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1 Introduction

A risky asset (or gamble) yields uncertain returns according to a given proba-

bility distribution; these returns may be positive (gains) or negative (losses).1

How can gambles be compared to one another? Which is “less risky”? While

different decision-makers regard gambles differently—each according to his

own risk posture—we would like to capture in these comparisons the gam-

bles’ inherent riskiness. That is, we want to find objective ways to compare

gambles: independently of the specific decision-maker, and depending only

on the gambles themselves (i.e., on their outcomes and probabilities). Such

objective comparisons do exist, for instance, for the “return” of gambles

(compare their expectations) and their “spread” (compare their variances).

Moreover, these comparisons yield complete orders (i.e., any two gambles can

be compared). The aim of this paper is to do the same for riskiness—that

is, to provide complete and objective orders of riskiness.

Let g and h denote two gambles. There are situations where it is clear

that g is less risky than h; this is certainly so when g is obtained from h

by increasing some gain, by decreasing some loss, or by replacing a lottery

with its expectation. Combining these kinds of transformations yields the

well-known second-degree stochastic dominance order (see Hadar and Russell

1969, Hanoch and Levy 1969, Rothschild and Stiglitz 1970, 1971, Machina

and Rothschild 2008). As it turns out, there is an equivalent approach that

leads to the same comparison: g (second-degree) stochastically dominates

h if and only if all risk-averse decision-makers prefer2 g to h. This is a

natural approach since it is risk, after all, to which risk-averse decision-makers

are averse, and this aversion can be used to compare the riskiness of the

two gambles. However, it seldom happens that all decision-makers agree

which one of the two gambles is preferred to the other. Indeed, in general

1The values a gamble takes should be understood as net changes to the current wealth,
and not the final wealth.

2To streamline the text, we say “greater than” rather than “greater than or equal to”:
all comparisons should thus be understood in the weak sense. For example, “prefers”
means “prefers or is indifferent to,” and “rejected less” means “rejected less often or as
often.” Also, all the orders we consider are weak orders (from which the strict part and
the indifference part are easily deduced as usual).
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some will prefer the first to the second, others the second to the first—and

then stochastic dominance is silent. Formally, this means that the stochastic

dominance order between gambles is a partial (rather than complete) order—

in fact, very partial and far from complete.

Suppose now that decision-makers may choose whether to accept or reject

a gamble.3 But then, if both g and h are rejected, does it really matter in

this case that, say, g is preferred to h? This suggests a way to weaken the

requirement of stochastic dominance, by asking only that g be accepted more,

and thus rejected less, than h. We thus define a new order on gambles, which

we call “acceptance dominance”: g acceptance dominates h if every time

that g is rejected (by a risk-averse decision-maker) then so is h. The higher

aversion to h than to g is now expressed in the fact that h is rejected more

than g.

Clearly, the acceptance dominance requirement is a weakening of the

stochastic dominance requirement: if g is preferred to h and g is rejected,

then surely h is rejected (since the status quo is preferred to g, which in

turn is preferred to h). Therefore the acceptance dominance order extends

the stochastic dominance order. That it is an actual extension can be seen,

for example, by taking a gamble g with positive expectation and doubling its

outcomes (i.e., multiplying all gains and losses by 2); the resulting gamble

h = 2g turns out always to be acceptance dominated by g, even though it

can never be stochastically dominated by g (see Section 3.2 and Remark (2)

in Section A.1).

While acceptance dominance allows one to compare more pairs of gambles

than does stochastic dominance, it is still a very partial order: for general

gambles g and h, there are instances where g is rejected and h is accepted, and

other instances where h is rejected and g is accepted. The reason is that the

requirement that “in every instance that g is rejected h must also be rejected”

is a strong requirement, and thus hard to satisfy for general gambles g and h.

After all, g and h may take very different values, with different ranges, and

3A gamble is rejected whenever staying put at the current wealth (the “status quo”)
is preferable to taking the gamble, and accepted otherwise. See Section 5 (c) for further
discussion.
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it may be too much to expect that for all utility functions and all wealth

levels, the rejection of one gamble g will always imply the rejection of another

gamble h.

All this leads to the following idea: make the comparison only when the

rejection is “substantive,” in the sense that it holds over a significant range

of decision problems. That is, only a stronger, “uniform” rejection—not

just a single instance, but rather a whole range of rejections—should qualify

as evidence of the riskiness of gambles; thus, the gamble that is uniformly

rejected less is less risky and dominates the other. Since an acceptance or

rejection decision is characterized by a utility function and a current wealth

level, there are two simple ways to impose uniformity: one in which the

rejection is wealth-uniform (i.e., rejection by one utility function at all wealth

levels), and the other in which it is utility-uniform (i.e., rejection at one

wealth level by all utilities).4

We thus obtain two new orders on gambles, which we call “wealth-uniform

dominance” and “utility-uniform dominance.” Formally, g wealth-uniformly

dominates h if any risk-averse utility function that rejects g at all wealth

levels also rejects h at all wealth levels; and g utility-uniformly dominates h

if any wealth level at which all risk-averse utility functions reject g is also a

wealth level at which they all reject h. That is, in the former case g is wealth-

uniformly rejected less than h, and in the latter g is utility-uniformly rejected

less than h. Clearly, these two new orders extend acceptance dominance, and

thus a fortiori stochastic dominance: if every time that g is rejected h is also

rejected, then any uniform rejection of g implies the same uniform rejection

of h.

What may come as a surprise is that each one of these two uniform dom-

inance orders is in fact a complete order : any two gambles can be compared.

That is, for any g and h, either g wealth-uniformly dominates h, or h wealth-

uniformly dominates g; also, either g utility-uniformly dominates h, or h

utility-uniformly dominates g (but in general the two orders may yield dif-

4To ensure the soundness of these uniform requirements some standard regularity con-
ditions will be imposed on the class of utility functions that are considered; see Section
2.2 and the discussion in Section 5 (d) and (e).
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ferent comparisons). Thus, when one considers strong aversion to gambles

(i.e., aversion that is uniform with respect to wealth or utility), there is no

longer any ambiguity: of any two gambles, one is always rejected more.

Recently, two numerical measures of riskiness were introduced: the “eco-

nomic” index RAS developed by Aumann and Serrano (2008), and the “oper-

ational” measure RFH of Foster and Hart (2009a). We will show a notewor-

thy connection between our orders and these measures of riskiness: wealth-

uniform dominance is equivalent to RAS, and utility-dominance to RFH. That

is, g wealth-uniformly dominates h if and only if the AS-riskiness index

RAS(g) of g is less than or equal to the AS-riskiness index RAS(h) of h,

i.e., RAS(g) ≤ RAS(h); and g utility-uniformly dominates h if and only if the

FH-riskiness measure RFH(g) of g is less than or equal to the FH-riskiness

measure RFH(h) of h, i.e., RFH(g) ≤ RFH(h).

One can draw a parallel between our approach to riskiness and standard

decision and consumer theory. There are two models for rational choice:

one is based on comparing alternatives, which yields a “preference order”;

the other is based on assigning a number to each alternative, which yields a

“utility function.” The connection between the two is that a utility function

represents a preference order if and only if the preferred outcome has a higher

utility. Similarly, in the context of riskiness, the present paper provides the

“order” approach, while the papers of Aumann and Serrano (2008) and Foster

and Hart (2009a) provide the “numerical index” approach; the results stated

in the previous paragraph yield the connections (see also the discussion in

Section 5 (a)).

Another interesting observation is that the two ways of getting uniform

dominance further emphasize the “duality” between the AS-index and the

FH-measure (pointed out in Foster and Hart 2009a, Section VI.A, (iii)): the

AS-index looks for the critical utility regardless of wealth, whereas the FH-

measure looks for the critical wealth regardless of utility.

To summarize: taking into consideration the status quo given by the

current wealth level and the possibility to reject gambles has enabled us to

go beyond the standard stochastic dominance and compare gambles in terms

of their inherent and objective riskiness. Our approach may be summed up
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in the following three basic principles:

1. A gamble g is less risky than a gamble h whenever risk-averse decision-

makers are less averse to g than to h.

2. Aversion to a gamble is conveyed by its rejection.

3. Rejection of different gambles should be compared whenever it is sub-

stantive, i.e., uniform over a range of decisions.

Putting these together yields:

A gamble g is less risky than a gamble h whenever

g is uniformly rejected less than h by risk-averse decision-makers.

This principle yields two orders—wealth-uniform dominance and utility-uniform

dominance—which are complete orders, and moreover equivalent to the Au-

mann and Serrano (2008) index of riskiness and the Foster and Hart (2009a)

measure of riskiness, respectively.

The contribution of this paper is twofold: first, in showing how natural

and simple modifications allow one to complete the stochastic dominance

order, and thus compare any two gambles; and second, in providing a new,

ordinal approach to riskiness. Moreover, all this is carried out in one unified

and standard framework, which helps provide additional understandings and

insights into these concepts and their connections.

