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Abstract

An extensive literature identifies how privately-informed rational people who ob-

serve the behavior of other privately-informed rational people with similar tastes may

come to imitate those people, emphasizing when and how such imitation leads to in-

efficiency. This paper investigates not the efficiency but instead the behavior of fully

rational observational learners. In virtually any setting apart from that most com-

monly studied in the literature, rational observational learners imitate only some of

their predecessors and, in fact, frequently contradict both their private information

and the prevailing beliefs that they observe. In settings that allow players to extract

all relevant information about others’ private signals from their actions, we identify

necessary and sufficient conditions for rational observational learning to include “anti-

imitative” behavior, where, fixing other observed actions, a person regards a state of

the world as less likely the more a predecessor’s action indicates belief in that state.
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Such anti-imitation follows from players’ need to subtract off sources of correlation to

interpret information (here, other players’ actions) correctly, and is mandated by ra-

tionality in settings where players can observe many predecessors’ actions but cannot

observe all recent or concurrent actions. Moreover, in these settings, there is always

a positive probability that some player plays contrary to both her private information

and the beliefs of every single person whose action she observes. We illustrate a setting

where a society of fully rational players nearly always converges to the truth via at least

one such episode of extreme contrarian behavior. (JEL B49)

Keywords: social networks, observational learning, rationality

1 Introduction

An extensive literature—beginning with Banerjee (1992) and Bikhchandani, Hirshleifer and

Welch (1992)—identifies how a rational person who learns by observing the behavior of

others with similar tastes and private information may be inclined to imitate those parties’

behavior, even in contradiction to her own private information. Yet the literature’s special

informational and observational structure combined with its focus on information aggregation

have obscured the precarious connection between rational play and imitation. Some recent

papers have illustrated departures from the prediction that rational learning leads simply

to imitation: in many natural settings, rational players imitate some previous players, but

“anti-imitate” others. These papers derive anti-imitation from players’ imperfect ability to

extract others’ beliefs from their actions. This paper complements those by investigating a

conceptually distinct reason for rational anti-imitation in a class of rich-information settings

where each player is perfectly able to extract the beliefs of any player whose action she

observes. We identify necessary and sufficient conditions for observational learning to involve

some instances of “anti-imitation”—where, fixing others’ actions, some player revealing a

greater belief in a hypothesis causes a later player to believe less in it. In these same

conditions, there is a positive probability of contrarian behavior, where at least one player

contradicts both her private information and the revealed beliefs of every single person she
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observes. These conditions hold in most natural settings outside of the single-file, full-

observation structure previously emphasized in the literature. We also illustrate related

settings where rational herds almost surely involve at least one episode of such contrarian

behavior.

In the canonical illustrative example of the literature, a sequence of people choose in

turn one of two options, A or B, each observing all predecessors’ choices. Players receive

conditionally independent and equally strong private binary signals about which option is

better. The rationality of imitation is easy to see in this setting: early movers essentially

reveal their own signals, and should be imitated. Once the pattern of signals leads to, say,

two more choices of A than B, subsequent rational agents will imitate the majority of their

predecessors rather than follow their own signals because they infer more signals favoring A

than B. Yet this canonical binary setting obscures that such “single-file” rational herding

does not predict global imitation. It predicts something far more specific: it is ubiquitously

rational only to imitate the single most recent action, which combines new private infor-

mation with all the information contained in prior actions. To a first approximation, prior

actions should be ignored. The symmetric binary-signal, binary-action model obscures this

prediction because the most recent player’s action is never in the minority. The ordered

sequence AAB can never occur, for instance, since Player 3 would ignore her signal following

AA. However, in any common-preference situation with a private-information structure that

allows AAB to occur with positive probability, Player 4 will interpret it to indicate that B

is the better option.

Not only should players be more influenced by the most recent actions than prior ones,

but for many signal structures prior actions in fact should count negatively, so that Player

4 believe more strongly in B’s optimality given the observation AAB than BBB. When

only a small random proportion of players are informed, for instance, Player 4 believes the

probability that B is the better option given BBB is little more than 50%, since the first

person was probably just guessing, and followers probably just imitating. Following AAB,

following AAB, on the other hand, there is a much stronger reason to believe B to be the
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better option, since only an informed person would overturn a herd. It can be shown, in

fact, that when signals are weak and very few people are informed, over 63% of eventual

herds involve a very extreme form of anti-majority play—at least one uninformed player will

follow the most recent person’s action, despite it contradicting all prior actions. Another

very natural class of environments where systematic imitation may seem more likely—and

recency effects obviously impossible—is when people observe previous actions without seeing

their order. Yet Callender and Hörner (2009) show that with similar heterogeneity in the

quality of people’s private signals, rational inference quite readily can lead people to follow

the minority of previous actions. With some people much better informed than others, the

most likely interpretation of seeing (say) four people sitting in Restaurant A and only one

in Restaurant B is that the loner is a well-informed local bucking the trend rather than an

ignorant tourist.1

The logic underlying all of these examples of anti-imitation relates to the “coarseness” of

available actions. When a player’s action does not perfectly reveal his beliefs, earlier actions

shed additional light on his beliefs by providing clues as to the strength of the signal he

needed to take his action. Yet a second, conceptually distinct form of anti-imitative be-

havior highlighted in Eyster and Rabin (2009) can occur even in much richer informational

environments. Consider a simple alternative to the single-file herding models that pervade

the literature. Suppose n > 1 people move simultaneously every period, each getting inde-

pendent private information and observing all previous continuous actions that fully reveal

people’s beliefs. Fixing behavior in period 2, the more confidence period-1 actions indicate in

favor of a hypothesis, the less confidence period-3 actors will have in it. The logic is simple:

since the multiple movers in period 2 each use the information contained in period-1 actions,

to properly extract the information from period-2 actions without counting this correlated

1The models of Smith and Sørensen (2008), Banerjee and Fudenberg (2004), and Acemoglu, Dahleh, Lobel

and Ozdaglar (2010) all encompass settings where players observe a random subset of predecessors. Although

not the subject of their work, in these models rational social learning also leads to anti-imitation for the

same reason as in Callender and Hörner (2009): players can only partially infer their observed predecessors’

beliefs from these predecessors’ actions.
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information n-fold, period-3 players must imitate period-2 actions but subtract off period-1

actions. In turn, period-4 players will imitate period-3 players, anti-imitate period-2 players,

and imitate period-1 players. Indeed, every single player in the infinite sequence outside

periods 1 and 2 will anti-imitate almost half her predecessors. Moreover, this anti-imitation

can take a dramatic form: if period-2 agents do not sufficiently increase their confidence

relative to period 1 after observing the collection of period-1 actions, this means that they

each received independent evidence that the herd started in the wrong direction. When

n > 2, if all 2n people in the first two periods indicate roughly the same confidence in one

of two states, this means a rational period-3 agent will always conclude that the other state

is more likely!

