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Abstract

Often a structural model implies that certain moment functions expressed in terms of data

and model parameters follow a distribution. An assertion that moment functions follow a

distribution logically implies a distribution on the arguments of the moment functions. This

fact would appear to permit Bayesian inference on model parameters. The classic example is

an assertion that the sample mean centered at a parameter and scaled by its standard error

has Student’s t-distribution followed by an assertion that the sample mean plus and minus

a critical value times the standard error is a Bayesian credibility interval for the parameter.

This paper studies the logic of such assertions. The main finding is that if the moment

functions have one of the properties of a pivotal, then the assertion of a distribution on

moment functions coupled with a proper prior does permit Bayesian inference. Without the

semi-pivotal condition, the assertion of a distribution for moment functions either partially or

completely specifies the prior. In this case Bayesian inference may or may not be practicable

depending on how much of the distribution of the constituents remains indeterminate after

imposition of a non-contradictory prior. An asset pricing example that uses data from the

US economy illustrates the ideas.
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1 Introduction

The idea that a moment function can be used to make probability statements on its con-

stituent random variables is at least as old as Fisher (1930). Fisher’s assertion can be

paraphrased in the context of this paper as follows: For observed data x = (x1, ..., xn), if

t =
x̄ − θ

s/
√

n
,

where

x̄ =
1

n

n
∑

i=1

xi, s2 =
1

n − 1

n
∑

i=1

(xi − x̄),

has Student’s t-distribution on n − 1 degrees freedom, then

x̄ − tα/2
s√
n

< θ < x̄ + tα/2
s√
n

(1)

is a valid (1−α)×100% credibility interval for θ, where tα/2 denotes the 1−α/2 quantile of

Student’s t-distribution on n−1 degrees freedom. The thinking underlying this construction

is that an assumption of a distribution for t induces a joint distribution on the constituent

random variables (x1, ..., xn, θ). From the joint one can obtain the conditional for θ given

(x1, ..., xn) and thereby make conditional probability statements on θ. Whether or not (1)

could be regarded as valid Bayesian credibility interval without the need to specify a prior

and whether or not this was what Fisher meant to say was controversial in its day.

It is immediately obvious that (1) cannot be a Bayesian credibility interval when the

situation is as just stated because intervals of the form a < θ < b are not preimages of t and

therefore cannot be assigned probability using only the assertion that t has the Student’s

t-distribution on n− 1 degrees freedom. More is required. Our analysis in Section 3 implies

that imposing a proper prior will suffice. The reason that imposing a prior is a remedy is

that it has effect of enlarging the collection of sets to which probability can be assigned to

include the intervals a < θ < b.

This paper is a general consideration of an expanded view of the above situation: If one

specifies a set of moment functions collected together into a vector m̄(x, θ) of dimension M ,

where x is a statistic of dimension K, regards θ of dimension p as random, and asserts that

some transformation Z(x, θ) of them has distribution Ψ(z), then what is required to use
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this information and possibly a prior to make valid Bayesian inferences? It is clear what

the assertion has done: It has induced a probability measure on the preimages of Z. The

answer to the question just posed depends on whether or not this probability space induces

a reasonable notion of a likelihood for x given θ. This we investigate in Section 3.

In some instances one does not have to reflect on these issues. For example, if x is a

sufficient statistic and a structural model clearly implies a conditional distribution for x given

θ, then one immediately has a likelihood and can proceed directly to Bayesian inference. We

are concerned with situations where the structural model does not imply exogeneity of θ, or

one prefers not to rely on an assumption of exogeneity, or one cannot construct a likelihood

at all due to the complexity of the model, or one does not trust the numerical approximations

needed to construct a likelihood.

An example where the structural model implies that the straightforward conditional

approach of the previous paragraph is not logically correct is an asset pricing model that

states that the price of an asset is the conditional expectation of the future payoff to the asset

times a stochastic discount factor where the conditioning is on information currently available

to the investor. Suppose, within the Bayesian paradigm, one wishes to estimate the value of

the stochastic discount factor at a point in time using gross returns Ri = (Pi,t + Di,t)/Pi,t−1

on several assets, i = 1, . . . , n, where Pi,t is price at time t and Di,t is the dividend paid since

time t − 1. If θt denotes the stochastic discount factor at time t and x the observed gross

returns Ri,t, then the moment function

m̄(x, θt) = 1 − 1

n

n
∑

i=1

θtRi,t

has time t − 1 conditional expectation zero, hence unconditional expectation zero, and one

might expect
√

n m̄(x, θt) to be approximately normally distributed. For Bayesian inference

one needs the conditional density of x given θt in order to have a likelihood. However,

θt is an endogenous random variable so that inferring a conditional distribution p(x | θt)

solely from the situation as just stated takes some thought. As to a prior, asset pricing

models often assume that θt is a function of its own past, e.g., p(θt | θt−1). If one can infer a

likelihood p(x | θt), then one can use something such as p(x | θt)p(θt | θt−1)p(θt−1) as the basis

for Bayesian inference. This formulation of the prior has introduced a second parameter θt−1
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with prior p(θt−1) that needs to be estimated.

2 Applications

As is usually the case, applications precede theory. An instance is Duan and Mela (2009).

The typical implementation of Bayesian inference using method of moments proceeds as

follows.

One has vector-valued observations xt, t = 1, 2, . . . , n, and has a parameter vector θ to

be estimated. Let x denote the data arranged as a matrix with columns xt. One sets forth

moment functions m(xt, θ) of dimension M and computes their mean

m̄(x, θ) =
1

n

n
∑

t=1

m(xt, θ).

The structural model implies that at the true value θo the unconditional expectation of the

mean is zero, i.e., Em̄(x, θo) = 0, and that θo is the only value of θ for which this is true.

Put

Z(x, θ) =
√

n [W (x, θ)]−
1

2 [m̄(x, θ)] , (2)

where

W (x, θ) =
1

n

n
∑

t=1

[m(xt, θ) − m̄(x, θ)] [m(xt, θ) − m̄(x, θ)]′ (3)

and [W (x, θ)]−
1

2 denotes the inverse of the Cholesky factorization of W (x, θ). If the m(xt, θ)

are serially correlated one will have to use a HAC (heteroskedatic, autoregressive invariant)

variance matrix estimate (Gallant, 1987, p. 446, 533) instead. In this case it is essential that

residuals et = m(xt, θ) − m̄(x, θ) be used to form the estimate as in (3) rather than relying

on Em̄(x, θ) = 0, which only holds at the true value θ = θo.

