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Abstract

We show that the limiting distributions of subset generalizations of the weak instrument
robust instrumental variable statistics are boundedly similar when the remaining structural
parameters are estimated using maximum likelihood. They are bounded from above by
the limiting distributions which apply when the remaining structural parameters are well-
identified and from below by the limiting distributions which holds when the remaining
structural parameters are completely unidentified. The lower bound distribution does not
depend on nuisance parameters and converges in case of Kleibergen’s (2002) Lagrange
multiplier statistic to the limiting distribution under the high level assumption when the
number of instruments gets large. The power curves of the subset statistics are non-standard
since the subset tests converge to identification statistics for distant values of the parameter
of interest. The power of a test on a well-identified parameter is therefore low for distant
values when one of the remaining structural parameter is weakly identified and is equal
to the power of a test for a distant value of one of the remaining structural parameters.
All subset results extend to statistics that conduct tests on the parameters of the included
exogenous variables.

1 Introduction

A sizeable literature currently exists that deals with statistics for the linear instrumental variables
(IV) regression model whose limiting distributions are robust to instrument quality, see e.g.
Anderson and Rubin (1994), Kleibergen (2002), Moreira (2003) and Andrews et. al. (2005).
These robust statistics test hypotheses that are specified on all structural parameters of the
linear IV regression model. Many interesting hypothezes are, however, specified on subsets of
the structural parameters and/or on the parameters associated with the included exogenous
variables. When we replace the structural parameters that are not specified by the hypothesis of
interest by estimators, the limiting distributions of the robust statistics extend to tests of such
hypotheses when a high level identification assumption on these remaining structural parameters
holds, see e.g. Stock and Wright (2000) and Kleibergen (2004,2005). This high level assumption
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is rather arbitrary and its validity is typically unclear. It is needed to ensure that the parameters
whose values are not specified under the null hypothesis are replaced by consistent estimators
so the limiting distributions of the robust statistics remain unaltered. When the high level
assumption is not satisfied, the limiting distributions are unclear. The high level assumption is
avoided when we test the hypotheses using a projection argument which results in conservative
tests, see Dufour and Taamouti (2005a,2005b).

We show that when the unspecified parameters are estimated using maximum likelihood that
the limiting distributions of the robust subset statistics are boundedly similar (pivotal). They are
bounded from above by the limiting distribution which applies when the high level assumption
holds and from below by the limiting distributions which apply when the unspecified parameters
are completely unidentified. The lower bound distribution does not depend on nuisance parame-
ters and converges to the limiting distribution under the high level assumption when the number
of instruments gets large in case of Kleibergen’s (2002) Lagrange multiplier (KLM) statistic. The
robust subset statistics are thus conservative when we apply the limiting distributions that hold
under the high level assumption.

We use the conservative critical values that result under the high level assumption to compute
power curves of the robust subset statistics. These power curves show that the weak identification
of a particular parameter spills over to tests on any of the other parameters. For large values of
the parameter of interest, we show that the robust subset statistics correspond with general tests
of the identification of any of the structural parameters. Hence, when a particular (combination
of the) structural parameter(s) is weakly identified, the power curves of tests on the structural
parameters using the robust subset statistics converge to a rejection frequency that is well below
one when the parameter of interest becomes large. The quality of the identification of the
structural parameters whose values are not specified under the null hypothesis are therefore of
equal importance for the power of the tests as the identification of the hypothesized parameters
itself.

The paper is organized as follows. In the second section, we construct the robust statistics for
tests on subsets of the parameters. Because the subset likelihood ratio statistic has no analytical
expression, we extend Moreira’s (2003) conditional likelihood ratio statistic to a quasi-likelihood
ratio statistic for tests on subsets of the structural parameters. In the third section, we obtain the
limiting distributions of the robust subset statistics when the remaining structural parameters
are completely non-identified. We show that these distributions provide a lower bound on the
limiting distributions of the robust subset statistics while the limiting distributions under the
high level identification assumption provide a upperbound. In the fourth section, we analyze the
size and power of the subset statistics and show that they converge to a statistic that tests for
the identification of any of the structural parameters when the parameter of interest becomes
large. The fifth section illustrates some possible shapes of the p-value plots that result from the
robust subset statistics. The sixth section extends the robust subset statistics to statistics that
conduct tests of hypothezes specified on the parameters of the included exogenous variables. It
also analyzes the size and power of such tests. Finally, the seventh section concludes.

We use the following notation throughout the paper: vec(A) stands for the (column) vector-
ization of the T' x n matrix A, vec(A) = (a}...a))’, when A = (a;...a,). P4 = A(A’A)' A’
is a projection on the columns of the full rank matrix A and M4 = Iy — P4 is a projection on

the space orthogonal to A. Convergence in probability is denoted by “—” and convergence in
p



distribution by “7” .

2 Subset statistics in the Linear IV Regression Model
We consider the linear IV regression model

y = Xf+Wy+e
X = Zlyx+Vyx (1)
W = Zlly + Vi,

where y, X and W are T" x 1, T' x m, and T x m,, dimensional matrices that contain the
endogenous variables, Z is a T' x k dimensional matrix of instruments and m = m, + m,,. The
T x1,T xm, and T" X m,, dimensional matrices ¢, Vx and Vj contain the disturbances. The
mg X 1, my, X 1, k x m, and k x m,, dimensional matrices 3, v, [y and Ily consist of unknown
parameters. We can add a set of exogenous variables to all equations in (1) and the results that
we obtain next remain unaltered when we replace all variables by the residuals that result from
a regression on these additional exogenous variables.

Assumption 1: When the sample size T converges to infinity, the following convergence results
hold jointly:

a. 7(e 1 Vx i Vw)'(e : Vx & Vi) — Y, with X a positive definite (m + 1) x (m + 1) matriz

Oce OecX OcWw

and ¥ = | oxe Zxx XZxw |, 0.:1Xx1, 0cx =0 1 Xmy, ooy =0y 0 1 X my,
OWwe DWX Xww

EXX My X My, EXW = E%VX My X My, ZWW DMy X My

b. %Z’ A 7 Q, with Q) a positive definite k X k matriz.

and vec(t . hyx P Uzw) ~ N(0,20Q).

Statistics to test joint hypotheses on [ and 7, like, for example, H* : 8 = 3, and v = ~,,
have been developped whose (conditional) limiting distributions under H* and Assumption 1
(1*) do not depend on the value of IIx and Ty, see e.g. Anderson and Rubin (1949), Kleibergen
(2002) and Moreira (2003). These robust statistics can be adapted to test for hypotheses that
are specified on a subset of the parameters, for example, Hy : 5 = 3,. We construct such robust
subset statistics by using the maximum likelihood estimator (MLE) for the unknown value of
7, 4, which results from the first order condition (FOC) for a maximum of the likelihood. The
Anderson-Rubin (AR) statistic is proportional to the concentrated likelihood so we can obtain



the FOC from (k times) the AR statistic:

ZAR(Gp.7)| =0
a9 (y—Xﬁo—WV)’Pz(y—Xﬁo—WW) _ 2
v k(y XBo—W) Mz(y— XBO*WV)] ‘7_7 =0 2
Use(ﬁo HW(BO) Z'(y— XBy —W7) =0,

where AR(f,7) = 055(60 o (y — XBo = W) Pz(y — XBy = W7), 6=(B0,7) = 75y — X By —

W) My(y = Xy = W), Tl (Bo) = (2/2) 722" [W = (y = Xy — WH) 2228 and 6..(8,) =

Gee(B0,7), 0ew (Bo) = 705 (y — X By — WH)' MzW. The robust subset statistics equal the robust
statistics for testing the joint hypothesis H* : 5§ = 3, and v = 7, when (5,,7,) equals (5,,7)-

To specify the robust subset statistics, we decompose (Z'Z)~*Z'(y : X : W) into three com-
ponents that are uncorrelated in large samples.

Lemma 1: When Assumption 1 holds and under Hy : § = o, Hw(B,) and Tx(3,) =

(2'2) 7' [X — (y — XBy — WH)Zx L ;} L with 6.x(By) = = (y — XBo — W) Mz X, are un-

correlated with Z'(y — X, — ny) in large samples such that

FE |limy_ oo — HW@O)/M =0, and E |limpe — Hx(ﬂo)'zl(y X5 WA | _
T2 0'55(,80) T2 055(50)

(3)
where Oy and 0x are such that limp_ o T(%WH’WZ’ZHW = Cw, limr_ T(;X I\ Z'Z1lx = Cx
with Cy and Cx mwy X my and mx X myx matrices of constants such that oy and dx are zero
in case of irrelevant or weak instruments and one in case of strong instruments.*

Proof. see the Appendix. m

Definition 1: 1. The AR statistic (times k) to test Hy : f = (3, reads
AR(By) = #ﬁo)(y — X — W&)IPMZﬁW(BO)Z(?/ — XBy = W7). (4)

2. Kleibergen’s (2002) Lagrange multiplier (KLM) statistic to test Hq reads, see Kleibergen
(2004),

KLM(8,) = #ﬁo)(y — XBo— W’?)/PMZﬁW(BO)ZﬁX(ﬁO)(y — XBo —W7). (5)
3. A J-statistic that tests misspecification under Hq reads, see Kleibergen (2004),
JKLM(5y) = AR(5y) — KLM(8,). (6)
4. The likelihood ratio (LR) statistic to test Hy reads,
LR(By) = AR(fg) —ming AR(p), (7)

For reasons of brevity, we refrain from discussing intermediate cases where instead of normalizing I1};, Z' ZI1y
(or Iy Z'ZTx) by T—°", we normalize a quadratic form with respect to II};, Z'ZIly, by a diagonal matrix
diag(T 0w, ..., T~% mw) with different values of Sy, i = 1,...,myu . These cases also have no effect on the
results for the robust subset statistics.



where ming AR(S3) equals the smallest root of the characteristic polynomial:

Q— =L (y i X IW)Py(y: X P W)| =0, (8)

with Q= 7 (y ? X W)Y Mgy X P W).
The subset LR statistic (7) has no analytical expression when we express it as a function of
Z'(y — XBy — W7A), lIx(5,) and IIw(B,), i.e. the components that are under Hy independent

in large samples. By decomposing the characteristic polynomial, we obtain an approximation of
the subset LR statistic with an analytical expresssion, see Kleibergen (2006).

Theorem 1. A upperbound on the subset LR statistic (7) reads

MQLR(3,) = % lAR(ﬁo) —1k(8) + \/(ARwo) + rk(ﬁo))Q — 4 (AR(B,) — KLM(5,)) rk(Bo) | ,
(9)

where rk( ) is the smallest characteristic root of

!/
EMQLR(ﬁo) = E(x?; WYX : W).e l(X : W) —(y = XBy— 27) US()?:E;(V;())SBO)}
: ~yGecx s w(Bo) | 3
Py (X W) —(y— XBy— ZV)%} Z(X2: W)X : W).e

_1, _1,

/
= XX W)X W)e lHX<50) : Hw(ﬁo)] 2'Z lnx(ﬁo) : Hw(ﬁo)} EX WX Wye

(10)
with 65()(; W)(BO) = (65X(60) &8W(60)) and XAJ(X WYX s W)e = ﬁ(X W)/M(Z : (y*XBO*Z:Y))(X
S W).

Proof. see the Appendix. m

~ Unlike LR(3,) (7), MQLR(f,) (9) is an explicit function of Z'(y — X8, — W¥), IIx(f,) and
Iy (B,). Except for the usage of the characteristic root rk(f,), its expression coincides with that
of Moreira’s (2003) conditional likelihood ratio statistic. Thus we refer to it as MQLR(5,). The
MQLR statistic (9) is a quasi-LR statistic that preserves the main properties of the LR statistic,

that its conditional distribution given rk(f,) coincides with that of AR(f,) when rk(5,) is small
and with that of KLM(/3,) when rk(5,) is large. We therefore instead of LR(3,) use MQLR(5,)
in the sequel of the paper.

To determine the quality of the approximation of LR(S,) by MQLR(f,), we analyze the
difference between LR(3,) and MQLR(3,).

Proposition 1. a. A upperbound on the difference between LR([3,) and MQLR(f,) is given

by
Tk (By)+¢2, -1
[ + e (PR 1) (11)
where Apin =AR(Bo)—MQLR(B,) and ¢ : k x 1 is defined in the proof of Theorem 1 in the
Appendiz. It is such that AR(f,) = Zle ©? and KLM(B,) = Y., ©2.
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b. The LR and MQLR statistics are identical when the FOC holds at j3,,.
Proof. see the Appendix. m

The upperbound on the difference between the LR and MQLR statistics shows that the
approximation of LR(f,) by MQLR(,) is an accurate one when: the FOC holds at /3, and rk(/3,)
is small or large. To obtain further insight into the quality of the approximation at intermediate
values of rk(3,), we computed the 95% conditional critical values of the LR and MQLR statistic
when m = 3 for a range of values of k(f3,) and a few settings of the larger characteristic roots,
that influence the conditional distribution of the LR statistic, and the number of instruments k.
We compare these critical values with the 95% percentiles of the upperbound.

