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Abstract

We propose a theory of �rm dynamics in which workers have ideas for new projects that

can be sold in a market to existing �rms or implemented in new �rms: spin-o¤s. Workers have

private information about the quality of their ideas. Because of an adverse selection problem,

workers can sell their ideas to existing �rms only at a price that is not contingent on their

information. We show that the option to spin o¤ in the future is valuable so only workers

with very good ideas decide to spin o¤ and set up a new �rm. Since entrepreneurs of existing

�rms pay a price for the ideas sold in the market that implies zero expected pro�ts for them,

�rms�project selection is independent of their size which, under some assumptions, leads to

scale independent growth. The entry and growth process of �rms in this economy leads to an

invariant distribution that resembles the one in the US economy.

1 Introduction

The generation and implementation of ideas shape industry dynamics and the structure of �rms.

Ideas can be generated in many di¤erent contexts, but many important innovations have been

developed by workers of existing �rms. In some cases, workers decide to sell their idea to their

�We thank Boyan Jovanovic, Chris Phelan, and seminar participants at the Federal Reserve Bank of Minneapolis
and NYU�s Stern School of Business for useful comments. The views expressed in this paper are those of the authors
and do not necessarily re�ect the views of the Federal Reserve System or the Federal Reserve Bank of Philadelphia.
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current employer (or to some other �rm), and in other cases, they use their innovation to start a

new �rm: a spin-o¤. Whether an innovation by a worker is implemented within the �rm, leads to

a spin-o¤, or is discarded depends on the initial ownership and knowledge of the idea, as well as

the pro�ts that the di¤erent entities can generate by implementing it. In this paper we propose

a theory of these decisions and, therefore, of �rm dynamics and entry. The theory we propose

takes a clear stance on the determinants of the boundary of the �rm by modeling which ideas

are implemented within the �rm and which ones are not. Our take is that private information

on the expected returns of an idea leads to an adverse selection problem in which the best ideas

give workers incentives to set up new �rms, while ideas that are not as good are sold to existing

�rms at a price that is not contingent on private information but implies zero expected pro�ts for

existing �rms. Hence, we propose a theory that underscores the private information of innovators

as a fundamental determinant of industry dynamics and spin-o¤s.

In our theory, the selection process induced by private information determines whether an idea

is used within an existing �rm or exploited by setting up a new �rm. The innovator has information

on the mean return of an idea that he cannot credibly convey to �rm management. Hence, the

�rm is willing to pay only a non-contingent price for the project. The inventor can either decide to

create a new �rm or sell the project in the market for ideas. If he does the latter, he can credibly

reveal his information about the project, since there is nothing at stake for him. The �rm can

then decide to implement the idea or not. Implementing a project, either in a spin-o¤ or within

the �rm, requires one unit of labor. The reason is that to �nd out the realized return of an idea �

that comes from a distribution with mean given by the innovator�s private information �the idea

has to be tried out for one period. The actual realized pro�t from an idea can be low enough to

make further use of the project non-optimal for the entrepreneurs. In that case, the project will

be dropped next period. If the return on the idea is high enough, the idea is used and provides a

permanent and constant source of pro�ts to entrepreneurs.

If the worker decides to spin o¤ with an idea, we show that, he will exit and return to an

existing �rm as a worker unless the idea pays a return that is strictly higher than an amount that

exceeds the unit labor cost. The reason is that by continuing to use the idea, the worker forgoes

the opportunity of spinning o¤ with an even better idea in the future. Consequently, workers that

decide to spin o¤ are more selective than existing �rms when deciding whether to drop a project.

In turn, having this option, which has a positive value, leads workers to be more selective than

existing �rms in deciding which ideas to try out. That is, existing �rms implement ideas with lower

expected value than the ideas workers use to spin o¤. In other words, workers decide to forgo their
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wage and the price at which they can sell their idea �if they do not spin o¤ �only if the idea is

particularly good. Hence the best ideas will result in spin-o¤s and the not-so-good ideas will be

sold to existing �rms. In this sense, our theory determines entry through spin-o¤s and �rm growth.

Most of the previous e¤orts to study �rm dynamics have taken a di¤erent approach. The seminal

works of Jovanovic (1982), Hopenhayn (1992), and Ericson and Pakes (1995) study �rm dynamics

that result from an exogenous stream of productivity levels. So do more recent papers like Luttmer

(2006), Klette and Kortum (2004), and Rossi-Hansberg and Wright (2006), although these papers

do endogenize the characteristics of entrants. Firms do not determine their productivity, they act

conditional on it, or on what they know about it. In contrast, what we propose is a theory in

which the quality of the projects that �rms implement, as well as the quality of the projects of new

entrants (spin-o¤s), is determined endogenously by the selection of projects. This mechanism leads

to a theory of �rm behavior in which �rm dynamics are determined by the quality and quantity of

the implemented projects.1

We show that the set of ideas that entrepreneurs are willing to buy at the non-contingent equi-

librium price does not depend on the size of �rms. Hence, the selection of projects is independent

of size, where size is measured as the number of projects (or workers) in a �rm. The equilibrium

price of an idea is such that any entrepreneur in the economy obtains zero expected pro�ts from

buying an idea in the market, given the set of ideas sold by workers (the ones that do not lead to

spin-o¤s). Hence, entrepreneurs are indi¤erent about whether to buy ideas at the market price.

In order for the model to have predictions on �rm growth, and since entrepreneurs are indi¤erent

about how many ideas to buy in the market, we need to introduce a small friction that pins down

the number of projects bought by �rms. In the paper we discuss two possibilities that lead to

scale-independent growth. The �rst one is that workers face a small transaction cost of selling

their ideas to entrepreneurs of a �rm di¤erent from their own �rm (such as the cost of contacting

or �nding that entrepreneur). Thus, entrepreneurs implement only ideas generated by their own

workers. Then, if the probability of generating an idea is proportional to the number of workers

in the �rm, �rm growth is scale independent. The second possibility is that the probability of

generating ideas is not linear, but entrepreneurs �nd ideas in the market at a rate proportional to

the number of workers in their �rms (workers �nd ideas in the market for them). In this case, we

again obtain scale-independent �rm growth. The key argument is that the market for ideas implies

that entrepreneurs are indi¤erent about the number of projects to buy in the market and so the

1For other theories of spin-o¤s, see, for example, Franco and Filson (2006).
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selection of a project does not depend on the characteristics of the �rm. In this sense, it is the

market for ideas that leads to scale-independent �rm growth and, together with entry, to a realistic

size distribution of �rms. We show that the upper tail of the size distribution can be arbitrarily

close to a Pareto distribution with coe¢ cient 1.

The theory also has predictions for the entry process of �rms. Large �rms generate more spin-

o¤s than small �rms, although as a fraction of the workforce, the number of spin-o¤s is constant.

Only the best ideas lead to spin-o¤s. The model also results in a fraction of unsuccessful spin-o¤s.

Only these �rms exit the economy. Large �rms can have unsuccessful projects, too, but they just

drop the project. They do not exit, since they have at least one ongoing project that provides a

permanent source of pro�ts.

In the model presented we assume that workers can be hired at a �xed wage, independent of

the size of the industry. This may be an appealing assumption for small industries. Growth of

larger industries, however, is likely to have e¤ects on labor and capital markets, in particular, the

market for specialized skills and industry- or sector-speci�c capital. Adding a market for capital

and labor would tend to decrease and eventually stop the development of a particular industry.

This general equilibrium problem is interesting and important, but in this paper, we focus only on

the characteristics of industry dynamics.

