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Abstract
Many assemblies grant one or more of their members the right to block decisions even
when a proposal has secured the necessary majority—a veto right. In this paper, I
analyze the consequences of veto power in an infinitely repeated divide-the-dollar bar-
gaining game with an endogenous status quo policy. The division of the dollar among
legislators is unchanged until the committee agrees on a new allocation, which becomes
the new status quo. In each period, a committee member is randomly recognized to
propose a new division of the dollar. If a majority that includes the veto player prefers
this proposal, it is implemented; otherwise, the dollar is divided according to the previ-
ous period’s allocation. I show that a Markov equilibrium of this dynamic game exists,
and that, irrespective of the discount factor of legislators, their recognition probabil-
ities, and the initial division of the dollar, policy eventually gets arbitrarily close to
full appropriation of the dollar by the veto player. Finally, I analyze some measures to
reduce the excessive power of the veto player: reducing his or her recognition probabil-
ity, expanding the committee by increasing the number of veto players, and changing
the identity of the veto player in each bargaining round.
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1 Introduction

A large number of important voting bodies grant one or several of their members the right

to block decisions even when a proposal has secured the necessary majority—a veto right.

One prominent example is the United Nations Security Council, where a motion is approved

only with the affirmative vote of nine members, including the concurring vote of the five

permanent members (China, France, Great Britain, Russia, and the U.S.). Another impor-

tant example is the U.S. President’s ability to veto congressional decisions. Additionally,

in assemblies with asymmetric voting weights and complex voting procedures, veto power

may arise implicitly: this is the case of the U.S. in the International Monetary Fund and the

World Bank governance bodies (Leech and Leech 2004).1

The existence of veto power raises two concerns. First, the ability of an agent to veto

policies increases the possibility of legislative stalemate, or “gridlock”. Second, although

the formal veto right only grants the power to block undesirable decisions, it could de facto

allow veto members to impose their ideal decision on the rest of the committee (Russell 1958,

Woods 2000, Blum 2005).2

In this paper, I investigate the consequences of veto power in a dynamic bargaining setting

where the location of the current status quo policy is determined by the policy implemented

in the previous period. This is an important feature of many policy domains—for instance

personal income tax rates or entitlement programs—where legislation remains in effect until

the legislature passes a new law. In each of an infinite number of periods, one of three
1Many other institutions grant veto power to some of their decision makers. For example, some corporate

boards of directors grant minority shareholders a “golden share”, which confers the privilege to veto any
decision. This share is often held by members of the founding family, or governments in order to maintain
some control over privatized companies and was widely used in the European privatization wave of the late
90s and early 2000s. For instance, the British government had a golden share in BAA, the UK airports
authority; the Spanish government had a golden share in Telefónica; and the German government had a
golden share in Volkswagen.

2These concerns were expressed by the delegates of the smaller countries when the founders of the United
Nations met in San Francisco in June 1945 (Russell 1958, Bailey 1969), and they have been a crucial point of
contention in the ongoing discussion over how to reform the UN Security Council to improve its credibility
and reflect the new world order (Fassbender 1998, Weiss 2003, Bourantonis 2005, Blum 2005). A similar
debate has recently arisen regarding the IMF’s and WB’s voting weights determination (Woods 2000, Rapkin
and Strand 2006).
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legislators, one of whom is a veto player, is randomly recognized to make a proposal on the

allocation of a fixed endowment. The proposed allocation is implemented if it receives at

least two affirmative votes, including the vote of the veto player. Otherwise, the status quo

policy prevails and the resource is allocated as it was in the previous period. In this sense,

the status quo policy evolves endogenously.

In this simple setting, I answer two basic questions: To what extent is the veto player

able to leverage his veto power into outcomes more favorable to himself? As this leverage is

found to be substantial, I then turn to a second question: What are the effects of institutional

measures meant to reduce the power of the veto player?

In particular, I fully characterize a Markov Perfect Equilibrium (MPE) and prove it

exists for any discount factor, any initial divisions of the resources, and any recognition

probabilities.3 In this MPE, the veto player is eventually able to move the status quo

policy arbitrarily close to his ideal point. That is, the veto player is eventually able to fully

appropriate all resources, irrespective of the discount factor, the recognition probabilities,

and the initial division of the resources.

When agents are impatient, this result comes from the fact that non-veto legislators

support any proposal that gives them at least as much as the status quo. Thus, it takes

at most two proposals by the veto player to converge to full appropriation of the dollar.

When legislators are patient—that is, when they care, even minimally, about the effect of

the current policy on future outcomes—the ability of the veto player to change the policy to

his advantage remains, but is reduced. This occurs because, when other committee members

receive a proposal that increases the veto player’s share, they take into account the associated

reduction in their future bargaining power and demand a premium to support it. However,

unless legislators are perfectly patient, this premium is always smaller than the share of

resources not already allocated to the veto player, and the policy displays a ratchet effect:
3The only general existence result for dynamic bargaining games applies to settings with stochastic shocks

to preferences and the status quo (Duggan and Kalandrakis 2010). As these features are not present in my
model, proving existence is a necessary step of the analysis.
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with the possible exception of the first period, the share to the veto player will only stay

constant (if he is not proposing) or increase (if he is proposing).

The speed of convergence to the veto player’s ideal outcome is decreasing in the discount

factor of the committee members, as the premium demanded by non-veto legislators increases

in their patience. In contrast with the impatient case, when agents are patient, this premium

is always positive and, thus, it takes an infinite number of bargaining periods to converge to

full appropriation of the dollar by the veto player.

This result suggests that the ability to oppose any decision is indeed a powerful right

and guarantees a strong leverage on long run outcomes. Therefore, I analyze potential

mechanisms to weaken veto power and find that extreme outcomes are difficult to avoid in

the long run. First, I investigate the effect of reducing the agenda setting power of the veto

player. As long as the veto player has a positive probability of recognition, he will be able

to extract all resources. However, the speed of convergence to this outcome decreases as this

probability decreases. Second, adding an additional veto player does not increase the ability

of non-veto players to retain a share of the resources in the long run, but it reduces the

ability of each veto player to accrue all the resources: whenever a veto player proposes, he

has to share what he extracts from the other legislators with the other veto player. Finally,

when the veto right is randomly re-assigned in every period—rather than permanently held

by one legislator—the long term outcome is still extreme: policy eventually converges to an

absorbing set where all resources go to either the proposer or the veto player.

