or h become small, or when the number of layers increases, as for xL ∈ [zLL , 1]:

NL
L−1→L−2(xL) ∼ 1

4
√

8h

1
4
√

1− xL
.

Figure 9: Span of Control: Pareto Coefficients, L = 2 Layers
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= Pareto(4/3)

Note: This chart complements Figure 5 in giving an intuition for the formula 2L/(2L − 1) in the case L = 2.

The Pareto distribution for total span of control has a coefficient equal to 4/3 = 22/(22 − 1), because of the

multiplication of a Pareto with coefficient 2, that coming from the span of control of intermediary managers

N2
2→1, and one with coefficient 4, that originating from the span of control of intermediary managers on

workers, in the space of top managers’ skills N2
1→0.

Importantly, the total span of control of an upper level managers over workers down two levels

of hierarchical organization is given by the product of the two spans of control, since agents of

level L− 1 themselves manage agents of level of L− 2. The total span of control of a top level

manager down two levels of hierarchical organization is therefore given by:

NL
L→L−2(xL) = NL

L→L−1(xL)NL
L−1→L−2(xL)

NL
L→L−2(xL) =

1

h2
√

(1− zLL)2 + 2
h(1− xL)

1√
(1− zLL−1)2 − 2

h(1− zLL) + 2
h

√
(1− zLL)2 + 2

h(1− xL)

.
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Again, one can approximate this as ∆ or h become small, or when the number of layers

increases by:

NL
L→L−2(xL) ∼ 1√

2h

1√
1− xL

1
4
√

8h

1
4
√

1− xL
∼ 1√

2h 4
√

8h

1
3/4
√

1− xL
.

This is a Pareto distribution with coefficient equal to 4/3. The steps of the reasoning for L = 2

levels of Hierarchical Organization are illustrated on Figure 9, where the firm has only two levels

of hierarchical organization, in total. The total span of control of the top manager in that case is

given by the multiplication of his span of control of managers of type 1 and of each one of these

managers of type 1 on workers. The first distribution of span of control is given by a Pareto of

coefficient two, as was explained before, and the second one if given by a Pareto of coefficient four.

Multiple Levels of Hierarchical Organization. More generally, what we have shown in

the case L = 2 generalizes to any L levels of hierarchical organization. By recursion, the span of

control distribution down one level of hierarchical organization, seen in the space of managers’ of

type L’s skills, of NL
n+1→n(xL) is a shifted Pareto distribution of coefficient equal to 2L−n, and

allows to state the following lemma.

Lemma 4 (One Level, Different Space, Uniform Case). Let the density of skills g(.) be uniform

with heterogeneity ∆. The span of control between adjacent levels of hierarchical organization

in the space of higher managers’ skills, denoted by NL
n+1→n(xL) is a shifted Pareto distribution

of coefficient equal to 2L−n:

NL
n+1→n(xL) ∼ Pareto(2L−n).

For conciseness, I do not express these shifted Paretos explicitly. For example, the case with

L = n+ 2 was solved previously:

NL
L−1→L−2(xL) =

1

h

√
(1− zLL−1)2 − 2

h(1− zLL) + 2
h

√
(1− zLL)2 + 2

h(1− xL)

.

The shifted Paretos are given explicitly by the formula:

NL
n+1→n(xL) =

1

h
(
1−m−1

n ◦ ... ◦m−1
L−1(xL)

) =
1

h
[
1−

(⊗L−1
l=n m

−1
l

)
(xL)

] ,
where each one of the assignment functions are given as a function of the endogenous cutoffs

{zLl }Ll=1 in Proposition 1, namely:

∀l ∈ {0, ..., L− 1}, ∀xl+1 ∈ [zLl+1, z
L
l+2], m−1

l (xl+1) = 1−
√

(1− zLl+1)2 − 2

h
(zLl+2 − xl+1).

Proof. The proof for the tail coefficient of the Pareto proceeds by induction. The case for L = 1

was shown in Lemma 3. Assume that Lemma 4 is true for some L − 1 with L ≥ 2, let us show
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Figure 10: Distribution of Firm, Plant, Team Sizes, Log-Log Scale, ∆ = 7/10,

h = 8/10, Uniform Distribution, with L = 4
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Note: This Figure represents the theoretical distribution of span of control for top managers over employees

down one to four levels or hierarchical organization, with the assumption that the distribution of skills in

the population is given by G(z) = z−(1−∆)
∆

1 (1−∆, 1) (z) + 1 (1,+∞) (z). The slopes on a log-log scale

are −2, −4/3, −8/7 and −16/15 respectively. It can be compared with Figure 1 corresponding to the data

counterpart.

it is true for L. Noting that:

NL
n+1→n(xL) =

1

h
(
1−m−1

n ◦ ... ◦m−1
L−1(xL)

) =
1

h
[
1−

(⊗L−1
l=n m

−1
l

)
(xL)

]
∼ 1

h
√

1−⊗L−1
l=n+1(m−1

l )(xL)
from Lemma 3.

By induction hypothesis:

1

1−⊗L−1
l=n+1(m−1

l )(xL)
∼ Pareto(2L−n−1),
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where Pareto(2L−n−1) denotes a shifted Pareto distribution with a tail coefficient equal to

2L−n−1. Then:

NL
n+1→n(xL) ∼ Pareto(2L−n),

which proves the proposition for L and concludes the proof by induction.

From Lemma 4, we are able to state the main result of the paper in the case of a uniform

distribution in Lemma 5.

Lemma 5 (L Levels, Uniform Case). Let the density of skills g(.) be uniform with heterogeneity

∆. Total span of control of managers of type n on levels of hierarchical organization down L

levels, denoted by Nn
n→n−L(xn) is a shifted Pareto distribution of coefficient equal to 2L/(2L−1):

Nn+L
n+L→n(xn+L) ∼ Pareto

(
2L

2L − 1

)
.

Proof. This proposition, which is the main result of the paper, is just a corollary of the previous

lemma since:

NL
L→0(xL) = NL

L→L−1(xL) ∗NL
L−1→L−2(xL) ∗ ... ∗NL

1→0(xL) =
L−1∏
l=0

NL
L−l→L−l−1(xL).

Applying the previous Lemma 4 to each one of the terms in the product NL
L−l→L−l−1(.), which

are therefore distributed according to shifted Paretos with a coefficient 2L−(L−l−1) = 2l+1, allows

to conclude by noting that the Pareto coefficient αL is solution of:

1

αL
=

L−1∑
l=0

1

2l+1
=

1

2

1− 1

2L

1− 1

2

=
2L − 1

2L
⇒ αL =

2L

2L − 1
.

Let us denote by αL the tail coefficient on the Pareto distribution for span of control given

as αL = 2L/(2L − 1). The following Table gives the values of αL for L = 1, 2, 3, 4, 5, ...,+∞.

L 1 2 3 4 5 ... +∞
αL (exact) 2 4/3 8/7 16/15 32/31 ... 1

αL (approx.) 2.00 1.33 1.17 1.07 1.03 ... 1.00

These different coefficients are illustrated on Figure 10. In particular, the theoretical coefficients

are close to those observed in the data (see Figure 1), and converge to 1 as the number of layers

increases. Of course, the uniform distribution of skills is a very particular one. However I show in

the next section that what was shown here is more generally true in the upper tail of the span of

control distributions for any smooth distribution function, provided its density is continuous ad

bounded away from zero for higher skills. This is an arguably rather limited set of assumptions.
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3.3.2 General Case

I next show that no matter what the distribution of skills in the population is, provided that it

is bounded away from zero for high skills, and continuous, the Pareto distributions for span of

control obtain in the upper tail, exactly in the same way as in the uniform case. Let me first

formalize these assumptions in Assumption 3.