There are many famous examples of successful �rms that began with one employee or a group

of employees quitting a �rm and starting their own �rm. This process of separating from a parent

�rm and starting one�s own �rm seems particularly prevalent in innovative industries. It is this

process our model is designed to explain. Our theory does not make a deep distinction between

spin-o¤s and startups � that is new entrants not necessarily associated with an incumbent �rm.

Nevertheless, we prefer to think of new entrants as spin-o¤s because all new entrepreneurs are

workers in some �rm and, in our theory, only these agents have new ideas.

Our results imply that the best ideas are the ones that lead to spin-o¤s, while the ideas that

are not as good are implemented in existing �rms. This implies that, on average, pro�ts from the

�rst product of a �rm should be higher than the pro�ts from the following products a �rm decides

to produce. This is consistent with some of the available evidence, which suggests that the �rst

product of a �rm is, on average, the most successful of its products. Prusa and Schmitz (1994)

argue that this is the case in the PC software industry. The �rst product of a �rm sells, on average,

1:86 times the mean product in its cohort, while the second product sells only 0:91 times the mean

product in its cohort. That is, �rst products are, on average, about twice as successful as second

4



products. The �rst product is also about twice as successful as the third, fourth, and �fth products.

This evidence suggests that spin-o¤s discriminate more than incumbent �rms in choosing which

projects to implement. This is exactly in line with the selection mechanism our theory underscores.

The rest of the paper is organized as follows. Section 2 describes the model and proves some

basic results. Section 3 characterizes the selection of projects and the market for ideas. Section 4

derives the invariant distribution of �rm sizes and compares the invariant distributions obtained in

the model to the US data. Section 5 concludes.

2 The Model

Agents order consumption according to the following utility function:

U(fctg) =
1X
t=0

�tu (ct) ;

where u (ct) is strictly increasing, concave, twice continuously di¤erentiable and bounded. In Section

3 below we will study two particular cases: the case with linear utility, u (c) = c; and the case with

constant absolute risk aversion (CARA) utility, u (c) = �ae�bc:

Agents work in two occupations. They can be entrepreneurs or workers. A worker earns w > 0

each period working for an entrepreneur (plus the value they extract from their ideas). There is

a perfectly elastic supply of workers at this wage w. Agents do not have a technology to save so

they consume what they earn each period. Entrepreneurs earn and consume pro�ts, and the wage

they receive from the project they work for directly. A worker can become an entrepreneur if, while

working for a �rm, he has an idea and decides to spin o¤ the �rm.

An idea is a non-replicable technology to produce consumption goods using labor, speci�cally,

an idea uses 1 unit of labor.2 Consider an entrepreneur who owns a �rm with N 2 f1; 2; ::g ideas.
Then his one-period pro�ts are given by

�(S;N) = N (S � w)

where S = 1
N

PN
i=1 Pi denotes the average revenue and Pi the per period income generated from a

particular idea. We assume that Pi > 0 with probability one.

2We assume that ideas are non-replicable technologies in order to determine the scale of each project. If technologies
are replicable, we would need a demand structure and goods di¤erentiation to limit the size of each project. This
simple extension would complicate our framework with no new insights.
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In each period, the probability of a worker or entrepreneur getting an idea is �:We assume that

only one person in a �rm can get an idea in any given period, so the random realization of ideas

across members of a �rm are not independent. We do not take a stand on what this dependence

looks like but assume, as seems natural, that the probability that some member of the �rm will

have an idea in any given period is increasing in � and N: Speci�cally, we assume that a �rm with

N ideas or projects has a probability 
 (�;N) < 1 of generating one idea in a given period.3 We

will have more to say about the speci�cation of 
 (�) at the beginning of Section 4.

The mean payo¤ per period from the idea is �; which is private information to the originator

of the idea. The mean payo¤ is drawn from a continuous distribution H(�) with H 0(�) > 0 for all

� � 0: The actual payo¤ is drawn from a distribution F�(P ) whereZ
f (P ) dF� (P )

is increasing in � for all increasing functions f , F� (0) = 0 all �; andZ
PdF� (P ) = �.

We also assume that F� is continuous with respect to � and

lim
�!1

F�(w) = 0:

The realization of P for a given idea can be discovered by implementing the idea for one period.

An originator who is already an entrepreneur can pay w to try out an idea for one period and

observe the realization of P: If he does, he will use the idea to produce as long as his future expected

utility from doing so is greater than from dropping it. Entrepreneurs may decide to implement a

project even if the stream of pro�ts is negative (P < w), since having an extra project implies that

they may generate more ideas in the future (although this will not happen in equilibrium, as we

show below).

An originator who is not an entrepreneur has two potential uses for his idea. He can sell his idea

to an entrepreneur (including the one in his own �rm), in which case he reveals the mean payo¤ to

the entrepreneur who buys it. In this case he earns a wage w plus the price Z at which he sells the

idea. The idea is then owned by the entrepreneur, and the entrepreneur treats it like his own idea.

He can also leave with the idea and become an entrepreneur of a �rm with only this idea: a spin-o¤.
3These assumptions imply that the probability that any given member gets knowledge or ownership of an idea

conditional on his �rm getting an idea is �=
(�;N). If each member was equally likely to get knowledge/ownership
of an idea conditional on his �rm getting an idea, this ratio would be 1=N; and 
(�;N) would simply be �N: At this
point, however, we do not restrict 
 (�) to take this speci�c form.
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Note that in the market of ideas, the price of an idea has to be non-contingent on the quality of the

idea. The reason is that any contingent contract would give the worker an incentive to lie about the

quality of the idea. So the only incentive-compatible price is independent of quality, in which case

the agent is indi¤erent between revealing the true quality of the idea or not. Since this information

is useful for the entrepreneur, we assume that the worker does reveal the true quality. The price of

an idea Z is determined in equilibrium, where all entrepreneurs will be indi¤erent between buying

ideas or not. Given this indi¤erence we will further assume that transaction costs (or search costs)

are such that entrepreneurs end up buying ideas generated within the �rms.4

We are also implicitly assuming that there is no contract in which the distribution of the gains

from an idea is done ex-post. That is a contract contingent on realizations. To the extent that

such a veri�cation process is costly, workers and entrepreneurs will prefer our current market setup,

particularly if we assume that the cost of writing these contracts is positive and therefore larger

than the zero cost of setting up a new �rm through a spin-o¤. If setting up a new �rm was costly,

we would need the cost of writing these contracts to be higher than the cost of setting up a new

�rm. Even though we do not have any direct evidence that writing these contracts may be as

costly as setting up a new �rm, conceptually there is little di¤erence between a new �rm and part

of a �rm that is run independently and the realized pro�ts are distributed to the generator of the

idea, who is not the entrepreneur. Hence, in what follows we just assume that the cost of contracts

contingent on realizations is positive and the �xed cost of setting up a new �rm is zero.

