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Abstract

We formulate and solve a range of dynamic models of constrained credit/insurance that allow
for moral hazard, limited commitment and unobservable investment. We compare them to full
insurance and exogenously incomplete financial regimes (autarky, saving only, and borrowing and
lending in a risk-free asset). We develop computational methods based on mechanism design, linear
programming, and maximum likelihood to estimate, compare, and statistically test these alternative
dynamic models of financial constraints. Our methods work with both cross-sectional and panel data
and allow for measurement error and unobserved heterogeneity. We estimate the models using data
on Thai households running small businesses. We find that, overall, the borrowing and saving only
regimes provide the best fit using joint data on consumption, investment, and income. However,
there is evidence that family networks are helpful in consumption smoothing as in a moral hazard
constrained regime. The full insurance, autarky and limited commitment regimes are rejected in
virtually all estimation runs.
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1 Introduction [to be revised]

We compute, estimate, and contrast the consumption and investment behavior of risk averse households

running small nonfarm and farm businesses under various financial market environments, including

exogenously incomplete settings (autarky, savings only, non-contingent borrowing) and endogenously

information-constrained settings (moral hazard with observed or unobserved investment), both relative

to full insurance. We analyze in what circumstances these financial regimes can be distinguished in

consumption and income or investment and income data or both. More generally, we develop and apply

methods for empirical estimation of dynamic mechanism design models and test the various models

against each other using both data simulated from the models themselves and actual data on Thai

households.

With few exceptions, the existing literature maintains a dichotomy, also embedded in the national

accounts: households are consumers and suppliers of market inputs, whereas firms produce and hire

labor and other factors. This gives rise, on the one hand, to a large literature which studies household

consumption smoothing. There is voluminous work estimating the permanent income model, the full

risk sharing model, buffer stock models (Zeldes, 1989; Deaton and Laroque, 1996) and, lately, models

with private information (Phelan 1994; Ligon, 1998; Werning, 2001) or limited commitment (Ligon,

Thomas and Worrall, 2002).

On the other hand, the consumer-firm dichotomy gives rise to an equally large literature on invest-

ment. For example, there is the adjustment costs approach of Abel and Blanchard (1983) and Bond

and Meghir (1994) among many others. In industrial organization, Hopenhayn (1992) and Ericson and

Pakes (1995) model the entry and exit of firms with Cobb-Douglas or CES production technologies

where investment augments capital with a lag and output produced from capital, labor and other fac-

tors is subject to factor-neutral Markov technology shocks. Mostly, firms are modeled as risk neutral

maximizers of expected discounted profits or of dividends to owners. There are also works attempting

to explain stylized facts on firm growth, with higher mean growth and variance in growth for small

firms, e.g. Cooley and Quadrini (2001), among others. The more recent works by Albuquerque and

Hopenhayn (2004) and Clementi and Hopenhayn (2006) introduce either private information or limited

commitment but maintain risk neutrality1. Here we set aside for the moment the issues of heterogeneity

in technologies and firm growth and focus on a benchmark with financial constraints, investment and

consumption data thinking of households as firms.

The literature that is closest to our paper, and complementary with what we are doing, features

risk averse households as firms but largely assumes that certain markets or contracts are missing. For

example, Cagetti and De Nardi (2006) follow Aiyagari (1994) in their study of inequality and assume

that labor income is stochastic and uninsurable, while Angeletos and Calvet (2007) and Covas (2006)

1Applied general equilibrium models feature both consumption and investment in the same context, as Rossi-Hansberg
and Wright (2007), but there the complete markets hypothesis justifies, within the model, a separation of the decisions
of households from the decisions of firms. Alem and Townsend (2009) provide an explicit derivation of full risk sharing
with equilibrium stochastic discount factors, rationalizing the apparent risk neutrality of households as firms making
investment decisions.
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in their work on buffer stock motives and macro savings rates feature uninsured entrepreneurial risk. In

the asset pricing vein, Heaton and Lucas (2000) model entrepreneurial investment as a portfolio choice

problem, assuming exogenously incomplete markets in the tradition of Geanakoplos and Polemarchakis

(1986) or Zame (1993). The methods of our paper might indicate how to build upon these papers,

possibly with alternative assumptions on the financial underpinnings.

Indeed, this literature begs the question of how good an approximation are the various assump-

tions on financial regimes, different across the different papers. That is, what would be a reasonable

assumption for the financial regime if that part too were taken to the data? We take this view below

to see how far we can get. For example, the adjustment costs investment literature may be picking up

constraints implied by financing, not adjustment costs per se. The pecking order investment literature

(Myers and Majuf, 1984) simply assumes that internally generated funds are least expensive, followed

by debt, and finally equity, discussing wedges and distortions. Berger and Udell (2002) also have a

long discussion in this spirit, of small vs. large firm finance. They point out that small firms seem

to be informationally opaque2 yet receive funds from family, friends, angels, or venture capitalists,

leaving open the nature of the overall financial regime. The empirical work of Fazzari, Hubbard and

Petersen (1988) picks up systematic distortions for small firms, but, again, the nature of the credit

market imperfection is not modeled, leading to criticisms of their interpretation of cash flow sensitivity

tests3 (Kaplan and Zingales, 2000).

Our methods follow logically from Paulson, Townsend and Karaivanov (2006), (hereafter PTK),

where we model, estimate, and test whether moral hazard or limited liability is the predominant

financial obstacle causing the observed positive monotonic relationship between initial wealth and

subsequent decision to enter into business. Buera and Shin (2007) extend this to endogenous savings

decisions in a model with limited borrowing. Here, again, we abstract from occupational choice and

focus much more on the dynamics. The recent work of Schmid (2008) is also an effort to estimate a

dynamic model of financial constraints using regressions on model data, not maximum likelihood as

here. Finally, Kinnan (2009) uses non-parametric methods to test inverse Euler equations or other

implications of moral hazard, limited commitment, and unobserved-output financial regimes.

We naturally analyze the advantages of using a combination of data on consumption and the

smoothing of income shocks with data on the smoothing of investment from cash flow fluctuations, in

effect filling the gap in the dichotomy of the literature. In estimating both exogenously incomplete and

endogenous information-constrained regimes we also break new ground. The only other similar efforts

of which we are aware are Meh and Quadrini (2006), who compare and contrast numerically a bond

economy to an economy in which unobserved diversion of capital creates an incentive constraint, and

Attanasio and Pavoni (2008) who estimate and compare the extent of consumption smoothing in the

permanent income model to that in a moral hazard model with hidden savings (see also Karaivanov,

2Bitler, Moskowitz and Vissing-Jorgensen (2005) argue likewise that agency considerations play important role.
3Under the null of complete markets there should be no significant cash flow variable in investment decisions, but

the criticism is that when the null is rejected, one cannot infer the degree of imperfection of financial markets from the
magnitude of the cash flow coefficient. One needs to explicitly model the financial regime in order to make an inference,
which is what we do in this paper.
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2008). Krueger and Perri (2010) use data on income, consumption and wealth from Italy (1987-2008)

and the PSID (2004-2006) to compare and contrast the permanent income hypothesis (borrowing and

lending in a risk-free asset) vs. a model of precautionary savings with borrowing constraints and

conclude the former explains the dynamics of their data better.

In this paper we focus on whether, and in what circumstances, it is possible to distinguish financial

regimes, depending on the data used. To that end, we first perform tests in which we have full control,

that is, we know what the financial regime really is, using data generated from the model. Our paper

is thus both a conceptual and methodological contribution. We show how all the financial regimes

can be formulated as linear programming problems, often of large dimension, and how likelihood

functions, naturally in the space of probabilities/lotteries or histograms, can be estimated. We allow

for measurement error, the need to estimate the underlying distribution of unobserved state variables,

and the use of data from transitions, before households reach steady state.

When using model-generated data we find that our ability to distinguish between the alternative

financial regimes naturally depends on both the type of data used and the amount of measurement error.

With low measurement error we are able to distinguish between almost all regime pairs. As expected,

however, higher level of measurement error in the data reduces the power of our model comparison

tests to the extent that some regimes cannot be distinguished from the data-generating baseline as

well as from each other. For example, using investment/income data, or consumption/income data

we cannot distinguish between the moral hazard and full information regimes when there is high

measurement error. Using joint data on consumption, investment, and income markedly improves the

ability to distinguish across the regimes when there is high measurement error. We also incorporate

intertemporal data from the model through a panel which also significantly improves the ability to

distinguish the regimes, relative to when using single cross-sections. The simulated data results are

shown to be robust to various modifications of the baseline runs — no measurement error, different grid

sizes, allowing for heterogeneity in productivity, and using data-generating parameters estimated from

Thai data.

Additionally, we do take the next step and apply our methods to a featured emerging market

economy, Thailand, to make the point that what we offer is a feasible, practical approach to real data

when the researcher aims to provide insights on the source and nature of financial constraints. We

chose Thailand for two main reasons. First, our data source (the Townsend Thai surveys) includes

panel data on both consumption and investment and this is rare. We can thus see if the combination

of consumption and investment data really helps in practice. Second, we also learn about potential

next steps in modeling financial regimes. We know in particular, from other work with these data, that

consumption smoothing is quite good, that is, it is sometimes difficult to reject full insurance, in the

sense that the coefficient on idiosyncratic income, if significant, is small (Chiappori, Schulhofer-Wohl,

Samphantharak, and Townsend, 2008). We also know that investment is sensitive to income, especially

for the poor, but on the other hand this is to some extent overcome by family networks (Samphantharak

and Townsend, 2009).
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While we keep these data features in mind, we remain neutral in what we expect to find in terms

of the best-fitting theoretical model. Hence, we test the full range of regimes (from autarky to full

information) against the data. We are interested in how these same data look when viewed jointly

though the lens of each of the various financial regimes modelled here. We also want to be assured that

our methods which use grid approximations, measurement error, estimation of unobserved distribution

of utility promises, and transition dynamics are, as a practical matter, applicable to actual data. This is

our primary intent, to create an operational methodology for estimating and comparing across different

dynamic models of financial regimes that can be taken to data from various sources.

We find that by and large out methods work with the Thai data and we obtain results consistent

with those for model-simulated data. Using combined data on consumption, investment, and income,

or using two-year panel data improves our ability to distinguish the regimes. In terms of the regime

that fits the Thai data best, we echo previous work which finds that investment is not smooth and

can be sensitive to cash flow fluctuations. Indeed, we find that investment and income data alone are

most consistent with the borrowing and lending or savings only regimes, with ties depending on the

specification. Results using combined consumption and investment data also lend support to the best

fit of the savings and non-contingent borrowing regimes, and, in one instance, the moral hazard regime

with unobserved investment.

We also echo previous work which finds that full risk sharing is rejected, but not by much, and

indeed find that the moral hazard regime is not inconsistent with the income and consumption data

alone, but often statistically tied with borrowing and lending or savings only, depending on the specifi-

cation. We find some evidence that family networks move households toward less constrained regimes

in regards to their consumption smoothing from income too. Stratifying the data by region — the richer,

industrializing Central region vs. the poorer, predominantly agricultural Northeast shows evidence for

regional differences in the best-fitting regime. Using consumption and income data alone reveals the

mechanism design regimes as best fitting in the Northeast while borrowing and saving only fit best in

the Central region while using combined consumption and investment data pins down the borrowing

regime as best-fitting in the Central but cannot reject moral hazard (tied with borrowing and saving

only) in the Northeast.

We also perform a range of additional runs that confirm the robustness of our results — imposing

risk neutrality, imposing no measurement error, allowing for quadratic adjustment costs in investment,

allowing for limited commitment in the moral hazard and full information regimes, different grid sizes,

running on data cleaned from household fixed effects, and alternative assets and income definitions.

2 Theory

2.1 Environment

Consider an economy of infinitely-lived agents heterogeneous in their initial endowments (assets), k0

of a single good that can be used for both consumption and investment. Agents are risk averse and
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have time-separable preferences defined over consumption, c, and labor effort, z represented by U(c, z)

where U1 > 0, U2 < 0. They discount future utility using discount factor β ∈ (0, 1). We assume that
c and z belong to the finite discrete sets (grids) C and Z respectively. The agents have access to a

stochastic output technology, P (q|z, k) : Q × Z ×K → [0, 1] which gives the probability of obtaining

output/income, q from effort level, z and capital level, k.4 The sets Q and K are also finite and

discrete — this could be a technological or computational assumption. Capital, k depreciates at rate

δ ∈ (0, 1). Depending on the intended application, the lowest capital level (k = 0) could be interpreted
as a ‘worker’ occupation (similar to PTK, 2006) or as ‘firm exit’ but we do not impose a particular

interpretation in this paper.

Agents can contract with a financial intermediary and enter into saving, debt, or insurance ar-

rangements. We characterize the optimal dynamic financial contracts between the agents and the

intermediary in different financial markets ‘regimes’ distinguished by alternative assumptions regard-

ing information, enforcement/commitment and credit access. In all financial regimes we study with

the exception of the ‘hidden output’ regime in the Appendix, output q is assumed to be observable and

verifiable. However, one or both of the inputs, k and z may be unobservable to third parties, resulting

in moral hazard and/or adverse selection problems.

The financial intermediary is risk neutral and has access to an outside credit market with exoge-

nously given and constant over time opportunity cost of funds R. The intermediary is assumed to be

able to fully commit to the ex-ante (constrained-) optimal contract with agent(s) at any initial state

while we consider the possibility of limited commitment by the agents.

Using the linear programming approach of Prescott and Townsend (1984) and Phelan and Townsend

(1991), we model financial contracts as probability distributions (lotteries) over assigned or imple-

mented allocations of consumption, output, effort, and investment (see below for details). There are

two possible interpretations. First, one can think of the intermediary as a principal contracting with a

single agent/firm at a time, in which case financial contracts specify mixed strategies over allocations.

Alternatively, one can think of the principal contracting with a continuum of agents, so that the optimal

contract specifies the fraction of agents of given type or at given state that receive a particular deter-

ministic allocation. It is further assumed that there are no aggregate shocks, there are no technological

links between the agents, and they cannot collude.

2.2 Financial and information regimes

We write down the dynamic linear programming problems determining the (constrained) optimal con-

tract in many alternative financial regimes which can be classified into two groups. The first group are

regimes with exogenously incomplete markets: autarky (A), saving only (S), and borrowing and lending

(B). To save space we often use the abbreviated names supplied in the brackets. In these regimes the

4We can easily incorporate heterogeneity in productivity/ability across agents by adding a scaling factor in the pro-
duction function, as we do in a robustness run. Note also that q, as defined, can be interpreted as income net of payments
for any hired inputs other than z and k.
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feasible financial contracts take a specific, exogenously given form (no access to financial markets, a

deposit/storage contract, or a non-contingent debt contract, respectively).

In the second group of financial regimes we study, optimal contracts are endogenously determined

as solutions to dynamic mechanism-design problems subject to information and incentive constraints.

In the main part of this paper we look at two such endogenously incomplete markets regimes — moral

hazard (MH), in which agents’ effort is unobserved but capital and investment are observed, and limited

commitment (LC) in which there are no information frictions but agents can renege on the contract

after observing the output realization. In robustness checks we also introduce and test two additional

financial regimes with endogenously incomplete markets (see Appendices A and B for derivations)

— moral hazard with unobserved investment (UI), in which a dynamic adverse selection friction is

introduced in addition to moral hazard and hidden output (HO), in which output q is unobservable to

the intermediary.5

All incomplete-markets regimes are compared to what we call the full information (FI) benchmark

(the ‘complete markets’ or ‘first best’ regime). In the robustness section (XXX) we also consider

versions of all regimes in which capital changes are subject to quadratic adjustment costs.

2.2.1 Exogenously incomplete markets

Autarky

We say agents are in ‘autarky’ if they have no access to financial intermediation or storage. They

can however choose how much output to invest in production vs. how much to consume. The timeline

is as follows. The agent starts the current period with capital k ∈ K which he invests into production.

The initial capital can be also thought of as the agent’s beginning-of-period ‘wealth’. At this time he

also supplies his effort z ∈ Z. At the end of the period output q ∈ Q is realized, the agent decides on

the next period capital level k0 ∈ K (we allow arbitrary downward or upward capital adjustments),

and consumes c ≡ (1− δ)k + q − k0. Clearly, k is the single state variable in the recursive formulation

of the agent’s problem which is relatively simple and can be solved by standard dynamic programming

techniques. However, to be consistent with the solution method that we use for the mechanism-design

financial regimes where non-linear techniques may be inapplicable due to non-convexities introduced

by the incentive and truth-telling constraints (more on this below), we formulate the agent’s problem in

autarky (and all others) as a dynamic linear programming problem in the joint probabilities (lotteries)

over all possible choice variables allocations (q, z, k0) given state k,

v(k) = max
π(q,z,k0|k)

X
Q×Z×K

π(q, z, k0|k)[U((1− δ)k + q − k0, z) + βv(k0)] (1)

5The proofs that the optimal contracting problems can be written in recursive form and that the revelation principle
applies follow or can be adapted from Phelan and Townsend (1991) and Doepke and Townsend (2006) and hence are
omitted.
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The maximization of the agent’s value function, v(k) in (1) is subject to a set of constraints on the

choice variables, π.6 First, ∀k ∈ K the joint probabilities π(q, z, k0|k) have to be consistent with the
technologically-determined probability distribution of output, P (q|z, k):X

K

π(q̄, z̄, k0|k) = P (q̄|z̄, k)
X
Q×K

π(q, z̄, k0|k) for all (q̄, z̄) ∈ Q× Z (2)

Second, given that the π(.)’s are probabilities, they must satisfy π(q, z, k0|k) ≥ 0 (non-negativity)

∀(q, z, k0) ∈ Q× Z ×K, and ‘adding-up’,X
Q×Z×K

π(q, z, k0|k) = 1 (3)

The policy variables π(q, z, k0|k) that solve the above maximization problem determine the agent’s

optimal effort and output-contingent investment in autarky for each k.

Saving only / Borrowing

In this setting we assume that the agent is able to either only save, i.e., accumulate and run down

a buffer stock, in what we call the saving only (S) regime; or borrow and save through a competitive

financial intermediary — which we call the borrowing (B) regime. The agent thus can save or borrow

in a risk-free asset to smooth his consumption or investment in Bewley-Aiyagari manner, in addition

to what he could do via production and capital alone under autarky. Specifically, if the agent borrows

(saves) an amount b, then next period he has to repay (collect) Rb, independent of the state of the

world. Involuntary default is ruled out by assuming that the principal refuses to lend to a borrower

who is at risk of not being able to repay in any state.7 By shutting down all contingencies in debt

contracts we aim for better differentiation from the mechanism design regimes.

