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Abstract. A big game is repeatedly played by a large population of anonymous players.

The game fundamentals and the set of players change with time and there is incomplete

and imperfect information about the changes and the play.

Big games admit natural myopic Markov perfect equilibria in which the proportion of

unpredictable and potentially chaotic periods is limited.

Examples include social adaptation of technology and price stability in production games.

Part 1. Overview of big games

Strategic interaction in large populations is a subject of interest in economics, political

science, computer science, biology and more. Indeed, the last three decades produced

substantial literature that deals with large strategic games in a variety of applications such

as markets [27], bargaining [22], auctions [28, 29], voting [10, 26], electronic commerce [13],

market design [4, 7] and many more.

The current paper studies big games that are played repeatedly by a large population

of annonymous players. Uncertainty about such a game is due to ongoing changes in the

game fundamentals and the set of players, with incomplete and imperfect information about

the play and these changes. Big uncertain games are common, yet di¢ cult to analyse by

standard Bayesian methods. However, they are amenable to Baysian analysis under behav-

ioral assumptions, common in economics and other �elds. Moreover, with the exception

of a limited proportion of learning periods, equilibrium play of big games is predictable and

stable.
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Examples of big games with changing fundamentals are the following: In the game of

butter consumption, fundamental chages occured with the �introduction of margarine,�gov-

ernment announcements that �butter is unhealthy�and then that �margarine is unhealthy,�

the introduction of �low fat�butter, etc. In rush-hour commute games fundamental changes

occure when a �new highway�is introduced, �new trainlines�are introduced, �road changes�

are made, etc. In the market of computing devices fundamental changes included the intro-

duction of �mainframe computers,��personal computers,��laptop computers,��smart phones�

and now �smart watches.�

Predictability and stability are essential properties for the well functioning of big games.

A period of play is predictable, if there is high probability that all the players�predictions

about the outcome of the period, predictions made before the period started, will be highly

accurate. In the rush-hour example, this may mean that the players�predictions of a day�s

driving times on the various roads, predictions made before they start driving, are likely to

be within a few minutes of the actual realized driving times. Stability of a period is meant

in a hindsight, no regret, or ex-post sense: There is only a small probability that once they

start driving and become informed of the realized driving times of the day, as may be the

case from a radio report, some player may recognize a gain of more than a few minutes by

switching to a route di¤erent from the one she had chosen.

As one may anticipate, at equilibrium predictability implies stability. If a player�s predic-

tions of driving times is likely to become the real driving times, it is unlikely that she would

want to change her chosen route once she observes her predicted times. Lack of stability, on

the other hand, implies (potential) chaos. For example, unstable driving pattern means that

players have the incentives to deviate from their optimally chosen routes. Such deviations

may cause further deterioration in the predicted driving times, which may lead other drivers

to deviate from their chosen routes, etc.

In price formation games, stability has an important economic interpretation. Consider

environments in which production and consumption plans are made prior to a play of a
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period of a game, and prices are generated as the outcome of the period based on the

realized production and consumption choices. No hindsight regret means that the choices

made by the producers and consumers are essentially optimal at the realized prices. Thus

the prices are competetive and the players plans were based on rational expectations.

In the type of big games studied in this paper, one may anticipate the emergence of stability

cycles in which equilibrium play of the game alternates between unpredictable chaotic periods

and predictable stable periods.

Our general interest is predictability and stability in equilibrium play of big games, a

highly complex topic for complete formal analysis. As discussed below, however, a big game

can be naturally partitioned into segments during which the game fundamentals and player

types are �xed. Under this partition the research may be separated into two stages: the �rst

stage studies the equilibrium properties of the play within single segments, and the second

stage studies the process of transitions from one segment to the next. Both these stages

involve di¢ cult conceptual and technical issues.

The main body of this paper, Part 2, focuses on the �rst stage, leaving the second stage for

future research. But equilibrium properties discussed in Part 2 make the segement equilibria

potential building blocks for the second stage, as we discuss brie�y in Part 3 of this paper.

To study the equilibrium of a single segent in Part 2, we consider the play of a general

Bayesian repeated game that starts with unknown but �xed state of fundamentals and

privately known �xed player types. The types are correlated through the fundamentals,

but they are independent conditional on any one of their possible states. In an example

in Section 5, we study an equilibrium of a large repeated Cournot game. There, the state

of fundamentals is the unknown probability distribution over production costs of a random

producer, and types describe producers�realized production costs.

At an equilibrium play of a segment, the ability to perdict period outcomes is learned

by observing past outcomes. Building on known facts from the literature on learning in

Bayesian repeated games, in which players learn to forecast probabilities of period outcomes,
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this paper argues that when the number of players is large they actually learn to predict (and

not just to forecast probabilities of) the outcomes. Moreover, the number of learning periods

in which their predictions fail is bounded by a �nite number K. This number K depends on

the accuracy of the intial beliefs about the fundamentals prior to the start of the segment,

i.e., the weight assigned by the common prior to the unknown state of fundamentals, s; and

on the level of accuracy and stability satisfactory to the analysts of the system.

But, in addition to unknown initial beliefs, predictability and stability may be limited due

to external factors of uncertainty. For example, even if the drivers in rush-hours learned

to predict the equilibrium driving patterns and the resulting driving times, a major tra¢ c

accident on a given morning may destroy the accuracy of their prediction.

The observations above have meaningful implications regarding the number of predictable

and stable periods in a segment. First, if the external uncertainty is high, the players ability

to predict outcomes may be completely diminished. Assuming that the external uncertainty

is low, we may further conclude that the minimal number of predictable stable periods in a

segment is L�K, where L is the number of periods in the segment and K is the number of

learning periods described above. L�K increases when: (1) the players are better informed

about the initial state of of the system, since it results in a smaller K; and (2) when the time

of the next fundamental change becomes larger, since it increases the length of the segement

L without a¤ecting the value of K.

The discussion above seems to be consistent with informal view of two multi-segment

games: the butter consumption game and the computing device game. We may expect

signi�cantly less stability in the latter due to the frequent fundamental changes, i.e., short Ls.

Within the computing device game we may expect a smaller number of unpredictable periods

after the introduction of smart watches than after the introduction of personal computers.

This may be due to a smaller uncertainty about how the smart watches may a¤ect our overall

processes of computations and thus smaller K. Our ability to predict rush-hour commute

times in big cities may be limited alltogether because of high external uncertainties about

tra¢ c accidents, unanticipated road conditions, etc.
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It should be noted that the learning discussed above is �rational learning,�done by players

whose objective is to maximize expected payo¤ through the play of Bayesian equilibria. Ir-

rational learning as in the case of naive best-reply dynamics for example, may never converge

to stability. Consider for example a repeated rush hour commute with two parallel routes,

A and B, both from starting point S to destination T , and drivers who wish to travel on the

least congested route. If most drivers start on A then the best-reply dynamics would have

them all alternate between B;A;B;A; ::: from the second day on, and the play is unstable

on any day.

For a large Bayesian repeated game, or one-segment game as discussed above, we focus

on a particular type of equilibrium called imagined continuum and show that it has the

properties discussed above.