In Section 2 we model general observation structures that allow us to flesh out this logic

more generally within the class of situations we call “impartial inference”. We say that a

situation is one of impartial inference whenever common knowledge of rationality implies

that any player who learns something from a previous set of players’ signals in fact learns

everything that she would wish to know from those signals. (The “impartial” here means

not partial—either information is fully extracted, or not at all.) This immediately rules out

“coarse” actions, so that we focus solely on the case where actions fully reveal beliefs. Our

first proposition provides necessary and sufficient conditions on the observation structure for

players to achieve impartial inference. We define Player k to “indirectly observe” Player j if

Player k observes some player who observes some player who . . . observes Player j. Roughly

speaking, then, a rich-action setting generates impartial inference if and only if whenever a

Player l indirectly observes the actions of Player j and k—neither of whom indirectly observes

the other and both of whom indirectly observe Player i—then Player l also observes Player

i.2

2The statement is only rough because it suffices for Player l to indirectly observe some Player m who

satisfies the above desiderata or for Player l to indirectly observe some Player m who in turn indirectly

observes i and satisfies the statement expressed in the text for Player i. The canonical single-file herding

models, the “multi-file” model from above, and for instance a single-file model where each player observes

the actions and order of only the players before her, are all games of impartial inference. Multi-file models
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Focusing on games of impartial inference allows for surprisingly simple necessary and

sufficient conditions for anti-imitation. Essentially, anti-imitation occurs in an observational

environment if and only if it contains a foursome of players i, j, k, l where 1) j and k both

indirectly observe i, 2) neither j nor k indirectly observes the other, and 3) l indirectly

observes both j and k and observes i.3 Intuitively, as in the n-file herding example above,

Player l must weight Players j and k positively to extract their signals, but then must weight

Player i’s action negatively because both j and k have weighted it themselves already. A

more striking conclusion emerges in these settings when signals are rich: there is a positive

probability of a sequence of signals such that at least one player will have beliefs opposite to

both the observed beliefs of everybody she observes and her own signal. Intuitively, if Player

i is observed to believe strongly in a hypothesis and Players j and k only weakly, then l must

infer that j and k both received negative information so that altogether the hypothesis is

unlikely.4

While in most natural settings such a strong form of contrarian behavior is merely a

possibility, in Section 3 we illustrate a setting where it happens with near certainty. To keep

within the framework of impartial inference, we use the following contrived set-up: in each

round, an identifiableplayer receives no signal, while four others each receive conditionally

independent and identically distributed binary signals of which of the two states obtain; each

player observes only the actions (that fully reveal beliefs) of the five players in the previous

round. Despite only observing the previous round’s actions, all players in each round t can

where each player gets a private signal but players only observe the previous round of actions (and not the

full history) are not games of impartial inference.
3When players have unbounded private beliefs, then this condition is sufficient for some player to anti-

imitate another, though not necessarily Player i, j, k nor l. Proposition 2 both weakens the sufficient condition

along the lines of the previous footnote and provides a necessary condition for anti-imitation that does not

include unbounded private beliefs.
4Such “contrarian” behavior—believing the opposite of all your observed predecessors—cannot occur in

single-file models with partial inference like that of Callender and Hörner (2009), where anti-imitation derives

from players’ using the overall distribution of actions to refine their their interpretation of individual actions.

Clearly, if all players have a coarse belief favoring A over B, then no inference by any observer about the

identity of the most recent mover could lead him to believe B more likely.
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infer precisely how many of each signal have occurred through round t − 1: the no-signal

person in round t− 1 reveals the total information through round t− 2, while the four other

movers in round t−1 reveal their signals through the differences in their beliefs from those of

the no-signal person. In this case, a round-t player observing the no-signal person in round

t−1 revealing beliefs equivalent to two signals favoring (say) option B, but all four signalled

people in round t− 1 revealing beliefs of only a single signal in favor of B would know each

of them received an A signal, making the total number of signals through round t − 1 two

in favor of A. In this case, each player in round t—even one holding a B signal—believes A

more likely than B, despite having only seen predecessors who believed B more likely than A.

We prove that in the limit as signals become very weak the probability that such an episode

occurs at least once approaches certainty. In fact, when signals tend to their un-informative

limit, it will happen arbitrarily many times.

The class of formal models we examine in this paper is clearly quite stylized. But the

forms of anti-imitative and contrarian play that we identify do not depend upon details

of our environment such as the richness of signal or action spaces. Many simple, natural

observational structures would lead players to rationally anti-imitate because they require

players to subtract sources of correlation in order to rationally extract information from

different actions. If observed recent actions provide some independent information, then

they should all be imitated. But if all those recent players are themselves imitating earlier

actions, those earlier actions should be subtracted.

We speculate that the strong forms of anti-imitation and contrarian play predicted by the

full-rationality model will not be common in practice. Whether this speculation turns out

to be right or wrong, this paper provides an abundance of guidance that can be used to help

determine whether approximate rationality truly governs observational learning. Settings

like ours provide much more powerful tests of whether and why people imitate than current

experiments, typically set in the very rare setting where rationality and virtually all other

theories predict imitation.

