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Abstract

Much of the recent empirical work estimating production functions has used methodologies proposed

in two distinct lines of literature: 1) the literature started by Olley and Pakes (1996) on "proxy variable"

techniques, and 2) what is commonly referred to as the "dynamic panel" literature. We illustrate how

timing and firm information set assumptions are key to both methodologies, and how these assumptions

can be strengthened or weakened almost continously. We also discuss other assumptions that have

utilized in these literatures to increase the precision of estimates. Empirically, we then examine how,

in a number of plant level production datasets, strengthening or weakening the timing/information

set assumptions affects the precision of estimates. We compare these impacts on precision to those

achieved by imposing other potential assumptions. This gives the researcher a better idea of the

effi ciency tradeoffs between different possible assumptions in the production function context.

1 Introduction

There is a large and active empirical literature that estimates production functions relating outputs to

inputs of firms. It has long been recognized that there are significant econometric hurdles here. In

particular there is the issue that observed inputs will likely be endogenously chosen as a function of

unobservable components of production, generating endogeneity issues. Classic solutions to these endo-

geneity problems, e.g. fixed effects approaches or instrumental variables based on observing exogenous

shifters of inputs (e.g. observed input prices), have not always been successful at addressing these issues.

Given this, researchers have turned to other methodologies to estimate production functions account-

ing for endogeneity. In particular, two methods have seen extensive use in the empirical literature.

First, a literature starting with Olley and Pakes (1996) and Levinsohn and Petrin (2003) directly ad-

dressing production function estimation has seen extensive use - these two papers have more than 7000

citations between them. We call these methodologies "proxy variable" approaches. Second, a broader

set of methodologies, building from the panel data literature, has been applied to production function

estimation. Blundell and Bond (2000), which deals specifically with production function estimation, is

perhaps the most well known paper detailing this approach as applied to production functions- it has

∗Dept. of Economics, University of Michigan; Thanks to Jim Tybout for access to the data, and to seminar participants
at Columbia and Northwestern Universities.

1



more than 1500 citations. We describe these methodologies as "dynamic panel" approaches (though this

is somewhat of a misnomer, see Section 2.3).

While obviously quite popular, as might be expected from methodologies that address endogeneity

problems without directly observing exogenous variation (as in standard instrumental variables method-

ology), applying these methods can be challenging. First, these methodologies need to make what are

arguably strong assumptions on firm behavior. Second, there can be issues with precision of estimates

- often, obtaining precise estimates requires enforcing stronger assumptions than one might have liked.

On the other hand, there are many things to like about these methods - for example, they are both semi-

parametric in the sense that structural production function parameters can be estimated without fully

specifying large parts of firms decision making problems. Not only can this help avoid misspecification,

but since these decision making problems are often thought to be dynamic, they have computational

advantages.

In this paper, we discuss the similarities and differences of he various assumptions used in these two

literatures. We pay particular attention to timing and information set assumptions that we argue are

key components of both of these methodological approaches. We argue that one nice aspect of these

timing/information set assumptions is that they are not 0-1 assumptions - instead, they are quite flexible

in that they can be strengthened or weakened almost continuously (up to the discreteness of one’s data).

Moreover, with data being observed at higher and higher frequency, the flexibility one has in terms of these

assumptions is increasing. With two commonly used production datasets, we then investigate the effects

of strengthening or weakening these assumptions on the precision of one’s estimates. To benchmark

the magnitude of these effects on precision, we compare them to the effects on precision of alternative

auxiliary assumptions that have been made in these literatures. In particular, in the dynamic panel

literature, an additional stationarity assumption has often been imposed on the model, also increasing

precision. We compare these precision gains, e.g. showing that in some cases, the increased precision

one obtains by strengthening ones timing/information set assumption by one period is similar to the

increased precision one obtains by adding the stationarity assumption. The general point of the paper is

to illustrate is that there are different dimensions in which one can add (or subtract) assumptions in these

models, and one should consider which might be the most appropriate or credible in the particular data

one has. We note that these timing and information set assumptions have also seen recent application

in other literatures, e.g. demand estimation (e.g. Sweeting (2009), Grennan (2013) and Lee (2013)) so

our results could be interesting in that context as well.

2 Proxy Variable and Dynamic Panel Approaches

We start by outlining the proxy variable and dynamic panel approaches. We focus on timing and

information set assumptions that we argue are common to the two approaches - illustrating how these

assumptions can be weakened or strengthened almost continuously. We also examine other assumptions

or choices amongst assumptions in the methods - highlighting other similarities and differences across the

approaches.
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2.1 Proxy Variable Approaches

We first decribe what are often called "proxy variable" approaches, as introduced by Olley and Pakes

(1996 - henceforth OP). This has been an active are of recent methodological study - including work

by Levinsohn and Petrin (2003 - henceforth LP), Ackerberg, Caves, and Frazer (2006, 2015 - henceforth

ACF), Van Biesebroeck (2007), Wooldridge (2009), De Loecker (2011), Doraszelski and Jaumandreu

(2013), Gandhi, Navarro and Rivers (2016), Kim, Petrin, and Song (2016), Grieco, Li and Zhang (2016)

and Collard-Wexler and De Loecker (2016). Consider a simple Cobb-Douglas production function in logs

