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Abstract

We propose a Bayesian approach to estimating dynamic models that can have state
variables that are latent, serially correlated, and heterogeneous. Our approach employs
sequential importance sampling and is based on deriving an unbiased estimate of the
likelihood within a Metropolis chain. Under fairly weak regularity conditions unbiased-
ness guarantees that the stationary density of the chain is the exact posterior, not an
approximation. Results are verified by Monte Carlo simulation using two examples.
The first is a dynamic game of entry involving a small number of firms whose hetero-
geneity is based on their current costs due to feedback through capacity constraints
arising from past entry. The second is an Ericson-Pakes (1995) style game with a large
number of firms whose heterogeneity is based on the quality of their products with
firms competing through investment in product quality that affects their market share
and profitability. Our approach facilitates estimation of dynamic games with either
small or large number of players whose heterogeneity is determined by latent state
variables, discrete or continuous, that are subject to endogenous feedback from past
actions.
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1 Introduction

In many economic applications a researcher is interested in estimating a dynamic model

where some of the agent specific states may be subject to feedback from past actions

(e.g., Rust (1987)), partially observed and heterogeneous (e.g., Keane and Wolpin (1997)) or

serially correlated (e.g., Pakes (1986)).1 In this paper we propose a Bayesian approach to es-

timating dynamic models with a partially observed state that has a Markovian representation

of the dynamics and an algorithm to solve the model including those with serially correlated,

endogenous, heterogeneous, state variables. The method uses sequential importance sam-

pling (particle filter) to compute an unbiased estimate of the likelihood within a Metropolis

MCMC chain. Here, unbiasedness means that expectation is with respect to the uniform

draws that are used to compute the particle filter with all else held fixed. Unbiasedness guar-

antees that the stationary density of the chain is the exact posterior, not an approximation.

The regularity conditions are weak and should be satisfied by most stationary, parametric

models of interest.

Our approach contributes to the literature in several ways. We derive the unbiasedness

of the estimator of the likelihood that leads to an exact posterior. This allows for tractable

computation and feasible estimation of a dynamic model. In addition the latent state vari-

ables can be either discrete or continuous. Moreover, it permits endogenous feedback of

past actions on the latent state variables that leads to heterogeneity among the players.

We illustrate our method with two examples. The first example in Section 6.1 is based

on a dynamic model of entry developed in Gallant, Hong, and Khwaja (2016). This is a

dynamic discrete game in which a firm’s cost of production is a continuous state variable

that is serially persistent, unobserved (to the researcher), and endogenous to past actions.

The endogenous feedback arises because past entry in markets for other products creates a

capacity constraint that affects the costs of entering a market in the current period. This en-

dogenous evolution of costs induces heterogeneity among firms over time in the model. Our

second example, in Section 6.2, is an Ericson and Pakes (1995) style model from Weintraub,

Benkard, and Roy (2010) with a large number of firms whose heterogeneity is based on the

1For more elaborate discussion on the motivations and rationale for estimating such dynamic models see
e.g., Rust (1994), Keane (2010), Wolpin (2013).
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quality of their products. The firms compete by investing in product quality that in turn

affects their market share, revenues and profits.

Empirical models of static and dynamic games are differentiated by their information

structures. A unified approach for dynamic models of incomplete information has been de-

veloped by Hu and Shum (2012). Blevins (2014) also uses sequential importance sampling

for estimating games of incomplete information. In our paper we focus on dynamic, complete

information games because of the paucity of literature on estimation of such games. These

games typically require the use of a combinatorial algorithm to search for an equilibrium

instead of the continuous fixed point mapping used in incomplete information models. Un-

like games of incomplete information, the complete information assumption requires that no

player has any private information. However, it allows substantial unobserved heterogeneity

at the level of the firms because the researcher does not observe all the information that the

players have. In contrast, games of incomplete information require there to be no difference

between what is observed by the players and the researcher. While static games of complete

information have been estimated by, e.g., Bresnahan and Reiss (1991), Berry (1992), Cilib-

erto and Tamer (2009) and Bajari, Hong, and Ryan (2010), to our knowledge, we are the

first to study dynamic games of complete information.

We prove the unbiasedness of an estimator of a likelihood obtained via particle filtering

under regularity conditions that allow for endogenous feedback from the observed measure-

ments to the dynamic state variables. Endogenous feedback is the feature that distinguishes

this paper from the bulk of the particle filter literature. We establish our results by means of

a recursive setup and an inductive argument that avoids the complexity of ancestor tracing

during the resampling steps. This process allows elegant, compact proofs.

The rest of paper is organized as follows. We discuss related literature in Section 2. Sec-

tion 3 describes the games to which our results apply. An algorithm for unbiased estimation

of a likelihood is proposed and unbiasedness is proved in Section 4. The MCMC estimation

algorithm is presented in Section 5. Two examples are described in Section 6: the first has

a small number of players, the second a large number of players. Simulation results for the

two examples are presented in Section 7. Section 8 concludes.
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2 Related Literature

There is a growing literature on the estimation of games. Some of this literature focuses on

games of incomplete information, either static (e.g., Haile, Hortaçsu, and Kosenok (2008),

Ho (2009)) or dynamic (e.g., Aguirregabiria and Mira (2007), Bajari, Benkard, and Levin

(2007), Pakes, Ostrovsky, and Berry (2007)). The literature on estimating games of incom-

plete information is largely based on the two-step conditional choice probability estimator of

Hotz and Miller (1993).2 Arcidiacono and Miller (2011) have extended the literature on two

step estimation of dynamic models of discrete choice to allow for unobserved heterogeneity

in discrete types of latent states using the EM algorithm. Bayesian approaches that use

MCMC for integrating out the unobserved state variables that are serially correlated over

time have been developed by Imai, Jain, and Ching (2009) and Norets (2009). These papers

focus on single agent dynamic discrete choice models with unobserved state variables. In

contrast, we use sequential importance sampling to integrate out the unobserved state vari-

ables. Additionally, we are the first to apply this method to multi-agent dynamic games with

strategic interaction, which are more computationally complex than single agent dynamic

models.

The purely methodological papers most closely related to the econometric approach used

here are Keane (1994), and more recently, Flury and Shephard (2010) and Pitt, Silva, Gior-

dani, and Kohn (2012).3 Fernandez-Villaverde and Rubio-Ramirez (2005) used sequential

importance sampling to estimate dynamic stochastic general equilibrium models. Most of

this literature, however, abstracts from the strategic interaction between agents. Ackerberg

(2009) has developed a method for using importance sampling coupled with a change of

variables technique to provide computational gains in estimating certain game theoretic and

dynamic discrete choice models that admit a random coefficient representation.

2The two step estimation strategy makes the restrictive assumption that there is no market or firm level
unobserved heterogeneity other than an IID random shock across both time and players. This assumption
rules out any dynamics in the latent state variables. Moreover, it precludes any private information that an
agent might possess about its rivals that is unavailable to the researcher.

3See Doucet, De Freitas, Gordon, et al. (2001) and Liu (2008) for an overview and examples of other
applications.
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3 The Game

A prominent example of a model to which our results apply is a dynamic game of complete

information which we describe next. The game consists of I players, i = 1, . . . , I, who can

choose action ait at each time period t. Let at = (a1t, a2t, . . . , aIt). In an entry game as

in our first Monte Carlo example below in Section 6.1, ait = 1 if firm i enters at time t,

if not, ait = 0. Another example of ait could be the level of investment which affects the

quality of a firm’s product as in an Ericson and Pakes (1995) style model, that is found in

our second Monte Carlo example below in Section 6.2. Time runs in discrete increments

from t = 0, . . . ,∞. The state vector is xt = (x1t, x2t), where in turn x1t = (x1t,i, x1t,−i)

and x2t = (x2t,i, x2t,−i). The actions of all players at and the state vector xt = (x1t, x2t)

is observable by all players. We (the researchers) only observe the actions of all players at

and the state x2t but not x1t. The x1t = (x1t,i, x1t,−i) is an agent specific latent (to the

researcher) state that is allowed to be serially correlated. In our first Monte Carlo example

below in Section 6.1, this is considered to be the latent firm specific cost of production. In

the our second Monte Carlo example below in Section 6.2, this is the firm’s product quality.

The x2t = (x2t,i, x2t,−i) is any observable market level or firm specific observable state, such

as a market level demand or cost shifter or firm characteristic such as past market entry

experience. The game is indexed by a parameter vector θ that is known to the players and

which we seek to estimate.

To formalize the model further, we define the reduced form one-shot payoff function

(e.g., Bresnahan and Reiss (1991), Berry (1992)) as,

Πi(ait, a−it, x1t,i, x1t,−i, x2t,i, x2t,−i, θ)

= R(ait, a−it, x
R
1t,i, x

R
1t,−i, x

R
2t,i, x

R
2t,−i, θ

R)− C(ait, a−it, x
C
1t,i, x

C
1t,−i, x

C
2t,i, x

C
2t,−i, θ

C), (1)

where R(·) is a revenue function, and C(·) is a cost function. The state variables can

affect either the revenue or cost functions, and are denoted as xRqt,j and x
C
qt,j respectively as

appropriate, for q = 1, 2 and j = i,−i. Moreover, the latent firm specific stochastic state,

x1t,i can in principle affect either the revenue or cost function or both. In our first Monte

Carlo example it is modeled as firm specific cost of production. However, in the our second

Monte Carlo example it affects the revenue function. The θR and θC are vectors of model
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parameters associated with the revenue and cost functions respectively. It should be noted

that the ”structural error” or the primary source of randomness from the point of view of

the researcher is provided by x1t.

