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Abstract. This paper studies the consequences of a minor change to the present value
formula for stock prices. In place of the squared-error-loss minimizing expected present
value of future dividends, we use a predictor optimal for the min-max preference relationship
appropriate in cases of ambiguity. With such “robust” predictions, the variance bound of
Shiller (1981) and LeRoy-Porter (1981) is reversed in spectacular fashion in that prices are
predicted to be far more volatile than what is observed in the data. We also investigate
an intermediate “partially robust” case in which the degree of ambiguity is limited, and
discover that such an intermediate model cannot be rejected in favor of an unrestricted time
series model with more than twice as many parameters.

1. Introduction

In 1981, Shiller (1981) and LeRoy and Porter (1981) sparked a controversy whose legacy even
today continues to occupy the attention of researchers in economics and finance. Their focus
was on the simplest present value model of stock prices: that a stock price corresponds to
the expected present value of the stock’s dividends discounted at a constant rate. Using the
orthogonality property of least squares projections (that projection errors are uncorrelated
with information used in constructing the projection), they showed that the actual present
value must be no less variable than its expectation, which according to the present value
model is the current stock price. In the data, this variance bound is violated in dramatic
fashion–stock prices are far more variable than subsequent realizations of dividend would
appear to permit.

The controversy involves why prices are so volatile–are stock prices influenced by fads or
“irrational exuberance”? Or, is something amiss with the volatility calculations, the treat-
ment of dividends, or the assumption of a constant discount factor? Much work has been
undertaken to pursue each of these latter three resolutions of the puzzle. For example, Flavin
(1983) focussed on whether the sampling variability in the volatility calculations could be
sufficient to generate the result even when the simple pricing model is true. Regarding divi-
dends, Marsh and Merton (1986) argued that if the dividend process is difference stationary
(rather than trend stationary, as Shiller had assumed), the variance bound is reversed. Time
series work suggested, however, that the trend-stationary assumption was more plausible
than the difference-stationary one (e.g. DeJong and Whiteman (1989)). Subsequent efforts
included development of volatility tests that loosen stationarity assumptions (e.g., Campbell
and Shiller (1987) and West (1988)).

Still, the controversy was unresolved. Perhaps if the nature of the econometric procedures
or the assumption regarding the dividend process were not the culprits, the fault might lie
with the economic environment. Indeed, the assumption of a constant discount factor was
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challenged quickly by LeRoy and LaCivita (1981) and Michener (1982), who showed that with
a stochastic discount factor (the intertemporal marginal rate of substitution) appropriate for
a representative risk-averse agent, some (but alas not enough) extra volatility would be
generated in stock prices.

In 1985, the controversy morphed into the more general but closely related “equity premium”
puzzle (Mehra and Prescott (1985)): the “excessively” volatile stock prices are associated
with a return to stocks that is too much larger than the very low return to bonds to be
explained in the context of the simplest asset pricing model unless the representative con-
sumer is unrealistically risk averse. Hansen and Jagannathan (1991) developed a version of
Shiller’s variance bound for more general economies which has facilitated the study of more
general specifications of preferences involving time-nonseparabilities (Constantinides (1990))
and state-nonseparabilities (Epstein and Zin (1989)) These modifications have not resolved
the controversy either (Otrok, Ravikumar, and Whiteman (2002)).

We illustrate a different approach: it isn’t sampling variability in volatility estimates, it
isn’t the dividend assumption, it isn’t the discount factor, it’s the expectation. We study
the simplest, Shiller-style present value model, and imagine that the predictions of future
dividends are not those of a forecaster minimizing squared error loss, but rather those of
a forecaster facing and dealing with ambiguity regarding the economic environment. That
is, the forecaster admits the possibility that the correct prediction model is unknown. To
accommodate such an unpleasant but realistic situation, as much decision-theoretic literature
suggests, the forecaster might behave in such a way as to mitigate the worst outcome that
could conceivably occur.

To motivate this minimax loss function, consider the following experimental example of an
agent’s aversion to uncertainty and of actions taken to minimize downside risk that was
originally proffered in Ellsberg (1961):

Experiment 1

There are two urns, labeled UrnI and UrnII , each containing a total of 100
chips painted either black or white. The subject is allowed to examine the
contents of UrnI and discovers that it contains exactly 50 white chips and 50
black chips. The subject is not permitted to examine UrnII other than to be
told it contains 100 chips colored either black or white, but in an unknown
ratio. The subject is given a list of four possible gambles:

(A) The chip drawn from UrnI is black.
(B) The chip drawn from UrnI is white.
(C) The chip drawn from UrnII is black.
(D) The chip drawn from UrnII is white.

Winning a bet entitles the agent to a prize of value, for example $100.

In studies replicating this experiment, the following preference orderings over gambles A
through D have been observed: A ∼ B Â C ∼ D.1 As noted by Gilboa and Schmeidler
(1989), who cite a version of this experiment in their seminal minimax decision theory work,
it is easy to see that there is no probability measure supporting these preference orderings
under expected utility maximization. Minimax decision theory is based on the following

1One example of a classroom experiment in which this result is exhibited is found in Study 1 of Fox and Tver-
sky (1995), which used 141 undergraduates at Stanford University, responding to a questionnaire consisting
of this and several other unrelated items that subjects completed for class credit.
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explanation of this preference ordering: Aversion to the uncertainty regarding the contents
of UrnII causes the agent to treat the worst case scenario among a set of possibilities as
the foundation of his prior probabilities on UrnII . Thus, the agent’s preferences represent a
desire to minimize potential downside risk.