Assumption 3 (Density Function of Skills). The density function of skills g(.) is continuous

on [1−∆, 1], and bounded away from zero near one:

∃m > 0, ∃η > 0, ∀x ∈ [1− η, 1], g(x) ≥ m > 0.

The fact that the conclusions on Pareto distributions, and in particular on their tail co-

efficients, do not depend on the underlying distribution of skills (apart from them satisfying

Assumption 3) may seem as a perhaps surprising result at first sight. The intuition is that as the

number of layers increases (or heterogeneity goes to zero), the distribution of skills which matters

is drawn for a smaller segment of the total skill distribution. To the limit, any function can be

approximated by a uniform distribution under minimal regularity assumptions. In particular,

the very large heterogeneity underlying the upper tail of the span of control distribution actually

hinges on the behavior of a relatively small segment of managers’ and workers’ skill distribution.

Proposition 3 only generalizes Lemma 3 in the case of a uniform distribution to any distribution

of skills satisfying Assumption 3.

Proposition 3 (One Level, General Case). The span of control of a manager of type l + 1

over employees down one level of hierarchical organization N l+1
l+1→l(.) is arbitrarily close in the

upper tail to the shifted Pareto distribution of coefficient two obtained in the uniform case:

∀ε > 0, ∃η > 0, ∀xl+1 ∈ [zLl+2 − η, zLl+2],

1

h
√

(1− zLl+1)2 + 2
Ah(1−ε)(zLl+2 − xl+1)

≤ N l+1
l+1→l(xl+1) ≤ 1

h
√

(1− zLl+1)2 + 2
Ah(1+ε)(zLl+2 − xl+1)

.

This will be denoted as:

N l+1
l+1→l(xl+1) ' Pareto(2).

The shifted Pareto on the left-hand side is a lower bound in the upper tail:

1

h
√

(1− zLl+1)2 + 2
Ah(1−ε)(zLl+2 − xl+1)

∼
√
A(1− ε)√

2h

1√
zLl+2 − xl+1

.

Symmetrically, the shifted Pareto on the right-hand side is an upper bound:

1

h
√

(1− zLl+1)2 + 2
Ah(1+ε)(zLl+2 − xl+1)

∼
√
A(1 + ε)√

2h

1√
zLl+2 − xl+1

.
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As ε goes to zero, these shifted Paretos become infinitesimally close to each other, so that

N l+1
l+1→l(xl+1) is also arbitrarily close a shifted Pareto in the upper tail, which I will denote in

the following as:

N l+1
l+1→l(xl+1) ' Pareto(2).

As an illustration, Figure 11 plots the equivalent of Figure 8 in the case where the distribution

of skills is given by an increasing function. One can see how the behavior in the lower tail of

the distribution differs a bit from the uniform case, but that the upper tail behavior, and in

particular the slope −2 for the survivor function on a log-log scale, remains unchanged. (see the

Online Appendix, for more Figures in the increasing case)

Figure 11: Distribution of Span of Control Down One Level of Hierarchical

Organization ("Teams"), Log-Log Scale, h = 70% - Increasing Skill Distribution
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Note: This figure gives the theoretical distribution of team sizes, with the assumption that the distribution

of skills in the population is given by G(z) = (z−(1−∆))2

∆2 1 [1−∆, 1] (z) + 1 [1,+∞] (z). One can compare

to Figure 8 for an equivalent in the uniform case. Note that the lower tail behavior differs a bit with this

increasing distribution. However, similarly as in the uniform case, as heterogeneity ∆ goes to zero, the

distribution approaches the full Pareto distribution with coefficient two in the upper tail.
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Proof. From the market clearing equation for skills:

m′l(xl) = h(1− xl)
g(xl)

g(ml(xl))

Denote by A the limit of g(xl)
g(ml(xl))

when xl → zLl+1. Fix ε > 0 as small as one wants. Then there

exists η such that for all xl ∈ [zLl+1 − η, zLl+1], we have:

Ah(1− xl)(1− ε) ≤ m′l(xl) ≤ Ah(1− xl)(1 + ε)

Integrating between [xl, z
L
l+1], this gives:

Ah(1− ε)
(
zLl+1 −

(zLl+1)2

2
− xl +

x2
l

2

)
≤ zLl+2 −ml(xl) ≤ Ah(1 + ε)

(
zLl+1 −

(zLl+1)2

2
− xl +

x2
l

2

)

⇒ 2
zLl+2 −ml(xl)

Ah(1 + ε)
− 2zLl+1 + (zLl+1)2 ≤ x2

l − 2xl ≤ 2
zLl+2 −ml(xl)

Ah(1− ε) − 2zLl+1 + (zLl+1)2

⇒ 2
zLl+2 −ml(xl)

Ah(1 + ε)
+
(
1− zLl+1

)2 ≤ (1− xl)2 ≤ 2
zLl+2 −ml(xl)

Ah(1− ε) +
(
1− zLl+1

)2
⇒

√
(1− zLl+1)2 +

2

Ah(1 + ε)
(zLl+2 − xl+1) ≤ 1−m−1

l (xl+1) ≤
√

(1− zLl+1)2 +
2

Ah(1− ε)(zLl+2 − xl+1)

⇒ 1

h
√

(1− zLl+1)2 + 2
Ah(1−ε)(zLl+2 − xl+1)

≤ N l+1
l+1→l(xl+1) ≤ 1

h
√

(1− zLl+1)2 + 2
Ah(1+ε)(zLl+2 − xl+1)

.

Similarly, Proposition 4 generalizes Lemma 4 and Proposition 5 generalizes Lemma 5, to a

case where Assumption 3 holds.

Proposition 4 (One Level, Different Space, General Case). The span of control between

adjacent levels of hierarchical organization in the space of higher managers’ skills, denoted by

NL
n+1→n(xL) is arbitrarily close to the shifted Pareto distribution of coefficient equal to 2L−n

obtained in the uniform case:

NL
n+1→n(xL) ' Pareto(2L−n).

Proposition 5 (L Levels, General Case). Total span of control of managers of type n on levels

of hierarchical organization down L levels, denoted by Nn
n→n−L(xn) is arbitrarily close to the

shifted Pareto distribution of coefficient equal to 2L/(2L − 1) obtained in the uniform case:

Nn+L
n+L→n(xn+L) ' Pareto

(
2L

2L − 1

)
.

Proof. These two Propositions result directly from Proposition 3 in the same way as Lemmas

4 and 5 result from Lemma 3. The proof for the tail coefficient of the approximating shifted
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Pareto proceeds by induction, using the case for L = 1 as a starting statement, assuming that

the statement is true for some L−1 with L ≥ 2 and showing it is true for L. Similarly, the proof

of Proposition 5 follows from multiplying individual span of control distributions together, which

gives the same formula for the total span of control distributions’ tail coefficient αL = 2L/(2L−1).

Refer to the proofs of Lemmas 4 and 5 for details, replacing ∼ by ' equivalence relations.

4 Labor Income Distribution [Very Preliminary and Incomplete]

The equilibrium spans of control for managers was derived without any reference to equilibrium

prices. This is because the solution is more easily found through the planner’s problem. However

one can calculate how this competitive equilibrium arises in practice, and in particular use this

to calculate the utility that every agent can achieve in the equilibrium of this model, which is

decentralized through internal labor markets. Interestingly, the income distribution in the upper

tail looks similar to the one that is observed in the data. Due to short-run data constraints, this

part is very preliminary.

4.1 Fixed Component

As is well known in these hierarchies models, the competitive equilibrium can be decentralized

with a set of transfers inside the firm, which can be viewed as internal labor markets. And just

as the span of control distribution in the upper tail does not depend on the distribution of skills

in the population, the upper tail of the labor income distribution will be essentially invariant to

the shape of the skill distribution.