At an imagined-continuum equilibrium the players replace random variables of the pop-

ulation by their expected values. For example, if every player chooses independently and

randomly PC or M with probabilities .5 and .5, then the players would assume that with

certainty one half of the population ends up with PC and one half withM. This assump-

tion is made throughout the game whenever random choices are made independently, or

independently conditional on past events. Moreover, in doing such compression to expected

values, players ignore their own e¤ect on population proportions. For example, a player who

believes that the population is evenly divided between PC andM, would hold this belief no

matter which computer she herself chooses.1.

One may think of the imagined-continuum assumptions as describing a natural behavioral

view of big populations. This behavior may be motivated by the simpli�cation obtained

in replacing random variables by their deterministic expected values. In particular, in the

games studied in this paper it eliminates many of the Bayesian calculations required of

rational players. But for events such as predictability and stability in periods of the game,

as game theorists we are careful to compute probabilities in the actual process: the one in

1See Mcafee [24] for an earlier use of this idea: in his paper a group of sellers o¤er competing mechanisms
to buyers. While the analysis is performed on a �nite set of sellers, these seller neglect their impact on the
utility of buyers who don�t participate in their mechanism
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which n imagined-continuum players use best response strategies to generate events in the

repeated game. After all, whether a player would want to deviate from a route that she

has chosen depends on the actuall observed driving times, which are determined by the n

drivers on the road and not by the hypothetical continuum that she imagines.

An importnt consequence of the imagined-continuum assumption is the existence of natural

Markov perfect equilibria. In addition to the simplicity of computation and play, these

equilibria can be adopted to multi-segment big games, as discussed in Part 3

1. Earlier literature

Kalai [17] and Deb and Kalai [9] illustrate that (hindsight) stability is obtained in large one-

shot Bayesian games with independent player types. They discuss examples from economics,

politics and computer science in which stability is highly desireable. In particular, in market

games stability implies that Nash equilibrium prices are competetive.2

The applicability of the papers above is limited by two restrictive assumptions. First,

unknown fundamentals in economics and other areas are in e¤ect a device that correlates

the types of the players. Second, in many applications games are played repeatedly.

The current paper expands the analysis of the papers above. It proposes a notion of

predictability and extend the notion of stability to repeated games; and proceeds to show

that, despite imperfect-monitoring and uncertain fundamentals, lack of predictability and

stability is limited to a �nite number of periods.

One-shot games of complete information with a continuum of players were studied by

Schmeidler [31], who showed the existence of pure strategy equilibrium.3 The imagined

continuummodel is di¤erent from the standard continuum-game introduced by him in several

respects. For one, in a continuum game, the actual outcomes of the game are determined

by the actions of the continuum of players. In the imagined-continuum model, on the other

2Kalai [17] also illustrates that hindsight stability implies a stronger stability propertiy, re¤ered to as struc-
tural robustness, and Deb and Kalai [9] allow a continuum of actions and heterogeneous types of players.
The current paper does not deal with either of these features. See also Azrieli and Shmaya [5], Babichenko [6]
for other directions in the literature following Kalai�s paper.
3See [2] for citations of follow-up literature.
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hand, the outcomes are determined by the actions of the n players (who imagine that they

are in a continuum). Since the games studied in this paper have a �nite number of n players,

the outcomes of the imagined continuum are the ones to be studied.4

Early reference to the currently popular Markov-perfect equilibrium is Maskin and Ti-

role [23]. The body of this paper elaborates on some properties of the imagined-continuum

Markov equilibrium, enough to present the results on predictions and hindsight stability.

We refer the reader to a companion paper, Kalai and Shmaya [20], KS for short, that stud-

ies this type of equilibria in depth and presents results on how the imagined continuum

Markov equilibrium o¤ers good assymptotic approximation to standard Nash equilibrium.

The current paper uses the same model as in KS, which is described in the next section.

The "learning to predict" theorem presented in this paper relies on earlier results from the

rational learning literature in repeated games as in Fudenberg and Levine [11], Kalai and

Lehrer [19, 18] and Sorin [32].

A pioneering paper on large repeated game is Green [15] who studies large repeated strate-

gic interaction in a restricted setting of complete information and with further restriction

to pure strategies. Green and Sabourian [30] derive conditions under which the Nash cor-

respondence is continuous, i.e., the equilibrium pro�le in the continuum game is a limit

of equilibrium pro�les in the games with an increasing number of players. In addition to

Green�s paper, the myopic property of large repeated games were studied in Al-Najjar and

Smorodinsky [1].

As mentioned above, compressing computations to expected value is used in a variety

of current models in economics, see for example McCa¤ee [24], Jehiel and Koessler [16],

and Angeleton et al. [3], who study a dynamic global game with fundamental uncertainty.

Also the idea of a stability cycle, done in a much di¤erent environments, can be found in

Tardosh [21].

4See our paper [20] for the discrepency of the outcomes between continuum games and standard n person
games with large n.
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Part 2. Big uncertain games with unknown �xed fundamentals

2. The model

A stage game is played repeatedly in an environment with an unknown �xed state of

fundamentals, s (also referred to as a state of nature), by a population of n players whose �xed

privately known types ti are statistically correlated through the state s. The environment

and the game are symmetric and annonymous.

We consider �rst the game skeleton that consists of all the primitives of the game other

than the number of players. Augmenting the game skeleton with a number of players n,

results in a fully speci�ed Bayesian repeated game. This organization eases the presentation

of asymptotic analysis, as one can keep all the primitives of the game �xed while varying

only the number of players n.

De�nition 1. [game] A game skeleton is given by � = (S; �0; T; � ; A;X; �; u) with the

following interpretation:

� S is a �nite set of possible states of nature; �0 2 �(S) is an initial prior probability

distribution over S.5

� T is a �nite set of possible player types.6 � : S ! �(T ) is a stochastic type-generating

function used initially to establish types. Conditional on the state s, � s(t) is the

probability that a player is of type t, and it is (conditionaly) independent of the

types of the opponents. The selected types remain �xed throughout the repeated

game.

� A is a �nite set of possible player�s actions, available to a player in every period.

� X is a countable set of outcomes, and for every s 2 S and every e 2 �(T �A), �s;e is

a probability distribution over X. In every period e(t; a) is the empirical proportion

of players in the population who are of type t and choose the action a. �s;e(x) is the

5As usual, �(B) is the set of all probability distributions over the set B.
6Due to the symmetry assumption, �T is a �nite set of possible player types�should be interpreted to mean
that it is so for every player in the game. This is also the case for similar statements that follow.
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probability of the outcome x being realized and announced at the end of the period.

We assume that the function e 7! �s;e(x) is continuous for every s and x.

� u : T �A�X ! [0; 1] is a function that describes the player�s payo¤ : u(t; a; x) is the

period payo¤ of a player of type t who plays a when the announced period outcome

is x.7

Example 1 (Repeated computer choice game with correlated types). As in the example of

the one-shot computer-choice game from Kalai [17], let S = T = A = fPC;Mg denote two

possible states of nature, two possible types of players and two possible actions to select.

But now these selections are done repeatedly in discrete time priods k = 0; 1; 2; :::.