The Figures Section in the Appendix has two Panels which show the 95% conditional critical
values that result from the LR and MQLR statistics, their differences across different values of
rk(3,) and the upperbound from Proposition 1. Panel 5 shows the 95% conditional critical values
of the LR and MQLR statistics and the 95% percentile of the upperbound from Proposition 1
as a function of rk(5,), i.e. the smallest eigenvalue. Panel 6 compares the differences in the
95% conditional critical values of the LR and MQLR statistic with the 95% percentile of the
upperbound. Panels 5 and 6 show that the 95% conditional critical values of the MQLR statistic
are very similar to those of the LR statistic. The difference between the critical values is typically
small and the upperbound is a conservative one. Only for the unrealistic setting of a rather small
value of the smallest eigenvalue and a large value of the second largest eigenvalue is the difference
between the critical values close to the upperbound.

The (conditional) limiting distributions of AR(S,), KLM(8,), JKLM(5,) and MQLR(S,)
result from the independence of Z'(y — X 8, — Z#) and Ix(8,), Iy (5,) in large samples stated
in Lemma 1 and from a high level assumption with respect to the rank of Ily, which implies
an asymptotic normal distribution for Z'(y — X3, — Z7), Hx(B,) and Iy (8,), see Kleibergen
(2004).

Assumption 2: The value of the kxm,, dimensional matriz Iy is fized and of full rank.

Theorem 2. Under Hy and when Assumptions 1 and 2 hold, the (conditional) limiting distri-
butions of AR(B,), KLM(B,), JKLM(p,) and MQLR(B,) given rk(B,) are characterized by

-~ KIM(5,) >
3. JKLM(8,) — Vpm
1 MQUR(Bo)|rk(5) — 4 wmzwk_m—m(ﬁmJ(wmz+wk_m+rk<ﬁo>)2—4wk_mrk<ﬁo>},

(12)

where 1, and V,_,, are independent x*(my) and x*(k —m) distributed random variables.
Proof. see Kleibergen (2004). m

Assumption 2 is a high level assumption that is difficult to verify in practice. We therefore
establish the limiting distributions of the different statistics when Assumption 2 fails to hold, i.e.
when Iy equals zero instead of a full rank value. We show that the limiting distributions of the



statistics in this extreme setting provide a lower bound for all other cases while the distributions
from Theorem 2 provide a upper bound.

3 Limiting distributions of subset statistics in non-identified
cases

We construct the (conditional) limiting distributions of the AR, KLM, JKLM and MQLR statis-
tics when Il equals zero.

Lemma 2. When Iy = 0 and Assumption 1 and Hy hold, the FOC (2) corresponds in large
samples with

[gw + (ga.w o gw:)/)l_j:;l_fy , [fa.w o fwi/] = 07 (13)

where &, and &_,, are kX1 and k x m,, dimensional independently standard normal distributed
1

S B _1
matrices and 5 = X2 (T — Yo — S OWe ) Tectw, Teeno = Ooe — TcwSgsy T e
Proof. see the Appendix. m

The solution of 4 to the FOC in Lemma 2 is not unique and the MLE results as the solution
that minimizes the AR statistic. Lemma 2 shows that 7, which is a function of the MLE 7,
does not depend on any parameters. When Il equals zero, the distribution of 4 does therefore
not depend on any other parameters as well and is a standard Cauchy density, see e.g. Mariano
and Sawa (1972) and Phillips (1989). We construct the limiting distributions of the AR, KLM,
JKLM and MQLR statistics to test Hy : § = 3, when Il equals zero.

Theorem 3. Under Assumption 1, Hy : B = 3, holds and when Iy, equals zero:
1. The limiting behavior of the AR statistic to test Hy : 3 = [, is characterized by:

AR(BO) 7 ﬁ [gs.w - gw’?], [gs.w - gw’j/] : (14)

2. The limiting behavior of the KLM statistic to test Hy : 3 = [, is characterized by:

KLM(BO) 7 ﬁ(fa.w - fwi/)/PM ~ A(fa.w - fwi/)v (15)

[fw“'(gaw—&uﬂ)l—i%]
where A is a fixed k x m, dimensional matrix.

3. The limiting behavior of the JKLM statistic is under Hg characterized by:

JKLM(BO) 7 ﬁ(fa.w - fwf?),M[A : 5w+(5s'w,£w,—y)l_+’%](€a.w - éwﬁ) (16)



4. The conditional limiting behavior of the MQLR statistic given k() to test Hy : B = f,
reads

MQLR(8,)|rk(8y) —

% e oo — € [ — §u] — TR(Bo)+
2

{ (o e~ 671 e = 60+ 70050) -

4

(=

(17)

Proof. see the Appendix. m

Theorem 3 shows that the limit behaviors of AR(5,), KLM(5,), JKLM(8,) and MQLR(S3,)
when Iy, = 0 do not depend on nuisance parameters. The distribution functions associated
with the limit behaviors from Theorem 3 are bounded from above by the distribution functions
in case of a full rank value of Iy which result from Theorem 2. This is shown in Figure 1 for
the KLM statistic and in Figure 2 for the AR statistic.

Figure 1 shows the x?(1) distribution function and the limiting distribution function of
KLM(,) for different numbers of instruments when IIy, = 0 and m,, = m, = 1. Figure 1
shows that the x2(1) distribution provides a upperbound for the limiting distribution function of
KLM(3,) when Il = 0. It also shows that the limiting distribution of KLM(S,) when IIy, =0
converges to a x?(1) when the number of instruments increases.

Theorem 4. When Assumption 1 and Hg hold and the sample size T and the number of
instruments jointly converge to infinity such that k/T — 0, the limiting behavior of KLM( ()
when Iy = 0 is characterized by

KLM(fo) = x*(m.). (18)

Proof. see the Appendix. m

Theorem 4 implies that the x? distribution becomes a better approximation of the limiting
distribution of KLM(/3,) when the number of instruments gets large. The number of instruments
should, however, not be too large compared to the sample size because a different limiting
distribution of KLM(f3,) results when it is proportional to the sample size, see Bekker and
Kleibergen (2003).

Figure 2 shows the x*(k — m,,)/(k — m,,) distribution function and the limiting distribution
function of AR(B,)/(k — m,,) for different number of instruments when Il = 0 and m,, = 1.
Figure 2 shows that the limiting distribution of AR(3,) is bounded by the x*(k — m,,) distri-
bution when Iy, = 0. Figure 2 shows that the x*(k — m,,) distribution is a much more distant
upperbound for the limiting distribution of AR(,) than the upperbound for KLM(/3,) in Figure
1. The x? approximation of the limiting distribution of AR(f,) when IIyy = 0 is thus a much
more conservative one than for KLM(3,). Another important difference with KLM(f,) is that
there is no convergence of the limiting distribution of AR(3,) towards a x* distribution when
the number of instruments gets large.
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Figure 1: (Limiting) Distribution functions of x*(1) (solid) and KLM(f,) when II, = 0, m,, =
m, = 1 and k = 2 (dotted), 5 (dashed-dotted), 20 (dashed) and 100 (pointed).
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Figure 2: (Limiting) Distribution functions of x?(k—1)/(k—1) and AR(3,)/(k—1) when IT,, = 0,
my, =m, = 1 and k = 2 (dotted and dashed-dotted), 20 (solid and dashed) and 100 (solid with
triangles and solid with plusses).



Hinstr. \ stat. | KLM(5,) | MQLR(5,) | AR(5,) | JKLM(3,) | 2SLS(5,)
2 0.36 0.36 0.36 - 0.24
5 0.88 0.44 0.28 0.36 1.3
20 2.3 0.56 0.12 0.08 3.0
50 3.2 0.56 0.04 0.04 4.4

Table 1: Observed size (in percentages) of the different statistics that test Hy when II,, = 0 using
the 95% asymptotic significance level.

The conditional limiting distribution of MQLR(f,) given rk(3,) when IIy, = 0 behaves
similar to that of AR(8,) and KLM(/3,) since it is just a function of these statistics given the
value of rk(f,). We therefore, and because of its dependence on rk(/3,), refrain from showing this
distribution function. Since JKLM(f,) is a function of AR(S,) and KLM(j,) as well, we also
refrain from showing the distribution function of JKLM(S,).

Figures 1 and 2 show that the limiting distribution functions of KLM(5,) and AR(5,) when
[Ty = 0 are bounded by the limiting distributions of these statistics under a full rank value of
IIy. Theorem 5 states that the limiting distributions of KLM(3,), JKLM(5,), MQLR(3,) and
AR(S,) are in general bounded by the limiting distributions under a full rank value of Il and
that the limiting distributions under Il = 0 provide a lowerbound on these distributions.

Theorem 5. The (conditional) limiting distributions of AR(5,), KLM(pB,), JKLM(j,) and
MQLR(3,) under a full rank value of Tly provide a upperbound on the (conditional) limiting
distributions for general values of Ily, while the (conditional) limiting distributions under a zero
value of Iy, provide a lowerbound.

Proof. see the Appendix. m

Theorem 5 shows that the (conditional) limiting distributions of AR(5,), KLM(,), JKLM(5,)
and MQLR(5,) are boundedly similar. The critical values of AR(8,), KLM(3,), JKLM(5,)
and MQLR(f,) that result from the (conditional) limiting distributions of AR(S,), KLM(S,),
JKLM(5,) and MQLR(f3,) in Theorem 2 can therefore be applied in general, so even for (almost)
lower rank values of Iy, since the size of these tests is at most equal to the size under a full
rank value of Ily,. Usage of the critical values from Theorem 2 thus results in tests that are
conservative.

4 Size and Power

We conduct a size and power comparison of the different statistics to analyze the influence of the
quality of the identification of v for tests on 8. We therefore conduct a simulation experiment
using (1) with m, =m, =1,y =1, T =500 and vec(e : Vx : Vi) ~ N(0,X ® Ir). The instru-
ments Z are generated from a N(0, [ ® Ir) distribution. We compute the rejection frequency of
testing the hypothesis Hy : 5 = 0 using the AR-statistic (4), KLM-statistic (5), JKLM-statistic
(6), MQLR-statistic (9), a combination of the KLM and JKLM statistics and the two stage least
squares (2SLS) t-statistic, to which we refer as 2SLS(/3;). The number of simulations that we
conduct equals 2500.
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KLM(5,) | MQLR(B,) | JKLM(3,) | CYKLM(5,) | AR(5,) | 25LS(5,)
Fig. 1.1 5.4 54 5.8 5.2 5.8 28
Fig. 1.2 6.4 6.3 5.0 6.2 5.7 31
Fig. 1.3 5.6 5.7 5.0 5.4 5.6 98
Fig. 1.4 6.7 4.4 1.8 5.8 2.3 97
Fig. 2.1 5.1 4.8 2.0 2.8 5.0 3.0
Fig. 2.2 3.1 1.9 4.7 4.5 1.5 3.6
Fig. 2.3 4.0 3.5 4.2 3.3 4.0 4.0
Fig. 2.4 4.8 4.7 4.7 3.9 5.0 3.7
Fig. 2.5 4.2 4.0 4.4 3.5 4.8 4.4
Fig. 2.6 4.4 5.0 4.9 4.0 5.0 4.3
Fig. 3.1 6.2 6.2 5.3 6.2 5.8 88
Fig. 3.2 5.7 5.6 5.1 6.7 5.8 99

Table 2: Size of the different statistics in percentages that test Hy at the 95% significance level.

We control for the identification of g and v by specifying Il x and Il in accordance with a pre-
specified value of the matrix generalisation of the concentration parameter, see e.g. Phillips (1983)
and Rothenberg (1984). We therefore analyze the size and power of tests on /3 for different values

1
of © = (Z/Z)2 (Il Ow)Q 3y, with Qxw = (gvﬁi gv);;vv) , whose quadratic form constitutes the

matrix concentration parameter. We specify © such that only its first two rows have non-zero
elements.

Observed size when v is not identified. We first analyze the size of the different statistics
for conducting tests on 5 when ~ is completely unidentified so IIyy = 0. We therefore specify
Y and © such that ¥ equals the identity matrix and ©;; = 5, O3 = Oy = O = 0. Table
1 contains the observed size of the different statistics when we test Hy at the 95% asymptotic
(conditional) significance level that results from Theorem 2.