Consider the problem of an entrepreneur with average revenue S; coming from N old ideas, who

owns one new idea with mean payo¤ �. If the entrepreneur tests the idea, his value function is

V (�; S;N) =

Z
[u (�(S;N) + w + P � Z � w)] dF�(P )

+�

Z
max

�
W

�
NS + P

N + 1
; N + 1

�
;W (S;N)

�
dF�(P ):

This period, his expected utility is the result of consuming the pro�ts from the accumulated used

projects �(S;N), his wage w, the price of the idea Z; and the random realization of pro�ts from the

new project P �w: Note that the distribution from which P is drawn has expected value �. Denote
by W (S;N) the continuation value of an entrepreneur with N projects with average revenue S. If

the entrepreneur uses the project, next period he will manage a �rm with N+1 projects and average

revenue (NS + P ) = (N + 1). If he does not use it, next period his continuation value stays constant

4 In section 4 we will assume that entrepreneurs end up buying a number of ideas proportional to the number of
workers. This may be the case because the probability of generating ideas within the �rm, 
 (�; �) ; is linear in N , or
because entrepreneurs �nd out about ideas in the market through their workers.
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at W (S;N) : The continuation value (or the value without any new idea) of an entrepreneur with

N projects with average revenue S is given by

W (S;N) = 
 (�;N)

Z �H
max [V (�; S;N); u (�(S;N)� Z + w) + �W (S;N)] dH(�)

+(1� 
 (�;N)H (�H)) [u (�(S;N) + w) + �W (S;N)]

or

W (S;N) = 
 (�;N)

Z �H
max [V (�; S;N)� u (�(S;N)� Z + w)� �W (S;N); 0] dH(�)

+(1� 
 (�;N)H (�H)) [u(�(S;N) + w) + �W (S;N)]

+
 (�;N)H(�H) [u(�(S;N)� Z + w) + �W (S;N)]

where �H denotes the mean revenue value at which workers leave the �rm with their idea.5 The

probability of someone in this �rm generating an idea next period is 
 (�;N). If an employee

has an idea, he can leave and set up his own �rm. He will do so as long as the idea is good

enough, � � �H . If the entrepreneur has the idea, in order to implement it, he has to hire a worker
and communicate to him what he knows about the idea. If the idea is good enough, the worker

will leave the �rm and set up his own �rm, too. Hence, ideas get implemented within the �rm

only if � < �H ; independent of who has them. Given that an idea of expected revenue � was

generated, the value of implementing it is, as discussed above, given by V (�; S;N). The value

of not implementing the idea is given by u(�(S;N) � Z + w) + �W (S;N); namely, the utility of
consuming pro�ts and wage today and paying the price for the idea, plus the same continuation

value tomorrow. An idea will not be implemented if it provides a very low expected value. If no

one has an idea or if the idea is good enough to generate a spin-o¤, the value of the entrepreneur

is given by u(�(S;N) +w) + �W (S;N); since he does not pay for the idea. One of these scenarios

happens with probability 1� 
 (�;N)H (�H).

The next lemma shows that the continuation value W (S;N) exists and is increasing and con-

tinuous in average revenue S: We then show in Lemma 2 that the value of an entrepreneur with

an idea �; V (�; S;N) is increasing and continuous in the expected value of the idea � and in the

average return S:

Lemma 1 W (S;N) exists and is strictly increasing in S.

5Note that we are already assuming that workers spin o¤ when they get an idea with � > �H . Below we prove
that this is, in fact, the case. In the meantime, all our arguments remain una¤ected if we were to de�ne a set MH

that includes the ��s for which agents spin o¤. Then the integrals above would integrate over all values of � that are
not in MH .
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Proof. Let C be the space of bounded continuous functions de�ned on R� N: De�ne the
operator T (W ) : C ! C as

T (W ) (S;N) = 
 (�;N)

Z �H
max [V (�; S;N)� u(�(S;N)� Z + w)� �W (S;N); 0] dH(�)

+(1� 
 (�;N)H (�H)) [u(�(S;N) + w) + �W (S;N)]

+
 (�;N)H (�H) [(�(S;N)� Z + w) + �W (S;N)]

where

V (�; S;N) =

Z
[u (�(S;N) + w + P � Z � w)] dF�(P )

+�

Z
max

�
W

�
NS + P

N + 1
; N + 1

�
;W (S;N)

�
dF�(P ):

It is easy to show that T is a contraction using Blackwell�s conditions. It satis�es monotonicity

since W � W 0 implies that T (W ) � T (W 0) (all expressions above are increasing in the function

W ). It satis�es discounting, since for a > 0

T (W + a) � �a+ T (W )

where � < 1. Hence, T is a contraction by the Contraction Mapping Theorem and a unique �xed

point to the operator T exists.

Suppose W is strictly increasing in S. Since S appears only in � and W in the de�nition of T ,

T (W ) is also strictly increasing in S. Hence, by the Contraction Mapping Theorem the �xed point

of T is strictly increasing in S:

To show that W is continuous in S; note that since the space of continuous functions is closed

in the sup norm, we can apply the same argument to show continuity given that � is continuous in

S; F� is continuous in �; and H(�) is continuous in �:

Lemma 2 V (�; S;N) exists and is strictly increasing and continuous in � and S.

Proof. By Lemma 1 W (S;N) exists and therefore V (�; S;N) exists. Since �(S;N) +w�w+
P �Z is strictly increasing in P , the �rst term in V is strictly increasing in �; since

R
f (P ) dF� (P )

is increasing in � for all increasing functions f . Since W (S;N) is strictly increasing in S by the

previous lemma, Z
max

�
W

�
NS + P

N + 1
; N + 1

�
;W (S;N)

�
dF�(P )
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is strictly increasing in �, which proves the result.

That V is strictly increasing in S follows from W being strictly increasing in S.

To show that V is continuous in � and S; note that by Lemma 1, W (S;N) is continuous in S;

the maximum of continuous functions is continuous, and F� is continuous with respect to �.

An entrepreneur will implement an idea with expected revenue � if

V (�; S;N) > u(�(S;N)� Z + w) + �W (S;N):

Let �L (S;N) be the value of � that solves

V (�L; S;N) = u(�(S;N)� Z + w) + �W (S;N): (1)

Then an entrepreneur will implement an idea as long as � > �L (S;N). Thus we can rewrite

W (S;N) as

W (S;N) = 
 (�;N)

Z �H
max [V (�; S;N)� u(�(S;N)� Z + w)� �W (S;N); 0] dH(�)

+(1� 
 (�;N)H (�H)) [u(�(S;N) + w) + �W (S;N)]

+
 (�;N)H (�H) [u(�(S;N)� Z + w) + �W (S;N)]

Or, equivalently,

W (S;N) = 
 (�;N)

Z �H

�L(S;N)
[V (�; S;N)� u(�(S;N)� Z + w)� �W (S;N)] dH(�)

+
 (�;N)H(�H) [u(�(S;N)� Z + w) + �W (S;N)]

+(1� 
 (�;N)H (�H)) [u(�(S;N) + w) + �W (S;N)]

The next lemma shows that there exists a unique function �L (S;N) that satis�es equation (1).

Lemma 3 There exists a unique function �L (S;N) that satis�es equation (1).

Proof. First note that given our assumption that F� (0) = 0 all � we know that � � 0: Then

V (0; S;N) = u (�(S;N)� Z) + �W (S;N) < u(�(S;N)� Z + w) + �W (S;N)
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since w > 0. In contrast,

lim
�!1

V (�; S;N) = lim
�!1

Z
u (�(S;N) + w � Z � w + P ) dF�(P )

+�

Z
max

�
W

�
NS + P

N + 1
; N + 1

�
;W (S;N)

�
dF�(P )

> u(�(S;N)� Z + w) + �W (S;N):

The inequality follows because the probability that P > w goes to 1 as � !1 and

max

�
W

�
NS + P

N + 1
; N + 1

�
;W (S;N)

�
is non-negative. Hence since V (�; S;N) is strictly increasing and continuous in �; by the Mean

Value Theorem there exists a unique scalar �L that satis�es (1) for each pair (N;S). Let �L (S;N)

be the unique function that takes this value given a pair (S;N) :

The expected utility of a worker with an idea � that decides to spin-o¤ is given by

V0(�) =

Z
u (P ) dF�(P ) + �

Z
max [W (P; 1) ;W0] dF�(P ):

The continuation value of a worker currently working in a �rm, W0, is then given by

