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1 Introduction

We refer to any pair consisting of an information structure and a price for it

as an information purchase. Such purchases, if they happen, are the mani-

festation of the demand for information. How many people purchase a piece

of information necessarily depends on three components, the quality of that

information, the cost of acquiring it, and the agents’ primitives given by their

wealth and preferences. In settings in which agents can make no-arbitrage

investments, the current paper aims at answering the following questions.1

First, given an information purchase, can its normalized value, capturing the

information-price tradeoff, be uniquely characterized?2 Second, who are the

agents willing to go ahead with a given information purchase? We will be

able to provide clean answers to such questions, provided that wealth effects

are factored out, as explained in the sequel.

In our no-arbitrage settings, we begin by showing that an agent’s demand

or preference for information is characterized by its degree of risk aversion.

Less risk averse agents have a stronger preference for information than do

more risk averse agents, in the following sense. If agent u1 is uniformly less

risk averse than agent u2 , and agent u2 acquires information, then so does

agent u1, independently of the wealth levels considered.3 Therefore, agents’

1No-arbitrage investments were also used in Cabrales, Gossner, and Serrano (2013).
The name refers to the fact that it is a set of investments such that no risk neutral or risk
averse agent would be interested in investing in the absence of new information. This is
the sense in which no-arbitrage assets constitute a nice framework to measure the value
of information.

2We add the “normalized” qualification because the index will rely also on the price of
the purchase, and not be based only on the information structure.

3To be precise, u1 is uniformly less risk averse than u2 if, for all wealth levels w1 and
w2, the coefficient of absolute risk aversion of u1 at w1 is not greater than the coefficient
of risk aversion of u2 at w2. We also say that agent u is uniformly less risk averse than
a constant ρ if, independently of w, u’s coefficient of absolute risk aversion at w is not
greater than ρ. Note that Ross (1981) proposes a related definition: u1 is strongly less

2



demand for information is entirely captured by their uniform ranking of risk

aversion in settings with no-arbitrage investments.

We seek an “objective” underpinning of normalized values. That is, par-

alleling the approach of Aumann and Serrano (2008) for ordering riskiness,

we pursue a duality logic to define the normalized value of an information

purchase.4 For an information purchase to be considered as more valuable

than another one, it must be the case that, whenever an agent is willing

to accept the latter, every agent with a stronger preference for information

must, a fortiori, accept the former. To be more precise, “u1 likes information

better than u2” will mean “If u2 accepts a purchase at some wealth level,

then u1 accepts it at any wealth level” (uniform comparison). For this order-

ing, we introduce a suitable corresponding ordering of information purchases

according to the duality principle described above: “if u1 likes information

better than u2 and if a1 is more valuable than a2, u1 should accept a1 if u2

accepts a2”. We show that this yields a complete ordering of information

purchases, which is characterized by our normalized value formula. The nor-

malized value of the purchase turns out to be equal to the risk aversion of

the unique CARA (constant absolute risk aversion) agent indifferent between

accepting and rejecting it. Such a critical level of risk aversion is expressed as

a specific function of relative entropies and the price of the purchase, where

the function is increasing with respect to the former and decreasing with

respect to the latter.5

risk averse than u2 if, −u′′
1 (wa)

u′
1(wb)

≤ −u′′
2 (wa)

u′
2(wb)

for all wa, wb. While both are not unrelated,

they are distinct notions.
4In Aumann and Serrano (2008), riskiness was conceived as “dual” to risk aversion,

while here the value of information is “dual” to preference for information.
5In the appendix, we provide two alternative definitions of preference for information:

“If u2 accepts a purchase at some wealth level, then u1 accepts it at some wealth level”
(minimal comparison); and “If u2 accepts at some wealth level w, then u1 also accepts
at w for every w” (wealth wise comparison). We formulate the corresponding orderings
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The fact that a purchase has a higher normalized value does not mean that

more agents will accept it. Rather, it is equivalent to the set of agents who

unmistakably (i.e., regardless of their initial wealth) would accept it is larger.

Thus, for CARA agents, the more valuable a purchase the more of them

accept it. But more importantly, given our results connecting preferences for

information and risk aversion in our settings, any agent (CARA or not) whose

risk aversion always exceeds the normalized value will reject the purchase,

while any agent whose risk aversion is everywhere less than the normalized

value will accept it. The rest of agents, for whom for some initial wealth their

risk aversion is below the normalized value, while for others it is above it, may

accept or reject the purchase, i.e., their decision is “subject to wealth effects.”

The latter set is the only impediment that prevents the set of agents in the

economy who accept a purchase from being monotonically increasing in its

normalized value. Having said that, if we assume that agents are sufficiently

heterogeneous in their wealth, and that the degree of risk aversion of agents

in the economy is known, the normalized value of information purchases is a

useful tool that delivers a stark prediction of what pieces of information will

be explored or remain unexplored in the economy, provided that no-arbitrage

assets comprise the available set of investments for the agents.

Our normalized value measure provides some interesting insights on the

demand for information. For instance, a decrease by a certain percentage

of the cost of information translates into an increase by the same amount

of the normalized value of the corresponding information purchase. This

means that, whenever the price of information drops by half, agents who are

based on the duality principle. Strikingly, all three orderings of information purchases
coincide: all three are represented by our normalized value formula. As also shown in the
appendix, another characterization of the normalized value is expressed in terms of the
group of agents who are willing to accept a given information purchase. This parallels the
work of Hart (2011) who provides this comparison of orderings for indices of riskiness.
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twice more risk averse become willing to acquire some piece of information.

Another insight is obtained by examining the least and most valuable pur-

chases. Quite intuitively, the least valuable purchases are the ones associated

to the lesser informational content. Due to our no-arbitrage assumption, the

most valuable purchases do not consist only of the ones always allowing to

learn the true fundamental state, but more generally all those of which that

always allow to exclude one fundamental state from the possible ones that

will realize. More generally, our ordering of information purchases induces a

completion of Blackwell’s classic ordering of information structures.

Although we include a section on related literature, it is useful to close the

introduction by comparing our index to a couple of closely related contribu-

tions. Our earlier work in Cabrales, Gossner, and Serrano (2013) provides a

complete ordering of information structures. In that paper, the informative-

ness of an information structure is characterized by the reduction of entropy

from the prior. With a uniform prior, and for small amounts of information,

that index is close to the index proposed here when the purchase price is kept

constant, but they differ significantly when the amount of information in the

signals is larger; see Subsection 6.5 for details. Our two papers have different

methodologies and results. In the current paper, we are interested in the de-

mand for information, so we allow wealth levels to differ across agents, and

we compare the sets of agents who are willing to accept a purchase with the

sets of agents who are willing to accept another one. In Cabrales, Gossner,

and Serrano (2013), we were asking whether the maximal price any agent in

the economy is willing to pay for one piece of information is larger than the

maximal for the other piece of information, while all agents are held at the

same wealth level.

Another related paper is Kelly (1956), which studies an environment
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where an individual receives information on a set of betting opportunities

about events that happen in exclusive and independent states of nature, and

that are priced with ex-ante fair odds. In other words, the bettor faces a de-

cision environment that is composed of no-arbitrage assets, like our decision-

makers. Kelly (1956) proves that the betting strategy that maximizes long-

run wealth is the one that maximizes instantaneous expected logarithmic

utility. As a result, the value of information in that environment (which he

calls Gmax, p. 922) is equivalent to the one we propose in Cabrales, Goss-

ner, and Serrano (2013), which is unsurprising given the important role the

agent with logarithmic utility plays in that paper. Notice, though, that the

motivation and nature of the results are starkly different between those two

papers and even more different from the current one.6

The paper is organized as follows. Section 2 describes the model. Section

3 relates the value of information and uniform risk aversion. Section 4 intro-

duces the “uniformly more valuable” ordering, the normalized value formula,

and establishes our main result. Section 5 presents our results connecting the

normalized value of an information purchase to the economy’s levels of risk

aversion. Section 6 goes over a number of properties of the normalized value

and presents several examples. Section 7 is devoted to related literature,

and Section 8 concludes. Some of the more technical proofs and additional

justifications and properties of the index are collected in an Appendix.

6Samuelson (1969) already discusses Kelly (1956) and the properties of logarithmic
utility investing, and Blume and Easley (2002) the potential for long-run dominance in
a market of Kelly investors. A good summary on “Kelly investing” is MacLean, Thorp,
and Ziemba (2011). Cesa-Bianchi and Lugosi (2006) note the formal equivalence between
sequential gambling and forecasting under the logarithmic loss function.
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2 The Model

We consider an investor, who, prior to making an investment decision, may

acquire some information at a cost. In this section we define the conditions

under which the agent accepts acquiring this piece of information.

2.1 Utility for wealth

We consider an investor with initial wealth w and a monetary utility function

u defined on R. We assume that u is non-decreasing, strictly concave7, and

twice differentiable. We let U be the set of such monetary utility functions.

We identify agents by their monetary utility functions, thus speaking of agent

u to refer to an agent with utility function u.

Given u ∈ U and w ∈ R, let ρu(w) = −u′′(w)
u′(w)

be the Arrow-Pratt

coefficient of absolute risk aversion of agent u at wealth w. We also let

R(u) = supw ρu(w), and R(u) = infw ρu(w). We say that agent u1 is uni-

formly more risk averse than agent u2 whenever R(u1) ≥ R(u2). It is often

necessary to assume that u has decreasing absolute risk aversion. We thus

let UDA be the subset of U such that ρu is non-increasing.

2.2 Investments

There is a finite set K of states of nature, about which the agent is uncertain.

The agent’s prior on K is p ∈ ∆(K), assumed to have full support. The set

of investment opportunities consists of all no-arbitrage assets given p, that is,

assets with a non-positive expected return: B∗ = {x ∈ RK ,
∑

k pkxk ≤ 0}.8

7In our framework, risk neutral agents would sometimes make unbounded optimal
investments, which creates technical problems while adding little to content. We hence
exclude them from the analysis.

8The vector p = (p1, . . . , pk, . . . , pK) in the definition of no-arbitrage assets corresponds
to the price vector of Arrow securities, where pk can be interpreted as the price of an asset
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When the agent’s initial wealth is w, x ∈ B∗ is chosen and state k is realized,

the agent’s final wealth is w + xk.