The paper is organized as follows. Section 2 includes the standard setup

and preliminaries. The various orders on gambles—from stochastic domi-

nance, through acceptance dominance, to our two uniform dominance orders—

are presented in Section 3, together with the main results. Section 4 is de-

voted to further results on wealth-uniform dominance and the Aumann and

Serrano (2008) index of riskiness. We conclude in Section 5 with a discussion

of various pertinent issues and possible extensions. The proofs, together with

some additional results, are relegated to the Appendix.
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2 Preliminaries

A gamble g is a real-valued random variable5 with positive expectation and

some negative values (i.e.,6 E [g] > 0 and P [g < 0] > 0); for simplicity,

assume that g takes finitely many values.7 Let G denote the collection of

all such gambles. For each gamble g in G, denote by Mg := max g the

maximal gain of g, and by Lg := max(−g) = −min g its maximal loss;

max |g| = max{Mg, Lg} is its overall bound. One should view a gamble as

the net returns of a risky asset; that is, the values of g represent the possible

changes in wealth that would occur if g is accepted (the positive values of g

are gains, and the negative ones, losses).

A (von Neumann and Morgenstern) risk-averse utility function u is a

strictly increasing and concave function8 u : R+→ R. “Risk aversion” is

represented by the concavity assumption: the utility of a sure outcome of a

is always at least as large as the expected utility of a random variable with

expectation a; i.e., u (E [X]) ≥ E [u(X)] for any random variable X. Let U
denote the collection of all such utility functions u.

2.1 Accepting and Rejecting Gambles

A decision-maker is characterized by a utility function u ∈ U and a wealth

level w > 0. The decision-maker accepts a gamble g ∈ G if E [u(w + g)] >

u(w), and rejects g if E [u(w + g)] ≤ u(w); i.e., a gamble is accepted if

the expected utility from accepting is higher than from staying put, and is

rejected otherwise.9

Remark. Since the utility u(x) is not defined for x ≤ 0, acceptance of g is

5The probability space on which this random variable is defined is irrelevant; only the
distribution of the gamble matters. We chose to work with random variables g rather than
their distributions G for convenience, as E [g] appears simpler than EG [·] .

6
E and P denote expectation and probability, respectively.

7See Section 5 (g).
8R = (−∞,∞) is the set of real numbers, and R+ = (0,∞) the set of positive numbers.
9The decision in the case of indifference (i.e., when E [u(w + g)] = u(w)) does not

matter. We could have acceptance instead of rejection, or even leave this undefined; while
some of the inequalities in the proofs may change from strict to weak and vice versa, none
of the final results are affected.
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considered only at wealth levels w such that10 w + g > 0, or w > Lg. Thus

statements such as “g is accepted by u at all w” should be understood to

refer to all w > Lg.

2.2 Regular Utilities

We will use two standard assumptions on utility functions propounded by

Arrow (1965, Lecture 2; 1971, page 96); these assumptions amount to certain

monotonicity relations between decisions and wealth levels. The first is that

acceptance increases11 with wealth: if u accepts a gamble g at wealth level w

then u accepts g also at any higher wealth level w′ > w. The second is that

acceptance decreases with relative wealth: scaling up both the gamble and

the wealth by the same factor that is greater than 1 decreases acceptance

(and thus scaling down by a factor that is less than 1 increases acceptance);

that is, if u rejects g at wealth level w then u also rejects12 λg at wealth level

λw for every λ > 1 (equivalently, if u accepts g at w then u accepts λg at

λw for every 0 < λ < 1).

For another way to state these conditions, assume13 that the utility func-

tions u ∈ U are twice continuously differentiable (i.e., of class C2) and

u′(x) > 0 for every x > 0. The Arrow–Pratt coefficient of absolute risk

aversion (“ARA”) of u at x is ρu(x) := −u′′(x)/u′(x), and the coefficient

of relative risk aversion (“RRA”) is ρ̃u(x) := −xu′′(x)/u′(x) = ρu(x)/(1/x)

(see Arrow 1965, 1971, and Pratt 1964). The first condition of “acceptance

increasing with wealth” corresponds to Decreasing Absolute Risk Aversion

(“DARA”): ρu is a decreasing function of wealth, i.e., ρu(x
′) ≤ ρu(x) for all

10w + g > 0 means that w + x > 0 for all values x of g. It is convenient to put
u(x) := −∞ for x ≤ 0 (which makes u concave over all R), and then for every w ≤ Lg we
have E [u(w + g)] = −∞ ≤ u(w), and so g is indeed rejected at such w.

11Recall that “increasing” and “decreasing” should always be understood in the weak
sense (i.e, they mean “nondecreasing” and “nonincreasing,” respectively); when needed,
we will use “strictly” explicitly.

12λg is the gamble where all outcomes of g have been multiplied by the factor λ (and
the probabilities are unchanged).

13The differentiability assumptions do not matter, as our concepts and constructs are
continuous with respect to pointwise convergence of the utility functions (and the gambles
are bounded).
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x′ > x (see Pratt 1964, Yaari 1969, Dybvig and Lippman 1983). Similarly, the

second condition of “acceptance decreasing with relative wealth” corresponds

to Increasing Relative Risk Aversion (“IRRA”): ρ̃u is an increasing function

of wealth, i.e., ρ̃u(x
′) ≥ ρ̃u(x) for all x′ > x . Let UDA := {u ∈ U : ρu(x)

decreases in x} and UIR := {u ∈ U : ρ̃u(x) increases in x} denote these two

collections of utilities.

Two special families of utilities (that belong to both UDA and UIR) are

the Constant Absolute Risk Aversion (“CARA”) utilities v̄α for α > 0, where

v̄α(x) := − exp(−αx) (and thus ρv̄α
(x) = α for all x), and the Constant

Relative Risk Aversion (“CRRA”) utilities ṽγ for γ ≥ 0, where ṽγ(x) :=

x1−γ/(1 − γ) for γ 6= 1 and ṽ1(x) = log(x) (and thus ρ̃ṽγ
(x) = γ for all

x > 0); let UCA := {v̄α : α > 0} and UCR := {ṽγ : γ ≥ 0}.
A final requirement imposed on a utility function u will be that no gamble

should always be accepted by u: for every g ∈ G there is w > Lg such that u

rejects g at w. Intuitively, when this condition is not satisfied it means that u

is willing to accept too many risks, and so is not sufficiently risk-averse (and

thus hardly qualifies to attest to the riskiness of gambles).14 Let Usr denote

this collection of utility functions (“sr” stands for “some rejection”).

Altogether, we will denote by U∗ := UDA ∩UIR ∩Usr the resulting class of

utilities; as we will see in Section A.4 in the Appendix, u ∈ U∗ if and only

if ρu decreases, ρ̃u increases, and limx→0+ u(x) = −∞ (the last condition is

equivalent to infx>0 ρ̃u(x) = limx→0+ ρ̃u(x) ≥ 1). In particular, U∗ contains

all CRRA utilities ṽγ with RRA coefficient γ ≥ 1, utilities that appear con-

sistent with observed behavior;15 it also contains utilities that are CARA

from some wealth on.16

We emphasize that we chose to work throughout with one collection of

utilities, U∗, for convenience only; see also the discussion in Section 5 (d) and

(e).

14For example, u(x) =
√

x does not belong to Usr (for instance, it always accepts the
half-half gamble on $4 and −$1), whereas both log(x) and −1/x do belong to Usr; see the
next paragraph.

15E.g., see Meyer and Meyer (2005), Palacios-Huerta and Serrano (2006).
16Take for instance v̂α(x) := (log(αx) − 1)/e for x ≤ 1/α and v̂α(x) := − exp(−αx) for

x ≥ 1/α; then ρv̂α

(x) = 1/x for x ≤ 1/α and ρv̂α

(x) = α for x ≥ 1/α and so v̂α ∈ U∗ for
each α > 0.
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2.3 Numerical Measures of Riskiness

How can one quantify the intrinsic riskiness of gambles—that is, assign to

each gamble a real number that measures its riskiness? Again, we want

to do this in an objective way, independent of any specific decision-maker.

Just as the “return” of the gamble (its expectation) and the “spread” of the

gamble (its standard deviation) depend only on the gamble itself (i.e., its

distribution: outcomes and probabilities) and are thus objective measures,

so the riskiness of the gamble should be.

Two such recent approaches are the “economic” index of riskiness de-

veloped by Aumann and Serrano (2008),17 and the “operational” measure of

riskiness of Foster and Hart (2009a).18 Although based on quite different con-

siderations, they turn out to be similar in many ways, and to share several

useful properties (besides being objective measures), such as monotonicity

with respect to (first- and second-degree) stochastic dominance; see Aumann

and Serrano (2008), Foster and Hart (2009a; Section VI.A compares the two

approaches), and Foster and Hart (2009b).

Formally, for every gamble g ∈ G :

• RAS(g), the Aumann–Serrano index of riskiness of g, is given by

E

[

exp

(

− 1

RAS(g)
g

)]

= 1.

That is, consider the equation E [exp (−αg)] = 1; it has a unique positive

solution α = α∗(g) > 0, i.e.,

E [exp (−α∗(g) g)] = 1, (1)

and then

RAS(g) :=
1

α∗(g)
(2)

17This index was used in the technical report of Palacios-Huerta, Serrano, and Volij
(2004); see the footnote on page 810 of Aumann and Serrano (2008).