W0 = �

Z
max [V0(�); u (w + Z) + �W0] dH(�) + (1� �) [u (w) + �W0] :

Using arguments similar to the ones used above for V , we can show that V0(�) is strictly

increasing in �. A worker with an idea � will leave the �rm and become an entrepreneur if

V0(�) > u(w + Z) + �W0

Let �H be the value of � that solves

V0(�H) = u(w + Z) + �W0: (2)

Thus, if � > �H the worker will leave his employer and set up a new �rm. The continuation value

of a worker can therefore be written as

W0 = �

Z
�H

V0(�)dH(�) + (1� �) [u (w) + �W0] + �H (�H) (u (w + Z) + �W0) :

We show formally below that there exists a unique threshold �H . Note also that �H is a constant

and so it is independent of the characteristics of the �rm (S;N) in which the agent works.
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Lemma 4 There exists a unique value �H that satis�es equation (2). Furthermore V0(�) is in-

creasing and continuous in �:

Proof. We �rst need to show that V0 is increasing and continuous in �; but this follows directly

from F� being continuous and increasing in � as assumed above. We also know that

V0(0) = u (0) + �W0 < u (w + Z) + �W0

since w + Z > 0 and max [W (0; 1) ;W0] = W0. The latter is the result of the fact that a new

entrepreneur with a project that pays 0 earns less than a worker and has fewer opportunities with

regard to exploiting his future ideas (he has exercised the option of spinning o¤). In contrast,

lim
�!1

V0(�) = lim
�!1

Z
u (P ) dF�(P ) + �

Z
w
W (P; 1) dF�(P )

> u (w) + �W0:

Hence since V0(�) is strictly increasing in � and continuous by the Mean Value Theorem, there

exists a unique scalar �H that satis�es (2).

We still need to de�ne the realized return needed in order to continue with a project once its

return is realized. De�ne PL (N;S) as

W

�
NS + PL (N;S)

N + 1
; N + 1

�
=W (S;N);

and PH by

W (PH ; 1) =W0:

Then a �rm keeps the project if the realized return is P � PL (N;S) and a spin-o¤ stays in operation
if the realized return on the idea that generated the spin-o¤ is such that P � PH :

3 Characterization

In this section we characterize the thresholds on the expected revenue from an idea that determine

if an idea is thrown away, implemented by a particular �rm, or results in a spin-o¤. For this, we

�rst assume that the utility function is of the form

U(fctg) =
1X
t=0

�tu (ct) =

1X
t=0

�tct;
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after we analyze this case, we will show that our main results hold under a CARA utility function

as well. The main reason to choose these two utility functions is that we can solve the value of

an existing �rm in closed form given the additive separability or log additive separability of these

utility functions.6

Under the assumption that the utility function is linear we can fully solve this problem in closed

form. The �rst result shows that the threshold �L (S;N) is independent of S and N . �L (S;N)

independent of S is implied by risk neutrality (or, in the CARA case below, by the fact that risk

does not depend on the level of wealth). �L (S;N) constant in N is the result of the market for

ideas. Since workers will sell their ideas to whoever is willing to pay more for them, and there is a

relative scarcity of ideas, workers extract all the surplus of an idea and we can solve for the price

of an idea in equilibrium. The proposition also yields the result that in equilibrium PL = w, and

so entrepreneurs use all projects that give positive returns. In contrast, PH > w and so spin-o¤s

use projects that give strictly positive returns. The reason is that new entrepreneurs that start a

�rm with a project with a low realized return have the option of going back to work for a �rm and

start a new �rm in the future with a better project. The proposition also shows that the threshold

for implementing ideas through spin-o¤s is greater than the one for implementing ideas within the

�rm, �L < �H . This is essentially the result of the �xed capital cost of setting a new �rm in the

case of linear utility. Inventors are more selective with the ideas they use when they spin o¤ than

are �rms: This also implies that some ideas within the �rm do not result in spin-o¤s and so some

�rms grow. An industry�s growth is then the result of entry through spin-o¤s and growth in the

intensive margin. With risk-averse CARA agents, this is the result of the larger risk faced by agents

that spin o¤.

Proposition 5 If u (ct) = ct;

� �L (S;N) is independent of S and N , and �L (S;N) < w;

� the thresholds for using a project are given by PL (S;N) = w and PH (S;N) = w + f0 > w

for some positive constant f0:

� �L < �H ; so some ideas are implemented within existing �rms and some through spin-o¤s,
6Note that none of these speci�cations of the utility functions satisfy the bounded assumption we made in Section

2. However, since in these two cases we can solve the functional equation for W (S;N) analytically, it follows from

Theorem 9.12 in Stokey, Lucas, and Prescott (1989) that the solution is, in fact, optimal.
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� and, the market price of ideas is given by

Z =
1

H (�H)

Z �H

�L

[�� w + �

1� �

Z
max [P � w; 0] dF�(P )]dH(�) > 0:

Proof. Guess

W (S;N) = ! (� (S;N) + w) = ! (N (S � w) + w)

Since

W (S;N) = 
 (�;N)

Z �H
max

26664
R
[�(S;N) + w + P � Z � w] dF�(P )

+�
R
max

h
W
�
NS+P
N+1 ; N + 1

�
;W (S;N)

i
dF�(P );

�(S;N)� Z + w + �W (S;N)

37775 dH(�)
+(1� 
 (�;N)H (�H)) [�(S;N) + w + �W (S;N)]

then

! (N (S � w) + w) = (1 + �!) (N (S � w) + w)� 
 (�;N)H (�H)Z

+
 (�;N)

Z �H
max

�
�� w + �!

Z
max [P � w; 0)] dF�(P ); 0

�
dH(�)

Let

! = 1� �!

or

! =
1

1� �
then

Z =
1

H (�H)

Z �H
max

�
�� w + �

1� �

Z
max [P � w; 0] dF�(P ); 0

�
dH(�)

=
1

H (�H)

Z �H

�L

max

�
�� w + �

1� �

Z
PL

[P � w] dF�(P ); 0
�
dH(�)

Note that this is exactly the condition that makes

W (S;N) =
�(S;N) + w

1� � :

That is, it makes the value function of entrepreneurs equal to the present value of the current project

of the �rm. So entrepreneurs are willing to pay up to Z for workers�ideas, and workers will get this

price or will sell the idea to another entrepreneur. Competition for ideas among entrepreneurs then

guarantees that the market price of ideas Z is determined by the condition above in equilibrium.
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Then

V (�L; S;N) = (�(S;N)� Z + w) + �W (S;N)

implies that �L satis�esZ
(P � w) dF�L(P ) +

�

1� �

Z
max [P � w; 0] dF�L(P ) = 0; (3)

and therefore is independent of S and N: Hence, �L < w; since entrepreneurs can drop the idea

next period (the maximum in the second term on the LHS). PL satis�es

max [P � w; 0] > 0 for P > PL;

so PL = w: Then �L is given by

1

1� �

Z
w
(P � w) dF�L(P ) =

Z w

0
[w � P ] dF�L(P ):

Namely, the present value of the gains from implementing a project has to be equal to the cost.

Guess that

W0 =
w + f0
1� �

then

V0(�) =

Z
PF�(P ) +

�

1� �

Z
max [P;w + f0] dF�(P ):

The continuation value of a worker currently working in a �rm, W0, is then given by

w + f0
1� � = �

Z
max

�Z
PF�(P ) +

�

1� �

Z
max [P;w + f0] dF�(P ); w + Z + �

w + f0
1� �

�
dH(�)

+(1� �)
�
w + �

w + f0
1� �

�
so

f0 = �

Z
max

�Z
(P � w)F�(P ) +

�

1� �

Z
max [P � w � f0; 0] dF�(P ); 0

�
dH(�) + (1� �)Z

which determines f0 as a positive constant (givenH assigns positive mass to ��s such
R
(P � w)F�(P ) >

0) and veri�es our guess.