Denote by w0(.) the wage that production workers get, and by convention wL(.) the wage

that the top level of the hierarchy "implicitly" gets through production, given therefore by:

∀xL ∈ [zLL , z
L
L+1], wL(xL) = xL.

The return for a manager of level l is then defined by what he gets as a wage minus what

he pays as wages to the managers or workers down one level of hierarchical organization (see

Garicano and Rossi-Hansberg (2006) for details):

Rl+1(xl+1) ≡ wl+1(xl+1)− wl(xl)
h (1− xl)

By convention, let us similarly define the return function for a production worker as:

∀x0 ∈ [zL0 , z
L
1 ], R0(x0) = w0(x0).

All the income a production worker gets is indeed its wage: he is not able to leverage his

skills, and neither does he need to pay any employee.
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Proposition 6 (Internal Labor Markets). The implicit wages received by each layer of the

hierarchy are given through inverse recursion, starting from wL(xL) = xL by:

∀l ∈ {0, ..., L− 1}, wl(xl) = (1− xl)
∫ xl

zLl

wl+1 (ml(u))

(1− u)2
du+ (1− xl)

wl(z
L
l )

1− zLl
The initial conditions for these differential equations in integral form are solution of:

∀l ∈ {0, ..., L− 1}, Rl+1(zLl+1) = Rl(z
L
l+1).

Proof. By optimization of a manager in level l + 1, who chooses the skill xl of his workers or

intermediary managers to maximize his expected income, it must be that, for all l ∈ {0, ..., L−1}:

m−1
l (xl+1) = arg max

xl

wl+1(xl+1)− wl(xl)
h (1− xl)

⇒ (1− xl)w′l(xl) + wl(xl) = wl+1 (ml(xl))

⇒ d

dxl

(
wl(xl)

1− xl

)
=
wl+1 (ml(xl))

(1− xl)2
⇒ wl(xl)

1− xl
− wl(z

L
l )

1− zLl
=

∫ xl

zLl

wl+1 (ml(u))

(1− u)2
du.

The L indifference conditions for agents with skills zLl with l ∈ {0, ..., L−1}, which are initial

conditions for the wage functions, are then written as follows:

∀l ∈ {0, ..., L− 1}, Rl+1(zLl+1) = Rl(z
L
l+1)

By reverse induction, this defined the whole sequence of wage functions wl(.) for all l ∈ {0, ..., L−
1}, starting from the known wL(xL) = xL.

Of particular interest is the theoretical distribution of top managers’ wages, both because it

does not depend on the underlying distribution of skills as for the distribution of span of control,

and because inequality issues have gained some prominence in the public debate recently. We are

therefore interested in the distribution of RL(xL), which obtains rather straighforwardly from

Proposition 6.

Proposition 7 (Top Labor Income Distribution). The incomes at the top are given as a

function of the skill of top managers xL by:

RL (xL) = RL
(
zLL
)

+

∫ m−1
L−1(xL)

zLL−1

g(u)

g (mL−1(u))
du.

More generally, total returns of managers are given as:

Rl+1 (xl+1) = Rl+1

(
zLl+1

)
+

∫ m−1
l (xl+1)

zLl

w′l+1 (ml(u))
g(u)

g (ml(u))
du.

Proof. The first result follows straightforwardly from the second, which is more general: set

l = L − 1 and use wL(xL) = xL so that w′L(xL) = 1 for all xL ∈ [zLL , 1]. We need to integrate
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result in Proposition 6 by parts:∫ xl

zLl

wl+1 (ml(u))

(1− u)2
du =

[
wl+1 (ml(u))

1− u

]xl
zLl

−
∫ xl

zLl

m′l(u)w′l+1 (ml(u))

1− u du.

Using then Proposition 1 to replace m′l through m
′
l(u)g (ml(u)) = h(1 − u)g(u), and replacing

wl(xl) given by Proposition 6:

Rl+1 (xl+1) =
wl+1 (xl+1)− wl (xl)

h (1− xl)

=
wl+1 (xl+1)

h (1− xl)
− 1

h

[
wl+1 (ml(u))

1− u

]xl
zLl

+

∫ xl

zLl

w′l+1 (ml(u))
g(u)

g (ml(u))
du− wl

(
zLl
)

h
(
1− zLl

)
Rl+1 (xl+1) =

wl+1

(
zLl+1

)
− wl

(
zLl
)

h
(
1− zLl

) +

∫ m−1
l (xl+1)

zLl

w′l+1 (ml(u))
g(u)

g (ml(u))
du.

Figure 12: Example of Top 1% Theoretical Distribution
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Note: In this figure, the theoretical countercumulative distribution function of Top 1% wages is repre-

sented, with the following parameters: L = 4, s = 1, h = 70% and ∆ = 70%. It should be compared to

the empirical wage distribution function in the Brazilian data on Figure 16.
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4.2 Variable Component

As was seen in the previous section, the Pareto distribution for span of control of managers does

not translate mechanically into a Pareto distribution for their fixed wages, as talented managers

give an endogenous and increasing part of their wages to more talented lower-level managers.

However, the empirical wage distribution resembles a lot this distribution, at least in the Brazilian

data on Figure 16.

However, it is useful to note that since the distribution of span of controls of managers is

distributed Pareto, any unexpected shock on (for example) the price of the good sold, which was

until now taken to be one, will potentially translate into Pareto distributions for the unexpected

income of managers with the same coefficient, depending on how this unexpected windfall is

shared between different levels of the hierarchy.

In line with the theory, the variable component is given by a Pareto distribution in the

upper tail, at least for US Chief Executive Officers in the ExecuComp Data, as can be seen on

preliminary evidence on Figure 18. However, more remains to be investigated.

5 Conclusion

In this paper, I have developed a new static, microfounded, hierarchy-based model of Zipf’s

law for firm size’s distribution. Functional form assumptions are very commonly based on the

observed Zipf’s law for firm sizes, such as the distribution of productivities in the heterogenous

firms literature. My model suggests on the contrary that no mechanic link between the two

exists, but that Zipf’s law arises regardless of the underlying distribution of productivities. As

already emphasized in the literature review, the implications of the finding therefore span many

different parts of the economics literature, from the magnitude of misallocations stemming from

size-dependent regulations to the sources of high labor income inequality. In particular, the fact

that heterogeneity can very well be bounded, even infinitesimal, and yet yield what looks like

an unbounded heterogeneity in outcomes, suggest that more parsimonious structural models, in

the sense of incorporating less ex-ante hetereogeneity on primitives, can be written to explain

the same observed phenomena.

Unfortunately, the model is very much a first pass in many respects. Its most important

limitation is perhaps that skills are assumed to be a given in the model, and that all agents

work the same, so that unequal wages only result from innate abilities. I conjecture that the

span of control distributions would remain the same in a larger class of extended models with

education and elastic labor supply, as differences in education abilities are in many ways ex-

post isomorphic to ex-ante differences in skills, and labor supply decisions would only amplify

the forces at hand in the paper. Yet for other issues, this simplification is clearly a problem.

Consider optimal taxation. If abilities were all innate, a Rawlasian planner would be able to

redistribute all unequal labor income in equal proportions at no efficiency cost. Yet, skills are

not entirely innate, and doing so would discourage both skill investment through education as
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well as more labor supply from agents at the top of the distribution; because the model is purely

competitive, prices provide exactly the right incentives to educate themselves more, or to work

more.13 Therefore, in its current form, the model remains essentially silent on the key efficiency-

equity tradoffs. Not completely, though: since optimal taxation models are very often calibrated

using an underlying Pareto distribution in agents’ productivity (see, for example, Saez (2001)),

the model holds promises for the structural estimation of optimal income tax rates. The model

even suggests a way through which luck could (in principle) be told apart from innate skills: the

Pareto in wages here only comes from luck. It is probable that education and labor supply would

lead wages to behave in the same way in the cross-section, but more work remains to be done.