In the present value prediction problem, this means replacing ordinary expectations of fu-
ture dividends with robust predictions. The standard reference for this in the economics
literature is Hansen and Sargent (2005), who for the most part employ state space methods
for calculating robust procedures. Such methods are convenient for numerical calculations,
but make analytic derivations difficult. Because the environment is simple and we wish to
illustrate the effect of robust decisions on economic outcomes, we utilize related “frequency
domain” procedures that build on Whiteman (1985), Whiteman (1986), and Kasa (2001).
As these procedures are arcane but not deep, we present details of the derivations to make
the paper self-contained. Briefly, we exploit the robust decision-maker’s aversion to serially
correlated errors to derive the robust present value stock price analytically.

Our results indicate that robust predictions can be quite different from ordinary (“least
squares”) predictions, and the robust expected present value of dividends can be quite
variable–so variable, in fact, that our initial univariate calculations (robust analogues of
Shiller’s) reverse the volatility relationship in dramatic fashion. It turns out, however, that
this result implies that the robust predictor is hedging against a potential degree of model
misspecification that, while possible, is extremely unlikely.

To obtain a reasonable limitation on the degree of robustness the predictor adopts, we employ
a version of the “evil agent” game of Hansen and Sargent (2005). In this game, the predictor
uses least squares methods, but plays a dynamic game against an evil “nature” who may
deliver dividend process different from those the forecaster believes to characterize the data.
Nature is constrained in how much noise she can add to the situation. With this formulation,
the question becomes one of how much freedom nature would have to possess to cause the
predictor agent to make present value predictions consistent with actual stock prices, and
whether this would be implausible. Our estimates of a simple evil agent game suggest that
the required freedom is not that great and that the other implications of the model might
not be implausible. That is, the “moderately robust” present value model generates prices
that are consistent with subsequent changes in dividends.

2. The Setup and the Variance Bound

Shiller (1981) begins with the simple present value model

(1) pt = Et

∞∑

k=0

γkdt+k.

where γ = 1/(1+r) with r the (assumed constant) real rate of interest, pt and dt are the real
stock price and divident at time t, and Et denotes conditional expectation given information
available at t. Shiller writes the model in terms of the ex post rational price series p∗t , which
is defined as the present value of the actual subsequent real dividends:

(2) p∗t =
∞∑

k=0

γkdt+k
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Clearly, as this requires us to have the actual dividend sequence out into the infinite future,
it is impossible to observe p∗t without error. Shiller notes that with a long enough dividend
sequence, we can observe an approximate p∗t by choosing a terminal date, making some
assumptions about the dividend series after that terminal date and then constructing the p∗t
series via backwards recursion usinng2

(3) p∗t = γ(p∗t+1 + dt+1).

In any case, from (1) and (2), we have

(4) pt = Et(p
∗
t )

which implies

p∗t = pt + εt

where εt is orthogonal to information available at time t (including pt). Then var(p∗t ) =
var(pt) + var(εt), and we have

(5) σ(p) ≤ σ(p∗),

That actual p is vastly more variable than measured p∗ is demonstrated in Shiller’s Figure
1 for the SP Composite Index from 1871-1979, as replicated below. The p∗ in the figure
was generated by the backwards recursion on (3) and an estimated r = 0.048, implying γ =
0.943. For the data in the figure, the estimated standard deviation of dividends σ(d) is 1.12
while σ(p) is 42.74 and σ(p∗) is 7.24. Note that prices volatility is about 34 times that of
dividends.

1860 1880 1900 1920 1940 1960 1980
−80

−60

−40

−20

0

20

40

60

80

100

120

Year

P
ric

e

S&P Composite Index 1871−1979

Shiller p*

S&P Composite Index

Figure 1. Shiller’s Figure 1

2The assumptions that Shiller makes about dividends after the terminal date are that they are smooth and
grow at the exponential growth rate taken out of the original data.



ROBUSTIFYING SHILLER 5

3. The Least Squares Prediction

To provide a benchmark for the robust present value calculation to be presented below,
in this section we present a first-principles derivation of the stochastic process for stock
prices implied by the present value model and the assumption that the dividend process
is stationary after detrending. This benchmark case involves computation of the so-called
“Hansen and Sargent (1980) formula”.3 The robust calculation of the ensuing section is an
example of the “robust Hansen-Sargent formula” of Kasa (2001).

We will assume that the agent’s information set includes current and past observations on a
trend-stationary dividend process; in fact, we will assume that the market forecasters know
that the data generating process for the detrended dividends (i.e., the “model”) coincides
with Wold representation, which we write

(6) dt =
∞∑

j=0

qjεt−j = q(L)εt E(εt) = 0 , E(ε2
t ) = 1

using the lag operator L and defining q(L) implicitly. Using (6) and (1), we have

(7) pt = Et

∞∑
j=0

γjdt+j = Et

(
q(L)

1− γL−1

)
εt = Et(p

∗
t ).

The coincidence of the Wold representation and the data generation process means that εt

is both statistically and economically “fundamental” for dt. Thus (6) not only represents
dividends via the Wold representation, but also generates dividends: (6) is the “correct”
model. We defer to the next section the case in which the representative investor is not so
sure about this.