Debt/savings b is assumed to take values on the finite grid B. By convention, a negative value of

b represents savings, i.e., in the S regime the upper bound of the grid B is zero, while in the B regime

the upper bound is positive. The autarky regime can be subsumed by setting B = {0}. This financial
regime is essentially a version of the standard Bewley model with borrowing constraints defined by the

grid B and an endogenous income process defined by the production function P (q|k, z).
The timeline is as follows: the agent starts the current period with capital k and savings/debt b

and uses his capital in production together with effort z. At the end of the period, output q is realized,

the agent repays/receives Rb, and borrows or saves b0 ∈ B. He also puts aside (invests in) next period’s

capital, k0 and consumes c ≡ (1− δ)k + q + b0 − Rb− k0. The two ‘assets’ k and b are assumed freely

convertible into one another.

The problem of an agent with current capital stock k and debt/savings level b in the S or B regime

6In (1) and later on in the paper K under the summation sign refers to summing over k0 and not k and similarly for
the set W below.

7Computationally, this is achieved by assigning high utility penalty in such states.
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can be written recursively as:

v(k, b) = max
π(q,z,k0,b0|k,b)

X
Q×Z×K×B

π(q, z, k0, b0|k, b)[U((1− δ)k + q + b0 −Rb− k0, z) + βv(k0, b0)] (4)

subject to the technological consistency and adding-up constraints analogous to (2) and (3), and subject

to π(q, z, k0, b0|k, b) ≥ 0 for all (q, z, k0, b0) ∈ Q× Z ×K ×B.

2.2.2 Mechanism Design Regimes

Full information

With full information (FI) the principal fully observes and can contract upon agent’s effort and

investment — there are no private information or other frictions. We write the corresponding dynamic

principal-agent problem as an extension of Phelan and Townsend (1991) with capital accumulation.

As is standard in such settings (e.g., see Spear and Srivastava, 1987), to obtain a recursive formulation

we use an additional state variable — promised utility, w which belongs to the discrete set, W . The

optimal full-information contract for an agent with current promised utility w and capital k consists

of the effort and capital levels z, k0 ∈ Z × K, next period’s promised utility w0 ∈ W , and transfers

τ belonging to the discrete set T . A positive value of τ denotes a transfer from the principal to the

agent. The timing of events is the same as in Section 2.2.1, with the addition that transfers occur after

output is observed.

Following Phelan and Townsend (1991), the set of promised utilities W has a lower bound, wmin

which corresponds to assigning forever the lowest possible consumption, cmin (obtained from the lowest

τ ∈ T and the highest k0 ∈ K) and the highest possible effort, zmax ∈ Z. The set’s upper bound, wmax

in turn corresponds to promising the highest possible consumption, cmax and the lowest possible effort

forever:

wFI
min =

U(cmin,zmax)
1−β and wFI

max =
U(cmax,zmin)

1−β (5)

The principal’s value function, V (w, k) when contracting with an agent at state (w, k) maximizes

expected output net of transfers plus the discounted value of future outputs less transfers. We write the

mechanism design problem solved by the optimal contract as a linear program in the joint probabilities,

π(τ , q, z, k0, w0|w, k) over all possible allocations (τ , q, z, k0, w0):

V (w, k) = max
{π(τ,q,z,k0,w0|w,k)}

X
T×Q×Z×K×W

π(τ , q, z, k0, w0|w, k)[q − τ + (1/R)V (w0, k0)] (6)

The maximization in (6) is subject to the ‘technological consistency’ and ‘adding-up’ constraints:X
T×K×W

π(τ , q̄, z̄, k0, w0|w, k) = P (q̄|z̄, k)
X

T×Q×K×W
π(τ , q, z̄, k0, w0|w, k) for all (q̄, z̄) ∈ Q× Z, (7)

X
T×Q×Z×K×W

π(τ , q, z, k0, w0|w, k) = 1, (8)
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as well as non-negativity: π(τ , q, z, k0, w0|w, k) ≥ 0 for all (τ , q, z, k0, w0) ∈ T ×Q× Z ×K ×W.

The optimal FI contract must also satisfy an additional, promise keeping constraint which reflects

the principal’s commitment ability and ensures that the agent’s present-value expected utility equals

his promised utility, w:X
T×Q×Z×K×W

π(τ , q, z, k0, w0|w, k)[U(τ + (1− δ)k − k0, z) + βw0] = w (9)

By varying the initial promise w we can trace the whole Pareto frontier for the principal and the agent.

The optimal FI contract is the probabilities π∗(τ , q, z, k0, w0|w, k) that maximize (6) subject to (7), (8)
and (9).

The full information contract implies full insurance, so consumption is smoothed completely against

output, q (conditioned on effort z if utility is non-separable). It also implies that expected marginal

products of capital ought to be equated to the outside interest rate implicit in R, adjusting for disutilty

of labor effort which the planner would take that into account in determining how much capital k to

assign to a project. The intermediary/bank (planner) has access to outside borrowing and lending at

the rate R, but internally, within its set of customers it can in effect have them ‘borrow’ and ‘save’

among each other, i.e., take some output away from one agent who might otherwise have put money

into his project and give that to another agent with high marginal product. A lot of this nets out so

only the residual is finance with (or lent to) the outside market. In contrast, the B/S regime shuts

down such within-group transfers and trades and instead each agent is dealing with the market directly.

Moral hazard

In the moral hazard (MH) regime the principal can still observe and control the agent’s capital and

investment (k and k0), but he can no longer observe or verify the agent’s effort, z. This results in a

moral hazard problem. The state k here can be interpreted as endogenous collateral. The timing is

the same as in the FI regime. However, the optimal MH contract π(τ , q, z, k0, w0|w, k) must satisfy an
incentive-compatibility constraint (ICC), in addition to (7)-(9).8 The ICC states that, given the agent’s

state (w, k) and recommended effort level z̄, capital k0, and transfer τ , the agent must not be able to

achieve higher expected utility by deviating to any alternative effort level ẑ. That is, ∀(z̄, ẑ) ∈ Z × Z

we must have, X
T×Q×W 0×K0

π(τ , q, z̄, k0, w0|w, k)[U(τ + (1− δ)k − k0, z̄) + βw0] ≥

≥
X

T×Q×W 0×K0

π(τ , q, z̄, k0, w0|w, k)P (q|ẑ, k)
P (q|z̄, k) [U(τ + (1− δ)k − k0, ẑ) + βw0] (10)

8For more details on the ICC derivation in the linear programming framework, see Prescott and Townsend (1984).

The key term is the ‘likelihood ratio’, P (q|ẑ,k)
P (q|z̄,k) which reflects the fact that by deviating the agent changes the probability

distribution of output.
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Apart from the additional ICC constraint (10), the MH regime differs from the FI regime in the

set of feasible promised utilities, W . In particular, the lowest possible promise under moral hazard is

no longer the value wFI
min from (5). Indeed, if the agent is assigned minimum consumption forever, he

would not supply effort above the minimum possible. Thus, the feasible range of promised utilities, W

for the MH regime is bounded by:

wMH
min =

U(cmin,zmin)
1−β and wMH

max =
U(cmax,zmin)

1−β (11)

The principal cannot promise a slightly higher consumption in exchange for much higher effort such

that agent’s utility falls below wMH
min since this is not incentive compatible. If the agent does not follow

the principal’s recommendations but deviates to zmin the worst punishment he can receive is cmin

forever.

The constrained-optimal contract in the moral hazard regime, πMH(τ , q, z̄, k0, w0|w, k) solves the
linear program defined by (6)—(10). The contract features partial insurance and intertemporal tie-ins,

i.e., it is not a repetition of the optimal one-period contract (Townsend, 1982).

Limited commitment

The third setting with endogenously incomplete financial markets we study assumes away private

information but focuses on another friction often discussed in the consumption smoothing and invest-

ment literatures (e.g., Thomas and Worrall, 1994; Ligon et al., 2005 among many others) — limited

commitment (LC). As in those papers, by ‘limited commitment’ we mean that the agent could poten-

tially renege on the contract after observing his output realization and realizing the transfer (τ) he is

supposed to give to others through the intermediary. Another possible interpretation of this, particu-

larly relevant for developing economies, is a contract enforcement problem. The maximum penalty for

the agent reneging is for him to be excluded from future credit or risk-sharing — i.e., the assumption is

the agent goes to autarky forever.

Using the same approach as with the other financial regimes, we write the optimal contracting

problem under limited commitment as a recursive linear programming problem. The state variables

are once again the capital stock, k ∈ K and promised utility, w. The bounds of the set of promised

utilities, W are set to wLC
min equal to the autarky value at kmin (see Section 2.2.1) and wLC

max = wFI
max.

Given the agent’s current state (k,w) the problem of the intermediary is given by

V (k,w) = max
π(τ,q,z,w0,k0|k,w)

X
T×Q×Z×K×W

π(τ , q, z, w0, k0|k,w)[q − τ + (1/R)V (k0, w0)]

subject to the promise-keeping constraintX
T×Q×Z×W×K

π(τ , q, z, w0, k0|w, k)[U(τ + (1− δ)k − k0, z) + βw0] = w,

the limited-commitment constraints which ensure that reneging on the contract does not occur in
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equilibrium (respecting our timing that effort z is decided before output q is realized),X
T×K×W

π(τ , q̄, z̄, w0, k0|w, k)[U(τ + (1− δ)k − k0, z̄) + βw0] ≥ Ω(k, q̄, z̄) for all (q̄, z̄) ∈ Q× Z

and subject to non-negativity π(τ , q, z, w0, k0|w, k) ≥ 0, technological consistency and adding-up,X
T×K×W

π(τ , q̄, z̄, k0, w0|w, k) = P (q̄|z̄, k)
X

T×Q×K×W
π(τ , q, z̄, k0, w0|w, k) for all (q̄, z̄) ∈ Q× Z,

X
T×Q×Z×K×W

π(τ , q, z, k0, w0|w, k) = 1,

Above, Ω(k, q, z) denotes the present value of the agent going to autarky forever with his current output

at hand q and capital k, which is defined as:

Ω(k, q, z) ≡ max
k0∈K

{U(q + (1− δ)k − k0, z) + βv(k0)}

where v(k) is the autarky regime value function defined in Section 2.2.1.

3 Computation

3.1 Solution Methods

We solve the dynamic programs for all financial regimes numerically9. Specifically, we use the lin-

ear programming (LP) methods developed by Prescott and Townsend (1984), Phelan and Townsend

(1991) and PTK (2006). An alternative to the LP methodology in the literature is the ‘first order

approach’ (Rogerson, 1985), used for instance by Abraham and Pavoni (2008), whereby the incentive

constraints are replaced by their first order conditions10. A problem with that approach arises due to

non-convexities introduced by the incentive and/or truth-telling constraints11. In contrast, the linear

programming approach is extremely general and can be applied for any possible preference and tech-

nology specifications since, by construction, it convexifies the problem by allowing all possible lotteries

over allocations. The only potential downside is that the LP method may suffer from the ‘curse of

dimensionality’. However, as shown above, by judicious formulation of the linear programs, this de-

ficiency is minimized. The main reason for using discrete grids for all variables is not the dynamic

programming part, which can be also solved without discretization (e.g., using splines), but our linear

programming approach to the MH and UI regimes (necessitated by non-convexities) and our empirical

9Given our primarily empirical objectives, we chose general functional forms that preclude analytical tractability. We
verify robustness by using different parameterizations and model specifications.
10The first order approach requires imposing (strong) monotonicity and/or convexity assumptions on the technology

(Rogerson 1985; Jewitt, 1988) or, alternatively, as in Abraham and Pavoni (2008), employing a numerical verification
procedure to check its validity for the particular problem at hand.
11We do find such non-convexities in our solutions for the MH and UI regimes and hence we cannot use the first order

approach as it is not always valid in our set up.

12



application using the likelihood of the discretized joint distribution of the data.

To speed-up computation, we solve the dynamic programs for each regime using ‘policy function

iteration’ (e.g., see Judd, 1998). That is, we start with an initial guess for the value function, obtain

the optimal policy for that value function and iterate until convergence on the Bellman operator in

policy space. At each iteration step we solve a linear program12 in the policy variables π for each

possible value of the state variables. In the unobserved investment (UI) regime the promised utilities

set,W is endogenously determined and is solved for together with V . Using the incentive compatibility

constraints, we restrict attention to non-decreasing promise vectors w(k). Specifically, we ‘discretize’

the set W by starting with a large set W0 consisting of linear functions w(k) with intercepts that

take values from the grid W = {wmin, w2, ...wmax} defined in (11), and a discrete set of non-negative
slopes. We initially iterate on the UI dynamic program using value function iteration, that is, we iterate

over the promise setW together with the value function V , dropping all infeasible vectors w at each

iteration and ‘shrinking’W as a result (Abreu, Pierce and Stacchetti, 1990). Once we have successively

eliminated all vectors inW for which the respective linear programs have no feasible solution, that is,

once we have converged to the self-generating feasible promise setW∗, we switch to (the much faster)

policy function iteration and continue iterating on the Bellman equation until convergence13. The same

approach is used for the setWm.

3.2 Functional Forms, Grids, and Baseline Parameters

Below are the functional forms we adopt for the empirical analysis. They are chosen and demonstrated

below to be flexible enough to generate significant and statistically distinguishable differences across

the financial regimes. Nevertheless, as argued earlier, our methods allow for any alternative or more

general specifications of preferences and technology.

Agent preferences are of the CES form:14

U(c, z) =
c1−σ

1− σ
− zθ

The production function, P (q|z, k) represents the probability of obtaining output level, q ∈ Q ≡
{q1, q2, ..q#Q}, from effort z ∈ Z and capital k ∈ K. We calibrate this function from a subset of

12The coefficient matrices of the objective function and the constraints are created in Matlab while all linear programs
are solved using the comercial LP solver CPLEX version 8.1. The computations were performed on a dual-core, 2.2 Ghz,
2GB RAM machine.
13We also verified the results against proceeding with value function iteration all the way.
14Our linear programming solution methodology does not require separable preferences. However, assuming separability

is a common specification in the dynamic contracts literature so we adopt it for comparison purposes.
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households from our sample for which we have hours data.15

To get an idea of the computational complexity of the dynamic contracting problems we solve,

Table 1 shows the number of variables, constraints, and linear programs that need to be solved at each

iteration for each regime for the grids we use in the empirical implementation. The number of linear

programs is closely related to the grid size of the state variables while the total number of variables

and constraints depends on the product of all grid dimensions. The biggest computational difficulties

arise from increasing #K or #Z as this causes an exponential increase in the number of variables

and/or constraints. This is why we keep these dimensions relatively low, whereas using large #T (or,

equivalently #C) is relatively ‘cheap’ computationally. In the unobserved capital regime (see Appendix

A) the biggest computational difficulties arise from the huge number of linear programs to be computed

over the two sub-stages.

The grids that we use in the estimation runs are reflect the relative magnitudes and ranges of the

variables in the Thai data (whole sample or different sub-samples, depending on the estimation run).

In our baseline estimation runs we use a five-point capital grid K with grid points corresponding to

the 10th, 30th, 50th, 70th and 90th percentile in the data. The same applies for the output grid Q.We

can use (and do robustness runs with) much finer grids but the associated computational time cost is

extremely high at the estimation stage because of the need to compute the linear programs and iterate

at each parameter vector during the estimation. This is why we keep dimensions relatively low at

present. Unfortunately, because of the extreme dimensionality and computational time requirements

of the UI regime (see Table 1), we are currently unable to estimate it, with the exception of two runs

with coarse grids16.

4 Empirical Method

In this section we describe our estimation strategy. We estimate via simulated maximum likelihood each

of the alternative dynamic models of financial constraints developed in Section 2. Our basic empirical

method is as follows. We write down a likelihood function that measures the goodness-of-fit between

the data and each of the alternative model regimes. We then use the maximized likelihood value for

15In robustness runs we also use the following functional form for P (q|z, k) :

P (q = q1|z, k) = 1−
kρ + zρ

2

1/ρ

P (q = qi|z, k) =
1

#Q− 1
kρ + zρ

2

1/ρ

for i = 2, ..,#Q

where q1 is the lowest output level. The probability of obtaining each output level is bounded away from zero. This
functional form encompasses a range of production technologies. (ρ = 1 — perfect substitutes technology; ρ→ 0 — Cobb-
Douglas; and ρ→ −∞ — Leontief). Note, that P determines expected and not actual output, thus the CES parameter ρ
here is not comparable to values from the macro literature.
16Currently, a single functional evaluation of the UI regime likelihood for our baseline grids takes about 45 minutes (as

opposed to 7-9 sec in the MH regime) and over 1,500 such evaluations (47 days) are typically required to find the MLE
parameters for a single estimation run. We are working on a parallel computing version of our estimation algorithm as
well as optimizations based on the NPL approach (Aguirregabiria and Mira, 2002; Kasahara and Shimotsu, 2009).

14



each model (at the MLE estimates for the parameters) and perform a formal statistical test (Vuong,

1989) about whether we can statistically distinguish between each pair of models relative to the data.

We thus approach the data as if agnostic about which theoretical model fits them best and let the

data themselves determine this. The results of the Vuong test, a sort of ‘horse race’ among competing

models, inform us which theory(ies) fits the data best and also which theories can be rejected in view

of the observed data.

4.1 Simulated maximum likelihood

Suppose we have i.i.d. data {ŷj}nj=1 where j = 1, ...n denotes sample units (in our application, house-
holds observed over seven years). For each j, the vector ŷj can consist of different variables from a

cross-section (e.g., consumption, income, capital, investment) or, if panel data is available as we use

here, from different time periods (e.g., consumption at t = 0 and at t = 1). For example, in this paper

we use (various subsets of) data from rural Thai households running small businesses on their produc-

tive assets, consumption and income, {k̂jt, ĉjt, q̂jt} where t = 0, ..., 7 corresponds to years 1999-05. See
Section DATA for more details.

We assume that all available data may contain measurement error. Assume the measurement error

is additive and distributed N(0, (γmer(x))
2) where r(x) denotes the range of the grid X for variable x,

i.e. r(x) = xmax−xmin where x is any of the variables of interest used in the estimation. The reasoning
behind this formulation is that for computational time reasons we want to be as parsimonious with

parameters as possible in the simulated likelihood routine. In principle, much more complex versions of

measurement error can be introduced at the cost of computing time. The parameter γme is estimated

in the SMLE routine

The list of steps below describe the algorithm used to construct the simulated likelihood function.