The model presented here attributes all heterogeneity in firm sizes to the heterogeneity in

skills of the workers and managers they employ, which is consistent with some empirical evi-

dence attributing most wage differentials to person effects instead of firm effects (for example

Abowd et al. (1999)). Even though the model really matches the data very well, attributing all

heterogeneity to agents and none to firms is certainly a too extreme assumption. An interesting

extension of the model would therefore be to allow for firm specific heterogeneity in excess of

managers’ respective talents. Along these lines, an important factor that the model has neglected

is firm’s capital, including management capital. In the context of the model, one would model

firm heterogeneity as different values for communication costs h, which can proxy for how much

a firm has invested in better management tools, or extend the Garicano (2000) model to one of

moral hazard between workers and entrepreneurs along the lines of Bloom et al. (2012).

The fact that the skills distribution is exogenously fixed is not only an issue for normative

economics, but also for a more thorough positive investigation. This is arguably a good assump-

tion in the short run, for example after the arrival of a new technology; or to capture the fact

that some skills cannot be taught, or that some are in any case always better at learning than

others. If one however allows for homogenous learning ability, then the model could help answer

a number of fascinating questions. In particular, it is likely that the heterogeneity in skills gen-

erating a very unequal income distribution will not forever remain as the incentives to invest in

skills are then very high. A dynamic version of the model would therefore allow to investigate

the "race between technological development and education" which may have been the cause of

the recent rise in inequality (Tinbergen (1974), Katz and Murphy (1992)). On a same line of

reasoning, a second limitation of the model is that the good being produced is itself exogenous. If

one allows for innovation, and in particular for the fact that at the beginning of the product cycle

only few entrepreneurs are able to design it, then the question would be to study the incentives

to spread around this knowledge, to increase span of control (which increases when the skills of

lower ranking agents increases); and the countervailing forces to retain knowledge, as the wage

distribution is all the more rewarding to entrepreneurs that there are relatively few of them.

On a more general note, the model confirms that competitive forces, to generate the maximum

level of complementarities, can yield very high level of heterogeneity in outcomes (here, firm sizes,
13This would likely be reinforced in the presence of learning externalities as in human capital accumulation

models.
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or employment) from an arbitrarily small level of heterogeneity on primitives. In Geerolf (2013),

I have shown that this was true also for a model of collateralized lending with heterogenous

beliefs and endogenous margins. In that case, very optimistic investors were able to manage a

lot more capital than less optimistic ones, again according to a Pareto distribution, because this

arrangement was constrained optimal and maximized ex-ante welfare. A natural conjecture is

that Pareto distributions for allocations in fact obtain for a more general class of assignment

models with complementarities. I leave this to future research.
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A Evidence

A.1 Evidence from the Literature

Figure 13: Empirical Distribution of US Firm Sizes, Log-Log Scale, Axtell (2001)
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19.0 (21.8 for firms larger than 0). Clearly,
the COMPUSTAT data are heavily censored
with respect to small firms. Such firms play
important roles in the economy (75, 16).

For further analysis, I used a tabulation from
Census in which successive bins are of increas-
ing size in powers of three. The modal firm size
is 1, whereas the median is 3 (4 if size 0 firms
are not counted) These data are approximately
Zipf-distributed {a = 1.059), as determined by
ordinary least squares (OLS) regression in log-
log coordinates (Fig. 1). There are too few very
small and very large firms with respect to the
Zipf fit, presumably due to finite size effects,
yet the power law distribution well describes
the data over nearly six decades of firm size
(from 10° to 10* employees). This result sug-
gests both that a common mechanism of firm
growth operates on firms of all sizes, and that
the fundamental unit of analysis is the individ-
ual employee.

But firms having a single employee are
not the smallest economic entities in the U.S.
economy. Although there were some 5.5 mil-
lion firms that had at least one employee at
some time during 1997, there were another
15.4 million business entities in that year
with no employees. These are predominantly
self-employed individuals and partnerships,
and are called "nonemployer" firms by Cen-
sus. These smallest of firms account for near-
ly $600 billion in receipts in 1997. Yet, if
these firms are included in the overall firm
size distribution, the Zipf distribution still fits
the data well. To see this, Eq. 1 must be
modified to accommodate firms having no
employees

= ( ; ^ ) , ^ ¡ ^ 0 , a > 0 (2)

Table 2. Power law exponent for U.S. firms in
1992, firms with employees and all firms. Results
using OLS regression on Census data, with stan-
dard errors in parentheses.

Type Estimated a Adjusted

Firms with employees 0.994 (0.043) 0.995
All businesses 0.995 (0.031) 0.994

Fig. 1. Histogram of U.S. firm sizes,
by employees. Data are for 1997
from the U.S. Census Bureau, tab-
ulated in bins having width in-
creasing in powers of three (30).
The solid line is the OLS regression
line through the data, and it has a
slope of 2.059 (SE = 0.054; adjust-
ed R̂  = 0.992), meaning that a =
1.059; maximum likelihood and
nonparametric methods yield sim-
ilar results. The data are slightly
concave to the origin in log-log
coordinates, reflecting finite size
cutoffs at the limits of very small
and very large firms.

Here, OLS yields an estimate of a = 1.098
(SE = 0.064), and the adjusted R^ = 0.977.
Including self-employment drives the aver-
age firm size down to 5.0 employees/firm,
and makes the median number of employees
0.

An interesting property of firm size distri-
butions noted in previous studies of large
firms is that the qualitative character of such
distributions is independent of how size is
defined (7). Although the position of individ-
ual firms in a size distribution does depend on
the definifion of size, the shape of the distri-
bution does not. This also holds for the Cen-
sus data. Basing firm size on receipts, a Zipf
distribution describes the data (a = 0.994)
(Fig. 2). Here, modal and median firm reve-
nues are each less than $100,000, and the
average is $173,000/firm.

As a further test on the robustness of these
results, I repeated these analyses for Census
data from 1992. Average firm size was slight-
ly smaller then, at 20.9 employees/firm (ex-
cluding size 0 firms). But overall, the Zipf
distribudon is as strong (Table 2).

Virtually all U.S. firms experienced sig-
nificant changes in revenue and work force
from 1992 to 1997. Thus, individual firms
migrated up and down the Zipf distribution,
but economic forces seem to have rendered
any systematic deviations from it short-lived.
Even the substantial merger and acquisition
activity of this period seemed to have little

1

10-1

i 10-3

2o.
10-5

10-«
10" 10^ 108

Receipts (1997$)
1010

Fig. 2. Tail cumulative distribution function of
U.S. firm sizes, by receipts in dollars. Data are
for 1997 from the U.S. Census Bureau, tabulat-
ed in bins whose width increases in powers of
10. The solid line is the OLS regression line
through the data and has slope of 0.994 (SE =
0.064; adjusted R̂  = 0.976).

effect on the overall firm size distribution.
There are a variety of stochastic growth

processes that converge to Pareto and Zipf
distribufions (7, 5, 77,18). Empirically, there
is support for Gibrat-like processes in which
average growth rates are independent of size
{19, 20) and growth rate variance declines
with size (27, 22). Consider a variation of the
Gibrat process known as the Kesten process
{23-25), in which sizes are bounded from
below; i.e.,

s,{t + I) = max[so,y{t)sM] (3)
where 7 is a random growth rate. For nearly
any growth rate distribution, this process
yields Pareto distributions that have the ex-
ponent Oi defined implicitly by {26)

N =
a - 1

(4)

where N is the total number of firms and A is
thenumberof employees. For A'̂ = 5.5 X 10''
and ^ = 105 X 10^ as in 1997 (excluding
self-employment), SQ = 1 implies a = 0.997,
a value close to my empirical finding. Similar
results are obtained for each year back
through 1988 (Table 3).