(1) yit = β0 + βkkit + βllit + ωit + εit

where yit is the log of output, kit is the log of capital input, and lit is the log of labor input, all of

which are observed by the econometrician. There are two econometric unobservables, ωit and εit. The

εit represent shocks to production or productivity that are not observable (or predictable) by firms

before making their input decisions at t. These could be, for example, i.i.d. true shocks to output,

or serially correlated measurement error in output. In contrast, the ωit represent "productivity" shocks

that are potentially observed or (partially) predictable by firms when they make input decisions. ωit
could represent variables such as firm managerial ability of a firm or some other unobserved (exogenously

evolving) input of production. Note that given these assumptions, ωit (and not εit) is the unobservable

that is problematic in terms of econometric endogeneity - given ωit are known or partially known when

inputs are chosen, those inputs will generally be correlated with ωit.

In the canonical proxy variable model, ωit is assumed to evolve according to an exogenous first order

markov process, i.e.

p(ωit| {ωiτ}t−1
τ=0) = p(ωit|ωit−1)

where the firm knows the distribution p. Typically, firms are assumed to observe ωit at t, but have no

information on future ω’s (other than their conditional distribution p). Hence

p(ωit| Iit−1) = p(ωit|ωit−1)

where Iit−1 is the firms information set at t. Assumptions are also made on the points in time in which

the inputs k and l are chosen by the firms. For example, it is often assumed that kit is chosen by the

firm at time t − 1, while lit is chosen at time t. This reflects an economic assumption about how far

in advance input decisions need to be made, and in this case represent a "time-to-build" assumption on

capital of one period. Given this assumption, Ackerberg, Benkard, Berry, and Pakes (2007) describe

capital as a "fixed" input, and labor as a "variable" input.

Estimation in the proxy variable literature typically proceeds in two stages. As discussed in ACF, the

first stage can be thought of as a way to identify εit, i.e. one of the two econometric unobservables. Doing

this typically relies on an additional assumption that some observed decision variable of the firm at t (e.g.

capital investment in OP, some intermediate input in LP) is strictly monotonic (or weakly monotonic)

in only one unobservable, ωit. This allows one to invert that decision in the unobservable ωit and thus

express that unobservable as a function of data and parameters. Intuitively, given the assumption that εit
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is not known to (or irrrelevant for) the firm, εit should not enter these decisions. Of course, as detailed

in prior work, the assumption that this decision variable only depends on a single unobservable rules out

other unobservables that might affect these observed decision variables, e.g. unobserved input prices.1

In the current paper we do not focus on this first stage "inversion". Hence we proceed under the

assumption that εit has been identified and netted out of the production function (1). In other words,

we consider the simpler model without εit, i.e.

(2) yit = β0 + βkkit + βllit + ωit

Of course, one could also get to this point by just starting with a model with no εit, in which case the

assumptions required for the first stage inversion would not be necessary.

Estimation of (2), i.e. the production function net of εit, relies on moment conditions resulting directly

from the information set and timing assumptions described above. Specifically, because of the first order

markov assumption and information set assumptions on ωit, we can decompose ωit into its conditional

expectation given Iit−1 and an innovation term

ωit = E[ωit | Iit−1] + ξit = E[ωit | ωit−1] + ξit = g(ωit−1) + ξit

where by construction, the innovation term ξit satisfies

E[ξit| Iit−1] = 0

Substituting this decomposition into the production function, we obtain

yit = β0 + βkkit + βllit + g(ωit−1) + ξit(3)

= β0 + βkkit + βllit + g(yit−1 − β0 + βkkit−1 + βllit−1) + ξit(4)

and since we can write the innovation term as a function of data and parameters (where the parameters

include the g function), i.e.

ξit = yit − β0 − βkkit − βllit − g(yit−1 − β0 + βkkit−1 + βllit−1

is straighforward to construct moment conditions that can be used for estimation, i.e.

E[yit − β0 − βkkit − βllit − g(yit−1 − β0 + βkkit−1 + βllit−1)| Iit−1] = 0

Note that under the specific timing assumptions made earlier, kit, lit−1, yit−1 ∈ Iit−1. Further lags

of these variables are also in Iit−1, though leads of these variables (in particular, lit) are not. Olley and

Pakes (1996) and Pakes and Olley (1995) show that the g function can be treated non-parametrically,

though if one assumes that ωit follows an AR(1) process, i.e. g(ωit−1) = ρωit−1, a simple set of moments

that would tend to exactly identify the parameters is:

1This is discussed further in a later section of this paper.
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(5)

E

 (yit − β0 − βkkit − βllit − ρ(yit−1 − β0 + βkkit−1 + βllit−1)) ·

 kit

lit−1

yit−1 − β0 + βkkit−1 + βllit−1


yit − β0 − βkkit − βllit

 = 0

where the last moment enforces a normalization E [ωit] = 0 to identify the constant term β0.

