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Abstract

Abstract: We consider the question of how to de�ne sequential equilibria for multi-
stage games with in�nite type sets and in�nite action sets. The de�nition should be a
natural extension of Kreps and Wilson�s 1982 de�nition for �nite games, should yield
intuitively appropriate solutions for various examples, and should exist for a broad
class of economically interesting games.

1. Introduction

We propose a de�nition of sequential equilibrium for multi-stage games with in�nite type

sets and in�nite action sets, and prove its existence for a broad class of games.

Sequential equilibria were de�ned for �nite games by Kreps and Wilson (1982), but

rigorously de�ned extensions to in�nite games have been lacking. Various formulations of

�perfect Bayesian equilibrium�(de�ned for �nite games in Fudenberg and Tirole 1991) have

been used for in�nite games, but no general existence theorem for in�nite games is available.

Harris, Stinchcombe and Zame (2000) provided important examples that illustrate some

of the di¢ culties that arise in in�nite games and they also introduced a methodology for the

analysis of in�nite games by way of nonstandard analysis, an approach that they showed is

equivalent to considering limits of a class of su¢ ciently rich sequences (nets, to be precise)

of �nite game approximations.

It may seem natural to try to de�ne sequential equilibria of an in�nite game by taking

limits of sequential equilibria of �nite games that approximate it. The di¢ culty is that no

general de�nition of �good �nite approximation�has been found. Indeed, it is easy to de�ne
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sequences of �nite games that seem to be converging to an in�nite game (in some sense) but

have limits of equilibria that seem wrong (e.g., examples 4.2 and 4.3 below).

Instead, we consider limits of strategy pro�les that are approximately optimal (among

all strategies in the game) on �nite sets of events that can be observed by players in the

game.

For any " > 0; a strategy pro�le is an (";F)-sequential equilibrium on a set of open

observable events F i¤ it gives positive probability to each event C in F , and any player
who can observe C has no strategy that could improve his conditional expected payo¤ by

more than " when C occurs.

An open sequential equilibrium is de�ned as a limit of (";F)-sequential equilibrium con-
ditional distributions on outcomes as "! 0 and as the set of conditioning events F on which
sequential rationality is imposed expands to include all �nite subsets of a neighborhood basis

for all players�open observable events.

The remainder of the paper is organized as follows. Section 2 introduces the multi-stage

games that we study and provides the notation and concepts required for the de�nition of

open sequential equilibrium given in Section 3. Section 4 provides a number of examples

that motivate our de�nition and illustrate its limitations. Section 5 introduces the subset

of �regular projective games�and states an open sequential equilibrium existence result for

this class of games. All proofs are in Section 6.

2. Multi-Stage Games

A multi-stage game is played in a �nite sequence of dates.1 At each date, nature chooses

�rst. Each player then simultaneously receives a private signal, called the player�s �type�

at that date, about the history of play. Each player then simultaneously chooses an action

from his set of available actions at that date. Perfect recall is assumed.

Multi-stage games allow in�nite action and type sets and can accommodate any �nite

extensive form game with perfect recall in which the information sets of distinct players

never �cross�one another.2

Formally, a multi-stage game � = (N;K;A;�; T;M; � ; p; u) consists of the following

items.

�.1. i 2 N = fplayersg is the �nite set of players; K = f1; :::; jKjg is the �nite set of dates
of the game. L = f(i; k) 2 N �Kg �write ik for (i; k):

1A countable in�nity of dates can be accommodated with some additional notation.
2That is, in a multi-stage game with perfect recall, each player always knows, for any of his opponents�

type sets, whether that opponent has been informed of his type from that set or not.
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�.2. A = �ik2LAik; where Aik = fpossible actions for player i at date kg; action sets are
history independent.3

�.3. T = �ik2LTik; where Tik = fpossible informational types for player i at date kg has a
topology of open sets Tik with a countable basis.

�.4. � = �k2K�k; where �k = fpossible date k statesg:

�.5. �-algebras (closed under countable intersections and complements) of measurable sub-

sets are speci�ed for each Aik and �k; and Tik is given its Borel �-algebra. All one-point

sets are measurable. Products are given their product �-algebras.

The subscript, < k, will always denote the projection onto dates before k, and � k weakly
before. e.g., A<k = �i2N;h<kAih = fpossible action sequences before date kg (A<1 = �<1 =
f;g), and for a 2 A, a<k = (aih)i2N;h<k is the partial sequence of actions before date k.
If X is any of the sets above or any of their products,M(X) denotes its set of measurable

subsets. Let �(X) denote the set of countably additive probability measures onM(X).

�.6. The date k state is determined by a regular conditional probability pk from �<k�A<k
to �(�k). i.e., for each (�<k; a<k), pk(�j�<k; a<k) 2 �(�k), and for each B � M(�k),

pk(Bj�<k; a<k) is a measurable function of (�<k; a<k). Nature�s probability function is
p = (p1; :::; pjKj).

�.7. Player i�s date k information is given by a measurable type function � ik : ��k �
A<k ! Tik. Assume perfect recall: 8ik 2 L, 8h < k, there is a measurable function
�ikh : Tik ! Tih � Aim such that �ikh(� ik(��k; a<k)) = (� ih(��h; a<h); aih) 8� 2 �;

8a 2 A: The game�s type function is � = (� ik)ik2L:

�.8. Each player i has a bounded measurable utility function ui : � � A ! R, and u =
(ui)i2N :

So, at each date k 2 K starting with date k = 1; and given a partial history (�<k; a<k) 2
�<k�A<k; nature chooses a date-k state �k according to pk(�j�<k; a<k) producing the partial
history (��k; a<k): Each player i is then simultaneously informed of his private date-k type,

tik = � ik(��k; a<k); after which each player i simultaneously chooses an action from his date-

k action set Aik: The game then proceeds to the next date. After jKj dates of play this leads
to an outcome (�; a) 2 �� A and the game ends with player payo¤s ui(�; a); i 2 N .
In the next three subsections, we formally introduce strategies, outcome distributions,

and payo¤s, as well as the collections of events on which we will impose sequential rationality.
3History-dependent action sets can always be modeled by letting Aik be the union over all histories of

player i�s history-dependent date k action sets, and ending the game with a strictly dominated payo¤ for
player i if he ever takes an infeasible action.
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2.1. Strategies and Induced Outcome Distributions

A strategy for player ik 2 L is any regular conditional probability from Tik to �(Aik) �i.e.,

for each tik 2 Tik; sik(�jtik) is in �(Aik) and for each B 2M(Aik); sik(Bjtik) is a measurable
function of tik:

Let Sik denote ik�s set of strategies and let Si = �k2KSik denote i�s (behavioral) strate-
gies. Perfect recall ensures that there is no loss in restricting attention to Si for each player

i: Let S = �ik2LSik denote the set of all strategy pro�les.
Let Si;<k = �h<kSih and let S<k = �i2NSi;<k denote the strategy pro�les before date

k, and let S:k = �i2NSik denote the set of date-k strategy vectors with typical element
s:k = (sik)i2N :

Given any s 2 S, let sik or si;<k or s�k respectively denote the coordinates of s in Sik or
Si;<k or S�k.

Each s�k 2 S�k determines a regular conditional probability 	k from �<k�A<k toM(�k)

such that, for any measurable product set Z = Z0�(�i2NZi) ��k�A:k, and any (�<k; a<k) 2
�<k � A<k,

	k(Zj�<k; a<k; s�k) =
Z
�k2Z0

[�i2Nsik(Zij� ik(��k; a<k))]pk(d�kj�<k; a<k):

For any measurable setB ���k�A�k, and any (�<k; a<k) 2 �<k�A<k, letBk(�<k; a<k) =
f(�k; ak) 2 �k � (�i2NAik) : ((�k; �<k); (ak; a<k)) 2 Bg:
For any strategy pro�le s, we inductively de�ne measures 	�k(�js�k) on ��k � A�k

so that 	�1(�js�1) = 	1(�j;; ;; s�1) and, for any k 2 f2; :::; jKjg; for any measurable set
B � ��k � A�k;

	�k(Bjs�k) =
Z
(�<k;a<k)2�<k�A<k

	k(Bk(�<k; a<k)j�<k; a<k; s:k)	�k�1(d(�<k; a<k)js�k�1):

Let P (�js) = 	�jKj(�js) be the distribution over outcomes in��A induced by the strategy
pro�le s 2 S. The dependence of P (�js) on nature�s probability function p will sometimes
be made explicit by writing P (�js; p):

2.2. Conditional Probabilities and Payo¤s

For any s 2 S; for any ik 2 L and for any C 2M(Tik), de�ne

hCi = f(�; a) 2 �� A : � ik(��k; a<k) 2 Cg;
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and de�ne

PT (Cjs) = P (hCi js):

Then hCi 2 M(��A) is the set of outcomes that would yield types in C � Tik; and PT (Cjs)
is the probability that i�s date k type is in C under the strategy pro�le s: The dependence

of PT (�js) on nature�s probability function p will sometimes be made explicit by writing
PT (�js; p):
Let Y denote the setM(� � Y ) of measurable subsets Y of � � A. So Y is the set of

all outcome events. If PT (Cjs) > 0, then we may de�ne (for any Y 2 Y and any i 2 N):
conditional probabilities,

P (Y jC; s) = P (f(�; a) 2 Y : � ik(��k; a<k) 2 Cgjs)=PT (Cjs);

and conditional expected payo¤s,

Ui(sjC) =
Z
��A

ui(�; a)P (d(�; a)jC; s):

2.3. Observable Open Events and Essential Types

An open set C � Tik is observable i¤ 9a 2 A such that PT (Cja) > 0:4 In positive-probability
events, players do not need to consider what others would do in any open event that is not

observable, as they could not make its probability positive even by deviating.