Two features of the set B∗ of available investments are worth emphasizing.

First, 0 ∈ B∗, that is, not investing at all is feasible. Second, no agent in

our class would prefer to invest over the zero investment in the absence of

new information, while this may change after such an arrival. In this sense,

these “no-arbitrage” assets provide a useful framework to measure the value

of new information. We remark that, although investments are unbounded

in each state, in many cases, particularly when the information does not lead

to major variations in the prior, one could restrict attention to a bounded

set of investments. In order to obtain our characterizations, however, it will

be convenient to allow the largest set of no-arbitrage assets, as written.

2.3 Information Purchases

Before choosing an investment, the agent has the opportunity to engage in a

(costly) information purchase a = (µ, α). Here, µ > 0 represents the cost of

the information purchase, and α is the information structure representing the

information obtained from a. That is, α is given by a finite set of signals Sα,

together with probabilities αk ∈ ∆(Sα) for every k. When the state of nature

is k, αk(s) is the probability that the signal observed by the agent is s. It is

standard practice to represent any such information structure by a stochastic

matrix, with as many rows as states and as many columns as signals; in the

matrix, row k is the probability distribution (αk(s))s∈Sα . Signal s has a total

probability pα(s) =
∑

k pkαk(s), and we assume, without loss of generality,

that pα(s) > 0 for every s. For each signal s ∈ Sα, we let qsk ∈ ∆(K) be the

that pays 1 in state k and 0 in all other states. The fact that this vector coincides with
the agent’s prior p means that no-arbitrage assets cannot yield a positive expected return.
We disentangle the two roles of p, price and priors, in Subsection D.3 in the appendix.
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probability of state k conditional on s computed using Bayes’ rule.

We say that a is excluding if for every signal s, there exists k such that

qsk = 0. It is nonexcluding otherwise. Excluding information purchases are

such that, for every received signal, there exists a state of nature that the

agent can exclude.

2.4 Optimal Investment after Receiving Information

Given a belief q, an agent with wealth w and utility u chooses x ∈ B∗ in

order to maximize his expected utility over all states k ∈ K. The maximum

expected utility is then V (u,w, q), given by:

V (u,w, q) = sup
x∈B∗

∑
k

qku(w + xk).

2.5 Acceptance of Information Purchases

The agent with utility function u and wealth w accepts an information pur-

chase a = (µ, α) if and only if paying µ upfront to receive information ac-

cording to α generates an expected utility greater than or equal to staying

with wealth w. This is the case if and only if:∑
s

pα(s)V (u,w − µ, qsk) ≥ u(w).

3 Risk Aversion and Preference for Informa-

tion

In order to arrive at the concept of normalized value of information purchases,

it is useful to first understand what characteristics of an agent’s utility func-

tion make his demand for information increase or decrease. As it turns out,
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in our setting, an agent’s preference for information is determined by his

uniform risk aversion.

Theorem 1 Given u1, u2 ∈ U , the following two conditions are equivalent:

1. u1 is uniformly more risk averse than u2

2. u2 uniformly likes information better than u1, i.e., for every pair of

wealth levels w1, w2, and information purchase a, whenever agent u1

accepts a at wealth w1, then so does agent u2 at wealth w2.

Proof. For the first direction, assume that R(u2) ≤ R(u1). For every z, w1,

and w2, we have
u′′1(w1 + z)

u′1(w1 + z)
≤ u′′2(w2 + z)

u′2(w2 + z)
.

By integration on z, we have:{
lnu′1(w1 + z)− lnu′1(w1) ≤ lnu′2(w2 + z)− lnu′2(w2) if z ≥ 0;
lnu′1(w1 + z)− lnu′1(w1) ≥ lnu′2(w2 + z)− lnu′2(w2) if z ≤ 0;

which is the same as:{
u′1(w1+z)

u′1(w1)
≤ u′2(w2+z)

u′2(w2)
if z ≥ 0;

u′1(w1+z)

u′1(w1)
≥ u′2(w2+z)

u′2(w2)
if z ≤ 0.

By a second integration on z, for every z:

u1(w1 + z)− u1(w1)

u′1(w1)
≤ u2(w2 + z)− u2(w2)

u′2(w2)
. (1)

Thus, for every q ∈ ∆(K) and µ ≥ 0:

V (u1, w1 − µ, q)− u1(w1)

u′1(w1)
≤ V (u2, w2 − µ, q)− u2(w2)

u′2(w2)
.

And finally, for every information structure α,∑
s pα(s)V (u1, w1 − µ, qsk)− u1(w1)

u′1(w1)
≤
∑

s pα(s)V (u2, w2 − µ, qsk)− u2(w2)

u′2(w2)
.
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This implies that for every w1, w2, if u1 accepts a = (µ, α) at wealth w1, then

u2 also accepts it at wealth w2.

The converse relies on Lemma 7, which itself relies on Lemmas 4, 5, and

6, all found in the appendix.

Assume that u2 uniformly likes information better than u1, that is, for

any two wealth levels w1, w2, if u1 accepts an information purchase at w1,

then u2 accepts this information purchase at w2. To prove that u1 is more

risk averse at w1 than u2 is at w2, which is a local property at w1, w2, the

proof, provided in the appendix relies on information structures α(ε), which

are “little informative”, hence induce small investments. Lemma 7 in the

appendix characterizes the amount that an agent is willing to pay for “small

information”, and we obtain in our case that for every w1, w2 and for a small

enough ε > 0,
pk + pl

2ρu2(w2)pkpl
ε2 ≥ pk + pl

2ρu1(w1)pkpl
ε2.

Hence, ρu2(w2) ≤ ρu1(w1), which implies R(u2) ≤ R(u1).

Theorem 1 establishes the connection between preference for information

and risk aversion. Lemma 2 in Cabrales, Gossner, and Serrano (2013) shows

that an agent with ln utility accepts an information purchase whenever a

more risk-averse agent does. Theorem 1 both extends this result to general

pairs of utility functions, and shows that a converse result holds, namely,

that an agent whose preference for information is higher than another is

necessarily less risk-averse. The proof of this converse part is somewhat

more involved than for the direct part, as one needs to derive a conclusion

about the risk aversion levels of the agents at all wealth levels.

To understand intuitively this result, think of the following: let u1(w) =

u2(w) = 0 and let u′1(w) = u′2(w) = 1 (a normalization that is consistent

with VNM utilities). Then, observe from equation 1 that the fact that u1 is
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uniformly less risk averse than u2 (as R(u1) ≤ R(u2) entails) is equivalent to

the nestedness of the two utility functions: that is, one function is uniformly

above the other for any value of final wealth higher or lower than w. Or

more formally, u1(w + xk) > u2(w + xk) for any xk 6= 0. That makes it clear

that, for a given prospect of an investment portfolio, the agent with the less

concave utility function values information more, as he gains more from the

added utility that information entails.

In closing the section, we remark that the identification of preference

for information and risk aversion demonstrated in Theorem 1 is specific to

our no-arbitrage settings. Indeed, such an identification may not hold were

investments violate this assumption. For example, suppose an agent can

invest at most $1 in an asset that pays $10 with probability 0.9 and $0 with

probability 0.1. The investor could purchase information at a price µ = 0.5

and learn the state for sure before investing. Note how a risk neutral (or

approximately risk neutral) agent would not purchase the information, while

some risk averse agents would (e.g., u(x) =
√
x+ 1). Thus, an agent that

is uniformly more risk averse exhibits in this case a stronger preference for

information, but notice how the proposed investment violates no-arbitrage,

as the prior-evaluated expected payoff is positive.9 The reader can check

how, in this example, our conclusion would hold again if one restores the

no-arbitrage assumption, for instance by increasing the loss in the bad state.

4 Preference for Information and a Value for

Information Purchases

This section proposes an “objective” way to define the normalized value of

information purchases. The approach is based on ordering preferences for

9We thank an anonymous referee for this example.
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information. We offer three variants of the same idea, all of them leading

to the same normalized value index. We present one here and relegate the

other two to the appendix, which also includes an additional approach based

on total rejections/acceptances.

Our first task is to define what it means for an agent to like information

better than another one. In general terms, an agent u1 likes information

better than another agent u2 when u1 accepts information more often than

u2. In order to make the concept precise, we need to be careful about the

wealth levels at which we compare u1 and u2 acceptance and rejection of

information purchases.

Our first version of this concept is the uniform preference for information,

already used in Theorem 1. It requires agent u1 to accept the information

purchase at all wealth levels whenever u2 accepts it at some wealth level.

That is, agent u1 uniformly likes information more than agent u2 means that,

whenever agent u2 is interested in purchasing information, for sure so is agent

u1. Alternative definitions of the concept are provided in the appendix.

We move now to define the comparative normalized value of two infor-

mation purchases based on the rankings over preferences for information.

The definition formalizes the natural idea that if an information purchase is

accepted by a first agent, then any purchase that is deemed more valuable

should a fortiori be accepted by an agent who likes information better than

the first.10

Definition 1 Let a1, a2 be two information purchases. We say that a1 is

uniformly more valuable than a2 if, given two agents u1, u2 ∈ U such that u1

uniformly likes information better than u2 and given two wealth levels w1, w2,

whenever agent u2 accepts a2 at wealth level w2, then agent u1 accepts a1 at

10This principle was referred to as “duality” in Aumann and Serrano (2008).
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wealth level w1.

4.1 Normalized Value of Information Purchases

For two probability distributions p and q, the relative entropy from p to

q, also called their Kulback-Leibler divergence, has been proposed as a non-

symmetric measure of their discrepancy. It is defined as follows:

d(p‖q) =
∑
k

pk ln
pk
qk
.

It is always non-negative, and equals zero if and only if p = q. It is finite

provided the support of q contains that of p, and we let it take the value

+∞ otherwise. Thus, p and q are “maximally different” when q rules out

one possibility that p does not.11

Based on the relative entropy, we define the normalized value of an infor-

mation purchase a as this quantity:

NV(a) = − 1

µ
ln

(∑
s

pα(s) exp(−d(p‖qsα))

)
. (2)

In the above formula, and throughout the paper, we use the convention

exp(−d(p‖qsα)) = 0 by continuity if d(p‖qsα) = +∞. The normalized value

NV(a) of a is thus well-defined and finite if and only if there exists s such that

−d(p‖qsα) is finite, which is the case if a is nonexcluding. We letNV(a) = +∞
by continuity if a is excluding.