Initially, an unknown state s is chosen randomly with equal probabilitis, �0(s = PC) =

�0(s =M) = 1=2; and conditional on the realized state s the �xed types of the n players

are drawn by an independent identical distribution: � s(ti = s) = 0:7 and � s(ti = sc) = 0:3,

where sc is the unrealized state. Each player is privately informed of her type ti. Both s and

the vector of tis remain �xed throughout the repeated game.

Based on player i�s information at the begining of each period k = 0; 1; ::: she selects

one of the two computers, aik = PC or aik = M. These selections determine the empircal

distribution of type action pairs, ek, where ek(t; a) is the proprtion of players who are of type

t and choose the computer a in the kth period.

At the end of each period, a random sample (with replacement) of J players is selected, and

the sample proportions of PC users x = xk(PC ) is publicly announced (xk(M ) � 1 � x).

Thus, the probability of the outcome x = y=J being selected (when the state is s and

the period empirical distribution is e) is determined by a Binomial probability of having y

successes in J tries, with a probability of success xk(PC ).

7All the de�nitions and results hold also when X is a subset of Euclidean space, and �s;e is an absolutely
continuous distribution. In this case we have to assume that the function e 7! �s;e is continuous when the
range is equipped with the L1-norm and that the payo¤ function u is a Borel function. See example in
Section 5
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Player i�s payo¤ in period k is the (proportion of players that her choice matches)1=3 plus

0:2 if she chose her computer type: uik(t
i; aik; xk) = (xk[a

i
k])

1=3 + 0:2�aik=ti . The game is

in�nitly repeated, and a player�s overall payo¤ is the discounted sum of her period payo¤s.

2.1. Bayesian Markov strategies. We study a symmetric equilibrium in which all the

players use the same strategy �. Normally, a player�s strategy in the repeated game speci�es

a probability distribution by which the player selects an action in every period, as a function

of (1) her type, (2) the observed history of past publicly announced outcomes, and (3) her

own past actions. However, we are only interested in a certain class of strategies, which we

call �Bayesian markov strategies�(or Markov strategies for short). When playing a markov

strategy the player does not condition her selection on her own past actions. Moreover,

her selection of an action depends on the past publicly announced outcomes only through a

Markovian state, which is the posterior public beliefs over the state of nature.

De�nition 2. A (Bayesian) markov strategy is a function � : �(S)� T ! �(A).

The interpretation is that ��;t(a) is the probability that a player of type t 2 T selects the

action a 2 A, in periods in which the �public belief�about the state of nature is �. The

term �public belief�is in quotes because these beliefs are not derived from an exact Bayesian

reasoning, they are derived under the imagined continuum reasonnig described in the next

section.

Notice that as de�ned, a markov strategy � may be used by any player regardless of the

number of opponents and the repetition-payo¤ structure.

2.2. Beliefs in the imagined continuum model. By the �public belief�at the begining

of period k we mean the belief over the state of nature, held by an outside observer who (1)

knows the players�strategy � and (2) has observed the past publicly announced outcomes of

the game. A main feature of our de�nition of markov strategies and equilibrium is that these

beliefs are simpli�ed. As a result, they are di¤erent from the correct posterior conditional

distributions over the state of nature. Rather, they are updated during the game using

what we call �imagined continuum reasoning�. Under imagined continuum reasoning all
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uncertainty about players types and actions conditioned on the state of nature is compressed

to its conditional expectations, resulting in known deterministic conditional distributions.

Speci�cally, the public beliefs are de�ned recursively by the following process:

� The intial public belief is that the probability of every state s is �0(s).

� In every period that starts with a public belief �, the imagined empirical proportion

of a type-action pair (t; a) in the population is

(2.1) d�(t; a) = � s(t) � ��;t(a):

And the posterior public belief assigned to every state s is computed by Bayes rule

to be

(2.2) ��;x(s) �
�(s) � �s;d�(x)P

s02S �(s
0) � �s0;d�(x)

:

However, even when a player ignores the impact of her type and actions on periods out-

comes, she still has additional information for assessing probabilities of states of nature,

namely her own realized type. Under imagined continuum reasoning, her type and the

public outcome are conditionally independent of each other for any given state of nature.

This implies that we can use Bayes formula to compute her private belief about the state of

nature from the public belief.

Formally, in every period that starts with the public belief �, for any player of type t the

private belief probability assigned to the state of nature s is

(2.3) �(t)(s) � �(s) � � s(t)P
s02S �(s

0) � � s0(t)
:

2.3. Markov perfect equilibrium. We are now in a position to de�ne the equilibrium

concept used in this paper. Under the imagined continuum view the players ignore the impact

of their own action on the outcome, and a player of type t believes the outcome is drawn

from the distribution �(�(t); �) where �(t) is given by (2.3) and � : �(S)��(S)! �(X) is
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given by

(2.4) �(�; �) =
X
s2S

�(s)�s;d� ;

where d� is given by (2.1). Thus, �(�; �) is the forecast about the period outcome of an

observer whose belief about the state of nature is � when the public belief about the state

of nature is �.

De�nition 3. A (symmetric, imagined continuum) Markov (perfect) equilibrium is given by

a Markov strategy � : �(S)� T ! �(A) such that

[�(�; t)] � argmaxa
X
x2X

�(�(t); �)(x)u(t; a; x)

for every public belief � 2 �(S) about the state of nature and every type t 2 T where [�(�; t)]

is the support of �(�; t), the private belief �(t) is given by (2.3), � is given by (2.4) and d is

given by (2.1).

According to the imagined continuum equilibria, each player of type t treats the public

outcome as a random variable with distribution �(�(t); �), ignoring her impact on the out-

come. This is a generalization of the economic �price-taking�property in Green [14] to a

stochastic setting and to applications other than market games. For this reason our players

may be viewed as stochastic outcome takers. Note that imagined continuum equilibria are,

by de�nition, myopic: At every period the players play an imagined continuum equilibrium

in the one shot Bayesian game for that period.

Remark 1. In our companion paper [20] we de�ne the notion of imagined continuum equilib-

rium more generally (without assuming the Markov property and myopicity) and prove that:

(1) every imagined continuum equilibrium is myoptic, (2) probabilities of certain outcomes

computed in the imagined game approximate the real probabilities computed in the �nite

large versions of the game, and (3) best responses (and Nash equilibrium) in the imagined

game are uniformly � best responses (and � Nash equilibrium) for all su¢ ciently large �nite

versions of the game.
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Notice also that under myopicity, the equilibrium that we study and the main results that

follow are applicable for a variety of repetition and payo¤ structures: For example the game

may be repeated for a �nite number of periods with overall payo¤s assessed by the average

period payo¤; or the game may be in�nitely repeated with payo¤s discounted by di¤erent

discount paramters by di¤erent players, etc.

Another consequence of myopicity is that the set of players may change and include com-

binations of long-lived players, short-lived players, overlapping generations, etc., provided

that the death and birth process (i) keeps the size of the population large, (ii) does not alter

the state and the players�type distribution, and (iii) that players of a new generation are

informed of the latest public belief about the unknown state.8

2.4. The induced play path. To compute the probability of actual events in the game, as

done in the sequel, we need to describe the actual (as opposed to the beliefs that are derived

from the imagined continuum reasoning) probability distribution induced over play paths

when players follow a markov strategy �.