18For a discussion of some of the earlier work, see Section VIII in Aumann and Serrano
(2008) and Section VI.D in Foster and Hart (2009a). The reason one is called an “index”
and the other a “measure” is explained in Foster and Hart (2009, Section VI.A); see also
Section 5 (a).
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(see Aumann and Serrano 2008, Theorems A and B).

This means that among the CARA utilities v̄α ∈ UCA, the one with

coefficient α = α∗(g) is always indifferent between accepting and rejecting g,

whereas all those with a higher absolute risk aversion coefficient α > α∗(g)

always reject g, and all those with a lower one α < α∗(g) always accept g;

here “always” stands for “at all wealth levels w.” We can informally say that

1/RAS(g) is the critical risk aversion level for g.

• RFH(g), the Foster–Hart measure of riskiness of g, is given by

E

[

log

(

1 +
1

RFH(g)
g

)]

= 0.

That is, consider the equation E [log(r + g)] = log(r); it has a unique positive

solution r = RFH(g) > Lg, i.e.,

E
[

log
(

RFH(g) + g
)]

= log
(

RFH(g)
)

(3)

(see Foster and Hart 2009a, Theorem 1).

That is, RFH(g) is the wealth level where the CRRA utility ṽ1 ∈ UCR

with RRA coefficient 1 (i.e., ṽ1(x) = log(x)) is indifferent between accepting

and rejecting the gamble g; at any higher wealth level w > RFH(g) the

utility ṽ1 accepts g, and at any lower wealth level w < RFH(g) it rejects

g. Informally, RFH(g) is the critical wealth level for g: to avoid decreasing

wealth and bankruptcy, g is rejected at any wealth level w below the measure

of riskiness RFH(g) of g; see Foster and Hart (2009a).

3 Comparing Gambles

This section presents the various orders on gambles, starting from the known

stochastic dominance and ending with our two new uniform dominance orders

in Sections 3.4 and 3.5, which also include the statements of the main results.

Let g and h be gambles in G; the objective is to find out when g “domi-

nates” h, in the sense that g is less risky than h, and thus risk-averse decision-

makers are less averse to g than to h.
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3.1 Stochastic Dominance

The first approach is based on “desirability”: if every risk-averse decision-

maker prefers g to h, this is a clear indication that g is less risky than h.

This yields the classical comparison known as “second-degree stochastic dom-

inance”19 (see Hadar and Russell 1969, Hanoch and Levy 1969, Rothschild

and Stiglitz 1970, 1971, Machina and Rothschild 2008): g stochastically dom-

inates h, which we denote20 g >S h (“S” stands for “stochastic”), if the

expected utility that g yields is always at least as large as that of h, i.e.,

E [u(w + g)] ≥ E [u(w + h)] (4)

for every u ∈ U and every21 w. Thus, given the choice between g and h, every

risk-averse decision-maker prefers g to h.

As is well known (see for instance the above references), g second-degree

stochastically dominates h if and only if there are h′ and h′′ that are defined

on the same probability space as g, such that the following holds: g ≥ h′ (i.e.,

in each state the realization of g is no less than the realization of h′); h′′ is

obtained from h′ by a sequence of mean-preserving spreads (which replace an

outcome x of h′ with a lottery whose expectation equals x); and h′′ has the

same distribution as h. That is, g can only have higher gains, lower losses,

or fewer lotteries, than h (more precisely, h′′).

Stochastic dominance yields a clear and uncontroversial order on gambles;

19“Second degree” refers to risk-averse utility functions (i.e., in U : strictly increasing,
and concave), whereas “first degree” refers to utility functions that are just strictly in-
creasing (and not necessarily concave). The second-degree order is thus an extension of
the first-degree order: if g first-degree stochastically dominates h, then g second-degree
stochastically dominates h (nevertheless, many authors restrict “second-degree” only to
the additional comparisons that go beyond the first-degree order, and then deal only with
pairs of gambles with identical expectations).

Since risk and risk aversion are of the essence in this paper, the second-degree order is
the relevant one, and so “stochastic dominance” will always be of the second degree.

20Recall that we deal throughout with the weak versions of the orders.
21At this point the reader may ask why is the wealth w used at all, as (4) is equivalent

to E [u(g)] ≥ E [u(h)] for all strictly increasing and concave u (take ũ(x) := u(w + x)).
Although this is indeed irrelevant for stochastic dominance (and also for acceptance dom-
inance; see below), it will become significant for our uniform dominance orders.
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however, it is a very partial order,22 with most pairs of gambles g and h being

incomparable: neither one stochastically dominates the other.

3.2 Acceptance Dominance

To weaken the requirement in (4), consider a decision-maker who rejects both

g and h; does it really matter in this case that he prefers g to h? This suggests

an alternative comparison criterion: g is accepted more than h, and so is

rejected less than h, by all risk-averse decision-makers. We thus say that23 g

acceptance dominates h, denoted g >A h (“A” stands for “Acceptance”), if

the following holds:

if g is rejected by u at w

then h is rejected by u at w,
(5)

for every u ∈ U and every w > 0. Formally:

E [u(w + g)] ≤ u(w) implies E [u(w + h)] ≤ u(w). (6)

It is immediate to see that >A is a partial order (i.e., reflexive and tran-

sitive). Moreover, (4) implies (6): if E [u(w + g)] ≥ E [u(w + h)] , then

E [u(w + g)] ≤ u(w) implies E [u(w + h)] ≤ u(w). Thus the acceptance dom-

inance order extends the stochastic dominance order: g >S h implies g >A h.

To see that acceptance dominance in fact goes beyond stochastic domi-

nance, take any gamble g ∈ G and put h := 2g (i.e., double all the outcomes;

any factor larger than 1 would work just as well). Although g cannot sto-

chastically dominate h (for instance, because E [g] < E [h] = 2E [g]), it turns

out that g acceptance dominates h, i.e., g >A h. Indeed, for every concave

22An order (sometimes called “preorder” or “partial order”) >∗ is a binary relation that
is reflexive (i.e., g >∗ g for any g) and transitive (i.e., g >∗ h and h >∗ k imply g >∗ k,
for any g, h, k). It is a complete (sometimes called “linear”) order if every pair g, h can be
compared (i.e., either g >∗ h or h >∗ g holds for any g, h).

23A more apt, if cumbersome, name would be “acceptance stochastic dominance” (the
term “stochastic” refers to the fact that only the distributions of the gambles—i.e., values
and probabilities—matter). Since all the orders in this paper are “stochastic,” we will
drop this word for simplicity (except in the case of the original stochastic dominance of
Section 3.1).
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function u we have 2u(w + x) ≥ u(w + 2x) + u(w), and so 2E [u(w + g)] ≥
E [u(w + h)] + u(w). Therefore (6) is satisfied: if u(w) ≥ E [u(w + g)]—i.e.,

g is rejected—then necessarily u(w) ≥ E [u(w + h)]—i.e., h is also rejected.

Although acceptance dominance allows us to compare more gambles than

stochastic dominance, it is still only a partial order, and for general gambles

g and h neither one will acceptance dominate the other. For example, let

g ∈ G be the gamble where one gains 20 or loses 10 with equal probabilities

of 1/2, 1/2, and h ∈ G the gamble where one gains 50 with probability 2/3

and loses 20 with probability 1/3; then u1(x) = log(x) at w1 = 21 accepts g

and rejects h, whereas u2(x) = −1/x at w2 = 39 rejects g and accepts h.

In Section A.1 in the Appendix we will provide a precise characterization

of acceptance dominance: it turns out to amount to stochastic dominance

between “dilutions” of the given gambles, where “diluting” a gamble means

taking it with a probability that may be less than one.

3.3 Uniform Rejection

As we have argued in the Introduction, the reason that acceptance dominance

does not allow one to compare most risks is that requiring (5) for each and

every instance, i.e., for every u and w, is too strong a condition. The values

of g and h may be very different, and then it would be hard to deduce from

the fact that a certain utility function u rejects g at a certain wealth level w

that exactly the same occurs for h.

This suggests that one seek stronger evidence of “aversion” to g before

requiring that the same hold for h. Thus, rather than a single instance of re-

jection, one should consider a whole range of rejections: “uniform rejection.”

Since an acceptance/rejection decision is characterized by a utility function

u and a wealth level w, there are two natural ways of doing so: uniformly

over the wealth levels, and uniformly over the utility functions. These two

“uniform dominance” orders will be the subject of the next two sections. For

simplicity we will from now on restrict ourselves to regular utility functions

u ∈ U∗, which guarantees that the uniform conditions do not become vacuous

(see however Section 5 (d) and (e)).
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3.4 Wealth-Uniform Dominance

We start with “wealth-uniformity”: a gamble g is wealth-uniformly rejected

by u if g is rejected by u at all wealth levels w.

Our first uniform order is thus defined as follows: a gamble g ∈ G wealth-

uniformly dominates a gamble h ∈ G, denoted g >WU h (“WU” stands for

“Wealth-Uniform”), whenever:

if g is rejected by u at all w > 0

then h is rejected by u at all w > 0,
[WU]

for every utility u ∈ U∗. That is, if g is wealth-uniformly rejected, then so is

h.