Table 1 confirms Figures 1, 2 and Theorem 4. It shows that KLM(3,), JKLM(5,), MQLR(S,)
and AR(f,) are conservative tests when we use the critical values that result from applying
the (conditional) limiting distributions from Theorem 2. Table 1 also confirms the conver-
gence of the asymptotic distribution of KLM(3,) when Iy = 0 towards a x? distribution
when the number of instruments gets large as stated in Theorem 4 and shown in Figure 1.
Since KLM(,) =MQLR(5,) =AR(,) when k = 2, the size of these statistics coincides when
k = m = 2 and the model is exactly identified such that JKLM(/3,) is not defined.

The size of the 2SLS t-statistic in Table 1 shows that the limiting distribution of the 2SLS t-
statistic is conservative when Il = 0 and Y equals the identity matrix. This result is specific for
the identity covariance matrix case and, as we show later, does not apply to general specifications
of the covariance matrix.

Power and size for varying levels of identification. We conduct a power comparison of
the different statistics to analyze the influence of the identification of v on tests for the value
of 5. Except for the specification of the covariance matrix ¥, we use the above specification of
the model parameters. The covariance matrix ¥ is specified such that o.. = oxx = oyww = 1,
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oxe = 0.x = 0.9, owe = oo = 0.8 and oxw = owx = 0.6 and the number of instruments
equals 20, £ = 20.

Panel 1: Power curves of AR(f,) (dash-dotted), KLM(/3,) (dashed), JKLM(,) (points),
MQLR(5,) (solid), CJKLM(solid-plusses) and 2SLS(f,) (dotted) for testing H, : 8 = 0.
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Since the KLM-statistic is proportional to a quadratic form of the derivative of the AR-
statistic, it is equal to zero at (local) minima, maxima and saddle points of the AR statistic, i.e.
where the FOC holds. This affects the power of the KLM statistic, see e.g. Kleibergen (2006).
We therefore also compute the power of testing Hy using a combination of the KLM and JKLM
statistics where we apply a 96% significance level for the KLM statistic and a 99% significance
level for the JKLM statistic so the size of the combined test procedure equals 5% since the KLM
and JKLM statistics converge to independent random variables under Hy. The combined KLLM,
JKLM test procedure is indicated by CJKLM.
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Panel 1 shows the power curves for different values of the matrix concentration parameter ©
with ©15 = O9; = 0 and Table 2 shows the observed sizes when we test at the 95% significance
level. The value of © in Figure 1.1 is such that both $ and v are well identified. Hence all
statistics have nice shaped power curves and the AR statistic is the least powerful statistic
because of the larger degrees of freedom parameter of its limiting distribution. The power of
JKLM(,)) is rather low since it tests the hypothesis of overidentification which is satisfied for
all the different values of 3. Table 2 shows that the 2SLS-statistic already has considerable size
distortion in this well identified setting.

The value of © in Figure 1.2 is such that v is weakly identified and 3 is well identified. Figure
1.2 shows that the weak identification of v has large consequences for especially the power of
tests on . The MQLR statistic is the most powerful statistic in Figure 1.2. As shown in Table
2, except for the 2SLS t-statistic, the size of the tests remains almost unaltered by the weak
identification of v but the power is strongly affected.

Figure 1.3 has a value of © that makes 3 weakly identified and ~ strongly identified. Again the
MQLR statistic is the most powerful statistic but the power of the KLLM statistic is comparable.
Table 3 shows that the size distortions of all statistics, except the 2SLS t-statistic, is rather small.
The size of the 2SLS t-statistic is completely spurious.

The specification of © is such that all parameters are weakly identified in Figure 1.4. The
power of all statistics is therefore rather low and none of the statistics clearly dominates the
others. Because of the low degree of identification, Table 2 shows that the AR statistic is rather
undersized which corresponds with Table 1. The size of the 2SLS ¢-statistic in Table 2 is again
completely spurious.

The specification of the covariance matrix ¥ in Panel 1 is such that there are spill-overs
between the identification of 5 and v that results from ©. It is therefore difficult to determine
the influence of the weak identification of v on the size and power of tests on (5. To analyze the
influence of the weak identification of v on the power of tests on  in an isolated manner, we
equate the covariance matrix Y to the identity matrix. Table 2 and Panel 2 show the resulting
size and power for tests on f3.

Table 2 shows that KLM(f3,), JKLM(5,), CJKLM(3,), MQLR(S,) and AR(f,) are under-
sized when + is weakly identified which is in accordance with Table 1 and Theorem 5. The values
of © in Figure 1.2 and 2.2 are identical but KLM(/,), JKLM(5,), CJKLM(5,), MQLR(5,) and
AR(S,) are only undersized in Figure 2.2 and not in Figure 1.2. This results because of the
different values of 3 that are used for Figures 1.2 and 2.2 such that Iy, is small in Figure 2.2
but sizeable in Figure 1.2.

The power curves in Panel 2 show that 2SLS(3,) is the most power ful statistic for testing
Hy. Because of the absence of correlation between the different endogenous variables, 2SLS(3,) is
size correct. The previous Figures, however, show that 2SLS(/3,) is often severely size-distorted
in cases when any correlation is present which makes its results difficult to trust. Among the
statistics that remain size-correct when identification is weak, MQLR(f3,) is the most powerful
statistic for testing Hy. The power of MQLR(3,) exceeds that of AR(f3,) for values of 3 that are
relatively close to zero but is remarkably similar to that of AR(f,) for more distant values of .
This argument holds in a reversed manner with respect to KLM(/3,). The behavior of the power
curve of MQLR(f3,) thus resembles that of KLM(,) close to zero and that of AR(j,) for more
distant values of 3.

13



Panel 2: Power curves of AR(,) (dashed-dotted), KLM(,) (dashed), MQLR(S,) (solid),
JKLM(53,) (points), CJKLM(solid with plusses) and 2SLS(,) (dotted) for testing H, : 8 = 0.
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The level of identification of 5 and ~ is reversed in the two columns of Panel 2. In the left-
handside column, the identification of v is worse than of 5 and vice versa in the right-handside
column. Table 2 therefore shows that the statistics are somewhat undersized in the left-handside
column while they are size correct in the right-handside column. Besides the size issue, the power
curves in the left and right-handside columns of Panel 2 are remarkably similar for distant values
of 3. They only differ around the hypothesized value of the parameter. This indicates that the
statistics behave in a systematic manner for distant values of 5. This is stated in Theorem 6.

Theorem 6. When mx =1, Assumption 1 holds and for tests of Hy : f = [, with a value of
By that differs substantially from the true value:

1. The AR-statistic AR(f,) is equal to the smallest eigenvalue of Q}%’,(X : WY Pz(X :
W)Q;(%V which is a statistic that tests for a reduced rank value of (Ilx : Ily), QXW =
ﬁ(X W)Y Pz(X 2 W).

2. The eigenvalues of Snqur(B,) that are used to obtain rk(B,) correspond for large numbers
of observations with the eigenvalues of

[1#5_()( W) : (@(X cw) + ¥ix . W)) Vl} lwg,(x W) : (@(X cw) + Wix W)) Vil, (19)

1
1 5 1

where (Z'2)~2 7" [5 — (X W) (ZV);‘Z)] Oee(X: W) Veix - w) = Q2 [ V.~V zx . 7wy

- . Z1 ) _1
O, (g;;i)]a o wy (224 )2y — Ox ) and (2/2) 32/ (V Vi) Quchy —

N

_1
Uix.w = Q—%zp(ZX: w8y, and Vi ois a m x m,, matriz that contains the eigen-
_1 , , _1
vectors of the largest m,, eigenvalues of QX%,[,,(X s WY PZ(X : W)Qgty, Oee(x - w) =
oxe\ O— oxe
Oee — (av);e) QX%/V (Uv)l(/g)'

3. For large numbers of observations, the x*(k — m,,) distribution provides a upperbound on

the distribution of Tk(3,).

Proof. see the Appendix. m

Theorem 6 shows that the power of the AR statistic equals the rejection frequency of a
rank test when the value of 3 gets large. The rank test to which the AR statistic converges is
identical for all structural parameters. Hence, the power of the AR statistic for discriminating
distant values of any structural parameter is identical. This explains the equality of the rejection
frequencies of the AR statistic for distant values of § in the left and right-handside figures of
Panel 3.

The MQLR statistic consists of AR(f,), KLM(5,) and rk(/,). Theorem 6 shows that rk(j3,)
is bounded by a x?(k — m,,) distributed random variable for values of 3, that are distant from
the true value. This implies a relatively small value of rk(3,) so MQLR(,) behaves similar to
AR(S,) for distant values of /3. Since both the value where rk(5,) and AR(S,) converge to are
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the same for all structural parameters, the power of MQLR(f,) is the same for all structural
parameters at distant values and similar to that of AR(/3,). This corresponds with the Figures
in Panel 2.

The identification of 5 and 7 is governed by the matrix concentration parameter ©. Besides
having values that especially identify 5 and/or v, the matrix concentration parameter can also
be such that linear combinations of 5 and v are strong or weakly identified. To analyze the
influence of the strong/weak identification of combinations of 5 and 7 on tests for 3, we specified
the value of © such that it is close to a reduced rank one. We used the previous non-diagonal
specification of ¥ to further disperse the identification of combinations of 5 and ~.

Table 2 and Panel 3 shows the size and power of tests for 8 when the value of © is close to a
reduced rank one which is revealed by the eigenvalues of ©'O. Except for the 2SLS t-statistic, the
size of the statistics is close to 5%. The weak identification of a linear combination of v and £ is
such that the power of all statistics is rather low. Figures 3.1 and 3.2 show that the MQLR(/53,)
is the most powerful statistic.

Panel 3: Power curves of AR(f,) (dashed-dotted), KLM(5,) (dashed), MQLR(S,) (solid),
JKLM(5,) (points), CJKLM(solid with plusses) and 2SLS(f,) (dotted) for testing H, : 8 = 0.
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5 Confidence Sets

Theorem 6 shows that tests on different parameters become identical when the parameters of
interest get large. Its consequences for the power curves in Panels 1-3 are clearly visible and
it has similar implications for the confidence sets of the structural parameters. We therefore
use the previously discussed data generating process to compute some (one minus the) p-value
plots which allow us to obtain the confidence set of a specific parameter. The p-value plots are
constructed by inverting the values of the statistics that test Hy : 8 = 3, for a range of values of
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B, using the (conditional) limiting distributions that result from Theorem 2.

Panel 4: One minus p-value plots of AR (dash-dotted), KLM (dashed), MQLR (solid)
JKLM (points) and 2SLS (dotted) for testing 5 and 7, k =20, Oy = O35 = 0.
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Panel 5: One minus p-value plots of AR (dash-dotted), KLM (dashed), MQLR (solid)
JKLM (points) and 2SLS (dotted) for testing 5 and 7, k = 20, O = O12 = 0.
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Panel 4 contains the one minus p-value plots for a data generating process that is identical
to that of Panel 2. The Figures in Panel 4 are such that the Figures on the left-handside contain
the p-value plot of tests on v while the Figures on the right-handside contain p-value plots of
tests on . The data set used to compute the p-value plot of 3 and ~ is the same and only differs
over the rows of Panel 4.

Panel 4 shows that tests on § and v differ around the true value of 5 (0) and v (1) but are
identical at distant values. This is exactly in line with Theorem 6. It shows that even when £ is
well identified, confidence sets of 5 are unbounded when ~ is weakly identified.

The odd behavior of the p-value plot of KLM(f,) results since it is equal to zero when the
FOC holds. Figures 4.2, 4.4 and 4.6 therefore show that KLM(f3,) is equal to zero when AR(/3,)
is maximal. We note that the p-value plots of KLM(3,), MQLR(f3,) and 2SLS(/3,) are equal to
zero at resp. the MLE and for 2SLS(f3,), the 2SLS estimator, but this is not visible in all of the
Figures in Panel 4 because of the specified grid for j3,.

The data generating process that is used to construct Panel 5 is identical to that of Panel 1.
Because of the presence of correlation, a linear combination of 5 and v is weakly identified in
the Figures in the top two rows of Panel 5 such that the p-value plots do not converge to one.
The resulting 95% confidence sets of [ are therefore unbounded for these Figures. For distant
values of 5 and v, Panel 5 shows again that the statistics that conduct tests on S or v become
identical.

