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Abstract

This paper proposes a quantile regression estimator for a panel data model with interactive effects

potentially correlated with the independent variables. We provide conditions under which the slope

parameter estimator is asymptotically Gaussian. Monte Carlo studies are carried out to investigate

the finite sample performance of the proposed method in comparison with other candidate meth-

ods. We discuss an approach to testing the model specification against a competing fixed effects

specification. The paper presents an empirical application of the method to study the effect of

class size and class composition on educational attainment. The findings show that (i) a change in

the gender composition of a class impacts differently low- and high-performing students; (ii) while

smaller classes are beneficial for low performers, larger classes are beneficial for high performers;

(iii) reductions in class size do not seem to impact mean and median student performance; (iv) the

fixed effects specification is rejected in favor of the interactive effects specification.
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1. Introduction

Panel data models which account for the confounding effect of unobservable individual effects

have become the models of choice in many applied areas of economics from microeconomics to

finance. Recent papers have focused on relaxing the traditional fixed effects framework by allowing

for multiple interactive effects (Bai, 2009; Pesaran, 2006). The natural extension of the classical

panel data models with N cross-sectional units and T time periods (Hsiao 2003, Baltagi 2008) is

thus yit = x′
itβ + λ′

ift + uit, where λi is an r × 1 vector of factor loadings and ft corresponds

to the r common time-varying factors, and where both λi and ft are latent variables. Although

this extension substantially increases the flexibility of controlling for unobserved heterogeneity, the

existing estimation approaches are designed for Gaussian models and do not offer the possibility

of estimating heterogeneous covariate effects, which may be of interest to applied researchers. For

example, Bandiera, Larcinese, and Rasul (2010) argue for the use of heterogeneous effects in the

design of educational policies.

This paper proposes a panel data quantile regression estimator for a model with interactive effects,

allowing λ and f to be correlated with the independent variables. We also allow for the possi-

bility that the covariate x is stochastically dependent on u. We introduce a panel data version

of the instrumental variable estimator proposed by Chernozhukov and Hansen (2005, 2006, 2008),

while at the same time accounting for latent heterogeneity. Our method differs from Harding and

Lamarche (2009) and Galvao (2009) because it does not consider the case of unobserved hetero-

geneity represented by a classical individual effect λi. We provide conditions under which the slope

parameter estimator is consistent and asymptotically Gaussian. Moreover, we investigate the finite

sample performance of the proposed method in comparison to other candidate methods. Monte

Carlo evidence shows that the finite sample performance of the proposed method is satisfactory in

all the variants of the models, including specifications with λ, f and u correlated with the inde-

pendent variable x. While the estimation of nuisance parameters in a large N panel data quantile

regression model may be regarded by applied researchers as computationally demanding, this paper

solves a relatively simple linear programming problem that performs extremely well in large size

applications.

We apply the approach to reexamine an often controversial topic in the social sciences, estimat-

ing the distributional effect of class size and class composition on educational attainment, using a

unique dataset of an exogenous allocation of students into classes at Bocconi University (De Giorgi,
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Pellizzari and Woolston 2009). We estimate quantile treatment effects, while relaxing the assump-

tion that the individual latent variables are class invariant. If students’ motivation and teachers’

quality enter multiplicatively in the educational attainment function, standard approaches would

produce biased results. Therefore, we estimate a model that allows for the possibility that a

teacher’s quality affects performance only if the student is motivated and receptive to instruction.

We find that the proposed method gives different policy prescriptions relative to standard methods.

While a reduction in class size does not impact mean and median student performance, it affects

performance at the tails of the conditional distribution. Our finding suggests that this policy ben-

efits weak students, but harms high achievers. Moreover, we find evidence that indicates that a

change in the gender composition of a class impacts differently low- and high-performing students.

Our paper complements the recent focus on heterogeneous treatment effects in the applied econo-

metrics literature (DiNardo and Lee, 2010). In most applications with endogenous right hand

side variables, such as a treatment indicator, it is also particularly informative to consider the

possibility of heterogeneous treatment effects (Heckman and Vytlacil, 2001). Quantile regression

provides a convenient way to introduce a type of heterogeneous treatment effect (e.g., Lehmann

1974, Doksum 1974, Koenker 2005) across individuals conditional on the quantile of the outcome

distribution. The literature investigating quantile regression estimation of the classical static panel

data model is still relatively new. While Koenker (2004) introduces a class of penalized quantile

regression estimators, Lamarche (2010) provides conditions under which it is possible to obtain

the minimum variance estimator in the class of penalized estimators, the analog of the GLS in the

class of penalized least squares estimators for panel data. Abrevaya and Dahl (2008) consider the

classical correlated random effects model and Harding and Lamarche (2009) estimate a model with

endogenous covariates. Our paper is also related to Galvao (2009), who proposes an instrumental

variable approach for estimating a dynamic panel data model. Alternative models and approaches

to the one considered in this paper are introduced by Canay (2010), Chernozhukov, Fernández-Val,

and Newey (2009), Powell (2009), Wei and He (2006), Ando and Tsay (2010), Rosen (2009), and

Ponomareva (2010). The analysis of an incidental parameter problem in quantile regression with

fixed effects is described in Graham, Hahn, and Powell (2009) and Kato and Galvao (2010).

The next section presents the basic idea, the model and an estimator. Section 3 introduces the

quantile regression approach and Section 4 studies the asymptotic properties of the estimator.

Section 5 offers Monte-Carlo evidence. Section 6 demonstrates how the estimator can be used in

an empirical application to the estimation of class size effects for university students. Section 7

concludes.
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2. An Estimation Approach

Consider the following model:

yit = α′dit + β′xit + λ′
ift + uit, i = 1, . . . , N ; t = 1, . . . , T(2.1)

dit = Π′
1wit + Π′

2xit + Π′
3ift + Π4λ

′
ift + Π′

5λi + vit(2.2)

The first equation is a panel data model with interactive effects. The variable yit is the response

for subject i at time t, d is a vector of k1 endogenous variables, x is a vector of k2 exogenous

independent variables, λi is a vector of r unobserved loadings, ft is a vector of r latent factors, and

u is the error term. The parameter of interest is α, while the interactive effects λ′
ift are treated as

nuisance parameters. The second equation indicates that d is correlated with a vector of m ≥ k1

instruments w, the exogenous variables x, and the interactive effects λi and ft. We assume that

the variable v is stochastically dependent on u. It is convenient to write equation 2.1 in a more

concise matrix notation,

(2.3) y = Dα + Xβ + F λ + u

where y is an NT × 1 vector, D is an NT × k1 matrix, X is an NT × k2 matrix, and F is an

NT × r matrix. We let W be a matrix of instruments of dimension NT ×m.

The recent panel literature with T large and N large develops least squares estimation procedures

for model 2.1 and 2.2 under the assumption that u and v are independent random variables (see,

e.g., Pesaran 2006, Bai 2009). Considering the following conditions, we tentatively propose an

estimation approach that allows for dependence between u and v.

ASSUMPTION 1. (uit,v
′
it)

′ satisfies (uit,v
′
it)

′ =
∑∞

l=0 ailζi,t−l, where ζit is a vector of identi-

cally, independently distributed (IID) random variables with mean zero, variance matrix Ik1+1, and

finite fourth order cumulants. In particular Var((uit,v
′
it)

′) = Σ <∞ for all i, t, for some constant

positive definite matrix Σ.

ASSUMPTION 2. The r × 1 vector ft is drawn from a zero mean, unit variance, covariance

stationary process, with absolute summable autocovariances, distributed independently of uit′ and

v′
it for all i, t, t′.

ASSUMPTION 3. The factor loadings λi = λ + πi are distributed independently of ujt and vjt

for all i and j with mean λ and finite variances.

ASSUMPTION 4. The variables wit and uit are stochastically independent and the number of

endogenous variables k1 is equal to the number of instruments m.



5

There is a natural connection between econometric approaches to factor models with latent variables

and instrumental variable (IV) methods. While the IV estimation of high-dimensional factor models

could be problematic in large datasets, its use may provide a solution in the case of T small and

N large. To illustrate the approach, we consider,

(2.4) y(α) = Xβ + F λ + Wη + u,

where y(α) = y − Dα. Then, the estimator η̂(α) = (W ′MW )−1W ′My(α), where M =

I − H(H ′H)−1H ′ and H = [X
...F ]. The (infeasible) instrumental variable estimator α̂ of the

parameter of interest α is defined as,

(2.5) α̂ = argmin
α∈A

{
η̂(α)′W ′MWη̂(α)

}

In practice, the projection matrix M can be constructed by following Pesaran’s (2006) method.

Substituting (2.2) into (2.1), combining the two equations, and summing over the cross-sectional

dimension of the model, we obtain,

(2.6) Z̄ = W̄C′
1 + X̄C ′

2 + F (C̄3 + λ̄C4)
′ + Λ̄C′

5 + Ξ̄,

where C̄3 = N−1
∑N

i=1((Π3iα)′,Π′
3i)

′, λ̄ = N−1
∑N

i=1 λi and,

C1
︸︷︷︸

(1+k1)×m

=

(

α′Π′
1

Π′
1

)

; C2
︸︷︷︸

(1+k1)×k2

=

(

α′Π′
2 + β′

Π′
2

)

; C4
︸︷︷︸

(1+k1)×1

=

(

α′Π4 + 1

Π4

)

; C5
︸︷︷︸

(1+k1)×r

=

(

α′Π5

Π5

)

,

The matrix Z̄ = z̄ ⊗ ιN , z̄ = (z̄1, . . . , z̄T )′, with zt = ((y1t,d
′
1t), . . . , (yNt,d

′
Nt))

′. The matrices

W̄ = w̄ ⊗ ιN , X̄ = x̄ ⊗ ιN , Λ̄ = λ̄ ⊗ ιTN are similarly defined. As usual, ⊗ denotes Kronecker

product and ιs a vector (1, 1, . . . , 1)′ ∈ Rs.

ASSUMPTION 5. The matrix C̄3+C4λ̄
′ converges to a limiting matrix C̃3 with rank k1 +1 < r.