The dynamics in the model arise because given the state xt, the players choose actions at

according to the probability density function p(at|xt, θ). Furthermore, the transition density

p(xt|at−1, xt−1, θ) governs the evolution of the state vector. This transition density allows for

serial persistence and endogenous feedback from the past actions at−1 on the latent states

x1t.

Given an initial state xt at time t, the firm’s expected present discounted profit is

E

[

∞
∑

τ=t

βτ−tΠi(aiτ , a−iτ , xτ )

∣

∣

∣

∣

∣

xt

]

, (2)

where β is the discount factor, 0 ≤ β < 1. Each firm i seeks to maximize the present

discounted value of its stream of profits at each time period t conditional on its rivals’ action

profiles being best response equilibrium strategies. The expectation operator here E is with

respect to the future evolution of state variables and actions of all firms.

In specifying a dynamic game of complete information we focus on Markov Perfect Equi-

libria (MPE) in pure strategies. In doing this we build on the literature on estimating static

games of complete information (e.g., Bresnahan and Reiss (1991), Berry (1992), Ciliberto and

Tamer (2009)) and dynamic games of incomplete information (e.g., Aguirregabiria and Mira

(2007), Bajari, Benkard, and Levin (2007), Pakes, Ostrovsky, and Berry (2007)). We use the

following notation in order to define the MPE strategies for the game. As stated above xt is

the payoff-relevant state for each firm i at time t. Let X represent the state space containing

all feasible values of xt for each firm i. Similarly, let Ai represent firm i’s choice set (i.e.,

ait ∈ Ai). Then we define a Markov strategy for firm i as a function σi : X → Ai mapping

payoff-relevant state variables to the set of all possible actions. Furthermore, σ = (σ1, . . . , σI)

denotes a profile of Markov strategies for all firms.

Dropping the time indices, and denoting the Markov Perfect Equilibrium strategy profile

(to be defined below in the next paragraph) (σ̃i, σ̃−i), when the the realized actions and

strategies in the current period are, ai = σi(x) and a−i = σ−i(x), the choice specific value

function is given by,
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Vi(x; σi, σ−i) = Πi(σi(x), σ−i(x), xi)

+ βE [Vi(x
′; σ̃i, σ̃−i) | x, ai = σi(x), a−i = σ−i(x)] (3)

In the above equation, the first component is the current pay-off, Πi. The first argument of

the payoff function Πi is ai = σi(x), which is the implied action by firm i under strategy σi

when the state is x. Similarly, the second argument is a−i = σ−i(x), which is a profile of

rival actions given the state x. The second component in the above equation is the present

discounted value of the stream of profits conditional on the current actions of all firms and

the current state, when the firms play MPE strategies in the future. The expectation is with

respect to the future states and actions of all players.

The Markov Perfect Equilibrium strategy profile σ̃ is defined such that no firm i uni-

laterally deviates from its strategy σ̃i when σ̃−i is the strategy profile adopted by its rivals.

Hence, there is no alternative Markov strategy σi for any firm i that provides a higher level

of present discounted value of expected profits (in terms of Vi(·)) than σ̃i when the firm’s

rivals are using their equilibrium strategies σ̃−i. Stated more formally, a Markov Perfect

Equilibrium (MPE) strategy profile σ̃ is one such that for all firms i, all states x, and for all

alternative Markov strategies σi the following condition holds:

Vi(x; σ̃i, σ̃−i) ≥ Vi(x; σi, σ̃−i). (4)

From Equation (4), it should be noted that Vi(x) ≡ Vi(x; σ̃i, σ̃−i) is defined in the lit-

erature to be the ex-ante value function. It gives the expected present discounted value of

profits obtained by firm i when players use MPE strategies σ̃ and the state is x. Implicit in

what follows is an assumption that the game is stationary, an algorithm to solve the game

is available and that an equilibrium to the game exists.

One limitation of relying on the Markov Perfect Equilibrium solution concept is that it

is computationally intractable when a game consists of a large number of players. Thus, we

show below in Section 6.2 that our approach can also apply in the context of the Oblivious

Equilibrium solution concept developed by Weintraub, Benkard, and Roy (2008) to deal

specifically with games with a large number of players. In particular we do this because

Weintraub, Benkard, and Roy (2008) show that this approach can be quite accurate in

approximating the MPE solution for games with a large number of players.
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4 Evaluating the Likelihood

In this section we derive an unbiased particle filter estimate of the likelihood for a Markov

process with partially observed state and endogenous feedback that is general enough to

accommodate the game described in Subsection 3. Because of endogenous feedback, no

previous proof of unbiasedness, e.g., Pitt, Silva, Giordani, and Kohn (2012), applies to our

knowledge. In fact, we think that the remarkable simplicity of our proofs makes them of

interest regardless. In Theorem 1 we establish a recursion using Bayes theorem. The idea

is straightforward and is expressed as one four line equation. The remainder of the proof

is algebra to reduce the basic expression to model primitives. In Corollary 1 we establish

unbiasedness via a simple two line telescoping expression. In Theorem 2 we show that

resampling is a mere footnote requiring only three sentences to dismiss.

Because we only require unbiasedness, our regularity conditions are quite weak – much

weaker than is standard in the particle filter literature.4 While the result does not require

that the number of particles tend to infinity, the number of particles does affect the rejection

rate of the MCMC chain so that the number of particles, like the scale of the proposal density,

becomes a tuning parameter of the chain that has to be adjusted. Below in Section 5 we

use MCMC to compute the posterior. If one has an unbiased estimator of the likelihood the

posterior is the stationary distribution of the MCMC chain.5

What distinguishes our approach from, e.g., simulation methods, which would be ap-

plicable, is that an inference is exact within the Bayesian paradigm. All other approaches

known to us only approximate the likelihood to within an accuracy that is often not known.

Therefore, inferences using other methods are approximate, not exact.

In the case one has a conditional density of the form f(y|x, θ) and a marginal f(x|θ),

where y, x, are vectors of the same length with y observed and x not, the property of a particle

filter that is usually of interest is its ability to generate a sample from the density f(x|y, θ)

for given θ. In the abstract, a particle filter algorithm can be viewed as a transformation

of a vector u of independent uniform draws to a set of draws
{

x(k)
}N

k=1
from f(x|y, θ). We

are not concerned with that property of the algorithm here. Rather, we are concerned with

4See, e.g. Andrieu, Douced, and Holenstein (2010) and the references therein.
5See e.g., Flury and Shephard (2010) and Pitt, Silva, Giordani, and Kohn (2012).
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a side effect of the algorithm which is that at an intermediate stage of the computations

it generates an estimate ℓ̂(u) of ℓ =
∫

f(y|x, θ)f(x|θ) dx that is unbiased in the sense that
∫

ℓ̂(u)f(u) du = ℓ, where f(u) is the density of u. In Subsection 4.2 we provide a bare

bones description of a particle filter that is adequate to allow one to follow the theoretical

discussion. The theoretical discussion is followed by a detailed description of the algorithm

that we propose in Subsection 4.6.

4.1 Requirements

The essentials of the game of Section 3 relative to the requirements of filtering are as follows.

The state vector is

xt = (x1t, x2t), (5)

where x1t is not observed and x2t is observed. The observation (or measurement) density is

p(at | xt, θ). (6)

The transition density is denoted by

p(xt | at−1, xt−1, θ). (7)

The marginal for x1t is

p(x1t|at−1, xt−1, θ). (8)

The marginal stationary density is denoted by

p(x1t | θ). (9)

ASSUMPTION 1 We assume that we can draw from (8) and (9). As to the latter, one

way to draw a sample of size N from (9) is to simulate the game and set x
(k)
1 = x1,τ+M∗k for

k = 1, . . . , N for some τ past the point where transients have died off and someM . LargeM

has the advantage that the x
(k)
1 are nearly serially uncorrelated. We can draw from (8) by

drawing from (7) and discarding x2t. We assume that there is either an analytic expression

or algorithm to compute (6) and (7). We assume the same for (8) but if this is difficult some

other importance sampler can be substituted as discussed in Subsection 4.5.
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The full information likelihood is

ℓ = p(a0, x2,0)
T
∏

t=1

p(at, x2,t | at−1, x2,t−1, . . . , a0, x2,0, θ) = p(a0, x2,0)
T
∏

t=1

Ct. (10)

We are unwilling to impose the additional structure on the game necessary to be able to

estimate p(a0, x2,0) unbiasedly. Therefore, as is routinely done in time series analysis, we

discard the information in the stationary density for (a0, x2,0). With this convention, the

object of interest is the partial information likelihood

ℓ ′ =
T
∏

t=1

Ct. (11)

In the event that one can evaluate the density p(at, x2t | x1,t, θ) or has some other means

to estimate p(a0, x2,0) unbiasedly, the modifications to what we propose are trivial and are

discussed later.

4.2 A Particle Filter

A particle for the latent variable x1,t is a sequence of the form

x
(k)
1,0:t =

(

x
(k)
1,0, x

(k)
1,1, . . . , x

(k)
1,t

)

,

where k = 1, 2, . . . , N indexes the particles. They are i.i.d. draws from the conditional

density

p(x1,0:t | a1,0:t−1, x2,0:t−1, θ).