Panels 4 and 5 show that the distinguishing features of the subsets statistics shown for the
power curves, ¢.e. that they do not converge to one when the parameters of interest gets large
and statistics that test hypotheses on different parameter become identical for distant values of
the parameter of interest, appropriately extend to confidence sets.

6 Tests on the parameters of exogenous variables

The subset statistics extend to tests on the parameters of the exogenous variables that are
included in the structural equation. The expressions of KLM(53,), JKLM(5,), AR(S,) and
MCLR(,) remain almost unaltered when X is exogenous and is spanned by the matrix of
instruments. The linear IV regression model then reads

y = XB+Wy+e (20)

W = Xllwx + Zllwz + Vi,
where (X : Z) is the T x (k + m,) dimensional matrix of instruments and ITyy and Iz are
mg X m,, and k X m,, matrices of parameters. All other parameters are identical to those defined
for (1). We are interested in testing Hy : 5 = (5, and we adapt the expressions of the statistics
from Definition 1 to accomodate tests of this hypothesis.

Definition 2: 1. The AR statistic (times k) to test Hy : f = [, reads

AR(By) = 5y — XBo — WA)' Py, 2y — X By —W7), (21)

Zity, (80) 2
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with 7 = (X i 2), Hu (5o) = (22) 2/ [W = (y = XBo — W) 222 and 6..(8,) = 745y -

XBy—= W) Mz(y — XBy — W7), 6ew(Bo) = 75 k( — XBo— WA)MzW and 7 the MLE of ~
gwen that B = f3,.
2. The KLM statistic to test Hy reads,

KLM(8,) = ﬁﬁo)(y — XBo — W?),PMZ-ﬁW(ﬁO)X(Z/ — XBo —W7), (22)
since Ix(Bo) = (2'2)7'Z' [X (y— XBy — WAL = (22)712'X = (") as 6x(By) =

= (y — XBy — W) M;zX = 0.
3. A J-statistic that tests misspecification under Hq reads,

JKLM(8,) = AR(f,) — KLM(5,). (23)

4. A quasi likelihood ratio statistic based on Moreira’s (2003) likelihood ratio statistic to test H
reads,

MQLR(3) = 4 |AR(5) = k() + y/(AR(3) -+ 1K(30))* — 4 (AR(3o) ~ KLM(30)) k(50|
(24)
where k() is the smallest eigenvalue of

o 1

A A / A
Suauh = Sihve W = (9 = X8y — Z3) 2488 Paez [W — (y — X8 — 27) 2488 | £53,...

with Gow (B0) = 75 (y=X Bo=WA) MW, S = 2 W MW, Sypawe = Sy — 2o Gulgenr o),

Ge<(Bo)

Except for MQLR(/3,), all statistics in Definition 2 are direct extensions of those in Definition

1 when we note that IIx(5,) = (I’gz), when X belongs to the set of instruments. The alteration

of the expression of f]MQLR for MLR(f,) partly results from Mz;X = 0 and since only the
instruments 7 identify ~.

Under a full rank value of Il 7, the (conditional) limiting distributions of the statistics in
Definition 2 are identical to those in Theorem 2 when “k” is equal to “k + m,”. Alongside
Theorem 2, Theorems 3-5 apply to the statistics from Theorem 2 as well.

Theorem 7. The (conditional) limiting distributions of AR(5,), KLM(B,), JKLM(j,) and
MQLR(j3,) in Definition 2 are bounded from above by the limiting distribution under a full rank
value of Iy z and from below by the limiting distribution under a zero value of Ily .

Proof. results from Theorem 5. =

6.1 Size and power properties

To illustrate the behavior of the exogenous variable statistics from Definition 2, we analyze
their size and power properties. We therefore conduct a simulation experiment using (20) with
T = 500, m, = m, = 1 and k£ = 19 so the total number of instruments equals k£ + m, = 20. All
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instruments are independently generated from N (0, I'r) distributions and vec(e : Viy) is generated
from a N(0,X ® I7) distribution. The number of simulations equals 2500.

Panel 6: Power curves of AR(S,) (dashed-dotted), KLM(5,) (dashed), MQLR(f,) (solid),
JKLM(,) (points), CJKLM(solid with plusses) and 2SLS(,) (dotted) for testing H, : 8 = 0.
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The data generating process for the power curves in Panel 6 has IIjyx = 0, v = 1 and

Y = I,,,+1- The specification of Oy, = (Z’MXZ)%HWZE;V% in Panel 6 is such that its first
element Oy 11 is unequal to zero and all remaining elements of Oy, are equal to zero. Table 3
shows the observed size of the different statistics when we test at the 95% significance level.

The parameters of the data generating process used for Panel 6 are specified such that [ is
not partly identified by the parameters in the equation of W since IIxy = 0 and 0.y = 0. Panel
6 is thus comparable to Panel 2 whose data generating process is specified in a similar manner.
The resulting power curves and observed sizes therefore closely resemble those in Panel 2 and
Table 2. Table 3 shows that the statistics are conservative when the identification is rather low,
which is in accordance with Theorem 7.
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KLM(5,) | MQLR(B,) | JKLM(3,) | CYKLM(5,) | AR(5,) | 25LS(5,)
Fig. 6.1 3.7 2.4 1.5 3.1 1.8 4.6
Fig. 6.2 4.3 4.0 4.0 4.1 4.1 4.7
Fig. 6.3 4.2 4.3 5.6 4.4 5.9 4.7
Fig. 7.1 5.1 4.5 4.6 4.1 4.4 13.0
Fig. 7.2 4.6 5.1 5.9 4.2 6.3 7.8
Fig. 7.3 4.3 4.4 6.0 4.5 6.3 5.9

Table 3: Size of the different statistics in percentages that test Hy at the 95% significance level.

Panel 6 shows that the rejection frequencies converge to a constant unequal to one for distant
values of 5 when the identification of v is rather weak. This indicates that Theorem 6 extends
to tests on subsets of the parameters.

Theorem 8. When myx =1, Assumption 1 holds, X is exogenous and for tests of Hy : f = 3,
with a value of B, that differs substantially from the true value:

A1 (1
1. The AR-statistic AR(B,) is equal to the smallest eigenvalue of EWQWI,W’ P z2WE Ay which
15 a statistic that tests for a reduced rank value of Iy 7, YXww = ﬁW’ P;W.

2. The eigenvalues of ZA)MQLR(BO) that are used to obtain rk(3,) correspond for large numbers
of observations with the eigenvalues of

Yow : (Owz + ¥Yy) ‘/11 |:¢5.W D (Owz+Yw) Vi, (25)

1
where (Z'MxZ)™22'Mx [e = WEyowe] 0.y — Yo, (ZMx2)*UwzSyiy — Ozw
p

N|=

_1
and (Z’MXZ)_%Z’MXVWEWZ’W — Wy, and V; is a m X m,, matrixz that contains the eigen-
P
_1 _1
vectors of the largest m,, eigenvalues of ZW%AI/W’ Pr aWEGAs Ocev = aag—UEWZ;VlWUWS.

3. For large numbers of observations, the x*(k — m,,) distribution provides a upperbound on

the distribution of rk(3,).

Proof. follows from the proof of Theorem 6. m

Theorem 8 explains the convergence of the rejection frequences in Panel 6 and implies that
the behavior of MQLR(3,) is similar to that of AR(f,) for distant values of 5. Identical to the
previous Panels, 2SLS(,) is the most powerful statistic in Panel 6 while Table 3 shows that it
also has little size distortion. This results because o.;y = 0. For non-zero values of o.y, the
size-distortion is often substantial.

The parameter settings for Panel 7 are such that  is partially identified by the parameters
in the equation of W since Ilxy = 1 and 0.y = 0.8. All remaining parameters are identical to
those in Panel 6. Because of the partial identification, Table 3 shows that the statistics are no
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longer conservative when Oy, z1; is small. Because of the non-zero value of 0.y, 2SLS(,) is now
severly size distorted when Oy 211 is small.

Although the small value of Oy 711 does not affect the size of the tests from Definition 2, it
still strongly influences the power. Panel 7 shows that the power curves do not converge to one
when Oy 711 is small which is in accordance with Theorem 8.

Panel 7: Power curves of AR(,) (dashed-dotted), KLM(5,) (dashed), MQLR(S,) (solid),
JKLM(5,) (points), CJKLM(solid with plusses) and 2SLS(,) (dotted) for testing H, : 8 = 0.
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7 Conclusions

The limiting distributions of the robust subset instrumental variable statistics that result under a
high level identification assumption on the remaining structural parameters provide a upperbound
on the limiting distribution of these statistics in general. Lower bounds result from the limiting
distributions under complete identification failure of the remaining parameters. For distant
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values of the parameter of interest, the subset instrumental variable statistics correspond with
identification statistics. Even if the parameter of interest is well-identified, the power of tests on
it do therefore not necessarily converge to one when the hypothesized value of interest gets large.

The subset AR statistic is less conservative than the projection based AR statistic from
Dufour and Taamouti (2005a,b). This results since the degrees of freedom parameter of its
limiting distribution is smaller than that of the projection based AR statistic while the latter is
also based on the minimal value of the AR statistic given that Hy holds.

Appendix

Proof of Lemma 1. Because of the FOC:
asa(,@O)HW(ﬁo) Z'(y— XBy—W7) =0,

it automatically follows that \/62:—0)’ with & =y — X[, — W7 =¢e—W(5 —7,), is uncorrelated

) ! \/I_Z’ [VW — é%’% in large samples so

E |:hmT—>oo T (50) Use(ﬁo):| = 07

where 0y is such that limp_ T(;LWHQ,VZ 'Z1ly = Cy with Cy a my X my matrix of constants
so 0y = 0 in case of irrelevant or weak instruments and dy = 1 in case of strong instruments.

To show that Z'¢ and I1x(3,) = (Z2'Z)~'Z' [X — A%} are uncorrelated in large samples,

we use that
W = Zlwy + Vi

= ZMw(By) + My Viy — PpeZell.

which enables us to characterize the covariance between X and &€ = My, (5.1€ by

E [hmTHOO 7X Mgty (9,)
= E |limy o 5:(Z1x + Vi)' Mg 5, = W (T = %))}

= E [limg—oo £ { (ZTx + Vi) My, 5, [g - (Zﬁw(ﬂo) + MV — P, EUL(L%)) W (% = 70) }]
=F -limTHoo 1 VMt 5006 = ViMaiiy so) (ZHW(ﬁo) + Mz Vi — PZQU;:((BO))> (7 - 70)}
=F -_hmT*oo T VA Mzt (e = ViMzViv (5 = 70) + ViPar,y, (0 285558 (7 - )}]

= E | imroo 7§ ViM gy, 508 — ViMzVir (5 = 70) + Vi Paryg 028 2o (%(v %))zH

Gew (Bo)(A—0)
ViMziiy 58 = ViMzViw (3 = %) + Vi P M sty (50) 2 522 (Ba) 02 (Bo) 3 %)}]
VMg 6006 — ViMzViw (Y — 7o)+

Gew (1=70)=(3=2)"Eww (=70)
VXPMZﬁWwo)ZE ( w (77 )127~ ww (570 )H

Gee—3Gw (F—70)+2(7—7) Zww (—0)

=F [limT_m % {Vie = ViMzViy (5 — 70)}}
= F [limr_o0 6x-(8y)]

Nl Sl
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where for:

e the fourth equation, we use that £ [limTﬂoo %H’XZ’MZﬁW(BO)g] =0,F [limTﬁoo %H’XZ’MZVW} =
050 E |limgoo 11Ty Z' My, 5,) P72| = 0 2 well

e the fifth equation, we use that MZﬁW(BO)Zﬁw(/BO) =0, Myg,, (5 Mz = Mz and Myg 5Pz =
PMZﬁ 7
w (Bo)

e the sixth equation, we recurrently substitute the expression for &.

e the seventh equation, we use that > >~ (‘ZZVEV—('%)(V 70)) = ésg(ggﬁgiﬁ(?ﬁ;)vgﬂo), For this

to hold %L’—m(fy fyo)‘ < 1 which holds true since

Bo)

implies that >, ((705::((5600)) (7 — 70)) is finite as well.

g'e = %é/MZﬁW(ﬁo)é is finite which

Sl=

e the eighth equation, we use that . (53,) = dow — (7 — Yo) Sww and 6..(8y) = 6o —
20’5W(7 70) + (:)/ - ),EWW<5/ - 70)7 with a'ss = ﬁg'MZ{g, a-EW = ﬁglMZW and
Sww = T kW’ MzW.
e for the nineth equation, we note that £ [limT_m %V)/cpzﬁw( 60)5] =0and £ [limT_,oo %V)’(PMZﬁW o) Zs}

0. We also note that .., ., Xww and 7. are uncorrelated with %V)’( Py 7€ because

ZTyy (Bo)
they result from projecting on spaces that are orthogonal to M ZﬁW(BO)Z

e for the tenth equation, we note that F [limT_,oo ==V Pze} =0and F [limT_,oo ==V PZWW] =
0.