Moreover, the error term in equation 2.6 is a matrix Ξ̄ = ξ̄ ⊗ ιN of dimension NT × (k1 + 1), with

ξ̄ = (ξ̄1, . . . , ξ̄T )′ and ξ̄t = N−1
∑N

i=1(α
′vit+uit,vit)

′. Applying Lemma 1 in Pesaran (2006) under

condition 1, it is possible to show that each coordinate on the vector ξ̄, say ξ̄t, converges to zero in

probability. Letting Γ0 = C̃3(C̃
′
3C̃3)

−1, Γ1 = C′
1Γ0, Γ2 = C′

2Γ0, and Γ5 = C′
5Γ0, we have that,

(2.7) F = Z̄Γ0 − W̄Γ1 − X̄Γ2 − Λ̄Γ5,

which suggest that the unknown factors can be approximated by (z̄′
t, x̄′

t, w̄′
t, 1)

′. We note however

that due to the lack of independence between dit and uit, the vector z̄t may include endogenous

covariates. Using a simple reparametrization, we obtain,

(2.8) F λ = D̄δ0 + Ȳ δ1 + W̄ δ2 + X̄δ3 + δ4.
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Replacing 2.8 in equation 2.4, we obtain,

(2.9) y(α, δ0) = H̃δ + W̃γ + u

where y(α, δ0) = y(α) − D̄δ0, H̃ = [X, Ȳ , X̄, ιNT ], W̃ = [W ,W̄ ], δ = (β′, δ′
1, δ

′
2, δ

′
4)

′, and

γ = (η′, δ′
2)

′. Letting ϑ = (α′, δ′
0)

′, we have that,

(2.10) ϑ̂ = argmin
ϑ∈Θ

{

γ̂(ϑ)′W̃ ′M̃W̃ γ̂(ϑ)
}

where γ̂(ϑ) = (W̃ ′M̃W̃ )−1W̃ ′M̃y(ϑ) and M̃ = I − H̃(H̃ ′H̃)−1H̃ ′. The estimator of ϑ is equal

to ϑ̂ = (D̃′P̃ D̃)−1(D̃′P̃ y), where P̃ = M̃W̃ (W̃ ′M̃W̃ )−1W̃ ′M̃ , and D̃ = [D, D̄]. The following

proposition shows that if valid instruments wit are present, we can perform an instrumental vari-

able regression augmented by the exogenous right-hand side variables in equation 2.7, leading to

consistent estimates of the parameter of interest.

PROPOSITION 1. Under the previous conditions, a feasible and consistent estimator of α is

equal to α̂ = (D′M̃P̃D)−1(D′M̃P̃y), where M̃P̃ = P̃ − P̃ D̄(D̄′P̃ D̄)−1D̄′P̃ .

Proposition 1 indicates that it is possible to obtain a feasible estimator for the slope parameter

of interest α in a model with interactive effects and endogenous covariates. The method extends

Pesaran’s (2006) analysis accommodating to issues associated with the lack of independence between

d and (λ′, u)′. The next Section shows that the same strategy can be employed to estimate a quantile

regression model with interactive effects and endogenous covariates.

3. A Quantile Regression Approach

We being considering for simplicity the following conditional quantile functions:

QYit
(τ |dit,xit,λi,ft) = α′dit + β′xit + λ′

ift +Gu(τ)
−1,(3.1)

QDit
(τ |wit,xit,λi,ft) = Π′

1wit + Π′
2xit + Π′

3ift + Π4λ
′
ift + Π′

5λi + κGu(τ)
−1,(3.2)

where τ is a quantile in the interval (0, 1), κ is a parameter, and G denotes the distribution function

of the iid error term u. This model 3.1-3.2 is the simplest quantile regression version of model

2.1-2.2. A natural generalization of the model is defining the quantile function 3.2 for Gv(τ
′)−1.

To estimate this model, we can accommodate the instrumental variable approach proposed in

Chernozhukov and Hansen (2005) to panel data, integrating out the quantile τ ′ as in Ma and

Koenker (2006). If we augment the design matrix with cross-sectional averages, we have that the

approximation for the factors f ’s depend on the quantiles τ and τ ′. By integrating out the quantile
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τ ′, we may define the factors in terms of τ . Chernozhukov and Hansen (2005) illustrate that their

approach is always applicable to a class of triangular models.

The model can be easily generalized to the standard location-scale shift model and other more

general panel data models with heterogeneous effects. As it will be clear in Section 6, we will

use the general version of these equations as a model for educational achievement. Following the

literature (see, e.g., Ma and Koenker 2006, Hanushek et al. 2003, De Giorgi, Pellizzari and Woolston

2009, Bandiera, Larcinese, and Rasul 2010), the response variable y is educational attainment and

is influenced by class size and peer effects d, and individual, family and school characteristics x.

The last term u may represent idiosyncratic shocks to achievement which force the student to

switch class.

A central concern in the estimation of the distributional effects of class size is unobserved hetero-

geneity. While most of the models estimated in the literature assume the classical additive separable

structure on unobserved heterogeneity λ+f , we will estimate a more general specification allowing

for interactive effects. The variable λ captures a student’s unobserved ability to absorb knowledge

when listening to lectures, effort and motivation, and the variable f includes teachers’ quality and

other class-invariant unobserved effects. The education production function 3.1 incorporates un-

observed heterogeneity, while allowing for the possibility that teachers’ quality affects performance

only if the student is motivated and receptive to instruction.

Proposition 1 suggests a strategy that can be employed to estimate a quantile regression model

with interactive effects and endogenous covariates. We define,

(3.3) Cit(τ,α,β, δ,γ) = ρτ

(

yit − d′
itα − x′

itβ − f̂ ′
t(τ)δ − Φ̂′

it(τ)γ
)

.

where ρτ (u) = u(τ − I(u ≤ 0)) is the standard quantile loss function (see, e.g., Koenker 2005).

The quantile regression check function includes two additional terms that deserve our attention.

Using the convention that the conditional quantile function QYit
(τ |dit,xit,λi,ft) is evaluated at

dit = QDit
(τ |wit,xit,λi,ft), we can substitute (3.2) into (3.1) and summing over the cross-sectional

dimension of the model, we obtain,

(3.4) z̄t(τ) = C1w̄t + C2(τ)x̄t + (C̄3 + C4λ̄
′)ft + C5λ̄,

where z̄t(τ) is the cross-sectional average of zit(τ) = (QYit
(τ |•), QDit

(τ |•)′)′, and C2(τ) = ((α′Π′
2+

β(τ)′)′,Π′
2)

′. As before we can augment the design matrix by adding the cross-sectional averages

of the endogenous and exogenous variables, ft(τ) = Ψ(τ ; z̄t, w̄t, x̄t, 1). The second term Φit(τ) =

Φ(τ ;wit,xit,ft,λi) is a vector of transformations of instruments. It is possible to estimate Φ
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by a least squares projection of the endogenous variables d on the instruments w, the exogenous

variables x, and a vector of individual and time effects. We consider the case of dim(α) = dim(γ),

although the vector Φ may include more elements than the vector d.

Remark 1. If cross-sectional averages are used instead of the conditional quantiles QD’s, the

function Cit(τ,α,β, δ,γ) in 3.3 is replaced by,

(3.5) Cit(τ,ϑ,β, δ,γ) = ρτ

(

yit − d̃′
itϑ − x′

itβ − f̂ ′
t(τ)δ − Φ̂′

it(τ)γ
)

,

where d̃it = (d′
it, d̄

′
t)
′. In this case, ft(τ) is defined as Ψ(τ ; ȳt, x̄t, 1) and Φit(τ) is defined as

Φ(τ ;wit, w̄t). Therefore, as in Proposition 1, we may instrument d̃it by the vector of instruments

w̃it = (w′
it, w̄

′
t)
′.

The procedure is similar in spirit to Chernozhukov and Hansen (2006) applied to panel models as

in Harding and Lamarche (2009) and Galvao (2009). First, we minimize the objective function

above for β, γ, and δ as functions of τ and α,

(3.6) {β̂(τ,α), δ̂(τ,α), γ̂(τ,α)} = argmin
β,γ,δ∈B×G×F

T∑

t=1

N∑

i=1

Cit(τ,α;β, δ,γ).

Then we estimate the coefficient on the endogenous variable by finding the value of α, which

minimizes a weighted distance function defined on γ:

(3.7) α̂(τ) = argmin
α∈A

{

γ̂(τ,α)′Â(τ)γ̂(τ,α)
}

for a positive definite matrix A. Then, the quantile regression estimator for a model with interactive

effects (QRIE) is defined as,

θ̂(τ) ≡
(

α̂(τ), β̂(τ), δ̂(τ)
)

=
(

α̂(τ), β̂(α̂(τ), τ)), δ̂(α̂(τ), τ))
)

.

It is straightforward to accommodate our estimator to the case of individual location shifts consid-

ered in Koenker (2004). We define,

(3.8) Cit(τ,α,β, δ,γ, λi) = ρτ

(

yit − d′
itα − x′

itβ − λi − f̂ ′
t(τ)δ − Φ̂′

it(τ)γ
)

.

where ρτ (u) = u(τ − I(u ≤ 0)) is the standard quantile loss function and λi is an individual effect.

First, we minimize the objective function above for β, γ, δ and λ as functions of τ and α,

(3.9) {β̃(τ,α), γ̃(τ,α), λ̃(τ,α), δ̃(τ,α)} = argmin
β,γ,δ,λ∈B×G×F×Λ

J∑

j=1

T∑

t=1

N∑

i=1

Cit(τj,α;β,λ, δ,γ).
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Then, we estimate the coefficient on the endogenous variable by:

(3.10) α̃(τ) = argmin
α∈A

{

γ̃(τ,α)′Ã(τ)γ̃(τ,α)
}

for a positive definite matrix Ã(τ). The quantile regression estimator for a model with individual

and interactive effects (QRIIE) is,

θ̃(τ) ≡
(

α̃(τ), β̃(τ), λ̃(τ), δ̃(τ)
)

=
(

α̃(τ), β̃(α̃(τ), τ)), λ̃(α̃(τ), τ)), δ̃(α̃(τ), τ))
)

.

The following examples are designed to establish a connection between our methods and existing

approaches in the literature.

Example 1. Consider the case that ft = r = 1 for all t. For simplicity, we let Π3i = 0 in equation

3.2 and C̃4 = C4 + C5. From equation 3.4, we have that,

(3.11) C̃4λi = zit(τ) − C1wit − C2(τ)xit

or, similarly, by taking averages over the time-series dimension of the model,

(3.12) λi = Ψ(τ)′s̄i,

where sit = (zit(τ)
′,w′

it,x
′
it)

′, s̄i denotes the sample average of s, and Ψ(τ) is a vector of coefficients

that includes C̃4, C1, and C2. Therefore, in the one-factor model with fixed effects λi’s, we can

augment the model by a vector of observables s̄i. In the linear least squares case, it is known

that the classical fixed effects estimator is numerically equivalent to the estimator obtained by

augmenting the model by a vector of observables (Chamberlain 1982, Mundlak 1978).

Example 2. In the simplest conceivable case of ft not depending on the quantile τ and uit stochasti-

cally independent on vit, one can interpret that the method considers proxing ft with s̄t = (z̄′
t, x̄

′
t)
′,

implicitly assuming that ft = Π′s̄t+ ǫt. To address the possibility that the loadings λi’s are corre-

lated with the independent variables, Bai (2009) notices that one can similarly write λi = Ψ′s̄i+ηi,

where s̄i = (d̄i, x̄
′
i)
′. The errors ǫt and ηi are assumed to be distributed as Fǫ and Fη , and are

independent of the covariates. Notice that,

(3.13) λ′
ift = (Ψs̄i + ηi)

′(Πs̄t + ǫt) = s̄′iΘs̄t + θ′
is̄t + s̄′iθt + η′

iǫt,

where Θ = Ψ′Π is a p× p matrix, θi = (η′
iΠ)′ is a p× 1 vector, and θt = (Ψ′ǫt)

′ is a p× 1 vector.