Formally:

(

E [u(w + g)] ≤ u(w) for all w > 0
)

implies
(

E [u(w + h)] ≤ u(w) for all w > 0
)

for every u ∈ U∗ (compare (6)). This captures the idea that a less risky

gamble is rejected less often; however, only when the rejection of g occurs at

all wealth levels—a strong premise—do we require that the same hold for h.

It is immediate to see that wealth-uniform dominance is a partial order

(reflexive and transitive), and that it extends acceptance dominance: g >A h

implies g >WU h.

Our main result here is:

Theorem 1 Wealth-uniform dominance >WU is a complete order on G that

extends stochastic dominance and acceptance dominance. Moreover, for any

two gambles g and h in G,

g >WU h if and only if RAS(g) ≤ RAS(h), (7)

where RAS denotes the Aumann–Serrano index of riskiness.

Thus, while it may appear from its definition that wealth-uniform domi-

nance, just like acceptance dominance, is only a partial order (i.e., not every
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pair of gambles may be compared), it turns out to be complete: for any

g, h ∈ G, either g >WU h or h >WU g. Moreover, (7) says that >WU is equiva-

lent to the order induced by the Aumann–Serrano index RAS; in other words,

RAS represents the wealth-uniform dominance order.24 The uniqueness of

RAS up to monotonic transformations is now an immediate consequence:

Corollary 2 (i) A real-valued function Q on G represents the >WU order

if and only if Q is ordinally equivalent to RAS (i.e., there exists a strictly

increasing function φ such that Q(g) = φ
(

RAS(g)
)

for all g ∈ G).

(ii) A real-valued function Q on G that is positively homogeneous of degree

one25 represents the >WU order if and only if Q is a positive multiple of RAS

(i.e., there exists a constant c > 0 such that Q(g) = cRAS(g) for all g ∈ G).

Corollary 2 should be compared to the main results of Aumann and Ser-

rano (2008, Theorems D and A). We have started from a simple “riskiness”

order on gambles—wealth-uniform dominance—and then showed that this

order is uniquely (up to monotonic or linear transformations) represented

by the Aumann–Serrano index. This parallels the standard route of deci-

sion theory and consumer theory, which starts with an order on outcomes (a

“preference” order) and then represents it by a numerical index (a “utility

function”). In our approach the WU-order yields the AS-index directly, with-

out any postulates (whereas Aumann and Serrano need continuity and strict

monotonicity with respect to first-order stochastic dominance; see Theorem

D and (6.1) in their paper); Section 4.2 below discusses this further.

The proof of Theorem 1 is relegated to Section A.3 in the Appendix; the

proof of Corollary 2 is completely standard and thus omitted. For additional

results see Section 4.

24Just like a consumer’s utility function represents his preference order on commodity
bundles. Note that in our case the order >WU and the riskiness function RAS go in
opposite directions: WU-dominance corresponds to lower riskiness.

25I.e., Q(λg) = λQ(g) for every λ > 0 and g ∈ G.
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3.5 Utility-Uniform Dominance

We come now to “utility-uniformity”: a gamble g is utility-uniformly rejected

at wealth level w if g is rejected by all utility functions u ∈ U∗ at w.

Our second uniform dominance order is thus defined as follows: a gamble

g ∈ G utility-uniformly dominates a gamble h ∈ G, denoted g >UU h (“UU”

stands for “Utility-Uniform”), whenever:

if g is rejected by all u ∈ U∗ at w

then h is rejected by all u ∈ U∗ at w,
[UU]

for every wealth level w > 0. That is, if g is utility-uniformly rejected, then

so is h. Formally:

(

E [u(w + g)] ≤ u(w) for all u ∈ U∗
)

implies
(

E [u(w + h)] ≤ u(w) for all u ∈ U∗
)

for every w > 0 (compare (6)). This is another way to capture the idea that a

less risky gamble is rejected less often; but now, only when the rejection of g

at a certain wealth level is by all decision-makers do we require the same for

h. The fact that this is a strong premise makes the requirement reasonable.

It is immediate to see that utility-uniform dominance is also a partial

order (reflexive and transitive), and that it extends acceptance dominance:

g >UU h implies g >A h.

Our main result here is:

Theorem 3 Utility-uniform dominance >UU is a complete order on G that

extends stochastic dominance and acceptance dominance. Moreover, for any

two gambles g and h in G,

g >UU h if and only if RFH(g) ≤ RFH(h), (8)

where RFH denotes the Foster–Hart measure of riskiness.

Thus every two gambles g, h ∈ G can be compared by utility-uniform
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dominance: either g >UU h or h >UU g. Moreover, (8) says that the Foster–

Hart measure RFH represents this order. We have:

Corollary 4 (i) A real-valued function Q on G represents the >UU order

if and only if Q is ordinally equivalent to RFH (i.e., there exists a strictly

increasing function φ such that Q(g) = φ
(

RFH(g)
)

for all gambles g ∈ G).

(ii) A real-valued function Q on G that is positively homogeneous of degree

one represents the >UU order if and only if Q is a positive multiple of RFH

(i.e., there exists c > 0 such that Q(g) = cRFH(g) for all g ∈ G).

Thus utility-uniform dominance determines RFH uniquely up to monotonic

transformations, and together with homogeneity up to a multiplication by a

constant (recall however that RFH has a clear “operational” interpretation

that pins it down completely; see Foster and Hart 2009a). Corollary 4 thus

captures only the “ordinal” aspects of the Foster–Hart measure (see also

Section 5 (a)).

Theorem 3 is proved in Section A.4 in the Appendix.

4 Variations on Wealth-Uniformity

In this section we provide an alternative approach to the wealth-uniform

order >WU, and connect our work to that of Aumann and Serrano (2008).

4.1 Wealth-Bounded Dominance

Acceptance dominance requires that if g is rejected by u at w then h is also

rejected by u at w; wealth-uniform dominance gets the same conclusion (that

h is rejected by u at w), but from a much stronger premise (that g is rejected

by u at all w′). But perhaps one should take some middle ground between

the rejection of g at a single wealth level in (5) and its rejection at all wealth

levels in [WU]: namely, rejection at a certain range of wealths.

Indeed, the premise in (5) that g is rejected by u at w tells us very

little about the values of u outside the interval [w + min g, w + max g] =

[w−Lg, w + Mg]. But w + h may well have outcomes that are far away from
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this interval, which explains why it is hard, except in special cases, to deduce

that every u that rejects g at w also rejects h at w (this is why acceptance

dominance is only a partial order). It also suggests that, in order to deduce

that h is rejected at w, one may want to strengthen the premise on g and

require that g be rejected not just at w itself, but also at all wealth levels in

a certain interval around w—an interval that is determined by (the ranges

of outcomes of) g and h.

We thus introduce another order: a gamble g ∈ G wealth-boundedly dom-

inates a gamble h ∈ G, denoted g >WB h (“WB” stands for “Wealth-

Bounded”), whenever there exists a bound b < ∞ (that depends only on

g and h) such that

if g is rejected by u at all w′ with |w′ − w| ≤ b

then h is rejected by u at w,
[WB]

for every utility u ∈ U∗ and wealth w > 0.

We emphasize that the bound b depends only on the two gambles g and

h, but applies to all utility functions u ∈ U∗ and all wealth levels w > 0.

The special case of b = 0 corresponds to (5), and so [WB] enables us to

compare more gambles than acceptance dominance.26 Moreover, since we

are dealing with utility functions u ∈ U∗ ⊂ UDA for which rejection decreases

with wealth, rejection at all w′ in the interval [w − b, w + b] is equivalent to

rejection at its higher end w + b, and so [WB] can be restated as “if g is

rejected at w + b then h is rejected at w, ” or (replace w with w + b),

if g is rejected at w then h is rejected at w − b

(equivalently, “if h is accepted at w then g is accepted at w + b”). Thus,

although we no longer require, as in acceptance dominance, that the rejection

of g at w implies the rejection of h at the exact same wealth level w, we do

require that it implies the rejection of h at a wealth level that is lower than

w by at most b; equivalently, acceptance of h at w implies acceptance of g

not necessarily at the same w, but at a wealth level that is higher by at most

26One could also say that b = ∞ corresponds to [WU].
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b. Moreover, as we will see in Section A.3 in the Appendix (see the Remark

immediately following the Proof of Theorem 1 and Proposition 5), one can

always take b = Lg + Mh ≤ max |g| + max |h|, and so b is of the same order

of magnitude as the outcomes of the two gambles.27

It is immediate that >WB is a partial order, lying between >A and >WU:

if g >A h then g >WB h (take b = 0), and if g >WB h then g >WU h

(when g is rejected at all w we can apply [WB] to each w separately). Thus

>WB may compare fewer pairs of gambles than the order >WU; however, it

turns out that these two orders are equivalent (and thus, recalling Theorem

1, complete).

Proposition 5 Wealth-uniform dominance and wealth-bounded dominance

are equivalent: g >WU h if and only if g >WB h, for every g, h in G.

4.2 The Duality Axiom and the Duality Order

The approach of Aumann and Serrano (2008) is based on their duality axiom.

Though on the face of it this postulate seems very reasonable, on closer

inspection it turns out to be relatively complex, and its rationale not entirely

straightforward. In particular, it involves two decision-makers and the index

itself (besides the two gambles that are compared).