Remark 1. In most practical settings of interest, it would be equivalent to say that an open

subset C of Tik is observable i¤ 9s 2 S such that PT (Cjs) > 0 Indeed, suppose that all �k;
Aik are metric spaces with their Borel �-algebras, and all � ik : ��k � A<k ! Tik and all

pk : �<k � A<k ! �(�k) are continuous, with product topologies on all product sets and

the weak* topology on �(�k): If C � Tik is open and PT (Cjs) > 0; then 9a 2 A such that
PT (Cja) > 0: See Lemma 6.1 in Section 6.

Let us call the set �Tik = ftik 2 Tik : every open subset of Tik containing tik is observableg
the set essential types for ik. So if tik is not essential, then there is an open neighborhood

of tik that will have probability 0 no matter what actions the players might use.

Remark 2. �Tik is the closure of the union over all a 2 A of the supports of PT (�ja) as
probability distributions on Tik, and so �Tik is the smallest closed set of types such that

PT ( �Tikja) = 1 8a 2 A:
4The a 2 A here is interpreted as the constant pure strategy pro�le s 2 S such sik(aikjtik) = 1 8tik 2

Tik;8ik 2 L:
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Let T = [ik2LTik (a disjoint union) denote the set of all open sets of types for dated
players and let T � = fC 2 T : 9a 2 A such that PT (Cja) > 0g = fopen sets of types that
are observableg:
The set T � of observable open sets contains all of the open sets on which sequential

rationality will ever be imposed. But we will be content if sequential rationality is imposed

only on any su¢ ciently rich subcollection of observable open sets that we now introduce.

A neighborhood basis for the essential types is any set B � T � that contains Tik 8ik 2 L
and that satis�es: 8ik 2 L, 8tik 2 �Tik; 8C 2 Tik, if tik 2 C then there exists some B 2 B
such that tik 2 B and B � C: Thus, for example, T � itself is a neighborhood basis for the
essential types.

We are now prepared to present our main de�nitions.

3. Open Sequential Equilibrium

Say that ri 2 Si is a date-k continuation of si; if rih = sih for all dates h < k:

De�nition 3.1. For any " > 0 and for any F � T �; say that s 2 S is an (";F)-sequential
equilibrium of � i¤ for every ik 2 L and for every C 2 F \ Tik (so that C is open and

observable by i at date k)

1. PT (Cjs) > 0; and

2. Ui(ri; s�ijC) � Ui(sjC) + " for every date-k continuation ri of si:

Note. Changing i�s choice only at dates j � k does not change the probability of i�s types
at k; so PT (Cjri; s�i) = PT (Cjs) > 0:
In an (";F)-sequential equilibrium, each open set of types C in F is reached with positive

probability and the player whose turn it is to move there is "-optimizing conditional on C:

We next de�ne an �open sequential equilibrium�to be a limit of (";F)-sequential equi-
librium conditional distributions on outcomes as "! 0 and as the set of conditioning events

F on which sequential rationality is imposed expands to include all �nite subsets of a neigh-
borhood basis for all players�open observable events.

De�nition 3.2. Say that a mapping � : Y � B ! [0; 1] is an open sequential equilibrium of

� i¤ B is a neighborhood basis for the essential types, and, for every " > 0; for every �nite
subset F of B, and for every �nite subset G of Y, there is an (";F)-sequential equilibrium s

such that,

jP (Y jC; s)� �(Y jC)j < "; for every (Y;C) 2 G � F :

We then also say that � is an open sequential equilibrium (of �) conditioned on B:
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Equivalently, � : Y � B ! [0; 1] is an open sequential equilibrium of � conditioned on B
i¤ there is a net fs";F ;Gg of (";F)-sequential equilibria such that,

lim
">0; F�B; G�Y
F and G �nite

P (Y jC; s";F ;G) = �(Y jC); for every (Y;C) 2 Y � B; (3.1)

where smaller values of " and larger �nite subsets F of B and G of Y are further along in
the index set.

It is an easy consequence of Tychono¤�s theorem that an open sequential equilibrium

exists so long as (";F)-sequential equilibria always exist. The existence of (";F)-sequential
equilibria is taken up in Section 5. We record here the simpler result (Section 6 contains the

proof).

Theorem 3.3. Let B be a neighborhood basis for the essential types. If for any " > 0 and
for any �nite subset F of B there is at least one (";F)-sequential equilibrium, then an open
sequential equilibrium conditioned on B exists.

It follows immediately from (3.1) that if � is an open sequential equilibrium conditioned

on B; then �(�jC) is a �nitely additive probability measure on Y for each C 2 B; and �(�j�)
satis�es the Bayes�consistency condition,

�(hCi jD)�(Y \ hDi jC)) = �(hDi jC)�(Y \ hCi jD) 8Y 2 Y ; 8C;D 2 B;

where, recalling from Section 2.2, hCi denotes the set of outcomes that would yield types in
C; and similarly for hDi :5

Since P (�jTik; s) = P (�js) for any ik 2 L and any s 2 S; it also follows that �(�jTik) =
�(�jTnh) for any ik and any nh in L and so the unconditional �nitely additive probability
measure on outcomes can be de�ned by �(Y ) = �(Y jTik) for all Y 2 Y : (Recall that a
neighborhood basis B is de�ned to include each Tik:)
If (3.1) holds, then so long as ui is bounded and measurable (as we have assumed),

lim
">0; F�B; G�Y
F and G �nite

Z
��A

ui(�; a)P (d(�; a)jC; s";F ;G) =
Z
��A

ui(�; a)�(d(�; a)jC) 8C 2 B:

Since this holds in particular for C = Tik; we may de�ne i�s equilibrium expected payo¤ (at

�) by Z
��A

ui(�; a)�(d(�; a)):

5For �nite additivity, note that for any disjoint sets Y;Z 2 Y and for any C 2 B; (3.1) and limP (Y [
ZjC; s";F;G) = lim[P (Y jC; s";F;G) + P (ZjC; s";F;G)] imply that �(Y [ ZjC) = �(Y jC) + �(ZjC): Bayes�
consistency is obtained similarly.

7



Remark 3. Since we have assumed that the set T of open sets of the players�types has a

countable basis, any neighborhood basis B for the essential types has a countable neighbor-
hood subbasis.6 Let B0 be any one of them. If � is an open sequential equilibrium conditioned
on B; then the restriction of � to Y � B0 is an open sequential equilibrium conditioned on

B0 (since B0 � B) and the unconditional probability measure �(�) on outcomes is unchanged
(since each Tik is in B0). So if one is interested only in the unconditional probability measure
on outcomes in any open sequential equilibrium, it is without loss of generality to restrict

attention to countable neighborhood bases of the essential types.

Sometimes the unconditional probability measure over outcomes �(�) is only �nitely addi-
tive, not countably additive (Example 4.1). We next de�ne an �open sequential equilibrium

distribution�as a countably additive probability measure on the measurable sets of outcomes

as follows.

De�nition 3.4. Say that a countably additive probability measure � on Y is an open se-

quential equilibrium distribution of � i¤ there is an open sequential equilibrium � and a

collection C � fY 2 Y : �(Y ) = �(Y )g that is closed under �nite intersections and that
generates the �-algebra Y.7 Since there can be at most one such measure �; 8 we then also
say that � is the open sequential equilibrium distribution induced by �:

Remark 4. If ��A is a compact metric space with its Borel sigma algebra of measurable
sets and � is an open sequential equilibrium, then there exists an open sequential equi-

librium distribution induced by �.9 Indeed, suppose that (3.1) holds and so, in particular,

P (Y js";F ;G)! �(Y ) for all Y 2 Y : Since fP (�js";F ;G)g is a net of countably additive measures
on the measurable subsets of the compact metric space �� A; there is a weak*-convergent
subnet converging to a countably additive measure � 2 �(� � A): By the portmanteau
theorem (see, e.g., Billingsley 1968), P (Y js";F ;G) ! �(Y ) along the subnet holds for every

Y 2 Y whose boundary has �-measure zero, and so �(Y ) = �(Y ) for all such Y: Since the
collection of Y �s whose boundaries have �-measure zero is closed under �nite intersections

and generates Y ; 10 � is the open sequential equilibrium distribution induced by �.

6Indeed, let T 0 be a countable basis for T and let B be a neighborhood basis for the essential types.
Construct B0 � B as follows. First, for each ik 2 L; include in B0 the set Tik: Also, for each pair of sets U;W
in T 0, include in B0, if possible, a set V from B that is setwise between U and W (e.g., U � V � W ): It is
not di¢ cult to show that B0 � B is a countable neighborhood basis for the essential types.