The least-squares minimization problem the representative agent faces is to find a stochastic
process pt to minimize the expected squared prediction error E(pt − p∗t )

2. In terms of the
information known at date t, the agent’s task is to find a linear combination of current
and past dividends, or, equivalently, of current and past dividend innovations εt that is
“close” to p∗t . Writing pt = f(L)εt, the problem becomes one of finding the coefficients fj in
f(L) = f0 + f1L+ f2L

2 + ... to minimize E(f(L)εt− p∗t )
2. Using the technique in Whiteman

(1985), this problem has an equivalent, frequency-domain representation

(8) min
f(z)∈H2

1

2πi

∮ ∣∣∣∣
q(z)

1− γz−1
− f(z)

∣∣∣∣
2
dz

z

where H2 denotes the Hardy space of square-integrable analytic functions on the unit disk,
and

∮
denotes (counterclockwise) integration about the unit circle. The requirement that

f(z) ∈ H2 ensures that the forecast is causal, and contains no future values of the ε’s.
Expression (8) may seem exotic, but is quite simple: noting that on the unit circle z = eiω,
making the substitution and integrating with respect to ω from 0 to 2π, the expression calls
for minimizing the average value (or area under) the spectral density of the prediction error
pt − p∗t . Of course this follows from the fact that the variance of a process is equal to the
integral of its spectral density. In the next section, we shall study a forecaster who seeks a

3A survey of these methods can be found in Whiteman (1983).
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function f(z) to minimize not the average value on the unit circle, but the maximum value
on the unit circle.

The first-order conditions for choosing fj are, for j = 0, 1, 2, ...,

∂

∂fj

[
1

2πi

∮ ∣∣∣∣
q(z)

1− γz−1
− f(z)

∣∣∣∣
2
dz

z

]

= − 1

2πi

∮
zj

[
q(z−1)

1− γz
− f(z−1)

]
+ z−j

[
q(z−1)

1− γz−1
− f(z)

]
dz

z

= − 1

2πi

∮
zj

[
q(z−1)

1− γz
− f(z−1)

]
dz

z
− 1

2πi

∮
z−j

[
q(z−1)

1− γz−1
− f(z)

]
dz

z
= 0.(9)

Now change variables in the second contour integral to w = z−1, implying dw = −1(z−2)
and dz/z = −dw/w, with integration with respect to w being clockwise. Upon changing
variables in the first integral and multiplying by −1 to reverse integration back to clockwise,
the the two integrals in (9) become identical and the equality collapses to

(10) − 2

2πi

∮
z−j

[
q(z)

1− γz−1
− f(z)

]
dz

z
= 0.

Now define

(11) H(z) =
q(z)

1− γz−1
− f(z)

so that (10) becomes

(12) − 2

2πi

∮
z−jH(z)

dz

z
= 0.

This equality requires that for j = 0, 1, 2, . . . , twice the coefficient Hj in the Laurent ex-
pansion of H(z) valid for |z| = 1 equal zero. Multiplying by zj and summing over all
j = 0,±1,±2, ..., we find that

H(z) =
−1∑
−∞

where
∑−1

−∞ denotes an unknown function involving only negative powers of z. Then by
recalling the definition of H(z), we have

q(z−1)

1− γz−1
− f(z) =

−1∑
j=−∞

which is known as a “Wiener-Hopf” equation. Application of the “plussing” operator to
both sides of the equation yields:4

4The plussing operator is a linear annihilator operator that means “ignore negative powers of z.”
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[
q(z)

1− γz−1

]

+

− [f(z)]+ = 0

implying

(13) f(z) =

[
q(z)

1− γz−1

]

+

=

[
zq(z)

z − γ

]

+

which points to the fact that f(z) is, by construction, one-sided in non-negative powers
of z. We now use a method highlighted in Appendix A of Hansen and Sargent (1980) to
determine the form of the function in (13). First, note that the function being “plussed” in
(13) is well-behaved |z| < 1 except for a single simple pole at γ. By examining the Laurent
expansion of q(z) around γ, we are able to determine that the principle part (that is, the
part of the Laurent expansion containing negative powers of z) is P (z) = γq(γ)/(z − γ).
Second, we note that “plussing” involves simply subtracting off those parts. That is:

[A(z)]+ = A(z)− P (z)

where P (z) is the principle part of the Laurent series expansion of A(z). This implies

f(z) =

[
q(z)

1− γz−1

]

+

=

[
zq(z)

z − γ

]

+

=
zq(z)− γq(γ)

z − γ
.

To illustrate how the formula works, suppose detrended dividends are described by a first-
order autoregression; i.e., that q(L) = (1− ρL)−1. Then

pt = f(L)εt =
Lq(L)− γq(γ)

L− γ
εt =

(
1

1− ργ

)
dt.

In this simple first order case,

(14) σ(p) =

(
1

1− ργ

)
σ(d).

With γ = 0.943, as estimated from the S&P data, the largest σ(p) can be for stationary
dividends (|ρ| < 1) is about 22 times dividends. Estimating ρ from the same data, the ratio
is about 11, far short of the factor of 34 needed to match the observed volatility.

It is instructive to note that while the pricing formula (13) makes pt the best least squares
predictor of p∗t , the prediction errors pt − p∗t will not be serially uncorrelated. Indeed

pt − p∗t = γ

{
Lq(L)− γq(γ)

L− γ
− q(L)

1− γL−1

}
εt

=
−γ2q(γ)

L− γ
εt = −γ2q(γ)

L−1

1− γL−1
εt

= −γ2q(γ)
{
εt+1 + γεt+2 + γ2εt+3 + . . .

}
.