We use bold face letters to denote random variables that assume values from corresponding

sets. For example, S is the random variable that describes a randomly-selected state from

the set of possible states S. Superscripts denote players�name, superscripts in parenthesis

denote players�type and subscripts denote periods�number.

The de�nition below is applicable to a game with a set of n players, N , with any repetition-

payo¤ speci�cation. As already stated, all the players use the the same strategy �.

De�nition 4. Let � be a markov strategy of the �nite game with n players. The random �

play-path is a collection
�
S;Ti;Ai

k;Xk

�
i2N;k=0;1;::: of random variables,

9representing the state

of nature, types, actions and outcomes, such that:

� The state of nature S is distributed according to �0.

8Games in which the number of players is large, unknown and follows a Poisson distribution were studied in
Myerson [25]. By restricting ourselves to games of proportions, lack of knowledge of the number of players
becomes a trevial issue in the current paper.
9We do not specify the probability space or the domain of these variables, but only the probability distribution
over their values. The play-path is unique in distribution.
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� Conditional on S, the players types Ti are independent and identically distributed

with the distribution �S.

� Conditional on the history of periods 0; : : : ; k�1, players choose period k actions Ai
k

independently of each other. Every player i 2 N uses the distribution �Ti; �k
, where

�k is the public belief at the beginning of period k, given by

�0 = �0; and

�k+1 = ��k;Xk
; for k � 0;

(2.5)

and � is de�ned in (2.2).

� The outcome Xk of period k is drawn randomly according to the distribution �S;ek ,

where

(2.6) ek(t; a) = #fi 2 N jTi = t;Ai
k = ag=n

is the (random) empirical type-action distribution in period k.

In equations,

P
�
S = s;Ti = ti i 2 N

�
= �0(s) �

Y
i2N

� s(t
i):

P
�
Ai
k = a

i i 2 N
��S;Ti;Ai

l;Xl l < k; i 2 N
�
=
Y
i2N

��k;Ti(a
i)

P
�
Xk = x

��S;Ti;Ai
l l � k; i 2 N;X0; : : : ;Xk�1

�
= �S;ek(x):

(2.7)

where ek is given by (2.6), and �k is given by (2.5).

Note that the imagined continuum reasoning enters our de�nition only through (2.5),

which re�ects the way that the outside observer and the players process information. The

assumption of imagined continuum reasoning lies behind the simple form of the public beliefs

process �0;�1; : : : . Two important properties are a consequence of this de�nition: (1) �k

admits a recursive formula (i.e., that the outside observer and the players needs only keep

track on their current belief about state of nature and not on their beliefs about players

types and actions) and (2) the fact that this formula does not depends on the number of
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players. Both these properties do not hold about the beliefs P (S 2 � jX0; : : : ;Xk�1 ) of the

game theorists who do the exact Bayesian reasoning.

3. Correct predictions

Consider a game skeleton � played repeatedly by n players. Let � be a markov strategy

and consider the random � play path
�
S;Ti;Ai

k;Xk

�
i2N;k=0;1;:::.

Recall that we denote by �k the public belief about the state of nature at the beginning

of period k, given by (2.5). For every type t 2 T let

(3.1) �
(t)
k (s) =

�(s) � � s(t)P
s02S�(s

0) � � s0(t)

be the belief of a player of type t about the state of nature computed under the imagined

continuum reasoning, as in (2.3). Also let �(t)k = �(�
(t)
k ;�k) be the probability distribution

of the �(X)-valued random variable that represents the forecast of a player of type t about

period k-outcome, where the forecast function � is given by (2.4). In this section we give

conditions under which these probabilistic forecasts can be said to predict the outcome.

We assume hereafter that the space X of outcomes is equipped with a metric �. The event

that players make (r; �)-correct predictions in period k is given by

(3.2) R(k; r; �) =
n
�
(t)
k (B(Xk; r)) > 1� � for every t 2 T

o
where B(Xk; r) = fx 2 Xj�(x;Xk) � rg is the closed ball of radius r around Xk. Thus,

players make (r; �) correct predictions at period k if each player assigns probability at least

1 � � to a ball of radius r around the realized outcome Xk, before she observes its realized

value.

De�nition 5. Let � be a game skeleton and let � be a Markov strategy. We say that players

make asymptotically (r; �; �)-correct predictions under � in period k if there exists some n0

such that

P(R(k; r; �)) > 1� �:

in every n-player game with n > n0.
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We proceed to provide conditions on the game skeleton under which players make as-

ymptotically correct predictions. For every probability distribution function � over X let

Q� : [0;1)! [0; 1] be the concentration function of � given by

(3.3) Q�(r) = 1� sup
D
�(D)

where the supremum ranges over all closed subsets B of X with diameter diam(D) � r.

(diam(D) = supx;x02B �(x; x
0) where � is the metric on X). When � is the distribution of a

random variable X, we also denote QX = Q� . The following are examples of concentration

functions:

� If for some a, a � X � a+ :01 then QX(0:01) = 0.

� If X is a �nite set and P(X = x0) = 1 � � for some x0 2 X and small � > 0 then

Qf (0) = �.

� If X = R and X is a random variable with variance �2 then from Chebyshev�s

Inequality it follows that QX(r) � 4�2=r2.

� If X = R and X is a random variable with Normal distribution with standard devi-

ation � then QX(r) = 2(1� �(r=2�)) � 2 exp(�r2=2�2)

For every game skeleton � we let Q� : [0;1)! [0; 1] be given by Q�(r) = sups;eQ�s;e (r).

For example, in the round-o¤ case, where outcomes are empirical distribution randomly

rounded o¤ to integral percentage, it holds that Q�(0:01) = 0.

Theorem 1 (Correct predictions). Fix a game skeleton �. For every �; � > 0 there exists

an integer K such that under every Markov strategy � and every r > 0, in all but at most

K periods players make [r;Q�(r) + �; Q�(r) + �]-asymptotically correct predictions.

The apperance of Q�(r) in Theorem 1 is intuitively clear: Increasing concentration of the

random outcome (e.g., by taking a larger sample size J in Example 1) imporves the level

of predictability and stability. But if the variance is large (e.g., small sample size in the

example) predictability and stability are not to be expected.
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4. Stability

Consider a game skeleton � played repeatedly by n players. Let � be a markov strategy

and consider the random � play path
�
S;Ti;Ai

k;Xk

�
i2N;k=0;1;:::. The event that period k is

�-hindsight stable is given by

H(k; �) =
�
u(Ti;Ai

k;X
i) + � � u(Ti; a;Xi) for every player i and action a 2 A

	
:

This is the event that after observing the realized outcome of period k no player can improve

her payo¤ by more than � through a unilateral revision of her period-k action.

De�nition 6. Let � be a game skeleton and let � be a Markov strategy. We say that period

k is asymptotically (�; �)-stable under � if there exists some n0 such that

P(H(k; �)) > 1� �

in every n-player game with n > n0.