7That is, Y is the smallest collection of measurable subsets of ��A that is closed under countable unions
and complements and that contains all sets in C:

8See, e.g., Cohn (1980) Corollary 1.6.3.
9This conclusion can be shown to hold under the weaker conditions that for each date k: (i) Aik is

compact metric and �k is Polish, and (ii) either �k is compact or pk(�j�<k; a<k) is weak* continuous in
(�<k; a<k):
10The set generates Y; the Borel sigma algebra on ��A; because for any outcome (�; a) it contains all but

perhaps countably many of the open balls centered at (�; a): Hence, it contains a basis for the open sets.
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Remark 5. Continuing with the previous remark, because � is obtained as a weak* limit

of P (�js";F ;G); player i�s equilibrium expected payo¤ (at �); namely
R
��A ui(�; a)�(d(�; a));

will be equal to
R
��A ui(�; a)�(d(�; a)) so long as ui is a continuous function.

Remark 6. It can be shown that if �� A is a compact metric space with its Borel sigma
algebra of measurable sets, then � is an open sequential equilibrium distribution i¤ there is

a countable neighborhood basis B for the essential types and a sequence fsng of ("n;Fn)-
sequential equilibria such that "n ! 0; B = [nFn and P (�jsn) weak* converges to � as
n!1:11 So, in many practical settings, one can obtain all the open sequential equilibrium
distributions as weak* limits of sequences of (";F)-sequential equilibrium outcome distribu-
tions.

In any �nite multi-stage game (�nite Aik and Tik), when F is �xed and includes every

type as a discrete open set, any (";F)-sequential equilibrium s" satis�es " sequential ratio-

nality with positive probability at each type, and s" converges to a Kreps-Wilson sequential

equilibrium strategy pro�le as " ! 0 (and conversely). Consequently, when B = F , � is
an open sequential equilibrium conditioned on B i¤ a Kreps-Wilson sequential equilibrium
assessment (i.e., a consistent and sequentially rational system of beliefs and strategy pro�le)

can be recovered from �:

4. Examples

Let us consider some examples.

Our �rst example illustrates a phenomenon that we may call �strategic entanglement,�

where a sequence of strategy pro�les yields a path of randomized play that includes histories

with �ne details used by later players to correlate their independent actions. When these

�ne details are lost in the limit because the limit path does not include them, there may be

no strategy pro�le that produces the limit distribution over outcomes.12 This motivates our

choice to base our solution not on strategy pro�les �since these are insu¢ cient to capture

limit behavior �but on limits of conditional distributions over outcomes.

Example 4.1. Strategic entanglement in limits of approximate equilibria (Harris-Reny-

Robson 1995).

� On date 1, player 1 chooses a1 2 [�1; 1] and player 2 chooses a2 2 fL;Rg.
11This result can also be shown to hold under the weaker conditions given in footnote 9.
12Milgrom and Weber (1985) provided the �rst example of this kind. The example given below has the

stronger property that strategic entanglement is unavoidable: it occurs along any sequence of subgame
perfect "-equilibria (i.e., "-Nash in every subgame) as " tends to zero.
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� On date 2, players 3 and 4 observe the date 1 choices and each choose from fL;Rg.

� For i 2 f3; 4g, player i�s payo¤ is �a1 if i chooses L and a1 if i chooses R.

� If player 2 chooses a2 = L then player 2 gets +1 if a3 = L but gets �1 if a3 = R;

if player 2 chooses a2 = R then player 2 gets �2 if a3 = L but gets +2 if a3 = R.

� Player 1�s payo¤ is the sum of three terms:

(�rst term) if 3 and 4 match he gets 0, if they mismatch he gets �10;

plus (second term) if 2 and 3 match he gets �ja1j, if they mismatch he gets ja1j;

plus (third term) he gets �ja1j2.

There is no subgame-perfect equilibrium of this game, but it has an obvious solution which

is the limit of strategy pro�les where everyone�s strategy is arbitrarily close to optimal.

For any " > 0 and � > 0, when players 3 and 4 "-optimize on fa1 < ��g and on
fa1 > �g, they must each, with at least probability 1� "=(2�), choose L on fa1 < ��g and
choose R on fa1 > �g.
To prevent player 2 from matching player 3, player 1 should lead 3 to randomize, which

1 can do optimally by randomizing over small positive and negative a1.

Any setwise-limit distribution over outcomes is only �nitely additive, as, for any " > 0,

the events that player 1�s action is in fa1 : �" < a1 < 0g or in fa1 : 0 < a1 < "g must each
have limiting probability 1/2.

The weak*-limit distribution over outcomes is a1 = 0 and ai = 0:5[L] + 0:5[R] 8i 2
f2; 3; 4g. But in this limit, 3�s and 4�s actions are perfectly correlated independently of 1�s
and 2�s. So no strategy pro�le can produce this distribution and we may say that players 3

and 4 are strategically entangled in the limit.13

Example 4.2. Problems of spurious signaling in naïve �nite approximations.

This example illustrates a di¢ culty that can arise when one tries to approximate a game

by restricting players to �nite subsets of their action spaces. It can happen that no such

�approximation� yields sensible equilibria because new signaling opportunities necessarily

arise.

� Nature chooses � 2 f1; 2g with p(�) = �=3.
13Instead of considering limit distributions, a di¤erent �x might be to add an appropriate correlation

device between periods as in Harris et. al. (1995). But this approach, which is not at all worked out for
general multi-stage games, will undoubtedly add equilibria that are not close to any "-equilibria of the real
game (e.g. it enlarges the set of Nash equilibria to the set of correlated equilibria in simultaneous games).
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� Player 1 observes t1 = ; and chooses a1 2 [0; 1].

� Player 2 observes t2 = (a1)� and chooses a2 2 f1; 2g.

� Payo¤s (u1; u2) are as follows:

a2 = 1 a2 = 2

� = 1 (1; 1) (0; 0)

� = 2 (1; 0) (0; 1)

Consider subgame perfect equilibria of any �nite approximate version of the game where

player 1 chooses a1 in some Â1 that is a �nite subset of [0; 1] including at least one 0 < a1 < 1.

We shall argue that player 1�s expected payo¤ must be 1=3:

Player 1 can obtain an expected payo¤ of at least 1=3 by choosing the largest feasible

�a1 < 1, as 2 should choose a2 = 1 when t2 = �a1 > (�a1)
2 indicates � = 1 (in this �nite

approximation, player 2 has perfect information after the history � = 1; a1 = �a1):

Hence, player 1�s equilibrium support is contained in (0; 1) since an equilibrium action of

0 or 1 would be uninformative and would lead player 2 to choose a2 = 2 giving player 1 a

payo¤ of 0; contradicting the previous paragraph.

Player 1�s expected payo¤ cannot be more than 1/3, as 1�s choice of the smallest 0 <

a1 < 1 in his equilibrium support would lead player 2 to choose a2 = 2 when t2 = (a1)
2 < a1

indicates � = 2.

But such a scenario cannot be even an approximate equilibrium of the real game, because

player 1 could get an expected payo¤ at least 2/3 by deviating to
p
�a1 (> �a1):

In fact, by reasoning analogous to that in the preceding two sentences, player 1 must

receive an expected payo¤ of 0 in any subgame perfect equilibrium of the in�nite game, and

so also in any sensibly de�ned �sequential equilibrium.� (It can be shown that player 1�s

expected payo¤ is zero in any open sequential equilibrium distribution.)

Hence, approximating this in�nite game by restricting player 1 to any large but �nite sub-

set of his actions, produces subgame perfect equilibria (and hence also sequential equilibria)

that are all far from any sensible equilibrium of the real game.

Example 4.3. More spurious signaling in �nite approximating games (Bargaining for Ak-

erlof�s lemons).

Instead of �nitely approximating the players�action sets, one might consider using �nite

subsets of the players�strategy sets. This example makes use of Akerlof�s bargaining game

to illustrate a di¢ culty with this approach.
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� First nature chooses � uniformly from [0; 1]:

� Player 1 observes t1 = � and chooses a1 2 [0; 2].

� Player 2 observes a1 and chooses a2 2 f0; 1g.

� Payo¤s are u1(a1; a2; �) = a2(a1 � �); u2(a1; a2; �) = a2(1:5� � a1).

Consider any �nite approximate game where player 1 has a given �nite set of pure strate-

gies and player 2 observes a given �nite partition of [0; 2] before choosing a2 (and so player 2

is restricted to the �nite set of strategies that are measurable with respect to this partition).

For any � > 0, we can construct a function f : [0; 1] ! [0; 1:5] such that: f(y) = 0

8y 2 [0; �); f(�) takes �nitely many values on [�; 1] and, for every x 2 [�; 1]; it is the case
that x < f(x) < 1:5x and f(x) has probability 0 under each strategy in 1�s given �nite set.

Then there is a larger �nite game (a �better�approximation) where we add the single

strategy f for player 1 and give player 2 the ability to recognize each a1 in the �nite range

of f . This larger �nite game has a perfect equilibrium where player 2 accepts f(x) for any

x.

But in the real game this is not an equilibrium because, when 2 would accept f(x) for

any x, player 1 could do strictly better by the strategy of choosing a1 = maxx2[0;1] f(x) for

all �.

Thus, restricting players to �nite subsets of their strategy spaces can fail to deliver

approximate equilibrium because important strategies may be left out. We eliminate such

false equilibria by requiring approximate optimality among all strategies in the original game.