Then

V0(�) =
w

1� � +
�f0
1� � +

Z
(P � w) dF�(P ) +

�

1� �

�Z
max [P � w � f0; 0] dF�(P )

�
:
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Since

V0(�H) = w + Z + �W0

�H is given by Z
(P � w) dF�H (P ) +

�

1� �

Z
max [P � w � f0; 0] dF�H (P ) = Z;

Two results are immediate from this expression. First, since Z � 0 and f0 > 0 the left-hand

side of the above equation evaluated at �H = �L is less than the right-hand side given that �L is

determined by Equation (3). Since the left-hand side is increasing in �, it follows that �L < �H .

Second, since PH is such that P � w � f0 = 0; it follows that PH = w + f0 > w:

The key insight in the previous proposition is that the selection of the ideas implemented in

existing �rms, which is given by �L and �H , is independent of S and N . Because of this, the set of

ideas that will be implemented within each �rm is independent of the �rm�s size. It is the market

for ideas that leads to this result. In the absence of these markets, entrepreneurs of existing �rms

will appropriate some of the surplus of a given idea. Then, as long as 
 (�; �) is not linear in N ,
a large �rm with many projects will have more/less incentives to implement ideas than smaller

�rms.7 The type of scale dependence will depend on the concavity or convexity of the function


 (�; �) in N . If the probability of getting new ideas is concave in N , large �rms will be more

selective and will therefore implement ideas with a higher expected return than entrepreneurs in

small �rms. The reverse is true if 
 (�; �) is convex. This is not the case when entrepreneurs pay
the market price Z of an idea in the market. In this case the expected bene�ts for all entrepreneurs

is zero, and so the selection of projects in equilibrium is independent of the shape of the function


 (�; �) and therefore of the scale of the �rm. This is the sense in which the market for ideas is key
to generating scale independence in the selection of ideas.

In order for �rm growth to be scale independent we need the thresholds �L and �H to be

independent of the size of the �rm. We also need the number of innovations bought by a given �rm

in the market of ideas to be proportional to their size. In our theory, as long as the unconditional

probability (�) that a worker has an idea is independent of �rm size, we obtain that the two

thresholds are independent of size. In order for �rms to buy projects at a rate proportional to their

size, we can assume a linear probability of generating ideas, 
 (�;N) = �N , and transaction costs

that make �rms buy only the ideas generated within the �rm. Thus, given that prices are such

that without this small transaction cost they would be indi¤erent about which ideas to buy. Other
7 In the particular case in which 
 (�;N) = �N and utility is linear, even without the market for ideas, �L is

independent of size. The market of ideas is necessary to obtain scale independence in the selection of ideas if the
utility function is not linear and/or 
 (�; �) is not linear in N:
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forms of transaction costs would also induce �rms to buy a set of ideas proportional to their size

but would not link this number to the probability of having the ideas themselves. This would be

the case if, for example, entrepreneurs �nd out about the ideas in the market through their workers.

Then, even if 
 (�; �) is not linear in N we obtain that the growth of �rms is independent of their

size.

HµLµ w

Spin­Offs

µ

Firms with one or more workers

Figure 1: Selection of Ideas

Figure 1 summarizes what we have learned about �rm behavior and �rm entry. It shows

expected revenue � in the real line. For projects above �H , �rms�workers spin o¤. All other

�rms implement ideas with ��s between �L and �H . An incumbent risk-neutral entrepreneur would

implement projects as long as they pay expected return w, so the di¤erence between �L and w is

the result of an entrepreneur�s ability to drop the project next period (this ordering can change

once we consider risk-averse agents). The threshold that determines �L is given byZ
(P � w) dF�L(P ) +

�

1� �

Z
w
(P � w) dF�L(P ) = 0:

The di¤erence between �L and �H is the result of the option value of exiting and setting up a new

�rm in the future, f0. The threshold �H is implicitly determined byZ
(P � w) dF�H (P ) +

�

1� �

Z
PH

(P � w � f0) dF�H (P ) = Z:

The di¤erence between the two thresholds comes from the option value, f0;of closing a new �rm

and starting another one later on with a better idea if the current one gives a low return and the
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fact that workers give up the price of an idea when they set up the �rm. Note that if f0 = 0, the

two threshold equations and the equation for Z imply that Z = 0 and �L = �H : So, all projects

would be implemented via spin-o¤s. However, as shown in the previous proposition, f0 is positive

since workers can extract the value of very good projects by spinning o¤. New �rms will require

a higher return from their �rst project than existing �rms demand from new projects, given the

larger option value f0 that new �rms have of returning to an old �rm and spinning o¤ in the future.

Namely, PH > w = PL: Both of these equations imply that the number of entrants as a fraction

of the population is constant and so is the number of new projects implemented in existing �rms

each period as a fraction of total population.

As we noted above, one potential issue is the existence of an equilibrium with contingent con-

tracts, namely, a contract in which an entrepreneur o¤ers the worker the contingent return on an

idea minus w. Workers with good ideas that would otherwise spin o¤ would be willing to stay if

the entrepreneur pays the cost of writing the contract. However, since we assumed that the cost of

the contract is positive, this is never optimal for the entrepreneur.

In the appendix, we show that all results, except �L < w; hold when u (ct) = �ae�bct . In this
case all agents in the economy are risk averse. However, because their risk aversion does not depend

on the level of their wealth, in the presence of markets for ideas, we still obtain the result that �L
is constant, and therefore that the selection of projects is scale independent. In the CARA case

studied in the appendix, the price of ideas is given by

Z =
1

b
log

"
1 + �

1��
R �H
�L

R
PL

�
1� e�b(P�w)

�
dF�(P )dH(�)

1�
R �H
�L

R �
1� e�b(P�w)

�
dF�(P )dH(�)

#
> 0:

Note that our assumption that the maximum size of �rms is given by N is innocuous for all of

these results. Since �rms get zero expected bene�ts out of implementing ideas, entrepreneurs are

indi¤erent about expanding or not. Hence, they do not care about this upper bound for the size

of their �rm. The only role that this bound plays is to determine how other �rms grow if there is

a positive mass of constrained �rms. In that case there will be some ideas generated by workers

in constrained �rms that will be sold to other existing �rms. We assume that if this is the case,

�rms are informed about these ideas by their workers, and so they buy ideas proportionally to

the number of workers they have. Hence, for these �rms the probability that any of their workers

generates an idea is given by a constant larger than �. Namely, the probability is given by

�

 
1 +

PN=1
N=N N�t (N)

1�
PN=1
N=N N�t (N)

!
;
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where �t denotes the distribution of �rm sizes.

4 Invariant Distribution of Firm Sizes

In order to derive the implications of our model for �rm growth and the size distribution of �rms,

we need to take a stand on the number of projects that �rms buy in the market. The reason is

that in our model entrepreneurs are indi¤erent about how many ideas to buy. As argued above,

we can either specify the function 
 (�) and assume that search costs lead �rms to buy only the
ideas generated within the �rm, or we can assume that workers are the ones that �nd ideas that

the entrepreneur in turn buys.

Suppose that a �rm with N projects has a probability of generating an idea 
 (�;N) = �N:

Assume further that the worker that has knowledge and ownership of that idea is then selected

randomly and independently from all the workers in the �rm. Hence, each worker has a conditional

probability of owning and knowing about the idea of 1=N: So the unconditional probability of

a worker owning and knowing about an idea is � as we assumed so far.8 We assume that the

maximum size of a �rm is given by N such that �N < 1. So everyone in the �rm has a probability

� > 0 of generating an idea. Note that since the value of � depends on our de�nition of a period,

we can always make � small enough by appropriately de�ning the length of a period in the model.