An algorithm using particles to estimate the partial information likelihood ℓ ′ unbiasedly is

as follows:

• Initialize by putting Ĉ0 = 1 and letting
{

x
(k)
1,0:0

}N

k=1
be draws x

(k)
1,0 from the marginal

stationary density (9).

If one has particles
{

x
(k)
1,0:t−1

}N

k=1
in hand, one advances as follows:

• Draw x̃
(k)
1t from the transition density

p(x1t | at−1, x
(k)
1,t−1, x2,t−1, θ).
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• Compute

v̄
(k)
t =

p
(

at | x̃
(k)
1,t , x2,t, θ

)

p
(

x̃
(k)
1,t , x2,t | at−1, x

(k)
1,t−1, x2,t−1, θ

)

p
(

x̃
(k)
1,t | at−1, x

(k)
1,t−1, x2,t−1, θ

)

Ĉt =
1

N

N
∑

k=1

v̄
(k)
t

x̃
(k)
1,0:t =

(

x
(k)
1,0:t−1, x̃

(k)
1,t

)

ŵ
(k)
t =

v̄
(k)
t

∑N

k=1 v̄
(k)
t

• Draw
{

x
(k)
1,0:t

}N

k=1
i.i.d. from the discrete distribution P

(

x1,0:t = x̃
(k)
1,0:t

)

= ŵ
(k)
t .

Repeat until t = T .

• An unbiased estimate of the partial information likelihood is ℓ̂ ′ =
∏T

t=0 Ĉt.

We next verify the algorithm.

4.3 Verification

In the Bayesian paradigm, the parameter vector θ is manipulated as if it were distributed

jointly with the data even though one might actually regard θ as fixed. Thus, formally, we

may let
{

{at, xt}
∞
t=−T0

}, θ
}

be defined on a common probability space P over the support of

at, xt, and θ. Let Ft = σ
{

{as, x2s}
t

s=−T0
, θ
}

. Let P (·|Ft) denote the conditional probability

measure given Ft over P . Let E(·|Ft) denote conditional expectation given Ft.

The elements of at and xt may have either atomless or discrete distributions. No generality

is lost by presuming that the discrete elements are positive integers. Let z denote a generic

vector some of whose coordinates are real numbers and the others positive integers. Let

λ(z) denote a product measure whose marginals are either counting measure on the positive

integers or Lebesgue ordered as is appropriate to define an integral of the form
∫

g(z) dλ(z).

The densities defined in Subsection 4.1 are with respect to a measure of the form λ(z). We

will often write, e.g.,
∫

g(xt) dP (xt|at−1, xt−1, θ) to mean integration of g(xt)p(xt|at−1, xt−1, θ)

with respect to the product measure λ(xt).
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Particle filters are advanced by drawing independent uniform random variables u
(1)
t+1, . . . , u

(N)
t+1

and then evaluating a function of the form X
(k)
1,t+1(u

(k)
t+1, a0:t, x̃

(k)
1,0:t, x2,0:t) and putting x̃

(k)
1,t+1 =

X
(k)
1,t+1(u

(k)
t+1, a0:t, x̃

(k)
1,0:t, x2,0:t) for k = 1, . . . , N . Denote expectation with respect to u

(1)
t+1, . . . , u

(N)
t+1

by Ẽ1,t+1. Due to the recursive nature of a particle filter, x̃
(k)
1,0:t will itself depend on uniform

draws. Denote expectation with respect to the uniform draws involved in x̃
(k)
1,0:t by Ẽ1,0:t. For

now we are excluding resampling. In Subsection 4.4 we show that the extension of the results

of this subsection to the case where resampling is employed amounts to simply increasing

the scope of Ẽ1,0:t to include not only the uniform draws that advance the filter but also the

uniform draws involved in resampling.

Under these conventions, note that what is random in an expression such as E
[

g(x̃
(k)
1,0:t) | Ft

]

are the uniform draws involved in x̃
(k)
1,0:t. All else is fixed due to conditioning on Ft.

In this subsection we show that estimate of the likelihood given in Subsection 4.2 is unbi-

ased for either the full information likelihood or a partial information likelihood, depending

on how initial conditions are handled.

THEOREM 1 Under Assumption 1, if the particles x̃
(k)
1,0:t and weights w̃

(k)
t , k = 1, . . . , N,

satisfy
∫

g(x1,0:t) dP (x1,0:t|Ft) = Ẽ1,0:t

{

E

[

N
∑

k=1

w̃
(k)
t g(x̃

(k)
1,0:t) | Ft

]}

(12)

for every integrable function g(x1,0:t), then draws x̃
(k)
1,t+1 from p(x1,t+1|x̃

(k)
1,0:t,Ft) and weights

w̃
(k)
t+1 =

v̄
(k)
t+1

Ct+1

w̃
(k)
t (13)

satisfy
∫

g(x1,0:t, x1,t+1) dP (x1,0:t, x1,t+1|Ft+1)

= Ẽ1,t+1Ẽ1,0:t

{

E

[

N
∑

k=1

w̃
(k)
t+1 g(x̃

(k)
1,0:t, x̃

(k)
1,t+1) | Ft+1

]}

, (14)

where

v̄
(k)
t+1 =

p
(

at+1 | x̃
(k)
1,t+1, x2,t+1, θ

)

p
(

x̃
(k)
1,t+1, x2,t+1 | at, x̃

(k)
1,t , x2,t, θ

)

p
(

x̃
(k)
1,t+1 | at, x̃

(k)
1,t , x2,t, θ

) (15)

and

Ct+1 = p(at+1, x2,t+1|Ft). (16)
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Proof We first show the result for the weights

w̃
(k)
t+1 =

p(at+1, x2,t+1|x̃
(k)
1,0:t, x̃

(k)
1,t+1,Ft)

p(at+1, x2,t+1|Ft)
w̃

(k)
t , (17)

which we write as w
(k)
t+1 below when evaluated at x1,t+1 instead of x̃

(k)
1,t+1, and then show that

(17) and (13) are equivalent expressions for w̃
(k)
t+1.

Bayes theorem states that

p(x1,0:t, x1,t+1|at+1, x2,t+1,Ft) =
p(at+1, x2,t+1, x1,0:t, x1,t+1|Ft)

p(at+1, x2,t+1|Ft)
. (18)

Note that

p(x1,0:t, x1,t+1|at+1, x2,t+1,Ft) = p(x1,0:t, x1,t+1|Ft+1) (19)

and that

p(at+1, x2,t+1, x1,0:t, x1,t+1|Ft)

= p(at+1, x2,t+1|x1,0:t, x1,t+1,Ft)p(x1,t+1|x1,0:t,Ft)p(x1,0:t|Ft). (20)

Then
∫

g(x1,0:t, x1,t+1) dP (x1,0:t, x1,t+1|Ft+1)

=

∫ ∫

g(x1,0:t, x1,t+1)
p(at+1, x2,t+1|x1,0:t, x1,t+1,Ft)

p(at+1, x2,t+1|Ft)
p(x1,t+1|x1,0:t,Ft)

×dλ(x1,t+1)dP (x1,0:t|Ft) (21)

= Ẽ1,0:t

∫

E

[

N
∑

k=1

g(x̃
(k)
1,0:t, x1,t+1)w

(k)
t+1 p(x1,t+1|x̃

(k)
1,0:t,Ft) | Ft

]

dλ(x1,t+1) (22)

= Ẽ1,t+1Ẽ1,0:t E

[

N
∑

k=1

g(x̃
(k)
1,0:t, x̃

(k)
1,t+1) w̃

(k)
t+1 | Ft+1

]

(23)

where (21) is due to (18) after substituting (19) and (20), (22) is due to (12) and (17), and

(23) is due to the fact that x̃
(k)
1,t+1 is a draw from p(x1,t+1|x̃

(k)
1,0:t,Ft). This proves the result

for the weights (17).

We show that (17) and (13) are equivalent, by reexpressing the numerator of (17) in

terms of the primitives (6), (7), and (8) as follows.

p(at+1, x2,t+1|x1,0:t, x1,t+1,Ft)

= p(at+1, x2,t+1|x1,0:t, x1,t+1, x2,0:t, a0:t, θ)
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=
p(at+1, xt+1, a0:t, x0:t, θ)

∫

p(at+1, xt+1, a0:t, x0:t, θ) dλ(at+1, x2,t+1)

=
p(at+1|xt+1, a0:t, x0:t, θ)p(xt+1|a0:t, x0:t, θ)p(a0:t, x0:t, θ)

∫

p(at+1|xt+1, a0:t, x0:t, θ)p(xt+1|a0:t, x0:t, θ)dλ(at+1, x2,t+1) p(a0:t, x0:t, θ)

=
p(at+1|xt+1, θ) p(xt+1|at, xt, θ)

∫

p(at+1|xt+1, θ) p(xt+1|at, xt, θ) dλ(at+1, x2,t+1)

=
p(at+1|xt+1, θ) p(xt+1|at, xt, θ)
∫

p(xt+1|at, xt, θ) dλ(x2,t+1)

=
p(at+1|xt+1, θ) p(xt+1|at, xt, θ)

p(x1,t+1|at, xt, θ)
(24)

✷

REMARK 1 An implication of (14) is that N affects the second moment of but not the

first moment. ✷

REMARK 2 We may assume without loss of generality that all N of the weights w̃
(k)
t+1

given by (13) are positive because one can, e.g., discard all particles with zero weight then,

as often as necessary to get N particles, replicate the particle with the largest weight and

divide that weight evenly between that particle and its replicates. ✷

COROLLARY 1 Under Assumption 1, if one starts the recursion of Theorem 1 with draws

from the marginal stationary density (9) and weights w̃
(k)
0 = 1/N , then

ℓ̂ ′ =

(

N
∑

k=1

v̄
(k)
T

w̃
(k)
T−1

∑N

k=1 w̃
(k)
T−1

)(

N
∑

k=1

v̄
(k)
T−1

w̃
(k)
T−2

∑N

k=1 w̃
(k)
T−2

)

· · ·

(

N
∑

k=1

v̄
(k)
1

w̃
(k)
0

∑N

k=1 w̃
(k)
0

)(

N
∑

k=1

w̃
(k)
0

)

(25)

is an unbiased estimator of ℓ ′.