The realism and abundance of settings where full rationality predicts anti-imitation is
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important for a second reason: models of departures from rational play that robustly predict

imitation give rise to very different informational and efficiency properties than models of

rational social learning. Eyster and Rabin (2010) propose a simple alternative model of näıve

inference where players, by dint of under-appreciating the fact that their predecessors are

also making informational inferences from behavior, take all actors’ behavior as face-value

indications of their private information. This näıve inference directly leads to universal

imitation. And it inference leads far more robustly to a much stronger and far less efficient

form of herding than predicted by any rational model. We conclude the paper in Section

4 with a brief discussion of the relationship between imitation and inefficiency, speculating

that in fact many theories of bounded rationality that do lead to long-run efficiency and

prevent the form of overconfident mislearning that Eyster and Rabin (2010) predicts can

happen will also involve anti-imitation! As such, if anti-imitative behavior should turn out

to be rare in practice, then we will learn not just the limits of rationality in observational-

learning settings but also that societal beliefs might frequently converge to highly confident

but incorrect beliefs.

2 Impartial Inference and Anti-Imitative Behavior

In this section, we consider observation structures more general than those used in the

classical models by Banerjee (1992) and Bikhchandani et al. (1992), where players move

single-file after observing all of their predecessors’ actions. We focus on environments where

rational players completely extract all of the payoff-relevant information to which they have

access. In these settings, we provide necessary and sufficient conditions for rational social

learning to include anti-imitation, meaning that some player’s action decreases in some

predecessor’s observed action, holding everyone else’s action fixed.

There are two possible states of the world, ω ∈ {0, 1}, with each state ex ante equally

likely. Each Player k in the set of players {1, 2, . . .} receives a private signal σk whose density

conditional upon the state being ω is f(σk|ω). We assume that for each ω ∈ {0, 1}, f(σk|ω)

is everywhere positive and continuous on the support [0, 1]. We also assume that f(σk|ω=1)
f(σk|ω=0)
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strictly increases in σk, which allows us to normalize signals such that Pr[ω = 1|σk] = σk,

where σk has support Σk ⊂ [0, 1]. Players’ signals are independent conditional upon the

state. Following (Smith and Sørensen 2000), we say that players have unbounded private

beliefs when Σk = [0, 1] for each Player k and bounded private beliefs otherwise. To simplify

exposition, we work with signals’ log-likelihood ratios, sk := ln
(
f(σk|ω=1)
f(σk|ω=0

)
; let Sk be the

support of sk. Player k’s private signal indicates that ω = 1 is no less likely than ω = 0 iff

sk ≥ 0.

Let D(k) ⊂ {1, . . . , k − 1} be the subset of Player k’s predecessors whose actions k

observes; to distinguish this direct form of observation from less direct forms, we refer to it as

“direct observation” henceforth. When k−1 /∈ D(k), we can interpret Players k−1 and k as

moving simultaneously; we interpret one player’s having a higher number than another simply

as indicating that the former moves weakly later than the latter. Let ID(k) ⊂ {1, . . . , k−1}

be the subset of Player k’s predecessors whom k indirectly observes: l ∈ ID(k) iff there exist

some path of players k1, k2, . . . , kL such that k1 ∈ D(k), k2 ∈ D(k1), . . . , kL ∈ D(kL−1), l ∈

D(kL). Of course, there may be more than one path by which one player indirectly observes

another, a possibility that plays a crucial role in our analysis below. If Player k directly

observes Player j, then she must also indirectly observe him, but not necessarily vice versa.

The indirect observation (ID) relation defines a strict partial order on the set of players.

After observing any predecessors visible to her as well as learning her own private signal,

Player k chooses the action αk ∈ [0, 1] to maximize her expectation of − (α− ω)2 given all

her information, Ik. Players do this by choosing αk = E[ω|Ik], namely by choosing actions

that coincide with their posteriors that ω = 1. Any player who observes Player k can

therefore back out Player k’s beliefs from her action but cannot necessarily infer Player k’s

private signal. For simplicity, as with signals, we identify actions by their log-likelihoods,

ak := ln
(

αk

1−αk

)
. Player k optimally chooses ak ≥ 0 iff she believes ω = 1 at least as likely

as ω = 0.

We refer to N = {{1, 2, . . .} , {D(1), D(2), . . .}} as an observation structure or a network,

consisting of the players {1, 2 . . .} and their respective sets of directly observed predecessors,

9



which define their sets of indirectly-observed predecessors.5 When it causes no ambiguity,

we abuse notation by referring to N as the set of players in the network N . For any

set A of action profiles a := (a1, a2, . . .), we say that N admits A if for each open set

of actions B that contains A, Pr[B] > 0. Given the network N , its k-truncation N k :=

{{1, 2, . . . k} , {D(1), D(2), . . . D(k)}} comprises its first k players as well as their observations

sets.

Player k may observe a predecessor both directly and indirectly. Define D(k) = {j ∈

D(k) : ∀i ∈ D(k), j /∈ ID(i)}, the set of players whom Player k indirectly observes only by

directly observing. In the classical single-file model, for example, D(1) = D(1) = ∅ and for

each k ≥ 2, D(k) = {1, . . . , k−1} and D(k) = {k−1}. When two players move every round,

observing (only) all players who moved in all previous rounds, D(1) = D(2) = ∅, and for

l ≥ 1, D(2l + 1) = D(2l + 2) = {1, . . . , 2l}, while D(2l + 1) = D(2l + 2) = {2l − 1, 2l}. The

“only-observe-directly” set D(k) plays an important role in our analysis and is non-empty

whenever D(k) is non-empty.6

Although a player may directly observe a large number of predecessors, many of those

observations turn out to be redundant. For instance, in the classical, single-file structure

with rational players, no player who observes her immediate predecessor gains any useful

information by observing any other predecessor. Lemma 1 states that any predecessor whom

Player k indirectly observes she indirectly observes through someone in her only-observe-

directly set.

Lemma 1 For each Player k, ID(k) = D(k) ∪
(
∪j∈D(k)ID(j)

)
.

5Formally, N is a directed network with players as nodes, direct observations as directed links, etc. (See,

e.g., Jackson (2008).) Because network-theoretic language does not clarify or simplify our results, we prefer

to use the game-theoretic term “observation”. A small literature in network economics (notably Bala and

Goyal (1998) and Golub and Jackson (2010)) differs from our work in three important ways: networks are

undirected; players take actions infinitely often, learning from one another’s past actions; and players are

myopic.
6Because maxD(k) = maxD(k) one set is empty iff the other one is too.
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Those predecessors who belong to D(k) collectively have access to all the information that

Player k could ever hope to incorporate into her own decision. In most papers of the social-

learning literature, each Player k’s only-observe-directly set D(k) is a singleton or has the

property that ∩j∈D(k)ID(j) = ∅—no two predecessors in D(k) share a common action

observation. Either assumption frees Player k from concern that two distinct, non-redundant

observations incorporate the same information.