Then one asserts that

p(x | θ) = (2π)−
M
2 exp

{

−n

2
m̄′(x, θ)[W (x, θ)]−1m̄(x, θ)

}

, (4)

is a likelihood and proceeds directly to Bayesian inference using a prior p∗(θ).

The assertion (4) amounts to a belief that Z(x, θ) is normally distributed. This is not

essential, one could assume that Z(x, θ) has a multivariate Student-t distribution or some

other plausible distribution. Or, one could use some Z(x, θ) other than (2).
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The usual computational method is MCMC (Markov chain Monte Carlo) for which the

best known reference in econometrics is Chernozhukov and Hong (2003). A more comprehen-

sive reference is Gamerman and Lopes (2006). Chernozhukov and Hong term (4) the Laplace

density. MCMC generates a (correlated) sample from the posterior. From this sample one

can compute the posterior mean and standard deviations, which are the usual statistics used

to report Bayesian results. One can also compute the marginal likelihood from the chain

(Newton and Raftery (1994)), which is used for Bayesian model comparison.

The estimator for frequentist inference is

θ̂ =
θ∈Θ

argmin
{

m̄′(x, θ)[W (x, θ)]−1m̄(x, θ)
}

,

often, but not always, with θ that appears in W (x, θ) set to some preliminary estimate. One

method for computing θ̂ is to apply MCMC to (4) with p∗(θ) ≡ 1 (Chernozhukov and Hong

(2003)).

The methods set forth in this section are used to estimate the habit persistence asset

pricing model (Campbell and Cochrane (1999)) from US data in Section 4. We next examine

the plausibility of the assertion that (4) can be regarded as a likelihood for the purpose of

Bayesian inference.

3 The Likelihood Induced by Moment Functions

In what follows, prior probability is represented by a random variable Λ that has realization

θ that lies in a parameter space Θ. Similarly for data, X is the random variable with

realization x that lies in a sample space X . As to dimensions, the parameter space Θ is a

subset of R
p and the sample space X is a subset of R

K .

The conceptual framework is that X and Λ are jointly distributed on a probability space

(X × Θ, Co, P o) determined by a structural model and a prior, where Co denotes the Borel

subsets of R
K+p intersected with X × Θ. In simple cases the structural model determines

a likelihood, po(x |Λ = θ), and the likelihood times the density function of the prior, p∗(θ),

determines P o. For compatibility with later notions we use the notation p∗(θ) for the prior

although it is also the marginal density for Λ under P o and could therefore logically be
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denoted by po(θ). We presume the existence of (X × Θ, Co, P o) but do not assume that it

has the simple structure just described or, if it does, that the simple structure is known.

A common situation that requires consideration of the notions that follow is that deriving

the likelihood from a structural model is analytically intractable and one cannot verify

that the numerical approximations one would have to make to circumvent the intractability

are sufficiently accurate. Therefore one uses features of the structural model, such as first

order conditions, to derive moment functions m̄ : (x, θ) 7→ R
M . A transformation of the

moment functions, such as Z(x, θ) =
√

n [W (x, θ)]−1/2m̄(x, θ), is a random variable defined

on (X ×Θ, Co, P o). We presume that the distribution of the transformed moment functions

can be plausibly asserted to be Ψ(z). Typically, verification that Eo[m̄(X, θ)] = 0 has a

unique solution when viewed as a function of θ is critical to the plausibility of the assertion

that the distribution of Z is Ψ. The assertion that the distribution of Z is Ψ can be used

to derive a probability space (X × Θ, C∗, P ∗) such that P ∗(C) = P o(C) for C ∈ C∗. The

probability space (X × Θ, C∗, P ∗) can be used as a substitute for (X × Θ, Co, P o) for the

purpose of Bayesian inference. In this section we derive (X ×Θ, C∗, P ∗) given Z and Ψ from

first principles.

This section is similar to Section 3 of Gallant, Giacomini, and Ragusa (2014). The de-

velopment there was to derive a measurement density for a state space model from moment

functions for use in particle filtering. While the pairing of a measurement density and a

transition density of a state space model and the pairing of a likelihood and a prior of a

Bayesian model have similarities, there is enough difference to make it necessary to rede-

velop the ideas in a Bayesian context. The development proceeds first by discrete examples

to avoid measurablility issues then to the general case. The extension to the general case

is straightforward once one has seen the examples. An early development of these ideas

appeared in Gallant and Hong (2007) but application to the present context is not straight-

forward because their model had a hierarchical structure, like a state space model, and they

glossed over some essential details.

This section makes the following points.

• The transformed moment functions induce a probability measure P on a σ-algebra C
containing sets C that have elements (x, θ). C is the smallest σ-algebra that contains

7



the preimages of Z. Typically C is coarse in the sense that it does not contain all the

Borel sets. In particular, if C does not contain the rectangles RB = (RK×B)∩(X ×Θ),

where B is a Borel subset of R
p, then the probability space (X × Θ, C, P ) cannot be

used for Bayesian inference.

• Specification of a prior for θ allows one to embed C within a σ-algebra C∗ that contains

the rectangles RB and to define a probability measure P ∗ on C∗ that agrees with both P

and P o on C. The probability space (X ×Θ, C∗, P ∗) can be used for Bayesian inference.

• Complications arise in applications if the transformation of the moment functions does

not have some of the properties of a pivotal.

3.1 A Probability Distribution Induced by Moment functions

Consider the assertion that the probability distribution of a moment function D is as shown

in Table 1. In Table 1, D models the difference D = X−Λ between the toss of two correlated,

six-sided dice X and Λ. The expectation of D is zero. One wishes to determine the posterior

for Λ; i.e., the conditional distribution Λ given X. The first step toward this goal is to

determine the likelihood, which is the conditional distribution of X given Λ.