Thus the prediction errors will be described by a highly persistent (γ is close to unity)
first-order autoregression. But because this autoregression involves future εt’s, the serial
correlation structure of the errors cannot be exploited to improve the quality of the prediction
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of p∗t . The reason is that the predictor “knows” the model for price setting (the present
value formula) and the dividend process; the best predictor pt = Etp

∗
t of p∗t “tolerates”

the serial correlation because the (correct) model implies that it involves future εt’s and
therefore cannot be predicted. If one only had data on the errors (and did not know the
model that generated them), they would appear (rightly) to be characterized by a first-order
autoregression; fitting an AR(1) (i.e., the best linear model) and using it to “adjust” pt by
accounting for the serial correlation in the errors pt − p∗t would decrease the quality of the
estimate of p∗t . The reason is the usual one that the Wold representation for pt−p∗t is not the
economic model of pt−p∗t , and (correct) models always beat Wold representations. This also
serves as a reminder of circumstances under which one should be willing to tolerate serially
correlated errors: when one knows the model that generated them, and the model implies
that they are as small as they can be made.

4. The Robust Prediction Case

What happens in case the individual making the prediction of future dividends does not
know for certain that dividends are generated as in (6)? This notion of ambiguity was
introduced in the linear, time-invariant context we are studying in the engineering literature
by Zames (1981), and has been studied more generally in the economics literature by Gilboa
and Schmeidler (1989), Hansen and Sargent (2005) and others. In our setup, the ambiguity
would be manifested in possible departures from the moving average representation (6).
Following the development Kasa (2001) used in a related context, suppose the dividend
process is given by

(15) dt = [q(L) + ∆(L)] εt

where ∆(L)εt is a ”perturbation” of the original dividend process. Then if the forecaster
uses (13), the actual squared error loss LA = E[pt − p∗t ]

2 will be given by

LA = Lq + ‖∆(z)‖2
2 +

2

2πi

∮
∆(z)

[
q(z)

1− γz−1

]

−

dz

z

= Lq + ‖∆(z)‖2
2 +

2

2πi

∮
∆(z)

(
γq(γ)

z − γ

)
dz

z

= Lq + ‖∆(z)‖2
2 + 2q(γ) [∆(γ)−∆(0)]

where Lq is the loss when dividends are indeed generated by dt = q(L)εt. The second line
follows from the linear annihilator operator [·]− which means “ignore positive powers of z.”
This leaves only the principle part of the element in the brackets, which was shown earlier
to be γq(γ)/(z − γ). The third equality is a result of the application of Cauchy Residue
Theorem. The expression for LA indicates that the actual loss could be much larger than
Lq even for a small perturbation provided q(γ) is large. This result, combined with the
knowledge that the true dividend process is hard to come by, suggests that the forecast
should be constructed with greater robustness to model misspecification.

The problem with a misspecified model is that the “wrong” sequence of “errors” εt could
“excite” ∆(L) in such a way that very large prediction errors occur. To guard against this,
the predictor might wish to make forecasts that minimize the maximum possible squared
error loss rather than the average or expected squared error loss.

The robust predictor solves
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(16) min
f(z)∈H∞

max
|z|=1

∣∣∣∣
q(z)

1− γz−1
− f(z)

∣∣∣∣
2

⇔ min
f(z)∈H∞

max
|z|=1

∣∣∣∣
zq(z)

z − γ
− f(z)

∣∣∣∣
2

.

Unlike in the least squares case (8), where f(z) was restricted to the class H2 functions
finitely square integrable on the unit circle, the restriction now is to the class of functions
with finite maximum modulus on the unit circle, and the H2 norm has been replaced by H∞

norm.

To begin the solution process, note that there is considerable freedom in designing the
minimizing function f(z): it must be well-behaved (i.e., must have a convergent power series
in nonnegative powers of z on the unit disk), but is otherwise unrestricted. Further note
that zq(z)/(z − γ) can be thought of as the associated Laurent expansion, which is of the
form

zq(z)

z − γ
=

b−1

z − γ
+ b0 + b1(z − γ) + b2(z − γ)2 + ...

Intuitively, while in the least squares case f(z) is set to “cancel” all the terms of this series
except the first, here the object is to set f(z) to minimize a different function of the prediction
errors. Now define the “Blaschke factor” Bγ(z) = (z − γ)/(1− γz) and note that

∣∣∣∣
z − γ

1− γz

∣∣∣∣
2

=
(z − γ)(z−1 − γ)

(1− γz)(1− γz−1)
=

(z − γ)z−1(1− γz)

(1− γz)z−1(z − γ)
= 1.

Multiplying the objective by the Blaschke factor thus does not alter its value on the unit
circle, but the factor does cancel the pole at γ, yielding

min
{f(z)}

sup
|z|=1

∣∣∣∣
zq(z)

1− γz
− z − γ

1− γz
f(z)

∣∣∣∣
2

.

Defining

(17) T (z) =
zq(z)

1− γz

we have

(18) min
f∈H∞

sup
|z|=1

|T (z)−Bγ(z)f(z)| ⇔ min
f∈H∞

‖T (z)−Bγ(z)f(z)‖∞.

Define the function inside the ‖’s as

(19) φ(z) = T (z)−Bγ(z)f(z)

and note that φ(γ) = T (γ). Thus the problem of finding f(z) reduces to the problem of
finding the smallest φ(z) satisfying φ(γ) = T (γ):

min
φ∈H∞

‖φ(z)‖∞s.t. φ(γ) = T (γ)
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Theorem 4.1. (Kasa, 2001) The solution to (20) is the constant function φ(z) = T (γ).

Proof. To see this, first note that the norm of a constant function is the modulus of the
constant itself. This is written as

(20) ‖φ(z)‖∞ = ‖T (γ)‖∞ = |T (γ)|2.

Next, suppose that there exists another function Ψ(z) ∈ H∞, with Ψ(γ) = T (γ) and also

(21) ‖Ψ(z)‖∞ < ‖φ(z)‖∞.