This paper contributes primarily to the theoretical literature on the consequences of veto

power in legislatures. A large number of studies build on models of legislative bargaining

à la Baron and Ferejohn (1989) to examine the role of veto power in policy making. Most

of these papers model specific environments and focus on the case of the U.S. Presidential

veto. These works analyze conditions under which an executive may exercise veto power

(Matthews 1989, Groseclose and McCarty 2001, Cameron 2000), evaluate the effect of pres-

idential veto on spending (Primo 2006) or the distribution of pork barrel policies (McCarty
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2000b), disentangle the effect of veto and proposal power (McCarty 2000a), and provide a

rationale for the emergence of veto points inside Congress (Diermeier and Myerson 1999).

More closely related to this paper, Winter (1996) shows that the share of resources to veto

players is decreasing in the cost of delaying an agreement, so that the share of resources to

non-veto players declines to zero as the cost of delay becomes negligible, that is, as legislators

become infinitely patient. Banks and Duggan (2000) derive a similar result in a more general

model of collective decision making. A common limitation of this literature, and the main

point of departure with my paper, is the focus on static settings: the legislative interaction

ceases once the legislature has reached a decision, and policy cannot be modified after its

initial introduction. In these frameworks, any conclusion on the effect of veto power on pol-

icy outcomes depends heavily on the specific assumptions on the status quo policy (Krehbiel

1998, Tsebelis 2002). In this paper, the status quo policy is not exogenously specified but is

rather the product of policy makers’ past decisions.

In this sense, the present study belongs to a strand of recent literature on legislative pol-

icy making with an endogenous status quo and farsighted players (Baron 1996, Kalandrakis

2004, Bernheim, Rangel and Rayo 2006).4 However, with the exception of Duggan, Kalan-

drakis and Manjunath (2008), who model the specific institutional details of the American

presidential veto and limit their analysis to numerical computations, this literature does

not explore the consequences of veto power. The most related work to mine is Kalandrakis

(2004) who analyzes a similar environment without a veto player. This institutional varia-

tion generates stark differences in strategies and long run outcomes, as the voting behavior

of patient players mimics the behavior of impatient ones, and policy quickly converges to an

absorbing set where the proposer extracts all resources in all periods.5 In my setting, the

discount factor affects voting strategies and—even if the irreducible absorbing set has the
4See also Epple and Riordan (1987), Ingberman (1985), Bowen and Zahran (2009), Dziuda and Loeper

(2010), Cho (2005), Gomes and Jehiel (2005), Lagunoff (2008, 2009), Barseghyan, Battaglini and Coate
(2010), Battaglini and Coate (2007, 2008), Baron and Herron (2003), Baron, Diermeier and Fong (2011),Dier-
meier and Fong (2011), Duggan and Kalandrakis (2010), Kalandrakis (2009), Penn (2009).

5Convergence to this absorbing set is not deterministic, as it depends on the identity of the proposer
recognized in each period, but it happens in finite time, in a maximum expected time of 2.5 periods.
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veto player extracting all resources—convergence to absorption typically takes an infinite

number of periods, during which the veto player shares resources with one non-veto player.

The paper is organized as follows. Section 2 gives a detailed presentation of the legislative

setup and introduces the equilibrium notion. Section 3 outlines the equilibrium analysis and

gives the main results. Section 4 investigates the consequences of measures to reduce the

power of the veto player. In Section 5 I justify the equilibrium I have selected from among the

multiplicity of equilibria that exist. Section 6 concludes with a discussion of the limitations of

my approach and of the future directions for the study of veto power in dynamic frameworks.

2 Model and Equilibrium Notion

2.1 Model

Three agents repeatedly bargain over a legislative outcome xt for each t = 1, 2, . . . . One of

the three agents is endowed with the power to veto any proposed outcome in every period. I

denote the veto player with the subscript v and the two non-veto players with the subscript

j = {1, 2}. The possible outcomes in each period are all possible divisions of a fixed resource

(a dollar) among the three players, that is xt is a triple xt = (xtv, xt1, xt2) with xti ≥ 0 for all

i = v, 1, 2 and ∑
i∈{v,1,2} xi = 1. Thus, the legislative outcome xt is an element of the unit

simplex in R3
+, denoted by ∆. Figure 1 represents the set of possible legislative outcomes,

x ∈ ∆, in R2. The vertical dimension represents the share to (non-veto) player 1, while the

horizontal dimension represents the share to (non-veto) player 2. The remainder is the share

that goes to the veto player. Thus, the origin is the point where the veto player gets the

entire dollar.

The Bargaining Protocol. At the beginning of each period, one agent is randomly se-

lected to propose a new policy, z ∈ ∆. Each agent has the same probability of being
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Figure 1: The set of possible legislative outcomes in each period, ∆

recognized as policy proposer, that is 1
3 .6 This new proposal is voted up or down, without

amendments, by the committee. A proposal passes if it gets the support of the veto player

and at least one other committee member. If a proposal passes, xt = z is the implemented

policy at t. If a proposal is rejected, the policy implemented is the same as it was in the

previous period, xt = xt−1. Thus, the previous period’s decision, xt−1, serves as the status

quo policy in period, t. The initial status quo x0 is exogenously specified.

Stage Utilities. Agent i derives stage utility ui : ∆ → R, from the implemented policy

xt. I assume players’ utilities depend only on their share of the dollar, and that payoffs are

linear, so that ui(x) = xi. Players discount the future with a common factor δ ∈ [0, 1), and

their payoff in the game is given by the discounted sum of stage payoffs.

2.2 Equilibrium

Strategies. In general, strategies are functions that map histories, that is, vectors that

records all proposals as well as all voting decisions that precede an action, to the space of

proposals ∆ and voting decisions {yes; no}. In what follows, though, I restrict analysis
6I will relax this assumption in Section 4.1.
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to cases when players condition their behavior only on a summary of the history of the

game that accounts for payoff-relevant effects of past behavior (Maskin and Tirole 2001).

Specifically, define the state in period t as the previous period’s decision xt−1, and denote the

state by s ∈ S, so that we have s = xt−1 and S = ∆. I restrict attention to Markov strategies

such that agents behave identically ex ante, that is, prior to any mixing, in different periods

with state s, even if that state arises from different histories.

In general, a mixed Markov proposal strategy for legislator i is a function µi : S → P(∆),

where P(∆) denotes the set of Borel probability measures over ∆. For the purposes of

this analysis, it is sufficient to assume that for every state s, µi has finite support. Thus,

the notation µi[z|s] represents the probability that legislator i makes the proposal z when

recognized, conditional on the state being s. A Markov voting strategy is an acceptance

correspondence Ai : S → ∆, where Ai(s) represents the allocations for which i votes yes

when the state is s. Then, a Markov strategy is a mapping σi : S → P(∆) × 2∆, where for

each s, σi(s) = (µi[·|s], Ai(s)).