Example 4.4. Problems of requiring sequential rationality tests with positive probability

in all events.

This example shows that requiring all events to have positive probability for reasons of

�consistency�may rule out too many equilibria.

� Player 1 chooses a11 2 fL;Rg.

� If a11 = L, then nature chooses � 2 [0; 1] uniformly; if a11 = R, then player 1 chooses
a12 2 [0; 1].

� Player 2 then observes t2 = � if a11 = L, observes t2 = a12 if a11 = R, and chooses

a2 2 fL;Rg.
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� Payo¤s (battle of the sexes) are as follows:

a2 = L a2 = R

a11 = L (1; 2) (0; 0)

a11 = R (0; 0) (2; 1)

All BoS equilibria are reasonable since the choice, � or a12, from [0; 1] is payo¤ irrelevant.

However, if all events that can have positive probability under some strategies must even-

tually receive positive probability along a sequence (or net) for �consistency,�then the only

possible equilibrium payo¤ is (2,1).

Indeed, for any x 2 [0; 1], the event ft2 = xg can have positive probability, but only
if positive probability is given to the history (a11 = R; a12 = x), because f� = xg has
probability 0. So, in any scenario where P (ft2 = xg) > 0, player 2 should choose a2 = R

when she observes t2 = x since the conditional probability of the history (a11 = R; a12 = x)

is one. But then player 1 can obtain a payo¤ of 2 with the strategy (a11 = R; a12 = x) and

so the unique sequential equilibrium outcome must be (2; 1)!14

To allow other equilibria, (";F)-sequential equilibrium avoids sequential rationality tests
on individual points. With a11 = L, all open subsets of T2 = [0; 1] have positive probability

and a2 = L is sequentially rational.

Example 4.5. Problems from allowing perturbations of nature.

A di¤erent solution to the problem illustrated in the previous example might be to allow

perturbations of nature. This example illustrates a di¢ culty with such an approach.

� Nature chooses � = (!1; !2) with !1 and !2 each drawn independently and uniformly
from [�1; 3]:

� Player 1 observes t1 = !1 and chooses a1 2 f�1; 1g:

� Player 2 observes t2 = a1 and chooses a2 2 f�1; 1g:

� Payo¤s are: u1(!1; !2; a1; a2) = a1a2; u2(!1; !2; a1; a2) = !2a2

Since no player receives any information about !2; and E(!2) > 0; player 2 should

choose a2 = 1 regardless of the action of player 1 that she observes. But then player 1

should also choose a1 = 1 regardless of the value of !1 that he observes. Hence, the only

14As in Kreps-Wilson (1982), �consistency�is imposed here by perturbing only the players�strategies, but
not nature�s probability function. Perturbing also nature�s probability function may be worth exploring even
though in other examples (e.g., Example 4.5 below) it can have dramatic and seemingly problematic e¤ects
on equilibrium play.
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sensible equilibrium expected payo¤ vector is (u1; u2) = (1; 1) and this is indeed the only

open sequential euqilibrium payo¤ vector.

But consider the pure strategy pro�le (s1; s2) where s1(!1) = 1 i¤!1 6= �1, and s2(a1) 6=
a1:

15

This pro�le yields the expected payo¤ vector (u1; u2) = (�1; 1); and can be supported by
the perturbation of nature that, with probability epsilon perturbs the joint distribution of

(!1; !2) so that it is a mass point on (!1; !2) = (�1;�1). With this perturbation of nature it
is sequentially rational for player 2 to choose a2 = �1 when she observes a1 = 1 because she
attributes this observation to (!1; !2) being a mass point on (�1;�1) and therefore expects
the value of !2 to be �1:

Example 4.6. Open sequential equilibria may not be subgame perfect if payo¤s are discon-

tinuous.

� Player 1 chooses a1 2 [0; 1].

� Player 2 observes t2 = a1 and chooses a2 2 [0; 1].

� Payo¤s are u1(a1; a2) = u2(a1; a2) = a2 if (a1; a2) 6= (1=2; 1=2), but u1(1=2; 1=2) =

u2(1=2; 1=2) = 2.

The unique subgame-perfect equilibrium, (s1; s2); is pure and has a1 = 1=2; s2(1=2) =

1=2; and s2(a1) = 1 if a1 6= 1=2, with the result that payo¤s are u1 = u2 = 2.
But there is an open sequential equilibrium distribution in which player 1 chooses a1

randomly according to a uniform distribution on [0; 1], and player 2 always chooses a2 = 1,

employing the pure strategy s2(a1) = 1 8a1 2 [0; 1], and so payo¤s are u1 = u2 = 1.
When a1 has a uniform distribution on [0; 1], the observation that a1 is in any open

neighborhood around 1=2 would still imply a probability 0 of the event a1 = 1=2, and so

player 2 could not increase her conditionally expected utility by deviating from s2(a1) = 1.

And when player 2 always chooses a2 = 1, player 1 has no reason not to randomize.

This failure of subgame perfection occurs because sequential rationality is not being

applied at the exact event of fa1 = 1=2g, where 2�s payo¤ function is discontinuous. With
sequential rationality applied only to open sets, player 2�s behavior at fa1 = 1=2g is being
justi�ed by the possibility that a1 was not exactly 1=2 but just very close to it, where she

would prefer a2 = 1.

The problem here is caused by the payo¤ discontinuity at (a1; a2) = (1=2; 1=2); which

could be endogenous in an enlarged game with continuous payo¤s where a subsequent player
15We abuse our notation here and in the next two examples by denoting a pure strategy for player ik 2 L

by a measurable function sik : Tik ! Aik: With this notation, for any tik 2 Tik; player ik chooses the action
sik(tik) with probability 1.
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reacts discontinuously there. To guarantee subgame perfection, even in continuous games,

we would need a stronger solution concept, requiring sequential rationality at more than just

open sets. (Theorem 5.4 in Section 5.1 shows that, in a large class of games, open sequential

equilibrium is compatible with subgame perfection.)

Example 4.7. Discontinuous responses may admit a possibility of other equilibria (Harris-

Stinchcombe-Zame 2000).

Even when players�payo¤ and type functions are continuous, discontinuities in strategies

can arise in equilibrium. This can allow open sequential equilibrium �which disciplines

behavior only on open sets of types, but not at every type �to include outcome distributions

that may seem counterintuitive.

� Nature chooses � = (�; !) 2 f�1; 1g� [0; 1]. The coordinates � and � are independent
and uniform.

� Player 1 observes t1 = ! and chooses a1 2 [0; 1].

� Player 2 observes t2 = �ja1 � !j and chooses a2 2 f�1; 0; 1g.

� Payo¤s are u1(�; !; a1; a2) = �ja2j; u2(�; !; a1; a2) = �(a2 � �)2.

Thus, player 2 should choose the action a2 that is closest to her expected value of �, and

so player 1 wants to hide information about � from 2.

In any neighborhood of any t2 6= 0, player 2 knows � = 1 if t2 > 0, and she knows � = �1
if t2 < 0, so sequential rationality requires that player 2 use the pure strategy s2(t2) = 1 if

t2 > 0, s2(t2) = �1 if t2 < 0.
For any " > 0 and for any �nite collection F of open subsets of player 2�s type space

T2 = [�1; 1]; there is an (";F)-sequential equilibrium in which player 1 hides information

about ! with the pure strategy s1(!) = !, and player 2 plays s2(0) = 0, but s2(t2) = �1
if t2 < 0, and s2(t2) = 1 if t2 > 0.16 This equilibrium seems reasonable, even though 2�s

behavior is discontinuous at 0.

We admit another (";F)-sequential equilibrium with 2�s strategy again discontinuous at

t2 = 0; namely: s1(!) = 1 8!; s2(t2) = 1 if t2 > 0, s2(t2) = �1 if t2 � 0. This equilibrium
may seem less reasonable since justifying (informally) 2�s choice here of a2 = �1 when she
observes the probability zero event t2 = 0 �i.e., the event a1 = ! �requires her to believe

that it is more likely that � = �1 than that � = +1; even though nature�s choice of � was
independent of nature�s choice of ! and 1�s choice of a1:

But our doubts about this second equilibrium may be due to a presentation e¤ect.17 If we
16Since this strategy pro�le is independent of (";F); the induced distribution over outcomes is an open

sequential equilibrium distribution.
17We thank Pierre-Andre Chiappori for this observation.
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had instead modeled nature with the one-dimensional random variable � chosen uniformly

from [�2;�1] [ [1; 2] and had de�ned player 1�s action set to be A1 = [1; 2]; the types to be
t1 = j�j, t2 = (sgn�)j(a1�j�j)j; and 2�s utility to be u2 = �(a2�sgn�)2, the strategic essence
of the game would be unchanged. But now the independence argument is unavailable and

so it might not be unreasonable for player 2 to assign more weight to the event � < 0 than

to � > 0 (or vice versa) after observing the probability zero event t2 = 0. So our second

equilibrium may not be entirely unreasonable.

Example 4.8. A Bayesian game where "-sequential rationality for all types is not possible

(Hellman 2014).

Our �nal example illustrates why, in (";F)-sequential equilibrium, we apply sequential
rationality only at �nitely many sets of types at a time. It can be impossible to obtain

sequential rationality (even "sequential rationality) for every type simultaneously.