While at this point the normalized value formula may appear somewhat

mysterious, we solve the “mystery” right away, in the following subsection.

Suffice it for now to say that the normalized value is also equivalent to the

11If p were the true distribution and q an approximate hypothesis, information theory
views the relative entropy from p to q as giving the expected number of extra bits required
to code the information if one were to use q instead of p. See, e.g., Kraft (1949) and
McMillan (1956), or Kelly (1956) for a betting market interpretation.
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level of risk aversion of the unique CARA individual indifferent between

accepting and rejecting the purchase. Once one figures out that agent’s

optimal investment, the written formula is found.

The normalized value of an information purchase decreases with its price

and increases with the relative entropy of the prior to the posteriors. Specif-

ically, the normalized value of an information purchase is measured by the

inverse of its price multiplied by the natural logarithm of the expected ex-

ponentials of the negative of relative entropy from the prior to each of the

generated posteriors. We remark, though, that simply taking an average of

relative entropies divided by price yields a different ordering, as detailed in

Subsection 6.4.12

4.2 The Main Result

Theorem 2 Let a1, a2 be two information purchases. The following two

statements are equivalent:

1. a1 is uniformly more valuable than a2.

2.

NV(a1) ≥ NV(a2).

Proof. Recall the class of CARA (constant absolute risk aversion) utility

functions. Given r > 0, let urC be the CARA utility function with parameter

r given by urC(w) = − exp(−rw) for every w. For a CARA agent with

coefficient r and wealth level w, we consider the problem of optimal portfolio

12If we ignore the price µ, the rest of the expression in the normalized value formula
is, remarkably, referred to as “free energy” in theoretical physics (see, e.g., Landau and
Lifshitz, 1980), where relative entropy plays the role of the Hamiltonian of the system.
A similar formula appears under the term “stochastic complexity” in machine learning
(Hinton and Zemel, 1994).
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choice when the agent’s belief is q. The next lemma shows that the solution

is interior when q has full support.

Lemma 1 Let q ∈ ∆(K) have full support. The optimal portfolio for the

CARA agent with risk-aversion coefficient r and belief q is independent of w,

and is given by

xk = −1

r
(−d(p‖q) + ln

pk
qk

).

Proof. The agent’s objective is to maximize∑
k

qk exp(−r(w + xk)),

subject to the constraint
∑

k pkxk = 0. The first-order condition shows that

qk exp(−rxk) = λpk,

where λ is independent of k. We then have, for every k,

−rxk = lnλ+ ln
pk
qk
.

Summing over these expressions, after we multiply each of them by pk, gives

0 = ln(λ) + d(p‖q),

and hence, the result.

We continue the proof with Lemma 2, which shows that NV(a) can be

equivalently defined as the level of risk aversion of a CARA agent that is

indifferent between accepting and rejecting the purchase.

Lemma 2 Let a be an information purchase and w be any wealth level.

1. If r > NV(a), then an agent with utility urC rejects a at wealth w.
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2. If r ≤ NV(a), then an agent with utility urC accepts a at wealth w.

Proof. The agent accepts a if and only if∑
s

pα(s)V (urC , w − µ, qsα) ≥ urC(w).

If a is excluding, then the left-hand side of the inequality equals 1, and the

inequality is satisfied for all r and w. If a is nonexcluding, then the agent

accepts a if and only if

exp(−rw) ≥ exp(−r(w − µ))
∑
s

pα(s) exp(−d(p‖qsα)).

This is equivalent to

exp(−rµ) ≥
∑
s

pα(s) exp(−d(p‖qsα)),

which in turn is equivalent to r ≤ NV(a). Thus, for r ≤ NV(a), the agent

accepts a at every wealth level, whereas for r > NV(a), the agent rejects a

at every wealth level.

Equipped with Theorem 1 and Lemma 2, we can now proceed to prove

Theorem 2.

First assume that a1 is uniformly more valuable than a2, and thatNV(a2)

is finite. By Lemma 2, a CARA agent with a coefficient of risk aversion

NV(a2) accepts a2 at every wealth level. This agent uniformly likes informa-

tion better than itself since, by Lemma 2, acceptance or rejection for CARA

agents is independent of wealth. Since a1 is more valuable than a2, this

CARA agent also accepts a1 at every wealth level, which implies (also by

Lemma 2) that NV(a1) ≥ NV(a2).

The case in which NV(a2) = ∞ is dealt with similarly: by Lemma 2

every CARA agent accepts a2 at every wealth level, which implies that the
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same agent also accepts a1 at every wealth level. By Lemma 2 again, this

implies that we also have NV(a1) =∞.

Now assume that NV(a1) ≥ NV(a2). Consider two agents u1 and u2

such that u1 uniformly likes information better than u2. Given wealth levels

w1 and w2, and assuming that u2 accepts a2 at w2, we need to prove that u1

accepts a1 at w1. By Theorem 1 we have R(u1) ≤ R(u2). Since R(u1) > 0 and

R(u2) < ∞, R(u2) is positive and finite. Let r = R(u2). Since R(uCr ) = r,

the agent uCr likes information better than agent u2 does, by Theorem 1;

hence the former accepts a2 at any wealth level. By Lemma 2 this means

that r ≤ NV(a2), and hence also r ≤ NV(a1), so that uCr also accepts a1 at

any wealth level. Since R(u1) ≤ r = R(uCr ) and u1 likes information better

than uCr (also by Theorem 1), it follows that u1 accepts a1 at wealth level

w1.

5 Results on Demand for Information

Our next results show that, in our settings, the normalized value of an in-

formation purchase adequately characterizes the demand for information,

namely the set of agents who are willing to go ahead with any given infor-

mation purchase. The first result in this section shows that if the minimum

coefficient of absolute risk aversion of an agent over all levels of wealth is

bigger than the normalized value of information, he rejects a purchase inde-

pendently of his wealth. If on the other hand the maximum coefficient of

absolute risk aversion of an agent over all levels of wealth is smaller than the

normalized value of information, he accepts a purchase independently of his

wealth.

Theorem 3 Consider an information purchase a and u ∈ U .
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1. If R(u) > NV(a), then agent u rejects a at all wealth levels w.

2. If R(u) ≤ NV(a), then agent u accepts a at all wealth levels w.

Proof. We begin by characterizing the function V (urC , w, q) for CARA

agents. This is done in the lemma below. We recall the convention that

exp( −d(p‖q)− rw) = 0 by continuity if d(p‖q) =∞, and state:

Lemma 3 For every r, w, q:

V (urC , w, q) = − exp( −d(p‖q)− rw).

Proof. First, assume that q has full support; hence, d(p‖q) is finite. Using

the optimal-portfolio characterization of Lemma 1, we obtain:

V (urC , w, q) =
∑
k

qk exp(−r(w + xk))

= exp(−rw)
∑
k

qk exp(−d(p‖q) + ln
pk
qk

)

= exp(−rw − d(p‖q))
∑
k

qk
pk
qk

= exp(−rw − d(p‖q)).

Now assume that qk0 = 0 for some k0; hence, d(p‖q) = +∞. The investment

x0 given by : {
x0k0 = −1−pk0

pk0
;

xk = 1 if k 6= k0

is such that λx0 ∈ B∗ for every λ ≥ 0. For every such λ, we have

V (urC , w, q) ≥
∑
k

qku
r
C(w + λx0k)

= urC(w + λx0k)

= exp(−r(w + λ)).
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Since limλ→∞ exp(−r(w + λ)) = 0, we have V (urC , w, q) ≥ 0. On the other

hand, V (urC , w, q) ≤ supz u
r
C(z) = 0. The desired conclusion is therefore that

V (urC , w, q) = 0.

We now proceed to complete the proof of Theorem 3.

A CARA agent with risk aversion r accepts a if and only if∑
s

pα(s)V (urC , w − µ, qsα) ≥ urC(w).

If a is excluding, then the left-hand side of the inequality equals 0, and the

inequality is satisfied for all r and w. If a is nonexcluding, then the agent

accepts a if and only if

exp(−rw) ≥ exp(−r(w − µ))
∑
s

pα(s) exp(−d(p‖qsα)).

This is equivalent to

exp(−rµ) ≥
∑
s

pα(s) exp(−d(p‖qsα)),

which in turn is equivalent to r ≤ NV(a). Thus, for r ≤ NV(a), the agent

accepts a at every wealth level, whereas for r > NV(a), the agent rejects

a at every wealth level. The theorem now follows immediately from part 1

of Theorem 1 by noting that an agent with R(u) ≤ r is uniformly less risk

averse than a CARA agent with risk aversion r, and an agent with R(u) ≥ r

is uniformly more risk averse than a CARA agent with risk aversion r.

Parts (1) and (2) of Theorem 3 characterize situations in our settings in

which one can unequivocally say whether u accepts a or not independently of

what one knows about the agent’s wealth level. Whenever R(u) > NV(a) ≥
R(u), it may be the case that agent u accepts a for some wealth levels, and

rejects it for other wealth levels. This observation makes it clear why the

normalized value indexNV(a) is not a universal representation of preferences

20



for information purchases. But importantly, the reason why that is true is

the presence of such wealth effects.

Another way to look at this result is the following. Imagine that it has

been estimated econometrically that the agents in this economy have ρu(w) ∈
[γ1, γ2] for all relevant w. Then, given an information structure α one can

identify two prices, call them µ1 and µ2 as follows:

γ1 = NV(µ1,α), γ2 = NV(µ2,α)

where µ1 and µ2 offer the following interpretation: under our assumption of

no-arbitrage investments, for prices µ > µ1, the information purchase (µ, α)

will be unanimously rejected, where as for prices µ < µ2 the purchase will be

unanimously accepted. This is the sense in which for all information struc-

tures, we can identify, thanks to the index of normalized value, the minimum

and maximum prices for individuals within a group whose ρu(w) are known

or have been estimated, provided that new information can potentially be

used in investments that have the no-arbitrage property.

More can be said when u is DARA, providing a characterization of the

utility functions that exhibit unanimous acceptance and unanimous rejection

of a purchase, as we show next:

Theorem 4 Consider an information purchase a and the class of utility

functions UDA.

1. An agent u ∈ UDA rejects a at all wealth levels if and only if R(u) >

NV(a).