Recall the definition of the L∞ norm, and using equations (20) and (21):

(22) ‖Ψ(z)‖∞ = sup
|z|=1

|Ψ(z)|2 < |T (γ)|2.

The maximum modulus theorem states that a function f which is analytic on the disk U
achieves its maximum on the boundary of the disk. That is

(23) sup
z∈U

|f(z)|2 ≤ sup
z∈∂U

|f(z)|2.

Therefore, we can see that

(24) sup
|z|<1

|Ψ(z)|2 ≤ sup
|z|=1

|Ψ(z)|2 < |T (γ)|2.

However, one of the values on the interior of the unit disk is z = γ, which can be plugged in
to the far LHS of equation (24) to get the result

(25) |Ψ(γ)|2 ≤ sup
|z|=1

|Ψ(z)|2 < |T (γ)|2 =⇒ |Ψ(γ)|2 < |T (γ)|2.

This contradicts the requirement that Ψ(γ) = T (γ). Therefore, we have verified that there
does not exist another function Ψ(z) ∈ H∞ such that Ψ(γ) = T (γ) and ‖Ψ(z)‖∞ < ‖φ(z)‖∞.

¤

Now that we have a form for φ(z), we can use it to find a formula for f(z). Recalling the
form of f(z) and completing some tedious algebra, we obtain

f(z) =
T (z)− φ(z)

Bγ(z)
=

zq(z)− γq(γ)

z − γ
+

γ2

1− γ2
q(γ)

which is the least-squares solution plus a constant. This means that after the initial period,
the impulse response function for the robust predictor is identical to that of the least squares
predictor. In the initial period, the least squares impulse response is q(γ), while the robust
impulse response is larger: q(γ)/(1−γ2). Recalling that γ is the discount factor, and therefore
close to unity, the robust impulse response can be considerably larger than that of the least
squares response. Relatedly, the volatility of prices in the robust case will be larger as well.
For example, in the first-order autoregressive case studied above,
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(26) pt = f(L)εt =
1

1− ργ
dt +

γ2

(1− γ2)(1− ργ)
εt

from which the variance can be calculated as

(27) σ2(pt) =

(
1

1− ργ

)2

σ2(dt) +
2γ2 − γ4

(1− ργ)2(1− γ2)2
.

Using the data from Figure 1, we have the values for σ(d), r, ρ and γ that we have been
using throughout this example, equation (27) gives us the result that σ(p) = 89.52.

The standard deviation of the actual price sequence in the SP dataset is 42.74. Thus when the
agent is robust to the most misspecification possible, the resulting price volatility will have a
standard deviation over twice as high as would be needed to exhibit the excess volatility seen
in the data: the robust present value model predicts prices that are substantially more volatile
than those seen in the data. The “robust puzzle” is therefore why prices are so smooth. The
reversal of the volatility relationship is apparent in the figure below.
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Figure 2. Robust Price Result

5. The Evil Agent Game

In this section we investigate an intermediate case in which the investor-predictor is behaves
robustly relative to a restricted set of possible models for dividends. In particular, following
Hansen and Sargent (2005), we consider a a game played between the predicting agent
and a malicious nature in which the degree of nature’s malevolence is restricted. This
restriction comes in the form of a cost associated with delivering excessively “noisy” dividends
to the agent. The solution procedure, taken from Whiteman (1986), requires only slight
modification from the development in sections 3 and 4.
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5.1. The Investing Agent’s Problem. Imagine that the dividend process investing agents
perceive is written as

dt = [q(L) + m(L)] εt ≡ C(L)εt.

Thus, the investor agent’s problem becomes to choose an analytic function f(z) in order to

(28) min
f(z)

1

2πi

∮ ∣∣∣∣
C(z)

1− γz−1
− f(z)

∣∣∣∣
2
dz

z
.

As above, the optimization in equation (28) leads to the following Weiner-Hopf equation:

(29)
C(z)

1− γz−1
− f(z) =

−1∑
−∞

.

5.2. The Evil Agent’s Problem. The Evil Agent’s problem in this game is to make it
as difficult as possible for the investing agent to make this prediction. However, there are
restrictions on how much power the Evil Agent (EA) has to exercise. The EA has control
over m(z), which, as seen above, is a component of the dividend process that Investing
Agents (IA) take as given. The following optimization shows the EA’s problem.

(30) max
C(z)

1

2πi

∮ ∣∣∣∣
C(z)

1− γz−1
− f(z)

∣∣∣∣
2

− θ

∣∣∣∣
C(z)− q(z)

1− γz−1

∣∣∣∣
2
dz

z

5.3. Solving the Evil Agent Game. First, we find the Weiner-Hopf equation that results
from the EA’s optimization problem.

0 =
1

2πi

∮ {
zj

1− γz−1

[
C(z−1)

1− γz
− f(z−1)

]
− θzj

1− γz−1

[
C(z−1)− q(z−1)

1− γz

]

+
z−j

1− γz

[
C(z)

1− γz−1
− f(z)

]
− θz−j

1− γz

[
C(z)− q(z)

1− γz−1

] }
dz

z

−→ (1− θ)C(z)

1− γz
−

[
(1− γz−1)

1− γz
f(z)

]
+

θq(z)

1− γz
=

−1∑
−∞

.(31)

We recall from (29) that the Investor Agent’s Weiner-Hopf equation can be written

C(z) = (1− γz−1)f(z) +
−1∑
−∞

.

After applying the plussing operator, this leaves

(32) C(z) =
[
(1− γz−1)f(z)

]
+

.

Using (32) in (31) and applying the plussing operator again, we have
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(33)
1− θ

1− γz

[
(1− γz−1)f(z)

]
+
−

[
(1− γz−1)

1− γz
f(z)

]

+

+
θq(z)

1− γz
= 0.