The above shows that Mg (4 [X - ”;Z‘((go)] and My, (5,)€ ((g )) are uncorrelated such
that

B [l =TI (8)/ 22| =0,

where d x is such that limy_, =5— T x LI Z'Z1lx = Cx with Cx a mx X my matrix of constants.

Proof of Theorem 1. The LR statistic to test Hy reads

R(B,) = AR(8,) — mins AR(5).
The value of AR(f3) is obtained by minimizing over v so ming AR(S) can also be specified as

1
75 (y—XB-W~) Mz (y*Xﬁ*W’Y)(

ming AR(5) = mmgV y—XB—=Wr)Pz(y — XB—Wr),

which equals the smallest root of the characteristic polynomial

M= (y i X SW)YPyly: X P W)| =0,
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with = 7=y i X P W)My(y : X 1 W). The roots of the characteristic polynomial do not

alter when we pre- and post-multiply by a triangular matrix with ones on the diagonal:

/

10 0 . 1 0 0
—By In, O [AQ — (P X iWYPyly: X W)] —By In, O — 0o
—5 0 I, 5 0 I,
AS(B) — (y P X W) Py(y: X - W)‘ = 0.
1 o o0\’ 1 0 0 ) )
with 2(50) = —60 Imx 0 Q _60 Imx 0 _ ( R 0_58(60) AUE(X: W)(BO) > ,
-5 0 Iy -5 0 I ox:we(Bo) Bx: wyx:w)

Gee(Bo) : 1 X 1, 0e(x - wy(Bo) = Ge(x: w)(Bo) : 1 xm, S WX w) L m X m.
We decompose Y(3,)"! as

with 2x . wyx - wye = 7 (X W) Mz (yxp,—way (X P W), such that 32(8,)7'(80)2(By) 2 =
Ii(m+1) and we can specify the characteristic polynomial as

‘Afmﬂ —S(B) " (y P X WY Ps(yt X P W)S(B,) 2| =0 &

_1
2

/
. X873 . ) N Gox . wr(Bo) | ¢
‘)\Imﬂ - l(Z’Z) 37/ (Mﬂ : [(X W) = (y — XB, — 27) ) 0)1 XX wyx s W).e)]

Gec(Bo)

_1 —XBy—27) - . N Fex: w)(Bo) | &3
[(Z’Z) 27/ (% : {(X W) = (y — XBy — Z7) (EEE(V;;) ° } E()(2; W)X : W).e }

=0.

When we conduct a singular value decomposition, see e.g. Golub and van Loan (1989),

_1 N\ ex s w)(Bo) ] &3
(2/2)73 2 (X W) = (y = XBy — Z7) S 53y = USV,

where U : kK x k, UU = I;;, V : m xm, V'V = [, and S is a diagonal k& x m dimensional
matrix with the singular values in decreasing order on the main diagonal, we can specify the
characteristic polynomial as, see Kleibergen (2006),

/

‘AImH - <n ‘Usv') (niusv)| =oe

N nn  nUSV
mtl VSu'n vS'SY

: nU'Un nUS . '
(Y ¢S _
‘”mﬂ ( So S8 ) =0,
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withn = (Z2'Z )’%Z’ %, @ = Un. Since U is an orthonormal matrix, this expression shows
Tee(Po

that the roots of the characteristic polynomial only depend on the singular values which equal
the square roots of the eigenvalues of

oe<(Bo,7)

!/
2 . ~\ e : B 7~
E(X CW)(X : W)e [(X W) = (y— X8y — ZV)M} Py
. £ /8 )
00 W) = (- X80 - Z0) B0 50

Using the properties of the determinant, the characteristic polynomial ‘)\Imﬂ — (g:i gig)‘

can be specified as
/ /S
f(>‘73%1> .- '753nm) = '/\Im-‘rl - ( E[S)/ZZ E[S)/S
= H;'nﬂ()‘ - 2") A= ¢'¢] - Z;nl m‘Pzz HJ 1,37&1()‘ ‘932‘]')
= [0 —53) A - e - S8 55

with o = (¢1...¢,) and s11 > ... > Sy, are the m diagonal elements of S. The (m+1)-th order

polynomial f(\,s%,...,s2,.) has m + 1 roots. Since

f(oa‘s%la--'vsgnm): ( 1)m+121 m+1<pz Hg 1 ]]
f(sizm78%17"'783nm): ( 1) (pmH] 1 j]

F(St 18T Sm) = (1) N2 ;‘nzl 3?3’
f(S%b 8%17 sy S%lm) = _30% H;nzl S?ja
the polynomial f(\, s3,..., s, ) alters sign between 0 and s2,., s2, . and s2,_;,. ;, etc. Thus the
smallest root of f(A, s%,...,s2,,) lies between 0 and smm, the second smallest root lies between
s? and s2_, 1, etc. and the largest root exceeds s?; because f(A,s%,...,s2, ) is positive at
1nﬁn1te values of \ since s?; is finite valued.

The roots of the polynomial f(),s?,...,s2 ) have no analytlcal expression since m > 1.
We therefore approximate the smallest root of the polynomial f(),s?,,...,s2,,) by the smallest
root that results by restricting s2,,...,s2 ., to the smallest root, 52, :

FO S 5hn) = TEL(A = ) ) [A - oo zz | }
The smallest root of f(\, s2,.,...,s2, ) equals the smallest root of (A — @'¢) (N — 82, ) —

s > " @? which is a quadratic polynomial so it has an analytical expression of its small-
est root:

—

k
)\min = 3 gplgp + S?nm - \/(30/()0 + S%nm)2 - 4S$nm Zi:erl (pz2‘|

= 1 |AR(By) + rk(Bo) — \/ (AR(By) + k(5,))* — 4 (AR(B,) — KLM(B,)) rk(5,)| .

Nl
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where AR(S) = ¢'¢, tk(By) = s7,,, and KLM(5,) = 3", 7.
This smallest Toot Apy, is smaller than or equal to the smallest root of f(\,s%,,...,s2%, ). We
can show this in two different manners. The first manner uses the Implicit Function Theorem

to construct the derivative of the smallest root of f(), s3, ... X s2 ) with respect to (s?;...s2,.)

which is non-negative. Thus decreasing s2,,...,s2 ;. to s?  aswe did to obtain Ay, can not

increase the value of the smallest root, see Kleibergen (2006). The second &Lpproach2 shows that

f(Amin, 821, - - -, 82,..) has the same sign as (0, 511, ...,s2 ) such that, since f(s2, ,5%,...,5%,)

)’ mm
has an opposite sign, the smallest root of f(),s3,...,s2 ) lies in the interval Ay, s2,,.] :

S (Amin, 311> s Som)
= [% (Amin — 83) | Amin — @0 — 32001 ¢ mfﬁ’s”)}
= [T721 (Aaain — 5? ) [Amin — %ﬁgﬂm Dol i+ <Z?i1 <>\mfi?$nm - Amfis?,-) @?)]
= [T i — 53 [()‘mln = Spom) Amin = ©'0) = sp D101 7]+
+ 155 e — 75) (Zz 1 (Amf”?%nm ~ 7 )¢ )
= I O = 5) (2 (g~ ) of
= Z mm H =1 ( min — S?j) - 31‘21‘ j:l,j;éi(/\min - 5?;’)) %2

_ Z HJ I,J;éz()\min - Sj2j)> (81271m()\mil'1 - 812@) - S?Z'()\min - 812nm)) 9012
= (-1 (mlmw Nuin) ) (55 = 52,) Auinis?

. . 2 s 2 - .
which, since s7; > Apin, j = 1,...,m, and sj; > s?2 . i=1,...,m— 1, has the same sign as

f(Oa 5%17"'73371”1) = ( )m+1 Zz m—+1 902 H] 1 J]

which is opposite that of

f(sznmv 3%17 e 7S%nm) = (_1>m30%n H;nzl S?j‘

,s2 ) lies in the interval [Apimn, 2, -

Hence, the smallest root of f(\, s, ...
Proof of Proposition 1. a. To construct a upperbound on the difference between the smallest
root of f(\) = f(A, s2,...,52, ) and Ay, we conduct a first order Taylor approximation of f(\)

r T mm

evaluated at the smallest root around f(Ayin) :
f(>‘) ~ f(Amin) + %’)\min (/\ - )\min) ~
A— )\min ~ _t/\imin),
O b‘min

2This second approach was motivated by Grant Hillier.
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since f(\) = 0. To obtain the value of 4

JQumin) , we construct the derivative %\ Amin -

| mln

0 m m et
T = 2 {Hl 1 (Amin — 87) [/\min — el =300 )\m—fsl?l} +
Ilgll(Annn - jj)‘+ E:i: zﬁpzA 2 IIZ 1l¢z(Aﬂnn Sﬁ)
S (T G = 58) i — 6] — 2, 50, 5t
Spum H
(ZZI ((Amin*S2 ) o ()‘rmi Si )> g07’)} + H.Ql()\min - 83‘7)—’_
i zzz‘:@?)\mm > lmll;éz(A = Sit)
82 2
> B N (S (e — i) #1) +
Hj 1()\m1n - _]_]) + Zz— zzgpz Amin Hl 1 l;ﬁz()\mm Sll)’
m—1
= Z] 1 )\mm Nmin—53; > i I=1 l;éi(/\min - 5?1)) (St = 85) Amingg} +
H?h;l()\mm - jj) + ZZ’; zzsoz Am Hl 1l7$z<)\mm '9121)

m

(=1)" { (ijl Sij

+ T2 (5% — Awin) +

1

where we used

Z

that A\, is a root of the polynomlal when all the s2’s equal s2,

in) D i (Hz 1 l;éz(sll )‘min)> (5% = Soum) Amin} +
> i e Z_Z(p:ﬂm [02 (s — )\min)}

n to obtain the

third equation. Minus the ratio of f(Amm) and 2 | Ay, then reads
gl = [ (T = i) (5 = ) A/ [0 { (S 2
‘ i=1 j=1,j#i\"jj min i mm) Amin¥; 7=1 s2.—X\pmin
(3)\ Amin Jj
2 2 2 m 2
> i (Hz 1 l;ﬁz(Sll )‘min)> (85 — Smm) Amin®7 + Hj:l(sjj = Amin)+
Z 7,7,(102 5%, —Amin Hl 1l;éz(sll Amin)}:|
_ 1
== m
m 52,2 1 2\ .
m N N I]j:ﬂfﬁfkmm) N =1 53395 l_AmhlIIhﬂJ¢i“u Amin)
j=1 2 — m—1 . m—1
~tmin 2;111<I1j:14¢i“§j*Anﬂn))(S%‘ﬂ%”n)knﬁnwg 2;111<I1j:14¢i“§j*¢nﬂn)>(S%‘s%“n)AnﬂnW?
_ 1
pr— m
Zz 1 “ z 52— 2Hl l(sll Amin)
m 1 + 1 + ( mln)
i=1 7.2 _ ' 2 _ 2
! Sjj Amin m—1 (5222 Sgnm ))\min‘P%’ Z;m 11 P] L (Hil(sjjfkmin)> (%Lﬂ) Amin‘P%
i=1 (smm ’\min)(slzi_/\min) 57 —Amin = Sinm —Amin
= Zm 1 + 52— Amin {1+Zm s?z; @2} .
I= sl min (53— 5Bum ) Amin 2 = E i)

i=1 P
(5%

In order to obtain a upperbound on —%;

FOumin) .
TN

min

in the expression of —

—A

min)

f(’\—mi“), we construct a lower bound for the denominator

X ‘/\min
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Zm 1 + 1 |:1 + Z s2. gp :|
T T T 1 T
=1 (Sgn'rn*)‘min)('sm Amin)
2 G W
> m 1 Smm. min 1
= Z]ZI 5% =Amin + Amin > 17t 2 + Zz 1 (s2,— n)2 90@
2 N W
> m 1 Smm — Amin mm@m
o 2]21 szji/\mi" —I— >\min Z:nzzl i mm m1n)2
— Zm 1 sm'm )‘mll’l mmsom
J=1 S?ji)‘min mlnzm ! 2 (ngn 2m1n)>\m1nzm 1>\2
A
> m 1 + Smm mln +
- Z]:l s?],_)\min minZizl 907; mlnzm 1 2
2
— m 1 1 8mm+<pm _ 1
i s (A

2 m12

Arnln

[ min Zz—l SOZZ_ ( gnm - )‘min)(sg@m + Qogn) - (Sgnm - )\min)/\min}/ [/\mln(sgnm - )\min) Z:zll '
|::um1n Zz 1 SO’L + Smm - )\minsilm - )\mingpzn + S%m@%n - S%nm)‘min + )\?mn}/ [)\min<83nm - )\mln)
[ min Zz 1 301 (s gnm - )‘min)(sgnm — Amin + 907271)]/ P‘min(sgnm — Amin) Z:lzl ‘pﬂ )

where:

2
e The second equation results since s2, > Ay, SO ”78"“" <1.