(Table 1 about here)

The sets Cd shown in Table 1 are mutually exclusive and exhaustive. They partition

the domain of D as finely as possible by preimages of D because they are the preimages

of the singleton sets from the range of D. For a probability space with this structure, one

conditions on knowing that the random variable Λ has the value θ by conditioning on the

union of all preimages Cd that contain the point (x, θ) for some x. Denote this union by Oθ.

Oθ is the union of all preimages of singleton sets that can occur if Λ = θ is known to have

occurred. For the specific case shown in Table 1, the conditional probability density is

P (D = d |Λ = θ) =
P (Cd ∩ Oθ)

P (Oθ)
, (5)

where Cd is the preimage of d under D, as displayed in Table 1. Let C be the smallest

σ-algebra that contains the preimages {Cd : d = −5, . . . , 5}. In this instance, C consists of

the empty set ∅ and all possible unions of the sets Cd.
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One is accustomed to the case where Oθ is the rectangle X × {θ}, which in this example

would be Rθ = D × {θ} with D = {1, 2, 3, 4, 5, 6}. But, in this example, C does not include

the rectangles Rθ. If the σ-algebra over which probability is defined does not contain all the

rectangles then Oθ need not take the form D × {θ}. Nonetheless, the principle expressed in

(5) remains valid.

An alternate expression for P (D = d |Λ = θ), useful below, is

P (D = d |Λ = θ) =

∑6
x=1 ICd

(x, θ)P (D = d)
∑5

d=−5

∑6
x=1 ICd

(x, θ)P (D = d)
. (6)

This expression relies on the fact that for this example x and d are in a one-to-one corre-

spondence once θ is fixed. This construction has also induced a “marginal” distribution

Q(Λ = θ) = P (Oθ) =
5

∑

d=−5

6
∑

x=1

ICd
(x, θ)P (D = d). (7)

The sense in which (7) defines a marginal is

P (D = d) =
6

∑

θ=1

P (D = d |Λ = θ)Q(Λ = θ).

A notion of marginal on Λ can be regarded as a partial specification of a prior. We will

explore this issue in the example in Subsection 3.6 where the moment functions induces both

a likelihood and a prior.

Any C-measurable f must be constant on the preimages. For such f the formula

E(f |Λ = θ) =
6

∑

x=1

f(x, θ)
5

∑

d=−5

ICd
(x, θ)P (D = d |Λ = θ) (8)

can be used to compute conditional expectation because f can be regarded as a function of

d and the right hand side of (8) equals

5
∑

d=−5

f(d)P (D = d |Λ = θ).

Equation (8) implies that we can view P (D = d) as defining a conditional density function

P (X = x |Λ = θ) =
5

∑

d=−5

ICd
(x, θ)P (D = d |Λ = θ) (9)
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that is a function of x as long as we only use it in connection with C-measurable f .

Intuitively what is going on here is that if θ is held constant, then X becomes a transform

of D, which has a known conditional density. This can be seen more easily by rewriting (9)

as

P (X = x |Λ = θ) =
P (D = x − θ)

∑6
x=1 P (D = x − θ)

. (10)

Note also that Q(Λ = θ) =
∑6

x=1 P (D = x − θ).

Similar considerations define P (D = d |X = x),

P (Λ = θ |X = x) =
P (D = x − θ)

∑6
θ=1 P (D = x − θ)

.

and Q(X = x) =
∑6

θ=1 P (D = x − θ).

P (Λ = θ |X = x) is not a useful posterior density because the rectangles Rθ are not in C,

which means that one cannot make inferences regarding θ. For example, one cannot compute

posterior probability for {θ : a < θ ≤ b} and therefore cannot determine a credibility

interval.

On the other hand, were it the case that Oθ = X ×{θ}, then we would be done, because

the sets X ×B, where B ⊂ D, would be in C. That is, if Oθ = X × {θ}, which is a property

of the preimages of the transformed moment functions and not of the distribution that one

asserts for them, then an assertion that a set of transformed moment functions follows a

particular distribution implies a likelihood, a prior, and a posterior directly. No further

input is necessary. We shall see an example of this in Subsection 3.6.

The ideal situation would be when a moment function specification determines a like-

lihood but not the prior, leaving one free to conduct Bayesian inference in the traditional

fashion. It is the images of X × {θ} that determines when this situation occurs as we shall

see in Subsection 3.4.

3.2 Dominating Measure

With respect to Table 1, consider the situation where X is itself a moment X = X1 + X2,

where the range of both X1 and X2 are the integers. Let,

Bs = {(x1, x2) : x1 + x2 = s; x1, x2 = 0,±1,±2, . . .}
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for s = 1, 2, . . . , 6. Then the preimages Cd listed in Table 1 become, instead,

C ′
−5 = {(x1, x2, 6) : (x1, x2) ∈ B1}

C ′
−4 = {(x1, x2, 5) : (x1, x2) ∈ B1} ∪ {(x1, x2, 6) : (x1, x2) ∈ B2}

...

The difficulty we run into is that we do not have an obvious dominating measure with which

to integrate the conditional density P [(X1, X2) = (x1, x2) |Λ = θ]. One way to circumvent

the difficulty is as follows. Given θ, for each s = 1, 2, . . . , 6, choose a representer (x1, x2)
∗ ∈ Bs

to label Bs. The dominating measure puts mass one on these six representers and mass zero

on all other pairs of integers.

For our purposes we can gloss over the issue of a dominating measure. We never use it

so that mere existence suffices. All that is required to construct a dominating measure is a

labeling scheme that can put preimages of singleton sets into a one-to-one correspondence

with a representative x when θ is given.

3.3 Introduction of a Prior

Continuing with the example of Table 1, we now assign prior probability P ∗(Rθ) = 1
6

to the

rectangles Rθ = D × {θ}, where θ ∈ D = {1, 2, 3, 4, 5, 6}. Put P ∗(C) = P (C) for C ∈ C. Let

C∗ denote the smallest σ-algebra that contains both {Cd}5
d=−5 and {Rθ}6

θ=1. In principle the

definition of P ∗ can be extended to all sets in C∗. Let (D × D, C∗, P ∗) denote the extended

probability space. In this instance, the singleton sets {(x, θ)} are in C∗ so that under P ∗

conditional probability has its conventional definition

P ∗(X = x |Λ = θ) =
P ∗({(x, θ)})

P ∗(Rθ)

P ∗(Λ = θ |X = x) =
P ∗({(x, θ)})

P ∗(Rx)
,

where Rθ = D × {θ}; θ ∈ D and Rx = {x} × D; x ∈ D.