Formally, Aumann and Serrano (2008) proceed as follows. They call a

utility function28 u ∈ U uniformly no less risk-averse than a utility function

v ∈ U , written u D v, if whenever the utility u accepts a gamble g at some

wealth w, the utility v accepts that gamble g at any wealth w′; and u is called

uniformly more risk-averse than v, written u ⊲ v, if u D v and v 4 u. The

duality requirement on a real-valued function Q defined on G is that, for any

27Adding the requirement b ≤ Lg + Mh, or b ≤ max |g| + max |h|, to [WB] would make
the resulting order appear no longer transitive (though it is transitive by Proposition 5
and Theorem 1). A note of caution: if g is rejected at w, and w′ = w−b with b = Lg +Mh,
then all the outcomes of w′ + h are less than or equal to all the outcomes of w + g (i.e.,
max(w′ + h) = w′ + Mh ≤ w − Lg ≤ min(w + g)), and so in particular E [u(w′ + h)] ≤
E [u(w + g)] ≤ u(w); however, this does not immediately imply the rejection of h at w′,
which amounts to the stronger inequality E [u(w′ + h)] ≤ u(w′).

28In this section we work with general utilities in U (see Remark (2) following the Proof
of Proposition 6 in Section A.5 in the Appendix).
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u ⊲ v u ⊲ v

u accepts h u accepts g

v accepts h v accepts g

Figure 1: The Duality Axiom

two gambles g, h ∈ G, any two utilities u, v ∈ U , and any wealth w:

if











u ⊲ v,

Q(h) > Q(g), and

u accepts h at w,

then v accepts g at w.

(9)

What duality says is that if a more risk-averse utility u accepts h, then

a less risk-averse utility v should accept a less risky gamble g, where “less

risky” is taken according to the yet-to-be-determined index Q. Thus one

deduces something about the pair (v, g) (namely, that v accepts g) from

an assumption on the pair (u, h) (namely, that u accepts h); see Figure 1.

This requires replacing one utility with another, and at the same time also

one gamble with another (represented by the diagonal arrow in Figure 1).

Now the premise that u ⊲ v allows one to replace the utilities while keeping

the gamble fixed (these are the vertical arrows): from (u, h) to (v, h), or,

alternatively, from (u, g) to (v, g) (indeed, if u accepts h then v accepts h,

and the same holds for g). What is missing is a reason to replace the gambles

while keeping the utility fixed (i.e., the horizontal arrows): from (u, h) to

(u, g), or from (v, h) to (v, g).
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This discussion suggests dealing directly with these “horizontal” impli-

cations and dispensing with the rest—which is precisely what our wealth-

uniform dominance does.

To see this formally, we define another order on gambles: g >D h (“D”

stands for “Duality”) whenever

if g is rejected by v at w

then h is rejected by u at w,
(10)

for any two utilities u, v ∈ U with u ⊲ v and any wealth29 w; equivalently, if

h is accepted by u at w then g is accepted by v at w. Using the >D order,

the duality axiom (9) can be restated as: for any gambles g, h ∈ G,

Q(g) < Q(h) implies g >D h. (11)

How does this relate to our approach? We have:

Proposition 6 For any two gambles g, h ∈ G,

g >WU h if and only if g >D h.

Thus, the two orders >WU and >D turn out to be identical. That should

not be surprising, since, after all, the wealth-uniform dominance >WU essen-

tially provides the missing horizontal implications in Figure 1 (see Section

A.5 in the Appendix for a precise proof). In view of Theorem 1, it follows

that

Corollary 7 A real-valued function Q on G represents the >D order if and

only if Q is ordinally equivalent to RAS.

Corollary 7 does not yet yield the result of Aumann and Serrano (2008),

since the duality axiom is weaker than the requirement that Q represents

29Note the similarity with (5); however, while one agent v is assumed to reject g, it is
another agent u who rejects h. The fact that u ⊲ v, i.e., u is (wealth-)uniformly more
risk-averse than v, implies that the rejection becomes a wealth-uniform rejection; see
Proposition 6.
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the >D order (i.e., Q(g) ≤ Q(h) if and only if g >D h; compare this with

(11))—which explains the need of Aumann and Serrano (2008) to appeal to

additional axioms: either homogeneity (in their Theorem A), or continuity

together with monotonicity with respect to first-order stochastic dominance

(in their Theorem D); see also Section X.N of their paper for counterexamples

without these additional conditions. In Section A.5 in the Appendix we

provide simple alternative proofs for these two results of Aumann and Serrano

(2008), based on our Proposition 6 (whose proof is also simple).

In summary, there are now two alternative approaches to the Aumann–

Serrano index of riskiness.30 The first is based on the duality postulate:

Theorem D in Aumann and Serrano (2008) (see also our Proposition 19 in

Section A.5), or Corollary 7 above. The second is based on wealth-uniform, or

wealth-bounded, dominance: Corollary 2 or Proposition 5. We believe that

the second one, as introduced in the present paper, captures the Aumann–

Serrano riskiness in a starker and more basic form; after all, at the basis

of the duality axiom lies wealth-uniform dominance, and so using this order

directly simplifies and streamlines the whole approach.31

5 Discussion

This section discusses a number of issues and presents some possible exten-

sions.

(a) Ordinal approach to riskiness. The approach to riskiness in this paper

is ordinal, in the sense that we compare gambles (and the end results are

complete orders), whereas the numerical measures of Aumann and Serrano

30Another one is the axiomatization in Foster and Hart (2009b).
31For wealth-uniform dominance we require the decision-makers to have monotonic de-

cisions (i.e., u ∈ UDA; see Section 5 (d) and (e), and the Remark at the end of Section A.3
in the Appendix). We regard this natural regularity condition as a small price to pay to
get rid of the two decision-makers and the more complex rationale of the duality postulate.
To further clarify this, note that the “horizontal” implications in Figure 1 hold for utilities
in UDA, but not for general utilities in U . To overcome this, Aumann and Serrano (2008;
see the Proof of Theorem A) take two utilities u, v with u ⊲ v, which implies the existence
of CARA utilities “between” u and v—and for CARA utilities the horizontal implications
hold.
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(2008) and Foster and Hart (2009a) may be viewed as cardinal, as they

associate a numerical value to each gamble;32 Theorems 1 and 3, respectively,

provide the connections.

Now the Foster–Hart measure of riskiness has a clear (and “operational”)

interpretation: the critical wealth levels below which accepting gambles may

lead in the long run to decreasing wealth and bankruptcy; therefore, applying

a monotonic transformation to it may not make much sense. In contrast, the

derivation and interpretation of the Aumann–Serrano index of riskiness—

which have to do with the critical risk aversion coefficient—are less conclusive

in pinning down this index within the class of all its monotonic, or linear,

transformations (cf. Theorems D and A in Aumann and Serrano 2008; see

also Section IV.C there). In a sense, the Aumann–Serrano index seems to

be more of an ordinal concept, whereas the Foster–Hart measure is more

cardinal.

Finally, note that the Foster and Hart (2009a) approach applies to general

setups that go beyond utility and expected utility.

(b) Duality between wealth and utility. As noted already in Foster and

Hart (2009a, Section VI.A), the constructions of the Aumann–Serrano index

and the Foster–Hart measure exhibit an interesting duality between wealth

and utility. The approach of the current paper further underscores this du-

ality: wealth-uniformity yields the critical utility (and the AS-index), and

utility-uniformity yields the critical wealth (and the FH-measure).

(c) Status quo. A basic ingredient that enabled us to go beyond the

classical stochastic dominance is the status quo, i.e., the current wealth level

(indeed, stochastic dominance looks only at the final outcomes). Allowing the

decision-makers to reject gambles—rather than just choose which one they

prefer—yields additional comparisons between gambles (even before going to

the uniform dominance orders). For example, the fact that all risk-averse

decision-makers reject λg more often than g, for any gamble g ∈ G and any

factor λ > 1 (as acceptance dominance shows; see Remark (2) in Section A.1),

32In parallel to decision theory: preference orders (ordinal) vs. utility functions
(cardinal).
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is a “universal” property that lies below the radar of stochastic dominance

(because the status quo and rejection are not seen there).

The idea of status quo together with acceptance and rejection is of course

not new (see, e.g., Yaari 1969), and it is already embodied in the Aumann

and Serrano (2008) and Foster and Hart (2009a) approaches. More generally,

the relevance and significance of the status quo has been pointed out in many

setups, theoretical and behavioral (e.g., Kahneman and Tversky 1979, Rabin

2000, and many others).

(d) Regular utilities. We have chosen to use one class of utilities for

both wealth-uniform and utility-uniform dominance; this is more elegant

and makes the comparisons clearer. However, as we will see in the Appendix

(see the remarks at the end of Sections A.3 and A.4), for wealth-uniform

dominance we could replace U∗ by, say, UDA, and for utility-uniform domi-

nance, by UIR∩Usr′ . This is yet another “duality”: of Arrow’s two conditions

(recall Section 2.2), the one that acceptance increases with wealth is used for

>WU and RAS, whereas the other one that acceptance decreases with relative

wealth is used for >UU and RFH.