We proceed to provide bounds on the level of hindsight stability in natural classes of

large games. For this purpose, in addition to the earlier assumptions on the game skeleton,

we now make an assumption about the modulus of continuity of the payo¤ function. Let

! : [0;1) ! [0;1) be continuous, monotone increasing function with w(0) = 0. We say

that the utility function u admits ! as a modulus of continuity if ju(t; a; x) � u(t; a; x0)j �

!(�(x; x0)) for all t 2 T; a 2 A and x; x0 2 X, where � is the metric on X. The special case

of Lipschitz payo¤ function with constant L is described by the function !(d) = Ld.

The following lemma says that correct predictions implies hindsight stability.

Lemma 1. Fix r; � > 0. Let � be a markov strategy of a game skeleton � in which the payo¤

function u has modulus of continuity !, and consider the random �-play path. For every

period k, the event R(k; r; �) that players make (r; �)-correct predictions is contained in the

event H(k; 2!(r) + �=(1� �)) that the game is (2!(r) + �=(1� �))-stable.

The following theorem follows from Theorem 1 and Lemma 1
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Theorem 2. [Hindsight Stability] Fix a game skeleton � in which the payo¤ function u has

modulus of continuity ! . Then for every �; � > 0 there exists an integer K such that in every

Markov equilibrium � and every d > 0 all but at most K periods are [2d + 2Q�(!�1(d)) +

2�; Q�(!
�1(d)) + �] asymptotically-stable10

Next, we select d = 2(�L)2=3 and restrict ourselves to applications in which the public

information X has a �nite variance bounded by �2 and the payo¤ function is Lipschitz

with constant L. Using Chebyshev�s bound on the concentration function, we obtain the

following.

Corollary 1. Consider any game skeleton � in which the payo¤ function u is Lipschitz with

constant L and the public signal has variance bounded by �2. Then for every �; � > 0 there

exists a �nite integer K such that in every Markov equilibrium � all but at most K periods

are [6(�L)2=3 + 2�; (�L)2=3 + �] asymptotically-stable.

Under the theorems above we deduce the following examples.

Example 2 (Rouded-o¤ empirical distribution). Consider games � in which the reported

outcome x is the realized empirical distribution of the population e, randomly rounded o¤

up or down to the nearest percentage; games in which Q�(0:01) = 0. Let r; �; � be arbitrary

small positive numbers, then there is a �nite number of periods K such that:

A. In all but the K periods, under any strategy � the players make correct predictions up

to [r; �; �].

B. If the payo¤ function is Lipschitz with constant L = 1 and � is a Markov equilibrium,

all but K periods are (0:02 + 2�; �)-stable.

5. Cournot example: Price stability

In this example of an n-person Cournot production game, the state of nature determines

whether it is easy or di¢ cult to produce a certain good, and producers are of two types,

e¢ cient and ine¢ cient. At the begining of every period, each one of the producers chooses

10In case that the function ! is not invertible then r = !�1(d) is de�ned in any way such that !(r) � d.
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whether or not to produce a single unit of the good. The total production determines the

period�s price through a random inverse demand function.

Let S = feasy; di�cultg denote the set of possible states equipped with a uniform prior

�0(easy) = �0(di�cult) = 1=2, and let T = fe�cient; ine�cientg denote the set of player�s

types. Types are generated stochastically by the conditional independent identical distribu-

tions �js: �(e�cientjeasy) = 3=4 and �(ine�cientjeasy) = 1=4; symmetirically �(e�cientjdi�cult) =

1=4 and �(ine�cientjdi�cult) = 3=4.

A player�s period production levels are described by the set of actions A = f0; 1g, and a

price x 2 R is the outcome of every period. The period price depends entirely on the period�s

total production, and not on the state of nature and the types. Formally for every s 2 S

and empirical distribution of type-action pairs e 2 �(T � A), �s;e = Normal(1=2 � r; �2),

where r = e(easy; 1)+e(di�cult; 1) is the proportion of players who produce the good. One

interpretation in the n player game is that there are n buyers whose demand at price x is

given by 1=2�r+� where � � Normal(0; �2) is the same for all buyers. Another interpretation

is that � represents noisy traders who may either buy or sell the good.

The payo¤ functions are given by u(t; 0; x) = 0 for every t 2 T and x 2 X, i.e., not

producing results in zero payo¤; and u(t; 1; x) = x�(1=8)�t=ine�cient, i.e., per unit production

cost is zero for an e¢ cient producer and 1/8 for an ine�cient one.

The repeated game admits the following unique imagined continuum Markov equilibrium:

Let �k be the public belief about the state of nature at the beginning of period k, computed

(according to the imagined continuum reasoning) by an outsider who observes the prices but

not the players types and actions. We identify �k with the probability assigned to s = easy,

so �k 2 [0; 1]. Note that if the public belief is �k then the belief of every e¢ cient players is

�
(e�cient)
k =

3=4 � �k
3=4 � �k + 1=4(1� �k)

=
3�k

1 + 2�k

and the belief of every ine¢ cient players is

�
(ine�cient)
k =

�k
3� 2�k

:
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The equilibrium strategies in the repeated game are de�ned by the following:

(1) When �k � (7+
p
33)=16 = 0:796:: each e¢ cient player produces with prob p = 4�k+2

8�k+1

(thus under conpressed reasoning 4�k+2
8�k+1

of them produce) and the ine¢ cient players

are idle. Here p is the solution to the equation

�
(e�cient)
k 3=4 � p+ (1� �(e�cient)k )1=4 � p = 1=2;

so that the e¢ cient players expect a selling price of 0 and zero pro�t. In particular,

when �k = 1 a proportion p = 2=3 of the e¢ cient players produce and the ine¢ cient

players are idle.

(2) When (35 �
p
649)=64 < �k < (7 +

p
33)=16, each e¢ cient player produces with

probability p and each ine�cient player produces with probability q, where 0 < p; q <

1 are the unique solution to the equations

�
(e�cient)
k (3=4 � p+ 1=4 � q) + (1� �(e�cient)k )(1=4 � p+ 3=4 � q) = 1=2

�
(ine�cient)
k (3=4 � p+ 1=4 � q) + (1� �(ine�cient)k )(1=4 � p+ 3=4 � q) = 3=8

so that the e¢ cient players expect price 0 and the ine¢ cient players expect price 1=8.

For example, when � = 1=2 the strategies are p = 11=16 and q = 3=16.

(3) When � � (35 �
p
649)=64 = 0:148::: the e¢ cient players all produced and the

ine¢ cient players produce with probability q = (3 � 6�)=(18 � 16�). Here q is the

solution to the equation

�
(ine�cient)
k � (3=4 + 1=4 � q) + (1� �(e�cient)k ) � (1=4 + 3=4 � q) = 3=8;

so that the ine¢ cient player expect price 1=8 and zero pro�t. In this case the e¢ cient

players expect a positive pro�t.

After each period the players update their beliefs using Bayes�formula:

�k+1 =
�k � exp (�(xk � (3=4pk + 1=4qk))2=2)

�k � exp (�(xk � (3=4pk + 1=4qk))2=2) + (1� �k) � exp (�(xk � (1=4pk + 3=4qk))2=2)
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where pk and qk are the equilibrium strategy under �k and xk is the outcome of day k.