A difficulty is that the information in Table 1 and the knowledge that P ∗(Rθ) = 1
6

is

not enough to deduce P ∗({(x, θ}) because that knowledge implies a singular system of nine
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equations in sixteen unknowns

4

18
=

5
∑

i=1

P ∗({(i, i + 1)}) (11)

10

18
=

6
∑

i=1

P ∗({(i, i)})

4

18
=

5
∑

i=1

P ∗({(i + 1, i)})

1

6
= P ∗({(1, 1)}) + P ∗({(2, 1)})

1

6
= P ∗({(1, 2)}) + P ∗({(2, 2)}) + P ∗({(3, 2)})

1

6
= P ∗({(2, 3)}) + P ∗({(3, 3)}) + P ∗({(4, 3)})

1

6
= P ∗({(3, 4)}) + P ∗({(4, 4)}) + P ∗({(5, 4)})

1

6
= P ∗({(4, 5)}) + P ∗({(5, 5)}) + P ∗({(6, 5)})

1

6
= P ∗({(5, 6)}) + P ∗({(6, 6)})

after taking into account that Table 1 implies that only the sixteen P ∗({(x, θ}) that appear

in (11) can be non-zero. The sum of the first three equations in (11) equals the sum of the

last six so there are effectively only eight equations in sixteen unknowns.

One way to resolve this difficulty is to estimate the probabilities in (11) along with θ by

assigning prior probability 0 ≤ P ∗({(x, θ)}) ≤ 1
6

to eight of the P ∗({(x, θ)}) in (11), using

(11) to solve for the remaining eight. This strategy actually works well in this instance as

regards estimation of θ using MCMC when a subset of the probabilities are not identified

and therefore posterior probabilities are determined by the prior. Which subset depends on

the value of θ used to generate the data.

While the difficulty that a prior and an assertion of a distribution for the transformed

moment functions may not completely determine (D×D, C∗, P ∗) can be circumvented in this

instance, what is outlined above is not an attractive general strategy. When the number of

undetermined probabilities is infinite in the discrete case or when Θ is a continuum, it is not

clear how to proceed. The difficulty can be circumvented when P (Oθ) = 1 as seen in the

next example, which is actually a discretized variant of Fisher (1930).
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3.4 An Example where P (Oθ) = 1

Consider the case

P [Z(X, Λ) = z] =
1 − p

1 + p
p|z|

Z(X, Λ) = X − Λ

X ∈ N

Λ ∈ N

N = { 0, ±1, ±2, . . . }

The preimages of Z(x, θ) are

Cz = {(x, θ) : x = z + θ, θ ∈ N} z ∈ N

which lie on 45 degree lines in the (x, θ) plane. Given θ, for every z ∈ N there is an x ∈ N

with (x, θ) ∈ Cz so every Cz can occur. Therefore Oθ = ∪z∈NCz and P (Oθ) = 1 for every

θ ∈ N. Hence

P (Z = z |Λ = θ) =
P (Cz ∩ Oθ)

P (Oθ)
= P (Cz) =

1 − p

1 + p
p|z|, (12)

which does not depend on θ. Consequently,

P (X = x |Λ = θ) = P (Z = x − θ)

using logic analogous to that leading to equation (10).

This situation seems to be what occurs most often in applications because the chosen Z

is often a pivotal or can be regarded as such in large samples. A pivotal has P o(Oθ) = 1

whence P (Oθ) = 1. Much less than pivotal is actually required for P (Oθ) = 1: If, for every

θ ∈ Θ, the image of X ×{θ} under Z(·, θ) is the entire support of the distribution Ψ(z) then

P (Oθ) = 1 for every θ ∈ Θ. Assumption 1 below formalizes the remarks in this paragraph.

When probability P ∗(Rθ) is assigned to rectangles the extension of P to P ∗ is

P ∗(X = x |Λ = θ) = P (Z = x − θ) (13)

P ∗(X = x, Λ = θ) = P ∗(X = x |Λ = θ) P ∗(Rθ).

The principal guiding the choice of solution (13) to equations analogous to (11) (not shown) is

that the conditional probability of X given Λ should be the same under P ∗
θ and Pθ. Similarly
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for the conditional probability of Z given Λ. In the example of Subsection 3.3, the choice

(13) was not available as a solution to (11) because equality of the conditional probability

of Z given Λ under both P ∗
θ and Pθ would be violated.

We next verify that the requisite conditions on P ∗
θ are satisfied. Agreement on C is

satisfied, i.e., (N × N, C, P ∗) = (N × N, C, P ), because

P ∗(Z = z) =
∑

θ∈N

P ∗(X = z + θ, Λ = θ) = P (Z = z)
∑

θ∈N

P ∗(Rθ) = P (Z = z). (14)

The correct probability is assigned to rectangles because

∑

x∈N

P ∗(X = x, Λ = θ) =
∑

x∈N

P (Z = x − θ)P ∗(Rθ) = P ∗(Rθ)
∑

z∈N

P (Z = z) = P ∗(Rθ).

Equations (14) and (12) imply that P ∗(Z = z |Λ = θ) = P (Z = z |Λ = θ).

3.5 The Abstraction

As mentioned above, we assume that X and Λ are jointly distributed on a probability space

(X ×Θ, Co, P o) determined by a structural model and a prior. Because the structural model

does not imply a likelihood in a straightforward manner, or because one does not trust the

numerical approximations required to obtain a likelihood, or for whatever reason, we are in a

situation where method of moments is an attractive strategy. To this end, we have specified

an M -dimensional vector of transformed moment functions Z(x, θ) whose distribution is

implied by the structural model and a prior. Denote this distribution by Ψ(z), its density by

ψ(z), and its support by Z = {z : ψ(z) > 0}. The density function of the prior is denoted

by p∗(θ).