While moments similar to this have been used many times in the literature, exact conditions under

which this system identifies the parameters have not been formally derived. This is probably because

this procedure implicitly treats large parts of the model non-parametrically (which is a nice attibute of

the methodology). In particular, the above model does not fully specify the process by which the firm

chooses their inputs - it really only makes timing assumptions about when those inputs are chosen, and

what is in firms’information sets when those inputs are chosen (plus the assumptions necessary for the

first stage). It is hard to even enumerate the large set of models consistent with these assumptions,

let alone show which subset of these models would be identified with this moment condition. That

said, there is work that examines various aspects of this issue, e.g. Bond and Söderbom (2005), ACF

(2015), and GNR (2016). Some simple intuition on this issue that is apparent from examination of

(5) is that identification βk and βl will be aided by exogenous variation in kit and lit conditional on

ωit−1 = yit−1 − β0 + βkkit−1 + βllit−1. In other words, one should think about why two firms with

the same lagged productivity shock would have different values of kit and lit, and why this variation is

exogenous. The exogeneity condition is important, for example, because while in this model lit will

certainly vary conditional on ωit−1 (since unlike kit−1, lit can be chosen after the firm realizes ωit) the

part of that variation due to ξit, i.e. the innovation component of ωit, is obviously not orthogonal to

ξit. Some lessons from the aforementioned literature is that aspects of the model such as dynamics (e.g.

adjustment costs) in kit and/or lit or serially correlated (not necessarily observed by the econometrician)

input prices can aid in generating this sort of variation.

2.2 Strengthening or Weakening Timing/Information Set Assumptions in Proxy
Variable Approaches

The focus of this paper is on the timing and information set assumptions that are fundamental to these

proxy variable approaches. In thinking about these assumptions, it is first important to emphasize that

the orthogonality conditions arising in these approaches require both assumptions on both the time at

which inputs are chosen and assumptions about what is in firms’information sets at those points in time.

To illustrate this, consider a model with just capital, i.e.

(6) yit = β0 + βkkit + ωit

where ωit again follows a simple AR(1) process ωit = ρωit−1+ ξit (with E[ξit| Iit−1] = 0). Under 1) the

timing assumption that kit is decided at t− 1 and 2) the information set assumption that Iit−1 that only

contains ωit−1 (and lags) but not ωit, one obtains that while kit is not orthogonal to the entire ωit, it
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is orthogonal to part of ωit, i.e. the innovation component of ξit. Of course, this orthogonality relies

on both assumptions - for example, even if firms decided kit at t − 1, if the firm observed ωit a period

ahead (i.e. observes ωit at t − 1) , this orthogonality condition would not hold. For that matter, even

if firms chose capital levels 10 periods in advance, as long as firms also observed ωit’s 10 periods ahead,

the orthogonality condition would again not hold.

Clearly, what is crucial here is the difference between the point in time at which kit is chosen and

the point in time at which ωit enters the firms information set. In particular, at least with respect to

the moments we are considering to identify the parameters, a model in which kit is chosen five periods

in advance and ωit is observed four periods in advance is equivalent to a model in which kit is chosen

one period in advance and ωit is observed at t. We will denote this difference as ∆, and given a ∆

describe our timing/information set assumption as: At the point in time when the firm chooses kit, the

firms information set includes {ωiτ}t+∆
τ=0 but does not include {ωiτ}

∞
τ=t+∆+1. In the model above where

kit is the only input, is chosen at t − 1 and ωit is observed at t, ∆ = −1. For a given ∆, the model

implies the following moment conditions:

(7) E[ξit| {kiτ}t−∆−1
τ=0 ] = 0

In words, the innovation component of ωit is orthogonal to inputs that were chosen prior to the firm

observing ωit.

Given this setup, we can easily think about strengthening or weakening the timing/information set

assumption. First, we can strengthen the assumption by decreasing ∆. This corresponds to either

assuming that kit is chosen at points in time further in the past, or assuming that ωit is not observed

until later points in time. Examination of (7) indicates why decreasing ∆ corresponds to a strengthening

of the timing/information set assumptions - as ∆ decreases, the period t innovation is orthogonal to a

larger set of k’s. Econometrically, this strengthened assumption will generally lead to a more effi cient

estimator. Perhaps a more intuitive way of illustrating this is through recursive substitution of the AR(1)

process into the production function (6), i.e.

yit = β0 + βkkit + ωit

= β0 + βkkit + ρωit−1 + ξit

= β0 + βkkit + ρ2ωit−2 + ρξit−1 + ξit

= β0 + βkkit + ρ3ωit−3 + ρ2ξit−2 + ρξit−1 + ξit

= β0 + βkkit + ρ4ωit−4 + ρ3ξit−3 + ρ2ξit−2 + ρξit−1 + ξit

.

.

For a given assumed ∆, consider the −∆th iterate of the recursive substitution, i.e.

yit = β0 + βkkit + ρ−∆ωit+∆ +
−∆∑
τ=1

ρτ−1ξit−τ

6



Under the timing/information set assumption ∆, kit is correlated with the first component of the residual(
ρ−∆ωit+∆

)
but orthogonal to the second component of the residual

(∑−∆
τ=1 ρ

τ−1ξit−τ

)
. As ∆ decreases,

the first component of the residual becomes smaller in terms of variance, while the second component of

the residual becomes bigger. In other words, as ∆ decreases, kit is assumed to be orthogonal to "more" of

the residual, i.e. a stronger assumption. Note that as ∆→ −∞ (e.g. if kit is chosen without knowledge

of any of the ω’s), then we are assuming that kit is orthogonal to the entire residual, and, e.g., OLS would

produce consistent estimates of the production function.