Correspondingly, we can make N arbitrarily large. In case a �rm hits the size constraint N , its

workers will sell ideas to other �rms. For the moment we abstract from this problem, but we return

to it below.

As discussed above, an equivalent model would assume small transaction costs so that workers

�nd out about ideas in the market randomly and inform the entrepreneur, who will then buy these

ideas. In this case, the analysis above remains unchanged but the number of ideas bought by a

given �rm is proportional to N: This is equivalent to letting 
 (�;N) = �N as in the previous

paragraph. In what follows we assume that given the indi¤erence on how many ideas to buy, �rms

always buy �N , as the result of one of these forms of transaction costs.

In order to derive the size distribution of �rms, �rst note that the size of the industry will

8Alternatively we could work with continuous time and assume that the process by which �rms generate ideas is
Poisson with parameter �N . This would imply an identical random process for generating ideas in continuous time.
Note that we are assuming that the process of generating ideas and the process of assigning knowledge and ownership
are independent. If instead each worker had an unconditional probability of generating an idea � independently of
other workers, there would be a positive probability of generating several ideas per period, which we rule out.
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increase constantly in our setup, given that innovation does not stop (every worker in the industry

has probability � of having an idea independently of where they work). On top of this the probability

of �rms adding a project is positive for all �rms, while the probability of dropping a project that

is already being used is zero. Hence, �rms will also grow continuously. This is combined with a

positive mass of new entrants with one worker every period. We can show that there is an invariant

distribution of employment shares and �rm sizes measured as a share of total employment. That

is, we normalize by the size of total employment.

First consider the transition equation for a �rm with N workers. Each worker has a probability

� of having an idea. If they do, the �rm implements it if � 2 [�H ; �L (N)] and if it implements it,
the �rm uses the idea with probability 1� F� (PL (N)) where PL (N) is such that

W

�
NS + PL (N)

N + 1
; N + 1

�
=W (S;N);

which by the arguments above does not depend on S.

In what follows we will ignore the upper bound on �rm sizes N: We will return to it once we

de�ne the invariant distribution of �rm sizes for the case without this bound. Hence if p (N;N + 1)

denotes the probability of a �rm transitioning from N to N + 1 workers

p (N;N + 1) = �N

Z �H

�L

(1� F� (PL)) dH (�) :

Hence,

p
�
N;N 0� =

8>>>>>><>>>>>>:

0 for N 0 > N + 1

�N
R �H
�L

(1� F� (PL)) dH (�) for N 0 = N + 1

1�
h
�N

R �H
�L

(1� F� (PL)) dH (�)
i

for N 0 = N

0 for N 0 < N

:

Let S = f1; 2; :::g then for any A � S,

p (N;A) =
X
N 02A

p
�
N;N 0�

is positive if N 2 A or N + 1 2 A.

Let Lt be the total labor force, Et the total number of �rms or enterprises, and �t the measure

of �rm sizes, in the industry in period t. The probability that a �rm with N employees generates

20



a spin-o¤ is given by

s (N) = �N

Z
�H

(1� F� (PH)) dH (�)

where PH satis�es

W (PH ; 1) =W0:

Hence, the expected number of spin-o¤s in period t+1 given the distribution of �rm sizes in period

t is given by

Et

N=1X
N=1

s (N) �t (N)

= Et�

Z
�H

(1� F� (PH)) dH (�)
N=1X
N=1

N�t (N)

= �

Z
�H

(1� F� (PH)) dH (�)Lt

� �HLt;

where �H denotes the number of new employees in new �rms as a fraction of total employment.

Hence the expected number of spin-o¤s is a constant fraction of the population, Lt.

Similarly we can calculate the expected number of new workers in existing �rms, which is given

by

Et

LtX
N=1

p (N;N + 1) �t (N)

= Et

LtX
N=1

�N

Z �H

�L

(1� F� (PL)) dH (�) �t (N)

� �LEt

LtX
N=1

N�t (N) = �LLt;

where �L denotes the number of new employees in old �rms as a fraction of total employment.

Then, for Et large

Lt+1 = Lt + Et

LtX
N=1

[p (N;N + 1) + s (N)] �t (N)

= (1 + �H)Lt + �LLt:

Given our de�nition of �L and �H , population evolves according to

Lt+1 = (1 + �H + �L)Lt
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Thus,

Et+1 = Et + Et

1X
N=1

s (N) �t (N)

= Et + �HLt:

Hence the number of �rms is expanding at a constant rate. In terms of number of �rms, the

economy is growing at a constant rate. Note that we are assuming that Et is large enough so that

Lt and Et evolve deterministically. For small Lt and Et, however, both are random variables that

evolve according to a stochastic process.

We now compute the invariant distribution of the share of workers in �rms of di¤erent sizes.

Let �N denote the probability that a worker is employed by a �rm with N workers, given that the

probability that a worker has an idea that is used within the �rm is given by �L independently of

the �rm. Then, the invariant distribution satis�es

[�1 (1� �L) + �H ]L = �1L0 = �1 (1 + �L + �H)L

or

�1 (1� �L) + �H = �1 (1 + �L + �H)

which implies

�1 =
�H

�H + 2�L
(4)

for N = 1: Intuitively, the number of workers in �rms of size 1 today, �1L; minus the number of

workers in �rms of size 1 that become workers in �rms of size 2, �1�LL, plus the number of new

workers in �rms of size 1, �HL, is equal (in the invariant distribution) to the number of workers in

�rms of size 1 tomorrow, �1L
0, which is equal to �1 (1 + �L + �H)L; given that the growth rate of

employment is �L + �H :

Similarly, for �rms of size N;

�N (1� �LN) + �N�1�L (N � 1) + �N�1�L
= �N (1� �LN) + �N�1�LN

= �N (1 + �L + �H)

and so

�N = �N�1
�LN

�H + �L (N + 1)
(5)
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which implies that
�N
N

=
�N�1
N � 1

�L (N � 1)
�H + �L (N + 1)

:

Note that by de�nition

(1 + �L + �H)

1X
N=1

�N =

1X
N=2

�
�N (1� �LN) + �N�1�L (N � 1) + �N�1�L

�
+�1 (1� �L) + �H

which implies that

(�L + �H)

1X
N=1

�N =

" 1X
N=2

�N�1�L + �H

#
= �L

1X
N=1

�N + �H

Hence,
1X
N=1

�N = 1;

and so the resulting ��s form a probability distribution. This distribution is the invariant distri-

bution of population shares across �rms of di¤erent sizes. Simon and Bonini (1958) propose an

exogenous growth and entry process of �rms that leads to the same type of distribution, namely, a

Yule distribution. This distribution approximates a Pareto in the upper tail.

Proposition 6 There exists a unique invariant distribution � of employment shares across �rm

sizes, where �N denotes the share of workers employed by �rms of size N .

To obtain the distribution of �rm sizes we need to transform the distribution of worker shares

into a distribution of �rm sizes. For this, note that if the share of the population employed by �rms

of size N is given by �N , then the share of �rms of size N; �N ; is given by

�N =
�N

N
P1
N=1

�N
N

: (6)

Clearly, since
P1
N=1 �N = 1, 0 <

P1
N=1

�N
N < 1 and so �N is well de�ned, exists, and is unique.

Corollary 7 There exists a unique invariant distribution � of �rm sizes.