Let C be the smallest σ-algebra containing the preimages C = {(x, θ) : Z(x, θ) ∈ B∩Z}
where B ranges over the Borel subsets of R

M . Because the distribution Ψ of Z(X, Λ) is

determined by the structural model and prior, the probability distribution P induced on

(X × Θ, C) by Ψ can be presumed to satisfy P (C) = P o(C) for every C ∈ C. Therefore,

(X ×Θ, C, P o) = (X ×Θ, C, P ), which implies that expectations E(f) are computed the same

on either probability space for C-measurable f .

We impose a requirement that provides Z with some of the properties of a pivotal:
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ASSUMPTION 1 Let

C(θ,z) = {x ∈ X : Z(x, θ) = z}. (15)

We assume that C(θ,z) is not empty for any (θ, z) ∈ Θ ×Z.

If C(θ,z) is not empty, then for each θ ∈ Θ and z ∈ Z we may choose a point x∗ ∈ X for

which

Z(x∗, θ) = z.

The point x∗ is the representer of C(θ,z). Define

Υ(z, θ) = x∗. (16)

Let xo denote the observed realization of X and let zo = Z(xo, θ). For z = zo we shall choose

the representer of C(θ,z) to be xo so that we have xo = Υ[Z(xo, θ), θ] for every θ ∈ Θ.

If C(θ,z) is not empty, then every preimage of the form

Cz = {(x, θ) : Z(x, θ) = z, x ∈ X , θ ∈ Θ}

must contain (Υ(z, θ), θ). Thus, for every z ∈ Z, Cz can occur if Λ = θ is known to have

occurred. The sets Cz are in C and are a mutually exclusive and exhaustive partitioning of

the preimage Z−1(Z) and no finer partitioning of X ×Θ by sets from C is possible. Therefore

the conditioning set for the event Λ = θ is

Oθ = ∪z∈ZCz = Z−1(Z),

which implies P (Oθ) = P o(Oθ) = Ψ(Z) = 1. ¥

Verification of Assumption 1 in an application is usually easy. For instance, if Z(x, θ)

is given by (2) with (3) computed from residuals, then if one of the elements xi,t of xt can

assume any value in R and m(xt, θ) is continuous in xi,t and is neither bounded from above

nor below as xi,t varies, then Assumption 1 will be satisfied.

Let C∗ be the smallest σ-algebra that contains all sets in C plus all rectangles of the form

RB = (RK ×B)∩ (X ×Θ), where B is a Borel subset of R
p. Motivated by the discussion in

Subsection 3.4 we define a measure P ∗ on C∗ by means of the densities

p∗(x |Λ = θ) = ψ[Z(x, θ)] (17)
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p∗(x, θ) = p∗(x |Λ = θ) p∗(θ).

For given θ and C-measurable f , which must be a function of the form f [Z(x, θ)], we define

ˆ

f [Z(x, θ)] p∗(x |Λ = θ) dx =

ˆ

Z

f(z) ψ(z) dz, (18)

leaving the dominating measure dx on X ∗ = {x∗ : x∗ = Υ(z, θ), z ∈ Z} unspecified. In

particular, for f(x, θ) = IB[Z(x, θ)] where B is a Borel subset of R
M , we have

ˆ

IB[Z(x, θ)] p∗(x |Λ = θ) dx =

ˆ

B∩Z

ψ(z) dz. (19)

To each C ∈ C there is a Borel set B for which C = {(x, θ) : Z(x, θ) ∈ B}. Therefore,

P ∗(C) =

ˆ

{
ˆ

IB[Z(x, θ)] p∗(x |Λ = θ) dx

}

p∗(θ) dθ =

ˆ

B∩Z

ψ(z) dz. (20)

By construction,

P (C) = P o(C) =

ˆ

B∩Z

ψ(z) dz.

For rectangles of the form RB = (RK × B) ∩ (X × Θ), where B is a Borel subset of R
p we

already have that

P ∗(RB) =

ˆ

B∩Θ

p∗(θ) dθ. (21)

We conclude that P ∗, P o, and P assign the same values to C ∈ C and that P ∗ and P o assign

the same values to the rectangles RB. For C ∈ C∗ that cannot be computed using (20) and

(21), define P ∗
θ (C) = P o

θ (C). We cannot compute these additional probabilities but it does

not matter because we never need to; their existence suffices. We now have

(X × Θ, C, P o
θ ) = (X × Θ, C, Pθ) = (X × Θ, C, P ∗

θ ).

(X × Θ, C∗, P o
θ ) = (X × Θ, C∗, P ∗

θ ).

For any C-measurable f , E(f) will be computed the same under any of these three probability

measures: P o
θ , Pθ, or P ∗

θ . Similarly, for C∗-measurable f , E(f) will be computed the same

under P o
θ , and P ∗

θ .
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3.6 An Example where the Moment Functions Induce a Posterior

Table 2 is the same example as Table 1 but with two moment functions. The two moment

functions partition the sample space into singleton sets and therefore C contains all subsets

of D
2. The probabilities assigned to each {(x, θ)} displayed in Table 2 are a particular choice

of a solution to equations (11). Because the probability space contains all subsets of D
2, the

probability space (D2, C, P ), completely determines the likelihood and the prior.

Application of the formula

P (X = x |Λ = θ) =
5

∑

d=−5

11
∑

e=−4

ICd,e
(x, θ)P (D,E = d, e |Λ = θ)

=
P [(D,E) = (x − θ, 2x − θ)]

∑6
x=1 P [(D,E) = (x − θ, 2x − θ)]

gives the likelihood, which can be re-expressed as

P ∗(X = 1 |Λ = 1) = P ∗(X = 6 |Λ = 6) = 1 for θ = 1 or 6

P ∗(X = θ − 1 |Λ = θ) = P ∗(X = θ |Λ = θ) = P ∗(X = θ + 1 |Λ = θ) =
1

3
for θ 6= 1 or 6.

P ∗(X = x |Λ = θ) = 0 otherwise.

The prior is the marginal

P (Λ = θ) =
1

6
for θ = 1, . . . , 6

(Table 2 about here)

4 Illustration: The Habit Persistence Model

We illustrate the ideas with the habit persistence asset pricing model proposed by Campbell

and Cochrane (1999) using US annual data over the period 1950–2013.