In summary, strengthening the timing/information set assumption from ∆ = −1 to −∞ corresponds

to assuming that kit is orthogonal to a bigger proportion of the residual, and this will generally generate

more effi cient estimates. We can also weaken the timing/information set assumption by increasing ∆.

For example, ∆ = 3 coincides with a model where kit is chosen at t and ωit is observed three periods

ahead at t − 3. Interestingly, the implications of increasing ∆ above −1 are fundamentally different

than decreasing it. This is because as soon as ∆ = 0, kit is chosen with full knowledge of ωit and thus

is generally correlated with all components of ωit. Hence the proxy variable literature (as well as the

dynamic panel literature, see the next section) uses lags of kit that are orthogonal to components of ωit,

as shown in (7). For example, when ∆ = 0, kit−1 is orthogonal to the innovation component of ωit, i.e.

ξit. This distinction between ∆ ≤ −1 versus ∆ ≥ 0 is illustrated in Ackerberg and Hahn (2015), who

using a very simply method of proof based on verifying conditions in Matzkin (2004) and Newey and

Imbens (2009), show conditions under which a non-parametric version of (6), i.e.

yit = f (kit, ωit)

is identified. However, this simple method of proof only applies when ∆ ≤ −1 (though this doesn’t imply

that the model is not identified when ∆ ≥ 0).

Returning to the canonical two input production function of Section 2.1, one can see that in the

proxy variable literature, one can choose a different ∆ for each input. The moments (5) (as well as

the empirical work and monte-carlo experiments in OP, LP, and ACF) reflect the assumption that for

capital, ∆ = −1, while for labor, ∆ = 0. With more inputs, it is straightforward to set up additional

moments given whatever assumption on ∆ one wants to make for each of the inputs. In the empirical

section of this paper, we examine what happens as we vary the strength of the timing assumptions ∆ -

in particular, we compare to what extent . Thinking precisely about exactly how strong one wants their

timing assumptions to be seems particularly relevant given newer high frequency datasets. For example,

if one is willing to make the assumption that ∆ = −1 in an dataset with annual observations, presumably

one should hypothetically be willing to make the assumption that ∆ = −4 were the same dataset to

instead have quarterly observations, or ∆ = −12 in the analagous dataset with monthly observations

2.3 Dynamic Panel Approaches

A second approach that has been used in many recent empirical production function studies is based

on the "dynamic panel" literature. This approach stems from a long line of research on panel data

models, e.g. Chamberlain (1982), Anderson and Hsiao (1982), Arellano and Bond (1991), Arellano and

Bover (1995), and Blundell and Bond (1998). While this is a very general methodology, Blundell and
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Bond (2000) do a good job of illustrating how it can be applied to production function estimation. An

interesting observation is that much of this literature is based on models with fixed effects and state

dependence (i.e. the lagged dependent variable has a causal effect on the current dependent variable).

While state dependence is typically not included in production function models, the methodology can

alternatively be applied to models with no state dependence but a serially correlated unobservable (in

addition to a fixed effect).

Blundell and Bond (2000) consider the following production function

(8) yit = β0 + βkkit + βllit + αi + ωit + εit

αi is a firm fixed effect that for now we will allow to be arbitrarily correlated with values of the inputs in

all periods. To keep things simple for now, assume εit is measurement error in output that is orthogonal

to inputs choices in all periods (we discuss how this assumption can be relaxed later).

The time varying productivity shock ωit is assumed to follow an AR(1) process ωit = ρωit−1+ ξit.

Inputs are classified according to their potential correlation with ωit and its components, e.g. ξit. A

period t input is described as exogenous if it is orthogonal to ωit. It is described as predetermined if it is

orthogonal to ξit, the innovation in ωit. Lastly, it is described as endogenous if it is potentially correlated

with ξit, but orthogonal to future period innovations in ω, e.g. ξit. This classification can be interpreted

in terms of the timing and information set assumptions discussed earlier, i.e. assumptions regarding

which ξit’s the firm observes when making their period t input choices. Specifically, the assumption

that an input is exogenous corresponds to ∆ = −∞, i.e. where the firm observes no ξit’s when choosing

the input; the assumption that an input is predetermined corresponds to ∆ = −1, i.e. where the firm

observes past ξit’s but not the current ξit when choosing the input; and the assumption that an input is

endogenous corresponds to ∆ = 0, where the firm observes current ξit but not future ξit’s when choosing

the input. As we will see momentarily, it is also simple to consider ∆’s other than 0, -1, and -∞ in the

dynamic panel framework.