Under the assumption that η′
iǫt and the right hand side variables are independent, we can augment

the model and consistently estimate the effects of interest using an approach similar to the one

presented below (see, e.g., Bai 2009, Abrevaya and Dahl 2008).
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Example 3. The one-factor model case suggests that the coefficient δ(τ) in equation 3.3 may be

interpreted as a reduced form coefficient. From equation (3.4), we can write,

(3.14) ft = Γ′
0z̄t(τ) − Γ′

0C1w̄t − Γ′
0C2(τ)x̄t − Γ′

0C5λ̄,

where as before Γ0 = C̃3(C̃
′
3C̃3)

−1 and C̃3 = C̄3+C4λ̄
′. Multiplying (3.14) by the one-dimensional

loading λi, we have that,

λift = λiΓ
′
0z̄t(τ) − λiΓ

′
0C1w̄t − λiΓ

′
0C2(τ)x̄t − λiΓ

′
0C5λ̄(3.15)

= δ′
0z̄t(τ) + δ′

1w̄t + δ2(τ)
′x̄t + δ′

5λ̄,(3.16)

where δ0 = Γ0λi, δ1 = −δ0C1, δ2(τ) = −δ0C2(τ), and δ5 = −δ0C5. Note that the reduced form

parameter δ0 is then,

δ0 = Γ0λi =
1

NC̃′
3C̃3

N∑

i=1

(

α′Π3iλi + (α′Π4 + 1)λ2
i

Π3iλi + Π4λ
2
i

)

=
1

C̃′
3C̃3

(

α′λ̄Π3
+ (α′Π4 + 1)λ̄2

λ̄Π3
+ Π4λ̄

2

)

.

where λ̄Π3
= N−1

∑

iΠ3iλi and λ̄2 = N−1
∑

i λ
2
i . Using equation (3.16) and letting f(τ) =

(z̄t(τ)
′, w̄′

t, x̄
′
t, ι)

′ and δ(τ) = (δ′
0, δ

′
1, δ2(τ)

′, δ′
5)

′, we have that λift equals ft(τ)δ(τ).

Remark 2. The conditional quantile function 3.1 allows for unobserved time-varying effects ft, and

individual specific effects λi, representing a more general version of a panel data quantile regression

model. Consider first that the error terms u and v in model 2.1-2.2 are stochastically independent.

By setting ft = r = 1 for all t, we have the conditional quantile function QYit
(τ |dit,xit, λi) =

d′
itα(τ) + x′

itβ(τ) +λi estimated in Koenker (2004) and Lamarche (2010). Moreover, if λi = r = 1

for all i, we have a conditional quantile function with time effects QYit
(τ |dit,xit, ft) = d′

itα(τ) +

x′
itβ(τ) + ft. A simple variation arises when f ′

tλi = λi + ft, which can also be simply estimated by

the method developed by Koenker. A model with endogenous covariates can be estimated by the

method proposed in Harding and Lamarche (2009).

Remark 3. The recent literature on panel data quantile regression proposes to estimate a vec-

tor of N (nuisance) individual effects (see, e.g., Koenker 2004, Lamarche 2010). As recognized

by Koenker (2004), the sparsity of the design plays a crucial role in the estimation procedure.

Our approach is computationally simple, and we believe it is convenient for estimating large mi-

croeconometric panels. The procedure uses the R functions in quantreg (Koenker, 2010) and the

implementation of the instrumental variable strategy follows closely the grid approach presented in

Chernozhukov and Hansen (2006). We define a grid j = {1, . . . , J}. For a given j, we define a grid

running ordinary quantile regression of yit−d′
itαj on xit, f̂t(τ), and Φ̂it(τ), obtaining β̂(α̂j(τ), τ)),

δ̂(α̂j(τ), τ)),γ̂(α̂j(τ), τ)). Then, we find α̂(τ) = α̂∗
j , where α̂∗

j minimizes ‖γ̂(τ,α)‖2
Â(τ)

.
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4. Additional Assumptions and Basic Inference

We now briefly state a series of results to facilitate the estimation of standard errors and evaluation

of basic hypotheses. Consider the following assumptions:

ASSUMPTION 6. The variables yit are independent with conditional distribution Git, and con-

tinuous densities git uniformly bounded away from 0 and ∞, with bounded derivatives g′it everywhere.

ASSUMPTION 7. For all τ ∈ T , (α(τ),β(τ)) ∈ int A×B, where A×B is compact and convex.

ASSUMPTION 8. Let π ≡ (α′,β′,γ ′, δ′)′ and θ ≡ (α′,β′, δ′)′. Also,

Π(π, τ) ≡ E [(τ − 1{Y < Dα + Xβ + Wγ + F δ}∆(τ)]

Π(θ, τ) ≡ E [(τ − 1{Y < Dα + Xβ + F δ}∆(τ)]

where ∆(τ) = [X,W ,F ]′. The Jacobian matrices ∂Π(θ, τ)/∂(α′,β′, δ′) and ∂Π(π, τ)/∂(β′, δ′,γ ′)

have full rank and are continuous uniformly over A× B × L× G and the image of A× B × L× G
under the mapping (α,β, δ) 7→ Π(θ, τ) is simply connected.

ASSUMPTION 9. There exist limiting positive definite matrices S(τ) and J(τ) equal to,

S(τ) = lim
T→∞
N→∞

τ(1 − τ)

NT
X̃ ′M ′

FMF X̃

J(τ) = lim
T→∞
N→∞

1

NT
(K′,L′)

where X̃ = [W ,X], MF = I − PF , PF = F (F ′ΦF )−1F ′Φ, Φ = diag(git(ξit(τ))), K =

[J ′
αHJα]−1J ′

αH, Jα = limN,T→∞ X̃ ′M ′
FΦMFD, H = J̄ ′

γAJ̄γ , A is a positive definite matrix,

L = J̄αM , M = I−JαK, and (J̄α, J̄γ) are partitions of the inverse of Jϑ = limN,T→∞ X̃ ′M ′
FΦMF X̃.

ASSUMPTION 10. max ‖xit‖/
√
NT → 0, max ‖ft‖/

√
N → 0, and max ‖wit‖/

√
NT → 0.

The previous conditions are standard in the literature. The behavior of the conditional density in

a neighborhood of ξit(τ) is crucial for the asymptotic behavior of the quantile regression estimator.

Condition 6 ensures a well-defined asymptotic behavior of the quantile regression estimator. Con-

dition 4 implies the standard conditions on the instruments in the exactly identified case. This case

can be easily relaxed but we impose it by convenience. The independence on the yit’s is assumed

in Koenker (2004) and conditions 7 and 8 are assumed in Chernozhukov and Hansen (2006). In

condition 9, the existence of the limiting form of the positive definite matrices is used to invoke the
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Lindeberg-Feller Central Limit Theorem. The asymptotic covariance matrices have a representa-

tion similar to the matrices found in Chernozhukov and Hansen (2008, proposition 2) and Galvao

(2009, theorem 2). Condition 10 is important both for the Lindeberg condition and for ensuring

the finite dimensional convergence of the objective function.

PROPOSITION 2. Under regularity conditions A1-A10, the quantile regression estimator for a

model with interactive effects, (α̂(τ)′, β̂(τ)′)′, is consistent and asymptotically normally distributed

with mean (α(τ)′,β(τ)′)′ and covariance matrix J ′(τ)S(τ)J(τ).

Estimation and basic inference requires us to approximate F and estimate the conditional density

g. The matrix of factors F of dimension NT × r is replaced by a matrix F̂ of dimension NT × 1 +

k1+k2+m. This matrix includes cross-sectional averages as in Proposition 1, although it is possible

to construct F̂ (τ) that incorporate quantile-specific variables. The density g can be estimated by

employing standard quantile regression techniques. To estimate the density, we adopt a kernel

estimator using residuals of the form ûit(τ) = yit − d′
itα̂(τ) − x′

itβ̂(τ) − f̂ ′
t δ̂(τ) and a properly

chosen bandwidth h (see Koenker 2005 for details). Therefore, the matrix S(τ) can be estimated

by Ŝ(τ) = τ(1 − τ)(NT )−1X̃ ′M̂ ′

F̂
M̂

F̂
X̃, where X̃ = [W ,X] and M̂

F̂
= I − F̂ (F̂ ′Φ̂F̂ )−1F̂ ′Φ̂.

The matrix J(τ) can be similarly estimated.

Inference for panel data can be considered by accommodating standard quantile regression tests.

Wald-type statistics (see, e.g., Koenker and Bassett 1982) can be considered for basic general

linear hypothesis on a vector θ. More general hypothesis including evaluating the vector over a

range of quantiles could be accommodated by considering the Kolmogorov-Smirnov statistics (see,

e.g., Koenker and Xiao 2002, and Koenker 2005). We consider a general linear hypothesis on the

vector θ of the form H0 : Rθ = r, where R is a matrix that depends on the type of restrictions

imposed. This framework allows us to evaluate several linear hypotheses, including the significance

of differences across coefficient estimates of a vector θ = (θ1(τ), ...,θp(τ))
′. The test statistics is

defined as,

(4.1) TNT = NT (Rθ̂ − r)′
[

RV̂ −1R′
]−1

(Rθ̂ − r),

is asymptotically distributed as χ2
q under H0, where q is the rank of the matrix R and V̂ is the

estimated covariance matrix, Ĵ ′(τ)Ŝ(τ)Ĵ(τ).
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5. Monte Carlo

In this section, we report the results of several simulation experiments designed to evaluate the

performance of the method in finite samples. We compare the small sample behavior of the estima-

tor proposed in this paper within a class of fixed effects methods. First, we will briefly investigate

the bias and root mean squared error (RMSE) of the estimator in models where the endogenous

variable is correlated with the unobserved factors. Second, we investigate the performance of the

method when the endogenous variable is correlated with both loadings and factors. Lastly, we

provide evidence on the performance of the method when the endogenous variable is correlated

with the loadings, factors and the error term.

We generate the dependent variable considering a design similar to Bai (2009) and Pesaran (2006):

yit = β0 + β1dit + β2xit + λ1if1t + λ2if2t + (1 + hdit)uit(5.1)

dit = π0 + π1wit + π2xit + π3f1t + π3f2t + π4λ1if1t + π4λ2if2t + vit(5.2)

wit = θ0µt + θ1ǫit,(5.3)

fjt = ρffjt−1 + ηjt(5.4)

ηjt = ρηηjt−1 + ejt(5.5)

for j = {1, 2}, . . . t = −49, . . . 0, . . . T in the last two equations. The error terms are (uit, vit)
′ ∼

N (0,Ω) and xit, µt, ǫit, eit are Gaussian independent random variables. The loading λi1 ∼ N (1, 0.2)

and λi2 is distributed either as N (1, 0.2) or t-student distribution with two degrees of freedom. The

parameters are assumed to be: β0 = π0 = 0, β1 = β2 = π1 = π2 = π3 = θ0 = θ1 = 1, ρf = 0.90,

ρη = 0.25, and Ω11 = Ω22 = 1.