Proof Set g(x1,0:t, u) ≡ 1 in Theorem 1 whence 1 = Ẽ1,0:T

{

E
[

∑N

k=1 w̃
(k)
t | FT

]}

. Write

N
∑

k=1

w̃
(k)
T =

1

CT

(

∑N

k=1 v̄
(k)
T w̃

(k)
T−1

∑N

k=1 v̄
(k)
T−1w̃

(k)
T−2

)(

∑N

k=1 v̄
(k)
T−1w̃

(k)
T−2

∑N

k=1 v̄
(k)
T−2w̃

(k)
T−3

)

· · ·

(

∑N

k=1 v̄
(k)
1 w̃

(k)
0

∑N

k=1 w̃
(k)
0

)(

N
∑

k=1

w̃
(k)
0

)

=
1

ℓ ′

(

N
∑

k=1

v̄
(k)
T

w̃
(k)
T−1

∑N

k=1 w̃
(k)
T−1

)(

N
∑

k=1

v̄
(k)
T−1

w̃
(k)
T−2

∑N

k=1 w̃
(k)
T−2

)

· · ·

(

N
∑

k=1

v̄
(k)
1

w̃
(k)
0

∑N

k=1 w̃
(k)
0

)(

N
∑

k=1

w̃
(k)
0

)

The result follows. ✷
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REMARK 3 Note that the terms
w̃

(k)
t

∑N
k=1 w̃

(k)
t

in (25) are invariant to Ct so that ℓ̂ ′ can be

computed without knowledge of the Ct. Thus, one can arbitrarily set Ct ≡ 1 in (13) for

weights that are to be used in (25) as is done in the algorithms of Subsections 4.2 and 4.6. ✷

REMARK 4 If one has an expression for p(a0, x2,0 | x1,0, θ), then

ℓ̂ = ℓ̂ ′
1

N

N
∑

k=1

p(a0, x2,0 | x̃
(k)
1,0, θ)

is an unbiased estimator of ℓ. ✷

4.4 Resampling

One often resamples particles such as
{

x̃
(k)
1,0:t

}N

k=1
in order to prevent the variance of the

weights w̃
(k)
t from increasing with t. Most common is multinomial resampling where one

samples
{

x̃
(k)
1,0:t

}N

k=1
with replacement with probability

w̃
(k)
t

∑N
k=1 w̃

(k)
t

. Some particles will get

copied and some particles will not survive. The new particles
{

x
(k)
1,0:t

}N

k=1
each have weight

1
N
.

Multinomial resampling is usually performed by drawing uniform random numbers

{ui}
N

i=1 on the interval (0, 1) and evaluating the quantile function q(u) of the discrete density

p(k) =
w̃

(k)
t

∑N
k=1 w̃

(k)
t

at the ui to get the resampled particles x
(i)
1,0:t = x̃

(q(ui))
1,0:t . Other resampling

schemes seek to improve performance by having one uniform random number in each interval

[(i− 1)/N, i/N ] for i = 1, · · · , N . One approach is stratified resampling where one uniform

u is drawn inside each interval. Another is systematic resampling where the same uniform u

is placed inside each interval. As with multinomial resampling, the weights for stratified and

systematic sampling are 1
N
. In a comparison of stratified and systematic resampling, Douc,

Cappé, and Moulines (2005) find that their performance is similar.

THEOREM 2 Theorem 1 and Corollary 1 remain valid if resampling is applied between

recursive steps as in the algorithm of Subsection 4.2.

Proof By construction, if a set of particles and weights satisfy condition (12) then so will

the particles and weights generated from them by resampling. Because a set of particles

and weights satisfy condition (12) at the end of an iterate, the set of particles and weights

15



generated from them by resampling will satisfy (12) when used at the beginning of an iterate.

The only formal change to the development of Subsection 4.3 required is that Ẽ1,0:t becomes

expectation both with respect to the uniform draws that advance the filter and to the uniform

draws involved in resampling. ✷

REMARK 5 For any resampling scheme that produces equal weights, the conclusion of

Corollary 1 becomes

ℓ̂ ′ =

(

1

N

N
∑

k=1

v̄
(k)
T

)(

1

N

N
∑

k=1

v̄
(k)
T−1

)

· · ·

(

1

N

N
∑

k=1

v̄
(k)
1

)

is an unbiased estimator of ℓ ′. ✷

4.5 An Alternative Importance Sampler

If computing p(x1,t+1|at, xt, θ) is costly or drawing from it troublesome, one can substitute

an alternative importance sampler. The idea is that one can advance a filter from ( ˜̃x
(k)
t , ˜̃w

(k)
t )

that satisfies (12) to ( ˜̃x
(k)
t+1, ˜̃w

(k)
t+1) that satisfies (14) by drawing ˜̃x

(k)
t+1 from

f(x1,t+1|x1t,Ft) = f
(

x1,t+1 | at, ˜̃x
(k)
1t , x2t, θ

)

(26)

for k = 1, . . . , N, and setting

˜̃w
(k)
t+1 =

p
(

at+1 | ˜̃x
(k)
1,t+1, x2,t+1, θ

)

p
(

˜̃x
(k)
1,t+1, x2,t+1 | at, ˜̃x

(k)
1t , x2t, θ

)

Ct+1 f
(

˜̃x
(k)
1,t+1 | at, ˜̃x

(k)
1t , x2t, θ

)

˜̃w
(k)
t (27)

as is seen by noting that (21), (22), and (23) can be rewritten as

∫ ∫

g(x1,0:t, x1,t+1)
p(at+1, x2,t+1|x1,0:t, x1,t+1,Ft)

p(at+1, x2,t+1|Ft)

p(x1,t+1|x1,0:t,Ft)

f(x1,t+1|x1,t,Ft)
f(x1,t+1|x1t,Ft)

× dλ(xt+1) dP (x1,0:t|Ft) (28)

= Ẽ1,0:t

∫

E

[

N
∑

k=1

g( ˜̃x
(k)
1,0:t, x1,t+1) ˜̃w

(k)
t+1 f(x1,t+1| ˜̃x

(k)
t ,Ft) | Ft

]

dλ(x1,t+1)

= Ẽ1,t+1Ẽ1,0:t E

[

N
∑

k=1

g( ˜̃x
(k)
1,0:t, ˜̃x

(k)
t+1) ˜̃w

(k)
t+1 | Ft+1

]

due to the cancellation p(x1,t+1|x1,0:t,Ft)/p(x1,t+1|at, xt, θ) = 1 that occurs after the expres-

sion for p(at+1, x2,t+1|x1,0:t, x1,t+1,Ft) given by (24) is substituted in (28).
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The equations that replace (13) and (15) when an alternative importance sampler is used

are

˜̃w
(k)
t+1 =

¯̄v
(k)
t+1

Ct+1

˜̃w
(k)
t (13′)

and

¯̄v
(k)
t+1 =

p
(

at+1 | ˜̃x
(k)
1,t+1, x2,t+1, θ

)

p
(

˜̃x
(k)
1,t+1, x2,t+1 | at, ˜̃x

(k)
1,t , x2,t, θ

)

f
(

˜̃x
(k)
1,t+1 | at, ˜̃x

(k)
1,t , x2,t, θ

) . (15′)

The requisite regularity condition is the following:

ASSUMPTION 2

g(x1,0:t, x1,t+1)
p (at+1 | x1,t+1, x2,t+1, θ) p (x1,t+1, x2,t+1 | at, x1,t, x2,t, θ)

f(x1,t+1 | at, x1,t, x2,t, θ)

is integrable with respect to f(x1,t+1 | at, x1,t, x2,t, θ) , the support of which contains the sup-

port of p (x1,t+1 | at, x1,t, x2,t, θ) .

Another reason to consider an alternative importance sampler is to improve efficiency.

Pitt and Shephard (1999) suggest some adaptive importance samplers that one might con-

sider. In addition to Pitt and Shephard’s (1999) suggestions, one can use the notion

of reprojection (Gallant and Tauchen (1998)) to construct an adaptive density for (26)

as follows. The model can be simulated. Therefore, for given θ∗ a large simulation of

(at, x1t, x2t, at+1, x1,t+1, x2,t+1) can be generated. Using multivariate regression one can de-

termine the location µ(v) of x1,t+1 as a linear function of

v = (at, x1t, x2t, at+1, x2,t+1) (29)

and the conditional variance Σ. The simulation can be taken so large that µ(v) and Σ can

be regarded as population quantities. We put

h(x1,t+1|x1t,Ft+1) = n(x1,t+1|µ(v),Σ), (30)

where n(·|µ,Σ) denotes the multivariate normal density and use (30) in place of (26), which

is a slight abuse of notation because the argument lists are different. Substituting the

multivariate Student-t density on five degrees of freedom with the same location and scale

had little effect on results other than increase run times.
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The mean or the mode of an informative prior is a reasonable choice of θ∗ for the sim-

ulation that determines µ(v) and Σ. If the prior is flat, one can start with a guess, run a

preliminary chain, and use the mean of the preliminary chain for θ∗.