Continuation Values and Expected Utilities. In this dynamic game, the expected

utility of agent i from the allocation implemented in period t does not only depend on his

stage utility, but also on the discounted expected flow of future stage utilities, given a set of

strategies. In order to define properly the continuation value of each status quo, I will first

introduce the concepts of the win set and transition probabilities.

For a given set of voting strategies, define the win set of state s ∈ ∆, W (s), as the set

of all proposals that beat s by the voting rule described above. In this setting, W (s) is the

collection of all proposals x to which the veto player and at least one non-veto player vote

yes. This differs from a simple majority rule, where the win set would be the collection of

all proposals x to which at least two agents, irrespective of their identity, vote yes.

Then, for a triple of Markov strategies σ = (σv, σ1, σ2), we can write the transition
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probability to decision x when the state is s, Q[x|s] as follows:

Q[x|s] ≡ IW (s)(x)
∑

i={v,1,2}

1
3µi[x|s] + I{s}(x)

∑
i={v,1,2,}

1
3

∑
y:µi[y|s]>0

I∆\W (s)(y)µi[y|s] (1)

where IW (s)(x) is the indicator function that takes value of 1 when x is a proposal that beats

the status quo and 0 otherwise, I{s}(x) is the indicator function that takes value of 1 when

x = s and 0 otherwise, and I∆\W (s)(y) is the indicator function that takes value of 1 when y

is a proposal that does not beat the status quo and 0 otherwise. The first part of (1) reflects

the probability of transition to allocations that are proposed by one of the three players

and are approved, which is the probability of transition Q[x|s] if x 6= s. The probability of

staying in the same state, Q[x|s], is given by the probability that x = s is proposed (the

first term), plus the probability that a proposal x 6= s is proposed and rejected by the floor

(the second term).

Equipped with this notation, I now define the continuation value, vi(s), of legislator i

when the state is s:

vi(s) =
∑

x:Q[x|s]>0
[ui(x) + δvi(x)]Q[x|s] (2)

Using (2), we can finally write the expected utility of legislator i, Ui(s), as a function of the

allocation implemented in period t, xt:

Ui(xt) = xti + δvi(xt) (3)

Given that non-veto legislators are otherwise identical, I focus on Markov proposal and

voting strategies that are symmetric with respect to the two non-veto legislators. A Markov

equilibrium is symmetric if it has the following property: for any state s ∈ ∆, define s12 by

switching s1 and s2, that is s12 = [sv, s2, s1]. Then an equilibrium is symmetric if σ1(s) =

σ2(s12) for any s ∈ ∆.
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Equilibrium Notion. We can finally define the equilibrium solution concept as a variant

of Markov perfect Nash equilibrium with a standard refinement on voting strategies:

Definition 1 A symmetric Markov perfect Nash equilibrium in stage-undominated voting

strategies (MPE) is a pair of Markov strategy profiles (symmetric for the two non-veto play-

ers), σ∗ = {σ∗v, σ∗1, σ∗2}, where σ∗v = (µv[·|s], A∗v(s)), and σ∗j = {(µj[·|s], A∗j(s))}2
j=1, such that

for all i = v, 1, 2 and all s ∈ ∆:

y ∈ A∗i (s)⇐⇒ Ui(y) ≥ Ui(s) (4)

µ∗i [z|s] > 0⇒ z ∈ arg max{Ui(x)|x ∈ W (s)} (5)

An equilibrium, as specified in (4), requires that legislators vote yes if and only if their

expected utility from the status quo is not larger than the expected utility from the proposal.

Such stage undominated voting strategies rule out uninteresting equilibria where voting

decisions constitute best responses solely due to the fact that legislators vote unanimously,

and thus a single vote cannot change the outcome. The fact that proposers optimize over all

feasible proposals, that is over all proposals that would be approved by a winning coalition

composed of the veto player and at least one other legislator, is ensured by (5).

3 Equilibrium Analysis

Proving existence of a symmetric MPE of this dynamic game, and characterizing it, con-

stitutes a challenging problem due to the cardinality of the state space. Thus, I propose

natural conditions on strategies, and show that these conditions define an equilibrium. The

first condition is that equilibrium proposals involve minimal winning coalitions (Riker 1962),

such that at most one of the two non-veto players receives a positive fraction of the dollar in

each period. Second, the proposer proposes the acceptable allocation—that is, an allocation

in the win set of the status quo, x ∈ W (s)—that maximizes his current share of the dollar.
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Finally, I prove that these strategies, and the associated continuation values, are part of a

symmetric MPE that satisfies conditions (4) and (5).

The remainder of this section describes the dynamics of this equilibrium and explores the

mechanisms behind the results. To build intuition, I start from the case where legislators

are impatient, δ = 0, and only care about their current allocation, and then move to the

general case with patient legislators, δ ∈ (0, 1). In both cases, the equilibrium exhibits the

two features mentioned above, and legislators’ patience changes only the set of allocations

they prefer to the status quo.

3.1 Impatient Legislators

When legislators are impatient, they value only current allocations. Then, the expected

utility agent i derives from an allocation xt ∈ ∆ is:

Ui(xt) = xti + δvi(xt) = xti

Therefore, regardless of the other agents’ proposal and voting strategies, it is optimal for

legislator i to accept any proposal that allocates to him at least as much as the status quo,

and to reject everything else.

Ai(s|δ = 0) = {x ∈ ∆|xi ≥ si}

Confronted with these acceptance sets, the proposer will propose the allocation that gives

him the highest share of the dollar among all those that are supported by the veto player,

and at least one non-veto player.

Figures 2(a) and 2(b) show the acceptance set of the veto player, and the optimal proposal

strategy of, respectively, non-veto player 1 and non-veto player 2, when the status quo policy

is s0. Each non-veto proposer simply makes the veto player indifferent between the status quo

10



Allocation to Non-Veto 2 

A
llo

ca
tio

n 
to

 N
on

-V
et

o 
1 

  Nonveto 1 proposer 

s0 

s1 
Acceptance set of veto player  

(a)
Allocation to Non-Veto 2 

A
llo

ca
tio

n 
to

 N
on

-V
et

o 
1 

  Nonveto 2 proposer 

s0 

s1 

Acceptance set of veto player  

(b)

Figure 2: Non-veto players’ equilibrium proposal strategies for state s0 and δ = 0.

and his proposal7 and assigns the remainder to himself, disenfranchising the other non-veto

player, whose no vote cannot stop passage.