As described in the introduction, we are particularly interested in networks that contain

what we call “diamonds”: two players j and k both observe a common predecessor i but not

each other, while some fourth player l observes both j and k.

Definition 1 The distinct players i, j, k, l in the network N form a diamond if i ∈ ID(j)∩

ID(k), j /∈ ID(k), k /∈ ID(j), and {j, k} ⊂ ID(l).

We refer to the diamond by the ordered quadruple (i, j, k, l)—where i < j < k < l—and say

that the network has a diamond if it contains four players who form a diamond.

Player l 

Player k 

Player i 

Player j 

Figure 1: A Diamond

An important subset of a network’s diamonds are those diamonds in which Player l also

directly observes Player i.

Definition 2 The distinct players i, j, k, l in the network N form a shield if i ∈ ID(j) ∩

ID(k), j /∈ ID(k), k /∈ ID(j), {j, k} ⊂ ID(l) and i ∈ D(l).
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The diamond (i, j, k, l) is a shield if and only if i ∈ D(l). Every shield must be a diamond,

but not vice versa.

Player l 

Player k 

Player i 

Player j 

Figure 2: A Shield

We say that the network has a shield if it contains players who form a shield. Finally, we are

interested in diamonds (i, j, k,m) that if not shields—if Player m does not observe Player

i—closely resemble shields in one of two ways: either Player m indirectly observes some

Player l who belongs to the shield (i, j, k, l), or Player m forms the shield (l, j, k,m) with

some Player l who indirectly observes Player i.

Definition 3 The diamond (i, j, k,m) in the network N circumscribes a shield if (i) it is a

shield, (ii) there exists some player l < m such that (i, j, k, l) is a shield and l ∈ ID(m), or

(iii) there exists some player l < m such that (l, j, k,m) is a shield and i ∈ ID(l).
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Player l 

Player k 

Player i 

Player j 

Figure 3:  The Diamond (i,j,k,m) Circumscribes a Shield
Arrows Denote Observation

Player m 

Player l 

Player k 

Player i 

Player j 

Figure 4:  The Diamond (i,j,k,m) Circumscribes a Shield
Arrows Denote Observation

Player m 

Whenever the diamond (i, j, k,m) circumscribes a shield, Player m has access to the three

signals si, sj and sk through three different channels, indirectly observes someone who has

access to the three signals through three different channels, or has access to sj, sk, si + sl for

some Player l through three different channels (in which case m need not disentangle si from

sl).

In this paper, we wish to abstract from difficulties that arise when players can partially

but not fully infer their predecessors’ signals. In the diamond that is not a shield of Figure

1, for instance, the final observor l cannot discern the correlation in j and k’s beliefs through

some common observation of i. Rational inference therefore requires l to use her priors on
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the distribution of the different signals that i, j and k might receive. To avoid becoming

mired in these complications, we concentrate on situations of “impartial inference” in which

the full informational content of all signals that influence a player’s beliefs can be extracted.

Although we do not formally analyze networks of partial inference, the form of anti-imitative

behavior that we describe appears equally in these settings. Hence we define:

Definition 4 Player k achieves impartial inference (II) if for each (s1, . . . , sk−1) ∈ ×j<kSj
and each sk ∈ Sk,

αk = arg max
α

E
[
−(α− ω)2

∣∣∪j∈ID(k){sj} ∪ {sk}
]
.

Otherwise, Player k achieves partial inference (PI).

A player who achieves impartial inference can never improve her expected payoff by learning

the signal of anyone whom she indirectly observes. In the classical binary-action-binary-

signal herding model, making the natural and usual assumption that a player indifferent

between the two actions follows her signal, prior to formation of a herd, each player can

infer all of her predecessors’ signals exactly; once the herd begins, however, players can

infer nothing about herders’ signals. As is clear from the example in the Introduction, a

typical setting with discrete actions is unlikely to involve impartial inference when the signal

structure is richer than the action structure, for even the second mover cannot fully recover

the first mover’s signal from her action. But because our formal results concern rich actions

where each person’s beliefs are fully revealed to all observers, in our setting the possibility of

partial inference stems entirely from inability to disentangle the signals which generate the

constellation of observed beliefs.

Note that impartial inference does not imply that a player can identify the signals of all

those players whom she indirectly observes—but merely that she has extracted enough of

the information combined in their signals that any defecit does not lower her payoff. For

instance, when each player observes only her immediate predecessor, she achieves impartial

inference despite an inability to separate her immediate predecessor’s signal from his own
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predecessors’ signals. We say that behavior in the network N is impartial if each player in

N achieves impartial inference.

When each player’s only-observe-directly set lacks two predecessors sharing a common

observation, then all players achieve impartial inference by combining their private informa-

tion solely with observations from predecessors in their only-observe-directly sets. In this

case—which covers most of the social-learning literature—D(k) is “sufficient” for D(k).

Lemma 2 If for each Player k, D(k) is a singleton set or has the property that ∩j∈D(k)ID(j) =

∅, then each Player l achieves impartial inference by choosing al =
∑

j∈D(l) aj + sl.

In the single-file model, Lemma 2 implies that players achieve impartial inference by combin-

ing their private information with their immediate predecessor’s action. Moreover, it implies

that when the actions in D(l) are all independent conditional on the state, Player l rationally

imitates the observed actions of everyone she indirectly observes only by directly observing,

and ignores any other actions that she observes.

Of course, many networks have architectures that preclude rational players from achieving

impartial inference. We wish to distinguish those networks that allow rational players to

achieve impartial inference from those that do not. Especially in the case where actions

reveal beliefs, it turns out that the impartiality of inference is intimately related to the role

of diamonds and shields in the observational structure.

Proposition 1 If every diamond in N circumscribes a shield, then behavior in N is impar-

tial. If all players have unbounded private beliefs, then behavior in the network N is impartial

only if every diamond in the network circumscribes a shield.

When (i, j, k) form the “base” of a diamond, the first Player l to complete the diamond

(i, j, k, l) must directly observe i to achieve impartial inference with unbounded private be-

liefs. Roughly speaking, because aj and ak both weight si, Player l must learn si to uncover

the correlation between aj and ak due to si to avoid double counting it in her own action.