We consider three designs for the location shift model h = 0:

Design 1: The endogenous variable d is not correlated with the λ’s, and the variables u and v

are independent Gaussian variables. Although d is not correlated with the individual effects

and the error term, it is correlated with the F ’s. We assume π4 = 0 and Ω12 = Ω21 = 0.

Design 2: The variable d is correlated with F ’s and λ’s, and the error terms in equations 5.1

and 5.2 are not correlated. We assume π4 = 0.1 and Ω12 = Ω21 = 0.

Design 3: The error terms in equations 5.1 and 5.2 are now correlated, assuming that Ω12 =

Ω21 = 0.5. The variable d is also correlated with the F ’s and λ’s as in the experiment

carried out in Design 2.
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Moreover, we expand the analysis considering these designs for the case of location-scale shift

models. In all the variants of the experiments, we assume that h = 0.1 in equation 5.1.

Panel Data Methods

Statistic Sample Least Squares Quantile Regression

Size OLS LSFE LSIVFE LSIE QR QRFE QRIVFE QRIE

N T Gaussian distribution

Bias 100 4 0.2652 0.3013 -0.2325 -0.0012 0.2695 0.3038 -0.2319 0.0092

RMSE 100 4 0.3297 0.3671 2.1426 0.0901 0.3352 0.3700 1.6578 0.1706

Bias 250 4 0.2751 0.3112 -0.0879 0.0001 0.2766 0.3141 -0.1863 -0.0010

RMSE 250 4 0.3314 0.3717 5.2631 0.0564 0.3345 0.3751 4.6359 0.1048

Bias 100 8 0.4133 0.4317 -0.0937 -0.0012 0.4106 0.4230 -0.1291 -0.0138

RMSE 100 8 0.4514 0.4700 0.6048 0.0634 0.4498 0.4609 0.8426 0.1404

Bias 250 8 0.3898 0.4100 -0.1104 0.0006 0.3864 0.4002 -0.1341 -0.0004

RMSE 250 8 0.4284 0.4480 1.0372 0.0403 0.4251 0.4382 1.1526 0.0839

N T t2 distribution

Bias 100 4 0.1543 0.1789 -0.0573 0.0160 0.1542 0.1783 -0.0664 0.0098

RMSE 100 4 0.2629 0.2665 0.3911 0.3514 0.2337 0.2567 0.4506 0.2324

Bias 250 4 0.1299 0.1497 -0.2558 -0.0036 0.1343 0.1525 -0.2122 0.0021

RMSE 250 4 0.2181 0.2390 2.7363 0.2393 0.2033 0.2300 1.9292 0.1626

Bias 100 8 0.1929 0.2118 -0.0062 -0.0386 0.2009 0.2154 -0.0616 -0.0075

RMSE 100 8 0.2780 0.2849 0.8160 0.2481 0.2703 0.2753 0.6111 0.2142

Bias 250 8 0.2099 0.2206 -0.1737 0.0074 0.2126 0.2244 -0.2297 0.0057

RMSE 250 8 0.2765 0.2886 0.7196 0.1426 0.2699 0.2792 0.8133 0.1110

Table 5.1. Small sample performance of a class of panel data estimators.

This table considers the Monte Carlo design 1. The table includes bias and

root mean square error (RMSE) for the slope parameter. The evidence is based

on 400 randomly generated samples.

Tables 5.1-5.3 present the bias and root mean square error (RMSE) of the simulation experiments.

While the upper panels of the tables present results for the case that λ1 and λ2 are distributed as

Gaussian random variables (N (1, 0.2)), the lower panels of the tables present results for the case of

λ2 distributed as t-student distribution with two degrees of freedom (t2). We present results based

on N = {100, 250} and T = {4, 8}. It is important to note that even though the asymptotic results

were derived under the assumption of large N and large T , the finite sample performance of the

proposed estimators is excellent even for a very small number of time periods. The tables show
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Panel Data Methods

Statistic Sample Least Squares Quantile Regression

Size OLS LSFE LSIVFE LSIE QR QRFE QRIVFE QRIE

N T Gaussian distribution

Bias 100 4 0.3302 0.3148 -0.2153 -0.0018 0.3311 0.3169 -0.2621 0.0085

RMSE 100 4 0.3764 0.3726 2.1016 0.0901 0.3783 0.3746 2.1627 0.1721

Bias 250 4 0.3442 0.3245 0.0692 -0.0001 0.3417 0.3264 -0.0582 -0.0024

RMSE 250 4 0.3876 0.3787 2.8627 0.0564 0.3866 0.3813 2.7423 0.1088

Bias 100 8 0.4530 0.4391 -0.1640 -0.0015 0.4480 0.4304 -0.1850 -0.0136

RMSE 100 8 0.4820 0.4714 1.3625 0.0633 0.4781 0.4624 1.3522 0.1382

Bias 250 8 0.4370 0.4213 -0.4092 0.0005 0.4300 0.4115 -0.4482 0.0016

RMSE 250 8 0.4648 0.4528 4.8337 0.0402 0.4583 0.4433 5.4814 0.0853

N T t2 distribution

Bias 100 4 0.9599 0.3774 -0.0734 0.0039 0.4254 0.2372 -0.0784 0.0141

RMSE 100 4 1.5011 0.6422 0.4356 0.3548 0.5365 0.2937 0.5127 0.2435

Bias 250 4 1.1461 0.3508 -0.0676 -0.0092 0.4620 0.2119 -0.0897 0.0092

RMSE 250 4 1.7067 0.5390 1.0215 0.2409 0.6094 0.2702 0.8594 0.1622

Bias 100 8 0.9047 0.4055 -0.0502 -0.0450 0.4398 0.2792 -0.0949 -0.0064

RMSE 100 8 1.2719 0.4856 0.5867 0.2622 0.5145 0.3215 0.5524 0.2101

Bias 250 8 0.9443 0.4435 -0.2747 0.0054 0.4421 0.2925 -0.3328 0.0029

RMSE 250 8 1.3166 0.5388 1.5394 0.1426 0.5153 0.3272 1.4542 0.1198

Table 5.2. Small sample performance of a class of panel data estimators.

This table considers the Monte Carlo design 2. The table includes bias and

root mean square error (RMSE) for the slope parameter. The evidence is based

on 400 randomly generated samples.

results obtained from: ordinary least squares (OLS), the least squares version of the fixed effects

estimator (LSFE), the classical instrumental variable estimation for a model with fixed effects

(LSIVFE), the estimator introduced in proposition 1 (LSIE) which we consider to be a version of

the CCE estimator of Pesaran (2006), the classical quantile regression estimator (QR), the fixed

effects version of the estimator introduced by Koenker (2004) labelled QRFE, the instrumental

variable method with fixed effects (QRIVFE) introduced by Harding and Lamarche (2009), and

the quantile regression estimator for a model with interactive effects (QRIE).
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Panel Data Methods

Statistic Sample Least Squares Quantile Regression

Size OLS LSFE LSIVFE LSIE QR QRFE QRIVFE QRIE

N T Gaussian distribution

Bias 100 4 0.4708 0.4413 -0.2048 0.0039 0.4710 0.4410 -0.2639 0.0149

RMSE 100 4 0.4948 0.4711 2.0380 0.0870 0.4962 0.4711 2.1051 0.1806

Bias 250 4 0.4757 0.4414 0.0740 0.0021 0.4714 0.4397 -0.0582 0.0022

RMSE 250 4 0.5007 0.4726 2.8873 0.0591 0.4971 0.4712 2.7774 0.1022

Bias 100 8 0.5521 0.5318 -0.1604 0.0059 0.5459 0.5229 -0.1736 0.0092

RMSE 100 8 0.5693 0.5509 1.3783 0.0638 0.5636 0.5422 1.3123 0.1331

Bias 250 8 0.5402 0.5176 -0.4246 0.0008 0.5344 0.5069 -0.4783 0.0061

RMSE 250 8 0.5561 0.5355 5.1030 0.0396 0.5508 0.5252 5.8590 0.0889

N T t2 distribution

Bias 100 4 1.0831 0.4939 -0.0753 0.0056 0.5513 0.3502 -0.0906 0.0036

RMSE 100 4 1.5733 0.7102 0.4294 0.3546 0.6415 0.3821 0.5747 0.2676

Bias 250 4 1.2690 0.4710 -0.0742 -0.0107 0.5937 0.3330 -0.1188 0.0041

RMSE 250 4 1.7823 0.6206 1.1007 0.2410 0.7166 0.3678 0.9933 0.1731

Bias 100 8 0.9985 0.4990 -0.0531 -0.0472 0.5387 0.3785 -0.0856 -0.0067

RMSE 100 8 1.3388 0.5635 0.5714 0.2657 0.6002 0.4061 0.5913 0.1955

Bias 250 8 1.0402 0.5384 -0.2735 0.0037 0.5437 0.3912 -0.3240 0.0077

RMSE 250 8 1.3834 0.6171 1.5494 0.1451 0.6019 0.4130 1.4801 0.1247

Table 5.3. Small sample performance of a class of panel data estimators.

This table considers the Monte Carlo design 3. The table includes bias and

root mean square error (RMSE) for the slope parameter. The evidence is based

on 400 randomly generated samples.

Tables 5.1 and 5.2 provide evidence of the biases present in the application of traditional methods

in the presence of interactive effects under alternative assumptions on how the unobserved time-

varying interactive effects are correlated with other right hand side variables. While it may not

be surprising to find out that pooled methods such as OLS or QR are biased and have poor

MSE properties, it is surprising that the application of standard FE estimation to a situation

with interactive effects produces large biases. This is true for both mean regression and quantile

regression. In particular notice how the differencing procedure applied to mean regression analysis

with fixed effects fails to remove the unobserved heterogeneity and induces additional correlations

which lead to a large bias and MSE. Applying an instrumental variables technique, in addition
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Statistic Sample 0.25 Quantile 0.75 Quantile