In order to proceed, we need to solve for the “plussed” elements of equation (33). The first
“plussed” term is equivalent to

[
(1− γz−1)f(z)

]
+

= f(z)− γ

[
f(z)

z

]

+

= f(z)− γ

[
f(z)− f0

z

]

= (1− γz−1)f(z) +
γf0

z
.(34)

Similarly,

(35)

[
(1− γz−1)

1− γz
f(z)

]

+

=
(1− γz−1)

1− γz
f(z) +

γf0

z
.

Using (34) and (35) in (33), we obtain (via somewhat length algebraic manipulation):

(36) f(z) =
zq(z)− γq(γ)

z − γ
+

γ2

θ − γ2
q(γ).

It is seen from (36) that f(z) takes a recognizable form. The first term in f(z) is the solution
to the standard prediction problem in the event that the forecaster is attempting to minimize
MSE, rather than playing the game against an Evil Agent. Therefore, we can see that a
forecaster using robust methods will end up using a function f(z) that looks like an MSE
forecast plus an extra term having to do with what he is trying to be robust against. Note
that the value of θ will control just how large a part the second term in (36) will play in
the forecast. Recall from (30) that θ is the Lagrange multiplier on the constraint the EA
faces. Changing the value for θ is interpreted as loosening or tightening the constraint faced
by the EA. As we increase θ, we make it more costly (in terms of the trade-off within his
optimization) for the EA to add noise to the system. As we decrease θ, we make it less
costly.

It turns out that there are two values for θ which make f(z) immediately recognizable. The
following relationship is clear from (36).

{
θ →∞ f(z) → MSE Result

θ ↓ 1 f(z) → H∞-norm Result

The H∞-norm result is one that has been shown earlier, and is a case where forecasters look
at trying to generate a forecast when faced with the worst possible model misspecification. A
natural question at this point would be to ask why the worst-case scenario does not occur at
θ = 0, as that is the value for θ that people naturally associate with a non-binding constraint
and therefore total freedom for the EA. The answer to this mystery lies in the saddle-point
nature of this optimization problem. The second order conditions for finding a maximum
are violated for values of θ ∈ (0, 1). Therefore, the lower limit on θ is equal to 1.

Now that a form for f(z) has been uncovered, the next question involves the final form of
C(z), that is: what do dividends look like to the investor agent? Further, we would like to
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know how much noise is being added by the EA in equilibrium. We pursue the form of C(z)
first by recalling equations (32) and (34), which gave us

(37) C(z) =
[
(1− γz−1)f(z)

]
+

.

Substituting from (36) into (37) results in another “plussing” problem:

C(z) =

[
(1− γz−1)

{
q(z)− γz−1q(γ)

1− γz−1

}
+ (1− γz−1)

{
γ2

θ − γ2
q(γ)

}]

+

which when solved using the methods shown above yields

(38) C(z) = q(z) +
γ2

θ − γ2
q(γ).

5.4. Additional Noise from the Evil Agent. Now that we have the form of C(z), we
can use the Cauchy Integral formula to solve for the present value of the noise added in by
the Evil Agent. We will denote the present value of the noise by η.

η =
1

2πi

∮ ∣∣∣∣
C(z)− q(z)

1− γz−1

∣∣∣∣
2
dz

z

=
γ4q2(γ)

(θ − γ2)2

1

2πi

∮
dz

(1− γz−1)(1− γz)z

=
γ4q2(γ)

(θ − γ2)2(1− γ2)

6. Empirical Results

Do parameterizations of the Evil Agent game do a good job of fitting the data? We begin
with the simplest possible univariate setup and then proceed to more realistic and complex
environments. In the univariate case, we use the dividend process that was used in Shiller
(1981). Thus

(39) q(L) =
1

1− ρL

where ρ = 0.95. The analytical results allow us to use any dividend process; this particular
choice reflects our desire to keep the initial model comparison between the results of Shiller
(1981) and this work as easy as possible.

6.1. Univariate θ Estimation. As a first pass, we took the function for price prediction
and asked, “given the data, what value of θ would create price volatility in our model equal
to that in the data?” This was done by assuming the dividends were generated by the AR(1)
process in Shiller (1981); the required θ = 1.62. To put this into context, we examine what
this implies the investor must be thinking about dividends.
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6.2. Detectability of θ. In the EA game, the final dividend process being targeted by the
IA is expressed by equation (38). This means that the variance calculation of the resulting
dividend process can be written:

var [C(L)εt] = σ2
ε

{(
1 +

γ2

θ − γ2
q(γ)

)2

+ c2
1 + c2

2 + c2
3 + . . .

}

= σ2
ε

{(
1 +

γ2

θ − γ2
q(γ)

)2

+ ρ2 + ρ4 + ρ6 + . . .

}

= σ2
ε

{(
1 +

γ2

θ − γ2
q(γ)

)2

+
ρ2

1− ρ2

}
(40)

Now, compare the result in equation (40) with the variance of dividends if they were produced
by the AR(1) process given above:

(41) var[q(L)εt] =
σ2

ε

1− ρ2
.

To compare the two, we calculate

var[C(L)εt]

var[q(L)εt]
=

σ2
ε

{(
1 + γ2

θ−γ2 q(γ)

)2

+ ρ2

1−ρ2

}

σε

1−ρ2

= (1− ρ2)

{(
1 +

γ2

θ − γ2
q(γ)

)2

+
ρ2

1− ρ2

}

= (1− ρ2)

(
1 +

γ2

θ − γ2
q(γ)

)2

+ ρ2

= 606.55,

which indicates that the investing agent is guarding against a dividend process that is quite
different from what has been observed. The problem with this comparison is that it does not
permit compromise: is there a θ that gets price variability “close” without making dividends
too variable? To study this, we will need to estimate a system which simultaneously fits
both the price and dividend processes.