Accomplishing this requires directly observing ai, for merely indirectly observing it via some

other action am would not permit her to disentangle si from sm.
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The gap between necessary and sufficient conditions in Proposition 1 derives from the fact

that certain discrete signal structures allow a Player k who observes Player j to disentangle

j’s signal from j’s priors without further information. Consider for instance the diamond

(i, j, k, l) in Figure 1 that is not a shield—i /∈ D(l)—but where sj = 0 with certainty, namely

j lacks an informative signal. Because aj = ai + sj = si, ak = ai + sk = si + sk, Player l can

use aj and ak to infer si, sj and sk and thereby achieve impartial inference.

We now turn our attention to the behavioral rules that players use in such shields to

achieve impartial inference. To begin, we define anti-imitation more precisely:

Definition 5 Player k anti-imitates Player j if for each a−j ∈ R|{i<k,i6=j}| and each sk ∈ Sk,

(i) for each aj, a
′
j ∈ R such that aj < a′j

ak(aj, a−j; sk) ≥ ak(a
′
j, a−j; sk)

and (ii) there exist some aj, a
′
j ∈ R such that aj < a′j and

ak(aj, a−j; sk) > ak(a
′
j, a−j; sk)

Player k anti-imitates Player j if k’s confidence in a state of the world never moves in the

same direction as j’s—holding everyone else’s action fixed—and sometimes moves in the

opposite direction. Note that this formal definition of anti-imitation is stronger than the

one described in the Introduction because it insists that the effect on belief of changing a

player’s action is weakly negative for every combination of others’ actions. In the context

of coarse action spaces, we do not say that Player 4 anti-imitates Player 1 if actions AAB

provide a stronger signal in favor of state B than actions BBB, when it is also the case that

action ABA provides a stronger signal in favor of the state A than actions BBA. A player

who anti-imitates a predecessor always forms beliefs that tilt against that predecessor’s.

Our main result is that in rich networks where players’ actions reveal their beliefs, private

beliefs are unbounded, and behavior is impartial, anti-imitation occurs if and only if the

network contains a diamond. Roughly speaking, in settings where players observe some

predecessors but not all of their most recent ones, certain players become less confident in
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a state the more confident they observe certain of their predecessors becoming. That is,

rational social learning requires anti-imitation whenever there are diamonds:

Proposition 2 Suppose that behavior in N is impartial. If some player in N anti-imitates

another, then N contains a diamond. If all players have unbounded private beliefs and N

contains a diamond, then some player anti-imitates another.

Not only does rational social learning in general observation structures often require that

certain players anti-imitate others, but it also may lead to some players’ forming beliefs that

go against all of their information. That is, a player may form beliefs that are both contrary

to his private signal and all the predecessors whose beliefs he observes. Two definitions will

help us establish some surprising results to this effect.

Definition 6 Player k’s observational beliefs in network N following action profile (a1, a2, . . . ak−1)

are

ok(a1, . . . ak−1) := ln

(
Pr
[
ω = 1|N k; (a1, . . . ak−1)

]
Pr [ω = 0|N k; (a1, . . . ak−1)]

)

A player’s observational beliefs are those (in log-likelihood form) that she would arrive at after

observing any actions visible to her but before learning her own private signal. In models

where all players observe all of their own predecessors, observational beliefs are are often

called “public beliefs”. In our setting, because the subset of Player k’s predecessors observed

by Player l ≥ k may differ from those observed by Player m ≥ k, observational beliefs are

neither common nor public. In any case, a rational Player k chooses ak = ok + sk, which

optimally combines her own private information with that gleaned from her predecessors.

Definition 7 The path of play (a1, a2, . . . , ak) is contrarian if either (i) ∀j ∈ D(k), aj < 0

and ok > 0 or (ii) ∀j ∈ D(k), aj > 0 and ok < 0.

A contrarian path of play arises for a Player k when despite all her observations favouring

state ω = 0, she attaches higher probability to state ω = 1, or vice versa.
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Proposition 3 If players have unbounded private beliefs and the network N contains a

diamond and has impartial inference, then N admits contrarian play.

Impartial inference and the existence of a diamond imply that each player’s action is a

linear combination of the actions of her predecessors she observes plus her signal. Because

the weights in this linear combination do not depend upon the realisation of any signal

or action, if Player k attaches a negative weight to Player j’s action, as the magnitude of

aj becomes large—and all other actions are held fixed, something possible because private

beliefs are unbounded—ak must eventually take on the opposite sign as aj.

We conclude the section by illustrating the features above with a simple example drawn

from Eyster and Rabin (2009). Our general network encompasses simple, natural variants

of the standard model, such as the one where rather than move “single-file” like in the

standard model, n players here move “multi-file” in each round, each player observing all

players moving in prior rounds but not the current or future rounds. When n ≥ 2, this

network includes diamonds that are shields and admits contrarian play. Figure 5 illustrates

the first five movers in a double-file setting.

Player 4 Player 3 

Player 1 Player 2 

Figure 5:  The First Five “Double-File” Movers
Arrows Denote Observation

Player 5 

In Figure 5, the foursomes (1, 3, 4, 5) and (2, 3, 4, 5) both form shields.

To succinctly describe behavior in this model, let At =
∑n

k=1 at, the sum of round-t

actions or aggregate round-t action, and St =
∑n

k=1 st, the sum of round-t signals or aggregate
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round-t signal.

Clearly A1 = S1, so for a player in round 2 with signal s2, a2 = s2 + A1, in which case

A2 = S2 +nA1. Likewise, a player in round three wishes to choose a3 = s3 +S2 +S1. Because

she observes only A2 and A1 and knows that A2 = S2 + nA1 as well as that A1 = S1, she

chooses a3 = s3 + A2 − nA1 + A1 so that A3 = S3 + nA2 − n(n− 1)A1. Players in round 3

anti-imitate those in round 1 because they imitate each round-2 player and know that each

of those players is using all round-1 actions. Since they do not want to count those n-fold,

they subtract off n− 1 of the round-1 aggregate actions. In general,

At = St + n
t−1∑
i=1

(−1)i−1(n− 1)i−1At−i.
7

When n = 1, this reduces to the familiar At = St + At−1 =
∑

τ≤t Sτ . When n = 2,

At = St + 2
t−1∑
i=1

(−1)i−1At−i.