On the other hand, when the veto player is the proposer, he needs to secure a yes vote

from one non-veto player to change the policy. He will, thus, build a coalition with the poorer

non-veto player—the non-veto player who receives the least in the status quo—giving him

as much as he is granted by the status quo. An impatient non-veto player will accept this

proposal. This equilibrium proposal strategy is depicted in the left-hand panel of Figure 3.

When he is not the proposer, the veto player will oppose any reduction to his allocation.

Moreover, whenever he proposes, he will be able to increase his share by exactly the amount

held by the non-veto player who receives the most in the status quo—the richer non-veto

player. Given these simple strategies, the equilibrium of the game with δ = 0 has two

important features. First, the allocation to the veto player displays a ratchet effect: it can

only stay constant or increase. Second, the veto player is able to steer the status quo policy

to his ideal point in at most two proposals, as he can pass any x ∈ ∆ when the poorer

non-veto player has zero. Thus, as the veto player can oppose all subsequent changes, he

will get the whole dollar in all subsequent periods. The right-hand panel of Figure 3 depicts
7The veto player’s indifference curve is defined by the diagonal with slope -1.
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Figure 3: Veto player’s equilibrium proposal strategy for state s0 and δ = 0.

these transitions when the initial status quo is s0 and the veto player is randomly assigned

to be the proposer in the first two periods.

3.2 Patient Legislators

In the more general case, where legislators care about future outcomes, similar results hold.

In particular, equilibrium proposals still involve minimal winning coalitions, and the pro-

poser still picks the acceptable allocation that maximizes his current share. However, the

acceptance sets of all legislators are now different, and the set of allocations each agent

(weakly) prefers to the status quo policy changes with the discount factor, as legislators take

into account the impact of the current allocation on future rounds. Not surprisingly, this

has important consequences for the dynamics of the game. In the remainder of this section,

I first analyze the case when the proposer is the veto player, and then the case when the

proposer is a non-veto player.

To help with the exposition, partition the space of possible divisions of the dollar into

two subsets, ∆, and ∆\∆. Define ∆ ⊂ ∆ as the set of states x ∈ ∆ in which at least one
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non-veto legislator gets zero:

∆ = {x ∈ ∆ |xi = 0 for some i = {1, 2}}

Note that, if all proposals on the equilibrium path entail minimal winning coalitions, then

∆ is an absorbing set, and it is reached in at most one period from any initial status quo

allocation. Moreover, define the demand of legislator i as the minimum amount he requires

to accept a proposal x ∈ ∆.

Definition 2 For a symmetric MPE, non-veto legislator j’s demand when the state is s

is the minimum amount dj(s) ∈ [0, 1] such that for a proposal x ∈ ∆ with xj = dj(s),

xv = 1− dj(s), we have Uj(x) ≥ Uj(s). Similarly, veto legislator v’s demand when the state

is s is the minimum amount dv(s) ∈ [0, 1] such that for a proposal x ∈ ∆ with xv = dv(s),

xj = 1− dv(s), for j = 1, 2, we have Uv(x) ≥ Uv(s).

3.2.1 Non-Veto Proposer

When a non-veto player is proposing, he needs to secure the vote of the veto player in order

to change the current status quo. As a consequence, a proposal that results in a minimal

winning coalition assigns a positive share only to the proposer and, if necessary, to the veto

player. If the non-veto proposer wants to maximize his current share of the dollar, he will

propose the veto player’s demand to the veto player, and assign the remainder of the dollar to

himself. Therefore, to characterize the equilibrium proposal strategies of a non-veto player,

we need to identify the acceptance set of the veto player.

A patient veto player is not indifferent between all states in which he receives the same

allocation, and might be better off with allocations that reduce his current share when these

decrease his future coalition building costs. This occurs because the future status quo policy

affects the future leverage the veto player has when he is the proposer. In this event, he

needs to secure the vote of just one non-veto player, and he will, thus, build a coalition with
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the non-veto player who demands the least, and extract the remainder. As shown below,

the demand of each non-veto player is a positive function of what he gets if the policy is

unchanged and, therefore, a veto player’s coalition building costs when the status quo is s

are a positive function of min{s1, s2}.

Thus, a veto player prefers an allocation s′ where he gets s′v and min{s′1, s′2} = s′nv to

an alternative allocation s′′ with s′′v = s′v but min{s′′1, s′′2} = s′′nv > s′nv. If the veto player is

recognized in the following period, he will be able to increase his share more in the state s′

than in s′′.

Figure 4 depicts the acceptance set of a patient veto player for two different values of

δ > 0. While an impatient veto player never supports an allocation that reduces his share, a

patient one is willing to move from an interior allocation where he gets a higher share, to an

allocation towards the edges of the simplex where both he and one non-veto player have a

smaller share. In the Appendix, I characterize the amount the veto player demands to accept

a proposal that brings the status quo into ∆—where one non-veto player gets nothing—as:

dv = max{sv − δ
3−2δsnv, 0} (6)

where snv is the allocation of the poorer non-veto player in the status quo. The reduction

accepted by the veto player increases with his discount factor δ and the share to the poorer

non-veto player snv. An impatient veto player does not accept any new division of the dollar

that gives him less than the status quo. The same is true for a patient veto player when the

status quo is in ∆ and, thus, snv = 0. Note also that the reduction a veto player is willing

to accept could be more than what he has in the status quo, in which case his demand is

bounded below by 0.

Having identified the acceptance set of the veto player, the non-veto proposer will thus

propose the point in the acceptance set of the veto player that maximizes the proposer’s

stage utility. These are depicted in the right-most panel of Figure 4. A non-veto proposer
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Figure 4: Veto’s acceptance set and non-veto’s proposal strategies for state s0: (a) Av(s0) when
δ = δ1 > 0; (b) Av(s0) δ = δ2 > δ1, (c) equilibrium proposal of non-veto 1 (blue arrow) and
non-veto 2 (green arrow).

will completely expropriate the other non-veto player, give the veto player his demand, and

allocate the remainder to himself. When the state is in ∆, the non-veto proposer can only

get 1− sv, but when the state is in ∆\∆ he can extract an higher amount, namely 1− dv.

3.2.2 Veto Proposer

A similar analysis holds for the veto proposer. As mentioned above, when the veto player

desires to pass a proposal with a minimal winning coalition, he is not bound to include any

specific legislator. Thus, he selects the legislator who accepts the highest increase to the

veto player’s share—that is, the legislator with the lowest demand—as his coalition partner.