83~ \min

2
e The third equation results since ZZ’;I (gfsﬁgoz > 0.

e The fifth equation results since A, > 0, so st% > 1.

mm 7)\min -

e The seventh equation results since Z?;l L > 0.

S%i_Amin
Hence,
_f()‘rnin) < )‘mll’l(s?nm )‘mm)zzn 11§022
i = Amin Dt P2 (5B Amin) (Fumn —Ammin +97)
(r))\b‘min mln i= 1 QDZ mm min smm, min Som 1
ft 1 + 1 sgnm"_‘pgn _ 1
Sgnm_Amin Z;m 11 QOZQ >\min
SO

—1
Y 1 1 St PE
A S [+ (B 1)

Since 2, =rk(8,) and ¢ = Un with n = (2/2)"2 24282 we obtain the expression in

\ Oee (Bo7) ’

! L (rBted  \]7!
[Tk(ﬁo)f)‘min + Z;m 11g012 < )\?nin 1)] '

b. When §, is such that the FOC holds, ¢, = 0,7 =1,...,m, and the characteristic polynomial

becomes i ,
. \ 2.0 .
o= (8) (2577 s ) ()

The characteristic polynomial shows that the values of 3, for which the FOC holds are such that

Proposition 1:

=0.

(1: =3, —3") is an eigenvector that belongs to one of the roots of the characteristic polynomial
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AQ—(y i X W) Ps(y i X W) =0. When (1: -8y} —7')" satisfies the FOC, 37 . ¢? and

the m non-zero elements of S’S are equal to the m + 1 roots of the characteristic polynomial

A2 — (y : X P W)'Py(y i X P W)| = 0. Hence, there are m + 1 different solutions to the FOC.
The value of the LR statistic for the solutions to the FOC reads:

MQLR(8g) = 3 |AR(B,) — 1k(Bo) + v/ (AR(Bo) — rk(B,))?

since AR(B,) = S2F . @ when ¢, = 0, i = 1,...,m, for the solutions to the FOC. We can

i=m+
now distinguish two different cases:

1. AR(B,) is equal to the smallest root of |AQ — (y : X P W)Py(y : X : W)| = 0 so
AR(B,) <rk(p,) since rk(/3,) is then the second smallest root and

AR(fy) — t(By) + /(AR(B,) — k(3,7
[AR(By) — tk(By) + tk(By) — AR(By)]

MQLR(BO) =

O NI =
| —

since AR(5,) <rk(8,). Hence MQLR(f3,) =LR(f3,) and 5, equals the LIML estimator.

Since AR(S,) is smaller than rk(8,), Amin =AR(8,) and rk(8,) — Amin > 0, % -1 =
W > 0, Z:’:ll ¢? = 0 so the upperbound on the difference between LR(3,) and
MQLR(f,) is also equal to zero.

2. AR(f,) is equal to a root of A2 —(y i X : W) Py(y: X : W)| = 0 which is not the smallest
one so AR(f,) >rk(5,) since rk(f,) is now equal to the smallest root and

MQLR(Sy) = £ |AR(8y) = rk(5) + /(AR(B,) — k(o) 7]

= 5 [AR(By) — 1k(By) + AR(By) — k(5]
= AR(BQ) - rk(ﬁo)

since AR(S,) >tk(S,). Hence, MQLR(5,) =LR(5,)-
Since AR(,) exceeds rk(5;), Amin =rk(5,) and rk(8y) — Amn = 0 and rf(\ﬁﬁ —-1=0,

min

S 9? = 0 so the upperbound is also equal to zero.

Proof of Lemma 2. The FOC for a maximum of the likelihood with respect to v is such that:

1 2 171 ~ _
L (=X Bo—W3) My (y—X By—W7) Mw(Bo)'Z'(y — X5y —W7) =0
1 — () — WA (y=XBo—W7)' MzW !
7 (Y= X By—WF) Mz (y—X By—W7) W —(y— X6 —W%) (y—Xﬁo—W%’Mz(y—Xﬁo—W%]

Pz(y — X By — W%l_ W —7)) =0&
ﬁ(S—WW—VO))'MZ(5—W(ﬁ—70))

W — (8 _ W(:}/ _ 70)) (87W(8—W(ﬁ—70))’MzW ] PZ(‘g _ W(ﬁ/ _ 70)) =0,

(7=70)) Mz (e=W (7))
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where ¢ =y — X3, — Wr,. Using the equation for W, we can specify the FOC as

1 ~
L c—(ZTh Vi) —70)) Mz (e— (2Tl +Var ) (—70)) (2w + Vi = (e = (Zlw + Vi) (3 = 70))
!
7| Pze = (Zw + Vw)(7 — 7)) =0

7 (= (2w +Viw) (3=70)) Mz (ZTw +Viv)
707 (= (21w +Viw) (5—70)) Mz (e=(ZTTw +Viv) (5—70)

Under Assumption 1, ﬁs’Mzs 7 Oce, ﬁs/MZVW ? oo, ﬁV{VMZVW ? Yww and v =

1 _1 _1 _1
Saw (T = Yo)0ecws Ow = (Z'Z): 1w 3y, & = (22)732'(c — VigSihyow:)0cn, Occrs =

Oce — O Sy OWes Pwve = Sy OweTeesw- For large samples, the FOC can then be specified as

3/ * *
1+(’Y*_PW51)/('Y*_PW5)EI%VW [@W + gw - (gs,w - @W/V - gw(’y - pWs))
/

el | e — O = €, = pwe)] + 0p(1) =0

l, * *
1+(’Y**PW51)'(’Y**PW5)E%/W {QQ/V [fa.w - @W7 - gw (7 - pWs)] +

* ! !
gw - (gs.w - GW’y* - gw (7* - pWE))1+(7**(;W550/‘(/"/Yi)*ﬁ’w5):|

[gs.w - @Wﬁy* - 511)(7* - pWs)]} + 0p<1> =0.

Hence, when Oy equals zero, the FOC simplifies to

1 (* / !
S €0 = e = €ulr" = pwe) et | e — €00 — pw)] +05(1) =0

which is equivalent to

|:£w + (ga.w - gw:)/)l_ﬁ»;/_»y], Ks.w - fwf_y] + 0P<1) = 07

T B 1
with 7 = 7* = pwe = S (F = 70 — Zwwowe)0ecw.

Proof of Theorem 3.
1. AR-statistic: %k times the AR statistic for testing Hy : § = (5, reads

AR(BO) = 5“%50) (y - Xﬁo o W:Y)/PZ(?J - Xﬁo o W:Y)
_ 1 - -
= Sewa e we oy &~ W= 0) P2le = WG = %))

which is in large samples identical to (using the notation from the proof of Lemma 2)

AR(BO) 7 1+(’y*—pwel)'(7*—l7we) [€€.w - QWV* - gw(’y* - pWs)], [fs.w - QWV* - Sw(’y* - pWs)] :
When Ily, and thus Oy, equals zero, this expression simplifies further
AR(BO) 7 ﬁ [&a.w - éw’ﬂ/ [&a.w - éw’ﬂ :

Since 4 does not depend on nuisance parameters, the distribution of AR(f3,) does not depend on
nuisance parameters when Il equals zero.
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2. KLM-statistic: The expression of the KLM-statistic for testing Hy reads
KLM(5,) = #ﬁo)(y - Xfy — WW),PMZﬁW(BO)ZﬁX(/aO)(?/ — XBy = W7).

In large samples and when Il equals zero:

(2 2k (B0) = (2/2) 42/ [W —(y = X5y — W)Y
= _gw - (Ss.w - gw’j/)r:y/ry} EI%VW + 0p<1)
(2'2)}1x(8y) = (2'2)732' [X (y — X8,y — )%X&Q))}

( 1 ) (Pa.w,x
PW X

= |Ox+& — (e — éw’?)’le’ﬁ)} 2)%(X +0p(1)

[

1 _

1 _1 1 1
where £, = (Z/Z) 2Z,VXZX3(7 Ox = (Z,ZPHXEX?)(’ Pew,x = Uea?w(UsX - O_EWZ;VIWZWX)EX?X’

Pwx = ZWWEWXEXX, and we used that

¢ oe . _ - _
(_(ﬁl_%)) (Ew);) = Oex — Uswzwlwzwx - (7 — % — EWlWUWs)/EWX
1

1
= OZuw [pa.w,X - VIPWX] Yk

Hence, we can specify the limit behavior of KLM(f,) as
1 - _
KIM(Bo) = 15575 (€ = E7)'P (1) ()] e = EuT)-

[+ o7

1_ ! Pe.w, X —y
Because O + 5 (€ — §w7)%ﬂx> and &, + (£, — fw”y)l—ﬁ% are uncorrelated with

(ew — EV) == W? the limit behavior of KLM(f,) is identical to

=1 A(Ss.w - gwﬁ)a

1+"y/"y]

KLM(BO) 7 T%—y/f—y(gs.w - Swﬁ/)IPM

[§w+(§54w7§w’7)

where A is a fixed k xm, dimensional matrix and which shows that the limit behavior of KLM(/,)
given Il = 0 does not depend on nuisance parameters.
3. JKLM-statistic: The expression of the JKLM statistic reads

JKLM(ﬁo) = A]i{(ﬁo) - KLM(/ﬁO)
177 [gs,w - fuﬁ] M[A: €t (Eu—En 5 ] [gs.w — gw’ﬂ .

) 17575

d

4. MQLR-statistic: The expression of the MQLR statistic to test Hy reads

MQLR(30) = 4 [AR(50) = s+ y(AR(0) 510" ~ 4 (AR(5) — KLM(F0)) s

1 .
where s,,,,, is the smallest eigenvalue of Z(XZI: WYX W).e l(X W) —(y—XBy — Z27)

/
Ge(x : w)(Bo)
52<(Bo) ] Pz

. The limiting distribution of MQLR(3,)

>< e

(X 1W) = (y — XBy — 27) 2=l )} 52

&= (Bo) W)X 2 W)e
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conditional on S,,,, is therefore
MQLR(5y) [$mm —

2
> {r (€ = € [ = €7) = Soum + {(r € =€) [6cw = €uT) + um) —

4 (ﬁ [55-”“1 o gw’_)/], M[A: Ewt (e w—Ew) ol _} [ga.w - gwﬁ_y]) Smm} 2

1455

Proof of Theorem 4. We proof the asymptotic normality of the KLM statistic under many
instruments asymptotics and when Iy = 0 in two steps. First, we establish the convergence of
the covariance estimators. Second, we establish the convergence of the score vector in the KLM
statistic.