Throughout this section, lower case denotes the logarithm of an upper case quantity;

e.g., ct = log(Ct), where Ct is consumption during time period t, and dt = log(Dt), where

Dt is dividends paid during period t. The exceptions are the geometric return on an annual

Treasury obligation rft = log(Pf,t + It) − log Pf,t−1 and the geometric stock return inclusive

of dividends rdt = log(Pdt + Dt) − log Pd,t−1, where Pf,t−1 is the price of an obligation at
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the beginning of time period t that pays interest It at the end of period t, and Pft its price

at the end. This representation of bonds with terminal price Pft different from 1 is an

artifact of data construction and adjustment for inflation, all that is relevant is the ratio

(Pdt + It)/Pd,t−1. Similarly, Pd,t−1 is the price of a stock at the beginning of time period t,

and Pdt its price at the end. Means and standard deviations of the data are shown in Table 3

(Table 3 about here)

The driving processes for the habit persistence model are

Consumption: ct − ct−1 = g + vt, (22)

Dividends: dt − dt−1 = g + wt,

Random shocks:





vt

wt



 ∼ NID









0

0



,





σ2 ρσσw

ρσσw σ2
w







 .

The utility function is of the CRRA (constant relative risk aversion) style

E0

(

∞
∑

t=0

δt (StCt)
1−γ − 1

1 − γ

)

(23)

with corresponding intertemporal marginal rate of substitution

Mt = δ

(

StCt

St−1Ct−1

)−γ

. (24)

Habit persistence is implemented by two equations:

Surplus ratio: st − s̄ = φ (st−1 − s̄) + λ(st−1)vt−1, (25)

Sensitivity function: λ(s) =







1
S̄

√

1 − 2(s − s̄) − 1 s ≤ smax

0 s > smax

. (26)

Gross returns satisfy the equations

1 = Et−1 [Mt(Pd,t + Dt)/Pd,t−1] (27)

1 = Et−1 [Mt(Pf,t + It)/Pf,t−1] (28)

The parameter γ is a measure of curvature, which scales attitudes toward risk, and δ is the

agent’s discount factor. Et is conditional expectation with respect to St, which is the state
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variable; st = log(St). The quantities S̄ and smax can be computed from model parameters as

S̄ = σ
√

γ/(1 − φ) and smax = s̄+(1− S̄2)/2. The variable Xt = Ct(1−St) is called external

habit. By substituting StCt = Ct −Xt in (23) one can see that utility is extremely low when

consumption is close to Xt for γ > 1. Habit Xt is determined by past consumption as is seen

by noting that vt−1 = log(Ct−1/Ct−2) − g in (22). Given the habit model’s parameters

θ = (g, σ, σw, ρ, φ, δ, γ), (29)

one can compute all quantities above and, in particular, the realized values of vt and wt.

The values calibrated by Campbell and Cochrane (1999) are

θ∗ = (0.0189, 0.015, 0.122, 0.2, 0.87, 0.89, 2.00). (30)

The prior used here is

π(θ) =
7

∏

i=1

N

[

θi

∣

∣

∣ θ∗i ,

(

τiθ
∗
i

1.96

)2
]

(31)

For, e.g., τi = 0.1 the prior states that the marginal probability that θi is within 10% of θ∗i is

95%. This prior is the same as the prior used in Aldrich and Gallant (2011) except that they

pinned the risk free rate with a prior whereas we include treasury returns in the data. They

used τi = 0.1 save for φ and δ where they used τi = 0.001. As documented by Aldrich and

Gallant, φ and δ are not identified and must somehow be restricted when statistical methods

are used to determine model parameters; for these two we find that any τi ≤ 0.1 suffices. We

can use a larger value than Aldrich and Gallant because their estimation method required

model solution which places more stringent requirements on admissible parameters values

than does method of moments.

The habit model was admittedly reverse engineered to deal with the fact that consump-

tion is too smooth to accurately price assets using CRRA utility and reasonable values of

γ. This is fine as long as consumption remains smooth but in periods where it is not, i.e.,

the Great Depression and the Great Recession, the model not only cannot fit the data well

but it also runs into numerical problems because economically implausible parameter values

can become numerically plausible for non-smooth data; e.g., γ < 0. (The problems are an

ill-conditioned weighting matrix for method of moments, no model solution for other meth-

ods.) These problems with the habit model are well documented in Aldrich and Gallant
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(2011) for data that include the Great Depression and we find similar problems here because

our data includes the Great Recession. For our data, there are no numerical problems when

all τi ≤ 0.10 in the prior. Numerical problems commence when τi exceeds 0.30 for g and

σ. Therefore, we impose τi ≤ 0.30 for g and σ. (Bayesian methods require exploration of

the posterior over much of its support whereas frequentist methods require evaluation of the

Laplace criterion (4) over a region local to the optimum. Thus, the region where the method

of moments criterion must be numerically stable for the two methods can differ.)

Also, we impose the support conditions −0.5 < g < 0.5, σ > 0, σw > 0, −1 < ρ < 1,

−1 < φ < 1, 0.7 < δ < 1.05, and 1 < γ < 20. Of these, the only one that is not innocuous

is γ > 1, which binds and visibly truncates the posterior for τi > 0.50.

The frequentist method of moments estimate using moment functions (32) through (43)

shown below and with φ and δ set to 0.87 and 0.89, respectively, is θ̂ = (0.0214, 0.0110,

0.149, 0.0915, 0.87, 0.89, 1.055) with standard errors on the same order of magnitude as the

standard deviations shown in Table 4 save for φ and δ, which have standard errors of zero.

The condition number of the weighting matrix for parameter values local to the optimum

of the Laplace criterion is not unreasonably large. The frequentist estimates that appear

anomalous are ρ and γ.