� There are two players i 2 f1; 2g and one period.

� Nature chooses � = (�; !1; !2) 2 f1; 2g � [0; 1]� [0; 1].

� � is equally likely to be 1 or 2 and it names the player who is �on�.

� When � = i, !i is Uniform [0,1] and !�i =

(
2!i;

2!i � 1;
if !i < 1=2

if !i � 1=2
.

(This implies !�i is also Uniform [0; 1] when � = i.)

� Player types are t1 = !1 and t2 = !2.

� Action sets are A1 = A2 = fL;Rg.

� Payo¤s: When � = i, the other player �i just gets u�i = 0, and ui is determined by:

if ti < 1=2

a�i = L a�i = R

ai = L 0 7

ai = R 3 0

if ti � 1=2
a�i = L a�i = R

ai = L 7 0

ai = R 0 3

So ti � 1=2 wants to match �i when i is �on�and prefers L if �i�s probability of R is
less than 0:7; ti < 1=2 wants to mismatch �i when i is �on�and prefers L if �i�s probability
of R is greater than 0:3.
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This game has no Bayesian-Nash equilibrium in which the strategic functions si(Rjti) are
measurable functions of ti 2 [0; 1], by arguments of Simon (2003) and Hellman (2014).18 In-
deed, as shown in Hellman (2014), for any " > 0 su¢ ciently small, there are no (measurable)

strategies for which almost all types of the two players are "-optimizing.

But we can construct (";F)-sequential equilibria for any " > 0 and any �nite collection
F of open sets of types for 1 and 2. Indeed, choose an integer m � 1 such that P (ft1 <
2�mgjC) < " 8C 2 F \ T1.
First, let us arbitrarily specify that s1(Rjt1) = 0 for each type t1 of player 1 such that

t1 < 2
�m. Then for each type ti of a player i such that si(Rjti) has just been speci�ed, the

types of the other player �i that want to respond to ti are t�i = ti=2 and t̂�i = (ti + 1)=2,
and for these types let us specify s�i(Rjt�i) = 1 � si(Rjti); s�i(Rjt̂�i) = si(Rjti), which is
�i�s best response there. Continue repeating this step, switching i each time.
This procedure determines si(Rjti) 2 f0; 1g for all ti that have a binary expansion with

m consecutive 0�s starting at some odd position for i = 1, or at some even position for i = 2.

Wherever this �rst happens, if the number of prior 0�s is odd then si(Rjti) = 1, otherwise
si(Rjti) = 0. Since the remaining types ti have probability 0, we can arbitrarily specify

si(Rjti) = 0 for all these types.19

5. Existence

We now introduce a reasonably large class of games within which we are able to establish

the existence of both an open sequential equilibrium and an open sequential equilibrium

distribution.

De�nition 5.1. Let � = (N;K;A;�; T;M; � ; p; u) be a multi-stage game. Then � is a

regular projective game i¤ there is a �nite index set J and sets �kj; Aikj such that, for every

ik 2 L

R.1. �k = �j2J�kj and Aik = �j2JAikj;

R.2. there exist setsM0ik � f1; : : : ; kg�J andM1ik � N�f1; : : : ; k�1g�J , such that Tik =
((�hj2M0ik

�hj) � (�nhj2M1ik
Anhj)) and � ik(��k; a<k) = ((�hj)hj2M0ik

; (anhj)nhj2M1ik
)

8(��k; a<k) is a projection map, that is, i�s type at date k is just a list of state coordi-
nates and action coordinates from dates up to k,20

18Nature�s probability function does not satisfy the information di¤usness assumption of Migrom and
Weber (1985) so their existence theorem does not apply.
19The resulting strategies are measurable because, by construction, they are constant on each of the

countably many intervals of types involved in the iterative construction as well as on the complementary
(hence measurable) remainder set of types of measure zero.
20Perfect recall implies that for all players i 2 N; for all dates h < k; and for all j 2 J; M0ih � M0ik,

M1ih �M1ik; and ihj 2M1ik:
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R.3. �kj and Aikj are nonempty compact metric spaces 8j 2 J (with all spaces, including
products, given their Borel sigma-algebras),

R.4. ui : �� A! R is continuous,

R.5. there is a continuous nonnegative density function fk : ��k � A<k ! [0;1) and for
each j in J; there is a probability measure �kj onM(�kj) such that pk(Bj�<k; a<k) =R
B
fk(�kj�<k; a<k)�k(d�k) 8B 2M(�k); 8(�<k; a<k) 2 �<k �A<k, where �k = �j2J�kj

is a product measure.

If � satis�es R.2, we may say that � is a projective game or a game with projected types.

Remark 7. (1) One can always reduce the cardinality of J to (K+1)jN j or less by grouping,
for any ik 2 L, the variables faikjgj2J and f�kjgj2J according to the jN j-vector of dates at
which each player observes them, if ever.

(2) Regular projective multi-stage games can include all �nite multi-stage games (simply by

letting each player�s type be a coordinate of the state).

(3) Since distinct players can observe the same �kj; nature�s probability function in a reg-

ular projective multi-stage game need not satisfy the information di¤useness assumption of

Milgrom-Weber (1985).

(4) Under the continuous utility function assumption R.4, our convention of history-independent

action sets is no longer without loss of generality (see footnote 3).

In a regular projective game, de�ne B� � T � so that B 2 B� \ Tik i¤: 9a 2 A such that
PT (Bja) > 0, and B = (�(h;j)2M0ik

B0hj) � (�(n;h;j)2M1ik
Bnhj), where each B0hj is an open

subset of �hj and each Bnhj is an open subset of Anhj.

Then B� is a neighborhood basis for the essential types in the game and we may call B�

the product basis.

A product partition of �� A is a partition in which every element is a product of Borel
subsets of the �kj and Aikj sets.

For any ik 2 L; for any C � Tik; recall from Section 3 that hCi = f(�; a) 2 � � A :

� ik(��k; a<k) 2 Cg is the set of outcomes that would yield types in C:

Remark 8. For any F that is a �nite subset of B�, there exists a �nite product partition
Q of �� A such that for any C 2 F ; hCi is a union of elements of Q:

Theorem 5.2. Let � be a regular projective game and let Q be any �nite product partition

of ��A. Let F be a �nite subset of T � such that for any C 2 F ; hCi is a union of elements
of Q. Then for any " > 0, � has an (";F)-sequential equilibrium.
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Theorem 5.3. Every regular projective game � has an open sequential equilibrium � condi-

tioned on B�: Moreover, every open sequential equilibrium � of � induces an open sequential
equilibrium distribution �; and so � also has an open sequential equilibrium distribution.

5.1. Subgame Perfection

In light of Example 4.6, we provide here a result showing that open sequential equilibrium

and subgame perfection are mutually compatible for a large class of games.

Let � be any multi-stage game. For any s 2 S and for any date-k history (�0�k; a0<k) 2
��k � A<k; de�ne player i�s expected utility of s conditional on (�0�k; a0<k) by

Ui(sj�0�k; a0<k) =
Z
��A

ui(�; a)P (d(�; a)j(a0<k; s�k); (�0�k; p>k));

where (a0<k; s�k) 2 S denotes the strategy pro�le in which the pro�le of actions a0<k 2 A<k is
chosen with probability 1 by all types of the players from dates 1 to k � 1 and the strategy
pro�le employed in dates after k is s�k; and where (�

0
�k; p>k) denotes the probability function

of nature in which the state vector up to date k; �0�k 2 ��k; is chosen with probability 1
independently of the history and then p>k is employed to choose the state vector for dates

after k: Note that Ui(sj�0�k; a0<k) is well-de�ned whether or not the history (�0�k; a0<k) occurs
with positive probability under s:

Say that a date-k history (��k; a<k) 2 ��k�A<k is a subgame of � i¤ ��1ik (� ik(��k; a<k)) =
(��k; a<k) 8i 2 N: For any " > 0; a strategy s 2 S is an "-subgame perfect equilibrium of

� i¤ for every ik 2 L and for every subgame (��k; a<k) 2 ��k � A<k, Ui(ri; s�ij��k; a<k) �
Ui(sj��k; a<k) + " for every date-k continuation ri 2 Si of si:
Say that a mapping � : Y � B ! [0; 1] is a subgame perfect open sequential equilibrium

(conditioned on B) i¤B is a neighborhood basis for the essential types, and, for every " > 0;
for every �nite subset F of B, and for every �nite subset G of Y, there is an (";F)-sequential
equilibrium s such that s is "-subgame perfect and,

jP (Y jC; s)� �(Y jC)j < "; for every (Y;C) 2 G � F :

In a projective game, if some history up to date k; (��k; a<k); is a subgame, then all

players at date k always observe all of nature�s states from dates 1 to k and always observe

all players�actions from dates 1 to k� 1: Hence, all histories up to date k are subgames and
so we may say that date k is a subgame date. We will make use of this insight in the proof

of Theorem 5.4.
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Theorem 5.4. Every regular projective game � has a subgame perfect open sequential

equilibrium � conditioned on B�:

6. Proofs

Proof of Theorem 3.3. For each " > 0 and for each �nite subset F of B; by hypothesis
(and the axiom of choice) we may choose an (";F)-sequential equilibrium s";F 2 S: For any
(";F) and for any Y 2 Y ; P (Y jC; s";F) is de�ned for every C 2 F : Extend P (Y j�; s";F) to
all of B by de�ning

�P (Y jC; s";F) =
(
P (Y jC; s";F);
0;

if C 2 F
if C 2 BnF :

Then, f �P (�j�; s";F)g is a net in [0; 1]Y�B; with smaller positive numbers " and larger �nite
subsets F of B being further out in the (directed) index set. By Tychono¤�s theorem,

[0; 1]Y�B is compact and so there exists � 2 [0; 1]Y�B and a subnet f �P (�j�; s"�;F�)g that
converges to �:

The convergence (under the product topology) to � of the subnet implies that for every

" > 0; for every �nite subset F of B and for every �nite subset G of Y ; there exists � such
that "� < "; F� � F ; and

�� �P (Y jC; s"�;F�)� �(Y jC)�� < "; for every (Y;C) 2 G � F :
Since �P (Y jC; s"�;F�) = P (Y jC; s"�;F�) when C 2 F�; and since s"�;F� ; being an ("�;F�)-
sequential equilibrium is, a fortiori, an (";F)-sequential equilibrium, we conclude that � is
an open sequential equilibrium. Q.E.D.