When IIyy = 0 and ey = ¢ — WE;VIWJWE, we use that when k£ and T jointly converge to
infinity, where the convergence rate of k is at most equal to that of T, that

_1 _1
(ﬁy_) O-‘sla'zw%g{WXng('l _ ( Pew,x ) N < Pew,x )
0 g U;Ew%E/szXZ)_(?X pa.w,x d PewPzx

_1 _1
with (:;ewm) ~ N(0> (; ?) ® [mx)a o= lirnk:,Tﬂoo \/g, Pewaz = Use.zw(an - O_EWZ;[}WZWX)EX?)('

e.wPx

The conditions for this central limit theorem to hold are rather mild and assume, for example, that

1
E(lew]i) =0, E([Vx]}) = 0, E([ewli[Vx]i) = pew.Sikx, E(lewlilZ];) = 0, E([Vx]i[Z]}) = 0,
where [al; is the i-th row of the matrix/vector a, no correlations between the different rows and
a finite variance for all these terms. The above central limit theorem implies that

D=

1
T—k

1 1
1 2 1 -2 2 1 -2 —
m [Tagg_wfg.wXEXX - ko'gnggprXZXX] =

pewa + 75 (1) (0 J5) () + 0y =)

1
_ , 1
1 1

The behavior of \/ﬁ(i)/ (*{)T &) (zs.w,x) is then such that

I}—k (—11)/ (?\?E) (gf;;upzz) 7 PeawMaz>

: : : ! E
with ¢, e ~ N(0, Iy ), since limg 7,00 ﬁ(_ll)/ (*{]T \%) ( T 1T> (? \%) (1) =1,s0

T

1 1
1 2 2 _ 1 1
Tfk;o-&?-wg.WMZXEXX - pe.w,m + /T—k PewMz + OP( T— )

E

In a similar manner, it can be shown that

_1 _1
<\/OT \BE) J‘Elagw%dWWEWQVI{ _ ( Pew,w > :
O—;SEw%dWPZWZ;VEW d PeawPw
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with (5”»“’) ~N(0, (L) ® Ly ), s0

e.wPw

where ¢ ,amw ~ N(0, I,

_1 1
ﬁEWZWW,MZXEX?X = Puwa T \/—SDwM:c + 0p<\/ﬂ>

%EWWW,MZWEWW =In, + \/—SOwa + 0p<\/—k>
TLk Oce. w6 WMZ€W =1+ \/T(ps.st.w + Op(\/ﬂ)’

1

_1 _1
with pw,:r = ZV[/zl/VEVVXEXﬁ( and PewMews PewMws PewMmn me PuwMw and VeC(@wM:p) are (pOSSi_
bly correlated) normal random variables, with D,,  the duplication matrix that selects all unique

elements of a symmetric m,, x m,, matrix. We use the above results to determine the convergence
behaviors of 6..(8,), d-w(B,) and d.x(5,) :

5-65:‘(60) - TT ( XBO Wﬁ/)/, My (y - Xﬁ() - Wﬁ/)
- ﬁ (e = W(F =) Mz (e = W(T — %))
= T— Mzg w + (’7 Yo — EWWO-WE) W’Mzg w
+ 77 W MW (T = 79 — Sphyowe)
+(7 =70 — Swhwowe) 75 kW/MZ‘/V(:V Yo — WWUWE)
= Ogcw [Ugng 5 MZ£W+’YT EwwI/V MZgwo-ssw
‘I’ﬁ E w€ WMZWEww'Y + T k'Y/waW/MZWEww/V
= Ocw [1 +’_YI'7+ \/— ((pawMaw +805wa7+7905wa +/7Q0warY)
+o,((T = k)#)],
Gew(Bo) = 75 (v — XBy — W’Y),/ MzW
= g (6= WEH =) MzW

=1

= 75 [EwMW = (5 — 70 — Zpiwowe) W’MZW]
L
- T_kaasw [( )UsewT kgVVMZWEWW (T /{) ,ZWWT WMZWEWW ZI%VW
1

=

= 038-110(—2) (Imw)zﬁvw + }/—Ua_aw( lﬁ) (SDQ;UTAA{Z”)EI%VW + 0p( =)

= _O'z?s.wfy Z ww T \/—Ussw( 1,7) (@E'wa

P Mw )ZEVW —I— OP(\/%%
Gex(Bo) = 7 (y— XBy— WH) MzX

L (e =W =) MzX

= 7% [ffWMZX (7 = — Ewwowe) W'MZX]

_ leaw[(T k)0t My XS5 — (T — k)7 S WM XS | 53

’ﬂ
=

~
B

’ﬂ

1 1
= ohu (1) (o) Dk + o (1) () Six +oul )

The approximation error due to the many instruments in the covariance estimators is of a lower

convergence rate of the number of instruments is lower than that of the number of observations.
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Given the convergence behavior of the covariance estimators, we can express the score vector
involved in the KLM statistic as

p L (y — X3y — W’?)/ Mzﬁw(go)ZﬂX(ﬁo) =

Gec(Bo)
(gawfgw'Y)
5 M{g e e N

] o
[@X +&x — 57%7)( HX Xxx + Op(\/ﬁ)a

[

where O = (2'2) 2 7' HXZXX, W= (Z’Z)*%Z’VWE;VEW and &y, = (Z2'2)"3 7' wo_ 2y The
first part of this score vector equals the sum of k£ elements each of which have an expected value

equal to zero:

(Eew=8u?)
E( M{E I e } 1177 ]

€p—e,m () (e _
M{gw(g y 7751—'7) 7/7 } |:@X " SX - vIHYy \/1+VVYYX . B O’

where [a]; is the i-th row of the matrix a. Although ﬁ has a Cauchy distribution, the mean and

variance of %@ are well defined since (Ef/l” +§wj) (gi/h—gj“ﬂ) equals the smallest root of the
characteristic polynomial which has a finite mean and variance. When the different rows are not
correlated and have finite variance, the score vector satisfies a central limit theorem when both

k and T' become large:

ﬁ (y — XBo — )lMZﬁW(BO)ZﬁX(BO) -
1 (w8

V1+7'5 (e —Euwd)
R e e

7' VI

l@XJrgX _ e g ) <( \2(””””) i J—k(la),_(iﬁfw‘}f))] E)%(X

with Plixe ™ N(07 A)J

. i, ¢ = 717 ! Pe.w,x /
A= hmk—>oo %E%X l@X -+ éX — (55—1{_’_5}‘%7) (( “:zlif,’y‘/xyx)
1y Pe.w,x 1
gew Sw'Y) (*7) ( 5 ) bl
M ¢, _leey -ty 5 [@X TEx — AR ( T X¥x.
v 1475 V14375

The limit behavior of the KLLM statistic when both k& and T' converge to infinity, k/T — 0, is
therefore characterized by
KLM(8,) — 2(m.).
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Proof of Theorem 5. 1. AR(S,) : AR(S,) equals the smallest root of the characteristic
polynomial

20— = X3 WYty = X5, | =0
‘)\Imwﬂ — 0.2 (y — XBy P WYPz(y — X8y W)?| =0,

with €, = 7y — X By i W)Y Mz(y — XS, : W). The reduced form model for (y — X3, : W)
reads

(y = XBy : W) = Zw (o & In,) + (u Vi),

Owe +Eww'}/0 Yww

1
Jse?w . 0 .
= . ~1 : -4 | results in
*(Ewwawe‘i")’o)ase.w Swid

(ZZ) 22y — XBy W2 = (22) 22 ZHW(fyOEImw)Jr(uEVW)]

-3
Ocelw . 0
» R
*(Ewwaws‘i"}/o)ass?w S

1 1 1 _1
= (Z'2)ilwSuwi(—SwiOweOcci i L, )+
1 _1 _1
(Z’Z)’EZ’((s — VWE;i}Uwg)O_aa.zw : VWZ’UM%)
= Owlpw : Im,) + (§c © §0) +0p(1),

with u = e+Vipy,, 50 Q, = (”“”WVOMB%SHBEW% : ”E“’HE’ZW) . Pre-multiplying by (Z2'2) "% 7'

N

and post-multiplying by €,

(SIS

1 1 _1 A
with pyy = —Suwd0weoetn, Ow = (Z'Z)3 My Swe. Since O, — Q, and &, and &, are in-
P

dependent k£ x 1 and k x m,, dimensional standard normal distributed random variables, the
characteristic polynomial is for large samples equivalent to

M= [Owton )+ e 160)] [Owton i )+ i )]| <0

We conduct a singular value decomposition of Oy, Oy = USV', U : k x m,, UU = I,
V imy X My, VV = 1,, and § : k X m,, is a diagonal matrix with the singular values in
decreasing order on the main diagonal. Using the singular value decomposition, we can specify
the characteristic polynomial as

AImw“Fl - S(OéW : Imw) ; E S’ _’_u,(fa.w : fw)

o

©
o
g
~
3

g

0 19’ +ul(€e.w gw) ‘ =0
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‘)\Imw—i—l - ((1) 3’) |:8(aW [mw) +U/(§sw ng)
{S(aw SL,) FU(ELL gww] (; : 3,) =0e

'Mmu,ﬂ - [smw L) U, sww] [s<aw L) U eV —0e

‘)\Imw+1 - A [S(CZW f ) FU(EL §wV)] [S(ozw S ) FU(EL wa)} Al =0,
with aw = Vpy, (&, &) = U'(E., + &YV) and A = (ag @ A1), a1 @ (my + 1) X 1, A; :

1
2

(M +1) X s a3 = (L1 )(1+ ol o) "2, Ay = (¢ In, ) B, B = l(aw F L) (o [mw)’l ,
such that

‘meﬂ Y lS(aW L) A UE P EV)] St I + UL, P ELV) } Al =0
‘meﬂ - [s (o B) I f::»] [s (o f B) el =0
‘meﬂ - (ggw L SB + 5;;) ( L SB ¢ ; —0e

=0«

A _ by 1 E(SB1E)
mw+1 (SB+E4)'6% ., * (SB+EL) (SB+EL)

Iy

‘)\Imwﬂ _ ((1) : Séfw(SB+£;)[(SB+§;)’($B+§;)}1> (EMM(smsw)Esw :

(8B+¢3,) (SB+E3,)

1 My

0 ) (1 L (SBAEL)(SBEL) (SBHEL)]
L

‘meﬂ - ( ST epieyisnren) )
The above shows that the roots of the characteristic polynomial equal the eigenvalues of the

0

_di ; &M spyer)&iw -
block-diagonal matrix o D (SBaELY(SBEL)

. The eigenvalues of this matrix are

equal to &' M(spex )&, and the eigenvalues of
(SB+E,)(SB+E,).

Since £, and &, are independent, £, M(sp¢:)EL., 18 a x*(k —m,,) distributed random variable
that is independent of (SB+¢,) (SB+E}). Because SB+¢,, ~ N(SB, 1), (SB+¢E) (SB+E,)
is a non-central Wishart distributed matrix with k& degrees of freedom, identity covariance matrix
and non-centrality parameter BS'SB.

The distribution of the smallest characteristic root of a non-central Wishart distributed ran-
dom matrix decreases when the non-centrality parameter decreases. Hence, the distribution of
the smallest eigenvalue of (SB + &,)'(SB + &,) decreases when the non-centrality parameter
BS'SB decreases. We reflect smaller values of Iy (O ) by smaller values of S so the non-
centrality parameter decreases when Il decreases and therefore also the distribution of the
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smallest root. The distribution of the smallest root when S provides therefore a lowerbound on
the distribution of the smallest root.

The AR statistic equals the minimum of an independent x%(k — m,,) distributed random
variable and the smallest eigenvalue of (SB+ &) (SB +¢&,). Since the distribution of the latter
decreases when S decreases, the distribution of the AR statistic is non-increasing for decreasing
values of & (IIy) since the x*(k — m,,) distributed random variable does not depend on S.
Thus the distribution of the smallest eigenvalue when S (Ily) is large (infinite) provides an
upperbound on the distribution of the AR statistic while the distribution when S (Ily) is zero
provides a lowerbound.

2. KLM(3,) : The specification of AR(f3,) is:

_ 1 g g

AR‘(BO) - T;_IC(?J_XBO_W’?)/MZ(Z!_XﬁO_W'?) (y - XBO - WV)/PZ(y - XBO - WIY)
_ 1 ~ ~

X TG Xa ) Y T X = W) Pain )2y = Xy = W)
= 1(Bo)n(Bo)
with
_ (7 B L7 _ . T/ 1
1(Bo) = (Z"Mziy, (5,)2) 2 2" Mty (5, (y = XBo = W7) 7o X B0 W) M7 (3—XBg—W3)

so it is a quadratic form of 7(/3,). The distribution of this quadratic form does not increase when
[Ty, decreases and is bounded from below by the distribution in case Il = 0. The AR statistic
AR(5,) is a quadratic form of n(f,) with respect to the identity matrix. Quadratic forms with
respect to other projection matrices which project onto a (random) space that is uncorrelated
with 7(8,) will not increase as well when Il decreases. KLM(f3,) is an example of such a
statistic since it can be specified as

KLM(8,) = ﬁgo)(y —XBy— Wi)’PMZﬁW(BO)ZﬁX(ﬁo)(y — XBo —W7)
= 1(B0) Pu(s,)n(Bo)
with
_1 NG
V(By) = (Z/Mzﬁw(ﬁo)z) 2ZI]V[ZﬂW(ﬁO) (X —(y _:)(50 - WW)#(BB;)))
= (Z' My (39 2) 2 2 Myt 3 X — (B0) T2
Since Py(s,) is an idempotent matrix and W(f3,) is independent of 7(/3,), as shown in Lemma
1, the limiting distribution of KLM(5,) will not increase when Ily decreases. Using similar
arguments, it results that the limiting distribution of KLM(f,) is bounded from below by its
limiting distribution when Ily, = 0.
3. JKLM(f,) is just a function of AR(S,) and KLM(f3,) so the results for these statistics
directly extend to JKLM(S,).
4. MQLR(5,): Given rk(5,), MQLR(f,) is just a function of AR(S3,) and KLM(5,) such
that the results for MQLR(,) result from combining the results for AR(S,) and KLM(S,).