1. Model solution to probability distribution

For any possible value of the state variables in a given regime (e.g., k,w — the capital stock, and the

promised utility value for the MH, FI or LC models) and structural parameters φs (preferences, β, σ

and technology, P (q|z, k)) the model solution obtained from the respective linear program (see Section

2) is a discrete joint probability distribution. For example, for the MH model the solution consists of

the probabilities π(τ , q, z, k0, w0|w, k) over the grids T,Q,Z,K,W where primes denotes future-period

states. From this joint distribution we easily obtain (by manipulating the π0s and summing over not

needed variables, see Appendix XXX) the joint probability distribution over any desired set of variables

to be used in the estimation — for instance the cross-section {cj0, qj0}nj=0.
In general, let us denote this distribution, for model m by gm0 (y

1|s1, s2, φs) where y1 is a vector of
non-state variable data being fitted, s1 is the vector of observable state variables and s2 is the vector

of unobservable state variables for that model. (We have s1 ≡ k for all models while s2 ≡ w or s2 ≡ b

or s2 absent, depending on the estimated model). The unobservable states, s2 are treated as sources

of unobserved heterogeneity endogenous to the models.

2. Initialization and unobservable state variables
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To map the solution of each model to the data, we need to initialize the state variables s1, s2. For

the unobservable state variables, b and w we assume that they initially come from a parametric initial

distribution Ω(φd) (e.g. normal, mixture of normals) the parameters of which, φd will be estimated

in the SMLE routine.17 We first integrate the joint probability distribution gm0 (y
1|s1, s2;φs) over the

unobserved state variable (e.g., in the MHmodel this is the variable w on the gridW ). This is done using

the assumed parametric distribution for this variable discretized via a standard histogram function (see

Appendix for definition) applied on the grid W. The result is the joint distribution gm1 (y
1|s1;φs, φd).

For instance, this could be the joint distribution of c, q over C × Q for each k ∈ K as given by the

MH model solution integrated over the unobserved state distribution. Note that the joint distribution

gm1 depends on both the structural parameters φs as well as on the unobserved state distributional

parameters φd. Naturally, since the only state in autarky is observable (k) this step is not performed

when we estimate the autarky model.

For the observed state variables s1 (here k) we take actual data ŝ1j (i.e., k̂j) and discretize it over

the model grid S1 (i.e., K) via histogram function. We call the resulting distribution H(ŝ1). If dy-

namic data is used in the MLE, the ŝ1 data come from the initial period of data used. Within this

step, we allow for the possibility that the actual s1 (in our application, k) data contains measure-

ment error as explained above. In practice, this means manipulating the theoretical joint distribution

gm1 (y
1|s1;φs, φd) to transform it into the distribution gm2 (y

1|s1;φs, φd, γme) which is the model-m pre-

dicted joint distribution of y1 over the compound grid Y 1 (e.g., y1 = (c, q) over C ×Q) for each value

of the state variable s1 at parameters φs, φd and including measurement error parametrized by γme in

s1. Note, it is computationally prohibitive to re-compute the model at non-grid points for s1.

Next, given the theoretical joint distribution allowing for measurement error, gm2 (y
1|s1;φs, φd, γme),

use the actual discretized distribution H(ŝ1) (which is inclusive of measurement error) to obtain the

joint distribution over the estimated variables y (the model analogue of the data ŷ) implied by model-m

when initialized at data H(ŝ1),

fm(y|H(ŝ1), φ)

where φ ≡ (φs, φd, γme). Here, we can have either y = y1 (if the s1 variables are not used in the

estimation, in which case fm is simply gm2 (.) integrated over s
1 with the probabilities from H(ŝ1) or

we can have y = (y1, s1) in which case fm is the joint distribution of (y1, s1) over the compound grid

Y 1 × S1. For instance, in the next section we have runs with y = (c, q) (corresponding to the former

case) and also runs with y = (k, i, q) where i ≡ k0 − (1− δ)k is investment (corresponding to the latter

case).

3. Measurement error and the simulated likelihood function

Let Φ (.|μ, σ) denote the pdf of N
¡
μ, σ2

¢
. We now allow for Normal measurement error in the

estimated non-state variables y1. Given the assumed measurement error distribution, the likelihood of

17In the baseline runs we assume that the unobserved state w in the MH, FI, LC models is distributed N(μw, γ
2
w)

while the unobserved state b in the B and S models is distributed N(μb, γ
2
b). This assumption is not essential for our

methodology and more general distributional assumptions can be incorporated at the computational cost of additional
estimated parameters.
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observing data point ŷ1j (e.g., (ĉj , q̂j)) relative to any model grid point y
1
h ∈ Y 1, for any h = 1, ...,#Y 1

is:
LY
l=1

Φ
³
ŷ1,lj |y

1,l
h , σl

´
(12)

where l = 1, ..., L indexes the variables in ŷ1 and where σl = γmer(y
1,l) is the measurement error

standard deviation for each variable, as explained earlier.

Focus on the case y = y1 (the case y = (y1, s1) is handled analogously but the algebra is a bit more

cumbersome since for each j we need to condition on its particular s1 value). Expression (12) implies

that the likelihood of observing data vector ŷj (consisting of L components indexed by l) for model m,

at parameters φ and initial conditions H(ŝ1) is

Fm
¡
ŷj |H(ŝ1), φ

¢
=
X
h

fm(yh|H(ŝ1), φ)
LY
l=1

Φ
³
ŷ1,lj |y

1,l
h , σl

´
(13)

where we assume that measurement errors in all variables are independent from each other. We basi-

cally, sum over all grid points h = 1, ...#Y 1, appropriately weighted by fm, the likelihoods in (13). For

example, for consumption and income cross-sectional data ŷj = (ĉj , q̂j) we have F
m
¡
ĉj , ŷj |H(ŝ1), φ

¢
=P

h f
m((c, q)h|H(ŝ1), φ)Φ (ĉj |ch, σc)Φ (ŷj |yh, σq) where (c, q)h go over all elements of C × Q, h =

1, ...,#C#Q.

Multiplying (13) over sample units (households) and taking logs, the simulated log-likelihood of

the data {ŷj}nj=1, conditional on H(ŝ1) and given parameters φ and measurement error in s1 and y1 is

(normalized by n)

Λmn
¡
φ|H(ŝ1)

¢
≡ 1

n

nX
j=1

lnFm
¡
ŷj |φ,H(ŝ1)

¢
. (14)

The maximization in (14) over φ is performed by an optimization algorithm robust to local maxima

(we use pattern search and polytope). Standard errors are computed via bootstrapping, repeatedly

drawing with replacement from the data.

4.2 Testing and Model Selection

We follow Vuong (1989) to construct and compute an asymptotic test statistic that we use to distinguish

across the alternative models using simulated or actual data. The Vuong test does not require that

either of the compared models be correctly specified. The pairwise nature of the test conveniently

allows us to obtain a complete ranking by likelihood of all models we study. The null hypothesis of the

Vuong test, is that the two models are asymptotically equivalent relative to the true data generating

process — that is, cannot be statistically distinguished from each other based on their ‘distance’ from

the data (in KLIC sense). If the two compared models are non-nested (see Vuong (1989) for formal

definition) as here, the Vuong test-statistic is normally distributed under the null hypothesis. If the

null is rejected (i.e., the Vuong Z-statistic is large enough in absolute value), we say that the higher
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likelihood model is closer to the data (in KLIC sense) than the other.

More formally, suppose the values of the estimation criterion function being minimized (i.e., minus

the log-likelihood) for two non-nested18 competing models are given by L1n(φ̂
1
) and L2n(φ̂

2
) where n is

the common sample size and φ̂
1
and φ̂

2
are the parameter estimates for the two models. The pairwise

nature of the test conveniently allows us to obtain a complete ranking by likelihood of all models we

study. Define the “difference in lack-of fit” statistic:

Tn = n−1/2
Λ1n(φ̂

1
)− Λ2n(φ̂

2
)

σ̂n

where σ̂n is a consistent estimate of the asymptotic variance
19, σn of Λ

1
n(φ̂

1
)− Λ2n(φ̂

2
) (the likelihood

ratio). Under regularity conditions (see Vuong, 1989, pp. 309-13 for details), if the compared models

are strictly non-nested, the test-statistic Tn is distributed N(0, 1) under the null hypothesis.

4.3 Discussion [to be revised]

Initial conditions and transitions vs. steady states

The financial regimes we study naturally have implications for both the transitional dynamics and

long-run distributions of the model variables such as consumption, assets, investment, etc. If one has

reasons to assume that the actual data is from a steady state (stationary distribution), then they

may not depend on the initial conditions or the transition path followed and so the regimes can be

estimated by simply matching the simulated with the empirical cross-sectional stationary distributions.

However, given our application to Thailand, an emerging, developing economy, we take the view that

the actual data is more likely to correspond to a transition than to a steady state. Thus, estimating

initial conditions is very important for us, as well as fitting the subsequent transition trajectory, which

requires using intertemporal data. In addition, our computations show very slow dynamics for the model

variables in the mechanism design regimes and also, theoretically, these regimes can have degenerate

steady states (e.g. immiserization in MH) which are additional reasons to focus on transitions instead

of steady states.

Specifically, in our models the initial conditions are the t = 0 values of the state variables (k for

A, (k, b) for S/B, and (k,w) for the mechanism design regimes). As pointed out above, some of these

states are unobserved by the econometrician — for example, the initial promise w. Thus, as we are

interested in transitional dynamics, the initial distribution of w capturing unobserved heterogeneity

across agents is imputed (and its parameters estimated) to initialize the MH/FI regimes. In contrast,

we use the initial distribution of the observable state, k as an input to each model. More details follow

18For the functional forms and parameter space we consider and use in the estimations, the regimes we study are
statistically non-nested. Formally, following Vuong (1989), we say that model A nests model B, if, for any possible
allocation that can arise in model B, there exist parameter values such that this is an allocation in model A. The Vuong
model comparison test can be also used for “overlapping” models, i.e. neither strictly nested nor non-nested, in which
case the test statistic has a weighted sum of chi-squares distribution (see Vuong, 1989, p. 322).
19In practice one can use the sample analogue of the variance of the LR statistic (see Vuong, 1989, p. 314).
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in the estimation sections.

Identification

Because of the analytical complexity of our dynamic incomplete markets model, it is not possible

to provide theoretical identification proofs while keeping the setting sufficiently general. In fact, we

are aware (e.g., Honore and Tamer, 2006) that point identification may sometimes fail in complex

structural models like ours. To address this issue we use the following algorithm — a form of ‘numerical

identification’: Step 1 — take a baseline model regime parametrized by a vector of parameters, φbase;

Step 2 — generate simulated data from the baseline regime; Step 3 — estimate the baseline model using

the data in Step 2 using maximum likelihood and obtain estimates, φ̂
base

; and Step 4 — if the estimates

from Step 3 are numerically close to the baseline φbase, report success, otherwise report failure. In

other words, before going to the actual data, we use data simulated from the model itself to verify

that our estimation methodology performs as it should. We use this approach in all estimation runs in

section 4 for various model specifications and data.

Our simulated MLE approach offers two important advantages. First, it allows us to explicitly

map the model solution probabilities over grids into likelihoods, fully employing the discrete nature

of the linear programming approach. Second, using maximum likelihood allows us to use a formal

statistical test (Vuong, 1989), to compare across the competing model regimes. In principle, one could

employ GMM or minimum-χ2 estimation methods using arbitrary moments instead of our discretized

joint distributions. Unfortunately, to our knowledge, no tractable and computationally feasible way

of implementing a statistical test to compare across dynamic structural models like ours exists in this

case20.

In PTK (2006) we estimated via maximum likelihood a one-period model of occupational choice

with financial constraints. We only used binary data on occupational choice and data on ex-ante wealth.

We not only introducing full-blown dynamic mechanism design models but also significantly expand

our previous work and are able to estimate using cross-sections or panels of consumption, investment,

assets and income, separately and jointly. As should be clear from the above discussion our method is

more generally applicable to many dynamic discrete choice decision problems by first writing them as

a linear program and then following the steps outlined above.

5 Application to Thai Data

5.1 Data

In this section we apply our estimation methodology to actual data from a developing country. The

data we use come from the Townsend Thai Monthly Survey (Townsend, Paulson and Lee, 1997). The

survey began in August 1998 with a comprehensive baseline questionnaire on an extensive set of topics,

followed by interviews roughly every month. Initially consumption data were gathered weekly, then bi-

20Rivers and Vuong (2002) propose a general test that could be used in theory, however, it is computationally infeasible
in our framework.
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weekly. The data we use here begins in January 1999 so that technique and questionnaire adjustments

were essentially done. We use a panel of 531 households observed for seven consecutive years, 1999

to 2005. The data were gathered from 16 villages in four provinces, two in the relatively wealthy and

industrializing Central region near Bangkok, and two in the relatively poor, semi-arid Northeast. All

variables were added up to produce annual numbers.

Consumption expenditures, c include owner-produced consumption (rice, fish, etc.). Income, q is

measured on an accrual basis (see Samphantharak and Townsend, 2009) though, at an annual frequency,

this is close to cash flow from operations. Business assets, k include business and farm equipment, but

exclude livestock, and household assets such as durable goods (we do not attempt to distinguish farm

from nonfarm enterprise, though the distinction between assets and durable goods is sometimes not so

obvious as well). We also perform a robustness check with respect to the asset definition — see section

[ROBUST] Assets other than land are depreciated. All data are in nominal terms but inflation was

low over this period. The variables are not converted to per-capita terms, i.e., household size is not

brought into consideration. We construct a measure of investment using the assets in two consecutive

years as: it ≡ kt+1 − (1− δ)kt for each household.

Table DATA displays various summary statistics of the data. Some of the main features are:

[NEED TO ADD DISCUSSION]

— very skewed assets, k distribution

— high (c, q) and (c, k) correlations.

— high c and k autocorrelations

— very low median investment

Figure 1 illustrates the degree of consumption smoothing and investment volatility relative to net

income by plotting the deviations from year averages for all households. We see that there is significant

degree of consumption smoothing in the data but it is not perfect as the full insurance hypothesis would

imply. Investment (computed from the business assets data as it = kt − (1 − δ)kt−1) is more volatile

than consumption.

Figure 2 follows Krueger and Perri (2010) for another take at the same issue looking at the rela-

tionship between consumption growth and income growth and assets growth and income growth. As

in Krueger and Perri (2010) we sort the data into 20 bins by average income growth over the 7 years

and report the average consumption and assets growth corresponding to each bin.

[ADD DISCUSSION ON THE FIGURES]

5.2 Results [TO BE REVISED]

We convert the data into model units rather than Thai currency by dividing all currency values by

the 90-th percentile of the assets distribution in our sample (179,172 Thai baht). The normalized

asset values are placed on a five-point grid21, K corresponding to the 10th, 30th, 50th, 70th and 90th

percentile in the data (for the whole sample, K = [0, .02, .08, .33, 1]. The unequal spacing of the grid

21We use a standard histogram function based on distance to the closest gridpoint (Matlab’s command hist).
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reflects the skewness of the asset distribution in the data with numerous small and few large values.

To use with the calibrated production function P (q|z, k), normalized income, q is fitted on a five-point
grid corresponding to the 10th, 30th, 50th, 70th and 90th percentile in the data (for the whole sample,

Q = [.04, .17, .36, .75, 1.75]). These grids imply an upper bound of .82 for the B grid in the B regime

to ensure no default. The consumption grid used to compute the MH, FI and LC models consists of

31 equally-spaced points on [.001, .9] model units.

We then use the algorithm described in Section 3 to estimate each model. We compute each regime

and, using the (normalized and discretized) Thai data, maximize the likelihood function between

the model-generated joint distributions and their counterparts in the data, as in (14). We estimate

the structural parameters σ (risk aversion) and θ (effort curvature), together with the distributional

parameters, μw, γw (μb, γb for B and S), and the standard error parameter, γme. For robustness

purposes we estimate both using the first two (’99-00) or the final two (’04-05) years of the Thai data.

Parameter estimates and bootstrap standard errors are in Table 8 (reported for ’99-00 only) while the

Vuong regime comparison test results are in Table 9 (for both ’99-00 and ’04-05).

Naturally, the parameter estimates differ across the regimes (see Table 8) as the MLE optimization

adjusts the parameters for each model regime to attain best fit with the data. In addition, holding the

best-fitting regime (e.g., S) constant, if we compare across the sections in Table 8 using different data

variables, we see that the parameter estimates inclusive of bootstrap standard errors are sensitive to

the data used, something which does not happen with model-generated data.

5.2.1 Business Assets, Investment, and Income Data

We start by estimating and testing the implications of the different regimes about assets, investment

and income using the joint cross-sectional distribution of (k, i, q) in the Thai data. When estimated

from k, i, q 1999-00 cross-sectional data, the financial regimes rank in decreasing order of likelihood as:

S, B, A, FI, MH (Table 8, last column), with the Vuong test unable to reject the hypothesis that the

B and S regimes are equally close to the data (Table 9, section 1). With the ’04-05 data the B, S and

MH regimes are tied for best fit (row 1.2 in Table 9). As in the baseline runs with simulated data,

the autarky regime is distinguished at the 1% significance level in all pairwise comparisons, but here

it does not come last in terms of fit. The MH, FI and A regimes which obtain the lowest likelihoods

also feature the highest estimated level of measurement error (γme), again similar to our results with

simulated data. The likely explanation is that, to compensate for the bad fit, the MLE procedure is

raising the level of measurement error.

5.2.2 Business Assets, Investment, Income, and Consumption Data

Next, we evaluate the gains from using combined data on assets, income, and consumption as opposed

to using (k, i, q) data only. The regimes’ likelihood ranking (see the ‘winning’ regime in each pairwise

comparison) remains the same with the B and S regimes coming on top, followed by A, MH and FI

(section 2 of Table 9). Adding the consumption data to the set of variables, the joint distribution
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of which we estimate, we observe a significant improvement in our ability to distinguish the regimes

relative to using (k, i, q) data only — the number of ties falls from four to two and there are no marginal

significances. This confirms our previous results from the runs with simulated data.

5.2.3 Consumption and Income Data

We also test whether we can distinguish between the regimes based solely on the degree of consumption

smoothing they imply relative to the Thai data using the (c, q) joint cross-sectional distribution (Table

9, section 3). We observe significantly more regime ties — seven ties and one marginally significant

comparison over all years considered, compared to when using combined investment and consumption

data (two ties). This once again confirms our finding that using combined investment and consump-

tion data significantly improves our ability to distinguish the incomplete market regimes. Unlike the

simulated data in section 4, the Thai consumption and income data alone seem to be unable to pin

down precisely the best fitting regime.