By Theorem 2 it follows that for every �; � > 0 and every d > 0 every period except for a

�nite number is asymptotically hindsight stable at a level: (2d + 2QG(d) + 2�; QG(d) + �).

Assume for example that � = 0:01. Choosing d = 0:05 we get QG(d) = 0:012. Therefore,

every period except for a �nitely number is asymptotically (0:11 + 2�; 0:012 + �) stable.

Remark 2. Why is the equilibrium unique? Let � be the outsider belief about the state of

nature at the beginning of some period. Let p be the proportion of e¢ cient players who

produce at that period and q the proportion of ine¢ cient players who produce.

Under this pro�le the supplied quantity that the e¢ cient players expect is

�(e�cient)(3=4 � p+ 1=4 � q) + (1� �(e�cient))(1=4 � p+ 3=4 � q)

and the supplied quantity that the ine¢ cient players expect is

�(ine�cient)(3=4 � p+ 1=4 � q) + (1� �(ine�cient))(1=4 � p+ 3=4 � q)

Assume now that (p; q) and (p0; q0) are two equilibrium pro�les and that q > q0. The equilib-

rium condition implies that the supplied quantity that the ine¢ cient players expect under

(p; q) is weakly smaller than what they expect under (p0; q0). Because q > q0 this implies that

p < p0, so that the supplied quantity that the e¢ cient players expect under (p; q) is weakly

larger from under (p0; q0). This is a contradiction since the di¤erence between the expected

supplied quantities of the e¢ cient and ine¢ cient players is monotone increasing in p and

monotone decreasing in q.

Part 3. Constructing equilibria of multi-segment big games

We next discuss how the imagined-continuum equilibria of a single segment may be used

for constructing equilibria for multisegment big games. Recall that by a segment we mean a

sequence of consecutive periods in which the state of nature (or fundamentals) is constant.

In a multisegment big game, in which the state of nature changes over time, the periods are

naturally partitioned into such segments.
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We consider a simple family of multisegment games, repeated segment games, in which

the changes in fundamentals are due to exogenous random shocks. Moreover, when the

fundamentals chage players learn of the change, even though they do not know the new

state of fundamentals. A repeated segment game is described by a pair (�; �) in which

� = (S; �0; T; � ; A;X; �; u) is a segment game, as discussed earlier, and 1 > � > 0 describes

a probability of change.The extensive form of the game is described recursively as follows.

Initially and in later stages the segment game � is played as follows. (a) Independent

of any past events, nature draws a random state of nature s according to the distribution

�0; it also indepently draws player types by the distribution � s and privately informs the

players of their realized types. (b) The segment game � is played repeatedly as described

earlier but subject to the following modi�cation: At the end of every period, independently

of the history, with probability � the game restarts and with probability 1� � it continues.

Following the continue event the play continues to the next period of the segment. But

following the restrat event the players are informed that the game is restarted, and proceed

to play a new segment starting in step (a) above.

Let � be a Bayesian Markov strategy in the one-segment game �, according De�nition 3.

Then � induces a strategy in the multi-segment game: Initially and after every change in

fundamentals, the public belief is set to be �0 and players use their current type when applying

� throughout the segment. Even without giving a formal de�nition of an equilibrium in the

multi-segment game, it is intuitively clear that if � is an equilibrium in the one segment

game then the induced strategy is an equilibrium in the multi-segment game. Our results

imply that in every segment there is a bounded number K of periods which are not hinsdight

stable. If the probability of transition � is small then we get a bound ��K on the frequency

of periods in the multisegment game which are not hinsdight stable

Moving to more general models, we may view big games as large imperfectly observed

Bayesian stochastic games, where the transition probability and the new state depends on

the empirical distribution of players actions and on the current state. This broader view

gives rise to many questions for future research. Direct follow up of the current paper are
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issues regarding changes in information as we move from one segement of the game to the

next. In addition, one may consider situations in which changes in fundamentals are not

made public. We leave these issues to future research.

Part 4. Proofs

The main result of the paper, that asymptotic hindsight stability holds in all but �nitely

many chaotic learning periods, is proven in two steps.

Step one argues that the result holds in the imagined processes that describe the beliefs

of the players. Building on the result of step one, step two shows that the result holds in the

real process.

In step one, the intuition may be broken into two parts. First, relying on the merging

literature (grain of truth is automatic in our model; see Fudenberg and Levin [11], Sorin [32]

and Kalai and Lehrer [18, 19]) we argue that in an equilibrium of our model there are only a

�nite number of learning periods in which the forecasted probability of the period outcome

is signi�cantly di¤erent from its real probability. In other words, the players�belief about

the fundamental s leads to approximately the same probability distribution over the future

events as the real s. One issue we need to address in applying these results is that in

our multi-player setup players with di¤erent types have di¤erent beliefs, and so may make

mistake in forecasts in di¤erent periods. But we need to bound the number of periods in

which some player makes a forecasting mistake. To do that we extend the previous learning

result to a multi-player setup.

The second stage is based on the following reasoning. Assuming that the uncertainty in

the determination of period outcomes is low, in the imagined process for every state s the

period outcomes are essentially derterministic. This implies that in every nonlearning period

the players learn to predict (and not just forecast the probability of) the outcomes. When

the predicted period outcome (on which a player base her optimal choice of an action) is

correct, she has no reason to revise her choice. Thus, in the imagined processes we have

hindsight stability in all the non-chaotic periods.
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In step two, to argue that hindsight stability holds in all the non-learning periods in the

real process, we rely on arguments developed in our companion paper [20]. These arguments

show that the probability of events in the real process are approximately the same as their

counterparts in the the imagined processes. Thus the high level of hindsight stability obtained

in step one apply also to the real process.

Section 6 gives a formal de�nition of the imagined play-path, which is the process the

players have in mind when doing the �incorrect�updating given in Section 2.2. Section 7

presents the result from our companion paper, that when the number of players is large the

imagined process is not too far from the induced play-path given in Section 2.4. Section 8

presents a uniform merging result: In an environment with many player types, each starting

with a di¤erent signal we provide a bound for the number of periods in which one of them

changes their beliefs. Section 9 connect the dots.

6. Imagined Continuum view

In this section we describe the imagined play path, that re�ects the players imagined

continuum reasoning. In order to distinguish between corresponding entities in the actual

play path and in the imagined play path, we denote the random variables that represent the

outcomes in the imagined play by ~X0; ~X1; : : : , and the random variables that present public

beliefs by ~�0; ~�1; : : : .