In what follows, the τi take on the values 0.01, 0.10, 0.50, 1.00, 2.00 with the exceptions

noted above for g, σ, φ, and δ. The likelihood is near enough to its plateau when τi = 2.00

that one learns nothing more from the data for higher values of τi. As seen from Table 4,

the model with τi = 0.5, with exceptions as just noted, is preferred. The Campbell and

Cochrane (1999) calibration can be rejected. The left truncation of the marginal posterior

for γ is mild for τi = 0.5

(Table 4 about here)
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The moment conditions used for inference are

m1,t = ct − ct−1 − g (32)

m2,t = σ2 − (ct − ct−1 − g)2 (33)

m3,t = σ2
w − (dt − dt−1 − g)2 (34)

m4,t = ρ − (ct − ct−1 − g)(dt − dt−1 − g)/(σσw) (35)

m5,t = 1.0 − Mt(Pd,t + Dt)/Pd,t−1 (36)

m6,t = 1.0 − Mt(Pf,t + It)/Pf,t−1) (37)

m7,t = rd,t−1m5,t (38)

m8,t = rf,t−1m5,t (39)

m9,t = (ℓt−1 − ℓt−2)m5,t (40)

m10,t = rd,t−1m6,t (41)

m11,t = rf,t−1m6,t (42)

m12,t = (ℓt−1 − ℓt−2)m6,t (43)

where ℓt is the log of income growth at time t. Let mt denote the column vector with

elements mi,t for i = 1, . . . , 12 = M.

Moment functions (32) through (35) are textbook method of moments equations for

estimating g, σ, σw, and ρ. As a practical matter φ and δ are not identified for the reasons

discussed above. The identification of φ and δ comes from the prior (31). With φ and δ

pinned down by the prior, the identification of λ and δ follows immediately from moment

functions (36) through (43) which are the textbook moment equations for method of moments

estimation of λ and δ for CRRA style utility.

In a sample of size n we compute

m̄(x, θ) =
1

n

n
∑

t=1

mt (44)

and the continuously updated, one lag HAC weighting matrix W (x, θ) with Parzen weights

(Gallant, 1987, p. 446, 533). We assert that
√

n[W (x, θ)]−
1

2 m̄(x, θ) is distributed as NM(0, I),

which implies that the likelihood has the functional form

p(x | θ) = (2π)−
M
2 exp

[

−n

2
m̄′(x, θ)W−1(x, θ)m̄(x, θ)

]

, (45)
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where x denotes the data observed over the period 1942–2013.

Specifically, x is comprised of Pd,t, Pf,t, Dt, and It from the CRSP (2013) series on value-

weighted returns including and excluding dividends, and one year bond returns, deflated

using the GDP deflator from BEA (2013). And comprised of real per-capita consumption

Ct (non-durables plus services) and personal income ℓt, which are current dollar series from

BEA (2013), deflated using the same GDP deflator. The years 1950–2013 (n = 64) were

used for estimation with the years 1942–1949 used to provide lags for computing m̄(x, θ) and

W (x, θ).

MCMC was used for estimation. The MCMC chains were comprised of 100,000 draws

well past the point where transients died off. The proposal was move-one-at-a-time random

walk. Posterior model probabilities are computed using the Newton and Raftery (1994) p̂4

method for computing the marginal likelihood from an MCMC chain when assigning equal

prior probability to each model. The software used is in the public domain and available

together with a User’s Guide at http://www.aronaldg.org/webfiles/mle. The code and

data for the results here are one of the examples included in the distribution.

Results are shown in Table 4. As seen from the table, Campbell and Cochrane’s (1999)

calibration is assigned negligible posterior probability. The preferred model has τi = 0.5. All

parameter estimates drift as the prior is relaxed, the most interesting of which is the drift in

γ from 2 to 3. The reason that the Bayes estimate of γ at τi = 2 differs so markedly from

the frequentist estimate θ̂ above is that the posterior for γ is right skewed so that the mean

is to the right of the mode. The mode of the posterior is more analogous to the frequentist’s

estimator.

The main advantage of method of moments is that one does not have to solve a model

in order to conduct inference. Nonetheless, it is of interest to know what the efficiency loss

might be if one were willing to solve the model. Gallant and McCulloch (2009) proposed

a Bayesian method that relies on the ability to simulate a model in order to synthesize a

likelihood. This idea when coupled with a sieve likelihood provides an estimator that is

nearly as efficient as the estimator that uses the exact likelihood, were it available. Aldrich

and Gallant (2011) used this method with a sieve to fit the habit model to annual data

from 1930–2008. The coefficients of variation in percent of their estimates for parameters
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not pinned down by the prior are cv(g, σ, σw, ρ, γ) = (4.7, 3.7, 4.4, 4.7, 3.9). Our prior with

τi = 0.1 conforms most closely to theirs. The coefficient of variation for our estimates

(Table 4) are cv(g, σ, σw, ρ, γ) = (3.2, 3.7, 4.9, 5.1, 5.2). Taking sample sizes into account,

one would expect the Aldrich and Gallant coefficients of variation to be smaller by about a

factor of
√

64/79 = 0.9. Assuming that what is done here and what was done by Aldrich and

Gallant represents best practice for both estimators, it seems that two methods are roughly

equivalent with respect to efficiency.

5 Conclusion

We explored the consequences of an assertion that moment functions comprised of data

and the parameters of a structural model follow a distribution. We concluded that the

assertion implies a distribution on the constituents of the moment functions and permits

Bayesian inference on model parameters. Specifically, if the moment functions have one of

the properties of a pivotal, then the assertion of a distribution on moment functions coupled

with a proper prior permits Bayesian inference. Without the semi-pivotal condition, the

assertion of a distribution for moment functions either partially or completely specifies the

prior. In this case Bayesian inference may or may not be practicable depending on how

much of the distribution of the constituents remains indeterminate after imposition of a

non-contradictory prior. An asset pricing example using data from the US economy was

used to illustrate the ideas.
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Table 1. Tossing two dice (X,Λ) when the probability of the difference D = X − Λ is the primitive.