Size QR QRFE QRIVFE QRIE QR QRFE QRIVFE QRIE

N T Monte Carlo Design 1 - Gaussian distribution

Bias 100 4 0.2934 0.3217 -0.1348 0.0468 0.2311 0.2732 -0.3608 -0.0354

RMSE 100 4 0.3605 0.3891 1.1409 0.1905 0.3101 0.3459 2.8677 0.1845

Bias 250 4 0.3075 0.3336 -0.0708 0.0342 0.2383 0.2778 -0.1999 -0.0394

RMSE 250 4 0.3666 0.3963 4.3282 0.1245 0.3054 0.3428 4.1701 0.1338

Bias 100 8 0.4478 0.4537 -0.1360 0.0370 0.3729 0.3798 -0.1181 -0.0309

RMSE 100 8 0.4897 0.4940 0.8972 0.1462 0.4173 0.4200 0.6015 0.1536

Bias 250 8 0.4192 0.4205 -0.1289 0.0305 0.3537 0.3697 -0.1800 -0.0297

RMSE 250 8 0.4616 0.4589 0.8784 0.0977 0.3967 0.4097 1.0934 0.1077

N T Monte Carlo Design 2 - Gaussian distribution

Bias 100 4 0.3590 0.3337 -0.1508 0.0496 0.3008 0.2867 -0.2563 -0.0395

RMSE 100 4 0.4101 0.3924 1.4565 0.1922 0.3551 0.3507 1.9657 0.1983

Bias 250 4 0.3742 0.3459 0.0244 0.0321 0.3058 0.2921 -0.0010 -0.0383

RMSE 250 4 0.4208 0.4021 2.0425 0.1302 0.3549 0.3505 3.6376 0.1389

Bias 100 8 0.4858 0.4609 -0.1827 0.0404 0.4099 0.3894 -0.1420 -0.0372

RMSE 100 8 0.5182 0.4949 1.3417 0.1548 0.4444 0.4241 0.7657 0.1606

Bias 250 8 0.4633 0.4313 -0.3888 0.0316 0.3987 0.3817 -0.3184 -0.0306

RMSE 250 8 0.4955 0.4638 4.7955 0.0997 0.4299 0.4150 1.6772 0.1077

N T Monte Carlo Design 3 - Gaussian distribution

Bias 100 4 0.5018 0.4641 -0.1604 0.0247 0.4267 0.4002 -0.2308 -0.0141

RMSE 100 4 0.5316 0.5003 1.6530 0.1910 0.4610 0.4377 1.7873 0.1922

Bias 250 4 0.5136 0.4689 0.0058 0.0358 0.4279 0.4008 -0.0024 -0.0345

RMSE 250 4 0.5423 0.5041 2.1258 0.1278 0.4622 0.4361 3.6637 0.1452

Bias 100 8 0.5896 0.5582 -0.1956 0.0218 0.4966 0.4725 -0.1388 -0.0068

RMSE 100 8 0.6094 0.5801 1.3326 0.1587 0.5215 0.4950 0.7900 0.1539

Bias 250 8 0.5728 0.5314 -0.4110 0.0185 0.4925 0.4667 -0.3028 -0.0138

RMSE 250 8 0.5916 0.5523 5.0595 0.0979 0.5139 0.4878 1.5624 0.1089

Table 5.4. Small sample performance of quantile regression estimators in

the location-scale shift model. This table considers the Monte Carlo designs

1-3. The table includes bias and root mean square error (RMSE) for the slope

parameter.
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to the fixed effects procedure, partially ameliorates the previously documented biases, but not

completely. This approach to addressing the interactive nature of the unobserved heterogeneity

comes at a large cost in terms of estimator efficiency. The proposed quantile regression estimator

has almost zero bias and a low MSE. Additionally we notice that the performance of the least

squares LSIE estimator deteriorates in the presence of outliers, i.e. if the loading λ2 follows a

t2 distribution, while the quantile estimator QRIE continues to perform well with only a minor

increase in MSE.

Table 5.3 confirms that the above interpretation of the relative performance of the different esti-

mators persists in the more difficult case which features both endogeneity and interactive effects.

The method proposed in this paper QRIE continues to perform very well in this case having very

low bias and MSE even when the number of time periods under observation is small. Moreover, by

comparing the least squares simulations with the quantile regression simulations we can see that a

quantile regression based approach such as QRIE delivers substantially better MSE properties.

Table 5.4 presents the bias and root mean square error in the Gaussian case when β1 in equation

5.1 represents a location-scale shift. We present results at the 0.25 and 0.75 quantiles. We find that

the bias of the estimator in the simulations is very low, ranging from 0.7 percent to 5.0 percent

in absolute value. The performance of the QRIE estimator continues to be satisfactory, offering

in general the smallest bias and best MSE in the class of fixed effects estimators presented in the

table.

Lastly, we expand the previous designs in Table 5.5 by replacing equation 5.1 by:

(5.6) yit = β0 + β1dit + β2xt + c1(λ1if1t + λ2if2t) + c2λ3i + (1 + hdit)uit,

with λi3 distributed as iid normal random variable with mean 0 and variance 1. We consider three

cases of the location-scale shift model with h = 0.1:

Design 4: The dependent variable is generated from the classical model with individual

effects. We assume that c1 = 0 and c2 = 1.

Design 5: We introduce a location-scale shift model with individual and interactive effects.

We assume that c1 = c2 = 1.

Design 6: The dependent variable is generated from a location-scale shift model with an

endogenous variable, d. It is assumed that Ω21 = Ω12 = 0.5. The model also includes

individual and interactive effects, because c1 = c2 = 1.
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Statistic Sample 0.25 Quantile 0.75 Quantile

N T QRFE QRIVFE QRIE QRIIE QRFE QRIVFE QRIE QRIIE

Design 4: Model with individual effects

Bias 100 4 0.0230 0.0815 0.0529 0.0358 -0.0134 -0.0824 -0.0221 -0.0262

RMSE 100 4 0.0481 1.2867 0.1545 0.1440 0.0493 1.0241 0.1445 0.1482

Bias 100 6 0.0183 0.0027 0.0266 0.0283 -0.0133 -0.0185 -0.0178 -0.0365

RMSE 100 6 0.0355 0.2244 0.1265 0.1105 0.0334 0.2244 0.1537 0.1143

Bias 100 12 0.0076 -0.0464 0.0307 0.0221 -0.0086 -0.1739 -0.0283 -0.0257

RMSE 100 12 0.0195 1.1278 0.0994 0.0955 0.0210 2.2456 0.1120 0.0980

Bias 100 20 0.0065 0.0564 0.0312 0.0212 -0.0067 -0.0543 -0.0334 -0.0254

RMSE 100 20 0.0134 0.3401 0.0986 0.0763 0.0134 0.2640 0.0911 0.0750

Design 5: Model with individual effects and interactive effects

Bias 100 4 0.3720 0.0419 0.0537 0.0467 0.3051 -0.3001 -0.0006 -0.0196

RMSE 100 4 0.4305 2.7468 0.2222 0.1935 0.3692 3.3622 0.2120 0.2002

Bias 100 6 0.3826 -0.1634 0.0338 0.0355 0.3227 -0.1244 -0.0274 -0.0443

RMSE 100 6 0.4258 0.9781 0.1990 0.1321 0.3707 0.9931 0.1999 0.1532

Bias 100 12 0.5082 -1.6556 0.0359 0.0271 0.4580 -2.7600 -0.0288 -0.0296

RMSE 100 12 0.5318 24.9890 0.1342 0.1167 0.4836 40.8708 0.1577 0.1303

Bias 100 20 0.5972 -0.0713 0.0360 0.0315 0.5328 -0.2495 -0.0399 -0.0335

RMSE 100 20 0.6133 0.8050 0.1125 0.1010 0.5490 1.0512 0.1147 0.1078

Design 6: Model with endogenous covariates and individual and interactive effects

Bias 100 4 0.4861 -0.0339 0.0253 0.0320 0.4075 -0.2240 -0.0130 -0.0049

RMSE 100 4 0.5228 2.3460 0.2099 0.2024 0.4484 4.1126 0.2124 0.2087

Bias 100 6 0.4918 -0.1659 0.0218 0.0161 0.4253 -0.1313 -0.0217 -0.0311

RMSE 100 6 0.5194 0.9095 0.1877 0.1394 0.4559 0.9775 0.2126 0.1554

Bias 100 12 0.6027 -1.7410 0.0129 0.0158 0.5263 -1.6913 -0.0106 -0.0216

RMSE 100 12 0.6174 26.3003 0.1437 0.1234 0.5434 24.0678 0.1625 0.1286

Bias 100 20 0.6655 -0.0660 0.0220 0.0194 0.5843 -0.2332 -0.0374 -0.0212

RMSE 100 20 0.6771 0.7962 0.1119 0.0974 0.5956 1.0021 0.1159 0.1088

Table 5.5. Small sample performance of quantile regression estimators in

the location-scale shift model. This table considers the Monte Carlo designs

4-6. The table includes bias and root mean square error (RMSE) for the slope

parameter.
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As before, Table 5.5 shows results obtained from: the quantile regression fixed effects estimator

(QRFE), the instrumental variable method with fixed effects (QRIVFE), and the quantile regression

estimator for a model with interactive effects (QRIE). We also show results obtained from an

extension of the QRIE estimator. The estimator, which is labelled as QRIIE, includes individual

effects and interactive effects.

Table 5.5 presents the bias and root mean square error in panels of sample size N = 100 and

T = {4, 6, 12, 20}. As expected, the performance of the QRFE estimator is satisfactory in the

model with individual effects. We note, however, that the bias of the QRFE estimator tends to

disappear as T increases. On the other hand, the QRFE has a poor MSE performance in all the

variants of these models with interactive effects. When the model includes endogenous covariates,

individual and interactive effects, the QRIIE estimator offers the best small sample performance in

terms of bias and MSE.

Overall, the finite sample performances of the methods for models with interactive effects is very

good in all the variants of the models considered in Tables 5.1-5.5. The performance of the least

squares method offered in proposition 1 (LSIE) is satisfactory. It produces unbiased results, and it

offers the best small sample performance under Gaussian conditions. The LSIE method, however,

relies heavily on the distributional assumptions and is not informative for estimating distributional

effects. When we relax the Gaussian conditions, the quantile regression version of the interactive

effects estimator (QRIE) has smaller RMSE than the least squares version of the estimator (LSIE).

The QRIE estimator is unbiased in all the variants of the models and it offers the best performance

in the class of fixed effects quantile regression estimators.

6. Educational outcomes and heterogeneous class size effects

In this section, we consider data from a random assignment of college students to different classes,

to study how class size and socioeconomic class composition affect educational attainment using

data from De Giorgi, Pellizzari and Woolston (2009).

We apply our quantile regression interactive effects method to a structural equation model of stu-

dents’ educational achievement where teachers’ and students’ unobserved heterogeneity are allowed

to interact. We will then compare the policy implications of changes in the number of students in

a class and changes in the class composition on educational achievement, obtained from a series of

instrumental variable and panel data methods. We find that our method suggests different poli-

cies relative to other existing estimation approaches. The instrumental variable estimator suggests
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that a reduction in class size has an insignificant effect at the tails of the conditional distribution.

We find, however, that while for the worst students, smaller classes improve performance, for the

strongest students, smaller classes reduce performance. This is consistent with current research in

educational psychology which suggests that weaker students benefit from the increased attention

they receive in smaller classes, while strong students flourish more in competitive environments and

benefit from the numerous interactions that larger classes provide.

Lastly, we investigate an educational policy designed to prevent failure among low performers.

The findings suggest that a reduction of 10% in the size of a class, could improve educational

achievement from the lower 10 percentile of the conditional achievement distribution to the next

20 percentile.