Let � be a markov strategy. A imagined random �-play path is a collection
�
S; ~T; ~X0; ~X1; : : : )

of random variables, representing the state of nature, type of a representative player and out-

comes, such that: The state of nature S is distributed according to �0 and conditional on the

history of periods 0; : : : ; k � 1, the outcome ~Xk is drawn randomly according to probability

density function �S;d ~�k
where the imagined public beliefs ~�k are given by

~�0 = �0; and

~�k+1 = � ~�k; ~Xk
; for k � 0;

(6.1)

� is de�ned in (2.2), and d� for every belief � is de�ned in (2.1).
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In equations,

P (S = �) = �0

P
�
~T = �jS

�
= �S

P
�
~Xk = �

���S; ~T; ~X0; : : : ; ~Xk�1

�
= �S;d ~�k

(6.2)

The di¤erence between Equations (6.2) and the Equations (2.7) that de�ned the actual

random play-path is that in the latter the outcome is generated from the random empirical

types-actions distribution ek of n players whereas in the former the outcome is generated

from the conditional expectation d ~�k
of this distribution. It is for this reason that the beliefs

~�k are the correct conditional probabilities over the state of nature of an observer who views

the outcome process ~X0; ~X1; : : : and ~�
(t)
k are the correct conditional probabilities over the

state of nature of a player of type T:

~�k = P
�
S = �

��� ~X0; : : : ; ~Xk�1

�
; and

~�
(t)
k = P

�
S = �

���T = t; ~X0; : : : ; ~Xk�1

�(6.3)

For every t 2 T where ~�(t)
k are given by

~�
(t)
k (s) =

~�(s) � � s(t)P
s02S

~�(s0) � � s0(t)

as in (3.1). Similarly, the forecasts of the public observer and the players about the next day

outcome are correct in the imagined process:

�( ~�k; ~�k) = P
�
~Xk = �

��� ~X0; : : : ; ~Xk�1

�
; and

�( ~�
(t)
k ;
~�k) = P

�
~Xk = �

���~T = t; ~X0; : : : ; ~Xk�1

�(6.4)

From (6.4) it follows that if � is an imagined continuum equilibrium then the players choose

at every round optimal actions for the imagined beliefs:

(6.5) [�(t; ~�k)] 2 argmax
a
E
�
u(t; a; ~Xk)

���~T = t; ~X0; : : : ; ~Xk�1

�
:
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for period every k and every player�s type t 2 T . As mentioned in Remark 1, in our

companion paper we de�ne imagined equilibrium (not necessarily Markovian) using this

property and prove that such every equilibrium is myopic.

7. Validation of the imagined view

We prove the theorem using a lemma that couples a play path in the actual game with an

imagined play path, that re�ects the players imagined continuum reasoning. By coupling we

mean that both processes are de�ned on the same probability space. The coupling presented

in Proposition 1 is such, when the number of players is large, the realization of the processes

is, with high probability, the same. In particular, the forecasts about the outcome sequence

made by the imagined continuum reasoning are not far from the correct forecasts made by

an observer that performs the correct Bayesian calculation11. We prove Proposition 1 in our

companion paper12. See also Carmona and Podczeck [8] and the reference therein for results

of similar spirit in a static (single period) game.

Proposition 1. Fix a game skeleton and a markov strategy �. There exist random variables

S;Ti;Ai
k;Xk; ~Xk for i 2 N and k = 0; 1; : : : such that

� (S;Ti;Ai
k;X0;X1; : : : ) is a random �-play path of the repeated game.

� The outcome sequence S; ~X0; ~X1; : : : is a imagined random �-play path.

� For every k it holds that

(7.1) P
�
X0 = ~X0; : : : ;Xk = ~Xk

�
> 1� C � k

r
log n

n
;

where C is a constant that depends on the game skeleton.

Let Vk be the event fX0 = ~X0; : : : ;Xk = ~Xkg. This is the event that the continuum

behavior model was validated up to day k.

11In a sense, the lemma claims that the incorrect, imagined continuum reasoning is validated by what the
observations of the players and an outside observers. This is a similar idea to self-con�rming equilibrium [12]
but in self-con�rming equilibrium the farecasts are fully correct.
12See Lemma 1 in that paper. The version of the lemma in that paper is more general than here in that it
does not assume that all players play the same markov strategy and also allows arbitrary (non-markovian)
deviation of a player.
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8. A uniform merging theorem

The proof of Lemma 1 relies on the notion of merging. Let X be a Borel space of outcomes

and let P;Q be two probability distributions over XN. For every x = (x0; x1; : : : ) 2 XN we

denote by Pk(x0; : : : ; xk�1) and Qk(x0; : : : ; xk�1) the forecasts made by P and Q respectively

over the next day outcome conditioned on x0; : : : ; xk�1.

Say that Q is �-grain of P if P = �Q + (1 � �)Q0 for some distribution Q0. One can

think of Q as the �correct distribution�of some X-valued stochastic process and of P as

some agent�s belief. The Bayesian learning literature [Blackwell & Dubins, Kalai & Lehrer,

Sorin, Fudenberg Levine] studies situations when forecasts made according to P are close in

various senses to forecasts made according to Q. A seminal result in the literature is that if

Q is a �-grain of P for some � > 0 then one can bound the number of periods in which the

agent makes wrong forecasts about next period outcome. We follow Sorin�s paper [32].

For our purpose there is a set of agents each of them has a belief with some grain of truth.

In principle, di¤erent beliefs with grain of truth may induce wrong predictions in di¤erent

days. In this section we use Sorin�s result to show that in our setup we can still bound the

number of periods in which at least one of the agents make a wrong forecast. Assume that S

is a �nite set of states and for every for every s 2 S let P s 2 �(X). For a belief � 2 �(S) we

denote P � =
P

s2S �(s)P
s 2 �(X). Thus, P � is the belief of a player with prior � over the

states of nature. A stochastic signal is given by a function � : S ! [0; 1]. The interpretation

is that the agent observed an outcome that has a probability �(s) to happen if the state of

nature is s. In our setup, an agent of type t received the stochastic signal � that is given by

�(s) = � s(t). An agent who has some prior � about S and receives a signal � updates his

belief to

�(�)(s) =
�(s) � �(s)P
s02S �(s

0)�(s0)
:

This is the same formula as (2.3) except that we use the abstract notation of stochastic

signal. Finally, for � > 0 let Z� = f� : S ! [�; 1]g be the set of stochastic signals with

probability at least � under every state.
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For every k let Dk;�(P;Q) � XN be the set of all realizations x = (x0; x1; : : : ) 2 XN such

that kPk (x0; : : : ; xk�1)�Qk (x0; : : : ; xk�1) k < �.

Proposition 2. For every �; �; � > 0 there exists K = K(�; �; �) such that for every prior

belief �0 2 �(S) and every collection of distributions fP s 2 �(XN)js 2 Sg, in every period

k except at most K of them it holds that

X
s2S

�0(s)P
s
�
\�2Z�Dk;�

�
P s; P �

(�)
0

��
> 1� �:

The meaning of the condition in proposition 2 is that if the state of nature is randomized

according to �0 then at day k, with high probability all agents who receives signal in Z�

make simultaneously correct forecasts, as if they knew the realized state of nature.

The following claim, which is a generalization of Cauchy-Schwartz Inequality jCov(X;Y)j �p
Var(X)Var(Y ) to random variables that assume values in a Banach space, will be used in

the proof of Proposition 2. (The case we are interested in is where the random variable �

is an agent�s forecast, which assumes values in �(X), viewed as a subspace of the Banach

space of all signed measure over X equipped with the bounded variation norm).

Claim 1. Let � be a random variable which assumes values in some Banach space V and

let � be a real valued random variable, both bounded. De�ne Cov(�;�) = E���E�E� 2 V .