4.6 Computing the Likelihood

In this subsection we refine the algorithm of Subsection 4.2 to incorporate the developments of

the foregoing subsections and to to discuss how seeds must be handled in order for the MCMC

chain that uses an unbiased estimate of the likelihood to target the intended posterior.

Handling the seed correctly is of critical importance; on this see Flury and Shephard (2010)

and Pitt, Silva, Giordani, and Kohn (2012).

Actually, the reasoning is straightforward: The seed s is a random variable distributed

over a finite set of integers S; its density is u(s). Let L(θ) be the likelihood of a game and

L(θ, s) its unbiased approximation in the sense that L(θ) =
∑

s∈S L(θ, s)u(s). If one draws

(θ, s) from the joint density L(θ, s)u(s)p(θ), where p(θ) is the prior, and discards s then θ

that remains is a draw from the marginal L(θ)p(θ). The crucial observation is that the ratio

L(θ∗, s∗)u(s∗)p(θ∗)λ(θ∗, θ#)u(s#)

L(θ#, s#)u(s#)p(θ#)λ(θ#, θ∗)u(s∗)

that determines acceptance in an MCMC algorithm becomes

L(θ∗, s∗)p(θ∗)λ(θ∗, θ#)

L(θ#, s#)p(θ#)λ(θ#, θ∗)

as in the algorithm described in Section 5, where (θ#, s#) is the end of the chain, (θ∗, s∗) is

the proposed extension of the chain, and λ(θ#, θ∗)u(s∗) is the proposal density. One can see

that if s# and s∗ were not independent draws from u(s) then the MCMC algorithm would

not target L(θ, s)u(s)p(θ). One would not have devote such attention to the seed were it

not that one is usually advised to use the same seed every time to compute L(θ, s) in order

to reduce Monte Carlo jitter. Here the advice is exactly the opposite.

Random number algorithms have different designs varying from those that generate an

array of random numbers intended to supply all that are ever needed with one call, through

intermediate designs, to a simple functional recursion that may be conceptualized as follows:

A draw from a density f(v) is obtained by drawing a seed s from a uniform

density u(s) defined over a finite set of integers and executing an algorithm that
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evaluates a function V (s) and returns v′ = V (s) and s′ such that v′ has density

f(v), s′ has density u(s), and s′ is independent of s. The next draw from the

same or a different density uses s′ to return a draw v′′ from that density and

another new seed s′′, and so on.

We may, without loss of generality, assume that whatever algorithm is used, a wrapper has

been coded so that becomes a simple functional recursion.

The algorithm that we describe next may have a sequence of draws within it but viewed

as a whole it is a functional recursion: One specifies θ and provides a random draw s from

u(s). The algorithm evaluates a function L(θ, s) and returns ℓ̂ ′ = L(θ, s) and a draw s′ from

u(s) that is independent of s.

Given seed s and parameter θ, the algorithm for evaluating L(θ, s) follows. All draws

use the seed returned by the previous draw; there are no fixed seeds anywhere within the

algorithm.

1. For t = 0

(a) Start N particles by drawing x̃
(k)
1,0 from p(x1,0 | θ) using s as the initial seed.

(b) If p(at, x2t | x1,t, θ) is available, compute Ĉ0 =
1
N

∑N

k=1 p(a0, x2,0 | x̃
(k)
1,0, θ) otherwise

put Ĉ0 = 1.

(c) Set x
(k)
1,0:0 = x̃

(k)
1,0 and x

(k)
1,0 = x̃

(k)
1,0

2. For t = 1, . . . , T

(a) For each particle, draw x̃
(k)
1t from the transition density

p(x1t | at−1, x
(k)
1,t−1, x2,t−1, θ). (31)

(b) Compute

v̄
(k)
t =

p
(

at | x̃
(k)
1,t , x2,t, θ

)

p
(

x̃
(k)
1,t , x2,t | at−1, x

(k)
1,t−1, x2,t−1, θ

)

p
(

x̃
(k)
1,t | at−1, x

(k)
1,t−1, x2,t−1, θ

) (32)

Ĉt =
1

N

N
∑

k=1

v̄
(k)
t

(Note that the draw pair is (x
(k)
1,t−1, x̃

(k)
1,t ) and the weight is v̄

(k)
t

1
N
.)
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(c) Set

x̃
(k)
1,0:t =

(

x
(k)
1,0:t−1, x̃

(k)
1,t

)

.

(d) Compute the normalized weights

ŵ
(k)
t =

v̄
(k)
t

∑N

k=1 v̄
(k)
t

(e) For k = 1, . . . , N draw x
(k)
1,0:t by sampling with replacement from the set {x̃

(k)
1,0:t}

according to the weights {ŵ
(k)
t }.

(Note the convention: Particles with unequal weights are denoted by {x̃
(k)
0:t }. After

resampling the particles are denoted by {x
(k)
0:t }.)

(f) For use in (31) and (32) at the next iterate, set x
(k)
t to the last element of x

(k)
1,0:t.

3. Done

(a) An unbiased estimate of the likelihood is

ℓ̂ ′ =
T
∏

t=0

Ĉt (33)

(b) s′ is the last seed returned in Step 2e.

Systematic or stratified sampling can be used at step 2e instead of multinomial resampling.

To use the alternative importance sampler of Section 4.5, replace (31) with (26) or (30) and

replace (32) with

¯̄v
(k)
t =

p
(

at | x̃
(k)
1,t , x2,t, θ

)

p
(

x̃
(k)
1,t , x2,t | at−1, x

(k)
1,t−1, x2,t−1, θ

)

f
(

x
(k)
1,t | at−1, x

(k)
1,t−1, x2,t−1, θ

) . (34)

5 Computing the Posterior

In this section we let ℓ mean either ℓ of (10) or ℓ ′ of (11) as appropriate.

Metropolis algorithm is an iterative scheme that generates a Markov chain whose

stationary distribution is the posterior of θ. To implement it, we require the parti-

cle filter algorithm for drawing (ℓ, s) described in Section 4.6, a prior γ(θ), and a tran-

sition density in θ called the proposal density. For a given θ#, a proposal density
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λ(θ#, θ∗) defines a distribution of potential new values θ∗. We use the move-one-at-a-time,

random-walk, proposal density that is built in to the public domain software that we use:

http://www.aronaldg.org/webfiles/emm/.The algorithm for the Markov chain is as fol-

lows.

Start the chain at a reasonable value for θ and write to memory a draw s## from the

uniform density on a finite set of integers. Given a current θ# we obtain the next θ## as

follows:

1. Draw θ∗ according to λ(θ#, θ∗).

2. Set s∗ to s## retrieved from memory.

3. Compute ℓ∗ corresponding to (θ∗, s∗) using the particle filter in Section 4.6 and write

to memory the s## returned by the particle filter.

4. Compute α = min
(

1, ℓ∗ γ(θ∗)λ(θ∗,θ#)
ℓ# γ(θ#)λ(θ#,θ∗)

)

.

5. With probability α, set θ## = θ∗, otherwise set θ## = θ#.

6. Return to 1.

The choice for the parameter N of the particle filter in Section 4.6 influences the rejection

rate of the MCMC chain. If N is too small then L(θ, s) = ℓ# given by (33) will be a jittery

estimator of L(θ) which will increase the chance that the chain gets stuck. Pitt, Silva,

Giordani, and Kohn (2012) show that what is relevant is the variance

Var {logL(θ, s)} =

∫
[

logL(θ, s)−

∫

logL(θ, s) ds

]2

ds, (35)

which can be computed from draws of ℓ# obtained by putting the filter in a loop. It is

interesting that for an entry game such as in Subsection 6.1, the classification error rate

can be so small that one is almost matching 0’s and 1’s and using the particle filter to

solve backwards for {x1t} that will allow the match. The consequence is that N can be

quite small. For our example, Pitt et. al.’s charts suggest that N = 300 will suffice. We

actually use N = 512. In practice charts are unnecessary because one can easily determine

N empirically by increasing it until the chain is no longer sticky.
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One could set forth regularity conditions such that limN→∞ supθ Var {logL(θ, s)} = 0.

They will be stringent: see Andrieu, Douced, and Holenstein (2010). One can argue that

there is no point to verifying that variance declines with N because one must still determine

the requisite N empirically. If an acceptable N is found, it does not matter if variance

declines with N or not. If an affordable N cannot be found, a proof that variance declines

with N does not help except to provide support for a request for more computing resources.

6 Examples

6.1 A Game with a Small Number of Players

In this section we describe an dynamic oligopolistic entry game. It is a modest variation

on the game presented in Gallant, Hong, and Khwaja (2016), and the description in this

section is based on and borrows from that paper. We present it here for completeness of

exposition. However, for additional details regarding the motivation and rationale for the

specification, computation of the model and its estimation, the reader is referred to that

paper. Having described the game, we then test our proposed methodology with several

simulation experiments.