Estimating (8) typically involves double differencing - one difference is to isolate the innovation in ωit
- the other difference is to eliminate the fixed effect αi. The intial difference is a ρ first difference, i.e.

yit − ρyit−1 = (1− ρ)β0 + βk (kit − ρkit−1) + βl (lit − ρlit−1) + (1− ρ)αi + (ωit − ρωit−1) + (εit − ρεit−1)(9)

= (1− ρ)β0 + βk (kit − ρkit−1) + βl (lit − ρlit−1) + (1− ρ)αi + ξit + (εit − ρεit−1)

and the latter difference is a straight first difference, generating

(10) (yit − ρyit−1)− (yit−1 − ρyit−2) =

= βk [(kit − ρkit−1)− (kit−1 − ρkit−2)] + βl [(lit − ρlit−1)− (lit−1 − ρlit−2)]

+ξit − ξit−1 + (εit − ρεit−1)− (εit−1 − ρεit−2)

The residual in (10) only contains ξ’s and ε’s, and given the above timing and information set assumptions,
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will be orthogonal to lags (or leads) of k and l. For example, if ∆ = −1 for both k and l, the moment

conditions

(11) E[ξit − ξit−1 + (εit − ρεit−1)− (εit−1 − ρεit−2) | kit−1, lit−1] = 0

hold, since the timing/information set assumption implies kit−1 and lit−1 are chosen before ξit−1 (and ξit
are in the firms information set). For ∆ = 0, this moment condition would not hold - it would only

hold for k and l lagged to period t− 2 and prior.

While the dynamic panel literature seems to focus on the cases where ∆ = −∞,−1 ,and 0, it is simple

to see how this methodology can also be applied with alternative timing/information set assumptions.2

As one weakens the timing assumptions by increasing ∆ from 0, (11) holds for only further lagged k and

l. As one strengthens the timing assumptions, (11) will hold for more and more k’s and l’s into the

future.

Following the logic of what was done in the prior section, there is another way to think of strengthening

the timing information set assumptions. If, for example, ∆ = −2 (for both k and l), for the initial

difference (9), we can do a ρ2 two period difference instead of a ρ one period difference, i.e.

yit − ρ2yit−2 =
(
1− ρ2

)
β0 + βk

(
kit − ρ2kit−2

)
+ βl

(
lit − ρ2lit−2

)
+
(
1− ρ2

)
αi +

(
ωit − ρ2ωit−2

)
+
(
εit − ρ2εit−2

)
(12)

=
(
1− ρ2

)
β0 + βk

(
kit − ρ2kit−2

)
+ βl

(
lit − ρ2lit−2

)
+
(
1− ρ2

)
αi + ρξit−1 + ξit +

(
εit − ρ2εit−2

)
Then doing a straight first difference to eliminate the αi term, we get

(13)
(
yit − ρ2yit−2

)
−
(
yit−1 − ρ2yit−3

)
=

= βk
[(
kit − ρ2kit−2

)
−
(
kit−1 − ρ2kit−3

)]
+ βl

[(
lit − ρ2lit−2

)
−
(
lit−1 − ρ2lit−3

)]
+ρξit−1 + ξit −

(
ρξit−2 + ξit−1

)
+
(
εit − ρ2εit−2

)
−
(
εit−1 − ρ2εit−3

)

= βk
[(
kit − ρ2kit−2

)
−
(
kit−1 − ρ2kit−3

)]
+ βl

[(
lit − ρ2lit−2

)
−
(
lit−1 − ρ2lit−3

)]
(14)

+ξit + (ρ− 1) ξit−1 − ρξit−2 +
(
εit − ρ2εit−2

)
−
(
εit−1 − ρ2εit−3

)
Given the timing/information set assumption of ∆ = −2, the error term in (14) will be orthogonal to

kit−1, lit−1 and further lags. This can straightforwardly be extended to stronger timing/information

set assumptions - the first step being to do a ρ−∆, −∆-period difference, the second step being to do a

straight first difference to elimate the αi term.

2The popular Stata command xtabond2 can accomodate ∆ = −∞,−1 ,and 0, as well as weaker timing assumptions where
∆ > 0. It does not appear to be able to be used for −∞ < ∆ < −1 (of course, these can be straightforwardly programmed
in Mata or other programming languages). It is also somewhat challenging to enforce the restrictions necessary to consider
a model with an AR(1) error term instead of a lagged dependent variable. (see Soderbom (2015)).
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2.3.1 Additional Stationarity Assumptions

As noted by Blundell and Bond (1998, 2000), the double differences typically done when the dynamic

panel literature is applied to production functions appear to be fairly demanding on the data - specifically,

many empirical researchers have found the procedures generate large standard errors, even, for example

when ∆ = −1 (we do not know of an empirical study that has used this methodology with ∆ < −1). Of

course, this is not a criticism of the procedures - it is a result of the fact that they are making relatively

weak assumptions - i.e. allowing extensive correlation between the unobservable and the explanatory

variables. Blundell and Bond (2000) and Bond and Soderbom (2005) do a good job illustrating what

aspects of the data generating process tend to help or hinder this imprecision. To mitigate this issue,

Blundell and Bond suggest adding some additional assumptions to the model to sharpen predictions -

these additional assumptions are based on stationarity restrictions that were also proposed in Arellano

and Bover (1995).