For t ≥ 3, Player t anti-imitates approximately half of her predecessors. This implies that

nearly all social learners in the infinite sequence engage in substantial anit-imitation.

Whatever n, substituting for At−i recursively gives

At = St + n
t−1∑
i=1

St−i,

where players in round t give all signals unit weight; hence, the aggregate round-t action puts

weight one on sjτ if τ = t and weight n if τ < t. Because they incorporate all past signals with

equal weights, aggregate actions converge almost surely to the state. Despite wild swings

in how rational players interpret past behavior, they do learn the state eventually. Note,

importantly, that the wild swings in how people use past actions typically do not find their

way into actions: recent actions always receive positive weight, and typically they are more

extreme than earlier actions. It is when play does not converge fast enough that we would

observe rational players switching. Roughly speaking, approximately half of social learning

in this setting is anti-imitative!

7Observational following round t− 1 are
∑t

i=1(−1)i−1(n− 1)i−1At−i
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To see the crispest form of contrarian play, note that when there are three players, we

will observe the following pattern in the first three rounds. When n = 3,

At = St + 3
t−1∑
i=1

(−1)i−12i−1At−i,

leading to A1 = S1, A2 = S2 + 3A1, and A3 = S3 + 3A2 − 6A1. The swings here are even

more dramatic, amplified by exponential growth in the weights on prior actions. For instance,

Player 3 strongly anti-imitates Player 1, while Player 4 even more strongly imitates Player

1. People’s beliefs also move in counterintuitive ways. Consider the case where the three

players in the first period all choose α = 0.6, each expressing 60% confidence that ω = 1.

If all second-period players also were to choose α = 0.6, then since A2 = S2 + 3A1 = A1,

S2 = −2A1 = −2S1, meaning that in a log-likelihood sense there is twice as strong evidence

for ω = 0 than for ω = 1. Someone who observes her six predecessors all indicate 60%

confidence that ω = 1 rationally concludes that there is only a 25% chance that A is better!

In general, in odd periods, complete agreement by predecessors always leads players to

contradictory beliefs.8

3 Guaranteed Contrarian Behavior

In the last section, we showed how shields are a necessary and (essentially) sufficient condition

to produce guaranteed anti-imitation and possible contrarian behavior. In this section, we

give an example of a network architecture that guarantees with arbitrarily high probability

at least one episode of contrarian play.

In every round, five players move simultaneously, four of them named Betty. Each Betty

observes the actions of all five players in the previous round plus her own private signal.

8This cannot happen with two players per round, where a player who chooses α after seeing the two

previous rounds choose α has signal 1− α. With three players, the same pattern can emerge even if actions

increase over rounds: by continuity, nothing qualitative would change when actions (0.6, 0.6, 0.6) are followed

by actions (0.61, 0.61, 0.61). Hence, it is not the presence or absence of trends that matters but instead how

trends compare to what they would be if later signals supported earlier signals.
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The fifth player, Gus, observes all players in the previous round but is known to have no

private signal of his own. No player observes any player who does not move in the round

immediately before his or her round.

For simplicity, in this section we consider players with bounded private beliefs. In particu-

lar, each Betty receives a draw from a distribution of binary signals s ∈ {0, 1} parameterized

by p := Pr [s = 1|ω = 1] = Pr [s = 0|ω = 0]. We refer to p as the signal structure, which

decreases in informativeness as p → 1
2
. Our result is that eventually a round will occur in

which Gus takes an action that reveals an aggregate of two more s = 1 than s = 0 signals,

while all four Bettys choose actions indicating an aggregate of one more s = 1 than s = 0

signals. In the following round, Gus will choose an action that reveals an aggregate of two

more s = 0 than s = 1 signals, while all Bettys then will choose actions indicating at least

one more s = 0 than s = 1, contrarian behavior!

Proposition 4 For any ε > 0, there exists a signal structure p > 1
2

under which with

probability at least 1− ε that there exists some round t when all players’ play is contrarian.

In any round where the net number of s = 1 signals is two and all four current signals

are s = 0, players in the following round have one, two, or three s = 0 signals—depending

on their private information—and therefore exhibit contrarian behavior. When signals are

weak, the net number of s = 1 signals approaches a random walk, in which case such a round

would occur with certainty. Short of this limit, such an episode happens with near certainty.

Indeed, as p→ 1
2
, contrarian play happens arbitrarily many times.

While we have not proven it, we suspect that contrarian play would arise in a setting

with a large number of symmetric, privately informed players acting in every period, i.e.,

without Gus there to allow impartial inference by keeping track of observational beliefs.

As the number of players in every round grows arbitrarily large, the distribution of their

actions almost perfectly reveals observational beliefs, essentially replicating Gus. Moreover,

signals every period will resemble their parent distribution and, like in our example, come to

resemble a random walk with drift. Once more, as signals become less and less informative,

the conditions that guarantee contrarian play will be satisfied with near certainty.
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In fact, as signals become very weak in this setting, first-round movers are almost as

likely to be right as wrong. Yet eventually a majority of signals will come to favor the the

true state. So long as the net number of signals favouring one state goes from -2 or more

in one round to +2 or more in the next—so long as the switch does not happen following a

round where there the number of signals favouring the two states differs by no more than

one—then at this time all players, irrespective of their signals, take actions favoring a state

deemed most likely by only a minority of first-round movers and no player since. As the

number of players becomes large, the probability that the switch takes place in such a round

approaches one. Thus, in this setting the probability that all players in some round take

actions contrary to every one of their predecessors except a minority of first-round movers

approaches one-half.

4 Conclusion

In settings rich enough to allow all players to perfectly infer the relevant private information

of all the predecessors whose actions they observe, we show that when players do not ob-

serve all of their most recent predecessors or contemporaneous movers, rational observational

learning must involve some anti-imitation. We limit our analysis to rich-information settings

in order both to crisply articulate the observational conditions for which anti-imitation occurs

and to sharply differentiate two sources of anti-imitation; yet intuition and many examples

suggest that anti-imitation is a is quite general feature of social learning across domains.