6.3. Bivariate Estimation. We begin by specifying a general bivariate moving average
representation for dt and pt.:

(
dt

pt

)
=

(
A(L) B(L)
C(L) D(L)

)(
εdt

εpt

)
.

In order to accommodate the cross-equation restrictions implied by the present value rela-
tionship, we identify the system by restricting the innovations to be uncorrelated and unit
variance Guassian processes. It is possible to describe both the least-squares prediction prob-
lem and the Evil Agent game within this structure. In fact, the calculations of the previous
sections are now applied column by column, so that the elements of C(L) are functions of
the elements of A(L), and D(L) is a function of B(L). We choose to specify dividends as the
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sum of a persistent component (like Shiller’s AR(1) process) and a transitory component.
Then the restricted moving average representation in the least squares case is

(
ALS(L) BLS(L)
CLS(L) DLS(L)

)
=

(
A0

B0

1−bL
LA(L)−γA(L)

L−γ
LB(L)−γB(γ)

L−γ

)
=

(
A0

B0

1−bL

A0
B0

1−bγ

(
1

1−bL

)
)

while in the Evil Agent game the MA is

(
AEA(L) BEA(L)
CEA(L) DEA(L)

)
=

(
A0 + γ2

θ−γ2 A0
B0

1−bL
+ γ2

θ−γ2

(
B0

1−bγ

)

LA(L)−γA(L)
L−γ

+ γ2

θ−γ2 A(γ) LB(L)−γB(γ)
L−γ

+ γ2

θ−γ2 B(γ)

)

=

(
A0θ
θ−γ2

B0

1−bL
+ γ2

θ−γ2

(
B0

1−bγ

)

A0θ2

(θ−γ2)2
B0θ−γ2B0bL

(1−bL)(θ−γ2)(1−bγ)

)
.

6.4. State Space Formulations. By shifting into the state space, we can make use of
the powerful set of tools available via Kalman filtering. This requires that each system
be written in terms of a state and observer system. In order to estimate the system, we
construct a state-space formulation of each of these vector MA systems which will allow us
to use the Kalman filter to perform maximum likelihood estimation. The estimation will
find parameter values for A0, B0 and b in the least-squares system, and A0, B0, b and θ in
the Evil Agent game system.

6.4.1. Least-Squares State Space. The natural state of the system is the persistent component
of dividends:

(42) st = bst−1 + εpt

(43)

(
dt

pt

)
=

(
B0
B0

1−bγ

)
st +

(
A0 0
A0 0

)(
εdt

εpt

)

where equation (42) is the state equation and (43) is the observer equation. With this
forumlation, the Kalman filter can be used to evaluate the likelihood using a standard
procedure (see, e.g., Hamilton (1994)). We find the following estimates of the parameters:

A0 = 1.9894 , B0 = 1.2478 , b = 0.9998.

The log-likelihood of this model is -718.48. This will provide a benchmark by which to
evaluate the Evil Agent game model.

6.4.2. Evil Agent State Space. The state space for the Evil Agent game system can be written
in the following way:

st = bst−1 + εpt

(
dt

pt

)
=

(
B0
B0

1−bγ

)
st +

(
A0θ
θ−γ2

γ2B0

(θ−γ2)(1−bγ)
A0θ2

(θ−γ2)2
γ2B0

(θ−γ2)(1−bγ)

)(
εdt

εpt

)
.
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This system is estimated in exactly the same way as the least-squares system, thus demon-
strating the flexibility of state space methods for problems such as these. The estimation of
the system results in the following maximum likelihood estimates:

A0 = 1.1693 ∗ 10−5 , B0 = 1.1922 , b = 0.9998 , θ = 10.3037.

The log-likelihood of this model is -712.03. The improvement is significant over the least
squares model. Furthermore, when compared to the univariate estimate of θ, we that these
parameter values do not make dividends too variable. Because the estimated A0 is so small,
both dividends and prices are dominated by the persistent component, and thus the relevant
ratio in this case is

var[BEA(L)εt]

var[BLS(L)εt]
= (1− ρ2)

(
1 +

γ2

θ − γ2
q(γ)

)2

+ ρ2 = 1.2375.

Unlike the univariate case, this value for θ is very promising in terms of generating prices
and dividends which are simultaneously “close” to those in the data. The dividends in the
model would be roughly only 12% more volatile than those in the data.

The problem, however, lies not in the volatility ratio, but in the overall fit of the model.
While the evil agent model beats the least squares model, neither fare very well against a
slightly less restrictive model. In particular, the system

(44) st = bst−1 + εpt

(45)

(
dt

pt

)
=

(
B1

B2

)
st +

(
B3 0
B4 0

)(
εdt

εpt

)

achieves a value of the log likelihood about 100 higher than the evil agent system, indicating
that there is a long way to go in fitting dt and pt jointly.

6.5. More Sophisticated Data-Generating Processes. The answer to this challenge
lies in the use of more sophisticated processes for dividends and prices. The results of
the ARMA(3,1) process below demonstrates the power of the Investor-Evil Agent Game.
Consider the following bivariate ARMA(3,1) process.

(
dt

pt

)
=

(
A(L) B(L)
C(L) D(L)

)(
εdt

εpt

)
.

where

(46) A(L) =
ρ0

(1− ρ3L)(1− ρ4L)
, B(L) =

µ0(1− µ1L)

(1− L)(1− µ3L)(1− µ4L)
.