Preimage d P (D = d) P (D = d |Λ = 1) P (D = d |Λ = 2)

C−5 = {(1, 6)} -5 0 0 0
C−4 = {(1, 5), (2, 6)} -4 0 0 0
C−3 = {(1, 4), (2, 5), (3, 6)} -3 0 0 0
C−2 = {(1, 3), (2, 4), (3, 5), (4, 6)} -2 0 0 0
C−1 = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)} -1 4/18 0 4/18
C0 = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)} 0 10/18 10/14 10/18
C1 = {(2, 1), (3, 2), (4, 3), (5, 4), (6, 5)} 1 4/18 4/14 4/18
C2 = {(3, 1), (4, 2), (5, 3), (6, 4))} 2 0 0 0
C3 = {(4, 1), (5, 2), (6, 3)} 3 0 0 0
C4 = {(5, 1), (6, 2)} 4 0 0 0
C5 = {(6, 1)} 5 0 0 0

Source: Gallant, Giacomini, and Ragusa (2014)

Table 2. Tossing two dice (X,Λ) when the probability of D = X − Λ, E = 2X − Λ is the primitive.

Preimage d, e P (D,E = d, e) P (D,E = d, e |Λ = 1) P (D,E = d, e |Λ = 2)

C0,1 = {(1, 1)} 0, 1 1/6 1 0
C−1,0 = {(1, 2)} -1, 0 1/18 0 1/3
C−2,−1 = {(1, 3)} -2,-1 0 0 0
C−3,−2 = {(1, 4)} -3,-2 0 0 0
C−4,−3 = {(1, 5)} -4,-3 0 0 0
C−5,−4 = {(1, 6)} -5,-4 0 0 0
C1,3 = {(2, 1)} 1, 3 0 0 0
C0,2 = {(2, 2)} 0, 2 1/18 0 1/3
C−1,1 = {(2, 3)} -1, 1 1/18 0 0
C−2,0 = {(2, 4)} -2, 0 0 0 0
C−3,−1 = {(2, 5)} -3,-1 0 0 0
C−4,−2 = {(2, 6)} -4,-2 0 0 0
C2,5 = {(3, 1)} 2, 5 0 0 0
C1,4 = {(3, 2)} 1, 4 1/18 0 1/3
C0,3 = {(3, 3)} 0, 3 1/18 0 0
C−1,2 = {(3, 4)} -1, 2 1/18 0 0
C−1,1 = {(3, 5)} -1, 1 0 0 0
C−1,0 = {(3, 6)} -1, 0 0 0 0
C3,7 = {(4, 1)} 3, 7 0 0 0
C2,6 = {(4, 2)} 2, 6 0 0 0
C1,5 = {(4, 3)} 1, 5 1/18 0 0
C0,4 = {(4, 4)} 0, 4 1/18 0 0
C−1,3 = {(4, 5)} -1, 3 1/18 0 0
C−2,2 = {(4, 6)} -2, 2 0 0 0
C−4,9 = {(5, 1)} -4, 9 0 0 0
C−3,8 = {(5, 2)} -3, 8 0 0 0
C−2,7 = {(5, 3)} -2, 7 0 0 0
C−1,6 = {(5, 4)} -1, 6 1/18 0 0
C0,5 = {(5, 5)} 0, 5 1/18 0 0
C−1,4 = {(5, 6)} -1, 4 0 0 0
C5,11 = {(6, 1)} 5,11 0 0 0
C4,10 = {(6, 2)} 4,10 0 0 0
C3,9 = {(6, 3)} 3, 9 0 0 0
C2,8 = {(6, 4)} 2, 8 0 0 0
C1,7 = {(6, 5)} 1, 7 1/18 0 0
C0,6 = {(6, 6)} 0, 6 1/6 0 0
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Table 3. Data Characteristics

Variable Mean Std. Dev.

log consumption growth 0.02183 0.01256

log dividend growth 0.02117 0.1479

ρ 0.2399

log income growth 0.02175 0.01925

geometric stock return 0.04355 0.1736

geometric bond return 0.02044 0.02969

Data are real, annual, per capital consumption and income for
the years 1950–2013 and real, annual stock and bond returns for
the same years from BEA (2013) and CRSP (2013). ρ is the
correlation between log consumption growth and log dividend
growth.
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Table 4. Parameter Estimates for the Habit Model

Prior Scale

τ = 0.01 τ = 0.1 τ = 0.5 τ = 1 τ = 2

Parameter Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

g 0.01896 0.0001040 0.02086 0.0006600 0.02196 0.001098 0.02198 0.001109 0.02205 0.001175

σ 0.01486 7.509e-05 0.01204 0.0004407 0.01093 0.0006138 0.01096 0.0006441 0.01091 0.0006507

σw 0.1121 0.0005665 0.1152 0.005595 0.1260 0.01581 0.1296 0.01781 0.1301 0.01884

ρ 0.2000 0.0009874 0.2002 0.01023 0.2033 0.04839 0.2065 0.08464 0.2189 0.1249

φ 0.8676 0.004260 0.8187 0.03066 0.8337 0.03649 0.8329 0.03685 0.8339 0.03520

δ 0.8886 0.004502 0.8742 0.02799 0.8898 0.03248 0.8873 0.03449 0.8799 0.03442

γ 2.0001 0.0150 1.9979 0.1038 2.0536 0.4894 2.3679 0.8108 3.0291 1.2303

Model Prob. 0 0.0036 0.4023 0.3345 0.2597

Data are real, annual, per capital consumption and income for the years 1950–2013 and real, annual
stock and bond returns for the same years from BEA (2013) and CRSP (2013) that are used to form
the moment functions (32) through (43) with years prior to 1950 used for lags. The likelihood given by
(45) is an assertion that the average of these moment functions over the data is normally distributed
with variance given by a one lag HAC weighting matrix with Parzen weights (Gallant, 1987, p. 446).
The prior is given by (31) with scale τ as shown in the table. It is an independence prior that states
that the marginal probability is 95% that a parameter is within τ×100 % of Campbell and Cochrane’s
(1999) calibrated values with the exceptions of φ and δ which are as shown for the first two panels and
0.1 for last three panels and g and σ which are as shown for the first two panels and 0.3 for the last
three panels. The columns labeled mean and standard deviation are the mean and standard deviations
of an MCMC chain (Gamerman and Lopes (2006), Chernozukov and Hong, 2003) of length 100,000
collected past the point where transients have dissipated. The proposal is move-one-at-a-time random
walk. Posterior model probabilities are computed using the Newton and Raftery (1994) p̂4 method
for computing the marginal likelihood from an MCMC chain when assigning equal prior probability to
each model. The software and data for this example are at http://www.aronaldg.org/webfiles/mle.
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