Note from the previous equations that the distributions � and � depend only on the value of

the ratio �H=�L. Note also that in the theory N � N . Hence, in order to get distributions of

23



employment shares and �rm sizes that are consistent with the theory we need to re-normalize both

distributions. Hence, the distribution of employment shares is given by

~�N =
�NPN
N=1 �N

and the distribution of �rm sizes by

~�N =
~�N

N
PN
N=1

~�N
N

:

Now consider the expected growth rate of employment, gN (N) ; of a �rm of employment size

N . The �rm grows by one employee with probability N�L, thus

gN (N) =
(N + 1)N�L +N (1�N�L)�N

N

= �L = �

Z �H

�L

(1� F� (PL)) dH (�)

Hence, the expected growth rate of �rms is just given by the probability per worker of its employees

generating an idea that is used. This probability is constant, so the expected growth rate in terms

of employees of existing �rms is constant, which is a statement of Gibrat�s Law. Therefore, the

model seems to be consistent with the evidence in Sutton (1997).

Proposition 8 The expected growth rate in employment size of existing �rms is independent of

their size.

Similarly, the expected growth rate in average revenue of a �rm with average revenue S and N

employees is given by

gS (S;N) =
�N

R �H
�L

R1
PL

�
NS+P
N+1

�
dF� (P ) dH (�) + S (1�N�L)� S

NS

=

�N
N+1

R �H
�L

R1
PL
PdF� (P ) dH (�) +

�
NS
N+1

�
N�L + S (1�N�L)� S

NS

=
1

N + 1

"
�

S

Z �H

�L

Z 1

PL

PdF� (P ) dH (�)� �L

#
:

This implies that, as �L and PL, and therefore �L; are independent of N that

ES (gS (S;N)) = 0:
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So average growth rates across �rms of di¤erent average revenues are zero. However, large �rms

that have had good realizations and therefore have a high S will tend to grow slower, and vice

versa. In this sense there will be reversion to the mean, conditional on number of employees. Also

note that the variance of gS (S;N) is decreasing in N , since the larger the �rm, the smaller the

contribution of new projects. Since �rms implement projects that yield only non-negative pro�ts,

this implies that the growth rate of total revenue or total pro�ts will decline with size.

Note that since

�N = �N�1
�LN

�H + �L (N + 1)

it is immediate that as N ! 1 or � ! 0; when N ! N , �N � �N�1; so the share of workers at
large �rms is approximately constant. This implies that the density of �rm sizes will be proportional

to 1=N as N becomes large. That is, the tail of the distribution will be arbitrarily close to the tails

of a Pareto distribution with coe¢ cient one. Similarly if �H is small, �N � �N�1 (N= (N + 1)) ;

and so for N large �N � �N�1 and the distribution of �rm sizes is approximately Pareto with

coe¢ cient one. This is interesting given that several authors have concluded that the upper tail

of the distribution of enterprise sizes is close to a Pareto distribution with coe¢ cient one (see, for

example, Axtell (2001)). We summarize these results in the following proposition.

Proposition 9 As �! 0, or N !1; the density of �rm sizes is arbitrarily close to the density of

a Pareto distribution with coe¢ cient one, for large enough �rm sizes. Furthermore, the distribution

of �rm sizes is closer to a Pareto distribution with coe¢ cient one, the smaller the mass of workers

in new �rms, �H :

The invariant distribution of �rm sizes, as well as any other outcome of the model, is a function

of the exogenous parameters and distributions in the model, namely, �, w; and the distributions F�

and H. However, as we show above, the e¤ect of all those variables can be summarized through the

values of �L and �H : We can therefore assign particular values to these two variables and compute

the resulting distribution of employment shares and �rm sizes. Figure 2 illustrates the invariant

distribution in this model and compares it with the distribution of �rm sizes in 2000 in the US.

In order to compute the distribution given in equation (6), we need to truncate the distribution of

�rm sizes at a certain size. We choose N = 500000; since the largest �rms reported in the data have

this number of employees. We choose �H=�L = 1=9 and so 90% of the new employees are hired

by existing �rms and 10% by new �rms. As is evident from equations (4) and (5), the distribution

depends only on the ratio �H=�L and not on �H and �L separately.
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Figure 2: Model vs. Data

Figure 2 shows how our model can do a good job in matching the distribution of �rm sizes.

Relative to a Pareto distribution with coe¢ cient one (a straight line with slope minus one), it

exhibits a relatively thinner tail of small �rms. Furthermore, since in the model and in the data we

are truncating the distribution, both distributions exhibit thinner tails than the Pareto distribution

for very large sizes. This is only the result of truncation in the model. If we let N ! 1, then
the theory implies that the upper tail will be arbitrarily close to the Pareto distribution for large

enough sizes. Similarly, in the data the census does not reveal the sizes of the largest �rms because

of con�dentiality concerns. Furthermore, while in the model we do not have integer constraints

and so there are some �rms at all sizes, in the data there cannot be any fractional �rms, which
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truncates the distribution as well. Hence, the reason to have a small mass of large �rms on the

upper tail is similar in the model and the data.
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Figure 3: Model vs. Data with Variable Team Size

One noticeable di¤erence between the distribution generated by the model and the distribution

generated in the data is that the theoretical distribution lies below the empirical one in Figure 2.

The reason for this is that in our setup, ideas are generated by one employee and not by teams of

employees. Similarly individual agents spin o¤, not teams of agents. This is clearly not true in the

data. Firms enter small, but not necessarily with one employee. Were we to assume that teams of

between 2 and 3 employees have ideas and spin o¤, we could shift the theoretical curve in Figure 2
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so that it lies on top of the empirical one. Thus, the emphasis is on the shape, not the level of the

curves. This exercise is illustrated in Figure 3.

Figure 3 uses a value of �H=�L = 0:0736. This value is the empirical counterpart of �H=�L

in the US economy from 1989 to 2003. Namely, we calculated the net number of workers added

through new �rms and divided it by the net number of workers added through existing �rms. The

data come from the US Small Business Administration.
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Figure 4: Comparative Statics

Figure 4 shows how we can modify the shape of the invariant distribution by changing the ratio

�H=�L. We illustrate this using N = 10000: The �gure presents the cases for �H=�L = 1=2; 1=5,

1=10, and 1=20: It is clear from the �gure that as we increase the number of entrants (by increasing
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�H=�L); we shift mass to the lower tail, and therefore, the slope of the curve in Figure 4 becomes

steeper. The distribution is farther way from a Pareto distribution with coe¢ cient one. However,

as we know from the previous proposition, if one increases N to large enough values, the shape

of the distribution approaches a Pareto distribution, as N increases, in all these cases. Figure 4

illustrates the invariant distribution for a large range of parameters. The empirical value of �H=�L

is as calculated above, equal to 0:0736. The variation in the distribution that results for low, and

empirically relevant, values of �H=�L is, however, extremely small. Hence, the model can do a

good job of matching the empirical distribution for a wide range of realistic values of �H=�L: These

small di¤erences in the distribution of �rm sizes for a wide set of values of �H=�L in the empirically

relevant range may be the reason why the shape of the US distribution of �rm sizes has changed

so little in the last 10 years.

5 Conclusion

We propose a theory of �rm dynamics in which workers have ideas for new projects that can be

implemented inside existing �rms or, at a cost, in new �rms: spin-o¤s. Workers have private

information about the quality of their ideas. Because of an adverse selection problem, workers

can sell their ideas to existing �rms only at a price that is not contingent on their information.