At each market entry opportunity t the actions available to profit maximizing firm i are

whether to choose to enter the market, Ẽit = 1, or decide to not enter Ẽit = 0. In what

follows, a time period uniquely identifies a market opening therefore we interchangeably

use t to denote a time period or a market entry opportunity associated with it. Firms can

not always achieve entry decision profiles Ẽt. Rather, firms are aware that the realized

entry profiles Et follow a conditional distribution p(Et|Ẽt) given Ẽt. We use the following

specification for p(Et|Ẽt)

p(Et |Ẽt, θ) =
I
∏

i=1

(pe)
δ(Eit=Ẽit)(1− pe)

1−δ(Eit=Ẽit), (36)

where 0 < pe < 1 and δ(a = b) = 1 if a = b and 0 if not. The intended outcome Ẽit is

not observed by us. Instead Eit is observed, which is a Bernoulli random variable taking

value Ẽit with probability pe and value 1− Ẽit with probability qe = 1− pe. The number of
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entrants in market t is

Qt =
I
∑

i=1

Eit (37)

To illustrate, consider the generic pharmaceutical drug market. The entry decision of

firm i is Ẽit = 1 if the firm submits an application to the Federal Drug Administration

(FDA) and Eit = 1 if approved. The FDA reveals application approvals Eit; submissions Ẽit

are not revealed. Each application carries a small probability of being rejected by the FDA.

Firms collectively decide on the equilibrium Ẽt. We observe the ex post realization of Et.

The dynamics in the model come mainly through the evolution of costs based on past

firm actions. The evolution of current total cost Zit for firm i is determined by past entry

decisions and random shocks. In the model estimated in Gallant, Hong, and Khwaja (2016),

current entry can decrease the cost of an entry next period by, e.g., through learning by

doing. However, in contrast in the simulations presented later in Section 6, the evolution of

total costs will be configured to represent a situation where past entry constrains capacity

and raises current total costs. The cost state variable evolves according to the actual outcome

Et rather than the intended outcome Ẽt. All firms know each others’ costs and hence this

is a game of complete information. We follow the convention that a lower case quantity

denotes the logarithm of an upper case quantity, e.g., Zit = log(zit), with the exception that

for the outcome both E and e denote variables that take the value zero or one. Log cost is

the sum of two components

zi,t = zu,i,t + zk,i,t. (38)

We assume that zu,i,t cannot be observed by us and that zk,i,t can be observed. The first

component follows a stationary autoregressive process of order one; the second accumulates

the consequences of past entry outcomes:

zu,i,t = µz + ρz (zu,i,t−1 − µz) + σzǫit (39)

zk,i,t = ρe ck,i,t−1 + κeEi,t−1 (40)

=
∞
∑

j=0

ρjeκeEi,t−j−1.

In the above, ǫit is a normally distributed shock with mean zero and unit variance, σz is

a scale parameter, κe is the effect of entry in market t − 1 on cost at market t, µz is the
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unconditional mean of the unobservable portion of log cost; ρz and ρe are autoregressive

parameters that determine persistence. All firms are ex ante identical,6 with heterogeneity

arising endogenously in the model depending on the effects of past actions on the total costs

of the firms.

The total size of the market t or the lump sum total revenue in a market is denoted by

St. It evolves according to the following process,

st = µs + σsǫI+1,t , (41)

where st = log(St), and the ǫI+1,t are normally and independently distributed with mean

zero and unit variance. In (41), µs represents the long run average total revenue for all firms

across all market opportunities, while σs is a scale parameter. In this example we assume

revenue to be exogenous, however, in Section 7 we provide an example where revenue may

be endogenously determined.

At time t a firm’s present discounted value of profits is given by

∞
∑

j=0

βjEi,t+j (St+j/Qt+j − Zi,t+j) , (42)

where the discount factor is β. Each firm maximizes the present discounted value of its profit

in each time period t conditioning on the equilibrium strategy profiles of its rivals.

For firm i′s dynamic problem at time t, the Bellman equation for the choice specific value

function Vi(ẽi,t, ẽ−i,t, Zi,t, Z−i,t, St) is,

Vi(ẽi,t, ẽ−i,t, Zi,t, Z−i,t, St)

=
1
∑

m1=0

p
δ(m1=ẽ1t)
E (qE)

1−δ(m1=ẽ1t) · · ·

1
∑

mI=0

p
δ(mI=ẽIt)
E (qE)

1−δ(mI=ẽIt)

{

mi

(

S
∑I

j=1mj

− Zit

)

(43)

+ β E
[

Vi(Ẽi,t+1, Ẽ−i,t+1, Zi,t+1, Z−i,t+1, St+1) |Mi,t,M−i,t, Zi,t, Z−i,t, St

]

}

,

where Mi,t = mi and M−i,t is Mt = (m1, . . . ,mI) with mi deleted.

For firm i at stage t of the game, Vi(ẽi,t, ẽ−i,t, Zi,t, Z−i,t, St) is the expected payoff if it

chooses ẽi,t and its rivals choose ẽ−i,t. A a best response strategy profile (Ẽi,t, Ẽ−i,t) for

6One could allow the initial condition zi0 to vary by firm if desired.
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a stationary, pure strategy, Markov perfect equilibrium of the dynamic game is one that

satisfies the familiar (Nash) condition described above in Equation (4) in Section 3.

Since this is a game of complete information it implies that the equilibrium is known if

the state that consists of the current total costs of all firms (Zi,t, Z−i,t) and total revenue St

is known.

Using the above defined choice specific value function it is possible to compute the ex

ante value function as follows,

Vi(Zi,t, Z−i,t, St) = Vi(Ẽi,t, Ẽ−i,t, Zi,t, Z−i,t, St). (44)

The ex ante value function satisfies the following Bellman equation

Vi(Zi,t, Z−i,t, St)

=
1
∑

m1=0

p
δ(m1=Ẽ1t)
E (qE)

1−δ(l1=Ẽ1t) · · ·

1
∑

mI=0

p
δ(mI=ẼIt)
E (qE)

1−δ(mI=ẼIt)

{

mi

(

S
∑I

j=1mj

− Zit

)

(45)

+ β E
[

Vi(Zi,t+1, Z−i,t+1, St+1) |Mi,t,M−i,t, Zi,t, Z−i,t, St

]

}

.

A comprehensive discussion of results for existence of equilibria in Markovian games

is provided by Dutta and Sundaram (1998). Additional discussion may be found in Reny

(1999). When the state space can only take on a finite set of values, Theorem 3.1 of Dutta and

Sundaram (1998) implies that the entry game has a stationary Markov perfect equilibrium

in mixed strategies. Parthasarathy (1973) showed that this support condition can be relaxed

to include a state space with countable values. The regularity conditions of Theorem 5.1 of

Dutta and Sundaram (1998) are closer to our model, i.e., that the revenue and cost do not

have to be discrete but they do need to be bounded.

In our computations we rely on Theorem 5.1 of Dutta and Sundaram (1998) because we

are able to compute pure strategy equilibria for our model that has a continuous state space.

The equilibrium profiles guaranteed by Theorem 5.1 depend on period t of the state vector

and might depend on period t−1 as well. We find that we can always compute pure strategy

equilibria that depend only on period t of the state vector, and hence automatically satisfy

the regularity conditions of Theorem 5.1. However, our model could also be transformed to
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satisfy the conditions of Theorem 3.1 of Dutta and Sundaram (1998) that require the state

space to be finite and countable. The proof of Theorem 3.1 of Dutta and Sundaram (1998)

is significant for us because it relies on a dynamic programming approach that motivates our

computational strategy.7

In the numerical computation we have always been able to find an equilibrium for each

trial value of the parameters. Thus, computationally a bigger problem we encounter is

multiplicity of equilibria. The assumption we make to resolve the issue of multiple equilibria

is to adopt an explicit equilibrium selection rule. When we encounter multiple equilibria

we adopt an explicit equilibrium selection rule as follows. We pick the equilibrium with

the lowest aggregate costs (i.e., entrants are such that the most profitable production takes

place). This idea is similar to that used by Berry (1992). That is, the strategy profiles

Ẽt are ranked by aggregate cost in ascending order, Z =
∑I

i=1 ẼitZit, and the first Ẽt that

satisfies the equilibrium condition (4) is accepted as the solution. Note that our distributional

assumptions guarantee that no two Z can be equal so that this ordering of the Ẽt is unique.

Moreover, none of the Zit can equal one another. When this condition is met we have never

had trouble in being able to compute a pure strategy equilibrium for any parameter value

as soon as we compute a sufficient number of value function iterations.

Additional details about the computation of the model and our procedure to deal with

multiple equilibria may be found in the web version of the paper. Like much of the literature

on estimation and computation of dynamic games, overall, our method works conditional

on the existence of an equilibrium being guaranteed. In the event of multiple equilibria

it also works if there is a procedure available or if the econometrician is willing to make

an assumption to deal with such multiple equilibria. As an example, in our case we use

an explicit equilibrium selection rule based on economic criteria to account for multiple

equilibria.