In the production function context, these additional assumptions regard how the fixed effects αi relate

to the inputs. In the prior section, the αi were permitted to be arbitrarily correlated with the inputs.

Blundell and Bond (1998, 2000) suggest the additional assumption that the αi are orthogonal to specific

functions of the inputs. In particular, they assume that

(15) E[αi| kit − kit−1, lit − lit−1] = 0

i.e. that the fixed effects are orthogonal to changes in the inputs. In other words, while αi is permitted

to be correlated with levels of inputs, it is assumed to be orthogonal to changes in these inputs. Because

in these techniques (like the proxy variable techniques), much of the underlying economic model is not

specified (e.g. the precise way in which firms make input choices), this is a bit of a high level assumption

that can be challenging to interpret. That said, in the production context, this assumption essentially

says that inherently more productive firms (i.e. those with high αi’s) are not growing faster (or slower)

than those who are less productive. One can think of situations where this assumption might not hold

- a primary example would be in a relatively new and growing market, where one might expect better

firms to become bigger quicker than worse firms. Relatedly it could be a problem if, in a relatively short

panel, industry wide variables are trending a market upwards or downwards. Blundell and Bond (2000)

illustrate how in the production function context, (15) can essentially be interpreted as a stationarity

assumption on the firm operating environment.

Given this stationarity assumption, one can form additional moments based only on the single ρ-

differenced production function, i.e. prior to doing the latter difference to eliminate the αi. Specifically,

under (15), the residual in

(16) yit − ρyit−1 = (1− ρ)β0 + βk (kit − ρkit−1) + βl (lit − ρlit−1) + (1− ρ)αi + ξit + (εit − ρεit−1)

will be orthogonal to appropriately lagged differences in inputs, e.g. if ∆ = −1 then this residual is

orthogonal to differences in inputs kit − kit−1, lit − lit−1 and prior, while if ∆ = 0 then this is orthogonal

to differences in inputs kit−1 − kit−2, lit−1 − lit−2 and prior. Note that if one were to strengthen the

timing assumption to ∆ < −1, then the same logic would apply to form valid moments based on a ρ−∆,
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−∆-period differenced equation as discussed above. In Blundell and Bond (2000) and following empirical

work, these additional moments appear to have be relatively successful at increasing precision of estimates

- many empirical papers now use estimators utilizing these additional moments. Estimators that utilize

these additional assumptions and moments are often referred to as a "System GMM" (or SYS-GMM)

estimator, in contrast to the "Differenced GMM" (or DIFF-GMM) estimator that uses only moments

based on, e.g. (10). While the stationarity assumption required to generate these additional moments

might be considered strong, it is of course weaker than the implicit assumption that αi = 0 in the proxy

variable techniques for estimating production functions, though as we discuss in the next section, there

are other dimensions in which the proxy variable literature makes weaker assumptions than the dynamic

panel literature.

2.4 Comparison of Assumptions in Proxy Variable and Dynamic Panel Approaches

The discussion above illustrates how timing/information set assumptions are common to both the proxy

variable and dynamic panel literatures, and these assumptions can be strengthened or weakened quite

easily, essentially in a continuous fashion (up to the discreteness inherent in the data). We now summarize

differences in other assumptions across the two methodologies, starting with assumptions on ωit, then

proceeding to assumptions on αi and εit (more discussion on this is in ACF).

Regarding assumptions on ωit, the discussion above illustrates that, generally speaking, the dynamic

panel literature makes stronger assumptions than the proxy variable literature. While the proxy variable

methodology can straightforwardly allow ωit to follow a general (and potentially non-parametrically

estimated) first order markov process ωit = g(ωit−1) + ξit, the dynamic panel literature assumes that

ωit follows an AR(1) process ωit = ρωit−1 + ξit. The issue is that without that linear structure of the

markov process, simple linear differencing as in (9) to isolate the innovation term ξit is not possible. In

contrast, the non-linear structure can be accommodated in the proxy variable literature because of the

lack of αi and the fact that εit is netted out in the first stage. Note that both methodologies can be

extended to allow for higher order markov processes - though in the proxy variable approach this requires

more data and assumptions regarding the first stage inversion (as discussed in Ackerberg, Berry, Benkard,

and Pakes (2007)), and for the dynamic panel approach, simple differencing requires assumption a linear

higher order markov process, e.g. ωit = ρ1ωit−1 + ρ1ωit−2 + ξit.

However, while the proxy variable approaches generally makes weaker assumptions on the ωit process,

they typically make stronger assumptions regarding αi. As detailed in the prior section, the dynamic panel

literature does allow heterogeneous αi across firms. In some cases it makes literally no assumptions on

the αi’s (when the additional SYS-GMM moments are not used), while in others (when the SYS-GMM

moments are used), it makes the stationarity assumptions discussed above.