Table 3. Theoretical power law exponents for U.S. firms over a 10-year period. Note that even though
the number of firms and total employees each increased over this period, as did the average firm size, the
value of a was approximately unchanged.

Year

1997
1996
1995
1994
1993
1992
1991
1990
1989
1988

Firms

5,541,918
5,478,047
5,369,068
5,276,964
5,193,642
5,095,356
5,051,025
5,073,795
5,021,315
4,954,645

Employees

105,299,123
102,187,297
100,314,946
96,721,594
94,773,913
92,825,797
92,307,559
93,469,275
91,626,094
87,844,303

Mean firm size

19.00
18.65
18.68
18.33
18.25
18.22
18.28
18.42
18.25
17.73

a, from (4)

0.9966
0.9986
0.9983
1.0004
1.0008
1.0009
1.0004
0.9995
1.0006
1.0039

Viiww.sciencemagorg SCIENCE VOL 293 7 SEPTEMBER 2001 1819

Note: In this figure, the density of firm sizes is represented. The empirically estimated slope is 2.059 in

the frequency domain, which corresponds to a Pareto tail coefficient of 1.059.
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Figure 14: Distribution of US Firm Sizes. Source: Rossi-Hansberg and Wright (2007)
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cient. Consequently, we plot the logarithm of the 
share of production units greater than a particu-
lar employment size against size for the actual 
size distributions.

The figure shows that the enterprise and estab-
lishment size distributions are similar, reflect-
ing the fact that only the very largest enterprises 
possess more than a single establishment. In 
the figure, however, both look concave, reflect-
ing the fact that they have thinner tails than the 
Pareto benchmark. As the Pareto distribution is 
scale independent, in the sense that the distri-
bution is invariant to truncation of the left tail, 
this is evidence of scale dependence in the size 
distributions of both establishments and enter-
prises. It is worth noting that the size distribu-
tion of enterprises is much closer to the Pareto, 
especially if we focus attention on enterprises 
with between 50 and 10,000 employees. The 
differences between the size distributions for 
establishments and enterprises may shed light 
on the forces that determine the boundaries of 
the firm. Our theory focuses, however, on the 
technology of a single production unit and does 
not address questions of ownership or control. 
Consequently, this topic, although fascinating, 
is beyond the scope of this study, and hereafter 
we focus solely on establishment data.

Longitudinal Data, Growth, and Net Exit.—
To examine establishment size dynamics, we 
use a second new dataset drawn from the US 
Census Bureau’s Business Information Tracking 
Series (BITS), which includes data on growth 
rates of establishments between 1990 and 2000 
and deaths and births of establishments by size 
category for 1995–1996. The unique aspect of 
this longitudinal dataset is that it tracks the 
size of establishments for several years and, for 
exiting/entering establishments, for three years 
before/after they exit/enter.

With these data, we examine the well-known 
stylized fact that small establishments grow 
faster than large establishments, when attention 
is restricted to those establishments that remain 
in operation. This is illustrated in Figure 2,  
which plots growth rates by establishment 
employment for the United States over both one-  
and ten-year intervals. This figure shows that 
the difference in growth rates between small 
and large establishments can be as much as 20 
percentage points within a year, and that the 

Cross-Section Data and the Size Distri-
bution.—The first dataset is drawn from the 
Statistics of US Businesses (SUSB) program  
and contains data on establishment size distri-
butions by sector at the two-digit SIC level for 
1990 and three-digit NAICS level for 2000. 
The data are constructed from several sources, 
including the annual County Business Patterns 
(CBP) data files. Figure 1 illustrates the scale 
dependence in the size distribution of estab-
lishments by comparing the distribution of 
establishment sizes (employment at operations 
at a single location) and enterprises (employ-
ment at operations under common ownership or 
control) for the US economy in 2000 to a com-
monly used benchmark: a Pareto distribution 
with shape coefficient one (for example, Robert 
L. Axtell 2001). For the Pareto distribution, 
the logarithm of the share of production units 
greater than a particular employment size var-
ies linearly with the logarithm of employment, 
at a negative rate determined by its shape coeffi-

Figure 1. Distribution of Establishment and 
Enterprise Sizes in 2000

Notes: The figure presents the probability that establish-
ments and enterprises are larger than a particular size 
against that size in 2000. The figure also presents the same 
probability for a Pareto density with coefficient one. The 
data on enterprises are aggregated into 50 bins and into 43 
bins for establishments. 
Source: US Census Bureau, Statistics of US Businesses.
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less at the center, consistent with Proposition 7 
as long as bj, vj, 11 2 aj 2 . 0. Both sectors 
have thinner tails than the Pareto, but as the 
theory predicts, the difference is larger for the 
manufacturing sector. Moreover, the differences 
between these distributions are economically 
large: in order to transform the size distribu-
tion of the manufacturing sector to that of the 
educational services sector, about 20 percent of 
the labor force that currently works in medium-
sized manufacturing establishments would need 
to be reallocated to establishments with fewer 
than 50 or more than 1,000 employees.

In order to test the relationship between phys-
ical capital shares and the size distribution of 
establishments for all sectors, we use our new 
dataset on the size distributions of establish-
ments for 1990 and 2000. We estimate the fol-
lowing regression:

(16)  ln Pj 5 â j 1 b̂j ln nj 1 d̂ 1 ln nj 22 

 1 êaj 1 ln nj 22 1 êj ,

with coefficient one, or growth rates are scale 
independent, then the relationship between ln Pj  
and ln nj should be linear with slope minus one. 
If growth rates depend negatively on scale, then 
the tails of the distribution are thinner than the 
tails of a Pareto with coefficient one, and the 
relationship is concave. Our theory states that 
the degree of concavity should be positively 
related to physical capital shares (Proposition 7). 
    A first look at the data confirms that pre-
diction. In Figure 5, we plot ln Pj and nj for the 
manufacturing and educational services sec-
tors. This representation of the size distribution 
emphasizes the degree of concavity and makes 
differences between the two distributions par-
ticularly clear. The distribution of establishment 
sizes in the educational sector has more mass 
for very small and large establishments and less 
mass for intermediate establishments than the 
distribution in the manufacturing sector. This is 
particularly clear for small establishments. The 
figure also compares these distributions with the 
Pareto distribution with coefficient one (which 
corresponds to a straight line with slope 21 in 
Figure 5). The Pareto distribution with coeffi-
cient one has even more mass at the tails and 

Figure 4. Standard Deviation of Establishment Sizes 
and Capital Shares, 1990 and 2000

Notes: The figure presents the variance of establishment 
sizes by sector and the corresponding physical capital 
shares for 1990 and 2000. The variance is computed from 
data aggregated into size bins. 
Source: US Census Bureau, Statistics of US Businesses.

Figure 5. Distribution of Establishment Sizes by 
Sector, 2000

Notes: The figure presents the probability that establish-
ments in the educational services and manufacturing sec-
tors are larger than a particular size against that size in 
2000. It also presents the same probability for a Pareto den-
sity with coefficient one. The data on the number of estab-
lishments are aggregated into 43 bins. 
Source: US Census Bureau, Statistics of US Businesses.
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Figure 15: Distribution of US Establishment Growth Rates. Source: Rossi-Hansberg and Wright (2007)
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accumulated effect of this pattern over a decade 
leads to differences of more than 100 percentage 
points between small and large establishments. 
Moreover, this scale dependence in growth rates 
is not limited to the smallest establishments and 
is significant throughout the size distribution. 
Note that Figure 2 presents data on establish-
ments that survived the relevant period; hence, 
selection may be a relevant force explaining the 
exhibited scale dependence. (We will address 
this in detail below.)