The parameters of the entry game model are given by

θ = (µz, ρz, σz, µs, σs, ρe, κe, β, pe). (46)

7More details about computing equilibria for this example are provided in the web version of the paper.
However, the basic idea in computing Ẽt is that one uses (43) after substituting (44) to find the Ẽi,t

that satisfy the Nash condition (4). Then the Bellman equation (45) is used as a recursion to update
Vi(Zi,t, Z−i,t, St). One repeats until the terms on both sides of (45) are equal within a tolerance.
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The function that provides the decision profile is

Ẽt = H(zu,t, zk,t, st, θ), (47)

where zu,t = (z1,u,t, . . . , zI,u,t); similarly zk,t. The notation of the entry game maps to the

notation of the generic game as follows

x1t = zut

x2t = (zkt, st)

at = Et

p(xt | at−1, xt−1, θ) = n[zut |µz1+ ρz(zu,t−1 − µz1), σ
2
zI]

× δ(zk,t = ρezk,t−1 + κeat−1)

×n(st |µs, σ
2
s) (48)

p(x1,t | at−1, xt−1, θ) = n[zut |µz1+ ρz(zu,t−1 − µz1), σ
2
zI] (49)

p(at | xt, θ) = p[Et |H(zu,t, zk,t, st, θ), θ] (50)

p(x1,t | θ) = n[zut |µz,
σ2
z

(1− ρ2z)
I] (51)

In equations (50)

p[Et |H(zu,t, zk,t, st, θ), θ] = p(Et|Ẽt, θ) =
I
∏

i=1

p
δ(Ei,t=Ẽi,t)
E (1− pE)

1−δ(Ei,t=Ẽi,t).

Hidden within H(zu,t, zk,t, st, θ) are equations (4), (43), and (44), which describe the com-

putation of the value function and the search algorithm for the Nash equilibrium used to

compute the decision profiles Ẽt from each zu,t, zk,t, and st.

The specialization of the formulas for the algorithm described in Subsection 4.6 to the

game with a small number of players are as follows. Substituting (50) and (48) into the

numerator of (32) and (49) into the denominator,

v̄
(k)
t = p[Et |H

f (z
(k)
u,t , zk,t, st, θ), θ]n(st |µs, σ

2
s) δ[zk,t = ρzzk,t−1+κzH

f (z
(k)
u,t−1, zk,t−1, st−1, θ)]

For the alternative importance sampler,

¯̄v
(k)
t = v̄

(k)
t

n[z
(k)
ut |µz1+ ρz(z

(k)
u,t−1 − µz1), σ

2
zI]

f
(

z
(k)
ut | z

(k)
u,t−1, zk,t−1, st−1, θ

) .

The expressions needed at Step 1 to compute Ĉ0 are given by (51) and (51).
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6.2 A Game with a Large Number of Players

In the last section we verified our results using Monte Carlo simulations from a dynamic game

of complete information with the Markov Perfect Equilibrium solution concept. However,

the MPE solution concept is intractable when a game consists of a large number of players

as the time to compute the solution to a game can increase exponentially with the number

of players. In this section we show how our method applies to a game with a large number of

players by following Weintraub, Benkard, and Roy (2008) who develop the solution concept

of Oblivious Equilibrium to deal with such games. Weintraub, Benkard, and Roy (2008) show

that this approach can be quite accurate in approximating the MPE solution for Ericson and

Pakes (1995) type games with five or more players. To illustrate, we apply our method to

one of the examples taken from Weintraub, Benkard, and Roy (2010), which has been used

in applications that they cite.8

The example is as follows. The set up is based on Weintraub, Benkard, and Roy (2010)

and we only present the details that are relevant for our Monte Carlo analysis and refer the

reader to that paper for additional details. The industry has differentiated products. Firm

i, i = 1, . . . , I, produces at quality level xit at time t, t = 1, . . . , T , where xit is integer valued.

For our simulation, I = 20. In period t consumer j, j = 1, . . . ,m, receives utility

uijt = θ1 ln

(

xit
ψ

+ 1

)

+ θ2 ln (Y − pit) + vijt,

where Y is income, pit is price, (θ1, θ2, ψ) are the utility function parameters, and vijt are

distributed i.i.d. Gumbel. Each consumer buys one product, choosing the one that maximizes

utility. For our simulation, m = 50. This is a logit model for which there is a unique Nash

equilibrium {p∗it} in pure strategies that yields profit π(xit, s−i,t) to firm i, where s−i,t is a

list of the states of its competitors. Each firm has an investment strategy ιit = ι(xit, s−i,t),

which is successful with probability aι
1+aι

, in which case the quality of its product increases by

one level. Quality depreciates by one level with probability δ. Our simulation concerns the

parameters of the utility function and the transition dynamics, namely θ = (θ1, θ2, ψ, a, δ),

set as shown in Table 3 for our simulation, which are the same as in the Matlab code

8We used their Matlab R© code, for which we thank the authors, translated verbatim to C++. See
http://www.columbia.edu/∼gyw2105/GYW/GabrielWeintraub files/programsMPE120726.zip.
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on the authors’ website. There are a number of subsidiary parameters, mostly respecting

ι(x, s), that have also been set to the values in the distributed Matlab code: discount factor

β = 0.95, marginal investment cost d = 0.5, sunk entry cost κ = 35, entry state xe = 10,

average income Y = 1, marginal cost of production c = 0.5, and the utility of the outside

good u0 = 0. The oblivious equilibrium is computed by replacing s−i,t by its expectation

under the stationary transition density for states. Details and the solution algorithm are in

Weintraub, Benkard, and Roy (2010).

This game is mapped to our notation as follows. The state vector (5) at time t is com-

prised of the quality levels {xit}
I

i=1. The state vector is known to all firms but not observed

by us. It follows the Markov process described above which has a transition density repre-

sented as a transition matrix evolving according to the investment function and a stationary

density represented as a vector, the elements for both of which are supplied by the solu-

tion algorithm. The transition matrix defines (8) and the vector of stationary probabilities

defines (9). No portion of the state is observed by us so that (7) is the same as (8). The

measurement vector at is comprised of the number of customers that each firm attracts at

time t. It follows a multinomial distribution whose parameters are a vector of probabili-

ties, the elements of which are supplied by the solution algorithm, and the total number of

customers m. This multinomial distribution is the density (6).

7 Simulation Experiments

To assess the efficacy of the approach proposed here that directly contradicts current practice

in that the seed is random and the number of particles small, we conduct a simulation

exercise.

7.1 Simulations for a Game with a Small Number of Players

We simulate the entry game game described in Subsection 6, that was previously estimated

in Gallant, Hong, and Khwaja (2016), configured to represent the manufacture of a single

object where entry constrains capacity. There are three firms. The time increment is one

year. We set parameters according to the following considerations. A hurdle rate of 20% is

a standard assumption in business which leads to a discount factor of β = 0.83333. Setting
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pe = 0.95 seems intuitively reasonable and is in line with the estimates of Gallant, Hong, and

Khwaja (2016) who estimate a similar model from pharmaceutical data except that entry

has the effect of reducing rather than increasing costs. We set ρe = 0.5, which gives the entry

effect a half-life of six-months. Costs are usually persistent so ρz = 0.9 seems reasonable.

The remaining parameters scale with µs. The parameter µs can be chosen arbitrarily because

it is the log of the nominal price of the product. We chose µs = 10. A gross margin of 30%

puts µz = 9.7. With κe = 0.2 the immediate impact of entry is to reduce the gross margin

to 10%. The two scale parameters σz and σs are determined by the foregoing because, if one

wants a sample that mimics competition to some extent, there is far less freedom in their

choice than one might imagine. One can easily produce samples where one firm is dominant

for long periods or a monopoly develops. By trial and error, we found σz = 0.1 and σs = 2

to be satisfactory. In general, σs must be fairly large, as it is here, to prevent a monopoly.

Gallant, Hong, and Khwaja (2016) reported that pe was estimated precisely and varying

it within reason had little effect on estimates. Because the parameter was of no intrinsic

interest, they fixed it to reduce computational cost. We estimated with pe both fixed and

free to see if that held true here.

The firm’s discount rate β is extremely difficult to estimate in studies of this sort (see

e.g., Magnac and Thesmar (2002)). On the other hand it is not difficult to form priors for

β. As mentioned above, a common rule of thumb in business is not to undertake a project

whose internal rate of return is less than 20%. Theoretically, a firm should not undertake

a project whose rate of return is less than its cost of capital. The historical risk premia for

various industries are available (e.g., Gebhardt, Lee, and Swaminathan (2001)) to which one

can add a nominal borrowing rate of 5% to arrive at a value for β. We estimated with β

both fixed and free to assess the value of prior information regarding β.

The model is recursive due to (40). The customary way of dealing with this situation in

time series analysis (e.g. GARCH models) is to run the recursion over initial lags prior to

estimation. We set the number of initial lags to a large value T0 = 160 to reduce effect of the

choice of T0 in our results. The choice of large T0 was also motivated by the Gallant, Hong,

and Khwaja (2016) study where a structural break – a bribery scandal – gave rise to 160

initial lags that could be used to run the recursion (40) but could not be used for estimation.
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As in Gallant, Hong, and Khwaja (2016), we also pass (41) through the recursion as part of

the likelihood which is equivalent to determining a loose prior for µs and σs from the initial

lags. We simulated one long data set and from it constructed three data sets, small, medium,

and large, with T = 40, 120, and 360, respectively. The initial observations in a larger data

set are the same as those of its smaller predecessor.

We considered two cases keeping the data the same

1. The entry game model is fit to the data using a blind proposal and multinomial resam-

pling. Estimates are in Table 1. Histograms of the marginals of the posterior density

for the medium sample size are in Figure 1 with β constrained.

2. The entry game model is fit to the data using an adaptive proposal and systematic

resampling. Estimates are in Table 2.

The key parameter in the study of games of this sort is κe so we focus on it although our

remarks generally apply to the other parameters as well. Our results are not surprising.