2. An agent u ∈ UDA accepts a at all wealth levels if and only if R(u) ≤
NV(a).

The proof of this result is in the appendix.
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5.1 Examples and Calibrations of the Model

This subsection illustrates the results derived for the demand for informa-

tion. It presents some calibrations of the model in order to get a feel for

the magnitudes implied by the index. Of course, this is meant to be only

suggestive, far from providing a careful empirical analysis.

According to Dohmen, Falk, Huffman, Sunde, Schupp, and Wagner (2011)

“Lottery responses and wealth information imply a distribution of CRRA

coefficients mainly between 1 and 10,”. The lowest quartile of the wealth

distribution in most developed countries has zero or negative net worth (Sier-

minska, Brandolini, and Smeeding, 2006) and the wealth of the highest decile

is between 0.36 (Italy) to 1.81 (Germany) million US$ (with the US being

around 0.95). This, though, includes very young people who have not had

time to acquire any assets. If we use the median wealth, instead, the fig-

ures go from about 20,000 $ (Sweden) to about 120,000 $ (Italy), with the

US being about 50,000 $. This means that a large fraction of the popula-

tion in the developed world can be characterized with R(u) = 5× 10−4 and

R(u) = 1.8× 10−6.

Example 1 Recall our maintained assumption that agents can make poten-

tially large investments after receiving information. Let a be an information

purchase about a binary state of the world (e.g., the US will be in recession

in 2020 or not) where the two states are equally likely a priori. The infor-

mation structure α consists of two signals. Conditional on 1 being received,

the probability of a recession is β, and conditional on signal 2 arriving, the
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probability of recession is 1− β. Then,

NV(a) = −1
µ

ln

(
1

2
exp

(
−
(

1

2
ln

1

2β
+

1

2
ln

1

2 (1− β)

))
+

1

2
exp

(
−
(

1

2
ln

1

2 (1− β)
+

1

2
ln

1

2β

)))
= −1

µ
ln
(

2 (β (1− β))1/2
)
.

The information purchase a = (µ, α) is accepted by the agents considered if

its price µ satisfies

5× 10−4 ≤ −1
µ

ln
(

2 (β (1− β))1/2
)

which is equivalent to

µ ≤ − ln
(

2 (β (1− β))1/2
)
× 2× 103.

The same information purchase is rejected by all agents considered if

1.8× 10−6 > −1
µ

ln
(

2 (β (1− β))1/2
)
,

which is equivalent to

µ > − ln
(

2 (β (1− β))1/2
)
× 5.5× 105.

For a numerical application, let β = 0.8

− ln
(

2 (β (1− β))1/2
)

= − ln (0.8) ' 0.223

then a will be accepted by all those agents if

µ ≤ 450 $

and it will be rejected by all if

µ > 123, 000 $
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Now let β = 0.55,

− ln
(

2
(

(0.55)1/2 (0.45)1/2
))
' 5× 10−3

then a will be accepted by all those agents if

µ ≤ 10 $

and it will be rejected by all if

µ > 2, 750 $

Of course, both ranges in the previous example are relatively large, as they

separate the case in which a large portion of the world population would

accept a purchase from the case in which only a few people might. Note

however that these ranges are realistic figures in the sense that it is not

hard to think of pieces of information with a higher price than the maximum

bound, or with a lower price than the minimal bound. For example, the

Australian Securities and Investments Commission says in its website about

financial advice: “The cost of the advice will depend on its scope. As a

guide, expect to pay between $200 and $700 for simple advice and between

$2000 and $4000 for more comprehensive advice.”13 This fits nicely with the

figures in our last example. As a function of risk aversion estimates and of

different pieces of information, one could come up with a more precise range

for information prices, always under the assumption of frictionless financial

markets allowing large investments.

Example 2 Assume an agent has CRRA preferences with a coefficient of 2.

If that person has the American median income, ρu (wm) = 2 × 0.2 × 10−4,

13Taken from: https://www.moneysmart.gov.au/investing/financial-advice/financial-
advice-costs
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and if she is in the highest decile ρu (wm) = 2 × 1.1 × 10−6. This implies

that, for the same preferences, she would accept a when β = 0.55 at a price

of 1, 000 $ if her income were in the top decile, but she would reject it if she

had the median income.

6 Some Properties of the Index

We now discuss some properties of our index for the normalized value of

information.14

6.1 Continuity

The normalized value index NV is jointly continuous in µ, in pα, and in

(qsα)s on the domain of nonexcluding information purchases. Continuity is

a natural and attractive property: small changes in either the price or the

conditional probabilities of signals should translate into small changes in the

normalized value of the purchase. By “continuity at infinity”, NV(a) = +∞
when a is excluding.

6.2 Blackwell monotonicity

The normalized value index is Blackwell-monotonic, as expressed in the fol-

lowing observation:

Observation 1: If an information structure α1 is more informative than

another information structure α2 in the sense of Blackwell, then for any price

µ > 0, the information purchase (µ, α1) is more valuable than the information

14Some of the proofs and more properties can be found in the appendix. Addi-
tional properties and examples can be found in the working paper version available at:
http://ideas.repec.org/p/cte/werepe/we1224.html.
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purchase (µ, α2). Thus we have:

NV(µ, α1) ≥ NV(µ, α2).

The observation shows that the complete ordering defined by the normal-

ized value is an extension of Blackwell’s ordering over information structures

evaluated at the same price. Since the normalized value is a new ordering,

this is also a new result. Our simple proof of the observation does not rely

on the analytical form of the normalized value function, but rather on its

axiomatic underpinning.

6.3 Mixtures

A third property concerns what happens when an information structure is

constructed by randomizing over two other ones. Given information struc-

tures α1, α2 and 1 > λ > 0, we let λα1 ⊕ (1 − λ)α2 be the information

structure in which (i) a coin toss determines whether the agent’s signal is

chosen from α1 (with probability λ) or α2 (with probability 1− λ), and (ii)

the agent is informed of both the outcome of the coin toss and the signal

drawn from the chosen information structure. Formally, the set of signals in

λα1 ⊕ (1 − λ)α2 is Sα1 ∪ Sα2 (where we assume that Sα1 and Sα2 are dis-

joint), and the probability in state k that the agent receives signal s ∈ Sα1

is λα1,k(s), whereas the probability of a signal s ∈ Sα2 is (1− λ)α2,k(s).

Observation 2: Consider µ > 0 and α1, α2 such thatNV(µ, α1) ≥ NV(µ, α2).

For every 1 > λ > 0, we have:

NV(µ, α1) ≥ NV(µ, λα1 ⊕ (1− λ)α2) ≥ NV(µ, α2).

Thus, quite naturally, the normalized value of the new information struc-

ture lies between the normalized value of the most valuable one and the

normalized value of the least valuable one.
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6.4 The Role of ln and exp in NV

So far we have argued that two intuitive properties of the index NV are that

it makes the normalized value of a purchase (i) a decreasing function of its

price and (ii) an increasing function of the relative entropy from the prior to

each generated posterior. In this light, one could consider using the following

alternative index (see Kelly (1956)):

Â(a) =
1

µ

∑
s

pα(s)d(p‖qsα).

It is apparent that the index Â retains those two properties, and it also

satisfies separability in the form of price homogeneity. However, the next

example illustrates why it does not rank the normalized value of purchases

well.

Example 3 Let K = {1, 2, 3} and fix a uniform prior. Consider, for in-

stance, two information structures with each having two signals:

α1 =

 0 1
1/2 1/2
1/2 1/2

 , α2 =

1− ε ε
1/2 1/2
ε 1− ε


Fix an arbitrary µ > 0, and define the purchases a1 = (µ, α1) and

a2 = (µ, α2). Note that Â(a1) = +∞ because the relative entropy of the

prior to the posterior generated by the first signal is infinite. On the other

hand, for any ε > 0, Â(a2) is finite. We next argue that the normal-

ized value of the purchases is not well measured by Â. Indeed, for a small

enough ε > 0, the purchase a2 is almost excluding, and hence, in such a

case r1 = NV(a1) < NV(a2) = r2. Here, r1 and r2 are the risk-aversion

coefficients of the two CARA individuals who define the two corresponding

levels of normalized value. Let r = (r1 + r2)/2. Clearly, the CARA agent
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r uniformly likes information more than the CARA r2 agent; the CARA r2

agent accepts a2, which according to the index Â would be less valuable than

a1; but agent r rejects a1.

The example makes clear the role of the exponential and its compensating

logarithm as a “blow up/shrink down” of relative entropies. The exponential

function with negative exponents, being bounded above, avoids the problem

of infinite relative entropies attached to a single signal. Only when all relative

entropies are infinite does the logarithm restore an infinite normalized value.

This is essential in order to satisfy the duality between uniform preferences

for information and the proposed function ranking the normalized value of

purchases.

6.5 Comparison with Entropy Informativeness

We next present an example, similar to one in Cabrales, Gossner, and Serrano

(2013), that illustrates how our framework serves to complete Blackwell’s or-

dering. In addition, it shows how the information index in our 2013 paper

can sometimes provide a different ranking from the induced index of informa-

tion structures in the current study (when the price of the purchase is kept

constant), while it also shows how both can sometimes point in the same

direction.15

Example 4 Let K = {1, 2, 3} and fix a uniform prior. Consider two infor-

mation structures that are not ordered in the sense of Blackwell. For instance,

let each of the two information structures have two signals:

α1 =

1− ε1 ε1
1− ε1 ε1
ε1 1− ε1

 , α2 =

1− ε2 ε2
0.1 0.9
ε2 1− ε2


15Remember also that our entropy informativeness coincides, because of the role of the

logarithmic investor, with the value of information from Kelly (1956).
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For ε1 and ε2 small enough, these information structures are not ranked

according to Blackwell. To see this, it suffices to consider two decision prob-

lems. In Problem 1, the agent must choose one of two actions: action 1 gives

a utility of 1 only in the first two states, and 0 otherwise, while action 2 gives

a utility of 1 only in the third state, and 0 otherwise. In contrast, Problem 2

has action 1 pay a utility of 1 only in the first state, and 0 otherwise, while

action 2 gives a utility of 1 only in states 2 or 3, and 0 otherwise. When

facing Problem 1, the decision maker would value α1 more than α2: follow-

ing the first signal in α1, he would choose the first action and following the

second signal in α1, he would choose the second action, thereby securing a

utility of 1. This would be strictly greater than his utility after α2. On the

other hand, when facing Problem 2, he would under α2 choose action 1 after

the first signal and action 2 after the second, yielding a utility close to 29/30,

which is greater than his optimal utility after α1.