Lemma 6.1. . Suppose that all �k; Aik are metric spaces with their Borel �-algebras, and

all � ik : ��k � A<k ! Tik and all pk : �<k � A<k ! �(�k) are continuous, with product

topologies on all product sets and the weak* topology on �(�k): If C � Tik is open and

PT (Cjs) > 0 for some s 2 S; then there exists a 2 A such that PT (Cja) > 0:

Proof of Lemma 6.1. Consider any ik 2 L and any open subset C of Tik and suppose

there exists s 2 S such that PT (Cjs) > 0:We wish to show that there exists â 2 A such that
PT (Cjâ) > 0: For this, it su¢ ces to �nd a nonnegative function g : � � A ! [0;1) that is
positive only on those outcomes that yield types inC and that satis�es

R
g(�; a)P (d(�; a)jâ) >

0:

There are two steps to the proof. The �rst step obtains a nonnegative function g :

� � A ! [0;1) that is positive only on outcomes (�; a) that yield types in C; i.e., only
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on hCi ; and that satis�es
R
g(�; a)P (d(�; a)js) > 0: The second step establishes inductively

that for each date k 2 f2; :::; jKjg: If there exists â>k 2 A>k such thatZ
g(�; a)P (d(�; a)j(s�k; â>k)) > 0;

then there exists âk�1 2 Ak�1 such thatZ
g(�; a)P (d(�; a)j(s�k�1; â>k�1)) > 0: (6.1)

These two steps su¢ ce because if
R
g(�; a)P (d(�; a)js) > 0 is true, then the hypothesis

in the induction step (6.1) is trivially true for k = jKj and so we may apply (6.1) iteratively
jKj times to obtain â 2 A such that

R
g(�; a)P (d(�; a)jâ) > 0:

First Step. Let Z = f(�; a) : � ik(��k; a<k) 2 Cg; i.e., Z = hCi : Then P (Zjs) = PT (Cjs) >
0 and Z is an open subset of � � A because � ik is continuous. Choose (�0; a0) in the in-

tersection of Z and the support of P (�js): Since � � A is a metric space, we may de�ne

de�ne g(�; a) = dist((�; a); (��A)nZ): Then
R
g(�; a)P (d(�; a)js) > 0 because the nonneg-

ative continuous function g is positive at the point (�0; a0) that is in the support of P (�js):
Moreover, g is positive only on Z:

Second Step. For any date k < jKj; for any �a 2 A and for any ���k 2 ��k; let �p>k(�j���k; �a)
denote the probability measure on �>k that is determined by (pk+1; :::; pK); i.e., for any

B = Bk+1 � :::�BjKj 2M(�>k); de�ne �p>k(Bj���k; �a) to be equal to:Z
B

pjKj(d�K j�>k; ���k; �a<K)pjKj�1(d�jKj�1j(�j)k<j<jKj; ���k; �a<jKj�1):::pk+1(d�k+1j���k; �a�k):

The assumed weak* continuity of each of nature�s functions p1; :::; pK implies that �p>k(�j��k; a)
is weak* continuous in (��k; a):

Suppose that there exists â>k such that
R
g(�; a)P (d(�; a)j(s�k; â>k)) > 0:We must show

that there exists âk�1 2 Ak�1 such thatZ
g(�; a)P (d(�; a)j(s�k�1; â>k�1)) > 0: (6.2)

The positive integral
R
g(�; a)P (d(�; a)j(s�k; â>k)) can be rewritten as,Z

h(��k; a�k)s�k(dakj��k; a<k)��k(d(��k; a<k)js�k�1) > 0; (6.3)

where h(��k; a�k) =
R
g(�; a�k; â>k)�p>k(d�>kj��k; a�k; â>k) is continuous (by the weak* con-
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tinuity of �p>k(�j��k; a�k; â>k)) and nonnegative, and where ��k(�js�k�1) is the marginal of
P (�js) on ��k � A<k:
We claim that there exists âk 2 Ak such that,Z

h(��k; a<k; âk)��k(d(��k; a<k)js�k�1) > 0: (6.4)

Indeed, if there is no such âk; then because h is continuous and nonnegative, h must be

identically zero on (support of ��k)� Ak: But this contradicts (6.3), proving the claim.
The proof is complete by noting that the left-hand side of (6.4) is equal to left-hand side

of (6.2). Q.E.D.

Proof of Theorem 5.2. For any (�; a) 2 �� A; let

f(�; a) = �k2Kfk(�kj�<k; a<k);

where we de�ne f1(�1j�<1; a<1) = f1(�1):
Let " be any strictly positive real number, let Q be any �nite product partition of ��A;

and let F be any �nite subset of T � such that, for any C 2 F ; hCi is a union of elements of
Q. We must show that � has an (";F)-sequential equilibrium.
For each of the �nitely many events C in F choose an action a 2 A such that PT (Cja) > 0

and let A0 denote the �nite set of all of these actions. Hence, maxa2A0 PT (Cja) > 0; 8C 2 F ;
and so we may de�ne  > 0 by  = minC2F maxa2A0 PT (Cja): Since adding actions to A0

can only increase ; we may assume without loss of generality that A0 is a product, i.e., that

A0 = �ik2L;j2JA0ikj where each A0ikj is a �nite subset of Aikj: Hence,

max
a2A0

PT (Cja) �  > 0;8C 2 F : (6.5)

Since payo¤s are bounded, we may choose a number v so that,

v > max
i2N;(�;a);(�0;a0)2��A

(ui(�; a)� ui(�0; a0)):

Because the number of periods of the game, jKj; is �nite,21 we may choose � 2 (0; 1) so
that,

(1� (1� �)jKj)v < "=2. (6.6)

21Games with a countable in�nity of periods can be handled by including the assumption that for any
" > 0 there is a positive integer n such that the history of play over the �rst n periods determines each
player�s payo¤ within " (e.g., games with discounting).
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Let m = maxik2L jA0ikj and choose � > 0 so that,

� < (�=m)jLj"=4: (6.7)

Since Q is a �nite product partition of ��A; it can be written as Q = (�k2K;j2JQ�kj)�
(�ik2L;j2JQAikj); for some �nite Borel measurable partitions Q�kj of �kj and QAikj of Aikj
8(ik; j) 2 L� J:
By the continuity of each player�s utility function on the compact set ��A and of f on

the compact set �� A; there are su¢ ciently �ne �nite re�nements Q1�kj of Q�kj and Q
1
Aikj

of QAikj 8(i; k; j) 2 N �K � J; such that for any (�; a) and (�0; a0) in the same element of
the partition (�k2K;j2JQ1�kj)� (�ik2L;j2JQ

1
Aikj
) of �� A;

jui(�; a)f(�; a)� ui(�0; a0)f(�0; a0)j � �; 8i 2 N: (6.8)

Let Q1 = (�k2K;j2JQ1�kj)�(�ik2L;j2JQ
1
Aikj
) and for each ik 2 L; let Q1Aik = �j2JQ

1
Aikj
. Then

each Q1Aik is a partition of Aik; and Q
1 is a product partition (of ��A) and a re�nement of

Q.

For each (ik; j) 2 L � J and from each element of the partition Q1Aikj of Aikj; choose

precisely one action, where the action that is chosen is from the set A0ikj whenever possible.

Let �ikj : Aikj ! Aikj map each partition element in Q1Aikj to the chosen action within it

and let A1ikj denote the union of all of the chosen actions. Then, A
1
ikj = �ikj(Aikj) and A

1 =

�ik2L;j2JA1ikj contains A0 = �ik2L;j2JA0ikj: For any a 2 A; let �(a) = (�ikj(aikj))ik2L;j2J .

Then, on each element of the partition �ik2L;j2JQ1Aikj of A; �(�) is constant and equal to the
unique action in A1 that is contained in that element of the partition.