Figures 1 and 2 show a significant degree of 
scale dependence in the size distribution and 
growth rates of establishments in the US econ-
omy. Below, we show that this scale dependence 
also manifests itself in net exit rates. However, 
this scale dependence has been documented 
using data aggregated by size category. Our the-
ory predicts that we should also observe it for 
average industry (or representative) establish-
ment sizes within a sector. As we have argued, 
our notion of an industry is very narrow, since 
it includes only establishments that produce the 

same goods and use exactly the same technology 
and physical and human capital. We do not have 
data disaggregated at this level. Hence, hereafter 
we interpret each establishment in our dataset 
as a representative establishment in a narrowly 
defined industry which has the number of estab-
lishments per industry given by our theory.7

Selection, Survival, and Age Effects.—The 
theory outlined in Section II makes specific pre-
dictions for the growth rate of establishments, 
conditional on their survival. It also makes pre-
dictions about the behavior of the net exit rate of 
establishments and about the size distribution of 
establishments. Consequently, in the empirical 
analysis below, we focus, separately, on condi-
tional growth rates, net exit rates, and size dis-
tributions. The focus on conditional growth rates 
contrasts with the empirical literature testing 
Gibrat’s law, which has emphasized establish-
ment growth rates not conditioned on survival 
and, in particular, the role of exit in reducing 
the unconditional growth rate of small estab-
lishments. We do not take that approach here 
for a number of reasons. One is that our theory 
makes specific predictions both for growth rates 
conditional on survival and for net exit rates, so 
we examine both directly. Also, the implications 
of all theories are sensitive to the precise way in 
which the growth rate of exiting establishments 
is treated, and whether entering establishments 
are also included. Moreover, there is no clear 
consensus as to the appropriate way to include 
entry; note the alternative empirical methodolo-
gies of Dunne, Roberts, and Samuelson (1989a, 
b) and Steven J. Davis and John Haltiwanger 
(1999). The theory of our work here continues 
to predict scale dependence under either of these 
methodologies. However, the fact that the same 
mechanism causes the scale dependence in con-
ditional growth rates and net exit rates means 
that there exist yet further treatments of entry 
and exit that result in unconditional growth rates 
that display no scale dependence. This leads to 
the third reason for our conditional approach: 
by focusing on these facts separately, we can 
directly examine whether the degree of scale 

7 A theoretically consistent empirical decomposition 
between industry and establishment heterogeneity requires 
unit record data which are not available for a broad sample 
like ours.

Figure 2. Establishment Conditional Growth Rates, 
1990–2000

Notes: The figure presents average establishment employ-
ment growth rates by size bin for establishments that 
existed between 1990 and 2000, 1999 and 2000, and 1990 
and 1991. Employment sizes are divided into 29 size bins. 
Source: US Census Bureau, Business Information Tracking 
Series.
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scale dependence predict that scale dependence 
should be more pronounced in sectors in which 
establishments have less collateral. This plausi-
bly corresponds to sectors in which the human 
capital share is relatively large and the physi-
cal capital share relatively small, which is the 
opposite prediction of our theory. We now pres-
ent evidence on the sectoral variation in scale 
dependence for conditional growth rates, net 
exit rates, and size distributions, and we show 
that this evidence corroborates the implications 
of our theory.

Growth Rates of Surviving Establishments.—
We begin by examining an example with two 
sectors. Educational services is a very labor- and 
human capital–intensive sector, with a physical 
capital share of 0.054, while manufacturing is 
much more physical capital–intensive, with a 
share of 0.397. If our theory is consistent with 
the data, we should see growth rates of manu-
facturing establishments decline faster with size 
than growth rates of establishments in the edu-

cational services sector (Proposition 1). That is 
what we see in Figure 3. In the figure, the differ-
ences are very large over a period of ten years 
(1990–2000). Not only do small establishments 
grow faster than large establishments in both 
sectors, but the scale dependence is significant 
for the entire range of establishment sizes. The 
difference between the growth rates in these two 
sectors increases with establishment size and is, 
for the largest establishments, more than 40 per-
centage points.

This evidence is not peculiar to the pair of 
sectors in the example. We demonstrate this by 
examining the same implication of our theory 
for all sectors. We use data on the growth rate 
of establishments, nt11j /ntj, in a particular size 
category, ntj, and estimate the regression speci-
fied by equation (11):

(14) ln a
nt11j
ntj

b 5 a~j 1 b
~

 ln ntj 1 e~aj ln ntj1e~tj ,

where

 a~j 5 n
C
j, 

 b~ 
5 2 11 2 vj 2 11 2 bj 2 ,

  e~ 5 2 11 2 vj 2bj, and 

 e~tj 5 2 bj  11 2 aj 2 ln At11j .

Notice that a full structural estimation of our 
model would require b~ and e~ to vary as bj and 
vj vary by sector. Unfortunately, we do not have 
data on the share of industry-specific human 
capital in labor services or the share of invest-
ment in human capital production, and so we 
assume that these two shares do not vary across 
sectors or, if they do, that they are uncorrelated 
with capital shares. If they are uncorrelated, 
then our estimation strategy is not efficient, but 
the coefficients are still unbiased and consis-
tent. Given that all the results presented below 
are significant at a 1 percent level, the lack of 
efficiency of the estimator is not worrisome.10 

10 If bj and vj are correlated with aj , then the estimates 
of e~ are biased. Let bj 5 b 1 be

j , where b is the mean of bj . 
Similarly, let vj 5 v 1 ve

j . Then, the sign of the bias depends 
on the sign of the covariance between ve

j b 1 be
j (1 2 v)  

1 2ve
j b

e
j  and aj. If v

e
j  5 0 for all j, then if Cov(be

j , aj) $ 0,  

Figure 3. Establishment Conditional Growth Rates 
by Sector, 1990–2000

Notes: The figure presents average establishment employ-
ment growth rates by size bin for establishments that 
existed between 1990 and 2000 in the educational services 
and manufacturing sectors. In both sectors, employment 
sizes are divided into 29 size bins. 
Source: US Census Bureau, Business Information Tracking 
Series.
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A.2 New Evidence

Figure 16: Top 1% Distribution of Brazilian Labor Incomes, Log-Log Scale.

Source: Relaçao Anual de Informaçoes Sociais 2011

Slope: -3.55
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Note: In this figure, the empirical countercumulative distribution function of Brazilian wages is repre-

sented. It should be compared to one example of the theoretical wage distribution function on Figure

12.

44



Figure 17: US CEOs Labor Incomes, Fixed Component. Source: ExecuComp, 2005
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Note: In this figure, the countercumulative distribution function of wages is represented.
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Figure 18: US CEOs Labor Incomes, Variable Component. Source: ExecuComp,

2005

Slope: -2.31
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Note: In this figure, the countercumulative distribution function of wages is represented.
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B Simulations

Figure 19: Matching Function from Workers to Team Managers, ∆ = 80% - Com-

parative Statics on Helping Time
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dx
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Note: This figure gives the matching function from workers to team managers derived in Section 2, with

the assumption that the distribution of skills in the population is given by G(z) = z−(1−∆)
∆

1 (1−∆, 1) (z)+

1 (1,+∞) (z).
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Table 2: Uniform Skill Distributions: Cutoffs for Different values of ∆, h and L

∆ = 100% ∆ = 70% ∆ = 30%

zL1 zL2 zL3 zL1 zL2 zL3 zL1 zL2 zL3

h = 70%

L = 1 0.684778 0.837717 0.968840

L = 2 0.650620 0.957897 0.828537 0.989747 0.968500 0.999653

L = 3 0.650000 0.957125 0.999357 0.828500 0.989706 0.999963 0.968500 0.999653 1.000000

h = 20%

L = 1 0.900980 0.951238 0.991008

L = 2 0.900000 0.999000 0.951000 0.999760 0.991000 0.999992

L = 3 0.900000 0.999000 1.000000 0.951000 0.999760 1.000000 0.991000 0.999992 1.000000

Note: In this table, the cutoffs are calculated with distribution of skills in the population given by G(z) = z−(1−∆)
∆

1 (1−∆, 1) (z) + 1 (1,+∞) (z).