On the other hand, for the most part the proxy variable literature assumes that αi = 0. It is

interesting to note that the primary reason for requiring this assumption is the first stage inversion,

which as noted above serves to "identify" εit and net it out of the production function as in (2). This

first stage inversion requires that an observed decision variable of the firm (e.g. investment, choice of an

input) depend on only a scalar unobservable, i.e. ωit. This scalar unobservable assumption allows one

to write ωit as a function of observables and parameters, and this is what allows one to identify εit in the
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first stage. The problem with αi’s that vary across firms3 is that generally speaking, this means that

any input decision i will depend on both αi and ωit, hence violating the scalar unobservable assumption

and not permitting the first stage inversion. Interestingly, GNR show that in some special cases, one can

still do the first stage inversion with αi’s in the proxy variable methodology. Specifically, if the observed

decision variable that is being used as the proxy variable depends only on the sum αi + ωit (and not αi
and ωit individually), then one can still do the first stage inversion. While this condition is not likely

to hold for dynamic decision variables like investment (since investment is a long-run decision, it is likely

to respond differently to an increase in αi vs an increase in ωit) , it may often hold for static decision

variables, e.g. intermediate inputs.

Lastly, consider assumptions in the two literatures regarding the εit’s. As noted above, simply allowing

any εit’s in the proxy variable approach typically requires a host of auxiliary assumptions - in particular

the key scalar unobservable and monotonicity assumptions required to do the first stage inversion and

net out the εit’s. As noted in ACF, for example, this can require strong assumptions limiting unobserved

heterogeneity in demand functions. They describe, for example, how in a value added production function

with inputs capital (∆ = −1), labor (∆ = 0), and materials (∆ = 0), that 1) using investment demand

(e.g. OP) to proxy for unobserved productivity requires assuming away serially correlated unobserved

input price shocks to either capital, labor, or materials, that 2) using unconditional materials demand (e.g.

LP) to proxy for unobserved productivity requires assuming away serially correlated unobserved input

price shocks to labor and materials, and 3) using conditional materials demand (e.g. ACF - conditional

on labor input choice) to proxy for unobserved productivity requires assuming away serially correlated

unobserved input prices to materials. The proxy variable approaches also place restrictions on the εit
process itself - essentially it requires εit to either be measurement error (potentially serially correlated)

in output, or for εit to be real shocks to output but that do not impact choice of the proxy input in any

period. For the latter to hold will typically require εit to be independent over time (otherwise optimal

input choices will generally depend on past εit) and also rules out past εit’s from impacting future choices

of the proxy input, which might, e.g., occur in a context with credit constraints (i.e. current inputs might

depend on past shocks to output - see Shenoy (2015) for similar points).

The dynamic panel literature arguably makes weaker assumptions regarding the εit’s. Perhaps most

importantly, the dynamic panel literature does not require any first stage inversion to net out the εit’s.

Hence it does not need to make the scalar unobservable and monotonicity assumptions that the proxy

variable approach does - this means that dynamic panel methods do not place significant restrictions

on unobserved, serially correlated, input prices. This can be important, since as observed by, e.g ACF

and Bond and Söderbom (2005), serially correlated input prices can be helpful in generating exogenous

variaion. The precise assumptions that the dynamic panel literature makes on the εit’s depends on exactly

which moments one uses (e.g. DIFF-GMM vs SYS-GMM) and values of ∆. For example, examining

(10), the εit’s in the unobserved term will need to be orthogonal to the various contemporaneous or

lagged inputs used as instruments. Interestingly, note that, depending on ∆, εit’s could be permitted to

be correlated with future (or suffi ciently in the future) choices of inputs, which again might occur in a

situation with credit constraints. In summary, the dynamic panel literature appears to make stronger

3Assuming fixed T - if one assumes T →∞, allowing αi’s that vary across firms is trivial.
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restrictions on the ωit process, while the proxy variable literature tends to make stronger restrictions on

the αi and εit’s.

3 Empirical Work

In the prior sections, we argued that timing and information set assumptions play a key role in both

the proxy variable and dynamic panel approaches to production function estimation. Moreover, these

timing and information set assumptions can be strengthened or weakened in a very natural, and almost

continuous way. The empirical goal of this paper is to examine the relationship between the strengthening

or weaking of these assumptions and precision of ones’estimates. Obviously, stronger assumptions will

lead to more precise estimates, so for this to be useful, we want to quantify this increased precision

in some helpful way. The way we do this is by comparing the increased precision from strengthened

timing/information set assumptions to the increased precision from strengthening other assumptions

in the production function context. Since, in the dynamic panel literature, many papers utilize the

additional SYS-GMM moments (and corresponding stationarity assumptions) proposed by Blundell and

Bond (2000), we use this as our benchmark. In other words, we compare the additional precision

obtained from strengthening ones timing/information set assumptions vs. the additional precision from

moving from the DIFF-GMM moments to the augmented SYS-GMM moments. As noted earlier, one

apparent reason for substantial use of the SYS-GMM moments is the lack of precision of estimates

generates by DIFF-GMM moments. Our comparisons illustrate how there are alternative ways to

increase precision, e.g. strengthing timing assumptions, and our results show, at least in some commonly

studied datasets, what the effi ciency tradeoff is between the additional SYS-GMM moments and stronger

timing assumptions. We feel that, particularly in higher frequency datasets where, e.g. ∆ < −1 can still

be a short lag, strengthening timing assumptions is something that might be considered.