Because we doubt its empirical plausibility, we close by speculating on the implications of

social-learning without anti-imitation. If people neither anti-imitate, nor virtually ignore

their predecessors’ actions—an even more dubious empirical prediction—then it seems likely

that in many contexts observational learning will entail inevitable overconfident and ineffi-

cient herding. That is, because behavioral anti-imitation is so fundamentally necessary for

avoiding the sort of over-counting of early signals that leads to mis-inference, we suspect

that anti-imitation is not merely a feature of rational herding but also of any theory of

observational learning that does not lead to frequent instances of overconfident and wrong
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herds.

If people do not realize that they must “subtract off” the earlier actions they observe

from their interpretation of later actions, then the effect of early actions on long-run beliefs

will become immense. This “social confirmation bias” leads to both false herds in the many

situations where rational observational learning rules them out, and to extreme confidence in

those wrong herds. This immense over-counting can only be mitigated without anti-imitation

if late movers are barely influenced by recent observations. This too seems very unlikely.9

In fact, Eyster and Rabin (2010) explore the implications for social learning of one simple

theory of inference that incorporates non-anti-imitation. We assume there that players fail

to attend to the strategic logic of the setting they inhabit by naively believing that each

predecessor’s actions reflects solely her private information. This simple alternative leads

people to imitate all observed previous behavior, regardless of the observation structure.

It also leads to very different implications for the informational and efficiency properties

of herds. Näıve players can herd on incorrect actions even in the many rich environments

where fully rational players always converge to the correct ones. They become extremely, and

often wrongly, confident about the state of the world in nearly all environments, including

ones where rational players never become confident. Moreover, depending upon the cost of

overconfidence, inferential naivety can lead people to so over-infer from herds as to be made

worse off on average by observing others actions.

In classical herding settings, even minimal departures of this sort from the rational calcu-

lus of recency can make long-run inefficiency very likely. Consider, for instance, a situation

where people move single-file and take binary actions, and very few of them receive any

private information—yet those who do are very well informed. Formally, a tiny fraction ε2

receive binary private signals that match the state of the world with the very high probability

1 − ε. As ε → 0, rational players eventually learn the true state with near certainty. Fre-

quently this involves anti-majority play, because informed players know that the first herd

9Even if behaviorally plausible, such stubborn beliefs would likely lead to the (more conventional) form of

long-run inefficiency whereby society’s beliefs never converge even in the presence of an unboundedly large

number of signals.
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most likely begins with an uninformed Player 1 choosing randomly and a string of uninformed

successors following suit. Only an informed player bucks the herd, and so his uninformed im-

mediate successors will act against the majority of observed actions by following him. What

happens when players are not so willing as a fully rational person to follow a minority?

Consider, for instance, a population of people almost all of whom when uninformed choose

one action over the other whenever it has been chosen at least K > 1 times than the other.

When K = 10, for instance, no uninformed player would choose A over B when the number

of her predecessors choosing B is more than ten more than the number choosing A. Such

rules allow players to anti-imitate, just not as dramatically as they do in the rational model.

As ε→ 0, then, with only about 50% chance does the herd converge to the correct action: if

the herd starts out wrong, then nobody is likely to get a signal suggesting that they should

overturn it until too late. An informed player may follow her own signal and buck the herd,

but the likelihood of having enough of them to ever bring the majority in favor of Player 1’s

action to within K is negligible. Similarly, even if a minority of players is fully rational, they

would not overturn the herd. Hence, even players fairly willing to follow a minority—merely

not quite so willing as rationality prescribes—fall dramatically short of efficient information

aggregation. Similarly, in the case studied by Callender and Hörner (2009) where the order

of moves is not observed, and where the rational anti-imitation seems an even less likely logic

to prevail, an unwillingness to follow the minority is likely to lead to observational learners

to converge to the wrong action with very high probability.

More than a willingness to follow a minority over majority, examples like the setting

examined in Section 2 suggest that “enough” rational anti-imitation to prevent inefficiency

relative to the rational model may be unrealistic indeed. In that setting, when each per-

son’s signal is relatively weak, there is close to 50% chance that by Round 2 people will

unanimously be playing the wrong action. If people in this situation merely combined their

own signals with the beliefs of 2 of the 10 observed (rather than all 10), it is guaranteed

that beliefs will become stronger and stronger in the wrong direction once it starts. If people

neither massively ignore the beliefs of those they observe nor contradict every single person’s
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beliefs they observe, overconfident herding will occur.

More generally, in rich-action settings like that of this paper, in all but knife-edge cases,

behavioral rules that do not anti-imitate, like the naivety of the last paragraph, lead to one

of two undesirable consequences. Like näıve play of the previous paragraph, behavioral rules

that put substantial weight on predecessors’ actions converge with positive probability to

the worst possible action. Behavioral rules that put insubstantial weight on predecessors’

actions fail to converge to actions corresponding to certainty in one state or the other. In

sum, without anti-imitation, observational learning is unlikely to produce convergence to the

correct beliefs even in the richest of environments.
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5 Appendix

Proof of Lemma 1.

ID(k) = D(k) ∪
(
∪j∈D(k)ID(j)

)
= D(k) ∪

(
∪j∈D(k)ID(j)

)
= D(k) ∪

(
∪j∈D(k)ID(j)

)
,

where the first equality follows from the definition of ID, the second by the definition of

D(k), and the third once more by the definition of D(k) together with transitivity of the ID

relation.

Proof of Lemma 2. We prove this by induction. Clearly Player 1 achieves impartial

inference by choosing a1 = s1 as per the claim. Suppose that Players i ∈ {1, . . . , k − 1}

choose ai as claimed. If D(k) = {j} for some j < k, then since j does II by assumption, so

too does k through ak = aj + sk. Suppose then that D(k) has more than one element. Then

ak =
∑
j∈D(k)

 ∑
i∈ID(j)

si + sj

+ sk =
∑
j∈D(k)

sj +
∑
j∈D(k)

∑
i∈ID(j)

si + sk

=:
∑

l∈ID(k)

βlsl + sk,

26



where the first equality comes from the induction hypothesis that j achieves II. By Lemma

1, for each l ∈ ID(k), βl ≥ 1; by the assumption that ∩j∈D(k)ID(j) = ∅, for each l ∈

ID(k), βl ≤ 1; together, these yield the result.