With impatient legislators, this is the poorer non-veto player, who accepts any allocation

that assigns him a share greater than or equal to his share in the status quo, regardless of

the distribution of the dollar among the other players. However, a patient non-veto player

evaluates the impact of the current proposal on his future bargaining power.

The bargaining power of a non-veto player decreases with the share held by the veto

player in the status quo, sv. A patient non-veto player values both what he has and the

allocation to the veto player, and prefers an allocation s′ ∈ ∆ where he gets s′j = 0 and the

veto gets s′v to an alternative allocation s′′ ∈ ∆ with s′′j = s′j but s′′v > s′v. The difference

between these allocations arises when he is recognized in t+ 1, as he will gain the support of
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Figure 5: Non-veto 2’s acceptance sets for state s0 where s1 > s2: (a) A2(s0) when δ = 0, (b)
A2(s0) when δ = δ1 > 0; (c) A2(s0) δ = δ2 > δ1.

the veto player only for proposals that give him no more than 1 − sv. Figure 5 depicts the

acceptance set of the poorer non-veto player for a state s0 ∈ ∆ and three increasing values

of the discount factor.

The veto player’s coalition partner now demands a premium to vote in favor of an alloca-

tion that increases the veto player’s share. In other words, the veto player has to compensate

his coalition partner with a short term gain in stage utility for the long term loss in future

bargaining power. The Appendix shows that the demand of the poorer non-veto player for

states s ∈ ∆ is:

dnv = δ
3−2δsnv (7)

where snv is the allocation to the richer non-veto player in the status quo. Some properties

of dnv are worth noting. First, dnv is smaller than snv for any δ ∈ [0, 1). This means that,

whenever agents are not perfectly patient (δ = 1), the veto proposer can increase his share,

as he can assign himself 1−dnv > sv = 1−snv. Second, the premium paid by the veto player

to his coalition partner is monotonically increasing, and convex, in δ and linearly increasing

in snv: dnv converges to snv as δ converges to 1, and dnv converges to 0 as δ converges to

0. The fact that the premium is always positive is crucial for the long term dynamics of

the game. In particular, this implies that the ratchet effect described above still functions,
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Figure 6: Veto’s equilibrium proposal strategy for state s0 and δ > 0.

albeit at a slower rate such that the convergence to the veto player’s ideal point happens

asymptotically. Figure 6(b) shows how the state would evolve when the veto player always

proposes.

One additional equilibrium difference between patient and impatient legislators is that

the veto player mixes between coalition partners for some states in the interior of the simplex

when the allocations to the two non-veto players are close. This is necessary to guarantee

that the proposer’s choice of a partner is a best response to what they demand. If the

veto player always picked the poorer non-veto player as coalition partner, the poorer player

would become the most expensive coalition partner. To see why, note that the demand of a

legislator depends both on the current allocation and on the continuation value of the status

quo policy. Under pure proposal strategies, the richer non-veto player is sure to be excluded

from any future coalition and, when his allocation in the status quo is not much different

than the allocation of the poorer non-veto player, this lower continuation value makes him

less demanding. In this case, it would not be optimal for the veto player to always propose

to the poorer non-veto player.8

8Mixed proposal strategies are a common feature of stationary subgame perfect equilibria in models of
legislative bargaining à la Baron and Ferejohn (1989), and in Markov perfect equilibria of dynamic legislative
bargaining models, for the same reason discussed above. See, for example, Banks and Duggan (2000, 2006),
Kalandrakis (2004, 2009), and the discussion in Duggan (2011).
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3.3 Results

Proposition 1 provides a summary of the discussion above:

Proposition 1. For any δ ∈ [0, 1) and any initial division of the dollar, s0 ∈ ∆, there exists

a symmetric MPE that induces a Markov process over outcomes such that:

• For any state s ∈ ∆\∆ there is probability 1 of transition to ∆.

• ∆ is an absorbing set.

• All proposals give a positive allocation at most to a minimal winning coalition.

• For some s ∈ ∆\∆, the veto proposer mixes between possible coalition partners that

have positive and nearly equal allocation under the status quo. For the remaining s ∈ ∆,

the veto proposer proposes dnv to the poorer non-veto player.

• For all s ∈ ∆, the non-veto proposers proposes dv to the veto player.

• For all s ∈ ∆, dv = sv and dnv ≥ snv.

Figure 7 explores the states for which mixing occurs in equilibrium. In regions C and

D of Figure 7 the veto player mixes between coalition partners. These regions evolve from

left to right as the discount factor grows. In regions B and C of Figure 7 the veto player is

willing to accept nothing. Note that mixing occurs when the non-veto players have nearly

equal allocations and that the set of status quo policies where mixing occurs grows with

δ. This happens because the weight players put in the probability of inclusion in future

coalitions diminishes with δ. For δ = 0 coalition building costs are solely determined by

status quo allocations, and, thus, there are pure strategy proposals. Regions B and C shrink

as δ decreases as well: the lower the discount factor, the lower the benefit the veto player

receives from reducing future coalition building costs. For δ = 0, the veto player never

accepts anything less than what the status quo grants him, sv. For status quo allocations
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Figure 7: Partition of ∆ into regions with different equilibrium strategies for allocations where
s1 ≥ s2: (a) δ=0; (b) δ = δ1 > 0; (c) δ = δ2 > δ1. In A and B veto proposer builds a mwc with
non-veto 2; in C and D veto proposer mixes between coalition partners; in B, and C veto gets 0
when he is not proposing.

in region A of Figure 7, the veto player always includes the poorer non-veto player in his

coalition and he always receives a positive allocation when he is not proposing.9

The crucial step in the proof of Proposition 1 is verifying the optimality of proposal

strategies. While the Appendix contains the details, here I sketch the key passages of the

proof. Define the demand of agent i as the amount that makes i indifferent between the

status quo s and a new division z ∈ ∆, as before. The proof then proceeds in three steps.

First, I prove that, for each agent i, i = v, 1, 2, Ui(x) is continuous and increasing in xi for

all x ∈ ∆. This proves that—among acceptable allocations in ∆— the proposer prefers the

one that gives him the highest share of the dollar. Second, I show that the demand of the

poorer non-veto player is (weakly) smaller than the demand of the richer non-veto player

for any s ∈ ∆. This shows that the veto proposer never has an incentive to propose only to

the richer non-veto player. Third, I show that the sum of the demands of the veto player

and any non-veto player is less than or equal to one for any status quo allocation in ∆. This

means that there always exists an acceptable allocation in ∆ that guarantees the proposer
9In the Appendix, I give the exact statement of the equilibrium proposal and voting strategies for each

region of the simplex, and show that these strategies and the associated value functions constitute part of a
symmetric MPE.
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at least his demand or more. This, together with the monotonicity in the first step, proves

that no feasible allocation x ∈ ∆\∆ gives the proposer a higher Ui(x) than his preferred

allocation in ∆.