Precision up to 6 digits is displayed. Successively, the maximum number of levels is restricted to being L = 1, L = 2 or L = 3. The values for helping

time are h ∈ {0.2, 0.7}, and the value for skill heterogeneity is ∆ ∈ {0.01, 0.1, 1}.
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Figure 20: Occupational choices for a Uniform Distribution of Skills, and h = 75%
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Note: This figure gives the occupational choices of agents when h = 75%, and the distribution of skills

in the population is given by G(z) = z−(1−∆)
∆

1 (1−∆, 1) (z) + 1 (1,+∞) (z). Note that the right-hand

side of the graph is very similar to what is found on Figure 7. However, as shown on Figure 3, h = 75%

belongs to the self-employment region for some values of ∆, numerically for ∆ < 5/9. In this region, there

is only one level of management. The two regimes are separated by the dotted line. A third case, where the

self-employment region arises for intermediary levels of heterogeneity ∆ , is shown in the Online Appendix.
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Figure 21: Distribution of Span of Control Down One Level of Hierarchical

Organization ("Teams"), Log-Log Scale, Comparative Statics on Helping Time,

High Heterogeneity
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Note: This figure gives the theoretical distribution of team sizes as derived in Section 2, with the as-

sumption that the distribution of skills in the population is given by G(z) = z−(1−∆)
∆

1 (1−∆, 1) (z) +

1 (1,+∞) (z), with a maximum level of skill heterogeneity ∆ = 1.

50



Figure 22: Distribution of Span of Control Down One Level of Hierarchical

Organization ("Teams"), Log-Log Scale, Comparative Statics on Helping Time,

Low Heterogeneity

6 7 8 9 10 11 12 13 14 15
−7

−6

−5

−4

−3

−2

−1

0

Log Team Size − log(l)

Lo
g 

S
ur

vi
vo

r 
−

 lo
g(

1−
G

(l)
)

 

 

Helping time h: 0.1

Helping time h: 0.01

Helping time h: 0.001

Note: This figure gives the theoretical distribution of team sizes as derived in Section 2, with the as-

sumption that the distribution of skills in the population is given by G(z) = z−(1−∆)
∆

1 (1−∆, 1) (z) +

1 (1,+∞) (z), with a low level of skill heterogeneity ∆ = 0.01.
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Figure 23: Distribution of Team Sizes, Log-Log Scale, ∆ = 80% - Comparative

Statics on Helping Time
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Note: This figure gives the theoretical distribution of team sizes as derived in Section 2, with the as-

sumption that the distribution of skills in the population is given by G(z) = z−(1−∆)
∆

1 (1−∆, 1) (z) +

1 (1,+∞) (z), with a low level of skill heterogeneity ∆ = 0.01.
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C Proofs

C.1 Proof of Lemma 1

[TO BE ADDED]

C.2 Proof of Proposition 1

Proof. There is complementarity between the skills of workers and team managers, since the

joint production of managers of type xl+1 supervising workers of type xl is given by:

xl+1N
l
1+1→l(xl) =

x1+1

h(1− xl)
.

An optimality argument allows to state that in the competitive equilibrium, there is positive

sorting of managers and lower ranking managers, and managers of type one and workers. The

function mapping a worker with skill xl with a team manager of skill xl+1 is denoted by ml(.),

defined on [zLl , z
L
l+1], and such that ml(xl) = xl+1.

∫
i
tiW (xl)di = 0 ⇒ g(m0(x0))dm0(x0) = h (1− x0) g(x0)dx0.

⇒ m′0(x0)g(m0(x0)) = h (1− x0) g(x0). (M1)

The market clearing equation (MCl) for skill xl gives a similar equation:

∀xl ∈ [zLl , z
L
l+1], m′l(xl)g(ml(xl)) = h(1− xl)g(xl).

The positive sorting limiting condition writes, matching the less skilled and the more skilled:

ml(z
L
l ) = zLl+1

ml(z
L
l+1) = zLl+2

Integrating the above differential equation for ml(.) between [zLl , z
L
l+1], and using these two

limiting conditions give the result.

Note that the stratification result obtains irrespective of the skill distribution. This is in

contrast to Kremer and Maskin (1996) - see Garicano and Rossi-Hansberg (2006) for a discussion.

C.3 Proof of Lemma 2

[TO BE ADDED]

C.4 Closed form for Assumption 2 - Uniform Case

In the case where h or ∆ are high enough, some agents remain self-employed. Self-employed

agents have intermediary skills in equilibrium, because the gains from having a worker of skill
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x0 and a manager of skill x1 work together are given by what the two produce together minus

what they would have produced by themselves, that is:

x1

h(1− x0)
− x1 −

x0

h (1− x0)
=

1

h

(
1− 1− x1

1− x0

)
− x1.

This is clearly decreasing when the skills of workers increase, so that it is better to match the

managers with the relatively less productive workers.

Figure 24: With Self-Employment in Equilibrium, One Layer.

1−∆ 1 skill level

workers team managers

z∗1

self-employed

z∗∗1

The notations for cutoffs are introduced on Figure 24. Now the matching function m0(.)

is defined on [1 − ∆, z∗∗1 ]. An important difference also is that in that case, will not be solved

independently of agents’ choices. The next Appendix C.5 proves that the planner’s problem

would lead to the same equations as this decentralized problem.

In the decentralized problem, the two differential equations for m0(.) and w0(.) do not change

compared to the case of no-self employment. However we now have four equations, not three,

determining two initial conditions as well as two cutoffs. They are given by matching of the less

and more skilled of workers and team managers, as previously:

m0(1−∆) = z∗1 m0(z∗∗1 ) = 1.

In addition, we now have two indifference equations between being a worker and self-employed

with skills z∗∗1 , and being self-employed and a team manager with skills z∗1 :

w0(z∗∗1 ) = z∗∗1 z∗1 = R1(z∗1).

In the case of a uniform distribution of skills, the market clearing equation for skills valid on

(1−∆, z∗∗1 ), together with the terminal equation m0(z∗∗1 ) = 1, then gives:

m′0(x0)g (m0(x0)) = h (1− x0) g(x0) ⇒ m′0(x0) = h(1− x0)

⇒ m0(x0) =
1

2

(
−hx2

0 + 2hx0 + h (z∗∗1 )2 − 2hz∗∗1 + 2
)
.

Inverting this expression, the inverse assignment function is therefore given by:

m−1
0 (x1) =

h−
√

2h+ h2 − 2hx1 − 2h2z∗∗1 + h2(z∗∗1 )2

h
.

In the case where self-employment arises in equilibrium, one must solve for the equilibrium

wage function even to determine the spans of control of each team manager. One also uses

w0(z∗∗1 ) = z∗∗1 = z∗∗1 to integrate:

(1− x0)w′0(x0) + x0w0(x0) = x0m0(x0)

⇒ w0(x0) =
1

2

(
2x0 + hx2

0 − 2hx0z
∗∗
1 + h (z∗∗1 )2

)
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Then using the two remaining m0(1 − ∆) = z∗1 and z∗1 = R1(z∗1), and simple but lengthy

algebra, one can express the cutoffs for occupational choice as a function of the heterogeneity

parameter ∆ and the helping time h:

z∗1 = −−2h+ h2∆ +
√
h2 (3 + h2∆2 − 2h(1 + ∆))

h2
z∗∗1 =

−h+ h2 +
√
h2 (3 + h2∆2 − 2h(1 + ∆))

h2
.