Proof of Proposition 1. First statement Suppose that all diamonds circumscribe

shields. Again we prove the result by induction. Once more Player 1 achieves II by choosing

a1 = s1. We prove that if all Players i ∈ {1, . . . , k − 1} achieve II, then so too does Player

k. Define

a1
k :=

∑
j∈D(k)

aj + sk =:
∑

j∈ID(k)

β1
j sj + sk.

Players i ∈ {1, . . . , k− 1} achieving II and Lemma 1 imply that for each j ∈ ID(k), β1
j ≥ 1.

Define U(k) := {j ∈ ID(k) : β1
j = 1} and M(k) := {j ∈ ID(k) : β1

j > 1}. First, notice

that ∀i ∈ U(k),∀j ∈ M(k), i /∈ ID(j), for, otherwise, because ∀j ∈ M(k), ∃k1, k2 ∈ D(k)

s.t. j ∈ ID(k1) ∩ ID(k2), i ∈ ID(j) implies i ∈ ID(k1) ∩ ID(k2) and therefore i ∈ M(k), a

contradiction. This implies that if through adding some linear combination of actions from

players in M(k) to a1
k, Player k manages to set the weights on all signals in M(k) equal

to one, then Player k achieves II. If M(k) = ∅, then Player k achieves II through a1
k. If

M(k) 6= ∅,M(k) ⊂ D(k), then Player k can achieve II as follows. Define ĵ1 := maxM(k),

and

a2
k := a1

k −
(
β1
ĵ1
− 1
)
aĵ1 =:

∑
j∈ID(k)

β2
j sj + sk,

where by construction now for each l ∈ ID(k), l ≥ ĵ1, β
2
l = 1. Define ĵ2 := maxM(k)\{ĵ1}

and

a3
k := a2

k −
(
β1
ĵ2
− 1
)
aĵ2 =:

∑
j∈ID(k)

β3
j sj + sk,

where by construction now for each l ∈ ID(k), l ≥ ĵ2, β
2
l = 1. Continuing in this way gives

II for the case where M(k) ⊂ D(k). Suppose, however, that some i ∈ M(k) ∩ (D(k))c.

Since i belongs to a diamond with k and two members of D(k), yet i /∈ D(k), then because

by assumption this diamond circumscribes a shield, there exists some player l < k and

k1, k2 ∈ D(k) such that (l, k1, k2, k) is a shield and i ∈ ID(l). Wlog let l be the lowest-

indexed such player. (Case (ii) of the definition of circumscribing a shield cannot apply
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here because then k1, k2 ∈ ID(l), l ∈ ID(k) implies k1, k2 /∈ D(k), a contradiction.) Since

l ∈ D(k) ∩M(k), the iterative procedure described above eventually must reach some step

p such that apk puts weight one on sl. Because l ∈ ID(k1)∩ ID(k2), k1, k2 achieving II must

both put weight one on sl and si, which implies that sl has weight one in apk iff si has weight

one.

Second statement Assume that players have unbounded private beliefs and achieve II.

Towards a contradiction, suppose also that some diamond does not circumscribe a shield.

Let (i, j, k,m) be such a diamond with the lowest possible index of m (the first diamond not

circumscribing a shield as ordered by the highest-indexed player, the “tip”, of the diamond).

Because condition (ii) of Definition 3 fails, we can assume wlog that j, k ∈ D(m). As per

above in the proof of the first statement, define

a1
m :=

∑
j∈D(m)

aj + sm =:
∑

j∈ID(m)

β1
j sj + sm

and M(m) := {j ∈ ID(m) : β1
j > 1}. Clearly, i ∈ M(m). For Player m to achieve II, she

must subtract off (i) ai or (ii) some al for which i ∈ ID(l) and l ∈M(m). Because m cannot

observe i if (i, j, k,m) is not a shield, we focus on case (ii). But this implies that (l, j, k,m)

is a shield, and i ∈ ID(l), which in turn implies that (i, j, k,m) circumscribes a shield, a

contradiction.

Proof of Proposition 2. The if direction follows directly from the proof of Proposition 1,

where when i is the first player to form the base of a diamond, and k the first player to form

the tip of a diamond with i, then Player k anti-imitates Player i. For the other direction, if

N contains no diamond, then consider

ak =
∑
j∈D(k)

aj + sk :=
∑

j∈ID(k)

βjsj + sk.

By Lemma 1 and impartial inference, for each j ∈ ID(k), βj ≥ 1. Because N contains no

diamonds, βj ≤ 1.

Proof of Proposition 3. By Proposition 2, the network has negative weighting. Take the

first player to do negative weighting, at the head of a shield—Player k—and let Player j be
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the last player whom Player k weights negatively. Suppose that all players in ID(k) other

than j play actions in (0, ε) for ε > 0 small and j plays action in
(
0, 1

ε

)
. With unbounded

private beliefs, for each ε > 0, these actions happen with strictly positive probability. Note

that

ak <
∣∣D(k)

∣∣ < k · ε− 1

ε
,

using the expression for ak from the proof of Proposition XXX. Hence, for ε sufficiently small,

ak < 0 despite all of k’s action observations being positive, a positive-probability instance of

anti-unanimity.

Proof of Proposition 4.

Suppose wlog ω = 1 so q := 1 − p < 1
2

is probability of receiving s = 0 signal. Let

X(t) be the number of s = 1 signals through round t − 1 minus the number of s = 0

signals. Let E(t, q) be the event that X(t) = 2 and |E(t, q)| =
∑∞

t=1 1E(t,q). As q → 1
2
,

X(t) approaches a recurrent random walk, so that ∀N ∈ N,∀ε > 0, ∃δ > 0 such that

∀q ∈
(

1
2
− δ, 1

2

)
, P r[|E(t, q)| > N ] > 1− ε.

Because signals are conditionally iid, Pr[E(t, q)](1− q)4 is the probability that X(t) = 2

and all signals in round t are s = 0, leading to contrarian play in round t + 1. Hence, the

probability of contrarian play is at least

Pr[|E(t, q)| > N ]
(
1− (1− (1− q)4)N

)
> (1− ε)

(
1− (1− (1− q)4)N

)
.

Choosing ε sufficiently small and N sufficiently large yields the result.
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