The regime likelihoods using the joint (c, q) data, here in this sub-section, also rank differently

compared to those using (k, i, q) or (c, k, i, q) data in the above sub-sections. The autarky regime

has the worst likelihood and is always rejected against the others, but now the moral hazard regime

achieves slightly higher likelihood than the exogenously incomplete (B and S) regimes with the 1999

data. However, the likelihood difference is not statistically significant — MH is tied with B in 1999 and

with B and S in 2005. Thus, we cannot reject the hypothesis that the B (and S for 2005) regimes are

as close to the data as the MH regime in these cases.

5.2.4 Model Dynamics: Panel Data

We also estimate and test across the alternative financial regimes using panel data, targeting differences

in the models’ dynamics. Specifically, we use data from the joint distribution of consumption and

income in two different time periods as in a panel22 (section 4 in Table 9). The regimes’ likelihood

ordering is consistent with that in the (c, q) single cross-section results (section 3 of Table 9), although

the MH regime is now rejected, just like when we use the combined data. The ability to distinguish

across the regimes with the 1999/00 (c, q) panel is much better than in the single 1999 (c, q) cross

section (zero vs. three ties respectively). However, our ability to distinguish the regimes worsens with

the gap between years included in the panel, with the autarky regime coming close and tied with B

and S (this is the only instance in which this happens, among all baseline runs in Table 9) when the

1999/05 (c, q) panel is used.

5.3 Additional runs with Thai data

We also performed a battery of additional estimation runs (Table 10) to check the robustness of our

results with the Thai data and shed more light onto the regime ordering patterns with consumption

22Unfortunately, using panel data of (k, i, q) or (c, q, i, k) is infeasible with our Thai data due to the high number of
joint distribution cells required to be fitted (up to over 15,000) with only 531 observations available.
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vs. investment data. Unless stated otherwise the table uses 1999-00 data.

A re-estimation imposing risk neutrality (that is, fixing σ = 0 instead of estimating σ) naturally

hurts the fit of all regimes with the Thai data, but especially the MH and FI regimes. As a result,

the B and S regimes fit best using the 1999 Thai (c, q) data (row 1.1 in Table 10). This shows that,

as argued in the introduction, allowing for risk aversion explicitly can be important in identifying the

underlying financial market imperfections in the data. Otherwise, imposing risk neutrality pins down

the borrowing regime as the best fitting using the 1999 (k, i, q) and (c, q, i, k) cross-sections.

Estimating without allowing for measurement error (fixing its standard deviation, γme to zero) also

reduces the regimes’ fit (especially for autarky) and preserves the MH and B regimes’ best fit with the

Thai data on consumption and income while B emerges as the single best fitting regime with (k, i, q)

data.

Another robustness check focuses on a sub-sample of households (n = 391) who are related by

blood or marriage, as in a kinship network, using cross-sectional (c, q) and (c, k, i, q) data and (c, q)

panel data (section 3 of Table 10). Compared to the whole sample results and likelihoods (Table 9),

using this networked sub-sample data allows us to pin better the best fitting regime as moral hazard

with the consumption and income cross-sectional data. This presents evidence that family networks

help in consumption smoothing in the cross-section. This result is not very robust, however, as the

1999/00 (c, q) panel and the joint (c, q, i, k) data indicate that the B regime remains best-fitting (as in

the whole sample) within the networked sub-sample when ‘richer’ data are used.

Section 4 of Table 10 re-estimates the regimes and compares across them when we allow for quadratic

adjustment costs in investment. In particular, our full information regime with adjustment costs

corresponds to the standard adjustment costs model in the literature (Bond and Meghir, 1994 among

many others). In this specification, the (k, i, q) data alone is insufficient to discern across the B, S,

MH and FI regimes (only autarky is rejected). That is, the B and S regimes are tied with the ‘pure

adjustment costs’ regime from the literature (our FI) as well as with the moral hazard plus adjustment

costs regime — presumably we need more data to distinguish the regimes, but our conclusions from

before survive. Using combined consumption and investment data, however, recovers S and B with

adjustment costs as the best-fitting regimes (although MH with adjustment costs is tied with the

second-best regime B too).

Next, in section 5 of Table 10 we explore whether there are regional differences in the best fitting

regime. In the Central (richer and fast industrializing) region the B regime (tied with S with (c, q) data

alone) is revealed as the one characterizing best the joint data distribution. However, in the North-East

(poorer and mostly agricultural) region, we cannot reject the moral hazard (MH) regime as best-fitting

(it achieves the highest likelihood), including when using joint consumption, investment and income

data.

In section 6 of Table 10 we perform several additional robustness runs. A re-estimation with another

data sub-sample using individuals related via personal loans or gifts (Kinnan and Townsend, 2009) and

(c, q) data puts the MH regime on top in terms of likelihood but statistically tied with the B and FI
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regimes. Again, some evidence of the role of such networks in better consumption smoothing is present.

A run in which we used (c, q, i, k) data cleaned from household fixed effects imposing the average family

structure and time and regional effects (as in Kaboski and Townsend, 2009) pins down the borrowing

regime as best fitting, consistent with the baseline runs. A run with coarser grids (three points each,

as in the simulated data section) produces the same results as the benchmark.

We also check robustness with respect to our definitions of assets and income in the Thai data.

We re-estimate using the (c, q, i, k) data including all household assets and livestock in the definition

of k and exclude households who have only labor income. The sample size drops to 297 but our main

findings about the best fitting regime from Table 9 (row 2.1) do not change, although there are now

two regime ties because of the lower n. Finally, we also tried imposing a lower bound on promises

in the MH and FI regimes equal to the agent’s autarky value at k = 0, as in a limited commitment

model (Ligon, Thomas and Worrall, 2002). This worsens the fit of the MH regime relative to the data

— the ability to smooth consumption and investment is diminished with limited commitment. In other

words, the degree of consumption smoothing in the Thai data is more consistent with our original moral

hazard regime without the limited commitment constraint. The B and S regimes remain best-fitting

as a result.

Due to extreme computational time requirements we are unable to estimate the UI regime for all

runs in tables 9 and 10. Nevertheless, to show that our methods work in principle, in Table 10 section

7 we did a single run for the moral hazard with unobserved investment (UI) regime using the coarse,

three-point grid specification and 1999-00 (c, q, i, k) Thai data (read together with line 3 in section

6). We find that for this run the UI regime achieves the highest likelihood among the six regimes we

compute. This result shows evidence for a complex financial structure in the Thai data that is more

constrained than pure moral hazard. Still, the UI regime is tied in this run with the S regime and

barely edges B at the 10% confidence level, so our overall conclusions from before stand.

5.4 Discussion

The financial regimes we study postulate endogenous constraints on the ability of firms to adjust

assets or, in other words, endogenize the degree of persistence of assets/capital k. For example, the

FI regime stipulates that an agent, facing no financial constraints, would immediately adjust to the

optimal capital level, k0 no matter what the initial k is. Such adjustment is however subject to the

incentive compatibility constraints in the MH regime and subject to even more stringent borrowing

constraints (e.g., zero borrowing under savings only and autarky) in the exogenously incomplete markets

regimes. A salient feature of the Thai data is that capital is very persistent and investment events are

infrequent (Samphantharak and Townsend, 2009). This is also depicted on Figure 1 which plots the

joint distribution of k and k0 in the 1999-00 Thai data23. The persistence in capital favors the B (and

often S) regimes overall. It is also the reason why in our robustness runs with quadratic adjustment

costs the likelihood of the MH and FI regimes with the (k, i, q) and (c, q, i, k) data improves notably. On

23The picture looks qualitatively the same for all years.
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the other hand, the autarky regime is rejected in virtually all runs, as it apparently predicts excessive

persistence and inability to smooth investment relative to the data.

Our models also imply endogenous, theoretical restrictions on the ability to insure consumption

against income shocks, with the moral hazard model predicting more insurance (consistent with the

1999 Thai consumption-income data) than the exogenously incomplete markets regimes. However, the

good fit of the MH regime with the Thai consumption and income data is not robust to some of the

alternative specifications discussed in the robustness section. Overall, we find that the consumption

data alone do not provide conclusive evidence on the nature of the financial regime. Indeed, our

results using combined data on consumption, income and investment where the best-fitting regimes

are the same as when using investment and income data alone, and where our ability to distinguish

regimes is better than using consumption data alone, suggest that the type of financial constraints

represented by the borrowing regime (often tied with the saving only) are the leading factor in shaping

the overall patterns in the Thai data. On the other hand, for subsamples such as family networks and

the Northeast region there is some evidence of moral hazard.

Finally, the results in this section can be put in perspective relative to our previous findings in

PTK (2006) where we estimated a one-period model of binary occupational choice between starting a

business and subsistence farming. In that paper we found moral hazard (rather than limited liability) to

be the predominant source of financial constraints for rural Thai entrepreneurs, but the borrowing and

saving only regimes we study here were not tested. As in this paper, PTK found evidence for differences

in the best fitting regime in some specifications, e.g., when stratified by region. On the other hand,

Karaivanov (2008) finds that, in an occupational choice setting similar to PTK, one cannot distinguish

statistically between a model of moral hazard vs. a model of borrowing with default similar to what

we find in the (c, q) cross-section specifications in this paper.

6 Robustness

6.1 Maximum likelihood estimation with simulated data [NEEDS TO BE RE-

VISED]

To assess the performance of our empirical methods while keeping the environment under complete

control we first estimate and test all regimes using simulated data from one of them, before moving on

to actual data in the following section. Specifically, we adopt as a baseline the moral hazard regime with

observed investment24 (MH) and simulate data from it, which we then use to estimate and test across

all regimes, including MH to verify if we ‘recover’ the true regime and the data-generating parameters.

Table 3 displays the baseline parameters used in the estimation runs with model-generated data that

follow. These parameters are representative, from a set of many runs we did, and chosen to generate

24In the UI regime k and k0 are unobserved to third parties in the theoretical model but are (ex-post) observed by the
econometrician. The survey enumerators take the time and trouble to ask about these as best as possible. Of course,
incentives to hide or mis-report assets could still be present.
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well-behaved interior solutions relative to the grids. In addition, we have done various robustness

checks for other parameter values.

6.1.1 Generating Data From the Model

We use the grids from Table 2 and the baseline parameters from Table 3 to simulate data from the MH

model regime25. To initialize the MH regime, we take an initial distribution over the states (k,w) which

has an equal number of data points for each grid point in the capital grid K and is normally distributed

in w, i.e., w ∼ N(μw, γ
2
w) for each k ∈ K. We set the mean μw to be equal to the average value in

the promise grid, wmax+wmin
2 , at the baseline parameters. We then draw n (the sample size) random

numbers from N(μw, γ
2
w) (that is, we assign n/#K of these draws to each k ∈ K) and initialize the

distribution over the state space26. Next, we compute the data-generating regime (MH) at the baseline

parameters, φbase (see Table 3) given the drawn initial distribution over states (k,w) as described above

and use the LP solution π∗ to generate the theoretical distributions, f(.|φbase,H(k0)) of27 c, q,and k0

(including jointly), conditional on the observable state distribution H(k0). We use these conditional

distributions from the baseline MH regime (already discretized given our LP method) as simulated

‘data’ to use in the estimation.

In addition, we allow for additive measurement error in consumption, c, assets, k and income, q.

The measurement error, ε added to each variable belongs to the Normal distribution N(0, γ̃2me). We use

the Normal cdf to compute the joint distribution, f(y|φbase,H0(k̂)) (see (14)) with measurement error

added, for example, the (c, q) joint distribution. The way we do it, basically, is compute analytically how

much of the probability mass at each grid cell ‘spills over’ to nearby grid cells due to the measurement

error. We perform all estimation and testing exercises in this section for two measurement error

specifications: ‘low measurement error’, where we set γ̃me equal to 10% of the grid span of the respective

variable, and ‘high measurement error’, with standard deviation γ̃me = 50% of the grid span. That

is, we set the standard deviation of the measurement error proportional to each variable’s grid span:

γ̃me = γme(grid span) where γme = .1 or .5 is the proportionality parameter28.

The results displayed in this section are representative for many more runs we did, with various

other parametrizations. We discuss some of these in the robustness section. In addition, we also re-do

the estimation and model selection runs with simulated data reported in this section for the parameter

estimates from the Thai data. While we feel we have done our best to verify the robustness of our

findings here, this section is primarily intended as a ‘proof-of-concept’ run for our methods before

applying them to the actual Thai data.

25In the computer code we re-write the MH and FI regimes’ dynamic programs from section 2 in terms of consumption
instead of transfers. The two formulations are equivalent.
26Our methods allow any other possible initializations (mixtures of normals or bivariate distributions), at the cost of

additional parameters to be estimated and slower computation. In the Thai data application in the next section we use
the actual initial discretized distribution of assets in the data.
27We also construct investment, i as i ≡ k0 − (1− δ)k.
28By using relative rather than absolute level of measurement error, we keep its standard deviation commensurate

across model variables with different grid ranges.
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6.1.2 Baseline Results Using Simulated Data

The parameters, φ that we estimate are the distributional parameters for promises and measurement

error (μw, γw and γme) and the three structural parameters of the model — the preference parameters,

σ and θ and the technology parameter, ρ. The discount factor β, the outside cost of capital, R and the

depreciation rate, δ are calibrated to standard values (see Table 3). For the S and B regimes, instead

of the parameters μw and γw we estimate the mean, μb and standard deviation, γb of the distribution

of b (assumed unobserved and drawn from a normal distribution, consistent with our treatment of w

in the mechanism design regimes).

For each regime we follow the procedure described in section 4.1 — we first generate the initial state

distribution, then generate simulated data, apply measurement error29, and compute the discretized

joint probability distribution of the variables of interest. We then form the likelihood function (14)

and use a search-based global optimization routine30 to solve for the estimates φ̂
MLE

maximizing the

likelihood between the baseline data and the estimated regime. As mentioned above, one of the regimes

we estimate is the data-generating regime (MH) itself, in order to verify whether we successfully recover

the data-generating parameters (see the numerical identification discussion in section 4.3). Finally, we

perform Vuong tests to establish whether we can distinguish statistically between the data-generating

and the rest of the regimes, as well as between any counterfactual regime pairs (e.g., B and S).

Investment and Income

We first estimate and test the financial regimes based on their implications about assets, investment

and income (cash flow). To that purpose we simulate a data sample of size n = 1, 000 from the joint

distribution of (k, i, q) in the baseline (MH) regime. Tables 4 and 5(A), respectively, display the

parameter estimates and Vuong test results with these data. Table 4, using the low measurement error

specification, shows that, when estimating the data-generating MH regime the baseline parameter

values (last row in each section, in italics) used to generate the data for γme, θ and ρ are recovered

relatively well but σ, μw and γw are a bit off. In terms of likelihoods, the MH regime naturally obtains

the highest likelihood (as data-generating), followed very closely by the other mechanism design regime

(FI), the B and S regimes, and finally autarky. With high measurement error (not reported in table 4

to save space) the likelihoods for all regimes are lower and some are very close so that several regime

pairs are tied (table 5).

The parameter estimates in Table 4 differ across the estimated regimes, as the MLE procedure is

trying to fit the common data, but the estimates are generally quite similar between the FI and MH

regimes (apart from μw). This is not the case for the exogenously incomplete markets regimes (B, S,

A) where to fit the data some of the parameters (e.g. ρ) take values far from the data-generating ones.

The B, S and A regimes also seem to require higher measurement error to fit the data (especially the A

regime), compared to the baseline value for γme (0.1). The bootstrap standard errors of the parameter

29Allowing for measurement error rules out zero probability events that would make the likelihood of some models
infinite.
30We first perform an extensive grid search over the parameter space to rule out local extrema and then use the Matlab

global optimization routines patternsearch and fminsearch to maximize the likelihood.
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estimates are in general relatively small.

Turning to the results of the pairwise Vuong tests (section 1 of Table 5), we find that in the low

measurement error specification we are able to recover the data-generating regime (MH) as best-fitting

and to distinguish between it and the B, S and A regimes almost perfectly (at the 1% significance

level) but, with the (k, i, q) data we cannot distinguish between the MH and FI regimes statistically.

We also distinguish across the regimes in all pairwise comparisons between counterfactual (non-MH)

regimes with only one exception for B vs. S). That is, even if the researcher (incorrectly) believes

that the data were, for example, generated from the FI regime, he/she can still distinguish it from

the B, S and A regimes. In contrast, with high measurement error in the baseline simulated data,

the distinction between the regimes is more blurred and, based on the Vuong test, we cannot discern

statistically between the MH/FI, MH/B and FI/B regime pairs. This suggests that additional data is

needed to distinguish these regimes from each other. In all cases, including high measurement error,

all non-autarky regimes are statistically distinguishable at the 1% level from the autarky regime.

Consumption and Income

We next estimate and test whether we can distinguish between the regimes based on the degree of

consumption smoothing they imply, as embedded in the consumption-income (c, q) joint distribution.

The results are shown in Table 4 (second section) and Table 5, section B. As with the (k, i, q) data, the

likelihood values are ordered MH, FI, B, S, and A from highest to lowest. Thus, the regime likelihood

order, relative to the data-generating MH model remains robust and not affected by the type of data

used. Using (c, q) data we recover the data-generating parameters better than with (k, i, q) data with

the exception of ρ (compare the row for the MH regime estimates with the row for the baseline in Table

4). Again, the non data generating regimes seem to require more measurement error (especially A) to

fit the data and the standard errors (with the exception of that for ρ in the FI regime) are low. The

parameter estimates for the exogenously incomplete regimes in many instances differ significantly from

the baseline ones as the MLE is adjusting them to fit the data best.

Regarding our ability to distinguish the regimes using (c, q) data, with low measurement error, the

baseline (MH) regime is distinguished at the 1% significance level from all alternatives. This is not the

case, however, for the counterfactual regimes where FI is tied with B and S. With high measurement

error we are able to distinguish between the MH baseline and some alternative regimes (B, S) only at

a lower confidence level, including a statistical tie with the FI regime. As in the results with (k, i, q)

data, a number of other regime pairs are also tied at the 10% level with high measurement error. The

autarky regime is again statistically distinguished from the others, including in the high measurement

error specification.

Combined Data on Consumption, Investment, and Income

Theoretically it is known that with incomplete markets (which all our regimes except FI assume), the

classical separation between consumption and production/investment decisions fails. A natural question

is then whether using joint data on consumption and investment would enable us to distinguish the

regimes even with substantial measurement error. More generally, more information should be present
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in the joint data on c, k, i and q than in consumption-income and investment-income data separately.