Proof of Theorem 6. 1. When we test Hy : 5 = 3, and the true value of § is such that g — [,
is large,
y—XBy= e+ X(B— o) +Wr
= e+ U+ Wn,
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where £ =y — X — Wy and U = X (8 = fiy). When S(8,) = ( J(2) v ) — 7L (y - X6,

W)Y Myz(y — X8, : W), its different elements converge when the sample size gets large as
Oce (50) ? O (e+U)(e+U) + 20_(5+U)W7 + VIZWW/V
55W(50) 7 O(e+U)W T ¥ Ewwy
i3WW(50) ? Yww,
with () erv) = 0ee +20.x(8— Bo) + (8= Bo)?0xx, Ocrvyw = 0w + (8 — Bo)o xw. The MLE
of v is obtained from the smallest root of the characteristic polynomial:
= X80 WYy = X3y F W) — = X5y WY Paly = X5 E )| =0
which can as well be obtained from the smallest root of the polynomial

\Am) (g XBy WY Psly— Xfo W)' o,

with A = (T — k)T—LM and the smallest root of this polynomial, say A, also equals k£ times the
AR statistic to test Hy. The smallest root does not alter when we respecify the characteristic

polynomial as

‘)\Imwﬂ - 2(50)_%/(9 — Xy : W) Pz(y— Xpy : W)i(ﬁo)_% =0.

When the numbers of observations gets large, i(ﬁo)_% can be characterized by

1

i(ﬁo)ié _ O-(siU)(€+U)iW )
b - ;VIWUW(5+U)O-(E-21-U)(8+U).W Sy
1
_ ( . 1 0 ) 9 (c4U) (e+U).W 01
—LwOowe+v) Imy 0 YR

WIth 0(c 1) (e t0) W = T(ert)(est) — OerryW Sl Ow (e+v), such that S(80)2'5(80)(8,) ~

I, +1. Using this specification, we can specify S(8,) 2" (y — X By : W) Py(y — X3 : W)S(,) 2

as
2(B0) (e + U+ Wy i WYPs(e + U+ Wr i W)E(By) 7 =

1 !/
0,2 0 _ :
(e+U)(e+U).W o (5 +U— WEW}WUW(5+U) : W)’PZ
0 YW
B . o2
(e+U— WEWIWUW(s+U) L) (e+U)(e+U).W ) .
0 Xy
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For large values of 3 — f3,, the above expression simplifies to

-} ' ok
UXX'W ,Ol (X WEWWO-WX W) Pz(X WEITVWUWX W) XX.W E)l s
0 0 yw
which results since e + U = (5 — 8,)(X + (8 — 8,) ') so € vanishes when § — (3, gets large. For
A1 .
large values of 3 — (3, A1 thus corresponds with the smallest eigenvalue of €2 Xa//(X : W)Y Pz(X

: W)Sy3, which is a statistic that tests for a reduced rank value of (Ix : Iy), Qxw = 77 (X

: W) Mz (X : W). Since \; equals the AR statistic, the value of the AR statistic thus equals a
statistic that tests the rank of (Il : IIy/) using the smallest eigenvalue of Q}%’,(X W) Py(X -
W)Q;(%,V when 3 — 3, becomes large.

2. Let V.= (v; : V1) : m x m contain the eigenvectors of QXW(X W) Pz (X : W)QX;/
with v; the eigenvector of the smallest eigenvalue and V; contains the eigenvectors of the larger

eigenvalues. The eigenvectors are orthonormal so V'V = I,,. When the number of observations
gets large, Qxw — Qxw. Since v; is the eigenvector that belongs to the smallest eigenvalue of
p

Nl

Q XW(X W) Py (X W)QL2,, B(8,) 2vy is the eigenvector that belongs to the smallest root of

the orginal characteristic polynomial |AX(3,) — (y — X8, : W)'Py(y — X8, : W)| = 0.
For large numbers of observations and large values of 3 — (3,

S(80) Hor— (U707 0) s + 08 - Bo) ),

where O((8 — 3,)72) indicates that the highest order of the remaining terms is (8 — 3,) 2. The
MLE # is obtained from the eigenvector that belongs to the smallest eigenvalue which for large
values of (5 — 3,) is therefore such that

(_15) = Z~](50)7%111 1
= (U7 ) e + O((8 = B0) )

p

SO
y—Xpo—W7 =

5= Bo) + W i W) (G 0 Y o
X+ (e + W) W)
= (X IW)QGv + 525 (e + W) £ 0)Qym

“__»

where indicates that the equality holds in large samples. We can use the expression of

a
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y — X By, — W# to obtain that

6=:(By) = TT( — XBo— W'Y) MZ( = XBy—W7)

U1QXWQXWQ WU1+ B—5) 5) (B — Bo)

1+ =58 = Bo)

oex - w)(Bo) = 7 k( Xﬁo WH)Y Mz (X : W) /
— U3 |:QXW +e ( @(UX#UXWW) ) }
P

=5 (owe+Eww)

=

_1, _1, ;(o— +o )

— / 2 1 v 2 B—Bg) \XeTIXWY
= V|03 Qxw 11 Qi€ (B—Fo

1 ixwiixw + (B—Bg) 17 xWHL —(5,150)(UW5+ZWW7)

. L (L _(6et209, 44T +2(oxet0 5> -1 .
Wlth C(ﬁ _ /8[)) — /UiQX%/V (5,50)( ee ’Yu;;/ 12“/:/:;:};) (oxetoxw?) O’sW‘i”(); WW) QX%/V’Ul and e1 is the
€

first m-dimensional unity vector or the first column of I,,.
N ~ 1,~ ~ 2 1
We want to determine the behavior of the roots of Xyviqrr(8y) = 2(8o) " 2'IL(B,) Z' Z11(By) X(B,y) "2,
with

11(By) = (Z’Z)—lz'l(stv) (y— X8, — )%B)gm}

for large values of 3 — 3, which roots are equivalent to the roots of the polynomial

pEx wyx w.e(Bo) — (60)’Z’Zﬁ(50)‘ = 0.

The roots do not alter when we pre and post-multiply the matrices in the above polynomial

_1 )
by Q¥ (v1 : Vi) which leads to a more interpretable expression. To determine the expressions

of these matrices, we first post-multiply {(X W) — (y — X8y — )va;)o()ﬁo} by Q}%V(Ul :
Vi) :
. 6e Bo -1 .
00 9) = (- X8, - W) 2| 0 1)

!
(5+50)(UX5+wa’Y) )

1, 1,
v QL2 wa+—1 v QL2 e1
1 W (B=Bo) 1 XW W(UW5+2WW"/)

= [(XPW) = (X + 525 (e + W) E W)Q0 o)

Qi (v1 £ V1) +O((8 = Bo) ™)
= (X W) |:QX%V<’U1 ‘/1) - m&)){%‘/vle’l} - Wi(ﬂ_ﬂo) |:((5+ W’}/) O)Q;(%/I/Ulell"‘

X W g Qe (Tt Y gy
( ) XWU1U1 xwe€l1 1 XW(UI- )|+

(B,—M(Uws-i-ﬁwwﬁ’)

(/3*50)22(5*50) <<
+O((8 = Bo) %)

. -1 -4 == (ox:+oxW?) 1 :
|1/' . 2 / 2 (B—Bo) 2 .
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= (X W0 Vi) + gty [ {00 (X W) = (4w o) et

(X W) ol ( i (3t ) Oy (o vn] OB = By)?)

(5—50)(0W5+2WW7)

1 oxeto Tt
=(X:W) {Im — (ﬁfﬁO)QXWvlvlﬂXWel < Tr (7xet XW7)> 1 Qv (0:17)

B— ) (UW5+ZWW’7)

5
1 : : -3 (,—10)(‘7Xs+UXW7) -3
o |e ) (W) = (4 W) £0) = (i wheiden (00 Y d
ke, +O((6 - 8) )

1 1 1 / 1
= : __1 0.z ro" 2! gy (xetoxw) P .
=(X:W) |, (B—B, )wavlvlﬁxwel (w—lﬁoo)(awfrzwwv) (0:QyviVA) G

[((5 FWA) 1) — (X W0 Qs (—f_;/f?(f;:j;jx)) ea] Qyipuier +O((8 — By)?)

. S S . Lol
= (X : W) ]m — (@_—1@)9)(%4/“1“/19)(%1//61 (JsX —F’Y’OWX LO0W +7/ZWW>1 (0 . QX%/V‘/l)

~ { F Wy = (X WG e O (;’;:i%fvm)] ¢ Qxiraes +O((8 = Bo) )

with (3 = fo) = 1+ ghael(8 — Bo). Tty = S5 [~akge (8- Ao)] - We further
post-multiply this expressmn by

1
1 -3 1
((B_BO)(eIIQX‘Z/V,Ul)l 0 ) ( 1 0 ) _ (B BO)(E QXW’Ul) 0
0 I v 2 ( oxetoxw |\ I + I
mw Vi QXW("W.:""EWW“/) mw VIQX‘%V(;‘;);;JF;)‘;/V‘K/WV) "

which does not alter the roots of the polynomial:

1
. : (Bo) _1 . (B—Bo)(e1Qxgyv1)?
[(X:m (y— XBy — >%} Qo EV) oty 1
0 _Vlﬂxw(avv:'@ww“f) ¢

= (X W)(0 QW)
= (e Wy = (X W) (ot + IV (crane )] e+ O((B = By) )

owetXwwy

= (X 1 W)(0 Q)
et Wy —(x W)QXIW[(%)+QXW( )Heg+0<<ﬁ—60)l)

= e — (X W), (;) (X W)ngvvll ,

since v,v] + V4V] = I,,,. For large numbers of observations and large values of 5 — (3, the roots
of the characteristic polynomial are thus identical to the roots that result from a characteristic
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polynomial [AA — B| = 0 with
!/
: o 1
A= L lg— (X W0y (53) W)QX%,VJ My
OWe

N Oce (X : W) 0
p O ImW

r !/
. . . 1
B= l|e—(X:iW)Qg, <m> LX) V| Py

OWe

[5 —(xEmegy (o) P W)QX%VVJ

_1
- (X W) () FX Emeg v
(e(X : W)QXIW(;’;;EE)> Py <€(X : W)Qxlw(;’iéi)) (gpz(x : W)Qxévvl(;‘;fvz)'ﬂxévm>

: -3 P ro—% A
Pz (X I W)QE Vi—(IXe ) o F M

1 , _ _1 1 . . 1
since = ViQ 3 (X T W)Y Ma(X i W)Q Vi = Loy, VIQ (X W) Py (X F W)Q3 W = Ay
where A; is a m,, X m,, diagonal matrix that contains all eigenvalues of Q;(?,[,,(X W) Py(X

_1

W) 3, except the smallest one. The roots of this characteristic polynomial are identical to the
. 1y Al . .

eigenvalues of A2’ BA™2 whose convergence behavior is characterized by

/
A"3'BA3 ~ {%.(x: W) : (@(X w) + Vx. W)) Vl] [%.(X: w) : (@(X w) T ¥x. W)) Vil

. _ oxe _1 1 . 1
with (Z’Z)_%Z, lg — (X W) Qg ( o )] Ooc(x - W) 7 Ve(x: w) (Z/Z);(HX P w ) Qo o

OWe

1 . 1
O .w) and (Z'Z)" 22" (Vx : Viw)Qxiy — Y (x . w), where we note that Ox . ) might not be
p
properly defined since it may be proportional to the sample size.

3. When O(x.w)Vi has a full rank value the rank of the expected value of [¢. (x . :
(@(X )+ ¥x . W)) V1] equals m,, since E(%(X; W)) = 0. When Ox .w)V1 has a full rank
value, the smallest root of A~3'BA~3 is thus identical to a rank statistic that tests if the rank
of a k x m matrix equals m — 1 under the hypothesis that its rank is equal to m — 1. This rank
statistic has a x?(k —m+1) = x*(k — m,,) limiting distribution. For general possibly lower rank
values of ©(x . w)V1, this limiting distribution is bounded by a x2(k — my,) distributed random
variable which is proven in Theorem 5.

44



Figures

Panel 5: 95% Percentiles of conditional distributions of LR statistic (dashed-dot), MQLR
statistic (dashed) and upperbound on the difference between LR and CLR (solid), m = 3.
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Panel 6: Difference between the 95% Percentiles of the conditional distributions

of LR and MQLR statistics (dashed-dot)
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