Then kCov(�;�)k �
p
Var(�) � Ek�� E�k2.

Proof. From the linearity of the expectation we get that

Cov(�;�) = E (� � E�) (�� E�)

Therefore, it holds that

kCov(�;�)k = Ek (� � E�) (�� E�) k =

E (j� � E�j � k�� E�k) �
p
Var(�) � Ek�� E�k2;
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where the �rst inequality follows from Jensen�s inequality and convexity of the norm, the

equality from properties of the norm and the third from Cauchy Schwartz Inequality. �

Proof of Proposition 2. Consider a probability space equipped with random variables S;X0;X1; : : :

such that

P(S = s) = �0 for everys 2 S; and

P(X0 = �;X1 = �; : : : jS = s) = P s

for every s 2 S. Let Fk be the sigma-algebra that is generated by X0; : : : ;Xk�1 and let

�k = P(Xk = �jS;X0; : : : ;Xk�1) be the �(X)-valued random variable that represents the

prediction about Xk of an agent that knows the state of nature and observed previous

outcomes. Let 
 = �2��=4 and K = 2jSj log(jSj)=
 = 8jSj log(jSj)=(�2��). It follows from

standard arguments that for every period k except at most K of them it holds that

E k�k � E(�kjFk)k
2 < 
:

We call days k on which this inequality holds good days. It follows that on a good day k

there exists an Fk-measurable event Gk such that P(Gk) > 1� � and

(8.1) E
�
k�k � E(�kjFk)k

2
��Fk� < 
=�

on Gk. Note that in the last inequality E(�kjFk) is the prediction of about Xk of an agent

who doesn�t observe the state of nature (but knows that it is distributed according to �0)

and observe previous outcomes. More generally, let � 2 �(S) and let � = �(S). Then the

prediction about Xk of an agent who receives the signal � is given by

(8.2) �
(�)
k = E(��kjFk)=E(�jFk):

By the concavity of the square root function and Jensen�s inequality we get from (8.1) that

(8.3) E
�
k�k � E(�kjFk)k

��Fk� <p
=�
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on Gk. Now let � 2 Z�. Then from (8.2) we get that

�
(�)
k � E(�kjFk) =

Cov (�;�k jFk )
E(�jFk)

which implies by Claim 1 (conditioned on Fk) that

k�(�)k �E(�kjFk)k =
kCov (�;�k jFk ) k

jE(�jFk)j
�
p
Var(�jFk)
jE(�jFk)j

q
E
�
k�k � E(�kjFk)k2

��Fk� <r 


��

on Gk where the last inequality follows from the fact that � � � � 1 and (8.1). From the

last equation and (8.3) it follows that

k�(�)k � �kk <
r



�
(1 + 1=

p
�) < �

on Gk. Therefore

X
s2S

�0(s)P
s
�
\�2Z�Dk;�

�
P s; P �

(�)
0

��
= P

�
\�2Z�fk�

(�)
k � �kk < �g

�
� P(Gk) > 1� �

�

9. Proof of Theorem 1

Claim 2. Let X be an X-valued random variable and let � 2 �(X) be the distribution of

X. Then for every r > 0 it holds that

P
�
�(B(X; r)) � 1�Q�(r)

�
� 1�Q�(r)

where Q�(r) is the concentration function of � given by (3.3) and B(X; r) is the ball of radius

r around X.

Proof. Let D be a subset of X such that diameter(D) � d and �(D) = 1�Q�(r). Then the

event X 2 D implies the event that D � B(X; r), which is implies the event �(B(X; r)) �

1�Q�(r) Therefore

P (�(B(X; r)) � 1�Q�(r)) � P(X 2 D) = �(D) = 1�Q�(r):
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�

Proof of Theorem 1. Consider the coupling S;Ti;Ai
k;Xk; ~Xk of the real and imagined �-play

paths given in Proposition 1. We prove that players make asymptotically correct predictions

in the imagined play-path and then use (7.1) to deduce that they make correct predictions

in the real play path.

We �rst prove that in the imagined game players make correct forecasts, as if they knew

the state of nature. We use Proposition 2 where P s is the joint distribution of ~X0; ~X1; : : :

conditioned on S = s for every state s. Let K = K(�; �; �) as in Proposition 2 where

� = min � s(t) and the minimum ranges over all states s and all types t such that � s(t) > 0.

Then it follows from Proposition 2 that

P
�


P( ~Xk = �j ~T = t; ~X0; : : : ; ~Xk�1)� P( ~Xk = �j~S; ~X0; : : : ; ~Xk�1)




 < � for every t 2 T� > 1��
for all days except at most K of them. From the last equation, (3.1) and (6.2) we get that

on all good days

(9.1) P
�


~�(t)k � �S;d ~�k




 < � for every t 2 T� > 1� �
where ~�

(t)

k = �( ~�
(t)
k ;
~�k) is the �(X)-valued random variable that represents the forecast of

a player of type t about period k-outcome computed in the imagined play-path.

From Claim 2 conditioned on ~X0; : : : ; ~Xk�1 and (6.2) it follows that

P
�
�S;d ~�k

(B( ~Xk; r)) � 1�Q�(r)
�
� 1�Q�(d):

From the last equation and (9.1) we get that

P
�
~�
(t)

k (B(
~Xk; r)) > 1�Q�(r)� �

�
> 1�Q�(r)� �

From Theorem 1 it follows that

P
�
�
(t)
k (B(Xk; r)) > 1�Q�(r)� �

�
> 1�Q�(r)� �
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for su¢ ciently large n, as desired. �

10. Proof of Theorem 2

Proof of Lemma 1. Let �(t)k be the�(X)-valued random variable that represents the forecast

of a player of type t about period k-outcome computed under the imagined reasoning. On

R(k; r; �) it holds that

(10.1) (1� �) (u(t; a;Xk)� !(r)) �
X
x

u(t; a; x) �
(t)
k (x) � (1� �) (u(t; a;Xk) + !(r)) + �

for every type t and action a. Therefore on R(k; r; �) it holds that

u(t; b;Xk) �
1

1� �
X
x

u(t; b; x) �
(t)
k (x) + !(r) �

1

1� �
X
x

u(t; a; x) �
(t)
k (x) + !(r) � u(t; a;Xk) + 2!(r) + �=(1� �)

for every a 2 [�(t;�k)] and b 2 A, where the �rst inequality follows from (10.1), the second

from the equilibrium condition
P

x u(t; b; x) �
(t)
k (x) �

P
x u(t; a; x) �

(t)
k (x) and the third

from (10.1). �

Proof of Theorem 2. Let r = !�1(d) so that !(r) � d. By Theorem 1 there exists an integer

K such that under every Markov strategy � and every r > 0 all but at most K periods it

holds that

P(R(k; r;Q�(r) + �)) > 1� (Q�(r) + �):

By Lemma 1

fR(k; r;Q�(r)+�))g � fH(k; 2!(r)+(Q�(r)��)=(1�Q�(r)+�)g � fH(k; 2!(r)+2Q�(r)+2�)

It follows that

P
�
H(k; 2!(r) + 2Q�(r) + 2�)

�
> 1� (Q�(r) + �):

as desired. �
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