6.1. Background

In the last half a century, understanding what drives students’ academic performance has been

a major focus in the economics of education. The analysis of class size reduction on educational

attainment continues to be one of the controversial topics in the social sciences ever since the

Coleman Report (1966). A number of more recent studies have focused on class size and peer effects

(e.g., Krueger 1999, Hoxby 2000, Hanushek et al. 2003). The standard methodologies employed

in the empirical analysis have been Ordinary Least Squares (OLS), Instrumental Variable (IV),

and regression discontinuity design (RD) methods (see, e.g., Angrist and Lavy 1999, Hoxby 2000,

Duflo, Dupas and Kremer 2008). Class size remains one of the main factors to have been analyzed

in the educational production function, although the conclusions remain mixed. While a number of

studies find that a reduction in class size is associated with positive effects on student performance,

other studies suggest that the effects are negligible and not statistically significant. Most studies

were carried out on primary school students yet the number of students enrolled in various degree-

granting institutions has increased by over 26% in the U.S. over the past 10 years. In this paper

we take advantage of a unique educational design at a university in Italy. Mirroring the U.S.,

enrollment in higher education has increased sharply throughout Europe, leading to larger class

sizes.

The literature to date offers a large number of studies on the effect of class size on educational

achievement of the average student, but few studies investigate its distributional effect. One of the

few exceptions are Levin (2001), Ma and Koenker (2006), and more recently, Bandiera, Larcinese,

and Rasul (2010). Levin (2001) addresses the potential endogeneity in the class size variable
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with a two-stage quantile regression approach and a large number of observable characteristics.

The study uses PRIMA data, a longitudinal survey containing information on Dutch pupils who

were enrolled in grades 2, 4, 6 and 8 in the 1994/1995 school year. Ma and Koenker (2006)

estimate a structural model using the PRIMA data. They find that for the weak students, larger

classes improve achievement in languages and smaller classes improve achievement in mathematics.

Finally, Bandiera, Larcinese, and Rasul (2010) employ standard quantile regressions on a sample

of university students in the UK. They find that a reduction of class size benefits high-performers

more than the low-performers.

A central concern in the estimation of the distributional effects of class size and class composition

is unobserved heterogeneity. Although the literature recently addresses the possibility that class

size may not have the same effect for weak and strong students, it remains possible that student

latent heterogeneity and teachers’ latent ability factors create biases. It may be also possible that

teachers’ quality affects performance only if the student is motivated and receptive to instruction.

In the next sections, we estimate the distributional effects of potential college policies designed to

affect educational achievement, considering that student’s motivation and teacher’s quality enter

multiplicatively in the production function.

6.2. Data

We employ data from the administrative records of the Economics, Management, and Finance

programs at Bocconi University. The university is an established higher education institution lo-

cated in Milan, Italy. The administration extracted a comprehensive data set of college students

including information on students’ characteristics and outcomes. The data set includes informa-

tion on course grades, background demographic and socioeconomic characteristics such us gender,

family income, and pre-enrollment test scores. Additionally, the data set includes information on

enrollment year, academic program, number of exams by academic year, official enrollment, offi-

cial proportion of female students in each class, and official proportion of high income students in

each class. We restrict our attention to students who matriculated in the 1999-2000 academic year

taking non-elective classes in the first three years of the program.

Table 6.1 reports briefly the summary statistics of the variables used in this study. The average

grade is 25.602, which can be associated to a B+ in the US grading system (De Giorgi, Pellizzari

and Woolston, 2009). The average class includes 134 students, ranging from 90 to 158 students.

The average number of assigned students to these classes is 133, and ranges from 89 to 160 students.
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Variable Mean Std. Dev. Minimum Maximum

Economics, Management, and Finance programs

Grade 25.602 2.400 18.857 30.500

Class size 134.395 15.759 90 158

Enrollment 132.534 15.529 89 160

% female in class (actual) 0.360 0.066 0.209 0.511

% female in class (enrollment) 0.364 0.071 0.205 0.507

% high income in class (actual) 0.232 0.040 0.130 0.316

% high income in class (enrollment) 0.248 0.039 0.165 0.344

Female indicator 0.387 0.487 0.000 1.000

High income indicator 0.218 0.413 0.000 1.000

Entry test 73.272 13.783 22.620 108.350

Management, and Finance programs

Grade 25.601 2.391 18.857 30.500

Class size 137.953 10.256 124 158

Enrollment 136.031 10.157 119 160

% female in class (actual) 0.358 0.068 0.209 0.511

% female in class (enrollment) 0.361 0.073 0.205 0.507

% high income in class (actual) 0.235 0.037 0.181 0.316

% high income in class (enrollment) 0.250 0.038 0.185 0.344

Female indicator 0.386 0.487 0.000 1.000

High income indicator 0.218 0.413 0.000 1.000

Entry test 73.002 13.655 22.620 108.350

Table 6.1. Descriptive statistics. Our data is based on administrative records

of three academic programs at Bocconi University. The administration assigned

students to classes using lotteries. The variables enrollment, % female in class,

and % high income in class will be used as instruments.

The table indicates a small degree of self-selection into classes post-randomization which explains

the difference between actual class enrollment and allocation. The table also indicates that the

largest classes are in Management, and Finance. When we restrict our attention to a sample of

students in these programs, the average class consists of 137 students, ranging from 124 to 158

students.

6.3. Model specification

We estimate a structural equation model of the effect of class size and socioeconomic class compo-

sition on educational attainment. Our basic strategy is to account for the unobserved components

that are most likely to contaminate class size and class heterogeneity influences on educational
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achievement. We estimate the following model:

yict = d′
ctα + x′

ictβ + z′
tγ + f ′

ctλi + uict(6.1)

dct = w′
ctπ1 + x′

iπ2 + f ′
ctλi + vict,(6.2)

where y is the average grade of student i in a class c at year t, and d is a vector of potentially

endogenous variables that includes class size, and measures of actual dispersion of gender and

income in each class. The vector x includes indicators for gender, whether or not the student is a

high income student, and a cognitive test score corresponding to a test the student took as part

of the admission process. We include additional control variables such us the standard deviation

of the logarithm of the test score of students in the class, indicators for the number of exams, and

indicators for years in the program, z. The factors are approximated by cross-sectional averages

including the average grade for class c at year t and the average size of class c at year t.

The variable d is a function of the vector of instruments w. We take advantage of the experimental

research design by using instruments generated from a random assignment of students into classes.

For instance, while we have data on actual class size, we also have the number of students that

were assigned to each class by the administration. We will consider class size, and the percentages

of female students in a class and high income students in a class as endogenous variables. These

variables will be instrumented with the number of students and the percentages of female students

and high income students originally assigned by the lotteries that were used by the administration.

The need for instrumentation arises because in spite of the administrative assignment of students

to classes a small number of students will switch between classes, which may be indicative of a

selection effect.

It is natural to control for individual and class-cohort latent heterogeneity by imposing a linear

additive structure λi + fct as in Hanushek et al. (2003). The individual effect λi’s could be

associated with motivation and ability to absorb knowledge when the student is listening to lectures

or reading, and the factor fct could be interpreted as measuring teaching quality. In our specification

however, the r-th component of the term f ′λ could represent the interaction between students’ i

intrinsic motivation λir and the quality of the teacher in a class fctr. High teaching quality may

have a modest effect on the educational attainment of relatively unmotivated students, although

it may dramatically affect performance among strong, motivated students. It is also natural to

think that class size, teaching quality and student motivation are not stochastically independent.

Notice that if student’s motivation and teacher’s quality enter multiplicatively in the scholastic
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attainment function, the standard least squares transformations designed to remove time invariant

heterogeneity produce biased results.

The remaining term u represents random shocks affecting a student’s academic performance. At

the same time, these shocks could also affect the number of students in a class, because they may

affect a student’s decision to stay in the assigned class. We model these potential interactions by

letting the error term u in the educational achievement production function to be correlated with

v.

6.4. Empirical Analysis

We apply the method proposed in equations 3.3-3.7 to the structural model 6.1-6.2. Figure 6.1

presents results for the effects of interest. The figure presents estimates of the effects of the main

covariates as a function of the quantiles τ of the conditional distribution of educational attainment.

The figure indicates that a reduction of the size of a class has a beneficial effect on academic

achievement at the lowest quantiles, and an adverse effect on academic achievement at the highest

quantiles. This suggests that a reduction of the size of a class can improve the achievement of

low-performers, while reducing the achievement of high-performers. This evidence is silent on why

we find heterogeneous class-size effects, but we offer a few possible channels. Smaller classes may

allow weak students to interact more easily with instructors. If teachers are interested in increasing

their mean evaluation, it is possible that they are more effective targeting instructional resources

including tutorial sessions to the weakest students in class. On the other hand, if high ability

students learn from their peers, a reduction of the size of the class may hurt their performance.

It is interesting to see that the mean effect incorrectly suggest that a reduction of class size has a

small, insignificant effect on performance. Moreover, we observe that changes in the percentage of

female students in class significantly affect performance at the tails of the conditional distribution.

We see evidence of heterogeneous effects across quantiles, ranging from a positive estimated effect

at the lower tail to a negative estimated effect at the upper tail. On the other hand, the effects of

changes in the proportion of high-income students do not seem to affect performance. The results

also suggest that female students perform better than male students, and that students who were

high-performers in the entry test perform better than students who were low-performers.

Although the students were randomly assigned into classes, teachers were not. A legitimate concern,

for instance, would be that the best teachers are assigned by the administration to teach small

classes. This issue is analyzed in De Giorgi, Pellizari and Woolston (2009), who find evidence that
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Figure 6.1. Quantile regression covariate effects on educational attainment.

The continuous dotted line shows quantile regression with interactive effects

(QRIE) estimates and the dashed horizontal line shows the least squares ver-

sion of the estimator (LSIE). These estimates were obtained from a sample of

students in Economics, Management, and Finance.
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Figure 6.2. Quantile regression covariate effects on educational attainment.

The continuous dotted line shows quantile regression with interactive effects

(QRIE) estimates and the dashed horizontal line shows the least squares ver-

sion of the estimator (LSIE). These estimates were obtained from a sample of

students in Management, and Finance.



28

teachers’ allocation is not a concern in this data. Using Figure 6.2, we investigate this potential issue

by restricting the original sample to include classes of relatively similar size. By eliminating classes

in the Economics program, we can reduce the standard deviation of class size from 16 students to

10 students and increase the minimum class-size from 90 students to 124 students (Table 6.1). We

find that the effect of class size on academic performance suggests similar conclusions than before.

We also observe that the effect of class composition measured by percentage of females in class and

percentage of high-income students in class do not seem to significantly affect performance. The

sole exception is the effect of percentage of females in class at the 0.9 quantile.

Let us now consider the empirical evidence presented in Table 6.2. This table presents the estimated

effects of the variables that may be of interest to policy makers: class size and class composition,

measured by the percentage of female students in class and the percentage of high income students

in class. We present results from different methods including classical quantile regression (QR),

instrumental variable quantile regression (QRIV), the fixed effects estimator (QRFE) developed

by Koenker (2004), the instrumental variable estimator with fixed effects (QRIVFE) introduced

by Harding and Lamarche (2009), and the method that uses instrumental variable estimation in a

model with interactive effects (QRIE). The first five columns show the quantile regression version

of the method presented in the first column, and the last column presents the corresponding least

squares approach.