I can now state the main result of the paper:

Proposition 2. There exists a symmetric MPE in which, irrespective of the discount

factor and the initial division of the dollar, the status quo policy eventually gets arbitrarily

close to the veto player’s ideal point, that is ∀ ε > 0 there exists T such that ∀ t ≥ T the

veto player’s allocation in the status quo is greater than or equal to 1− ε.

Proof. The result derives from the features of the MPE characterized in the proof of

Proposition 1. In this MPE, once we reach allocations in the absorbing set ∆, which happens

after at most one period, the veto player is able to increase his share whenever he has the

power to propose, and keeps a constant share when not proposing. For any ε and any

starting allocation s0, there exists a number of proposals by the veto player—which depends

on δ—such that the veto player’s allocation in the status quo will be at least 1 − ε for

all subsequent periods. Let this number of proposals be n∗(ε, δ, s0). Since each player has

a positive probability of proposing in each period, the probability that in infinitely many

periods the veto player proposes less than n∗(ε, δ, s0) is zero.

Proposition 3 addresses the speed of convergence to complete appropriation of the dollar

by the veto player.

Proposition 3. In the symmetric MPE characterized in the proof of Proposition 1, if

legislators are impatient, δ = 0, it takes at most two rounds of proposals by the veto player to

converge to the irreducible absorbing state where sv = 1. If legislators are patient, δ ∈ (0, 1),

convergence to this absorbing state does not happen in a finite number of bargaining periods,

and the higher the discount factor the slower the convergence.

Proof. This result follows directly from the equilibrium demand of the poorer non-veto

player in the absorbing set ∆, dnv(s, δ) = δ
3−2δsnv. When δ = 0, this demand is zero. This

means that, when the status quo is in ∆—a set that is reached in at most one period—the
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poorer non-veto supports any proposal by the veto player. The veto player can thus pass his

ideal outcome as soon s ∈ ∆ and he proposes. On the other hand, when δ ∈ (0, 1), this is

not possible, and the poorer non-veto player always demands a positive share of the dollar

to support any allocation that makes the veto player richer. The convergence in this case is

only asymptotic as the non-veto player’s demand is always positive as long as the allocation

to the richer non-veto is positive, that is as long as the poorer veto player does not have the

whole dollar in the status quo.10

Finally, I prove that the equilibrium in Proposition 1 is well-behaved, in the sense that

proposal strategies are weakly continuous in the status quo, s.

Proposition 4. The continuation value functions, Vi, and the expected utility functions,

Ui, induced by the equilibrium in Proposition 1 are continuous.

In the Appendix, I show that in equilibrium a small change in the status quo implies a

small change in proposal strategies and, by extension, to the equilibrium transition prob-

abilities. An immediate implication of the continuity of transition probabilities is the fact

that continuation functions and expected utility are continuous.

4 Justifying Equilibrium Selection

The legislative game studied in this paper is an infinite horizon dynamic game with a plethora

of subgame perfect equilibria and, thus, an equilibrium-selection issue. As standard in the

literature on dynamic legislative bargaining, I have refined away equilibria involving stage-

dominated or non-stationary strategies.11 Even so, it is still possible that other Markovian

equilibria of this game exist. In this Section, I characterize sufficient conditions for full

appropriation by the veto player to be the unique equilibrium outcome in any MPE, and
10Notice that when the initial division of the dollar—which is assumed to be exogenous—assigns the whole

dollar to the veto player, then the status quo will never be changed and the veto player gets the whole dollar
in every period.

11In large legislatures, non-stationary strategies that depend on the history are implausible because of
legislators turnout, extraordinary commitment, coordination, and/or communications requirements. Never-
theless, see the discussion in Section 6 for an example of non-stationary strategies that can support more
equitable long-run outcomes.
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I offer some compelling reasons to select the particular equilibrium identified in Section 3.

Before we state the sufficient conditions for uniqueness of the equilibrium outcome, we need

two additional definitions:

Definition 3. (Continuity) An MPE is continuous if the continuation value functions,

Vi, induced by equilibrium strategies are continuous.

Definition 4. (Weak Monotonicity) An MPE of this game is weakly monotonic if the

value functions associated to this equilibrium for each non-veto player are strictly increasing

in the share assigned to that player, keeping the share assigned to the veto player constant.

Definition 3 is a standard continuity assumption. While continuity of equilibrium strate-

gies and value functions is generally not assured in dynamic legislative bargaining games this

is an appealing characteristic of the MPE characterized in Section 3, as proved in Propo-

sition 4. Regarding the weak monotonicity property in Definition 4, notice that it is much

less stringent than a regular monotonicity condition on equilibrium value functions, satisfied

when the value functions of the dynamic game are strictly increasing in the share to oneself

(similarly to the utilities of the stage game). Weak monotonicity is implied by regular mono-

tonicity, but the reverse is not true: weak monotonicity requires Vi to be strictly increasing

in xi only along the ray where the resources allocated to the veto player do not change, but

does not restrict the change in the value function when moving in other directions on the

simplex. In other words, an MPE satisfies the weak monotonicity condition if a forward-

looking non-veto player is always worse off when transferring some of his share to the other

non-veto player.

For example, the MPE characterized in Section 3 satisfies regular monotonicity only for

δ low enough.12 For δ high enough, however, the value functions associated with this MPE

are not necessarily increasing in the share to oneself and they can be decreasing when both
12For δ = 0, the value functions of the infinite horizon game retain the same properties of the stage game

utilities, and are therefore strictly increasing in the share to oneself. Since the value functions of the MPE
characterized in Section 3 are continuous in δ, regular monotonicity holds for δ low enough.
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the share to oneself and the share to the veto player increase at the same time. The MPE

in Section 3, however, satisfies weak monotonicity for any δ.

We are now ready to state Proposition 5:

Proposition 5. Full appropriation of the dollar by the veto player is the unique absorbing

state of the dynamic legislative bargaining game with veto power in any continuous and weakly

monotonic Markov perfect Nash equilibrium.

Proposition 5 states that full appropriation of the endowment by the veto player is the

unique long run equilibrium outcome of this dynamic game in a class of Markovian equilibria.

The intuition behind Proposition 5 is that, given continuity and weak monotonicity of the

value functions, a proposing veto player will always be willing and able to pass a policy that

gives him a higher share of the endowment, unless he already holds the whole dollar.