Select precisely one point from each element of the partition �k2K;j2JQ1�kj of � and let
� : � ! � map each such partition element to the selected point within it. Then for any

(�; a) 2 � � A, (�(�); �(a)) and (�; a) are in the same element of the partition Q1: Hence,
by (6.8)

jui(�; a)f(�; a)� ui(�(�); �(a))f(�(�); �(a))j � �, 8(�; a) 2 �� A; 8i 2 N: (6.9)

Consider the �nite extensive form game with perfect recall that results when for every

ik 2 L; player i�s set of date-k strategies is restricted to those in Sik that are measurable
with respect to Q1 and that give positive probability only to actions in the �nite set A1ik:

Call this �nite game with perfect recall �0: Now restrict the strategies in �0 further so that

for any ik 2 L and regardless of ik�s type, player i�s date k strategy must choose a uniform
distribtion over A0ik � A1ik with probability at least �: This more restricted game, which we
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will call ��; is �nite and has perfect recall:

The Q1-measurability condition means that for any action-coordinate value aikj that a

player observes in the (regular projective) in�nite game, he observes (can condition on) in

�0 and �� only the partition element in Q1Aikj that contains it, and for any state-coordinate

value �kj that a player observes in the in�nite game, he observes (can condition on) in �0
and �� only the partition element in Q1�kj that contains it. Hence in both �0 and ��, a type

wik of player ik is any (�hj2M0ik
q1hj) � (�nhj2M1ik

q1nhj), where q
1
hj 2 Q1�hj 8hj 2 M0ik and

q1nhj 2 Q1Aihj 8nhj 2 M1ik: Let Wik denote the common �nite set of ik�s types in the �nite

games �0 and ��: Then Wik is a �nite partition of Tik:

Let s� 2 S be a Nash equilibrium of the agent normal form of ��. Then for any ik 2 L and
for any wik 2 Wik such that PT (wikjs�) > 0 and for any tik 2 wik; s�ik(�jtik) 2 �(A1ik) places
no more than total probability � on actions that are suboptimal among all actions in A1ik:

Therefore, (6.6) implies that for any ik 2 L and for any wik 2 Wik such that PT (wikjs�) > 0;

In �0; s�i is "=2-optimal for player i against s
�
�i given wik: (6.10)

We will show that s� is an (";F)-sequential equilibrium of �: That is, we will show that

for every ik 2 L and every C 2 F \ Tik;

(a) PT (Cjs�) > 0; and

(b) Ui(ri; s��ijC) � Ui(s�jC) + " for every date-k continuation ri 2 Si of s�i :

Consider any ik 2 L and any C 2 F \Tik: Since each s�ik places probability at least �=m
on each element of A0ik; s

� places probability at least (�=m)jLj on each a 2 A0: Hence, (6.5)
implies that,

PT (Cjs�) � (�=m)jLj > 0; 8C 2 F \ T ik; 8ik 2 L: (6.11)

This proves (a). We now turn to (b).

Fix, for the remainder of the proof, any ik 2 L and any C 2 F \ Tik:
Because C 2 F ; hCi is a union of elements of Q: Together with condition (R.2), this

implies that C is the disjoint union of sets of the form (�hj2M0ik
qhj)� (�nhj2M1ik

qnhj); where

each qhj is an element of Q�hj and where each qnhj is an element of QAnhj : On the other hand,

because Q1 re�nes Q; each qhj is a union of elements q1hj of Q
1
�hj

and each qnhj is the union of

elements q1nhj of Q
1
Aihj
: Hence, C is a union of sets of the form (�hj2M0ik

q1hj)�(�nhj2M1ik
q1nhj),

each of which is a type of player ik in the �nite game. Consequently,

C is the disjoint union of types of player ik in the �nite game. (6.12)
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Let ri be any strategy for player i in the original in�nite game that is a date-k continuation

of s�i : We must show that (b) holds.

De�ne the date-k continuation strategy r0i 2 Si of s�i as follows. For any h < k; de�ne
r0ih = s�ih: For any h � k; for any wih 2 Wih; for any tih 2 wih; and for any a1ih 2 A1ih; let
��1ih (a

1
ih) = faih 2 Aih : (�ihj(aihj))j2J = a1ihg and de�ne r0ih(a1ihjtih) so that,22

r0ih(a
1
ihjtih)PT (wihj(ri; s��i); �) =

Z
(�;a)2hwihi

rih(�
�1
ih (a

1
ih)j� ih(��h; a<h))P (d(�; a)j(ri; s��i); �):

This de�nes r0ih(�jtih) 2 �(A1ih) uniquely when PT (wihj(ri; s��i); �) > 0 and we may de�ne

r0ih(�jtih) to be constant in tih onwih and equal to any element of�(A1ih) when PT (wihj(ri; s��i); �) =
0: Because r0ih(�jtih) 2 �(A1ih) is constant for tih 2 wih; the strategy r0i 2 Si is feasible for the
�nite game �0:

Because s� is measurable with respect to (�(�); �(a)), the de�nition of r0i yields the

following:

The distribution of the discrete random variable (�(�); �(a))

is the same under each of the two probability measures

P (�j(ri; s��i); �) and P (�j(r0i; s��i); �) on �� A:23 (6.13)

Then,

Ui(ri; s
�
�ijC) =

R
hCi ui(�; a)P (d(�; a)j(ri; s

�
�i); p)

PT (Cjs�; p)
(6.14)

=

R
hCi ui(�; a)f(�; a)P (d(�; a)j(ri; s

�
�i); �)

PT (Cjs�; p)
;
since by R.5 p has density

f and carrying measure �

�
R
hCi ui(�(�); �(a))f(�(�); �(a))P (d(�; a)j(ri; s

�
�i); �)

PT (Cjs�; p)
+

�

PT (Cjs�; p)
; by (6.9)

=

R
hCi ui(�(�); �(a))f(�(�); �(a))P (d(�; a)j(r

0
i; s

�
�i); �)

PT (Cjs�; p)
+

�

PT (Cjs�; p)
; by (6.13)

22Recall from Section 2.1 that P (�js; �) is the probability measure over outcomes when the strategy pro�le
is s and nature�s probability function is �:
23This requires perfect recall of player i, the �-independence of the coordinates of �; and the property of

Q1 that: 8a; a0 2 A1; 8(nh; j) 2 L� J; if anhj and a0nhj are in the same element of Q1Anhj
; then anhj = a0nhj :
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�
R
hCi ui(�; a)f(�; a)P (d(�; a)j(r

0
i; s

�
�i); �)

PT (Cjs�; p)
+

2�

PT (Cjs�; p)
; by (6.9)

=

R
hCi ui(�; a)P (d(�; a)j(r

0
i; s

�
�i); p)

PT (Cjs�; p)
+

2�

PT (Cjs�; p)
;
since by R.5 p has density

f and carrying measure �

= Ui(r
0
i; s

�
�ijC) +

2�

PT (Cjs�; p)
; (6.15)

� Ui(s
�jC) + 2�

PT (Cjs�; p)
+
"

2
;
by (6.10) and since C is a union

of types for ik in the �nite game by (6.12)

� Ui(s
�jC) + 2�

(�=m)jLj
+
"

2
; by (6.11), where PT (Cjs�) = PT (Cjs�; p)

� Ui(s
�jC) + "; given the choice of � in (6.7). Q.E.D.

Proof of Theorem 5.3. Since � � A is a compact metric space it su¢ ces, by Remark 4,
to show that an open sequential equilibrium conditioned on B� exists. But this follows from
Theorem 3.3 because, by Remark 8 and Theorem 5.2, for any " > 0 and for any �nite subset

F of B�; there exists an (";F)-sequential equilibrium of �: Q.E.D.

Proof of Theorem 5.4. The proof has two steps.

Step 1. Let " be any strictly positive real number and let F be any �nite subset of B�:
In this �rst step, we will show that there exists s� 2 S that is both an "-subgame perfect
equilibrium and an (";F)-sequential equilibrium.
For any (�; a) 2 �� A; and for any k 2 K; let

fk(�; a) = �h>kfh(�hj�<h; a<h);

where we de�ne the product over the empty set to be 1, and so f jKj(�; a) = 1:

As noted in Remark 8 there exists a �nite product partition Q = (�k2K;j2JQ�kj) �
(�ik2L;j2JQAikj) of �� A such that for any C 2 F ; hCi is a union of elements of Q:
With these "; F ; and Q; follow the proof of Theorem 5.2 up to the point where s� is
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about to be de�ned, but replace (6.8) with stronger condition

��ui(�; a)fk(�; a)� ui(�0; a0)fk(�0; a0)�� � �; 8ik 2 L; (6.16)

replace (6.9) with the stronger condition,

��ui(�; a)fk(�; a)� ui(�(�); �(a))fk(�(�); �(a))�� � � 8(�; a) 2 �� A;8ik 2 L; (6.17)

and choose � so that (6.7) holds and also so that � < "=6:

Thus, we have � > 0 satisfying (6.6), � 2 (0; "=6) satisfying (6.7), a re�nement Q1 of Q
satisfying (6.17), �nite subsets A0 � A1 of A; a �nite partition Wik of Tik for each ik 2 L; a
�nite game �0 that is obtained by restricting players to strategies that are measurable with

respect to Q1 and that give positive probability only to actions in A1; and a �nite game ��
that further restricts the strategies so that for any ik 2 L and regardless of ik�s type, player
i�s date k strategy must choose a uniform distribtion over A0ik � A1ik with probability at least
�:

Since � 2 (0; 1) satis�es (6.6), the inequalities

� + � < 1 and (1� (1� � � �)jKj)v < "=2, (6.18)

hold for every � > 0 small enough.