(e) General utilities. Without some regularity assumptions on the ac-

ceptance/rejection decisions, the uniformity requirements used in our orders

become vacuous (and so one does not go beyond acceptance dominance).

Indeed, a utility function whose risk-aversion coefficient oscillates up and

down33 will have decisions that oscillate between rejection and acceptance

as the wealth changes—see Proposition 11 in Appendix A.2—and will thus

contradict the behavior of utilities with monotonic decisions (for an explicit

example, see Section 5.3 in Hart 2009); but how reasonable are decision-

makers that, say, accept a gamble g at wealth $1000 and at wealth $1002,

but reject it at wealth $1001?

(f) Comparing the two uniform orders. An interesting issue is to under-

stand the similarities and the differences between the two uniform dominance

33For some of our results it suffices to require monotonic decisions from some wealth on.
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orders. As they both extend stochastic dominance and acceptance domi-

nance, they agree on these comparisons. Also, they become more and more

similar as the riskiness of the gambles increases; this follows from Proposition

4 in Section VI.A of Foster and Hart (2009a). Beyond that, are there other

interesting cases where the two orders agree?

(g) The class of gambles. To avoid inessential technical issues, we have

kept throughout the assumption that each gamble takes only finitely many

values. It should not be difficult to relax this and replace it with, say, bound-

edness (at least from below).

Our gambles g ∈ G have positive expectation and take some negative

values; this is the interesting case. Indeed, a random variable f with E [f ] ≤ 0

is rejected by every risk-averse decision-maker, and a (nontrivial) random

variable k ≥ 0 is accepted by every decision-maker, and so any gamble g in G
acceptance dominates f and is acceptance dominated by k; i.e., k >A g >A f

for all34 g ∈ G.

(h) Beyond expected utility. This paper (as well as Aumann–Serrano 2008

and Foster–Hart 2009a) deals with pure risk in the standard von Neumann

and Morgenstern expected utility setup. It would be interesting to go be-

yond that and consider more general setups—such as subjective probability,

uncertainty, and various non-expected-utility models—and try to capture

universal notions of “more risky” and/or “more uncertain.”

(i) Characterizations of dominance. First- and second-degree stochastic

dominance have equivalent characterizations (in terms of lower values and

mean-preserving spreads). Restricting the utilities to some of the classes in

this paper (UDA, or UIR, or U∗) affects the stochastic order, and it would be

of interest to obtain appropriate characterizations (cf. Whitmore 1970 and

the survey of Levy 1992); the same applies to acceptance dominance.

34One may thus define the riskiness of these f and k to be ∞ and 0, respectively.
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A Appendix

The Appendix contains the proofs and some additional results.35

A.1 Acceptance Dominance

As indicated in Section 3.2, acceptance dominance is connected to stochastic

dominance through the concept of “dilution.”

Let g ∈ G and 0 < α ≤ 1; the α-dilution of the gamble g, denoted α ∗ g,

is the gamble where g obtains with probability α and the outcome 0 with

probability 1 − α; thus, if g takes the values x1, x2, ..., xn with respective

probabilities p1, p2, ..., pn (where p1 + p2 + ... + pn = 1), then α ∗ g takes

the values x1, x2, ..., xn, 0 with respective probabilities αp1, αp2, ..., αpn, 1−α.

Since E [u(w + α ∗ g)] = αE [u(w + g)] + (1 − α)u(w), or

E [u(w + α ∗ g)] − u(w) = α
(

E [u(w + g)] − u(w)
)

, (12)

it follows that g is accepted by u at w if and only if α ∗ g is accepted by u

at w: dilution does not affect acceptance and rejection (but, as we will see

below, it may well affect stochastic dominance).

The result is:

Proposition 8 Let g, h ∈ G. Then g >A h if and only if there exist

0 < α, β ≤ 1 such that α ∗ g >S β ∗ h.

Proof. One direction is immediate: α ∗ g >S β ∗ h implies α ∗ g >A β ∗ h,

which is equivalent to g >A h by (12).

Conversely, assume that g >A h. We will show that there exists λ > 0

such that

E [u(w + g)] − u(w) ≥ λ
(

E [u(w + h)] − u(w)
)

(13)

for all u ∈ U and w > 0. When 0 < λ ≤ 1 we get from (13)

E [u(w + g)] ≥ λE [u(w + h)] + (1 − λ)u(w) = E [u(w + λ ∗ h)] ,

35Some of the arguments below are standard; insofar as they were short enough, we
have preferred to provide self-contained proofs rather than refer the reader to various
other sources.
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i.e., g >S λ ∗ h, and when λ ≥ 1 we get from (13)

E
[

u
(

w + λ−1 ∗ g
)]

= λ−1E [u(w + g)] +
(

1 − λ−1
)

u(w) ≥ E [u(w + h)] ,

i.e., λ−1 ∗ g >S h.

The proof of (13) will use a standard separation argument (which essen-

tially amounts to the fact that an affine inequality A1(x) ≤ 0 is a consequence

of another affine inequality A2(x) ≤ 0 if and only if there is λ > 0 such that

A2(x) ≥ λA1(x) for all x).

First, note that (13) trivially holds at every 0 < w ≤ Lh (since the right-

hand side equals −∞), and that g >A h implies Lh ≥ Lg (since otherwise

u(x) = x would reject g and accept h at any w with Lh < w < Lg). Let

Y :=
{(

E [u(w + g)] − u(w),E [u(w + h)] − u(w)
)

: u ∈ U and w > Lh

}

.

The set Y ⊂ R2 is nonempty and convex, since U is nonempty and convex

(given u1, u2 ∈ U , w1, w2 > Lh, and 0 < θ < 1, take w0 := min{w1, w2} > Lh

and u0 ∈ U given by u0(x) := θu1(x + w1 −w0) + (1− θ)u2(x + w2 −w0) for

every x > 0).

Now g >A h says that Y is disjoint from the convex set Z := {(z1, z2) ∈
R2 : z1 ≤ 0 < z2}, and so Y and Z can be separated: there exists µ =

(µ1, µ2) ∈ R2, µ 6= (0, 0), such that

inf
y∈Y

µ · y ≥ sup
z∈Z

µ · z. (14)

We have µ1 ≥ 0, since otherwise the right-hand side equals ∞ (take (z1, 1) ∈
Z with z1 → −∞); similarly, µ2 ≤ 0 (take (0, z2) ∈ Z with z2 → ∞).

Therefore supz∈Z µ · z ≤ 0; finally, taking (0, z2) ∈ Z with z2 → 0+ shows

that supz∈Z µ · z = 0. Hence (14) becomes

µ · y ≥ 0 (15)

for every y ∈ Y. We cannot have µ1 = 0, since then µ2 < 0 (recall that

µ 6= (0, 0)), but u1(x) = x and w1 > Lh yield (y1, y2) ∈ Y with y2 > 0,
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contradicting (15). Similarly, we cannot have µ2 = 0, since then µ1 > 0,

but u2 = v̄α ∈ U with α > α∗(g) and w2 > Lh yield (y1, y2) ∈ Y with

y1 < 0, contradicting (15). Therefore µ1 > 0 > µ2, and (15) yields (13) for

all w > Lh, with λ = −µ2/µ1 > 0. ¤

Remarks. (1) In Proposition 8 one can always take at least one of α and β

to be equal to 1 (because α ∗ g >S β ∗ h is equivalent to (γα) ∗ g >S (γβ) ∗ h

for any γ > 0 with γα, γβ ≤ 1; see also (13)).

(2) For every g ∈ G and every λ > 1 we have g >A λg. Indeed, g >S

(λ−1 ∗ (λg)), since for every function u that is concave, u(w +x) ≥ λ−1u(w +

λx) + (1 − λ−1)u(w), and so E [u(w + g)] ≥ E
[

u(w + λ−1 ∗ (λg))
]

. Thus

rescaling all outcomes by a factor λ larger than 1 can only increase rejection.

However, g cannot stochastically dominate λg (for instance, since E [w + g] <

E [w + λg] and u(x) = x belongs to U).

(3) The result of Proposition 8 connecting acceptance dominance and sto-

chastic dominance is quite general, and holds in many setups. For instance,

we may replace U with other collections of utilities, such as the strictly in-

creasing utilities (which yield the first-degree stochastic dominance), or any

of the other classes in this paper: UDA, UIR, and U∗. What matters is that

the collection of utilities should be a convex set, and, for any g ∈ G, it

should contain some utilities u1, u2 such that E [u1(w1 + g)] > u(w1) and

E [u2(w2 + g)] < u(w2) for some (large enough) w1, w2. Also, one may re-

place the gambles with random variables that take values in general linear

spaces (where separation theorems apply; for instance, Rd).

A.2 Acceptance, Rejection, and Risk Aversion

From now on we assume that u ∈ U is twice continuously differentiable, i.e.,

of class C2, and u′(x) > 0 for every x > 0. Recall that the Arrow–Pratt risk

aversion coefficient ρ ≡ ρu of u is given by ρ(x) = −u′′(x)/u′(x) for every x.