Now let us compute NV(a1) for a1 = (µ, α1) and NV(a2) for a2 = (µ, α2) .

NV(ai) = − 1

µ
ln

(∑
s

pαi(s) exp(−d(p‖qsαi))

)
,

and

∑
s

pα1(s) exp(−d(p‖qsα1
)) =

2− ε1
3

exp

(
−1

3

(
ln

(
1
3

1−ε1
2−ε1

)
+ ln

(
1
3

1−ε1
2−ε1

)
+ ln

(
1
3
ε1

2−ε1

)))

+
1 + ε1

3
exp

(
−1

3

(
ln

(
1
3

1−ε1
1+ε1

)
+ ln

(
1
3
ε1

1+ε1

)
+ ln

(
1
3
ε1

1+ε1

)))

' 2

3
exp

(
−1

3

(
ln

1

ε1

))
+

1

3
exp

(
−1

3

(
ln

(
1

ε1

)2
))

' 2

3
ε
1/3
1 +

1

3
ε
2/3
1 .
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∑
s

pα2(s) exp(−d(p‖qsα2
)) =

1.1

3
exp

(
−1

3

(
ln

( 1
3

1−ε2
1.1

)
+ ln

( 1
3
0.1
1.1

)
+ ln

( 1
3
ε2
1.1

)))
+

1.9

3
exp

(
−1

3

(
ln

( 1
3

1−ε2
1.9

)
+ ln

( 1
3
0.9
1.9

)
+ ln

( 1
3
ε2
1.9

)))
' 1.1

3
exp

(
1

3
ln ε2

)
+

1.9

3
exp

(
1

3
ln ε2

)
= ε

1/3
2 .

If ε1 = ε2 and both are small enough, then NV(a2) > NV(a1). On the

other hand, if ε1 = ε22 and both are small, then NV(a1) > NV(a2).

Let us now compute the entropy reduction from the uniform prior, which

we denote by Ie (·), letting H (q) =
∑3

k=1−qk ln (qk).

Ie (α1) = H (p)−
2∑
s=1

psα1
H
(
qsα1

)
= 3

(
−1

3
ln

(
1

3

))
− 2− ε1

3

(
−2

1− ε1
2− ε1

ln

(
1− ε1
2− ε1

)
− ε1

2− ε1
ln

(
ε1

2− ε1

))
−1 + ε1

3

(
−2

ε1
1 + ε1

ln

(
ε1

1 + ε1

)
− 1− ε1

1 + ε1
ln

(
1− ε1
1 + ε1

))
' ln 3− 2

3
(ln 2) ' ln 3− 0.46210.

Ie (α2) = 3

(
−1

3
ln

(
1

3

))
− 1.1

3

(
−1− ε2

1.1
ln

(
1− ε2

1.1

)
− 0.1

1.1
ln

(
0.1

1.1

)
− ε2

1.1
ln
( ε2

1.1

))
−1.9

3

(
−1− ε2

1.9
ln

(
1− ε2

1.9

)
− 0.9

1.9
ln

(
0.9

1.9

)
− ε2

1.9
ln
( ε2

1.9

))
' ln 3− 1

3
(1.1 ln 1.1− 0.1 ln 0.1 + 1.9 ln 1.9− 0.9 ln 0.9)

' ln 3− 0.549815518.

This implies that Ie(α1) > Ie(α2) whenever ε1, ε2 are sufficiently close to

zero.
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The reason for the difference between entropy informativeness and the

approach in this paper is the larger sensitivity of the index NV to information

concerning low-probability events. In particular, α1 causes a larger reduction

in entropy, being associated with an almost fully informative signal (s2). In

contrast, for equal prices, a purchase of α2 is more valuable for sequences of

small ε1 and ε2 where ε1 = ε2. To understand the latter, note that the limits,

as ε1 and ε2 vanish, of α1 and α2 lead to excluding information purchases,

with infinite normalized value. The large unbounded normalized value of those

purchases before going to the limits is explained by the large investments

made following each signal. However, in α1, following signal s2, two states

are becoming extremely unlikely, leading the agent to an optimal investment

with large losses in these two states, whereas in α2 large losses in the optimal

investment are confined to only one state. Because of this, when ε1 and ε2

go to zero at the same rate, the large negative utility that a CARA agent

derives from large negative wealth implies that α2 is more valuable than α1.

Convergence rates matter, though: this conclusion is overturned if ε1 goes to

zero much faster than ε2.

To explore somewhat more systematically the difference between the in-

dex based on entropy and the one in this paper, we investigate conditions on

“small information” that renders them equivalent. Let ai = (µ, αi). We then

have the following equation:

NV(ai) = − 1

µ
ln

(∑
s

pαi(s) exp(−d(p‖qsαi))

)

= − 1

µ
ln

(∑
s

pαi(s) exp

(
−
∑
k

pk
(
ln pk − ln qsαi(k)

)))

31



Ie (αi) = −
∑
k

pk ln pk −
∑
s

pαi(s)

(
−
∑
k

qsαi(k) ln qsαi (k)

)

=
∑
s

pαi(s)

(
−
∑
k

pk
(
ln pk − ln qsαi(k)

)
−
∑
k

(
pk − qsαi(k)

)
ln qsαi (k)

)
.

This implies that to a first order approximation when qsαi is close to p,

NV(ai) ' − 1

µ
ln

(
1 +

∑
s

pαi(s)

(
−
∑
k

pk
(
ln pk − ln qsαi(k)

)))

' − 1

µ

∑
s

pαi(s)

(
−
∑
k

pk
(
ln pk − ln qsαi(k)

))

=
1

µ

∑
s

pαi(s)

(∑
k

pk
(
ln pk − ln qsαi(k)

))
and

Ie(αi) =
∑
s

pαi(s)

(
−
∑
k

pk
(
ln pk − ln qsαi(k)

)
−
∑
k

(
pk − qsαi(k)

)
ln qsαi (k)

)

=
∑
s

pαi(s)

(
−
∑
k

pk
(
ln pk − ln qsαi(k)

)
+

(∑
k

(
qsαi(k)

p (k)
− 1

)
p (k) ln qsαi (k)

))

'
∑
s

pαi(s)

(
−
∑
k

pk
(
ln pk − ln qsαi(k)

)
−

(∑
k

(
ln pk − ln qsαi(k)

)
p (k) ln qsαi (k)

))

=
∑
s

pαi(s)

(
−
∑
k

(
1 + ln qsαi (k)

)
pk
(
ln pk − ln qsαi(k)

))
.

As a result, it follows that:

NV(ai) '
1

µ

∑
s

pαi(s)

(∑
k

pk
(
ln pk − ln qsαi(k)

))
(3)

and

Ie(αi) '
∑
s

pαi(s)

(
−
∑
k

(
1 + ln qsαi (k)

)
pk
(
ln pk − ln qsαi(k)

))
. (4)
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A comparison of expressions (3) and (4) makes clear that when priors

and posteriors are similar, the two indices point in the same direction - as

long as it is also true that the qsαi (k) vectors are all parallel to the unit

vector and that ln qsαi (k) < −1, that is, when priors are close to uniform and

there are more than two states. Otherwise, cases such as the one provided

in Example (4), when posteriors are very informative, are likely to make the

indices diverge.

7 Related literature

As is well known, markets for information are increasingly important for the

world economy, in spite of the difficulties in creating such markets, which

Arrow (1962) already pointed out. Yet, be it through reputational concerns

(Ottaviani and Sørensen, 2006), contracts (Hörner and Skrzypacz, 2010), or

simply because transmitting information has its advantages (see, e.g. Vives,

1990; Fishman and Hagerty, 1995; Esö and Szentes, 2007), the markets for

information exist and are quite sizable (Mehran and Stulz, 2007).

One of the difficulties of a market for information is that, unlike what

happens with many other goods, measuring the quantity and quality of infor-

mation is not easy. The classical approach to ranking information structures

is due to Blackwell (1953).16 This approach does not provide a complete

ordering of information structures. More recent research has since focused

on restricting preferences to a particular class. Lehmann (1988) restricts at-

tention to problems with monotone decision rules, and Persico (2000), Athey

and Levin (2001), and Jewitt (2007) do so to some more general classes of

monotone problems.17 The main difference between this line of research and

16Veldkamp (2011) shows the many ways in which economists have measured informa-
tiveness and their applications

17Measuring information is even harder if several agents interact as shown for instance
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our approach is that we provide a complete order through a duality axiom

for problems with a restricted set of investment opportunities.18

A central role in our research is played by risk preferences of individu-

als, and their heterogeneity, which has been established with a variety of

sources, such as using household survey data about propensity to invest

(Guiso and Paiella, 2008), from deductible choice in insurance markets (Co-

hen and Einav, 2005) and from laboratory experiments (Holt and Laury,

2002).

Our approach to ranking information purchases is based on a ranking of

preferences for information. There are relatively few papers in the literature

dealing with the comparison of different agents’ preferences for information.

One such study is Grant, Kajii, and Polak (1998) who explore intrinsic pref-

erences for information, that is, preferences that are unrelated to the ability

of information to make more profitable decisions. This is very different from

our framework, since our agents like information precisely to help them make

better decisions. But, interestingly, just as we found in Theorem 1 that risk

aversion is related to preferences for information, Grant, Kajii, and Polak

(1998) find that their notion of Information Loving is related to the convex-

ity of preferences. Dubra and Echenique (2001) establish the impossibility of

representing monotone preferences for information about an uncountable set

of states of nature by a utility function. Li (2010) studies the relationship

between intrinsic preferences for information and the aversion to ambiguity

in dynamic decision settings.