The pooled quantile method and the instrumental variable method suggest, in general, a negative

effect of larger class sizes, although the only significant effects are at the 0.75 quantile. The results

from a model with fixed effects indicate that all students benefit from a class size reduction with

stronger students and weak students are similarly impacted by this policy. The findings associated

with the class of instrumental variable-fixed effects estimator however indicate a different conclusion.

The students that are benefiting from a reduction in the size of a class are the weak students, and

the strong students are not affected by this policy. The results from the proposed approach suggest

similar conclusions, but the effects are larger in absolute value at the tails. The evidence thus

suggests that for weaker students, smaller classes are slightly better, and for the strongest students,

smaller classes have a negative impact on academic achievement. This suggests that weaker students

benefit from greater attention to their specific education needs and additional teacher attention in

small classes. By contrast strong students may in fact benefit from large classes. It is possible that

large classes facilitate numerous peer interactions and the increased competition between students

acts as a strong motivational device. It is equally plausible though that in large classes strong
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Method Quantiles Mean

0.1 0.25 0.5 0.75 0.9

Class size effect

Pooled methods -0.005 -0.001 0.003 -0.006 -0.004 -0.002

(0.004) (0.004) (0.004) (0.003) (0.004) (0.003)

Instrumental Variable -0.005 -0.001 -0.001 -0.007 -0.005 -0.003

(0.004) (0.005) (0.005) (0.004) (0.004) (0.003)

Fixed Effects -0.089 -0.088 -0.090 -0.088 -0.088 -0.093

(0.007) (0.006) (0.005) (0.005) (0.006) (0.003)

Instrumental Variable -0.014 -0.013 -0.001 0.006 0.005 -0.019

Fixed Effects (0.002) (0.003) (0.006) (0.001) (0.001) (0.007)

Interactive Effects -0.034 -0.014 -0.005 -0.006 0.031 -0.005

(0.014) (0.016) (0.015) (0.014) (0.010) (0.010)

% female in class

Pooled methods 2.702 -0.426 0.732 -0.609 -1.302 -0.048

(1.628) (1.618) (1.632) (1.173) (1.121) (1.008)

Instrumental Variable 0.873 -1.616 -1.177 -1.313 -2.007 -0.797

(1.276) (1.225) (1.211) (0.922) (0.897) (1.049)

Fixed Effects 2.105 3.049 2.958 2.960 2.422 2.799

(1.984) (1.571) (1.268) (1.148) (1.527) (0.504)

Instrumental Variable 2.762 2.926 3.341 2.435 2.352 2.850

Fixed Effects (0.551) (0.871) (1.940) (0.284) (0.226) (0.703)

Interactive Effects 2.886 0.163 1.260 -0.510 -1.624 0.320

(1.491) (1.778) (1.611) (1.379) (0.942) (1.047)

% high income in class

Pooled methods -3.289 -6.530 -6.931 -4.968 -4.498 -5.234

(1.464) (1.503) (1.600) (1.103) (1.275) (1.022)

Instrumental Variable -1.725 -4.838 -6.388 -4.231 -4.003 -4.095

(1.831) (1.635) (1.765) (1.346) (1.383) (1.079)

Fixed Effects 3.798 4.187 3.626 3.701 3.420 4.273

(1.947) (1.582) (1.342) (1.384) (1.765) (0.657)

Instrumental Variable 4.897 5.111 5.039 4.289 4.181 5.504

Fixed Effects (0.712) (1.236) (2.835) (0.435) (0.328) (0.973)

Interactive Effects 1.111 0.115 -0.186 0.038 -1.402 0.165

(1.661) (2.016) (1.926) (1.581) (1.096) (1.240)

Table 6.2. Panel data and instrumental variable estimates of the causal

effect of class size and class observed heterogeneity on educational achievement.

Standard errors are presented in parentheses.

students tend to monopolize and dominate their environment while weak students are less engaged

in the class. Thus strong students end up benefiting more in such settings.



30

Effects of Interest Quantiles Pair of quantiles: 0.1 and

0.1 0.25 0.5 0.75 0.9 0.25 0.50 0.75 0.90

Specification I: Equations 6.1-6.2

Class size effect 0.018 0.390 0.730 0.659 0.002 0.371 0.163 0.168 0.000

% Female in class 0.008 0.889 0.208 0.578 0.011 0.090 0.273 0.017 0.000

% High income in class 0.445 0.944 0.905 0.978 0.146 0.649 0.543 0.590 0.150

Interactive effects 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Specification II: Model with exogenous covariates and classical individual effects

Class size effect 0.227 0.224 0.109 0.578 0.573 0.707 0.867 0.438 0.548

% Female in class 0.568 0.319 0.138 0.345 0.361 0.816 0.728 0.975 0.886

% High income in class 0.919 0.623 0.344 0.166 0.277 0.726 0.584 0.433 0.511

Interactive effects 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 6.3. Specification tests in a quantile regression model with interac-

tive effects. The interactive effects term includes cross-sectional averages of

grade, class size and enrollment. The model with individual effects is estimated

without time-invariant covariates. The table presents p-values.

The results of Table 6.2 seem to suggest again that ignoring endogeneity and individual heterogene-

ity could lead to incorrect policies. The classical quantile regression estimator and the instrumental

variable estimator suggest that an increase in the percentage of high-income students in a class may

decrease the educational attainment of weak and strong students. The evidence associated with

the fixed effects approaches suggests positive and significant effects, which contradicts the results

obtained from our interactive approach. Changing the percentage of high income students in class

does not seem to be associated with achievement gains.

6.5. Hypothesis Tests in a Model with Interactive Effects

In this Section, we briefly test if class size, the percent of females in class, and the percent of high

income students in class are significantly different across quantiles. We test two hypotheses. First,

we check whether the effects of interest are significantly different than zero at several quantiles of

the conditional distribution of educational attainment. We also test if the interactive effect term

is statistically significantly different than zero. Second, we test if the effects at the 0.1 quantile

are significantly different than effects at other quantiles {0.25, 0.50, 0.75, 0.90}. These specification

tests are performed on two models. First, we consider the model described in equations 6.1 and 6.2.



31

We also introduce a variation to equation 6.1, assuming that the covariates are exogenous and that

the model includes both fixed and interactive effects. This allows us to examine the importance of

the interactive effect term in the classical fixed effects model for educational attainment.

The results of several tests are presented in Table 6.3. While the upper block shows p-values of

tests performed on our basic specification, the lower block presents p-values of tests performed

on the variation of the model. We find that size effect are statistically different at the lower and

upper tails, suggesting that changes in class size have a significant effect among low and high

performers. We also see that changes in the gender composition of the class impact significantly

different low- and high- performers. Moreover, it is interesting to see that the Wald tests reject

the null hypothesis of no interactive effects in the model with fixed effects (p-values are 0.000). We

interpret this evidence as suggesting that the fixed effects specification is rejected in favor of the

interactive effects specification.
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Figure 6.3. Class size changes to prevent failure among the worst students.
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6.6. Improving Weak Students Performance

The previous analysis shows that for the poorly performing students, smaller classes appear to

be improving performance. In this section, we briefly investigate what is the class size reduction

needed to increase the achievement of these students at the bottom τL percentile in the conditional

distribution, to be at τ ′, with τ ′ > τL. In the case of two quantiles, the problem can be simply

formulated as minimizing y(τH) − y(τL) subject to,

y(τj) = q−c(τj) + αc(τj)dc,

for τj = {τL, τH}. The function q−c denotes the conditional quantile model corresponding to

equation 6.1 that leaves out the term αc(τj)dc. The variable dc is the number of students in class

c and αc(τj) is the class-size effect at the quantile τj. An additional constraint is that the total

number of students S is split for simplicity in two classes, c and c′. It is straightforward to show

that the solution has the following form:

d∗c =
(q−c(τH) − q−c(τL)) + αc(τH)S

αc(τH) + αc(τL)
.

The implications of this expression are intuitive. Consider for simplicity the case of q−c(τH) =

q−c(τL). The solution d∗c suggests to have a class with few students if a reduction in the size of the

class does not significantly impact achievement at the highest quantile. If the effect of class size

does not change across the quantiles of educational attainment, the solution d∗c indicates to split

the students in classes of equal size.

Using Figure 6.3, we construct the percentage change in class size needed to increase the achieve-

ment of the weak-performing students at the bottom 10 percentile in the conditional distribution,

to be at τ = {0.11, 0.12, . . . , 0.5}. For instance, the first point on the left represents the percentage

change in class size dc needed to increase the students’ score from the bottom 10 to the bottom

11 percentile of the conditional educational attainment distribution. We consider S = 268, which

is approximately twice the size of the average class in Table 6.1. We observe that most of the

point estimates are contained in the square in the left corner, suggesting that a small percentage

reduction of about 10 percent can positively impact the worst students in class. We also observe

that the square in the top right corner of the plot is empty. This indicates that small reductions

in the size of the class cannot produce academic gains comparable to the median student. Notice

that making the weak performers comparable to the median performers does not seem to represent

a feasible policy, because the size of the class has to be reduced by 60 percent.
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The estimation of effects at the lower tail of the conditional distribution provides a convenient tool

for the analysis of educational policies. Of course, one has to be cautious and interpret these results

within the context of conditional quantiles. The analysis of the effect of educational policies on

the unconditional attainment distribution is out of the scope of this paper and remains an open

question within the panel data quantile regression literature.

7. Conclusion

This paper proposes a quantile regression estimator for a model with interactive effects potentially

correlated with the independent variables and endogenous treatment effects. We provide conditions

under which the slope parameter estimator is consistent and asymptotically Gaussian. Monte Carlo

studies are carried out to investigate the finite sample performance of the proposed method in

comparison with other candidate methods. The evidence shows that the finite sample performance

of the proposed method is excellent under different Monte Carlo designs. We also apply the new

method to an investigation of the effect of class size on educational performance.

Several directions remain to be investigated. Inferential procedures could be implemented by ac-

commodating standard approaches, but they require a detailed investigation in the class of models

with interactive effects. Moreover, the presence of a large number of loadings and factors suggests an

attractive setting for regularization, which could represent an effective procedure to simultaneously

improve the performance of the method and do model selection.