The basic result we will use is that a higher risk aversion coefficient yields

a concave transformation of the utility function, and thus more rejection
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(cf. Arrow 1965, 1971 and Pratt 1964—see in particular Theorem 1 there).36

Specifically:

Proposition 9 Let u1, u2 ∈ U be two utility functions with absolute risk

aversion coefficients ρ1 and ρ2, respectively, and let I ⊂ (0,∞) be an inter-

val37 where ρ1(x) ≥ ρ2(x) for every x ∈ I. Then for every w > 0 and g ∈ G
such that w + g ⊂ I, if u2 rejects g at w then u1 rejects g at w.

Proof. Let ψ be such that u1 = ψ ◦ u2; then ψ is strictly increasing (since

u1 and u2 are such), and concave (since for every x ∈ I we have ψ′(u2(x)) =

u′
1(x)/u′

2(x), hence (log ψ′(u2(x)))
′
= (log u′

1(x))′ − (log u′
2(x))′ = −ρ1(x) +

ρ2(x) ≤ 0, and so ψ′′ ≤ 0).

Therefore E [u2(w + g)] ≤ u2(w) implies

E [u1(w + g)] = E [ψ (u2(w + g))] ≤ ψ (E [u2(w + g)]) ≤ ψ(u2(w)) = u1(w)

(the concavity of ψ was used in the first inequality, and the monotonicity of

ψ and the assumption on u2 in the second). ¤

Recall that, for α > 0, the CARA utility v̄α ∈ UCA satisfies ρv̄α
(w) = α

for every w. The definition (1) of α∗ ≡ α∗(g) implies that for every w we

have E [v̄α∗(w + g)] = v̄α∗(w). Therefore

Lemma 10 Let g ∈ G and v̄β ∈ UCA. If β < α∗(g) then v̄β accepts g at all

w > Lg, and if β ≥ α∗(g) then v̄β rejects g at all w.

Proof. Use Proposition 9, or direct computation. ¤

Proposition 11 Let u ∈ U , g ∈ G, and w > Lg, and put I := [w − Lg, w +

Mg] ≡ [w + min g, w + max g].

(i) If ρu(w
′) ≥ α∗(g) for every w′ ∈ I then u rejects g at w.

36One may easily prove that the converse—which is not needed in the current paper—
also holds: a utility function that always rejects more than another utility function must
be a concave transformation of it, and thus have a higher risk aversion coefficient.

37The interval I can be open or closed at either end, and its upper end can be ∞. As
usual, w + g ⊂ I means that w + x ∈ I for every value x of g.
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(ii) If ρu(w
′) < α∗(g) for every w′ ∈ I then u accepts g at w.

(iii) If u rejects g at w then there exists w′ ∈ I such that ρu(w
′) ≥ α∗(g).

(iv) If u accepts g at w then there exists w′ ∈ I such that ρu(w
′) < α∗(g).

Proof. We will only prove (i) and (ii), since (iv) is equivalent to (i) and (iii)

is equivalent to (ii). Put α∗ ≡ α∗(g).

(i) Since v̄α∗ rejects g at w (by Lemma 10) and ρv̄α∗
(w′) = α∗ for every

w′, Proposition 9 with u1 = u and u2 = v̄α∗ implies that u rejects g at w.

(ii) Let β := maxw′∈I ρu(w
′); then 0 < β < α∗ (use the continuity of

ρu and w − Lg > 0). Since v̄β accepts g at w (by Lemma 10), applying

Proposition 9 with u1 = v̄β and u2 = u implies that u accepts g at w. ¤

Proposition 11 is essentially (4.3.2) of Aumann and Serrano (2008); we

have proved it here directly for completeness (their arguments are slightly

more elaborate).

A.3 Wealth-Uniform Dominance

Proof of Theorem 1 and Proposition 5. We will prove these two results

together.

First, we claim that

g >WU h implies α∗(g) ≥ α∗(h).

Indeed, if α∗(g) < α∗(h) then put β := α∗(g) and let u = v̂β ∈ U∗ be

given by38 ρu(x) := max{1/x, β}. Since ρu(x) ≥ β = α∗(g) for every x > 0,

Proposition 11 (i) implies that u rejects g at all w; since ρu(x) = β < α∗(h)

for every x ≥ 1/β, Proposition 11 (ii) implies that u accepts h at all w such

that w − Lh ≥ 1/β, which contradicts g >WU h.

Second, we claim that

α∗(g) ≥ α∗(h) implies g >WB h with b = Lg + Mh. (16)

38See footnote 16.
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Indeed, if α∗(g) ≥ α∗(h) and g is rejected by u at w + b, then there exists

w′ ∈ [w + b − Lg, w + b + Mg] such that ρu(w
′) ≥ α∗(g) ≥ α∗(h) (the

first inequality by Proposition 11 (iii), the second by assumption), and so

ρu(w
′) ≥ α∗(h) for every w′ ≤ w + b − Lg (since ρu is decreasing); for

b = Lg + Mh we have w + b−Lg = w + Mh, which implies that h is rejected

at w (by Proposition 11 (i))—and we have proved (16).

Since g >WB h immediately implies g >WU h (see Section 4.1), altogether

we have obtained

g >WU h if and only if g >WB h if and only if α∗(g) ≥ α∗(h); (17)

recalling (2) completes the proof. ¤

Remark. The proof above (specifically, (16)) shows that one can take b ≡
b(g, h) = Lg + Mh ≤ max |g| + max |h| as the bound in [WB].

We can now provide some further insights into wealth-uniform dominance

and thus, a fortiori, the Aumann–Serrano index. For each utility function

u ∈ U∗, classify the gambles g ∈ G into three rejection classes relative to u:

(R1) g is always accepted by u;39

(R2) g is sometimes rejected and sometimes accepted by u; and

(R3) g is always rejected by u.

This is a rough classification, since in case (R2) we ignore exactly when g is

rejected and when it is accepted (when u ∈ UDA there is a critical wealth level,

denote it w̄u(g), where the transition from rejection to acceptance occurs).

Since the amount of rejection increases from (R1) to (R2) to (R3), we will

say that (R3) is the “highest rejection class,” and (R1) the “lowest.”

As usual, derive from the weak order >WU its strict part >WU and its

indifference part ∼WU: that is, g >WU h if and only if g >WU h holds but

h >WU g does not, and g ∼WU h if and only if both g >WU h and h >WU g

hold. We have:
39Recall (Section 2.1) that “g is always accepted” means that g is accepted at all wealth

levels w > Lg.
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Proposition 12 Let g, h ∈ G. Then:

(i) g >WU h if and only if for every u ∈ U∗ the rejection class of g is no

higher than the rejection class of h.

(ii) g ∼WU h if and only if for every u ∈ U∗ the rejection class of g is

the same as the rejection class of h. Moreover, when they are both of class

(R2) the critical wealth levels w̄u(g) and w̄u(h) satisfy |w̄u(g) − w̄u(h)| ≤
max |g| + max |h|.

(iii) g >WU h if and only if there exists u ∈ U∗ for which g is of rejection

class (R3) and h is of rejection class (R1); i.e., g is always rejected and h is

always accepted.

The proof is omitted, as it all straightforwardly follows from the previous

results. Note that taking the negation of (iii) and interchanging g and h

yields the following statement (compare [WU]): g >WU h if and only if for

every u ∈ U∗, if g is rejected by u at all w then h is rejected by u at some40

w.

Remark. The proofs above show that for the wealth-uniform results one

can replace U∗ with any collection of utilities U∗W ⊂ U that satisfies: (i)

U∗W ⊂ UDA; and (ii) for every β > 0 there is u ∈ U∗W such that infx>0 ρu(x) =

limx→∞ ρu(x) = β. In particular, one may take U∗W = UDA.

A.4 Utility-Uniform Dominance

We start by characterizing Usr.

Proposition 13 Let u ∈ U and put41 u(0+) := limx→0+ u(x). Then:

(i) u(0+) = −∞ if and only if for every g ∈ G there is δ > 0 such that g

is rejected by u at all w ∈ (Lg, Lg + δ).

(ii) u(0+) > −∞ if and only if there is g ∈ G and δ > 0 such that g is

accepted by u at all w ∈ (Lg, Lg + δ).

40One may take this statement as the definition of wealth-uniform dominance.
41The limit exists (and is either finite or −∞) since u is an increasing function.
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Proof. If u(0+) = −∞ then, for p := P [g = −Lg] > 0, we have

E [u(w + g)] − u(w) ≤ pu(w − Lg) + (1 − p)u(w + Mg) − u(w) → −∞

as w decreases to Lg. Therefore E [u(w + g)]−u(w) < 0 for all w close enough

to Lg, and g is rejected there.

If u(0+) > −∞ then let 0 < ε < 1/2 be small enough so that (1−ε)u(2)+

εu(0+) > u(1) (recall that u is increasing). Then the gamble g ∈ G that takes

the values 1 and −1 with probabilities 1 − ε and ε, respectively, is accepted

by u at all w > 1 = Lg that are close enough to 1.

These two implications, together with the fact that the clauses in (i) and

(ii) on rejection and acceptance, respectively, are clearly contradictory, yield

the converse implications in both (i) and (ii). ¤

Corollary 14 Let u ∈ UDA, particularly u ∈ U∗; then u ∈ Usr if and only if

u(0+) = −∞.