The parameter estimates with (c, q, i, k) data are reported in the third section of Table 4. The

results are very similar to those with (c, q) and (k, i, q) data described above. The data-generating

regime is ‘recovered’ as best-fitting and also the parameter estimates are very close to the baseline

parameters (compare with the (k, i, q) case in particular). The regime order in likelihood remains MH,

FI, B, S, A; the parameters are precisely estimated and the exogenously incomplete regimes require

higher measurement error to fit the data (in the range .22-.72 compared to the .1 baseline).

Section C of Table 5 reports the estimated likelihoods and Vuong test results using data on the

joint distribution of c, q, k and i. The ability to distinguish the data generating regime (MH) from all

alternatives is nearly perfect (at the 1% level) with both low and high measurement error. That is,

using the joint data causes a significant improvement (especially in the high measurement error case) in

the ability to distinguish between the data-generating (MH) regime against each alternative, compared

to when using consumption or investment data separately — compare the number of ties in sections

A and B to that in section C of Table 5. The ability to distinguish between counterfactual regimes

(i.e., those different from MH) also improves significantly especially relative to when using (c, q) data

(the number of ties falls from five to three overall). Only two cases remain (FI/B and FI/S with high

measurement error) in which if the researcher guesses the data-generating regime incorrectly he/she

would be unable to distinguish it from some other regime. Overall, even substantial measurement error

(50% of the entire range of values that c, k and k0 may take) does not impede our ability to distinguish

the true regime once joint consumption, investment and cash flow data are used.

Intertemporal Data — Panel

We also estimate and test the financial regimes using their implications about the dynamics of the

consumption and income joint distribution. Specifically, we use simulated data on the joint distribution

of consumption and income, (c, q) in two different periods: t = 0 and 1, or t = 0 and 50, as in a panel

dataset. Section D of Table 5 reports the Vuong test statistics. We use the high measurement error

specification only and investigate whether using intertemporal data improves our ability to distinguish

across our dynamic models of financial markets compared to when using a single cross-section (at t = 1)

as in Table 5(B).

Compared to part B, part D of Table 5 demonstrates that using intertemporal data significantly

improves our ability to distinguish the regimes — the number of ties diminishes from four (plus two

marginal comparisons) — see row 2 in part B — to zero or one ties, depending on the panel time span

(rows 1 and 2 in part D). Also, the Vuong test statistics are larger in most cases showing the regimes

are distinguished better. The improvement in ability to discern the regimes using intertemporal data is

comparable and even slightly better compared to when joint data on consumption, investment and cash

flow was used (compare sections C and D). The time period between the panel periods has negligible

effect on the results.
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6.1.3 Additional runs with simulated data

We report a number of additional estimation runs to study the robustness of our results.

Using Simulated Data from the Borrowing Regime

First, instead of generating the baseline data from the MH regime, we generated it from the bor-

rowing regime (B). Table 6(A) presents the Vuong test statistics using simulated data on consumption,

assets, investment, and income (c, k, i, q) generated from the B regime at the baseline parameters from

Table 3. Comparing the results to those in Table 5C, we see from the test-statistics that, with data

generated by the B regime, the likelihood order naturally changes, with B now producing the high-

est likelihood, followed by MH, B, FI and A. Once again, the autarky regime is furthest away from

the data-generating regime and it is distinguished from all alternatives at the 1% level. With low

measurement error we can distinguish across all regime pairs at the 5% significance level. As before,

larger measurement error reduces our ability to distinguish some of the regimes — the MH/B and MH/S

regime comparisons produce ties.

Additional Robustness Runs

Table 6 part B contains the results from five additional robustness runs using (c, q, i, k) data gen-

erated from the MH regime. Row 1 analyzes the effect of generating the data without measurement

error31 (we set γme = 0). The Vuong test statistics for the comparisons between the MH and the rest

of the regimes go up relative to Table 5C but some counterfactual regime pairs are indistinguishable.

The autarky regime remains statistically distinguishable from all others.

Rows 2 and 3 of Table 6B study the effect of varying the simulated sample size using the high

measurement error specification. We find that reducing the sample size, n from 1,000 to 200 significantly

reduces the power of the Vuong test and, as a result, we cannot distinguish between any of the MH,

FI, B and S regimes, only autarky stands out. In contrast, increasing n to 5,000 achieves very similar

results to our n = 1, 000 baseline run with (c, q, i, k) data.

The fourth row of Table 6 part B checks the sensitivity of our results to grid dimensionality.

Reducing the size of all grid to three points (from five) does not affect the likelihood values or the

Vuong statistics significantly relative to those in Table 5(B) which is reassuring for the robustness of

our findings. The last row in Table 6B allows for additional heterogeneity in the model, through allowing

for ‘productivity’ differences across agents. Specifically, we draw ten productivity values from a uniform

distribution on [0.75,1.25] and compute the MH regime multiplying the grid Q by each productivity

factor, to capture ‘skill’ heterogeneity. We draw the simulated data from these heterogeneous joint

distributions, ending up with a joint (c, q, i, k) distribution that corresponds to that of a mixture of

households with different productivities. We then estimate all regimes as if those differences do not

exist (i.e., as if we mistakenly treat the data as generated without such differences). Line 5 in Table

6B shows that allowing for this additional source of unobserved heterogeneity (and mis-specification)

in the model does not affect the robustness of our results. We still recover MH as the best-fitting

31If a regime implies zero probability in some joint distribution frequency cell, we assign a large negative number
(instead of minus infinity) for lnm(φ) in (14) for that cell.
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regime, distinguished at the 1% level from all others. The counterfactual regime likelihood order is

also preserved relative to the baseline runs.

We also report the Vuong test statistics when we generate data from the MH regime at the estimated

parameters from the 1999 Thai data (see next section). Table 6C shows that the best fitting regimes

are exactly the same as in our low measurement error specification — the MH regime is recovered as

best-fitting (tied with FI in the (k, i, q) case). There are some differences in terms of ties among the

counterfactual regimes. Note that here we cannot directly compare the number of ties across the runs

with different data as they are computed at different parameter vectors (see table 8 below).

Finally, in Table 6 part D we perform a run with the moral hazard with unobserved investment

(UI) regime for our coarse, three-point grid specification with the (c, q, i, k) data simulated from the

MH regime (read together with line 4 in part B). As explained above (see footnote 19) the UI regime

is extremely computationally heavy to estimate so we only compute this single run as proof of con-

cept. The results in the table show that the data-generating MH regime expectedly achieves highest

likelihood, followed by FI, UI, B, S and A.

6.2 Descriptive analysis of simulated data

In this section we use simulated data at the MLE parameter estimates (using the 1999-00 runs with

c, q, i, k data) to compare and contrast in what dimensions each model regime fails or succeeds in

matching the Thai data. Table COMP reports the results. The table uses the whole Thai data panel

(531 households over 7 periods). These data (in model units, i.e., normalized by the 90th percentile

of the k distribution) are compared with the same size panel generated from each of the alternative

model regimes. Note that each regime is estimated only using 1999-00 data, so the Table also provides

a form of ‘out of sample’ test for how well the models match various moments of the data.

[TABLE COMP HERE — ADD DESCRIPTION OF MAIN FEATURES]

6.3 Euler equation GMM estimation

In this section we report results from two robustness estimation runs that use the Euler equations

approach.

6.3.1 Consumption Euler equations

First, following Ligon (1998) we test a moral hazard vs. ‘permanent income’ (borrowing and lending

in a risk-free asset) models. The ‘permanent income hypothesis’ (PIH) (standard non-contingent debt

model) implies the Euler equation,

u0(cit) = βREt(u
0(cit+1))

that we estimate using our panel data on consumption, {cit}, i = 1, ...N, t = 1, ..T. Suppose u is

CRRA, with coefficient γ , that is, u(c) = c1−γ

1−γ (with u0(c) = c−γ and suppose also βR = 1. Denoting
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ηi,t ≡
ci,t+1
ci,t

for i = 1, ..N and t = 1, ..T − 1 and h(ηi,t, b) ≡ ηbi,t− 1 where b = −γ (minus the coefficient
of relative risk aversion) we have the moment conditions:

Eth(ηi,t, b) = 0

On the other hand, Rogerson (1985) or Ligon (1998) derive the corresponding ‘inverse’ consumption

Euler equation for a repeated moral hazard model as:

1

u0(cit)
=

1

βR
Et(

1

u0(cit+1)
)

Again, under CRRA and βR = 1, equation (2) can be written as:

Eth(ηi,t, b) = 0 (15)

where here b = γ (the coefficient of relative risk aversion). As proposed by Ligon (1998), conditions

(15) can be used in a GMM estimation to: (i) estimate the parameter b and (ii) use the estimate of b

from step (i) to infer which model (PIH vs. private information) is likely holding in the data. Basically,

assuming households are risk-averse, a positive estimate for b would indicate that private information is

consistent with the data, while if the b estimate is negative, the PIH model is consistent with the data.

A version of (15), E(h(ηi,t, b).ζi,t) = 0 using variables ζi,t that are in the information set of household

i at time t as instruments can be also estimated (see Ligon, 1998 for details).

Table L reports the results from the GMM estimation described above. Our estimate of b is negative

which supports the PIH model as opposed to the moral hazard model.

6.3.2 Investment Euler equations

We follow Bond and Meghir (1994), we test a model of no financial constraints and quadratic adjustment

costs vs. the alternative of financial constraints. Specifically, we estimate the following equation using

GMM methods from Arellano and Bond (???),µ
i

k

¶
jt

= β1

µ
i

k

¶
jt−1

+ β2

µ
i

k

¶2
jt−1

+ β3

³ q
k

´
jt−1

+ dt + ηj + εjt

where j denotes household, t is time, and i, k, q are investment, capital and income (cash flow) respec-

tively, as before. Bond and Meghir (1994) show that under the null of no financial constraint we must

have β1 ≥ 1, β2 ≤ −1 and β3 < 0. The focus in this literature (not without a lot of controversy, see

xxx) is on the cash flow coefficient β3. A positive β3 estimate has been interpreted as indicating the

presence of financial constraints.

Table B contains the results from the above estimation. We obtain a statistically insignificantly

positive β3 indicating we can reject the null of no financial constraints. In addition, the estimates of

the coefficients β1 and β2 also do not fall into the ranges implied by theory under the null. Again, as

32



with Table L, we view this as supporting evidence for our MLE findings.

7 Conclusions [to be revised]

We formulate and solve numerically a wide range of models of dynamic financial constraints with

exogenous or endogenous contract structure that allow for moral hazard and unobservable capital and

investment. We characterize the optimal allocations implied by the regimes from both cross-sectional

and intertemporal perspectives. We develop methods based on mechanism design theory and linear

programming and used them to structurally estimate, compare, and statistically test between the

different financial regimes. The compared regimes differ significantly with respect to their implications

for investment and consumption smoothing in the cross-section and transitions. Combined consumption

and investment data were found particularly useful in pinning down the financial regime generating the

data. Our methods can handle unobserved heterogeneity, grid approximations, transitional dynamics,

and reasonable measurement error.

One important finding is that in our baseline runs using combined consumption and investment

data we can readily distinguish exogenously incomplete financial regimes from endogenously incomplete

ones, where the latter are solutions to mechanism design problems with unobserved actions and state

variables. As the literature we surveyed in the introduction typically takes one route or the other, we

believe this ability to distinguish will prove helpful in future research and the applications of others. We

are also able to distinguish within these regime groups, though this depends on measurement error, the

variables in the available data set, and whether or not we have more than a single cross-section of data.

Of course, we do not claim that we have covered all possible models of financial contracts, only six

common prototypes. Obvious inclusions for future work are models with observed effort but unobserved

ability or productivity, unobserved output (costly state verification), or limited commitment.

We are still somewhat limited on the computational side, though we are encouraged with recent

advances we have been making. We had difficulty estimating the moral hazard regime with unobserved

capital and investment. In an on-going collaboration with computer scientists, we have been exploring

the use of parallel processing to speed up our codes and allow more complexity. What we have done thus

far is, for want of better terminology, brute force. There would be further gains from more streamlined

programs and more efficient search, i.e., where to refine the grids, when to use non-linear or mixed

methods, the use of nested pseudo-likelihood methods, and so on.

We have also established that our methods work on actual data from villages in Thailand. We echo

previous work which finds that full risk sharing is rejected, but not by much, and indeed find that the

moral hazard regime is not inconsistent with the income and consumption data. However, this result

is not robust to some alternative specifications as discussed in the robustness section and we find that,

overall, consumption and income data alone do not provide conclusive evidence on the nature of the

financial regime. In terms of investment, we confirm previous work which finds that investment is not

smooth and may be sensitive to cash flow and, indeed, find that the borrowing and saving regimes seem
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to characterize best the investment and income data, as well as the combined consumption, income

and investment data.

We do recover a more sophisticated contract theoretic regime (moral hazard constrained credit)

if we restrict attention to family networks and 1999 data, confirming related work by Chiappori,

Samphantarak and Townsend (2009) and Kinnan and Townsend (2009). Still, this result is not robust

overall, which we suspect could be due to the infrequent nature of investment in the Thai data and the

relatively large size of investment compared to capital when investment takes place. On the other hand,

the financial regimes we study postulate endogenous constraints on the ability of firms to adjust assets,

embedding the degree of assets persistence. The feature of the Thai data that capital is persistent

thus favors the B (or S) regimes where assets adjustment is subject to more stringent constraints than

in MH or FI. Evidently we have learned something from our approach, beginning to distinguish, in a

sense, capital adjustment costs from financial constraints.

Natural future steps include allowing for distinctions across different technologies (fish, shrimp,

livestock, business, etc.) and aggregate shocks (shrimp disease, rainfall, etc.). We would also like

to return to the issue of entrepreneurial talent, as in our earlier work (PTK, 2006) and allow for

heterogeneity in project returns in the actual data. Related work (Pawasutipaisit and Townsend,

2008) shows that ROA varies considerably across households and is persistent. On the other hand,

such data summaries have trouble finding consistent patterns with respect to finance, suggesting the

data be viewed through the lens of revised models.

We have our eyes on other economies as well, in part because we get more entry and exit from

business in other countries, and in part because we need large sample sizes for our methods to work.

Unfortunately, we do not typically find both consumption and investment data, which is why we chose

the Thai data to begin with. Work in progress (Karaivanov, Ruano, Saurina and Townsend, 2009)

with non-financial firms data from Spain shows evidence that the number of firms’ bank relationships

matters for whether they exhibit excess cash flow sensitivity of investment. We use the methods

described in the current paper to evaluate which of four financial regimes (autarky, non-contingent

debt, moral hazard and complete markets) best characterizes the degree of financial constraints for

unbanked, single-banked and multiple-banked firms. Our methods allow in principle for transitions

across financial regimes which is another extension we plan.
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8 Appendices

8.1 Appendix A — Moral hazard with unobserved capital and investment

Let agent’s effort be unobservable as in the moral hazard (MH) regime but, suppose in addition, the
principal also cannot observe the agent’s current capital stock k and planned level for next period,
k0. The unobserved state k adds a dynamic adverse selection problem to the moral hazard problems
arising from the two unobserved actions, z and k0.

To model this setting as a mechanism-design problem, suppose the agent sends a message about his
capital level k to the principal who offers him a contract conditional on the message which consists of
transfer τ , recommended effort z, investment k0, and future promised utility. Because of the dynamic
adverse selection problem in the state k, following Fernandes and Phelan (2000) and Doepke and
Townsend (2006), instead of the scalar promise w in the MH regime, the proper state variable in the
recursive representation is a promised utility schedule, w ≡ {w(k1), w(k2), ..., w(k#K)} ∈ W, where
k1, k2, etc. are the elements of the grid K.32 The #K-dimensional setW is endogenously determined
(not all promise-assets combinations are feasible) and must be iterated upon together with the value
and policy functions (Abreu, Pierce and Stacchetti, 1990).

The computational method we use to solve for the optimal contract in this unobserved investment
(UI) regime requires separability in consumption and leisure, U(c, z) = u(c)− d(z) (note, this was not
needed for the MH, FI, or the exogenously incomplete regimes). The separability allows us to split
each time period into two sub-periods and use dynamic programming within the time periods. This
helps keep dimensionality in check, since the resulting sub-problems are of much lower dimension. The
first sub-period includes the announcement of k by the agent, the principal’s effort recommendation z,
the agent’s actual effort supply, and the realization of the output q. The second sub-period includes
the transfer, the investment recommendation, and the agent’s consumption and actual investment
decisions. To tie the two sub-periods together, we introduce the extra variables, wm that we call
‘interim promised utility’ — a representation of the agent’s expected utility from the end of sub-period
1 (that is, from the middle of the period) onwards. The interim promised utility is a schedule (vector),
wm = {wm(k1), wm(k2), ...} ∈ Wm, similar to w. Like W, the set Wm is endogenously determined
along the value function iteration.

The first sub-period problem for computing the optimal contract with an agent who has announced
k and has been promised w is:

Program UI1

V (w, k) = max
{π(q,z,wm|w,k)}

X
Q×Z×Wm

π(q, z,wm|w,k)[q + Vm(wm, k)] (16)

The choice variables are the probabilities over allocations (q, z,wm) ∈ Q × Z ×Wm. The function
Vm(wm, k) is defined in the second sub-period problem (see Program UI2 below). The maximization
in (16) is subject to the following constraints. First, the optimal contract must deliver the promised
utility on the equilibrium path, w(k):X

Q×Z×Wm

π(q, z,wm|w,k)[−d(z) + wm(k)] = w(k) (17)

The utility from consumption and discounted future utility are incorporated in wm. Second, as in the

32The reason why utility promises must, in general, depend on the state k is the different incentives of agents entering
next period with different capital levels (see Kocherlakota, 2004 for a detailed discussion).
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MH regime, the optimal contract must satisfy incentive compatibility in effort. That is, ∀(z̄, ẑ) ∈ Z×Z :X
Q×Wm

π(q, z̄,wm|w,k)[−d(z̄) + wm(k)] ≥
X

Q×Wm

π(q, z̄,wm|w,k)
P (q|ẑ, k)
P (q|z̄, k) [−d(ẑ) + wm(k)] (18)

Third, since the state k is private information, the agent needs incentives to reveal it truthfully. On
top of that, the agent can presumably consider joint deviations in his announcement, k and his effort
choice, z. To prevent such joint deviations, truth-telling must be ensured to hold regardless of whether
the agent decides to follow the effort recommendation, z or considers a deviation to another effort level
δ(z) ∈ Z, where δ(z) denotes all possible mappings from recommended to actual effort, that is, from
the set Z to itself. Such behavior is ruled out by imposing the following ‘truth-telling’ constraints,
which must hold for all k̂ 6= k and δ(z):

w(k̂) ≥
X

Q×Z×Wm

π(q, z,wm|w,k)
P (q|δ(z), k̂)
P (q|z, k) [−d(δ(z)) + wm(k̂)] (19)

In words, an agent who actually has k̂ but considers announcing k triggering π(.|w, k) should find any
such deviation unattractive. There are (#K − 1)#Z#Z such constraints in total. Finally, the contract
must satisfy the already familiar technological consistency, adding-up, and non-negativity constraints
for the probabilities π(q, z,wm|w, k).