Relative entropy plays an important role in our index. Kullback and

Leibler (1951) shows that relative entropy measures the mean information

in Gossner (2000), Gossner and Mertens (2001) or Lehrer and Rosenberg (2006).
18Moscarini and Smith (2002), Azrieli (2014) and Ganuza and Penalva (2010) also study

in various environments partial orderings of information structures.
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per sample for distinguishing between two hypotheses when one of them is

true.19 The relative-entropy measure of proximity of probability distributions

appears prominently in many economic settings (see e.g. Blume and Easley

(1992) and Sandroni (2000) Hansen and Sargent (2010, 2001), Maccheroni,

Marinacci, and Rustichini (2006), Gossner (2011)) However, none of these

previous papers in economics uses relative entropy to measure the informa-

tiveness of signals or the normalized value of information purchases. Outside

economics, relative entropy is widely used to measure both informativeness

and differences between distributions. In information theory, Kraft (1949)

and McMillan (1956); in statistics and econometrics Soofi and Retzer (2002);

in linguistics, (Kuperman, Bertram, and Baayen, 2010; Mishra and Banga-

lore, 2011); in optics, (Ong, Xiaoy, Tham, and Ang, 2009); in hydrology,

(Singh, 1997); in genetics, (Sherwin, 2010); in zoology, (Donaldson-Matasci,

Bergstrom, and Lachmann, 2010); and even in archeology, (Justeson, 1973).

Although many of these applications use relative entropy to measure infor-

mativeness, none of them provides a decision-theoretic microfoundation for

such use.

8 Conclusion

There are multiple ways to index information, but ours is the first index that

captures the information-price tradeoff, by indexing information purchases.

Our normalized value index is based on a duality principle between value and

preference for information in settings where the investment opportunities

are described by a no-arbitrage condition. No-arbitrage assets provide a

clean way to measure the value of information, furthering their use from

19A maximum likelihood estimator of a parametric model is also a minimizer of the
Kullback-Leibler divergence.
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our previous study (Cabrales, Gossner, and Serrano (2013)). The result we

offer here can be viewed as a translation of Aumann and Serrano (2008) to

informational settings with no-arbitrage investments. In such settings, the

new index captures an aspect of the demand for information in a market

economy. The paper has characterized agents’ demand for information using

a simply computable number called the normalized value of the information

purchase, which relates to agents’ risk aversion. For practical applications,

one can rely on some of the known estimates for risk aversion levels provided

in the literature in order to identify prices at which every agent/no agent will

accept that information purchase. This, in effect, is a way to describe a useful

inverse demand curve for information in no-arbitrage investment settings.

References

Arrow, K. (1962): “Economic welfare and the allocation of resources for

invention,” in The rate and direction of inventive activity: Economic and

social factors, pp. 609–626. Nber.

Athey, S., and J. Levin (2001): “The Value of Information in Mono-

tone Decision Problems,” Stanford University, Department of Economics

Working Papers 01003.

Aumann, R. J., and R. Serrano (2008): “An Economic Index of Riski-

ness,” Journal of Political Economy, 116, 810–836.

Azrieli, Y. (2014): “Comment on “The law of large demand for informa-

tion”,” Econometrica, 82(1), 415–423.

Blackwell, D. (1953): “Equivalent Comparison of Experiments,” Annals

of Mathematical Statistics, 24, 265–272.

36



Blume, L., and D. Easley (1992): “Evolution and Market Behavior,”

Journal of Economic Theory, 58, 9–40.

Blume, L. E., and D. Easley (2002): “Optimality and natural selection

in markets,” Journal of Economic Theory, 107(1), 95–135.

Cabrales, A., O. Gossner, and R. Serrano (2013): “Entropy and

the value of information for investors,” American Economic Review, 103,

360–377.

Cesa-Bianchi, N., and G. Lugosi (2006): Prediction, learning, and

games. Cambridge University Press.

Cohen, A., and L. Einav (2005): “Estimating risk preferences from de-

ductible choice,” Discussion paper, National Bureau of Economic Research.

Dohmen, T., A. Falk, D. Huffman, U. Sunde, J. Schupp, and G. G.

Wagner (2011): “Individual Risk Attitudes:Measurement, Determinants

and Behavioral Consequences,” Journal of the European Economic Asso-

ciation, 9, 522–550.

Donaldson-Matasci, M. C., C. T. Bergstrom, and M. Lachmann

(2010): “The Fitness Value of Information,” Oikos, 119, 219–230.

Dubra, J., and F. Echenique (2001): “Monotone Preferences over Infor-

mation,” Topics in Theoretical Economics, 1, 1–16.
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Appendix For Online Publication
This appendix presents additional material, both completing or providing

proofs of results stated in the text of the paper, as well as expansions of some

of the concepts presented. We order the sections in the appendix following

the logical order of appearance in the paper.

A Completing the Proof of Theorem 1

We begin the proof of the converse part of the theorem by stating and proving

several auxiliary lemmas.

Lemma 4 Fix p and consider a sequence qn of beliefs such that qn → p. Let

xn be the optimal investment for an agent with beliefs qn. Then, it must be

true that xn → 0.

Proof. If the property does not hold, there exists a sequence qn → p and a

corresponding sequence of optimal investments xn together with ε > 0 such

that, for every n, ‖xn‖∞ ≥ ε. Since u is strictly concave, there exists a > 0

such that for every z with |z| ≥ ε,

u(w + z) ≤ u(w) + zu′(w)− a|z|.

We then have for every n:

V (u,w, qn) =
∑
k

qnku(w + xnk)

≤ +
∑
|xnk |<ε

qnk (u(w) + u′(w)xnk) +
∑
|xnk |≥ε

qnk (u(w) + u′(w)xnk − a|xnk |)

= u(w) +
∑
|xnk |<ε

(qnk − pnk)u′(w)xnk +
∑
|xnk |≥ε

(qnk − pnk)u′(w)xnk − aqnk |xnk |,
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where the last equality uses
∑

k q
n
k = 1 and

∑
k p

n
kx

n
k = 0. This implies both

lim
n→∞

∑
|xnk |<ε

(qnk − pnk)u′(w)xnk = 0

and

lim sup
n→∞

∑
|xnk |≥ε

(qnk − pnk)u′(w)xnk −−aqnk |xnk | < 0,

since for every n, there exists k such that |xnn| ≥ ε. This shows that

lim sup
n→∞

V (u,w, qn) < u(w),

which is in contradiction with V (u,w, q) ≥ u(w) for every q. We conclude

that the property holds as claimed.

Lemma 5 Fix p and consider q close to p. Then, the optimal investment

x(q) = (xk(q))k∈K for an agent with belief q = (qk)k∈K is

xk(q) =
1

pkρ(w)
(qk − pk) + o(‖q − p‖).

Proof. The agent’s problem is to maximize
∑

k qku(w + xk) under the con-

straint
∑

k pkxk = 0. The solution is uniquely given by the system of first-

order conditions:

qku
′(w + xk) = λpk,

where λ is independent of k. Using a first order Taylor expansion of u′(w+xk),

we obtain:

u′(w) + xku
′′(w) = λ

pk
qk

+ o(xk). (5)

We multiply each equation by pk and sum over k to get:

u′(w) = λ

∑
j p

2
j

qj
+ o(xk). (6)
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We replace the value of λ obtained using (6) into equation (5) and get:

xk =
u′(w)

u′′(w)
(

pk

qk
∑

j

p2j
qj

− 1) + o(xk).

In vector form, this can be expressed as:

x = F (q) + γ(x),

where (F (q))k = u′(w)
u′′(w)

( pk

qk
∑
j

p2
j
qj

− 1) and γ(x) ∈ RK is such that ‖γ(x)‖‖x‖ → 0 as

‖x‖ → 0.

We now show that ‖x‖ = O(‖q − p‖). Assume to the contrary that

there exists a sequence qn → p and a corresponding sequence xn such that
‖xn‖
‖qn−pn‖ →∞. We would then have:

‖xn‖
‖qn − pn‖

≤ ‖F (qn)‖
‖qn − pn‖

+
γ(xn)

‖xn‖
‖xn‖

‖qn − pn‖
.

However, a simple computation shows that ‖F (qn)‖ = O(‖qn − pn‖), and

we know from Lemma 4 that ‖xn‖ → 0; hence, γ(xn)
‖xn‖ → 0. This yields a

contradiction, and hence the conclusion that ‖x‖ = O(‖q − p‖).
We thus have γ(x)

‖q−p‖ → 0 as ‖q − p‖ → 0. We can therefore write

xk =
u′(w)

u′′(w)
(

pk

qk
∑

j

p2j
qj

− 1) + o(‖q − p‖)

=
1

ρ(w)
(
qk
∑

j

p2j
qj
− pk

qk
∑

j

p2j
qj

) + o(‖q − p‖)

=
1

pkρ(w)
(qk − pk) + o(‖q − p‖),

where the last line uses the fact that limq→p
∑

j

p2j
qj

= 1.
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Lemma 6 Fix p and consider q close to p. Then,

V (u,w, q) = u(w) +
1

2

∑
k

(qk − pk)2

ρ(w)pk
u′(w) + o(‖q − p‖2).

Proof. We have

V (u,w, q) =
∑
k

qku(w + xk),

where x = (xk)k∈K is defined as in Lemma 5. A second order Taylor expan-

sion gives

V (u,w, q) = u(w) +
∑
k

qkxku
′(w) +

1

2

∑
k

qkx
2
ku
′′(w) + o(‖x‖2)

= u(w) +
∑
k

(qk − pk)xku′(w) +
1

2

∑
k

qkx
2
ku
′′(w) + o(‖x‖2).

From Lemma 5 we know that ‖x‖ = O(‖q − p‖). Hence, we can replace

o(‖x‖2) by o(‖p − q‖2) in the expression above. By substituting xk for the

expression in Lemma 5 we obtain:

V (u,w, q) = u(w) +
∑
k

(qk − pk)2

ρ(w)pk
u′(w)

+
1

2

∑
k

qk
ρ(w)2p2k

(qk − pk)2u′′(w) + o(‖q − p‖2)

= u(w) +
1

2

∑
k

(qk − pk)2

ρ(w)pk
u′(w) + o(‖q − p‖2),

which is as claimed.

Fix p, and two states k, l ∈ K. For min{pk, pl} > ε > 0, let qε,k be given

by qε,kk′ = pk′ for k′ 6= k, l; qε,kk = pk + ε; and qε,kl = pl − ε. Similarly, qε,l is

given by qε,lk′ = pk′ for k′ 6= k, l; qε,ll = pl + ε; and qε,lk = pk − ε. Thus, the

belief qε,k gives slightly higher weight to state k and slightly lower weight to

state l than p, whereas qε,l does the opposite. Now consider an information

structure α(ε) such that with probability 1
2
, the agent’s posterior is qε,k;
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and with probability 1
2

it is qε,l.(Such an information structure exists since

1
2
qε,k + 1

2
qε,l = p.)