As seen earlier, the fully specified game between an investor and the Evil Nature results in
the following processes for C(L) and D(L).
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(47) C(L) =
LA(L)− γA(γ)

L− γ
+

γ2

θ − γ2
A(γ) , D(L) =

LB(L)− γB(γ)

L− γ
+

γ2

θ − γ2
B(γ).

We were led to this specification of A(L) and B(L) by an exploration of the likelihood
prompted by difficulties in estimating the model with general ARMA(3,1) specifications for
A(L) and B(L). We suspect that these difficulties were caused by near cancellations of
roots of the numerator and denominator polynomials of our specified ARMAs, together with
the presence of a highly persistent autoregressive component. Both maximum likelihood
estimation and exploration of a diffuse-prior Bayesian posterior by Markov Chain Monte
Carlo methods were much better behaved with the more parsimonious specification.

To determine the relevant unrestricted alternative to (46) and (47), note that for the given
A(L) and B(L), the cross-equation restrictions of the evil agent setup cause C(L) to be
ARMA(2,2) and D(L) to be ARMA(3,3). Thus the unrestricted model specification has

(48) A(L) =
α0

(1− α1L)(1− α2L)
, B(L) =

β0(1− β1)

(1− L)(1− β3L)(1− β4L)
.

(49) C(L) =
χ0(1 + χ1L)(1 + χ2L)

(1− χ3L)(1− χ4L)
, D(L) =

δ0(1− δ1)(1− δ2)(1− δ3)

(1− L)(1− δ5L)(1− δ6L)
.

It is helpful to note the way in which the models (the game model, the unrestricted model,
and the least-squares model) are nested. The least-squares model is nested within the game
model, by placing a restriction on one parameter: the LS model restricts θ to be ∞. The
unrestricted model nests the game model – the cross equation restrictions represent specific
restrictions on the values of the χ’s and δ’s in C(L) and D(L). Because of these nesting
relationships, comparison between models can be accomplished with a simple likelihood ratio
test.

6.6. The Model Estimates.

6.6.1. The Least-Squares Model. The estimation of the least-squares model is summarized
below.

Parameter Estimate Standard Error

ρ0 0.6694 0.046

ρ3 0.9181 0.046

ρ4 0.1676 0.104

µ0 0.1667 0.035

µ1 -0.4785 0.033

µ3 -0.0390 0.064

µ4 0.9784 0.016

Log-Likelihood Value: -589.63

Table I. Least-Squares Model Parameter Estimates
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6.6.2. The Game Model. The estimation of the game model is described below.

Parameter Estimate Standard Error

ρ0 0.5844 0.039

ρ3 0.6561 0.112

ρ4 0.1505 0.162

µ0 0.2704 0.063

µ1 -0.6767 0.038

µ3 0.5249 0.157

µ4 0.7639 0.122

θ 2.1645 0.135

Log-Likelihood Value: -577.77

Table II. Game Model Parameter Estimates

As can be seen by looking at the estimates of the maximum likelihood of both models, the
likelihood ratio test produces a rejection of the “restricted” model, the LS model, in favor
of the game model. This rejection is at the 99% level.
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6.6.3. The Unrestricted Time-Series Model. The estimation of the unrestricted model is
described below.

Parameter Estimate Standard Error

α0 0.5924 0.040

α1 0.5862 0.225

α2 0.3091 0.262

β0 0.1448 0.059

β1 0.9988 0.981

β3 0.0451 0.364

β4 0.0425 0.410

χ0 4.9994 1.001

χ1 0.1782 0.077

χ2 0.9999 0.996

χ3 -0.4469 0.090

χ4 0.5127 0.044

δ0 19.0235 1.042

δ1 0.6666 0.064

δ2 -0.6250 0.216

δ3 -0.6227 0.200

δ5 -0.2505 0.025

δ6 0.8350 0.084

Log-Likelihood Value: -569.32

Table III. The Unrestricted Model Parameter Estimates

Due to the fact that the unrestricted model has a total of ten fewer restrictions than the
game model, the likelihood ratio test critical value (at 95%) is approximately 18.3. The
test statistic in this case is 16.9, well inside the region in which we fail to reject the more
restrictive game model in favor of the pure time-series model listed above.

6.6.4. Analysis of Resuls. The results show that we reject the LS model in favor of the
Game model. This is significant, but not totally unexpected, given that we use an additional
parameter. However, we later see that untying the rational expectation cross-equation re-
strictions, creating the unrestricted model — giving the flexibility of ten additional free
parameters — this much less restrictive framework generates less of a gain over the Game
model than the Game model achieved over the LS model using a single additional parameter.
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7. Conclusion

In most modern economic models, agents deal in risk rather than uncertainty. In reality,
economic decision-makers are forced to account for both. This paper has placed the agents
in the model on the same footing as the authors of the model: the real world contains data
generating processes (DGP) for which we have estimates, but not certainties. Through the
mechanism of robust prediction and control, agents deal with this uncertainty by making
decisions that attempt to be insensitive to misspecifications of the DGP, something that
economic decision-makers in the real world could be doing as well to combat this uncertainty.

For the present value model of stock prices, the application of robust decision-making yields a
model whose behavior more closely mimics that of the actual data. With robust predictions,
asset prices display the “excess volatility” seen in actual stock prices. Thus not only is
uncertainty regarding the DGP realistic, it also suggests the resolution of economic puzzle in
a plausible manner. The possible resolution of the excess volatility puzzle by such a simple
modification in such a simple model suggests that the modification might bear fruit in other,
more complex models.
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