In addition to generating the unique equilibrium outcome from a reasonable class of

equilibria, the MPE characterized in Section 3 is robust to changes in the legislators’ time

horizon and degree of patience. First, regarding the time horizon, it can be shown that

any finite horizon version of this dynamic legislative bargaining game has a unique subgame

perfect equilibrium in stage undominated voting strategies. While the characterization of

this equilibrium for the T-period problem is cumbersome, it can be proven that, in this

equilibrium, only a minimal winning coalition of legislators receives a positive share of the

pie, the veto player never accepts a reduction to his allocation (with the possible exception of

the first period, if the initial status quo is in the interior of the simplex), and the veto player

can always increase his allocation when proposing, with his coalition partner demanding a

premium to go along with this proposal.13 In this sense, the MPE characterized in Section

3 is the limit of the unique subgame perfect equilibrium of the finite game as the number of

periods played goes to infinity.

Second, regarding the robustness to legislators’ discount factors, this MPE is well behaved

as shown by Propositions 1 and 4: it exists for any δ ∈ [0, 1) and for any s ∈ ∆, and it is
13The equilibrium analysis for T=2 is available from the author.
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continuous in δ and s. This MPE, moreover, converges smoothly to the unique SPE of the

stage game as δ → 0.

Finally, while the model I study is the simplest one to account for veto power in com-

mittees and it abstracts from the specific institutional details of real world legislative forums

featuring a veto player, the incentives the model lays bare are representative of tensions

we observe in real world institutions. Consider, for example, the struggle between the U.S.

Congress and the U.S. President in allocating federal resources through the yearly budget

process, and how the balance of power between the two has evolved over time. A key in-

sight of the model presented in this paper is that the power to veto, when coupled with the

power to set the agenda, offers a strong leverage to his holder, who can slowly reduce the

resources available to other agents. The U.S. Constitution establishes Congress as the body

with controlling power over the federal budget and, while it gives the President the power

to veto legislative decisions, it does not assign any budgetary authority to the executive

branch. This changed with the Budget and Accounting Act of 1921 (BAA), which required

the President to submit a budget to Congress on an annual basis. Although Congress tech-

nically retained nearly complete control over the budget process, the BAA also introduced

the Office of Management and Budget, which granted the executive branch a monopoly on

budgetary information and a strong advantage in setting the agenda (Gailmard and Patty

2012).

Between the 1920s and the 1970s, the scale and scope of the federal budget expanded

but—especially between the late 1950s and the early 1970s—the share of the pie absorbed

by entitlement spending grew disproportionately, with discretionary spending being progres-

sively scaled down. The result was a general lack of flexibility in fiscal policy to undertake

new policy objectives, particularly targeted transfers to local constituencies (Wildavsky 1986,

Wildavsky and Caiden 1988). Eventually, the increased policymaking power of the President

and the reduced resources available for discretionary spending culminated in a fiscal conflict

with Congress. The result of this conflict was the 1974 Congressional Budget and Impound-
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ment Act (CBA), which created a set of institutional changes designed to help Congress

regain power over the budget process (Pfiffner 1979). The CBA not only limited the ability

of the President to impound funds already appropriated by Congress (that is, it reduced the

power to veto of the President) but, more importantly, it created the Congressional Budget

Office to give Congress independent economic analysis and reduce the dependance of the

budget process on the proposals of the executive branch (that is, it decreased the proposal

power of the President).

5 Robustness and Extensions

According to the main result, presented in the previous section, the veto player is eventually

able to steer the status quo policy arbitrarily close to his ideal point, and fully appropriate all

the resources. In this section, I explore three institutional measures that could, in principle,

reduce the leverage of the veto player and promote more equitable outcomes: reducing

the recognition probability of the veto player, expanding the committee by increasing the

number of veto players, and randomly re-assigning veto power in each period. While the first

institutional arrangement decreases the agenda setting power of the veto player, the other

two introduce competition in the use of veto power.

5.1 Heterogeneous Recognition Probabilities

The previous section assumed that the probabilities of being recognized as proposer are

symmetric and history invariant. However, veto players may be outsiders who have lesser

ability to set the agenda. For example, the U.S. President has no formal power to propose new

legislation and, even if he is able to influence the agenda through like-minded representatives

in Congress, his proposal power is lower than any individual member of Congress. In other

settings, the veto player has a privileged position to set the agenda, for example committee

chairs in the U.S. Congress. In this section, I relax the assumption of symmetric recognition
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probabilities, and find that the veto player is still able to eventually appropriate all resources,

as long as his recognition probability is positive, and that convergence to this outcome is

slower the lower is this probability.

In particular, denote by pv the probability the veto player is recognized as the proposer

in each period, with pnv = 1−pv

2 being the probability a non-veto player is recognized. Propo-

sition 5 shows that there exists a MPE equilibrium of this dynamic game that has the same

features as the one characterized in the previous section: all proposals entail positive distri-

bution to only a minimal winning coalition and the status quo allocation converges to the

ideal point of the veto player as long as pv > 0.

Proposition 6. With different recognition probabilities of veto and non-veto players,

there exists a symmetric MPE in which, irrespective of the initial division of the dollar and

the discount factor, the status quo policy eventually gets arbitrarily close to the veto player’s

ideal point, as long as pv > 0. With the exception of at most the first period, the convergence

to the absorbing state is faster the higher is the proposal power of the veto player.

As in the case with even recognition probabilities, this result hinges on the fact that, once

an allocation is in the absorbing set ∆—the set of allocations where at least one non-veto

gets zero—the veto player is able to increase his share whenever he proposes.

The proposal power of the veto player influences the speed of convergence to his ideal

outcome both directly and indirectly. The direct effect is given by the change in the frequency

at which the veto player can increase his allocation—which happens only when he proposes.

The indirect effect is given by the change in the amount the veto player can extract from

the non-veto players when he proposes. The probability of recognition of the veto player

affects the continuation value of the status quo policy for all legislators, and thus it affects

how much they demand to support a policy change. In particular, as pv increases, non-veto

players are less likely to be recognized at time t+ 1 and, thus, they are less concerned about

their future coalition building costs. This reduces the premium the poorer non-veto player

demands from the veto player to support an allocation that increases his share.
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The proof of Proposition 6 shows that, when ∆ is reached, the demand of the poorer

non-veto player is

dnv = δ(1− pv)
2− δ(1 + pv)

snv

where snv is the allocation to the richer non-veto player in the status quo. This demand is

strictly greater than snv = 0 as long as snv > 0, δ > 0, and pv < 1. Under these conditions,

the poorer non-veto player demands a premium, dnv ≥ snv = 0, from the veto player. This

premium is monotonically decreasing in pv. Thus, with a higher pv, the veto player is more

likely to increase his share in each period, and he can also extract more from the non-veto

players when he is the proposer.