Lemma 7 For ε close to 0, the maximal price µ(ε) that an agent is willing

to pay for α(ε) is:

µ(ε) =
pk + pl

2ρ(w)pkpl
ε2 + o(ε2).

Proof. The maximal price µ(ε) is such that the informational gains exactly

compensate the monetary loss. Such a price satisfies the equation:

1

2

(
V (u,w − µ(ε), qε,k) + V (u,w − µ(ε), qε,l)

)
= u(w).

Relying on Lemma 6, we get:

u(w)− u(w − µ(ε)) =
u′(w − µ(ε))

2ρ(w − µ(ε))
(
ε2

pk
+
ε2

pl
) + o(ε2).

This shows that µ(ε) → 0 as ε → 0, and therefore, by taking a first-order

Taylor approximation of u(w − µ(ε)), we obtain:

µ(ε)u′(w) + o(µ(ε)) =
u′(w)

2ρ(w)

pk + pl
pkpl

ε2 + o(ε2).

We conclude that:

µ(ε) =
pk + pl

2ρ(w)pkpl
ε2 + o(ε2),

as we wanted to show.

Having proved this series of lemmata, one can proceed to the rest of the

proof of the converse part of Theorem 1, in the main text.

B Proof of Theorem 4

Proof.
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1. Let r = NV(a). Assume R(u) ≥ NV(a). Since u is DARA, ρu(w) >

NV(a) for every w. The same computation as in the proof of Theorem

1 shows that for every z,

u(w + z)− u(w)

u′(w)
<
urC(w + z)− urC(w)

ur′C(w)
.

If q has full support, the solution to the maximization problem of∑
k qku(w + xk) under the constraint

∑
k pkxk ≤ 0 is interior. Let

x(q) achieve this maximum. We have:

V (u,w − µ, q)− u(w)

u′(w)
=

∑
k qku(w − µ+ xk(q))− u(w)

u′(w)

<

∑
k qku

r
C(w − µ+ xk(q))− urC(w)

ur′C(w)

≤ V (urC , w − µ, q)− urC(w)

ur′C(w)
.

If q does not have full support, we still have:

V (u,w − µ, q)− u(w)

u′(w)
= sup

x∈B∗

∑
k qku(w − µ+ xk)− u(w)

u′(w)

≤ sup
x∈B∗

∑
k qku

r
C(w − µ+ xk(q))− urC(w)

ur′C(w)

≤ V (urC , w − µ, q)− urC(w)

ur′C(w)
.

Note that NV(a) ≤ r implies that NV(a) is finite, and hence that a is

nonexcluding; therefore, there exists s such that pα(s) > 0 and qs has

full support. Hence:∑
s pα(s)V (u,w − µ, qs)− u(w)

u′(w)
<

∑
s pα(s)V (urC , w − µ, qs)− urC(w)

ur′C(w)
= 0,

where the last equality stems from the fact that the agent urC is indif-

ferent between accepting and rejecting the information purchase a. We

conclude that agent u rejects a at wealth level w.
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Now, assume that R(u) < r and choose r0 such that R(u) < r0 < r.

Since an agent urC accepts a at any wealth level, an agent ur0C strictly

prefers accepting a at wealth level 0, which can be expressed as:

1−
∑
s

pα(s) sup
bs∈B∗

∑
k

qsk exp(r0(µ+ xsk)) > 0.

Let (xs)s then be a family of elements in B∗ such that:

1−
∑
s

pα(s)
∑
k

qsk exp(r0(µ+ xsk)) > 0.

Let w be such that ρ(w − µ + mins,k q
s
k) < r0. We have ρ(z) < r0 for

every z ≥ w − µ + mins,k q
s
k. It follows that by the same computation

as in the proof of Theorem 1, for every s, k:

u(w − µ+ xsk)− u(w)

u′(w)
≥ ur0C (−µ+ xsk)− u

r0
C (0)

ur0′C (0)
.

Therefore:∑
s pα(s)V (u,w − µ, qsα)− u(w)

u′(w)
≥

∑
s pα(s)

∑
k q

s
ku(w − µ+ xsk)− u(w)

u′(w)

≥
∑

s pα(s)
∑

k q
s
ku

r0
C (−µ+ xsk)− u

r0
C (0)

ur0′C (0)
> 0.

Hence, u accepts a at wealth w.

2. Analogous.

C Further Justifications of the Index

C.1 Duality-Based Approaches

Since rankings of preferences for information are of interest in their own right,

we examine two alternative definitions thereof, one of which being a com-

plete ordering over agents with decreasing risk aversion. It will be apparent
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that the ranking introduced in Section 4 and the two alternative rankings

introduced next differ significantly. Next, following a parallel approach to

Definition 1, we define orderings of information purchases according to the

“duality” axiom of Aumann and Serrano (2008), a monotonicity property

with respect to each of the alternatives concerning preferences for informa-

tion.

The second definition of a ranking for preferences for information requires

agent u1 to accept the information purchase at some wealth level whenever

u2 accepts it at some wealth level. This is thus weaker than the definition of

uniformly liking information better that requires u1 to accept the information

at all wealth levels whenever u2 accepts it at some wealth level. We restrict

attention to agents who are in the class UDA of utility functions.

Let u1, u2 ∈ UDA. We say that u1 minimally likes information better than

u2 if, for every information purchase a, and for every w2, there exists w1 such

that, if u2 accepts a at w2, then so does u1 at w1.

This definition is an extremely weak requirement and it orders a large set

of agents, as will be shown shortly.

Our third definition requires the wealth levels at which u1 and u2 are

compared to be identical. It allows utilities to be defined over any bounded

or unbounded open interval. We let U IDA be the class of utility functions u

that are defined over an open interval of R, twice differentiable, and such

that ρu is decreasing. The following definition is general in that it allows the

wealth intervals on which the two compared utility functions are defined to

differ.

Let u1, u2 ∈ U IDA, with u1 defined over I1 and u2 over I2. We say that

u1 wealth wise likes information better than u2 if I1 ⊇ I2 and, for every

information purchase a and wealth level w, if u2 accepts a at w, then so does
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u1.

For agent u1 to wealth wise like information better than u2, it is required

that u1 accepts information purchases more often than u2, when the com-

parison holds at the same wealth level. Since u1 cannot accept information

purchases for wealth levels outside of I1, it is necessary that that I1 is a

superset of I2. It is therefore implicit in the last definition that the agent

rejects all information purchases that would make the wealth after purchase

w − µ lie outside of the domain of the utility function u.

The following Theorem characterizes the orderings of these two definitions

in terms of levels of risk aversion, and it should be compared with Theorem 1.

Theorem 5 1. Let u1, u2 ∈ UDA, u1 minimally likes information better

than u2 if and only if:

R(u1) ≤ R(u2).

2. Let u1, u2 ∈ U IDA, with respective domains I1 and I2, I1 ⊇ I2. Then, u1

wealth wise likes information better than u2 if and only if

∀w ∈ I2, ρu1(w) ≤ ρu2(w).

Proof. Point 1 is a direct consequence of Theorem 4. Point 2 follows from

similar arguments as in the proof of Theorem 1.

In particular, some consequences of Theorem 5 are that the “minimally

likes information” ordering is complete over the set of DARA agents, and

that the uniform ordering is stronger than the wealth wise ordering which is

itself stronger than the minimal ordering.

We now define orderings of information purchases according to “dual-

ity” with regards to the orderings on preferences for information. The two

following definitions parallel Definition 1.

First, using the “minimally likes information better” ordering:
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Definition 2 Let a1, a2 be two information purchases. We say that a1 is

minimally more valuable than a2 if, given two agents u1, u2 ∈ UDA such that

u1 minimally likes information better than u2, whenever u2 accepts a2 at some

wealth level, u1 also accepts a1 at some wealth level.

And second, relying on the “wealth wise likes information better” order-

ing:

Definition 3 Let a1, a2 be two information purchases. We say that a1 is

wealth wise more valuable than a2 if, for every u2 ∈ U IDA, and u2 ∈ UDA
such that u1 wealth wise likes information better than u2, if u2 accepts a2 at

some wealth level, u1 also accepts a1 at some wealth level.

This definition requires the set of agents u1 who accept a1 at some wealth

level to be neither too large, nor too small. This set is potentially smaller

than the set of agents in U I
DA who like information better than u2, but it has

to include all elements of UDA who like information better than u2.

Theorem 6 below states the characterization of these orderings over in-

formation purchases.

Theorem 6 Let a1, a2 be two information purchases. The following three

statements are equivalent:

1. a1 is uniformly more valuable than a2,

2. a1 is minimally more valuable than a2,

3. a1 is wealth wise more valuable than a2.

And in particular, they are all equivalent to:

NV(a1) ≥ NV(a2).
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Proof. The equivalence between the uniformly more valuable ordering and

the normalized value is proved in Theorem 2.

We next prove that a1 is minimally more valuable than a2 if and only

if NV(a1) ≥ NV(a2). Assume that a1 is minimally more valuable than

a2. Consider a CARA agent with risk aversion level r = NV(a2), such an

agent accepts a2 at all (hence some) wealth levels. The same agent must also

accept a1 at some wealth level, which by Theorem 4 implies that NV(a2) =

r ≤ NV(a1). Now assume NV(a1) ≥ NV(a2), and consider u1 ∈ UDA who

minimally likes information better than u2 ∈ UDA. If u2 accepts a2 at some

wealth level, Theorem 5 and Theorem 4 imply R(u1) ≤ R(u2) ≤ NV(a2) ≤
NV(a1), hence u1 accepts a1 at some wealth level.

Now we prove that a1 is wealth wise more valuable than a2 if and only

if NV(a1) ≥ NV(a2). Assume that a1 is wealth wise more valuable than

a2. Again, a CARA agent with risk aversion level NV(a2)− ε for any ε > 0

accepts a2 at some wealth level. The same agent (being in UDA) also accepts

a1 at some wealth level, which by Theorem 4 implies that NV(a2) ≤ NV(a1).