To solve Program UI1, we first need to compute the principal’s ‘interim value function’ Vm(wm, k).
The proper state variables are the schedule, wm of interim utilities for each k ∈ K and the agent’s
actual announcement k. Constraints will introduce truth-telling and obedience in the second-stage
program. We need to ensure that, when deciding on k0, the agent cannot obtain more than his interim
utility, wm(k) for any announcement k.

Program UI2

Vm(wm, k) = max
{π(τ,k0,w0|wm,k)},{v(k̂,k0,τ |wm,k)}

X
T×K×W

π(τ , k0,w0|wm, k)[−τ + (1/R)V (k0,w0)] (20)

Note that, in addition to the allocation lotteries, π(τ , k0,w0|wm, k) we introduce additional choice

variables, v(k̂, k0, τ |wm, k) that we refer to as ‘utility bounds’ (see Prescott, 2003 for details). These
bounds specify the maximum expected utility that an agent who is actually at k̂ receiving transfer τ
and an investment recommendation k0 could obtain by reporting k and doing k̂0. This translates into
the constraint:X

W

π(τ , k0,w0|wm, k)[u(τ + (1− δ)k̂ − k̂0) + βw0(k̂0)] ≤ v(k̂, k0, τ |wm, k) (21)

which must hold for all possible combinations τ , k0, k̂ 6= k, and k̂0 6= k0. To ensure truth-telling, the
interim utility wm(k̂) that the agent obtains in the second sub-period by reporting k when the true
state is k̂, must satisfy, for all k, k̂: X

T×K
v(k̂, k0, τ |wm, k) ≤ wm(k̂) (22)

The two sets of constraints, (21) and (22) rule out any joint deviations in the report k and the action
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k0. Finally, by definition, the interim utility must satisfy:

wm(k) =
X

T×K×W
π(τ , k0,w0|wm, k)[u(τ + (1− δ)k − k0) + βw0(k0)] (23)

and the probabilities π(τ , k0,w0|wm, k) must satisfy non-negativity and adding-up.

8.2 Appendix B — Hidden output

This is a version of the model where we allow output, q to be unobservable to the financial intermediary,
similarly to Townsend (1982) or Thomas and Worrall (1990). Assume effort, z is contractible so there
is no problem with joint deviations. We have:

V (w, k) = max
{π(τ,q,z,k0,w0|w,k)}

X
T×Q×Z×K×W

π(τ , q, z, k0, w0|w, k)[−τ + (1/R)V (w0, k0)]

subject to the promise keeping constraint:X
T×Q×Z×K×W

π(τ , q, z, k0, w0|w, k)[U(q + τ + (1− δ)k − k0, z) + βw0] = w

and the truth-telling constraints (true output is q̄ but the agent considers announcing q̂), ∀ (z̄, q̄, q̂ 6=
q̄ ∈ Z ×Q×Q): X

T×K×W
π(τ , q̄, z̄, k0, w0|w, k)[U(q̄ + τ + (1− δ)k − k0, z̄) + βw0] ≥

≥
X

T×K×W
π(τ , q̂, z̄, k0, w0|w, k)[U(q̄ + τ + (1− δ)k − k0, z̄) + βw0]

subject to the technological consistency and adding-up constraints:X
T×K×W

π(τ , q̄, z̄, k0, w0|w, k) = P (q̄|z̄, k)
X

T×Q×K×W
π(τ , q, z̄, k0, w0|w, k) for all (q̄, z̄) ∈ Q× Z and

X
T×Q×Z×K×W

π(τ , q, z, k0, w0|w, k) = 1,

as well as non-negativity: π(τ , q, z, k0, w0|w, k) ≥ 0 for all (τ , q, z, k0, w0) ∈ T ×Q× Z ×K ×W .

8.3 Appendix C — Computing joint distributions of model variables

Our approach allows us to characterize and take to data the different model regimes using the optimal
policy functions, π∗(.) which solve the dynamic programs in section 2. We first construct the state
transition matrix for each regime. Formally, denote by s ∈ S the current state — k in autarky, (b, k) in
S/B, or (w, k) in the MH/FI/LC regimes. The transition probability of going from any current state
s to any next-period state s0 is computed using the optimal policy π∗(), integrating out all control
variables. For example, for the MH regime we have:

Prob(w0, k0|w, k) =
X

T×Q×Z
π∗(τ , q, z, k0, w0|w, k)
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Putting these transition probabilities together for all state pairs, we form the state transition matrix
M of dimension #S×#S, (for example, for MH #S = #K×#W ), with elements mij , i, j = 1, ...,#S
corresponding to the transition probabilities of going from state i to state j in S.

The matrix M completely characterizes the dynamics of the model. Specifically, we can use M to
compute the cross-sectional distribution over states at any time t, Dt(s) ≡ (d1t , .., d

#S
t ), starting from

an arbitrary given initial state distribution, D0(s):

Dt(s) = (M
0)tD0(s) (24)

Setting t = ∞ gives the stationary state distribution if one exists. One can think of D0(s) as
the population probability distribution (or, in the sample, frequency histogram) over the states s. In
practice, in our empirical applications, some elements of the state s are unobservable to the researcher,
for example, the state variable w in the MH and FI regimes. Thus, to initialize the model we use the
empirical initial distribution of the observable state (k) and assume that the unobserved state is drawn
from some known distribution, the parameters of which we estimate.

We further use the state probability distribution (24) in conjunction with the policy functions π∗(.)
to compute cross-sectional probability distributions Ht(x) for any model variable x (which could be
k, k0, z, τ , q, c, etc.), or any combination of these variables, at any time period. For example, in the
MH regime, the time t joint cross-sectional distribution of next-period assets k0 over the grid K with
elements k0i, i = 1, ..,#K and current output q over the grid Q with elements qh, h = 1, ..,#Q is:

Ht(k
0
i, qh) ≡ Probt(k0 = k0i, q = qh|D0) =

X
j=1..#S

djt
X

T×Z×W 0

π∗t (τ , q = qh, z, k
0 = k0i, w

0|sj)

We also use the time-t distribution over states Dt(s) and the Markov matrix M to compute tran-
sition probabilities, Pt(x, x

0) for any model variable x, at any time period, t. The transition and the
cross-sectional probabilities are easily combined to construct joint probability distributions encompass-
ing several periods at a time as in a panel.
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Number of: linear programs variables constraints

Autarky 5 75 16
Saving / Borrowing 25 625 16
Full Information 25 3,125 17
Moral Hazard 25 19,375 23
Unobserved k, stage 1 250 1,650 122
Unobserved k, stage 2 550 11,625 2,506
Unobserved k, total 137,500 n.a. n.a.

Note: This table assumes the following grid sizes that we use in the estimation: #Q=5, #K=5, #Z=3, #B=5, #T=31
#W=5; and #W=50 and #Wm=110 for UC

Table 1 - Problem Dimensionality



Variable grid size (number of points) grid range

income/cash flow, Q 5 [.04,1.75] from percentiles
assets, K 5 [0, 1] from percentiles
effort, Z 3 [.01, 1]

savings/debt, B 6 (5 for S regime) S: [-2, 0], B: [-2, .82]
transfers/consumption 31 for MH/FI/LC, endogenous for B/S/A [.001, 0.9]

promised utility, W 5 endogenous

Table 2 - Variable Grids Used in the Estimation Runs



Statistic Value Statistic Value

mean consumption expenditure, c 64.172 corr(c,k) 0.4038
median consumption expenditure 47.868 corr(c,q) 0.4646
stdev of consumption expenditure 53.284 corr(k,q) 0.3521
kurtosis of consumption expenditure 16.420 corr(i,k) -0.0928
mean assets, k 80.298 corr(i,q) 0.1547
median assets 13.688 corr(i,c) 0.0632
stdev of assets 312.01 autocorr(ct,ct-1) 0.7468
kurtosis of assets 259.21 autocorr(qt,qt-1) 0.6481
mean net income from production, q 128.70 autocorr(it,it-1) 0.4405
median net income from production 65.016 autocorr(kt,kt-1) 0.7987
stdev of net income from production 240.63 std(c)/std(q) 0.2214
kurtosis of net income from production 103.12 std(i)/std(q) 0.2395
mean investment, i 6.2486 corr(Δc,Δq) 0.1074
median investment 0.0199 corr(Δk,Δq) 0.0830
stdev of investment 57.622
kurtosis of investment 393.15

1. Sample size is 531 households observed over 7 years (1999-2005). Units (where applicable) are '000s Thai baht.
2. The summary statistics are computed for the pooled data.

Table DATA - Thai data summary statistics1,2
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Figure 1: Thai data − income, consumption, investment
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Figure 2: Thai data − income, consumption, assets growth
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1. Using (k,i,q) data
1.1. years: 99-00 tie tie B*** S*** A*** tie B*** S*** A*** B*** S*** A*** S*** B*** S*** S
1.2. years: 04-05 FI*** MH*** B*** S*** A*** FI** B*** S*** A*** B*** S*** A*** tie B*** S*** B,S

2. Using (c,q,i,k) data
2.1. years: 99-00 tie MH*** B*** S*** A** FI*** B*** S*** A** B*** S*** A*** S*** tie S*** S
2.2. years: 04-05 FI*** MH*** B*** S*** A*** FI*** B*** S*** A** B*** S*** A*** S*** tie S** S
3. Using (c,q) data
3.1. year: 99 MH*** MH** MH** tie MH*** FI* tie tie FI*** tie tie LC** S*** B*** S*** MH,S
3.2. year: 05 tie MH*** tie tie tie FI*** tie S*** tie B** S*** tie S** tie S*** S,MH
4. Two-Year Panel
4.1. (c,q), years: 99 and 00 MH*** MH*** B*** S*** MH** FI** B*** S*** tie B*** S*** tie tie B*** S*** S,B
4.2. (c,q), years: 99 and 05 MH*** MH*** tie tie MH*** FI*** B*** S*** tie B*** S*** tie tie B*** S*** B,S,MH
5. Dynamics
5.1. 99 k distribution & 04-05 (c,q,i,k) FI*** MH*** B*** tie tie FI*** B*** tie FI* B*** S*** A*** B*** B*** S** B
5.2. 99 k distribution & 05 (c,q) tie MH*** tie tie MH*** FI*** tie tie FI*** B*** S*** A*** tie B*** S*** S,B,FI,MH
5.3. 99 k distribution & 04-05 (k,i,q) FI*** LC*** B*** S** MH** tie B*** S* FI** B*** S* LC** B*** B*** S*** B

NOTES:
1. *** = 1%,  ** = 5%,  * = 10% two-sided significance level, the better fitting model regime's abbreviation is displayed
2. Z-statistics cutoffs: 2.575 =1.96 = 1.645 ="tie"
3. Investment, i  is constructed from the firm assets data as i = k' - (1 - δ)k with δ = .05

Table 9 - Model regime comparisons1,2,3 using Thai data - Baseline Vuong test results
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1. Risk neutrality2

1.1 (c,q) data MH*** MH*** MH*** MH*** MH*** LC*** B*** S*** A*** B*** S*** A*** S** tie S*** MH
1.2 (k,i,q) data tie tie B*** S*** A*** FI** B*** S*** A*** B*** S*** A*** B*** B*** tie B
1.3 (c,q,i,k) data tie tie B*** S*** A*** LC** B*** S*** A*** B*** S*** A*** tie B* S*** S,B
2. Fixed measurement error variance
2.1 (c,q) data tie MH*** MH*** tie MH*** FI*** FI*** tie FI*** tie S*** tie S*** B*** S*** MH,S,FI
2.2 (k,i,q) data tie MH*** B*** S*** A*** FI*** B*** S*** A*** B*** S*** A*** S*** B*** S*** S
2.3 (c,q,i,k) data FI*** MH*** B*** S*** A*** FI*** B*** S*** A* B*** S*** A*** S*** tie S*** S
3. Networks sub-sample (n=391)
3.1. (c,q) data MH*** MH*** MH** MH** MH*** FI*** tie tie FI** tie tie tie tie B** S*** MH
3.2 (k,i,q) data tie tie B*** S*** A*** tie B*** S*** A*** B*** S*** A*** S** B* S*** S
3.2 (c,q,i,k) data tie MH*** B*** S*** A*** FI*** B*** S*** A*** B*** S*** A*** S** tie S*** S
4. Investment adjustment costs
4.1. (c,q) data MH** MH*** B** tie MH*** FI*** B*** S** tie B*** S*** tie B*** B*** S*** B
4.1 (k,i,q) data tie tie B** S*** A*** tie B*** S*** A*** B*** S*** A*** S* A* tie S,A
4.2 (c,q,i,k) data tie MH*** tie S** MH** FI*** tie tie FI*** B*** S*** A*** S** B*** S*** S,FI
5. Stratified by Region
5.1 Central, (c,q,i,k) data (n=288) tie MH*** B*** S*** tie FI*** B*** S*** tie B*** S*** A*** tie B*** S*** B,S
5.2 Central, (c,q) data (n=288) MH* MH*** MH*** tie MH*** FI** FI** tie FI*** tie tie tie tie B** S*** MH,S
5.3 North-East, (c,q,i,k) data (n=243) FI* MH*** tie tie A*** FI*** FI*** tie tie B*** S*** A*** S* A*** A** A,FI
5.4 North-East, (c,q) data (n=243) tie MH*** MH** tie MH*** FI*** FI*** FI* FI*** B** S*** tie tie B*** S*** FI,MH
6. Other robustness runs (c,q,i,k data unless otherwise indicated)
6.1 networks v.2; (c,q) data, n=357 MH*** MH*** tie MH*** MH*** FI*** tie tie FI** B** tie tie tie B*** S*** MH,B
6.2 networks v.2, n=357 tie MH*** B*** S*** tie FI*** B*** S*** tie B*** S*** A*** S*** B** S*** S
6.3 removed fixed effects tie MH*** MH*** MH*** MH*** FI*** FI*** FI*** FI*** B*** S*** A*** S*** B*** S*** MH,FI
6.4 coarser grids MH*** MH*** B*** S*** A*** FI*** B*** S*** A*** B*** S*** A*** B** B*** S*** B
6.5 alternative assets definition FI** MH* B*** S*** A*** FI*** B*** S*** A** B*** S*** A*** B** B*** S*** B
6.6. estimated production function tie MH*** B*** S*** A*** FI*** B*** S*** A*** B*** S*** A*** tie B*** S*** S,B
6.7. urban data, n=957; 2005-06 MH*** MH*** B*** S*** A*** FI*** B*** S*** A*** B*** S*** A*** B*** B*** S*** B
6.8. removed aggregate shocks, n=525 MH*** MH*** tie tie tie FI*** tie S* tie B*** S*** A*** tie B*** S** MH,S,B,A

7. Runs with hidden output (HO) and unobserved investment (UI) models3

v MH v FI v B v S v A v LC
7.1. hidden output, (c,q,i,k) tie tie B*** S*** A*** HO*** B,S
7.2. unobserved investment, (c,q,i,k) UI*** UI*** B*** S*** tie UI*** B
1. *** = 1%,  ** = 5%,  * = 10% Vuong (1989) test two-sided significance level. Listed is the better fitting model or "tie" if the models are tied. Sample size is n=531; data are for 1999-00 unless noted otherwise.
2. The upper bound of the output grid, Q was adjusted to 1.25 for these runs, since our baseline grid produced no solution for the LC regime for σ = 0.
3. For computational reasons the HO model is computed with estimated production function (read with line 6.6); the UI model is with coarser grids (read with line 6.5).