Appendix A. Proofs

Proof of Proposition 1. The estimator of ϑ is equal to ϑ̂ = (D̃′P̃ D̃)−1(D̃′P̃ y), or, equivalently,

ϑ̂ =

(

α̂

δ̂0

)

=

(

D′P̃D D′P̃ D̄

D̄′P̃D D̄′P̃ D̄

)−1(

D′P̃ y

D̄′P̃ y

)

Standard partitioned matrix formulas give,

α̂ = (D′P̃D − D′P̃ D̄(D̄′P̃ D̄)−1D̄′P̃D)−1D′P̃ y

−(D′P̃D − D′P̃ D̄(D̄′P̃ D̄)−1D̄′P̃ D)−1D′P̃ D̄(D̄′P̃ D̄)−1D̄P̃ y

= (D′M̃
P̃

D)−1D′P̃ y − (D′M̃
P̃

D)−1D′P̃ D̄(D̄′P̃ D̄)−1D̄P̃ y

where M̃
P̃

= P̃ − P̃ D̄(D̄′P̃ D̄)−1D̄P̃ . Therefore, we have that,

α̂ = (D′M̃
P̃

D)−1D′M̃
P̃

y.
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Replacing y by equation 2.3, we obtain,

(A.1) α̂ − α = (D′M̃
P̃

D)−1D′M̃
P̃

F λ + (D′M̃
P̃

D)−1D′M̃
P̃

u,

because P̃X = 0. After properly normalizing each matrix in A.1 by (NT )−1, we have large N ,

large T convergence results. By Pesaran’s (2006) Lemmas 2 and 3 and Assumptions 1-5, the first

term is asymptotically negligible. The second term converges to zero by Assumption 4 and standard

IV arguments. �

Proof of Proposition 2. The proofs follow closely the arguments found in Chernozhukov and Hansen

(2008, Proposition 2), Galvao (2009, Theorem 2), and Lamarche (2010, Theorem 1).

(Consistency) Under the regularity conditions, identification and consistency results immediately

follows from the proof of Theorem 3 in Chernozhukov and Hansen (2006) and Corollary 3.2.3 in van

der Vaart and Wellner (1996). By proposition 2 in Chernozhukov and Hansen (2008), we have that

supα∈A ‖ϑ̂(α, τ)−ϑ(α, τ)‖ → 0 for ϑ = (β′, δ′,γ ′)′. This implies that supα∈A ‖γ̂(α, τ)−γ(α, τ)‖ →
0, and that ‖α̂(τ) − α(τ)‖ → 0. Consider a small ball αn of radius rn centered at α(τ). Then for

any αn → α(τ), we have that β̂(αn, τ) → β(α(τ), τ) = β(τ), δ̂(αn, τ) → δ(α(τ), τ) = δ(τ), and

γ̂(αn, τ) → γ(α(τ), τ) = γ(τ) = 0. Hence ϑ̂(αn, τ) → ϑ(α(τ), τ) for any αn → α(τ).

(Asymptotic Normality) For any αn, we can write ρτ (yit−d′
itα̂(τ)−x′

itβ̂(τ)−f ′
t δ̂(τ)−w′

itγ̂(τ)) as

ρτ (yit− ξit(τ)−d′
itδ̂α/

√
NT −x′

itδ̂β/
√
TN −f ′

tδ̂λ/
√
NT −w′

itδ̂γ/
√
NT ), where ξit(τ) = d′

itα(τ)+

x′
itβ(τ) + f ′

tδ(τ) + w′
itγ(τ), δ̂α(αn, τ) =

√
TN(α̂(αn, τ) − α(τ)), δ̂β(αn, τ) =

√
TN(β̂(αn, τ) −

β(τ)), δ̂λ(αn, τ) =
√
TN(δ̂(αn, τ)−δ(τ)), and δ̂γ(αn, τ) =

√
TN(γ̂(αn, τ)−0). Under assumption

4, the solution of 3.6 is equivalent to the solution of minimizing,

VTN (δ) =

T∑

t=1

N∑

i=1

ρτ

(

uit(τ) − d′
it

δα√
NT

− x′
it

δβ√
TN

− f ′
t

δλ√
TN

− w′
it

δγ√
NT

)

− ρτ (uit(τ))

where uit(τ) = yit − ξit(τ). Following the conditions and argument of Ruppert and Carroll (1980),

and Koenker and Portnoy (1987),

(A.2) sup ||v(δα, δβ , δγ , δλ) − v(0,0,0,0) − E(v(δα, δβ , δγ , δλ) − v(0,0,0,0))|| = op(1)

where || · || denotes the standard Euclidean norm of a vector, ψτ (u) = τ − I(u < 0), and,

v(δα, δβ , δγ , δλ) =
−1√
TN

N∑

i=1

T∑

t=1

ftψτ

(

uit(τ) − d′
it

δα√
NT

− x′
it

δβ√
TN

− f ′
t

δλ√
TN

− w′
it

δγ√
NT

)
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Taking expectation and expanding v under condition 6, we obtain

E(v(δα, δβ , δγ , δλ) − v(0,0,0,0)) =

= −E

(

1√
TN

N∑

i=1

T∑

t=1

ftψτ

(

yit − d′
it

δα√
NT

− x′
it

δβ√
TN

− f ′
t

δλ√
TN

− w′
it

δγ√
NT

)

)

+
1√
TN

N∑

i=1

T∑

t=1

ftψτ (yit − ξit(τ))

)

= − 1√
TN

N∑

i=1

T∑

t=1

ft

(

Git

(

ξit(τ) + d′
it

δα√
NT

+ x′
it

δβ√
TN

+ f ′
t

δλ√
TN

+ w′
it

δγ√
NT

)

− τ

)

= − 1√
TN

N∑

i=1

T∑

t=1

ftgit(ξit(τ))

(

d′
it

δα(τ)√
NT

+ x′
it

δβ√
TN

+ f ′
t

δλ√
NT

+ w′
it

δγ√
NT

)

+ o(1)

whereG(·) is the conditional distribution of y. Clearly, v(δ̂α, δ̂β , δ̂γ , δ̂λ) → 0, and thus E(v(δα, δβ , δγ , δλ)−
v(0,0,0,0)) = v(0,0,0,0). This last expression can be written as,

1√
TN

N∑

i=1

T∑

t=1

ftgit(ξit(τ))

(

d′
it

δα√
NT

+ x′
it

δβ√
TN

+ f ′
t

δλ√
TN

+ w′
it

δγ√
NT

)

=

=
1√
TN

N∑

i=1

T∑

t=1

ftψτ (yit − ξit(τ))

Letting f̃ =
∑N

i=1

∑T
t=1 git(ξit(τ))ftf

′
t and solving for δλ, we have,

f ′
t

δλ√
TN

= f ′
tf̃

−1

(

−
N∑

i=1

T∑

t=1

ftgit(ξit(τ))
(

d′
it

δα√
NT

+ x′
it

δβ√
TN

+ w′
it

δγ√
NT

)

+

N∑

i=1

T∑

t=1

ftψτ (yit − ξit(τ))

)

+
Rit√
TN

= −d̃t(τ)
′ δα√
TN

− x̃t(τ)
′ δβ√
TN

− w̃t(τ)
′ δγ√
TN

+ f̃−1
N∑

i=1

T∑

t=1

ftψτ (yit − ξit(τ)) +
Rit√
NT

where for instance d̃t(τ) = f ′
tf̃

−1
∑N

i=1

∑T
t=1 git(ξit(τ))ftdit, and Rit is the remainder term. Sub-

stituting the λ̂’s we denote,

v(δα, δβ , δγ) =
−1√
NT

N∑

i=1

T∑

t=1

hitψτ

(

uit(τ) − d′
it

δα√
NT

− x′
it

δβ√
TN

− f ′
t

δ̂λ√
NT

− w′
it

δγ√
NT

)

where hit = (x′
it,w

′
it)

′. By uniformity,

(A.3) sup ||v(δα, δβ , δγ) − v(0,0,0) − E(v(δα, δβ , δγ) − v(0,0,0))|| = op(1)



36

Expanding as above we obtain

E(v(δα, δβ , δγ) − v(0,0,0)) =

= −E

(

1√
TN

T∑

t=1

N∑

i=1

hitψτ

(

yit − d′
it

δα√
NT

− x′
it

δβ√
TN

− f ′
t

δ̂λ√
T

− w′
it

δγ√
NT

)

)

+
1√
NT

T∑

t=1

N∑

i=1

hitψτ (yit − ξit(τ))

)

= − 1√
TN

T∑

t=1

N∑

i=1

hit

(

Git

(

ξit(τ) + d′
it

δα√
NT

+ x′
it

δβ√
TN

+ f ′
t

δ̂λ√
NT

+ w′
it

δγ√
NT

)

− τ

)

= − 1√
TN

T∑

t=1

N∑

i=1

hitgit(ξit(τ))

(

d′
it

δα√
NT

+ x′
it

δβ√
TN

+ w′
it

δγ√
NT

−d̃t(τ)
′ δα(τ)√
TN

− x̃t(τ)
′ δβ√
TN

− w̃t(τ)
′ δγ√
TN

+ f̃−1
N∑

i=1

T∑

t=1

ftψτ (yit − ξit(τ)) +
Rit√
NT

)

Notice that v(δ̂α, δ̂β , δ̂γ) → 0, and thus E(v(δα, δβ , δγ) − v(0,0,0)) = v(0,0,0). Letting δϑ =

(δ′
β , δ

′
γ)

′, we write the last expression as,

1√
TN

T∑

t=1

N∑

i=1

hitgit

(

(d′
it − d̃′

t(τ))
δα(τ)√
NT

+ (h′
it − h̃′

t(τ))
δϑ(τ)√
TN

+ f̃−1
N∑

i=1

T∑

t=1

ftψτ (yit − ξit(τ))
)

=

1√
TN

T∑

t=1

N∑

i=1

hitψτ (yit − ξit(τ)) −
Rit√
NT

Alternatively, using more convenient notation, we write the last expression as,

Jαδα + Jϑδϑ = Jψ − R

where Jα = limN,T→∞ H̃ ′M ′
FΦMFD, Jϑ = limN,T→∞ H̃ ′M ′

FΦMFH̃ , and Jψ is a mean zero

random variable with covariance τ(1 − τ)H̃ ′M ′
FMF H̃. The remainder term R is op(1) under the

regularity conditions. Letting [J̄ ′
β , J̄

′
γ ]

′ be a conformable partition of J−1
ϑ as in Galvao (2009) and

Chernozhukov and Hansen (2006), then,

δ̂γ = J̄ ′
γ(Jψ − Jαδα)

δ̂β = J̄ ′
β(Jψ − Jαδα)
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Letting H = J̄ ′
γAJ̄γ as in Chernozhukov and Hansen (2006), we have that δ̂α = (J ′

αHJα)−1J ′
αHJψ .

Replacing it in the previous expression,

δ̂γ = J̄ ′
γ(Jψ − Jαδα) = J̄ ′

γ(I − Jα(J ′
αHJα)−1(J ′

αH))Jψ = J̄ ′
γ(I − L)Jψ = J̄ ′

γMJψ

where L = Jα[J ′
αHJα]−1J ′

αH and M = I−L. Due to invertibility of JαJ̄γ , δ̂γ = 0×Op(1)+op(1).
Similarly, substituting back δα, we obtain that δ̂β = J̄ ′

β(I − L)Jψ. By the regularity conditions,

we have that,

δ̂ =

(

δ̂α(αn, τ)

δ̂β(αn, τ)

)

=

( √
TN(α̂(αn, τ) − α(τ))√
TN(β̂(αn, τ) − β(τ))

)

 N
(
0,J ′SJ

)
.
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