• A large sample size is better. In Tables 1 and 2 the estimates shown in the columns

labeled “lg” would not give misleading results in an application.

• Constraining β is beneficial as it reduces the bimodality of the marginal posterior

distribution of σs and pushes all histograms closer to unimodality (Figure 1).9 In

consequence, the descriptive statistics in the columns labeled “β” and “β & pe” of

Tables 1 and 2 represent a posterior distribution better than those in the columns

labeled “Unconstrained.”

• Constraining pe is irrelevant except for a small savings in computational cost: compare

columns “β” and “β & pe” in Tables 1 and 2.

• Improvements to the particle filter are helpful. In particular, an adaptive proposal is

better than a blind proposal; compare Tables 1 and 2. In addition, the mean squared

error in tracking the true unobserved cost by the average over the particles improves

9Histograms for β unconstrained, which show more extreme bimodality, are available in the web version
of the paper at http://www.aronaldg.org/papers/socc web.pdf.
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by 9%.10 Systematic resampling is better than multinomial resampling.11

Tables 1 and 2 about here

Figure 1 about here

7.2 Simulations for a Game with a Large Number of Players

The structure of the model is such that for each θ proposed in the MCMC chain, the

oblivious equilibrium only needs to be computed once to provide the information to define

the transition and observation densities. This allows one to have a large number of particles

at minimal computational cost. It is as well because we found that N = 8174 was required

to get the rejection rate down to a reasonable value. The particle filtering does not become

a significant component of the computational cost up to N = 32696, which is the value we

used for the results reported in Table 3. As seen from Table 3, the method we propose here is

viable for this example thereby providing estimates of precision that the calibration methods

that are often used with this model cannot.

Table 3 about here

8 Conclusion

We propose a Bayesian approach based on sequential importance sampling (particle filter-

ing) to estimate the parameters of a dynamic model that can have state variables that are

partially observed, serially correlated, endogenous, and heterogeneous. We illustrated by

application to two examples. The first is a dynamic game of entry involving a small number

of firms whose heterogeneity is based on their current costs due to feedback through capacity

constraints arising from past entry. The second is an Ericson-Pakes (1995) style game with

a large number of firms whose heterogeneity is based on the quality of their products with

firms competing through investment in product quality that affects their market share and

profitability.

10Results available in the web version of the paper.
11The results for an adaptive proposal with multinomial sampling are available in the web version of the

paper.
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Our paper makes several contributions to the literature. Our approach is based on

deriving an unbiased estimate of the likelihood that is used within a Metropolis chain to

conduct Bayesian inference. Unbiasedness guarantees that the stationary density of the

chain is the exact posterior, not an approximation. This allows for tractable computation

and feasible estimation of a dynamic model. In addition the latent state variables can be

either discrete or continuous. Moreover, the approach permits endogenous feedback of past

actions on the latent state variables that allows for heterogeneity among the players. Thus,

our approach facilitates computation and estimation of dynamic games with either small or

large number of players whose heterogeneity is affected by latent state variables, discrete or

continuous, that are subject to endogenous feedback.
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Table 1. Parameter Estimates for the Small Game
Blind Proposal, Multinomial Resampling

Constrained

Parameter Unconstrained β β & pa

value sm md lg sm md lg sm md lg

µz 9.70 10.10 9.72 9.68 9.94 9.67 9.68 9.86 9.72 9.68
(0.15) (0.12) (0.06) (0.19) (0.11) (0.06) (0.18) (0.12) (0.06)

ρz 0.90 0.58 0.86 0.92 0.69 0.92 0.91 0.69 0.85 0.91
(0.25) (0.09) (0.03) (0.26) (0.05) (0.03) (0.25) (0.11) (0.03)

σz 0.10 0.16 0.09 0.09 0.17 0.08 0.10 0.15 0.09 0.10
(0.05) (0.03) (0.01) (0.06) (0.03) (0.01) (0.07) (0.03) (0.01)

µs 10.00 9.87 9.98 9.96 9.88 9.99 9.98 9.84 9.99 9.99
(0.10) (0.03) (0.02) (0.10) (0.03) (0.02) (0.13) (0.06) (0.02)

σs 2.00 1.95 1.97 1.98 2.02 2.00 2.02 2.04 2.00 2.03
(0.09) (0.05) (0.01) (0.08) (0.02) (0.02) (0.10) (0.03) (0.01)

ρe 0.50 0.76 0.56 0.58 0.59 0.57 0.56 0.76 0.57 0.52
(0.09) (0.07) (0.06) (0.22) (0.09) (0.05) (0.10) (0.07) (0.04)

κe 0.20 0.04 0.24 0.19 0.15 0.26 0.20 0.14 0.22 0.22
(0.05) (0.05) (0.02) (0.07) (0.05) (0.03) (0.06) (0.06) (0.03)

β 0.83 0.90 0.95 0.87 0.83 0.83 0.83 0.83 0.83 0.83
(0.07) (0.04) (0.04)

pe 0.95 0.97 0.94 0.95 0.96 0.94 0.95 0.95 0.95 0.95
(0.02) (0.01) (0.01) (0.02) (0.01) (0.01)

The data were generated according to the game with a small number of players with parameters

set as shown in the column labeled “value”. For all data sets T0 = −160. For the small data set

T = 40; for the medium T = 120; and for the large T = 360. The estimate is the mean of the

posterior distribution. The values below each estimate in parentheses are the standard deviation

of the posterior. The prior is uninformative except for the following support conditions |ρz| < 1,

|ρe| < 1, 0 < β < 1, and 0 < pe < 1. The likelihood for µs and σs includes the observations from

T0 to 0. In the columns labeled constrained, the parameters β and pe are constrained to equal

their true values as shown in the table. The number of MCMC repetitions is 240,000 with every

25th retained for use in estimation.
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Table 2. Parameter Estimates for the Small Game
Adaptive Proposal, Systematic Resampling

Constrained
Parameter Unconstrained β β & pa

value sm md lg sm md lg sm md lg

µz 9.70 9.87 9.82 9.72 9.81 9.78 9.68 9.78 9.76 9.65
(0.24) (0.07) (0.05) (0.12) (0.07) (0.06) (0.15) (0.09) (0.05)

ρz 0.90 0.77 0.82 0.91 0.93 0.94 0.94 0.86 0.92 0.94
(0.03) (0.07) (0.05) (0.08) (0.04) (0.03) (0.09) (0.04) (0.02)

σz 0.10 0.14 0.10 0.09 0.14 0.08 0.08 0.11 0.08 0.08
(0.02) (0.02) (0.01) (0.04) (0.02) (0.01) (0.04) (0.03) (0.01)

µs 10.00 10.05 10.00 9.97 9.95 9.96 9.94 9.78 9.95 9.96
(0.06) (0.02) (0.01) (0.05) (0.02) (0.02) (0.07) (0.03) (0.03)

σs 2.00 1.94 1.99 1.99 1.93 1.97 2.01 2.07 1.98 1.97
(0.10) (0.02) (0.02) (0.09) (0.01) (0.01) (0.09) (0.02) (0.02)

ρe 0.50 0.61 0.53 0.56 0.41 0.36 0.61 0.71 0.58 0.64
(0.21) (0.09) (0.06) (0.17) (0.06) (0.06) (0.20) (0.07) (0.05)

κe 0.20 0.21 0.22 0.18 0.20 0.18 0.18 0.17 0.19 0.18
(0.02) (0.03) (0.02) (0.06) (0.02) (0.02) (0.03) (0.02) (0.02)

β 0.83 0.93 0.96 0.90 0.83 0.83 0.83 0.83 0.83 0.83
(0.10) (0.03) (0.04)

pe 0.95 0.96 0.94 0.95 0.95 0.93 0.95 0.95 0.95 0.95
(0.01) (0.01) (0.01) (0.02) (0.01) (0.01)

The data were generated according to the game with a small number of players with

parameters set as shown in the column labeled “value”. For all data sets T0 = −160.

For the small data set T = 40; for the medium T = 120; and for the large T = 360.

The estimate is the mean of the posterior distribution. The values below each estimate

in parentheses are the standard deviation of the posterior. The prior is uninformative

except for the following support conditions |ρz| < 1, |ρe| < 1, 0 < β < 1, and 0 < pe <

1. The likelihood for µs and σs includes the observations from T0 to 0. In the columns

labeled constrained, the parameters β and pe are constrained to equal their true values

as shown in the table. The number of MCMC repetitions is 80,000 with every 25th

retained for use in estimation.
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Table 3. Parameter Estimates for the Large Game,
Blind Importance Sampler, Stratified Resampling

Posterior

Parameter Value Mean Std. Dev.

θ1 1.00000 0.97581 0.04799
θ2 0.50000 0.53576 0.07317
ψ 1.00000 1.01426 0.07070
a 3.00000 2.96310 0.06846
δ 0.70000 0.64416 0.05814

The data were generated according to the game with a large number of play-

ers with parameters for the consumer’s utility function and firm’s transition

function set as shown in the column labeled “Value” and all others set to the

values specified in Section 6.2. The number of firms is 20 and the number

of consumers is 50. T = 5. The prior is uninformative except for a support

condition that all values be positive. The number of MCMC repetitions is

109,000 and the number of particles per repetition is 32696.
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Figure 1. Small Game, β Constrained, Blind Proposal. Shown are histograms

constructed from the MCMC repetitions for the column labeled “Constrained,” “β,”

“md” in Table 1.
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