Finally, assume thatNV(a1) ≥ NV(a2). Consider u1 ∈ UDA who wealth wise

likes information better than u2 ∈ UDA, both defined on an open interval I

and assume that u2 accepts a2 at some wealth level w ∈ I. A CARA agent

with degree of risk aversion infI ρu2(w) is wealth wise less risk averse than

u2 by Theorem 5, hence accepts a2 at all wealth levels, and hence, also at

w. Since u1 is wealth wise less risk averse than u2, R(u1) ≤ infI ρu1(w) ≤
infI ρu2(w). Hence R(u1) ≤ infI ρu2(w) ≤ NV(a2) ≤ NV(a1), which implies

that u1 accepts a1 at some wealth level.
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C.2 Total rejections or acceptances

In this subsection we provide a result in the spirit of Hart (2011), together

with a similar result based on the notion of “accepting for all w” (instead of

“rejecting for all w”.

Following Hart (2011)’s approach (see also Cabrales, Gossner, and Ser-

rano, 2013), we now introduce the definitions of uniform wealth rejection and

acceptance:

Definition 4 Let a1 and a2 be two information purchases. We say that a2

is uniformly more rejected than a1 if any u ∈ UDA that rejects a1 at all wealth

levels also rejects a2 at all wealth levels. We say that a1 is uniformly more

accepted than a2 if any u ∈ UDA that accepts a2 at all wealth levels also

accepts a1 at all wealth levels.

The first part of the definition proposes a uniform rejection of purchases

within the DARA class of preferences. That is, a2 is uniformly more rejected

than a1 because the former is rejected more often: whenever a1 is rejected

at all wealth levels, so is a2, but not vice versa. The second part of the

definition proposes a uniform acceptance of purchases within the same class

of preferences. That is, a2 is uniformly more accepted than a1 because the

former is accepted more often: whenever a1 is accepted at all wealth levels,

so is a2, but not vice versa. The definition leads to the following result:20

Theorem 7 Let a1 and a2 be two information purchases. The following

three conditions are equivalent:

• a2 is uniformly more rejected than a1

20We observe that the same theorem holds if we restrict the class of functions by imposing
IRRA and ruin aversion on top of DARA. IRRA and ruin aversion are the restrictions on
preferences used in Cabrales, Gossner, and Serrano (2013).
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• a1 is uniformly more accepted than a2

• NV(a1) ≥ NV(a2).

Proof. Assume that a2 is uniformly more rejected than a1. For every ε > 0,

Theorem 4 shows that an agent u
NV(a1)+ε
C rejects a1 at all wealth levels.

Hence such an agent also rejects a2 at all wealth levels, which implies, again

by Theorem 4, that NV(a1) + ε ≥ A(a2). Since this is true for every ε > 0,

it follows that NV(a1) ≥ NV(a2).

For the converse, assume that NV(a1) ≥ NV(a2), and that u ∈ UDA
rejects a1 at all wealth levels. Then by Theorem 4, R(u) ≥ NV(a1) ≥
NV(a2), and u also rejects a2 at all wealth levels.

Assume that a1 is uniformly more accepted than a2. For every ε > 0,

Theorem 4 shows that an agent u
NV(a2)−ε
C accepts a2 at all wealth levels.

Hence such an agent also rejects a1 at all wealth levels, which implies, again

by Theorem 4, that NV(a2)− ε ≤ A(a1). Since this is true for every ε > 0,

it follows that NV(a2) ≤ NV(a1).

For the converse, assume that NV(a1) ≥ NV(a2), and that u ∈ UDA
accepts a2 at all wealth levels. Then by Theorem 4, NV(a1) ≥ NV(a2) ≥
R(u), and u also accepts a1 at all wealth levels.

D Additional Material Concerning Proper-

ties of the Index

D.1 Proof of Observation 1 (Blackwell Monotonicity)

Proof. Assuming that α1 is more informative than α2 in the sense of Black-

well, and fixing any arbitrary wealth level w, then any CARA agent who re-

jects (µ, α1) at wealth level w also rejects (µ, α2) at wealth level w. It follows
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from the characterization of NV in Theorem 3 that NV(µ, α1) ≥ NV(µ, α2).

D.2 Proof of Observation 2 (Mixtures)

Proof. Fix any wealth level. From Theorem 3, a CARA agent with coeffi-

cient of risk aversion NV(µ, α2) accepts both purchases (µ, α1) and (µ, α2) at

wealth w; this agent therefore also accepts the purchase (µ, λα1⊕ (1− λ)α2)

at that wealth level. This shows that

NV(µ, λα1 ⊕ (1− λ)α2) ≥ NV(µ, α2).

Now consider ε > 0. Again from Theorem 3, a CARA agent with coefficient

of risk aversion NV(µ, α1) + ε rejects both purchases (µ, α1) and (µ, α2) at

wealth w; this agent therefore also rejects the purchase (µ, λα1 ⊕ (1− λ)α2)

at that wealth level. This shows that

NV(µ, α1) + ε ≥ NV(µ, λα1 ⊕ (1− λ)α2)

for every ε > 0, and hence that

NV(µ, α1) ≥ NV(µ, λα1 ⊕ (1− λ)α2).

D.3 The Role of Prices and Priors

In the model of Section 2, p plays a dual role. Indeed, p is the agent’s prior

before he receives any information, and it is also a vector of prices for Arrow

securities that defines the set of no-arbitrage assets B∗. In order to both allow

for the agent’s prior to be different from the price system, and disentangle

the two roles of p, we consider here agents whose prior belief q ∈ ∆(K) may

differ from the vector p defining the set B∗.
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In this more general model, an agent accepts an information purchase

a = (µ, α) at prior q if and only if:∑
s

qα(s)V (u,w − µ, qsα) ≥ V (u,w, q),

where qsα is the agent’s posterior belief after receiving a signal s given the

prior q and qα(s) =
∑

k qkαk(s). Note that if q = p, then V (u,w, q) equals

u(w) so that the definition particularizes to the original one in this case.21

Our Definition 1 extends as follows: We say that a1 is more valuable

than a2 at prior q if, given two agents u1, u2 such that u1 uniformly likes

information better than u2 and two wealth levels w1, w2, whenever agent u2

accepts a2 at wealth level w2 and prior q, then agent u1 accepts a1 at wealth

level w1 and prior q.

Then, we define the normalized value of an information purchase a =

(µ, α) at prior q as:

NV(a, q) = − 1

µ
ln

(∑
s

pα(s) exp(−d(p‖qsα))

)
− d(p‖q)

µ

= NV(a)− d(p‖q)
µ

.

As a word of caution, we note that in the formula above, as (qsα)s depends on

q, so does NV(a). Our results can be extended to this more general setting

in the way one should expect (we omit details for brevity).

D.4 Sequential purchases

Another property worth mentioning concerns the normalized value of an

information purchase in which the buyer receives signals sequentially from

21It is convenient to write the RHS of this expression this way, given our analysis of
sequential purchases in the next subsection.
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different information structures. Given an information structure α with a

set of signals Sα and a family β = (βs)s∈Sα of information structures, where

all the members of β share the same set of signals Sβ, we let (α, β) be the

information structure in which the agent first receives a signal s from α, then

an independently drawn (conditional on k) signal s′ from βs. Formally, the

set of signals in (α, β) is Sα×Sβ, and in state k, the probability of receiving

the pair of signals (s, s′) is αk(s)βs,k(s
′). Given an information purchase

a = (µ, α) and a family of information purchases b = (xs)s = (ν, βs)s, where

all the members of b have the same price ν, we let a+b denote the information

purchase (µ+ ν, (α, β)).

Observation 3: Given information purchases a and x = (x1, . . . , xs, . . . , xK),

the following hold:

1. If for every s, NV(xs, qs) ≥ NV(a), then NV(a+ x) ≥ NV(a).

2. If for every s, NV(xs, qs) ≤ NV(a), then NV(a+ x) ≤ NV(a).

3. In particular, if for every s, NV(xs, qs) = NV(a), then NV(a + x) =

NV(a).

Proof. We prove the observation using the following auxiliary decision prob-

lem. In the first stage, the agent can either accept information purchase a

or reject it. If the agent accepts a, then a signal s is drawn from α and the

agent can either accept the information purchase xs or reject it. If the agent

rejects a, no other information purchase is offered to the agent. Once the

agent has acquired some information (or none), any asset in B∗ may be pur-

chased; then the state k is realized, and the agent receives the corresponding

payoff.

Assume that for every s, NV(xs, qs) ≥ NV(a), and consider an agent

u
NV(a)
C at any wealth level and any prior p. In the sequential decision problem,
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assuming that a is accepted in the first stage by this agent, then xs is accepted

in the second stage for every s. Also, a is accepted in the first stage even

if the option of acquiring xs in the second stage is absent. Therefore, a is

also accepted with the option of acquiring xs in the second stage. Hence,

an optimal strategy for the agent is to accept a, and then accept xs no

matter what s is. In particular, this strategy is better for the agent than

not acquiring any information purchase. This shows that the agent accepts

a+ x, and hence that NV(a+ x) ≥ NV(a).

Now assume that for every s, NV(xs, qs) ≤ NV(a), and consider an agent

uρC with ρ > NV(a) at any wealth level and any prior p. In the sequential

decision problem, assuming that a is accepted in the first stage, it is optimal

for this agent to reject xs after every signal s. Hence, the decision to acquire

a in the sequential decision problem is equivalent to the decision to acquire a

alone, and so this agent rejects a. Hence, the optimal strategy for the agent is

to reject information. In particular, not acquiring any information is better

than acquiring a, which is itself better than acquiring a and xs following

every s, so that no information is better than a + x. Therefore, the agent

rejects a + x, which shows that NV(a + x) < ρ for every ρ > NV(a). This

implies that NV(a+ x) ≤ NV(a).

The third point follows immediately from the first and second points.

Observation 3 relates the normalized value of an information purchase in-

volving (α, β) to the normalized value of the information purchases involving

α and (βs)s. As a result, the normalized value of an information purchase

involving α has to be measured given the prior p, as in formula (2), but the

normalized value of an information purchase involving βs has to be measured

given the belief qsα of the agent after receiving the signal s. The observation

makes intuitive sense: if the agent faces a sequence of purchases whose in-
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dividual normalized value is increasing, the normalized value of the overall

purchase is at least that of the normalized value of the first-stage purchase,

and so on.
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