Proof. In case (i) of Proposition 13 we get some d ≡ dg > 0, possibly d = ∞,

such that u rejects g at all w ≤ Lg + d and accepts g at all w > Lg + d; in

case (ii), u accepts g at all w > Lg (and so dg = 0)—therefore g is sometimes

rejected if and only if case (i) occurs. ¤

Lemma 15 Let u ∈ U . If there is c > 0 such that sup0<x≤c ρ̃u(x) < 1 then

u(0+) > −∞.

Proof. Let γ := sup0<x≤c ρ̃u(x); then 0 ≤ γ < 1. For every x ∈ (0, c] we have:

(log u′(x))′ = −ρu(x) = −ρ̃u(x)/x ≥ −γ/x, and so log u′(c) − log u′(x) ≥
∫ c

x
(−γ/y) dy = −γ log(c/x). Therefore u′(x) ≤ ax−γ (with a := u′(c)cγ > 0),

from which we get u(c) − u(x) ≤
∫ c

x
ay−γ dy = a (c1−γ − x1−γ) /(1 − γ), and

so u(x) ≥ B := u(c) − ac1−γ/(1 − γ) and u(0+) ≥ B. ¤

Corollary 16 If u ∈ U∗ then ρ̃u(x) ≥ 1 for all x > 0.

Proof. If ρ̃u(c) < 1 for some c > 0, then ρ̃u(x) ≤ γ := ρ̃u(c) < 1 (since

u ∈ UIR and so ρ̃u is increasing); Lemma 15 implies that u(0+) is finite, and

so u /∈ Usr by Corollary 14. ¤
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Lemma 17 Let u ∈ U∗ and g ∈ G. Then u rejects g at all w ≤ RFH(g).

Proof. By the definition of the Foster–Hart measure, ṽ1(x) = log(x) rejects

g at all w ≤ RFH(g). The result follows from Proposition 9 with u1 = u and

u2 = ṽ1 (and so ρ̃2(x) = 1 for every x > 0), and I = (0,∞). ¤

We can now prove Theorem 3.

Proof of Theorem 3. Lemma 17, together with the fact that at each

w > RFH(g) the CRRA utility ṽ1 = log, which belongs to U∗, does not reject

g, implies that “g is rejected by all u ∈ U∗ at w” if and only if “w ≤ RFH(g).”

So the condition in [UU] translates to “if w ≤ RFH(g) then w ≤ RFH(h),”

which is equivalent to “RFH(g) ≤ RFH(h).” ¤

Remarks. (1) The proofs above show that for the utility-uniform results

one can replace U∗ with any collection of utilities U∗U ⊂ U that satisfies: (i)

ṽ1 ≡ log ∈ U∗U; and (ii) infx>0 ρ̃u(x) ≥ 1 for every u ∈ U∗U. In particular,

one may take U∗U = UIR ∩ Usr′ , where Usr′ requires rejection at arbitrarily

small wealth levels (i.e., u ∈ Usr′ if and only if for every g ∈ G and δ > 0

there is w ∈ (Lg, Lg + δ) such that u rejects g at w).

(2) If we drop the condition that each utility function u will sometimes

reject any gamble—i.e., u ∈ Usr—then the only wealth levels w where all

utilities reject a gamble g are w ≤ Lg, and so the resulting order, denote it

>UU0, satisfies g >UU0 h if and only if Lg ≤ Lh.

A.5 The Duality Axiom and the Duality Order

Here we provide proofs for the statements of Section 5. We now work with

general utilities in U (but see Remark (2) after the Proof of Proposition 6).

We start with the characterization of the “uniformly more risk-averse”

relation D between utility functions.42

Lemma 18 Let u, v ∈ U . Then u D v if and only if infw ρu(w) ≥ supw ρv(w).

42This is (4.1.2) in Aumann and Serrano (2008); we prove it here for completeness (and
the proof is short).
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Proof. If u D v but infw ρu(w) < supw ρv(w), then there exist w1, w2 such

that ρu(w1) < ρv(w2); the continuity of ρ (recall that the utilities are C2)

implies that there are ε > 0 small enough and β > 0 such that ρu(w
′
1) < β <

ρv(w
′
2) for every w′

1 ∈ [w1−ε, w1 +ε] and w′
2 ∈ [w2−ε, w2 +ε]. Let g take the

values ε and −ε with probabilities exp(βε)/(1+exp(βε)) and 1/(1+exp(βε)),

respectively; then α∗(g) = β (since E [exp(−βg)] = 1), and Proposition 11

(i) and (ii) implies that g is accepted by u at w1 and rejected by v at w2,

contradicting u D v. Conversely, if infw ρu(w) ≥ supw ρv(w) and u accepts

g at some w1, then Proposition 11 (iv) implies that there is w2 such that

ρu(w2) < α∗(g), and so supw ρv(w) ≤ infw ρu(w) ≤ ρu(w2) < α∗(g), which,

by Proposition 11 (ii), implies that g is accepted by v at any w—that is,

u D v. ¤

Proof of Proposition 6. In view of (17), we need to show that g >D h if

and only if α∗(g) ≥ α∗(h).

Assume that α∗(g) ≥ α∗(h), and let u D v be such that g is rejected by v

at w. Then inf ρu ≥ sup ρv ≥ α∗(g) ≥ α∗(h) (the first inequality by Lemma

18, the second by Proposition 11 (iii), and the last one by assumption);

therefore h is rejected by u at any w by Proposition 11 (i).

Conversely, assume that α∗(g) < α∗(h). Take β such that α∗(g) < β <

α∗(h) and consider the two CARA utilities u = v̄β and v = v̄α∗(g). Then

u ⊲ v (by Lemma 18), g is rejected by v at all w, but h is accepted by u at

all w > Lh (by Lemma 10), and so g >D h does not hold. ¤

Remarks. (1) The duality order >D , and thus the duality axiom (which

is equivalent to (11)), would not be affected if we were to replace in the

definitions (10) and (9) the strong relation u ⊲ v with its weaker form u D v

(indeed: the Proof of Proposition 6 uses only u D v).

(2) The duality order >D , and thus the duality axiom, would not be

affected if we were to require in the definitions (10) and (9) the utilities

u, v to be monotonic, i.e., u, v ∈ UDA and/or u, v ∈ UIR (indeed: the Proof

of Proposition 6, on the one hand, did not use any of these monotonicity

properties, and on the other hand, the specific utilities that appeared there

were CARA utilities that belong to both UDA and UIR). However, we cannot
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add the requirement that u, v ∈ Usr, since then the relation u D v becomes

vacuous (by Lemma 18, because supw ρu(w) = ∞ for every u ∈ Usr).

Based on Proposition 6 we can provide simple proofs for the main results,

Theorems A and D, of Aumann and Serrano (2008).

Proposition 19 (i) A continuous and first-degree monotonic real-valued func-

tion Q on G satisfies the duality axiom if and only if Q is ordinally equivalent

to RAS.

(ii) A positively homogeneous of degree one real-valued function Q on G
satisfies the duality axiom if and only if Q is a positive multiple of RAS.

Proof. Theorem 1 and Proposition 6 show that the duality axiom (see (11))

is equivalent to

Q(g) < Q(h) implies RAS(g) ≤ RAS(h), (18)

or

RAS(g) < RAS(h) implies Q(g) ≤ Q(h) (19)

(take the negation of (18) and interchange g and h). Thus RAS satisfies the

duality axiom; since it is clearly homogeneous, continuous, and first-order

monotonic (cf. Section V in Aumann and Serrano 2008), it remains to prove

its uniqueness in (i) and (ii). This will readily follow once we show that in

both cases we have

Q(g) < Q(h) if and only if RAS(g) < RAS(h). (20)

To prove this in case (i), assume that Q(g) < Q(h); then Q(g) < Q(h+ε)

for small enough ε > 0 (by continuity of Q), implying that RAS(g) ≤ RAS(h+

ε) (by (18)), and so RAS(g) < RAS(h) (by monotonicity of RAS we have

RAS(h + ε) < RAS(h)). Conversely, assume that RAS(g) < RAS(h); then

RAS(g) < RAS(h+ε) for small enough ε > 0 (by continuity of RAS), implying

that Q(g) ≤ Q(h + ε) (by (19)), and so Q(g) < Q(h) (by monotonicity of

Q). This completes the proof of (20) in case (i).
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The proof in case (ii) is similar. Assume that Q(g) < Q(h); using the

homogeneity of Q we get Q(g) < (1−ε)Q(h) = Q((1−ε)h) for small enough

ε > 0, implying that RAS(g) ≤ RAS((1 − ε)h) = (1 − ε)RAS(h) (by (18) and

the homogeneity of RAS), and so RAS(g) < RAS(h). Conversely, assume that

RAS(g) < RAS(h); then RAS(g) < (1 − ε)RAS(h) = RAS((1 − ε)g) for small

enough ε > 0, implying that Q(h) ≤ Q((1 − ε)g) = (1 − ε)Q(g) (by (19)

and the homogeneity of Q), and so Q(g) < Q(h). This completes the proof

of (20) in case (ii). ¤

The role of the additional assumptions in Aumann and Serrano (2008)—

either homogeneity, or continuity together with monotonicity—becomes clear

now: they are needed to go from (18) to (20).
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