Replacing the cutoffs, one gets the assignment function as a function as these parameters as

well:

m0(x0) =
4h− 2h2∆ + h3

(
−1 + ∆2

)
− 2
√
h2 (3 + h2∆2 − 2h(1 + ∆)) + 2h3x0 − h3x2

0

2h2
.

The condition for there to be self-employment in equilibrium is that:

z∗∗1 < z∗1 ⇔ −h+ h2 +
√
h2 (3 + h2∆2 − 2h(1 + ∆))

h2
< −−2h+ h2∆ +

√
h2 (3 + h2∆2 − 2h(1 + ∆))

h2

⇔ 3− h∆− h > 2
√

3 + h2∆2 − 2h(1 + ∆)

⇔ (1 + 2∆− 3∆2)h2 + 2(1 + ∆)h− 3 > 0

⇔ h >
1 + ∆− 2

√
1 + 2∆− 2∆2

−1− 2∆ + 3∆2
since h > 0.

When the primitives of the model are such that this is verified, we are in the case where a

non trivial measure of agents are self-employed. When it is not the case, then all agents either

become managers or workers. The condition is illustrated graphically on Figure 7.

C.5 Self-employment - Equivalence of Planner’s and the Decentralized Prob-
lem

Even though the usual argument applies in the model (as in Garicano (2000), for that matter,

and the competitive equilibrium is efficient, it is useful to compare the planner’s problem with

the decentralized one to gain some intuition on the model. Unlike in Garicano (2000), I do not

need to use Hamiltonian-type methods to show the result.

Planner’s Problem. As explained in the main text, an optimum necessarily has positive

sorting between the more skilled workers and managers. Assuming that there is some self-

employment in equilibrium, and using the same notations as in the main text, the planner wants

to maximize total output given by:

max
z∗∗1

∫ z∗∗1

1−∆
m0(x0)g(x0)dx0 +

∫ m0(1−∆)

z∗∗1

x0g(x0)dx0

s.t. m0(z∗∗1 ) = 1

s.t. m′0(x0)g (m0(x0)) = h(1− x0)g(x0)

s.t. z∗∗1 ≤ m0(1−∆).
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where z∗1 has everywhere been replaced by its expression as a function of m0, given by m0(1−∆).

Integrating the differential equation for the matching function between x0 and z∗∗1 gives:

m0(x0) = G−1

(
1−

∫ z∗∗1

x0

h(1− u)g(u)du

)
.

From there one calculates the partial derivative of the matching function with respect to the

control variable z∗∗1 :

∂m0

∂z∗∗1
(x0) = −h(1− z∗∗1 )g(z∗∗1 )

g(m0(x0))
.

Because m0(.) is explicit, we can eliminate the first two constraints from the optimization pro-

gram. Denoting by λ the Lagrange multiplier on the last constraint, the first order condition for

the above program can thus be written as follows:

m0(z∗∗1 )g(z∗∗1 ) +

∫ z∗∗1

1−∆
g(x0)

∂m0

∂z∗∗1
(x0)dx0 − z∗∗1 g(z∗∗1 ) + ...

...
∂m0

∂z∗∗1
(1−∆)m0(1−∆)g(m0(1−∆)) + λ

(
∂m0

∂z∗∗1
(1−∆)− 1

)
= 0.

After simple algebra and using the expression above for ∂m0
∂z∗∗1

(x0), this leads to:

m0(1−∆) +

∫ z∗∗1

1−∆

g(x0)

g(m0(x0))
dx0 =

1

h
+ λ

(
∂m0

∂z∗∗1
(1−∆)− 1

)
.

There are two cases depending on whether the contraint is slack or not:

• Either the contraint is binding and the above equation only serves to determine the La-

grange multiplier. The only cutoff z∗∗1 = z∗1 delimiting production and managing is deter-

mined through z∗1 = m0(1−∆) and m0(z∗1) = 1. This is the case with no self-employment

in equilibrium.

• Or the constraint is slack λ = 0 and the above equation together with m0(z∗∗1 ) = 1

determines z∗∗1 , together with m0(.), and therefore z∗1 through z∗1 = m0(1−∆). This is the

case with self-employment in equibrium.

Decentralized Problem. In the case when there is self-employment in equilibrium, the

decentralized problem consists in a price system w(.) for workers and managers maximizing over

the skills of workers they work with, such that they choose x0 = m−1
0 (x1) when of type x1:

max
x0

x1 − w0(x0)

h[1− x0]
≡ R1(x1).

This leads to a differential equation for wages:

w′0(x0) (1− x0) + x0w0(x0) = x0x0

⇒ w0(x0)

1− x0
− w0(z∗∗1 )

1− z∗∗1
=

∫ x0

z∗∗1

u

(1− u)2
m0(u)du

=

(
m0(u)

1− u

)x0

z∗∗1

−
∫ x0

z∗∗1

m′0(x0)

1− x0
dx0.
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Replacing the matching function in the integral using the market clearing equation for skills, and

using the indifference condition z∗∗1 = w0(z∗∗1 ):

m0(x0)− w0(x0)

1− x0
= 1 +

∫ x0

z∗∗1

h
g(u)

g(m0(u))
du.

Then, using the indifference condition R1(z∗1) = z∗1 yields directly:

m0(1−∆) +

∫ z∗∗1

1−∆

g(x0)

g(m0(x0))
dx0 =

1

h
,

which is the equation obtained in the planner’s problem in the case where there is self-employment

in equilibrium.

If in contrast there is no self-employment in equilibrium then the indifference condition be-

tween being a manager and a worker with skill z∗∗1 simply is R1(z∗1) = z∗1 , and must be regarded

as an initial condition for the differential equation on w0(.).

C.6 Span of Control Distribution - Uniform Distribution - One Level

The market clearing equation for skills valid on (1−∆, z∗1), together with the initial equation

m0(z∗1) = 1, then gives:

m′0(x0)g (m0(x0)) = h (1− x0) g(x0) ⇒ m′0(x0) = h(1− x0)

⇒ m0(x0) =
1

2

(
2 + 2hx0 − hx2

0 − 2hz1
1 + h

(
z1

1

)2)
.

Using thenm0(1−∆) = z∗1 , this gives a quadratic expression in z∗1 with h and ∆ as exogenous

parameters and therefore an expression for the threshold z∗1 , which has a simple Taylor expansion

for small heterogeneity ∆ and/or small helping cost h:

z1
1 =

1 + h−
√

1 + h2∆2

h
≈ 1− 1

2
h∆2 + o(∆2).

Replacing, this gives closed form expressions for the assignment equation, and its inverse:

m0(x0) =
2 + 2h+ h2

(
−1 + 2x0 − x2

0 + ∆2
)
− 2
√

1 + h2∆2

2h

⇒ m−1
0 (x1) = 1−

√
2− 2h(−1 + x1) + h2∆2 − 2

√
1 + h2∆2

h

Span of control for a manager x1 is then given by:

N1
1→0(x1) =

1

h
(
1−m−1

0 (x1)
)

N1
1→0(x1) =

1√
2h(1− x1) + 2 + h2∆2 − 2

√
1 + h2∆2

.

In the limit when heterogeneity ∆ or the helping time h become small, this is a Pareto

distribution of coefficient 2. Note that the convergence is very fast since:

2 + h2∆2 − 2
√

1 + h2∆2 ≈ 1

4
h4∆4 +O(h6∆6).
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