Therefore, workers with very good ideas decide to spin o¤and set up a new �rm. Since entrepreneurs

of existing �rms pay a price for the ideas sold in the market that implies zero expected pro�ts, �rm

growth is scale independent. This, we believe, is the main insight that comes out of the theory. It

is the existence of a market for ideas that leads to scale-independent growth and distributions of

�rm sizes that resemble a Pareto distribution with coe¢ cient one in the upper tail.

Essentially, the theory produces a size distribution of �rms that depends on all the parameters

and distributions of the model through the value of �H=�L only. The theory leads to a distribution

of �rm sizes that depends only on �H=�L; which can be easily calculated from available data. In

Section 4 we calculated this parameter using US data and showed that one obtains a size distribution

that is hard to distinguish from the empirical distribution. Furthermore, in the empirically relevant

range the distribution in the model is not very sensitive to the value of �H=�L. This could explain

why the distribution of �rm sizes has been so stable over time.

In this paper we have abstracted from equilibrium e¤ects that can be important in the evolution

of an economy. Namely, we assumed throughout that the base wage of workers is �xed. Of course,
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workers also earn the return on their ideas and so part of their income is endogenous in the model.

Nevertheless, we worked with a modeled economy in which new workers can always be hired at the

wage w. Embedding this theory of �rm dynamics and entry into an equilibrium framework, such

as the neoclassical growth model, where one can study the interactions between industry evolution

and wages as well as the growth of an industry or the economy would be interesting, but it is left

for future research.

Furthermore, if spin-o¤s tend to be geographically close to their parent �rm then they are a

potentially important reason why we get clusters of �rms working in the same line of business in the

same locality. Augmented by a location choice, our theory could then form the basis of a dynamic

theory of industrial agglomeration.
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6 Appendix

Lemma 10 If u (ct) = �ae�bct ;

� �L (S;N) is independent of S and N ,

� the thresholds for using a project are given by PL (S;N) = w and a constant PH (S;N) > w;

� the market price of ideas is given by

Z =
1

b
log

"
1 + �

1��
R �H
�L

R
PL

�
1� e�b(P�w)

�
dF�(P )dH(�)

1�
R �H
�L

R �
1� e�b(P�w)

�
dF�(P )dH(�)

#
> 0;

� and, �L < �H ; so some ideas are implemented within existing �rms and some through spin-
o¤s.

Proof. Guess that

W (S;N) = �ae�b[�(S;N)+w]f(N)

for some function f (N) independent of S. Substitute the guess to get

�ae�b[�(S;N)+w]f(N) = 
 (�;N)

Z �H
max

24 V (�; S;N) + ae�b[�(S;N)+w]ebZ
+�ae�b[�(S;N)+w]f(N); 0

35 dH(�)
+(1� 
 (�;N)H (�H))

h
ae�b[�(S;N)+w] + �ae�b[�(S;N)+w]f(N)

i
�
 (�;N)H (�H)

h
ae�b[�(S;N)+w]ebZ + �ae�b[�(S;N)+w]f(N)

i
and

V (�; S;N) =

Z
�ae�b[�(S;N)+w]ebZe�b(P�w)dF�(P ) +

�

Z
max

h
�ae�b[�(S;N)+w]e�b(P�w)f(N + 1);�ae�b[�(S;N)+w]f(N)

i
dF�(P ):

Then,

f(N) = �
 (�;N)
1� �

Z �H
max

26664
�
R
ebZe�b(P�w)dF�(P )

+�
R
max

�
�e�b(P�w)f(N + 1);�f(N)

�
dF�(P )

+ebZ + �f(N); 0

37775 dH(�)
+

1

1� � +

 (�;N)H (�H)

1� �

�
ebZ � 1

�
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which does not depend on S. This veri�es our guess. Now guess that

f (N) =
1

1� � :

Substituting this guess, we obtain that

ebZ � 1 = ebZ
Z �H

�L

Z �
1� e�b(P�w)

�
dF�(P )dH(�)

+
�

1� �

Z �H

�L

Z
PL

�
1� e�b(P�w)

�
dF�(P )dH(�)

Hence Z needs to satisfy this equation for our guess to be correct. Or,

ebZ =
1 + �

1��
R �H
�L

R
PL

�
1� e�b(P�w)

�
dF�(P )dH(�)

1�
R �H
�L

R �
1� e�b(P�w)

�
dF�(P )dH(�)

which implies that

Z =
1

b
log

"
1 + �

1��
R �H
�L

R
PL

�
1� e�b(P�w)

�
dF�(P )dH(�)

1�
R �H
�L

R �
1� e�b(P�w)

�
dF�(P )dH(�)

#
:

Note that this is exactly the condition that makes

W (S;N) =
�ae�b[�(S;N)+w]

1� � =
u(�(S;N) + w)

1� � ;

so entrepreneurs are willing to pay up to this amount for workers�ideas, and workers will get this

price or will sell the idea to another entrepreneur. Competition for ideas among entrepreneurs then

guarantees that the condition is satis�ed.

The threshold �L (S;N) is implicitly de�ned by

V (�L (S;N) ; S;N) = u(�(S;N)� Z + w) + �W (S;N)

which can be written asZ
�e�b(P�w)dF�L(P ) + e

�bZ �

1� �

Z
max

h
1� e�b(P�w); 0

i
dF�L(P ) = �1

or Z
�e�b(P�w)dF�L(P ) + e

�bZ �

1� �

Z
PL

h
1� e�b(P�w)

i
dF�L(P ) = �1

which determines �L as a constant.
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PL is then determined by

W

�
NS + PL
N + 1

; N + 1

�
=W (S;N)

or
e�b[PL�w]

1� � =
1

1� �
and so PL = w:

We still need to show that PH = w: As before guess that

W0 = �ae�bwf0

W (P; 1) =
�ae�bP
1� �

then

V0(�) =

Z
�ae�bwe�b(P�w)dF�(P ) + �

Z
max

�
�ae�bwe�b(P�w) 1

1� � ;�ae
�bwf0

�
dF�(P )

= ae�bw
�
�
Z
e�b(P�w)dF�(P ) + �

Z
max

�
�e�b(P�w) 1

1� � ;�f0
�
dF�(P )

�
and from the expression for W0 ,

f0 =
1

1� � �

�

1� �

Z
max

26664
24 R �

1� e�b(P�w)
�
dF�(P )+

�
1��

R
max

�
f0 � e�b(P�w); 0

�
dF�(P )

35 ;
;�e�bZ

37775 dH(�)
which determines f0 as a positive constant, where f0 < 1= (1� �) and veri�es our guess.

The threshold �H is determined by

V0(�H) = u(w + Z) + �W

which implies thatZ
�e�b(P�w)dF�H (P ) +

�

1� �

Z
max

h
�e�b(P�w) + (1� �) f0; 0

i
dF�H (P ) = �e

�bZ :

The equation above implies that PH satis�es

e�b(PL�w) = (1� �) f0 < 1
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since f0 < 1= (1� �). Hence, we conclude that PL > w:

To show that �H > �L, we need to compare the equations that determine these thresholds,

namely, Z
e�b(P�w)dF�L(P ) = 1 + e�bZ

�

1� �

Z
PL

h
1� e�b(P�w)

i
dF�L(P )Z

e�b(P�w)dF�H (P ) = e�bZ +
�

1� �

Z
PH

h
(1� �) f0 � e�b(P�w)

i
dF�H (P )

But note thatZ
PH

h
(1� �) f0 � e�b(P�w)

i
dF�H (P ) <

Z
PL

h
1� e�b(P�w)

i
dF�L(P ) < 1

since (1� �) f0 < 1 and PH > PL: Hence,Z
e�b(P�w)dF�H (P ) <

Z
e�b(P�w)dF�L(P )

which implies that �H > �L.
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