Choose any � > 0 satisfying (6.18) and perturb the �nite game �� so that at every date k;

with independent probability � nature chooses �k uniformly from �k(�k) and further restrict

the players�strategies so that for any ik 2 L and regardless of player ik�s type, player i�s
date k strategy must choose a uniform distribtion over A1ik with probability at least �: This

perturbed game, denoted by ��;� ; is �nite, has perfect recall, and is such that every type

wik of every player ik occurs with positive probability. Henceforth, we restrict attention to

values of � > 0 that satisfy (6.18).

Let s� be a Nash equilibrium of the agent normal form of ��;� ; and let s� be the limit of

s� along a convergent subsequence as � ! 0: Then, by continuity, s� is a Nash equilibrium

of the agent normal form of the �nite game �� and so, exactly as in the proof of Theorem

5.2, s� is an (";F)-sequential equilibrium of �: It remains only to show that s� is "-subgame
perfect.

Consider any subgame (�̂�kâ<k) and any player ik 2 L: There is a unique ŵik 2 Wik

such that (�̂�k; â<k) 2 ŵik:24 Since every type wik 2 Wik, including ŵik 2 Wik; has positive

24As observed in Section 5.1, in a projective game, if some history up to date k; (��k; a<k); is a subgame,
then all players at date k always observe all of nature�s states from dates 1 to k and always observe all
players�actions from dates 1 to k � 1: So, in particular, ŵik � ��k �A<k:
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probability under s� ; there is a unique probability measure �� on ŵik that represents ik�s

beliefs about the past history given ŵik: Furthermore, because for any date h and for any

type of player ih; s�ih places no more than probability � + � on suboptimal actions in A
1
ih;

the second inequality in (6.18) implis that s�i is "=2-optimal for player i against s
�
�i given

ŵik in the unperturbed �nite game �0:

For any �; �� is a convex combination of a �xed �nite set of probability measures on ŵik:

Indeed, let (�0�k; a
0
<k) be the (unique) element of ��k(��k)� �<k(A<k) that is contained in

ŵik: Then ŵik can occur with positive probability under s� only if the players choose action

a0<k: Therefore, because nature can be independently perturbed to choose �
0
h at any date

h � k; and because ŵik is reached with positive probability when the players choose a0<k and
nature chooses �0h at each date h � k; �� will be a convex combination of elements of the

following �nite, and independent of �; set of probability measures on ŵik:

fPT (� \ ŵikj(a0<k; a00�k); ((�0h)h2H ; ph2KnH))=PT (ŵikj(a0<k; a00�k); ((�0h)h2H ; ph2KnH))gH2K; 25

where K = fH � K : PT (ŵikj(a0<k; a00�k); ((�0h)h2H ; ph2KnH) > 0g; and where a00�k can be any
�xed action in A�k since the distribution over ŵik does not depend on actions taken at dates

h � k. As already observed, K contains f1; :::; kg and so is nonempty.
Taking a further subsequence of f�g along which the weights in the �nite convex com-

bination �� all converge as � ! 0, we may let �� be the probability measure on ŵik that is

the convex combination obtained using the limit weights. Then, since s�i is "=2-optimal for

player i against s��i given ŵik in the unperturbed �nite game �0; by the continuity of �nite

convex combinations, s�i is "=2-optimal for player i against s
�
�i in �0 given beliefs �

� on ŵik:

That is, for all date-k continuations r0i of s
�
i that are feasible in �0;Z

ŵik

Ui(r
0
i ; s

�
�ij~��k; ~a<k)��(d(~��k; ~a<k)) �

Z
ŵik

Ui(s
�j~��k; ~a<k)��(d(~��k; ~a<k)) + "=2 (6.19)

Let ri 2 Si be any strategy for player i in the original in�nite game that is a date-k
continuation of s�i : Analogous to the proof of Theorem 5.2 we wish to de�ne a (di¤erent)

25Recall from Section 2.2 that PT (�j(a0<k; a00�k); ((�
0
h)h2H ; ph2KnH)) provides the distributions over the

players�types when the strategy pro�le is (a0<k; a
00
�k) and nature�s probability function is ((�

0
h)h2H ; ph2KnH)):

Here, (a0<k; a
00
�k) denotes the pure strategy pro�le that chooses the action (a

0
<k; a

00
�k) with probability 1, and

(�0h)h2H denotes the degenerate probability function for nature for dates in H that chooses the state (�0h)h2H
with probability 1.
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date-k continuation r0i 2 Si of s�i that is feasible in �0 and that implies the following.

The distribution of the discrete random variable (�(�); �(a))

is the same under each of the two probability measures

P (�j(â<k; ri;�k; s��i;�k); (�̂�k; �>k)) and

P (�j(â<k; r0i;�k; s��i;�k); (�̂�k; �>k)) on �� A: (6.20)

Note that (6.20) is a statement only about the distribution of (�(�); �(a)) conditional on

the subgame (�̂�k; â<k) in �: Since the subgame starting at (�̂�k; â<k) is itself a multi-stage

game, the existence of such a strategy for player i within this subgame has already been

demonstrated by the general construction in the proof of Theorem 5.2 and so there is no

need to repeat the argument. We can then extend this subgame strategy to the desired

strategy r0i for whole game � by de�ning r
0
i to choose any available action with probability 1

for any types tih such that h < k or such that the projection of tih onto ��k �A<k is not in
ŵik: For any h � k and for any tih whose projection onto ��k �A<k is in ŵik we may de�ne
r0i(�jtih) to be equal to the already de�ned subgame strategy r0i(�jt̂ih); where t̂ih is ih�s type
in the subgame (�̂�k; â<k) that coincides with tih except perhaps in the coordinate values

(�̂�k; â<k):

Then,

Ui(ri; s
�
�ij�̂�k; â<k)

=
R
��A ui(�; a)P (d(�; a)j(â<k; ri;�k; s

�
�i;�k); (�̂�k; p>k));

=
R
��A ui(�; a)f

k(�; a)P (d(�; a)j(â<k; ri;�k; s��i;�k); (�̂�k; �>k))

�
R
��A ui(�(�); �(a))f

k(�(�); �(a))P (d(�; a)j(â<k; ri;�k; s��i;�k); (�̂�k; �>k)) + �;

=
R
��A ui(�(�); �(a))f

k(�(�); �(a))P (d(�; a)j(â<k; r0i;�k; s��i;�k); (�̂�k; �>k)) + �;

=
R
ŵik

�R
��A ui(�(�); �(a))f

k(�(�); �(a))P (d(�; a)j(~a<k; r0i;�k; s��i;�k); (~��k; �>k))
�
��(d(~��k; ~a<k))

+ �;

�
R
ŵik

�R
��A ui(�; a)f

k(�; a)P (d(�; a)j(~a<k; r0i;�k; s��i;�k); (~��k; �>k))
�
��(d(~��k; ~a<k)) + 2�;
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=
R
ŵik

�R
��A ui(�; a)P (d(�; a)j(~a<k; r

0
i;�k; s

�
�i;�k); (

~��k; p>k))
�
��(d(~��k; ~a<k)) + 2�;

=
R
ŵik
Ui(r

0
i; s

�
�ij~��k; ~a<k)��(d(~��k; ~a<k)) + 2�;

�
R
ŵik
Ui(s

�j~��k; ~a<k)��(d(~��k; ~a<k)) + 2� + "=2;

� Ui(s�j�̂�k; â<k) + 3� + "=2;

� Ui(s�j�̂�k; â<k) + ";

where the �rst inequality follows from (6.17); the next equality follows from (6.20); the

equality after that follows because r0i; s
�
�i; and the integrand are measurable with respect to

Q1 and therefore are all constant on ŵik because every (~��k; ~a<k) 2 ŵik; including (�̂�k; â<k);
is in the same element of the partition of ��k � A<k de�ned by the projection of Q1 onto
date-k histories; the second inequality follows from (6.17); the third inequality follows from

(6.19); the fourth inequality follows from (6.17) because every (~��k; ~a<k) 2 ŵik; including
(�̂�k; â<k); is in the same element of the partition of ��k �A<k de�ned by the projection of
Q1 onto date-k histories, and because s� is therefore constant on ŵik since it is measurable

with respect to Q1; and the �nal inequality follows because � < "=6:

We conclude that s� is "-subgame perfect, which completes the �rst step.

Step 2. By the �rst step, there is a net fs";Fg such that for every " > 0 and for every �nite
subset F of B�; s";F is both "-subgame perfect and an (";F)-sequential equilibrium. Then,
as in the proof of Theorem 3.3, there exists � : Y � B� ! [0; 1] and a subnet fs"�;F�g such
that for every " > 0; for every �nite subset F of B� and for every �nite subset G of Y ; there
exists � such that "� < "; F� � F ; and

��P (Y jC; s"�;F�)� �(Y jC)�� < "; for every (Y;C) 2 G � F :
Since "� < " and F� � F imply that s"�;F� is, a fortiori, "-subgame perfect and an (";F)-
sequential equilibrium, we may conclude that � is a subgame perfect open sequential equi-

librium conditioned on B�. Q.E.D.
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