We investigate this issue in two frequently used production datasets from Chile and Mexico. The

Chilean dataset, covering plants with at least 10 workers over 1979-1986, was the subject of LP, for

example, and the Mexican plant level data, covering 1984-1990, has also been used by many studies, e.g.

Asker, Collard-Wexler, and DeLoecker (2015). For each dataset we focus on 3 industry classifications -

food products, clothing, and wood products. These were 3 of the industry classifications considered by

LP. In both datasets the period of time is one year, so the distinction between, e.g. ∆ = −1 and ∆ = 0

is that the former is a stronger timing assumption by a full year.

To compare apples to apples, our empirical results only utilize dynamic panel methodology. Specif-

ically, in the context of the dynamic panel methodology, we investigate and compare the effects of 1)

increasing or decreasing ∆ and 2) including or not including the additional stationarity moments (i.e.

SYS-GMM vs DIFF-GMM). We currently use the STATA command xtabond2 to compute our estimates.

This has a couple of caveats. First, while it is straightforward to allow the inputs to be incrementally

more endogenous using the command (i.e. ∆ = −1 (predetermined), 0 (endogenous), 1 (more endoge-

nous), 2, 3, .....), it does not appear possible to strengthen the timing assumption, i.e. decreasing ∆ below

−1. Second, it is not straigtforward to use xtabond2 to estimate a dynamic panel model with an AR(1)

processwith parameter ρ in the error term (i.e. ωit from above). Hence we focus attention on a version
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of the model where ρ = 0, and consider ∆ = −1, 0, 1, 2, 3.4 Obviously for all the specifications to produce

consistent estimates (of parameters and standard errors), one needs that the strongest assumptions hold

in all the datasets, i.e. in the data, ∆ ≤ −1 and the additional SYS-GMM stationarity assumptions to

hold.

As our goal is to compare the effect of stronger or weaker assumptions on the precision of production

function estimators, our main focus is on the estimated standard errors of our parameter estimates. Being

cognizant of the existence of estimation error in the estimates of standard errors (which presumably could

be assessed by bootstrapping) and wanting to limit this estimation error, we consider a simple production

function with just one input, total labor, and thus one input elasticity coeffi cient. Table 1 contains our

estimates of the standard errors of this production function coeffi cient for the three industries in the two

countries. The general patterns of these standard errors across the different estimators are exactly what

one would expect. Specifically, as one decreases the strength of the timing assumption from ∆ = −1

to ∆ = 3, standard errors increase. Similarly, when one moves from the DIFF-GMM specifications to

the SYS-GMM specifications that make the additional stationarity assumption, standard errors decrease.

To us what is interesting is to compare the magnitude of these standard error changes. In particular, it

is interesting to note that starting from a DIFF-GMM specification with ∆ = 0, one gets quite similar

precision gains from a one period stronger timing assumption (i.e. ∆ = −1) as one gets from additionally

imposing the SYS-GMM stationarity assumptions. For example, in Chilean Industry 312, the production

function coeffi cient with DIFF-GMM and∆ = 0 has a standard error of 0.157 - moving to∆ = −1 reduces

this to 0.049, while adding the stationarity assumptions reduces it to 0.059 (imposing both the additional

assumptions together reduces it to 0.023). While the quantitative results will obviously differ across

datasets (especially those with different time period lengths), our more general point is that there are

different dimensions on which one can strengthen or weaken assumptions in these methodologies, and one

should consider all these in trying to find reasonable and credible specifications.

4 Conclusion

We highlight the similarity of two recent literatures on production function estimation in relying on

timing and information set assumptions to identify parameters. We show how these assumptions can be

weakened or strengthened, and investigate using two production datasets how this changes the precision

of the estimates of production function parameters. We compare these precision gains and losses to

those from alternative assumptions that have been imposed in the literature, in particular a stationarity

assumption often utilized in dynamic panel approaches.
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Table 1

Chile
Δ = -1 Δ = 0 Δ = 1 Δ = 2 Δ = 3

Industry 312 Food Products SYS-GMM 0.023 0.059 0.114 0.123 0.188
n=10790 DIFF-GMM 0.049 0.157 0.356 0.541 0.554

Industry 321 Textiles SYS-GMM 0.023 0.075 0.109 0.149 0.183
n=2689 DIFF-GMM 0.077 0.144 0.164 0.197 0.216

Industry 331 Wood Products SYS-GMM 0.036 0.109 0.172 0.281 0.543
n=2539 DIFF-GMM 0.092 0.154 0.292 0.370 0.473

Mexico
Δ = -1 Δ = 0 Δ = 1 Δ = 2 Δ = 3

DIV1 Food Products SYS-GMM 0.042 0.188 0.372 0.290 0.874
n=1849 DIFF-GMM 0.083 0.365 0.775 1.258 2.847

DIV2 Textiles SYS-GMM 0.052 0.172 0.267 0.360 0.611
n=919 DIFF-GMM 0.078 0.339 0.395 0.839 5.580

DIV3 Wood Products SYS-GMM 0.106 0.311 0.220 0.489 0.686
n=378 DIFF-GMM 0.224 0.499 1.060 1.270 1.390