Table 10 - Model comparisons1 using Thai data - Robustness runs
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1. Using (k,i,q) data
1.1. low measurement error tie MH*** MH*** MH*** MH*** FI*** FI*** FI*** FI*** LC*** LC*** LC*** S** B*** S*** MH,FI
1.2. high measurement error tie tie tie tie MH*** tie B** tie FI*** tie tie LC*** tie B*** S*** all but A
2. Using (c,q,i,k) data
2.1. low measurement error MH*** MH*** MH*** MH*** MH*** tie FI*** FI*** FI*** LC*** LC*** LC*** B*** B*** S*** MH
2.2. high measurement error tie MH*** MH*** MH*** MH*** FI*** FI*** FI*** FI*** LC** LC*** LC*** B*** B*** S*** MH,FI
3. Using (c,q) data
3.1. low measurement error MH*** MH*** MH*** MH*** MH*** FI*** FI** tie FI*** tie S* LC*** S** B*** S*** MH
3.2. high measurement error FI*** tie B* MH* MH*** tie tie FI*** FI*** tie tie LC*** B*** B*** S*** B,FI
4. Two-Year Panel, t = 0, 1
4.1. low measurement error MH*** MH*** MH*** MH*** MH*** FI*** FI*** FI*** FI*** LC*** LC*** LC*** B*** B*** S*** MH
4.2. high measurement error tie tie MH*** MH*** MH*** tie FI*** FI*** FI*** LC*** LC*** LC*** B*** B*** S*** MH,FI,LC

5. Robustness runs with simulated data from the MH model2

5.1. (c,q) long panel (t = 0, 50) MH*** MH*** MH*** MH*** MH*** FI*** FI*** FI*** FI*** LC*** LC*** LC*** B*** B*** S*** MH
5.2. zero measurement error MH*** MH*** MH*** MH*** MH*** FI*** tie FI* FI*** B* tie LC*** B*** B*** S*** MH
5.3. sample size n = 200 MH*** MH*** MH*** MH*** MH*** tie tie FI*** FI*** tie LC*** LC*** B*** B*** S*** MH
5.4. sample size n = 5000 MH*** MH*** MH*** MH*** MH*** tie FI*** FI*** FI*** LC*** LC*** LC*** B*** B*** S*** MH
5.5. coarser grids MH*** MH*** MH*** MH*** MH*** FI*** FI*** FI*** FI*** LC*** LC*** LC*** B*** B*** S*** MH
5.6. heterogeneous productivity MH*** MH*** MH*** MH*** MH*** tie tie FI*** FI*** tie LC*** LC*** B*** B*** S*** MH
5.7. heterogeneous risk-aversion MH*** MH*** MH*** MH*** MH*** FI** FI*** FI*** FI*** LC*** LC*** LC*** B*** B*** S*** MH

1. *** = 1%,  ** = 5%,  * = 10% two-sided significance level, the better fitting model regime's abbreviation is displayed. Data-generating model is MH and sample size is n = 1000 unless stated otherwise.
2. these runs use (c,q,i,k) data and low measurement error (γme = 0.1) unless stated otherwise

Table 7 - Model regime comparisons using simulated data1



Statistic Thai data MH(sim)1 FI(sim) B(sim) S(sim) A(sim) LC(sim)

mean consumption (k) 0.3582 0.2664 0.2862 0.4907 0.6987 0.6233 0.3486
median(c) 0.2672 0.2548 0.2680 0.4563 0.5695 0.5198 0.3317
std(c) 0.2974 0.1624 0.1693 0.3360 0.4703 0.4658 0.2536
kurtosis(c) 16.4195 2.9288 3.9137 2.2910 2.4010 3.6243 2.6651
mean business assets (k) 0.4482 0.3425 0.4123 0.5930 0.5443 0.4882 0.9218
median(k) 0.0764 0.3083 0.3344 0.5033 0.3823 0.3369 0.9383
std(k) 1.7414 0.8588 0.8791 0.9347 0.9404 0.9205 0.9094
kurtosis(k) 259.2 2125.1 1920.9 1477.0 1446.5 1585.6 1617.4
mean net income (q) 0.7183 0.4958 0.5682 0.7479 0.9152 0.7119 1.1732
median(q) 0.3629 0.3543 0.3982 0.6171 0.7617 0.5778 1.2151
std(q) 1.3430 0.6023 0.6346 0.6186 0.6853 0.6243 0.8362
kurtosis(q) 103.1 3.6138 3.0360 2.5091 1.7472 2.5443 2.3757
mean investment (i) 0.0349 -0.0064 0.0164 0.0900 0.0781 0.0506 0.1256
median(i) 0.0001 0.0345 0.0415 0.0571 0.0562 0.0466 0.1326
std(i) 0.3216 0.8900 0.8935 0.9034 0.8804 0.8903 0.9697
kurtosis(i) 393.1 1708.7 1687.8 1521.1 1686.3 1606.4 1135.5
corr(c,k) 0.4038 0.0107 -0.0149 0.3191 0.3540 0.2263 0.0047
corr(c,q) 0.4646 0.0240 -0.0491 0.5576 0.7128 0.7860 -0.0044
corr(k,q) 0.3521 0.0180 0.0935 0.1841 0.2907 0.1078 0.0703
corr(i,k) -0.0928 -0.9845 -0.9575 -0.8940 -0.8849 -0.9073 -0.9480
corr(i,q) 0.1547 -0.0157 -0.0128 -0.0705 -0.0527 -0.0035 -0.0673
corr(i,c) 0.0632 0.0019 0.0010 0.0303 0.0366 0.0154 0.0054
autocorr(ct,ct-1) 0.7468 0.6536 0.6855 0.6500 0.7343 0.6222 0.5562
autocorr(qt,qt-1) 0.6481 0.3359 0.3817 0.5191 0.5853 0.4969 0.5891
autocorr(it,it-1) 0.4405 -0.2584 -0.2062 -0.1346 -0.0215 -0.1162 -0.1889
autocorr(kt,kt-1) 0.7987 0.6405 0.6758 0.6469 0.6124 0.6280 0.7677
std(c)/std(q) 0.2214 0.2697 0.2667 0.5431 0.6862 0.7461 0.3033
std(i)/std(q) 0.2395 1.4777 1.4081 1.4605 1.2846 1.4261 1.1596
corr(Δc,Δq) 0.1074 0.0271 0.0005 0.5176 0.6343 0.7804 0.0043
corr(Δk,Δq) 0.0830 0.0196 0.0340 0.0894 0.0969 0.0176 0.0690

Notes: 1. All simulated data are at their corresponding MLE estimates from the cqik 99-00 runs
All above results are based on an n = 531, T = 7 panel of actual (in model units) or simulated data.

Table COMP - Thai data vs. simulated data comparison



Table L: Consumption Euler equation GMM test a la Ligon 1998; whole sample

Instruments b st. error conf. interval J-test J p-value

--- -0.3358* 0.0443 [-0.423, -0.249] 0 n.a.

income -0.3328* 0.0435 [-0.418, -0.248] 1.318 0.251

income, capital -0.3403* 0.0427 [-0.424, -0.257] 2.787 0.248

income, capital, avg. consumption -0.3322* 0.0412 [-0.413, -0.251] 3.568 0.312

Note 1: b is the estimate of the risk aversion coefficient; assuming households are risk-averse, 
a negative b suggests the correct model is B (standard EE); a positive b suggests MH (inverse EE)

Note 2: estimates obtained using continuous updating GMM (Hansen, Heaton and Yaron, 1996). 
Matlab code adapted from K. Kyriakoulis.

Version with both b = gamma or -gamma and c = beta*R or 1/(beta*R)  estimated; ee2kb.m

Instruments b st. error c st. error J-test J p-value

income -1.0028* 0.4472 0.9234 0.0927 0 n.a.

income, capital -1.1525* 0.3473 0.8921 0.0878 0.64 0.424

income, capital, avg. consumption -1.2007* 0.3222 0.8805 0.0865 0.993 0.609

c is not significantly different from 1
if B and (risk-averse, beta*R<=1) we should have c <= 1 and b < 0
if MH and (risk-averse, beta*R<=1) we should have c >= 1 and b > 0



Table B - Dynamic panel-data estimation, one-step difference GMM
*year_1999 dropped because of collinearity.

panel variable: hh_dum, 1 to 388  (zero assets dropped)
        time variable:  year, 1998 to 2003

------------------------------------------------------------------------------
Group variable: hh_dum                          Number of obs      =      1552
Time variable : year                            Number of groups   =       388
Number of instruments = 12                      Obs per group: min =         4
F(5, 1546)    =      6.38                                      avg =      4.00
Prob > F      =     0.000                                      max =         4
------------------------------------------------------------------------------
(i/k)        |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
(i/k)        |
          L1 |   .3507486   .0575515     6.09   0.000     .2378614    .4636359
(i/k)^2      |
          L1 |   .2576015   .1806428     1.43   0.154    -.0967292    .6119323
(q/k)        |
          L1 |   .0002783    .000509     0.55   0.585    -.0007202    .0012767
_Iyear_2000  |   .0075541   .0200299     0.38   0.706    -.0317345    .0468427
_Iyear_2001  |   .0065085    .020319     0.32   0.749    -.0333472    .0463642
_Iyear_2002  |  -.0061286   .0201947    -0.30   0.762    -.0457405    .0334832
_Iyear_2003  |  -.0539406   .0233313    -2.31   0.021    -.0997049   -.0081763
------------------------------------------------------------------------------
Instruments for first differences equation
  Standard
    D.(_Iyear_1999 _Iyear_2000 _Iyear_2001 _Iyear_2002 _Iyear_2003)
  GMM-type (missing=0, separate instruments for each period unless collapsed)
    L2.(ikr qkr)
------------------------------------------------------------------------------
Arellano-Bond test for AR(1) in first differences: z =  -2.42  Pr > z =  0.016
Arellano-Bond test for AR(2) in first differences: z =  -1.49  Pr > z =  0.136
------------------------------------------------------------------------------
Sargan test of overid. restrictions: chi2(5)    =   6.78  Prob > chi2 =  0.238
  (Not robust, but not weakened by many instruments.)
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Abstract

Recent papers argue that financial frictions can explain large cross-country income

differences. Financial frictions are usually modeled as arising from a limited commitment

problem. We ask whether it matters what the source of frictions is? We develop a frame-

work that is general enough to encompass both frictions arising from limited commitment

and from asymmetric information. We argue that asymmetric information frictions have

implications that are potentially very different from limited commitment frictions. In par-

ticular, limited commitment results in a misallocation of capital across firms with given

productivities. In contrast, moral hazard provides a theory for why TFP is endogenously

lower at the firm level in developing countries. The framework also encompasses mixtures

of different friction regimes in different regions of a given economy. This has advantages

when mapping models of the macro economy to micro data.

1 Introduction

There is evidence that even within a given economy, obstacles to trade may vary depend-

ing on location. In a companion paper, Karaivanov and Townsend (2010) estimate the fi-

nancial/information regime in place for households including those running businesses using

Townsend Thai data from rural areas (villages) and from urban areas (towns and cities). They

do find a difference. A moral hazard constrained financial regime fits best in urban areas and

a more limited savings regimes in rural areas.

∗We thank Fernando Aragon and Paco Buera for very useful comments. For sharing their code, we are

grateful to Paco Buera and Yongs Shin
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More generally, there seems to be regional variation. Paulson, Townsend and Karaivanov

(2006) find that the decision to become an entrepreneur is based on wealth and talent in

both a moral hazard and limited commitment regime, but again the quantitative mapping is

distinct. Moral hazard fits best to the data in the Central region but not in the Northeast.

Using additional data on repayment of joint liability loans, Ahlin and Townsend (2007) seem

to confirm the regional variation (though for not all specifications). Information seems to

be a problem in the central area, limited commitment in the Northeast. In more detail, the

non-monotone derivative of repayment with respect to loan size in the adverse selection model

of Ghatak (1999) is found in the Central region but not the Northeast alone. The negative

sign with respect to the joint liability payment of the moral hazard model of Stiglitz (1990),

and the model of Ghatak, is found in the Central region. The sign on screening is counter

to the Ghatak model in the Northeast. Covariance of outputs raises repayment as in the two

information models in the Central region. Ease of monitoring reducing moral hazard and raising

repayment in the Central region. Cooperation among borrowers in decision making, which has

a positive sign in the moral hazard model of Stiglitz, holds in the Central region. Sanctions for

strategic default are especially effective in the Northeast.

Not too surprisingly, the effective financial regime in place depends on the data used. Re-

stricting attention to consumption and income data, the financial regimes are quite good/smooth.

This is particularly true for kinship and other village financial networks. Yet investment, cash

flow, and firm size data often deliver a simpler, more restrictive financial regime, borrowing

and lending, or even savings only, as in a buffer stock model.

As we await the final verdict from the micro data, we begin the next step in this paper

and ask what difference the micro financial foundations make for the macro economy. We

focus on TFP, the distribution of firms, size and steady state wages and prices. These all

vary with the regime, and indeed with a mixture of regimes, e.g. again to fix ideas, limited

commitment in rural areas and moral hazard in urban areas. We also show that transition

dynamics are greatly influenced by the underlying financial regime, with the moral hazard

constrained financial contracts slowing down transitions, dramatically.

The bottom line is that aggregation and macro movements depend on micro financial un-

derpinnings. Likewise, ideal policy would also. The welfare gains and losses one would compute

at a micro level from say subsidies to financial institutions or interest rates will differ from the

general equilibrium calculations with market clearing wages and interest rates as endogenous.

2 Households and Intermediaries

We consider an economy populated by a large number of households and intermediaries. Time

is discrete. In each period t, a household experiences two shocks: an ability shock, zt and an

additional “production risk shock”, εt (more on this below). Households have preferences over

2



consumption, ct and effort, et

v0 = E0

∞
∑

t=0

βtu(ct, et),

Households can access the capital market of the economy only via one of the intermediaries.

Intermediaries compete ex-ante for the right to contract with households. Once a household

decides to contract with an intermediary he sticks with that intermediary forever. However, the

threat of having one’s customer poached by another intermediary means that intermediaries

make zero expected profits at each point in time.

Consider a household with initial wealth a0 and income stream {yt}
∞
t=0 (determined below).

When an agent contracts with an intermediary, he gives his entire initial wealth and income

stream to the intermediary. The intermediary invests this income at a risk-free interest rate

rt and transfers some consumption, ct, to the household. A household and an intermediary

therefore form a “risk-sharing group”: some of the household’s risk is borne by the intermediary

according to an optimal contract specified below. The joint budget constraint of such a risk-

sharing group is

at+1 = yt − ct + (1 + rt)at (1)

The optimal contract between households and intermediary maximizes households’ utility sub-

ject to this budget constraint (and incentive constraints specified below). Risk-sharing groups

make their decisions taking as given a deterministic sequence of wages and interest rates

{wt, rt}
∞
t=0, and compete with each other in competitive labor and capital markets.

2.1 Household’s Problem

Households can either be entrepreneurs or workers. We denote by x = 1 the choice of being an

entrepreneur and by x = 0 that of being a worker. First, consider entrepreneurs. They get an

ability draw z. The evolution of this entrepreneurial talent z is assumed to be exogenous and

given by some stationary transition process µ(z′|z). Denote effort by e, labor hired in the labor

market by l, and capital employed by k. Output is given by zεf(k, l) where f(k, l) is a span-

of-control production function and ε (“production risk”) is stochastic with distribution p(ε|e).

An entrepreneur’s productivity therefore has two components: his talent, z and production

risk, ε, the distribution of which depends on effort. We assume that intermediaries can insure

production risk ε but not talent z. An entrepreneur hires labor l at a wage w and rents capital

k at a rental rate r + δ.1

1We assume that capital is owned and accumulated by a capital producing sector which then rents it out to

entrepreneurs in a capital rental market. See Appendix A for details. That the rental rate equals r + δ follows

from a standard arbitrage argument. This way of stating the problem avoids carrying capital, k, as a state

variable in the dynamic program of a risk-sharing group.

3



Next, consider workers. A worker sells efficiency units of labor ε in the labor market at

wage w. Efficiency units are stochastic and depend on the worker’s effort, with distribution

p(ε|e). A worker’s ability is fixed over time.

Putting everything together, the income stream of a household is

y = x[zεf(k, l) − wl − (r + δ)k] + (1 − x)wε. (2)

The joint budget constraint of the risk-sharing group consisting of household and intermediary

is given by (1).

The timing is illustrated in Figure 1 and is as follows: first, productivity z is realized.

Figure 1: Timing

Second, the contract between the intermediary and a household assigns effort, e, occupational

choice, x, and – if the chosen occupation is entrepreneurship – capital and labor, k and l. All

these choices are conditional on productivity z and assets carried over from the last period, a.

Third, production risk, ε, is realized which depends on effort through the conditional distri-

bution p(ε|e). Fourth, the contract assigns the household’s consumption and savings, that is

functions c(ε) and a′(ε). Only the household’s effort choice e is unobserved, and all actions of

the household are assigned by the intermediary. That is, there are no hidden savings etc.

The two state variables are wealth, a, and entrepreneurial ability, z. Recall that z evolves

according to some exogenous Markov process µ(z′|z). It will be convenient below to define the

household’s expected continuation value by

Ev(a′, z′) =
∑

z′

v(a′, z′)µ(z′|z).

A contract between a household and an intermediary solves

v(a, z) = max
e,x,k,l,c(ε),a′(ε)

∑

ε

p(ε|e) {u[c(ε), e] + βEv[a′(ε), z′]} s.t.

∑

ε

p(ε|e) {c(ε) + a′(ε)} =
∑

ε

p(ε|e) {x[zεf(k, l) − wl − (r + δ)k] + (1 − x)wε]} + (1 + r)a

(3)

and also subject to regime-specific constraints specified below. Note that the budget constraint

of a risk syndicate in (3) averages over realizations of ε; it does not have to hold separately for
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every realization of ε. This is because the contract between the household and the intermediary

has an insurance aspect which implies that consumption can be different from income less

than savings. Such an insurance arrangement can be “decentralized” in various ways. The

intermediary could simply make state contingent transfers to the household. Alternatively,

intermediaries can be interpreted as banks that offer savings accounts with state-contingent

interest payments to households.

In contrast to production risk, talent z is not insurable. Prior to the realization of ε, the

contract specifies consumption and savings that are contingent on ε, c(ε) and a′(ε). In contrast,

consumption and savings can only depend on talent, z, to the extent that talent has already

been observed.2

The contract between intermediaries and households is subject to one of two frictions: pri-

vate information in the form of moral hazard, or limited commitment. Each friction corresponds

to a regime-specific constraint that is added to the dynamic program (3). We specify each in

turn.

2.2 Private Information

In this regime, effort e is unobserved. Since the distribution of production risk, p(ε|e) depends

on effort, this gives rise to a standard moral hazard problem: full insurance against production

risk would induce the household to exert suboptimal effort. The optimal contract takes this

into account in terms of an incentive-compatibility constraint:

∑

ε

p(ε|e) {u[c(ε), e] + βEv[a′(ε), z′]} ≥
∑

ε

p(ε|ê) {u[c(ε), ê] + βEv[a′(ε), z′]} ∀e, ê, x (4)

This constraint ensures that the value to the household of choosing the effort level assigned by

the contract, e, is at least as large as that of any other effort, ê. The optimal contract in the

presence of moral hazard solves (3) with the additional constraint (4).

Some readers may be surprised that this optimal dynamic contracting problem features

neither promised utility as a state variable nor the usual “promise-keeping” constraint. Ap-

pendix B shows that the formulation here is equivalent to a more standard formulation of the

contracting problem which uses promised utility as a state variable.

When solving the problem (3) and (4) numerically, we allow for lotteries in the optimal

contract. See Appendix C for the statement of the problem (3) with lotteries as in Phelan and

Townsend (1991).

2The above dynamic program can be modified to allow for talent to be insured as follows: allow agents to

trade in assets whose payoff is contingent on the realization of next period’s talent z′. On the left-hand side of

the budget constraint in (3), instead of a′(ε), we would write a′(ε, z′) and sum these over future states z′ using

the probabilities µ(z′|z).
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2.3 Limited Commitment

In this regime, effort e is observed. Therefore, there is no moral hazard problem and the

contract consequently provides perfect insurance against production risk, ε. Instead we assume

that the friction instead takes the form of a simple collateral constraint:

k ≤ λa, λ ≥ 1. (5)

This form of constraint has been frequently used in the development literature on financial

frictions. It can be motivated as a limited commitment constraint.3

The optimal contract in the presence of limited commitment solves (3) with the additional

constraint (5).

2.4 Factor Demands and Supplies

Risk-sharing groups interact in competitive labor and capital markets, taking as given the

sequences of wages and interest rates. Denote by by k(a, z; w, r) and l(a, z; w, r) the optimal

capital and labor demands of a risk-sharing group with current state (a, z). A worker supplies

ε efficiency units of labor to the labor market, so his labor supply is

n(a, z; w, r) ≡ [1 − x(a, z)]
∑

ε

p(ε|e(a, z))ε. (6)

Note that we multiply by the indicator for being a worker, 1 − x, so as to only pick up the

efficiency units of labor by people who decide to be workers. Finally, individual capital supply

is simply a household’s wealth, a.

2.5 Simulation

We follow Karaivanov and Townsend (section 3.2) in forming the transition probabilities

Pr(a′, z′|a, z) = µ(z′|z) Pr(a′|a, z) = µ(z′|z)
∑

D

π(d, a′|a, z) (7)

Given these transition probabilities and initial conditions for (a0, z0), the model can be sim-

ulated. We obtain the entire sequence {at, zt} recursively from simulating (7). Once the

stationary distribution of the economy has been found, we check whether the market clearing

conditions (8) and (9) hold. If they don’t, we update (w, r) as described in Appendix A of

Buera and Shin (2010).

3Consider an entrepreneur with wealth a who rents k units of capital. The entrepreneur can steal a fraction

1/λ of rented capital. As a punishment, he would lose his wealth. In equilibrium, the financial intermediary

will rent capital up to the point where individuals would have an incentive to steal the rented capital, implying

a collateral constraint k/λ ≤ a or k ≤ λa.
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Note that we cannot guarantee that the process for wealth and ability (7) has a stationary

distribution. While the process is stationary in the z-dimension (recall that the process for z,

µ(z′|z), is exogenous and a simple stationary Markov chain), the process may be non-stationary

or degenerate in the a-dimension. That is, there is the possibility that the wealth distribution

either fans out forever or collapses to a point mass. In the examples we have computed, this

does however not seem to be a problem and the process (7) always converges.

2.6 Market Clearing

Once we have found a stationary distribution of states from (7), we check that markets clear.

Denote the stationary distribution of ability and wealth by G(a, z). Then market clearing is
∫

l(a, z; w, r)dG(a, z) =

∫

n(a, z; w, r)dG(a, z) (8)

∫

k(a, z; w, r)dG(a, z) =

∫

adG(a, z). (9)

The equilibrium factor prices w and r are found in the same way as in Buera-Shin (Appendix

A.1).

3 Parameterization

The next section presents some numerical results. We assume the following functional form for

the utility function.

u(c, e) =
(c − χeθ)1−σ

1 − σ
(10)

where σ and χ are positive parameters. This functional has been suggested by Greenwood-

Hercowitz-Huffman preferences. It is convenient because it implies that there are no wealth

effects on effort choice. If we instead use standard separable preference

u(c, e) =
c1−σ

1 − σ
− χeθ

effort would be decreasing in wealth due to wealth effects even in the absence of moral hazard.

Therefore, with the GHH preferences (10), any effect of wealth on effort choice must be due to

the moral hazard problem.

We further assume that the production function is Cobb-Douglas

εzf(k, l) = εzkαlγ . (11)

We assume that α + γ < 1 so that entrepreneurs have a limited span of control. We also use

the following parameter values:

α = 0.3, γ = 0.4, δ = 0.05, β = 1.05−1, σ = 2, χ = 5, θ = 1.2
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4 Limited Commitment vs. Moral Hazard

In this section we compare the moral hazard and limited commitment regimes, and argue

that the two have potentially very different implications. Figure 2 plots the distributions of

the marginal product of capital in the two regimes. In the limited commitment regime (left
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Figure 2: Distribution of Marginal Products of Capital.

panel), the presence of collateral constraints (5) implies that marginal products of capital are

not equalized across individual firms, that is capital is misallocated. In contrast, in the moral

hazard regime marginal products of capital are equalized across firms so that the distribution of

marginal products is degenerate (right panel). This is because firms don’t face any constraints

that limit the amount of capital they can rent and so all of them rent capital until their marginal

product equals the user cost of capital

zε̄(e)fk(k, l) = r + δ, ε̄(e) ≡
∑

ε

εp(ε|e)

If not in a misallocation of capital, how then will the presence of moral hazard manifest itself

in our economy? Figure 3 has the answer: in the moral hazard economy, TFP is endogenously

lower at the firm level. Recall that firm-level TFP is the product of “ability” and “production

risk” and production risk depends on effort with probability distribution p(ε|e). Ex-ante firm-

level TFP is then given by zε̄(e) where ε̄(e) ≡
∑

ε εp(ε|e) is expected production risk given an

effort choice, e. In the limited commitment regime (left panel), everyone exerts high effort so

the distribution of TFP is simply given by the (exogenous) ability distribution (the stationary

distribution of the Markov process µ(z′|z)). In contrast, in the moral hazard economy (right

panel), some individuals exert low effort which then results in lower expected production risk

component, ε̄(e). As a result firm-level TFP is lower and more dispersed in the moral hazard

economy.
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Figure 3: Distribution of Firm-level TFP.

Finally, figure 4 plots the distribution of firm size as measured by a firm’s number of employ-

ees. In the moral hazard regime, firms are smaller on average than in the limited commitment

regime. This is an immediate implication of the fact that firm-level TFP is lower in the moral
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Figure 4: Firm-Size (Employee) Distribution.

hazard economy.

These results have important implications for measurement. For instance, consider an

econometrician examining data generated by the moral hazard economy who measures gaps

in marginal products of capital across individual firms. This econometrician would observe no

capital misallocation and may therefore (erroneously) conclude that there is no friction in the

capital market.

Finally, consider the savings behavior in the two economies, in particular the speed of

individual transitions. One convenient way of summarizing this speed of transition is to compare

the eigenvalues of the transition matrix Pr(a′, z′|a, z) defined in (7) for the two economies. The
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LC MH Mix -LC Mix - MH

Interest Rate 0.0154 0.0472 0.05

Wage 0.2263 0.3625 0.3070

% Entrepreneurs 40.49 35.33 0 69.84

Table 1: Factor Prices and Occupational Choice

eigenvalue governing the speed of convergence in the limited commitment economy is 0.952

with a corresponding half life of − log(2)/ log(0.952) ≈ 14 years whereas in the moral hazard

economy this eigenvalue is 0.994 which implies a half-life of 115.2 years. Individual transitions

are therefore much slower in the moral hazard economy.

5 Mixtures of Moral Hazard and Limited Commitment

The previous section compared two economies: one in which all agents were subject to the moral

hazard friction and another in which all agents were subject to the limited commitment friction.

However, there is no reason why a given economy should be subject to only one imperfection.

For example, Paulson, Townsend and Karaivanov (2006) find that for Thailand, moral hazard

fits better in and around Bangkok and limited commitment better in the Northeast (see also

Karaivanov and Townsend, 2010). Therefore, we ask in this section: what happens if both

frictions are present in the same economy? We report results for an economy in which fifty

percent of the population is subject to moral hazard and the other fifty percent is subject to

limited commitment. We argue that such mixture regimes are different from simple convex

combinations of the pure moral hazard and pure limited commitment economies. Table 1

reports some aggregate statistics of the economy with both regimes. There is a surprising

interaction of occupational choice with the two frictions: all individuals that are subject to

limited commitment become workers and the only entrepreneurs are individuals subject to moral

hazard. Intuitively, this is because in the limited regime, the friction only affects entrepreneurs

but not workers. A similar surprise

Also somewhat surprisingly, the interest rate is higher in the mixture regime than in either

the moral hazard or limited commitment regime. Therefore, a mixture of the two regimes is

not simply a convex combination of the two regimes as the reader may have expected.
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6 Transition Dynamics

Now the environment is non-stationary, and wt and rt, as well as the value function carry time

indices. The notation follows Huggett (1997).

Vt(a, z) = max
e,x,k,l,c(ε),a′(ε)

∑

ε

p(ε|e) {u[c(ε), e] + βEVt+1[a
′(ε), z′]} s.t.

∑

ε

p(ε|e) {c(ε) + a′(ε)} ≤
∑

ε

p(ε|e) {x[zεf(k, l) − wtl − (rt + δ)k] + (1 − x)wtε]} + (1 + rt)a

and s.t. regime-specific constraints.

(12)

In terms of computation, we follow the same strategy as in Buera-Shin, Appendix A.2. That

is, the value function is computed by simple backward induction. We first compute the value

function of the stationary equilibrium above, and let

VT (a, z) = v(a, z)

We then compute VT−1(a, z) taking as given VT (a, z). Proceeding by backward induction, we

can compute the entire sequence Vt(a, z) for t = T − 1, T − 2, ..., 1. No value or policy function

iteration is needed.

6.1 Market Clearing

same as above.

6.2 Transition Dynamics - Algorithm

This section is about constructing the market clearing wage and interest rate sequences as

described in Appendix A.2 of Buera-Shin. Consider period t. The goal is to “find wt that clears

the labor market.” Proceed as follows: Fix wi,j
t , ri

t and Vt+1(·) (and therefore {wt, rt}
T
s=t+1).

Compute Vt(a, z) and the corresponding optimal policy functions k(a, z; wi,j
t , ri

t), l(a, z, wi,j
t , ri

t),

and n(a, z; wi,j
t , ri

t). This is relatively fast because it’s essentially a static moral hazard problem

(i.e. ns linear programs). Then check labor market clearing and update wi,j+1
t using the

bisection algorithm. With the new wi,j+1
t recompute the value function still taking as given

Vt(·), and so on...

7 Results: Transition Dynamics

[TO BE DONE]
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8 Conclusion

[TO BE DONE]

Appendix

A Capital Accumulation

The purpose of this section is to spell out in detail how capital accumulation works in our

economy. We assume that there is a representative capital producing firm that issues bonds,

Bt, and dividends, Dt, invests, It, to accumulate capital, Kt which it rents out to households

at a rental rate Rt. The budget constraint of capital producer is then

Bt+1 + It + Dt = RtKt + (1 + rt)Bt, Kt+1 = It + (1 − δ)Kt

The entire debt of the capital producer is held by the intermediary and hence the debt market

clearing condition is

Bt +

∫

adGt(a, z) = 0 (13)

The capital producer maximizes

V0 =

∞
∑

t=0

Dt

(1 + r)t
.

subject to

Kt+1 + Bt+1 + Dt = (Rt + 1 − δ)Kt + (1 + r)Bt (14)

It is easy to show that this maximization implies the no arbitrage condition Rt = rt + δ.4

Therefore the budget constraint (14) is

Dt = (1 + r)(Kt + Bt) − Kt+1 − Bt+1

and so the present value of profits is

Vt =
∞

∑

s=0

Dt+s

(1 + r)s
= (1 + r)(Kt + Bt) all t.

Zero profits implies Kt + Bt = 0 for all t. Using bond market clearing (13), this implies

Kt =

∫

adGt(a, z), ∀t.

4Defining cash-on-hand, Mt = (Rt + 1 − δ)Kt + (1 + r)Bt, the associated dynamic program is

V (M) = max
K′,B′

M − K ′ − B′ + (1 + r)−1V [(R′ + 1 − δ)K ′ + (1 + r′)B′]

The first order conditions imply R′ = r′ + δ.
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B Wealth vs Promised Utility as a State Variable

The optimal contract in (23) to (24) uses as state variables wealth, a and ability, z. We here

show how to derive this contract from a more standard formulation of the dynamic contracting

problem where the state variables are promised utility and ability.

B.1 More Standard Formulation with Promised Utility

Consider the following problem: maximize the household’s utility

Et

∞
∑

τ=t

βτ−tu(cτ , eτ )

subject to providing profits of at least πt to the intermediary

Et

∞
∑

τ=t

yτ − cτ

(1 + r)τ−t
≥ πt (15)

and regime-specific constraints. Note that this is the dual to the perhaps even more standard

formulation of maximizing intermediary profits subject to delivering a given level of promised

utility to the household. In our formulation instead, we maximize household utility subject to

delivering “promised utility” πt to the intermediary.

The associated dynamic problem is:

V (π, z) = max
e,x,c(ε),π′(ε)

∑

ε

p(ε|e) {u[c(ε), e] + βEV [π′(ε), z′]} s.t. (16)

∑

ε

p(ε|e) {u[c(ε), e] + βEV [π′(ε), z′]} ≥
∑

ε

p(ε|ê) {u[c(ε), ê] + βEV [π′(ε), z′]} ∀e, ê (17)

The “promise-keeping” constraint now says that the optimal contract has to deliver expected

profits π to the intermediary :

∑

ε

p(ε|e)
{

x[zεf(k, l) − wl − (r + δ)k] + (1 − x)wε − c(ε) + (1 + r)−1π′(ε)
}

= π. (18)

B.2 Formulation in Main Text, (3)

The budget constraint of a risk-sharing syndicate (1) can be written in present-value form as

0 = πt + at(1 + r), for all t where πt ≡ Et

∞
∑

τ=t

yτ − cτ

(1 + r)τ−t
(19)

are the intermediary’s expected future profits. In the recursive formulation of the dual:

π = −a(1 + r), π′(ε) = −a′(ε)(1 + r) (20)
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By using this simple relationship, the promise-keeping constraint (18) becomes

∑

ε

p(ε|e) {a′(ε) − x[zεf(k, l) − wl − (r + δ)k] − (1 − x)wε} = (1 + r)a

This is exactly the budget constraint (24) used above. Similarly, use (20) in V (π, z) to define

v(a, z) = V [−(1 + r)a, z].

We then arrive at the formulation of the problem in equations (23) to (24). Using wealth as a

state variable instead of promised utility is therefore a simple change of variables.

C Numerical Solution: Optimal Contract with Lotteries

When solving the optimal contract under moral hazard (3) and (4) numerically, we allow for

lotteries as in Phelan and Townsend (1991). This section formulates the associated dynamic

program.

C.1 Simplification

Capital and labor only enter the problem in (3) through entrepreneurial profits. We can make

use of this fact to reduce the dimensionality of the problem. Entrepreneurs solve the following

profit maximization problem.

max
k,l

ε̄(e)zf(k, l) − (r + δ)k − wl, ε̄(e) ≡
∑

ε

p(ε|e)ε.

With the functional form assumption in (11), the first-order conditions are

αzε̄(e)kα−1lγ = r + δ, γzε̄(e)kαlγ−1 = w

These can be solved for the optimal factor demands given effort, e, talent, z and factor prices

w and r.

k∗(e, z; w, r) = (ε̄(e)z)
1

1−α−γ

(

α

r + δ

)
1−γ

1−α−γ
( γ

w

)
γ

1−α−γ

l∗(e, z; w, r) = (ε̄(e)z)
1

1−α−γ

(

α

r + δ

)
α

1−α−γ
( γ

w

)
1−α

1−α−γ

Realized (as opposed to expected) profits are

Π(ε, z, e; w, r) = zεk(e, z; w, r)αl(e, z; w, r)γ − wl(e, z; w, r) − (r + δ)k(e, z; w, r)

Substituting back in from the factor demands, realized profits are

Π(ε, z, e; w, r) =

(

ε

ε̄(e)
− α − γ

)

(zε̄(e))
1

1−α−γ

(

α

r + δ

)
α

1−α−γ
( γ

w

)
γ

1−α−γ

(21)
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The budget constraint in (3) can then be written as

∑

ε

p(ε|e) {c(ε) + a′(ε)} =
∑

ε

p(ε|e) {xΠ(ε, z, e; w, r) + (1 − x)wε]} + (1 + r)a. (22)

C.2 Linear Programming Representation

Denote by

d = (c, ε, e, x)

the household’s consumption, output, effort, and occupational choice respectively. This is the

vector of control variables. A contract between the intermediary and a household specifies a

probability distribution over the vector

(d, a′) = (c, ε, e, x, a′)

given (a, z). Denote this probability distribution by π(d, a′|a, z). The associated dynamic

program then is a linear programming problem where the choice variables are the probabilities

π(d, a′|a, z):

v(a, z) = max
π(d,a′|a,z)

∑

D,A

π(d, a′|a, z) {u(c, e) + βEv(a′, z′)} s.t. (23)

∑

D,A

π(d, a′|a, z) {a′ + c} =
∑

D,A

π(d, a′|a, z) {xΠ(ε, e, z; w, r) + (1 − x)wε} + (1 + r)a. (24)

∑

(D\E),A

π(d, a′|a, z) {u(c, e) + βEv(a′, z′)} ≥
∑

(D\E),A

π(d, a′|a, z)
p(ε|ê)

p(ε|e)
{u(c, ê) + βEv(a′, z′)} ∀e, ê, x

(25)
∑

T,C,A

π(d, a′|a, z) = p(ε|e)
∑

T,C,ε,A

π(d, a′|a, z), ∀ε, e, x (26)

(24) is the analogue of (22). The set of constraints (26) are the Bayes consistency constraints.5

5(26) is derived from the timing of the problem as follows. A lottery with probabilities Pr(e, x) first determines

an occupational choice, x, and an effort, e, for each household. Then a second lottery with probabilities

Pr(c, ε, a′|e, x) determines the remaining variables. Of course, nature plays a role in this second lottery since

the conditional probabilities p(ε|e) are technologically determined. It is therefore required that

∑

T,C,A

Pr(c, ε, a′|e, x) = Pr(ε|e, x) = p(ε|e). (27)

We have that

Pr(c, ε, a′|e, x) =
π(c, ε, e, x, a′)

∑

T,C,ε,A π(c, ε, e, x, a′)
(28)

Combining (27) and (28), we have
∑

T,C,A π(c, ε, e, x, a′)
∑

T,C,A,ε π(c, ε, e, x, a′)
= p(ε|e),

which is (26) above.
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Variable grid size grid range

Wealth, a 30 [0.1, 90]

Productivity, z 20 [0.08, 0.16]

Consumption, c 30 [cmin(w, r), cmax(w, r)]

Efficiency, q 2 [1, 18]

Effort, e 2 [0, 1]

Table 2: Variable Grids

C.3 Bounds on Consumption Grid

To solve the optimal contracting problem, we follow Prescott and Townsend (1984) and Phelan

and Townsend (1991) and constrain all variables to lie on discrete grids. It is necessary to

adjust those grids when prices change. In particular, the boundaries of the consumption grid

are chosen as

cmin(w, r) = ramin + max{Π(εmin, zmin, emin; w, r), wεmin},

cmax(w, r) = ramax + max{Π(εmax, zmax, emax; w, r), wεmax},

for any given (w, r), and where the profit function Π is defined in (21). These are the minimum

and maximum levels of consumption that can be sustained given that a′(ε) = a in (3). Table

2 lists our choices of grids.
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