When the initial allocation is in the interior of the simplex, and the proposer in the first

period is a non-veto player, pv has a second, indirect, effect on the demand of the veto player.

The continuation value of moving to an allocation in ∆ for the veto player increases with pv

as he is more likely to be the proposer in t+ 1 and enjoy the reduction in coalition building

costs. This increases his willingness to give up a fraction of his share in order to move into

the absorbing set, when a non-veto player is proposing in the initial period.

The proof of Proposition 6 shows that the demand of the veto player is:

dv = max{sv −
2pvδ

2− δ(1 + pv)
snv, 0}

where sv is the allocation of the veto player in the status quo, and snv is the allocation of

the poorer non-veto player in the status quo. This demand is monotonically decreasing in

pv. That is, the reduction the veto player is willing to accept to move the status quo from

s ∈ ∆\∆ into ∆ is increasing in his proposal power.

5.2 Multiple Veto Players

Next, I consider a committee with more than one veto player and show that the presence of

multiple veto players with opposing preferences does not prevent the complete expropriation
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of the resources initially allocated to non-veto players. However, the presence of other

legislators with veto power reduces the amount a veto proposer can extract.

In particular, I study a setting with two veto players and two non-veto players where

recognition probabilities are identical and a proposal passes only if it is approved by the

two veto players and at least one non-veto player.14 Proposition 7 shows that this dynamic

game has a symmetric MPE—where symmetry applies to legislators of the same type, veto

or non-veto—in which the two veto players eventually extract all the surplus regardless of

the initial allocation and the discount factor.

Proposition 7. In the game with two veto players, there exists a symmetric MPE in

which, irrespective of the discount factor and the initial division of the dollar, the sum of the

allocations to the two veto players eventually gets arbitrarily close to one. In the absorbing

state, the share to each veto player is strictly larger than his starting share, unless s0 is an

absorbing state.

As with only one veto player, the result hinges on the fact that a veto proposer can pass

an allocation that increases his allocation at the expenses of the richer non-veto player.

However, there is an important difference: the veto proposer now has to allocate to both the

other veto player and the poorer non-veto player more than what they receive in the status

quo, that is, he has to pay both of them a premium in order to increase his allocation.

The other legislators demand this premium because a higher current allocation to one

veto player increases his future demand and, thus, decreases the extent to which other

legislators can exploit the power to propose in t + 1, as with only one veto player. The

proposing veto player, who builds a minimal winning coalition with the other veto player

and the poorer non-veto player, has to share part of the amount he expropriates from the

richer non-veto player with his coalition partners, in order to offset this loss and gain their
14Ideally, I would answer the question above studying a game with an arbitrary number of legislators n

and veto players k ≤ n. However, as the dimensionality of the state space increases analytical tractability
is quickly lost. Adding one veto player allows me to gain a valuable insight on the issue of multiple veto
players but preserves the analytical tractability of the model, even if the set of possible legislative outcomes
passes from R2 to R3.
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vote.15 Since each veto player will always be part of a minimal winning coalition, both veto

players enjoy a ratchet effect in their allocations, regardless of the identity of the proposer

along the equilibrium path.

In the proof of Proposition 7, I show that, once allocations are in ∆, the demand of the

veto player who is not proposing, denoted by dv, and the demand of the poorer non-veto

player, denoted by dnv, are as follows:

dv = sv + 4δ(1− δ)
16− 16δ + 3δ2 snv

dnv = δ

4− 3δ snv

where snv is the allocation to the richer non-veto in the status quo. Some properties of

these two demands are worth noting. First, both the non-proposing veto player and the

poorer non-veto player asks for a premium, that is, dv > sv and dnv > snv = 0, as long as

δ > 0 and snv > 0. Second, out of the two veto players, the one that is proposing will get a

greater share of the resources expropriated from the richer non-veto player. Finally, as for

the case with one veto player, the premium demanded by coalition partners is increasing in

legislators’ patience and in the fraction of the dollar in the hands of non-veto players.

5.3 Rotating Veto Power

In the basic setting, as well as in the extensions already discussed, veto power is perma-

nently assigned to one or more legislators. This section considers an alternative institutional

arrangement where veto power is randomly assigned to a legislator in each period, in a

similar—but independent—way as proposal power. In this case, the policy converges in fi-

nite time to an absorbing set where, in each period, either the proposer or the veto player

get the entire dollar.
15Even I do not formally address the framework with heterogenous probabilities of recognition, note that,

by the same logic explored in Section 4.1, this result would still hold if the two veto players had different
probabilities of recognition, as long as both probabilities were strictly positive.
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This setting is a significant departure from the basic setup, and the existence proof

from Proposition 1 does not hold. In this section, I establish a Markov equilibrium of the

dynamic game with random veto power, when the space of possible agreements is restricted

to minimal-winning coalitions, x ∈ ∆2, that is, the edges of the simplex, where at most two

legislators have a positive share.16 The restriction to minimal winning coalitions simplifies

considerably the analysis and it is a sensible conjecture on the properties of equilibria of the

unrestricted game, given existing results for similar dynamic bargaining games.17

In the Appendix, I prove that a MPE of the restricted game with rotating veto power

exists.18 This equilibrium is summarized by two properties. First, for every status quo,

optimal proposals coincide with the feasible allocations that maximize the proposer’s share

of the surplus. Second, players with zero in the status quo allocation are willing to accept

proposals that also allocate them zero, regardless of the identity of the proposer. This second

feature is in line with the voting strategies of impatient agents and, contrary to what happens

in the setting with permanent veto power, it is preserved when agents are patient. In an

equilibrium with these features, the status quo policy converges to an absorbing set where

the proposer can allocate the whole dollar to himself, unless he is the only legislator who

gets nothing in the status quo, or unless the veto player is another legislator with a positive

share in the status quo.

Proposition 8. In the game with rotating veto power and feasible allocations s ∈ ∆2,

there exists a symmetric MPE in which, irrespective of the discount factor and the initial

division of the dollar, eventually either the proposer or the veto player extract the whole

dollar in all periods.

This result is very intuitive, in light of the features discussed above. With the restriction
16Note that ∆2 does not coincide with the partition ∆ defined in Section 3, as ∆ does not include those

allocations where the two non-veto players have a positive allocation and the veto player has zero.
17Note that this is is a restriction on the game, and not simply an equilibrium refinement. For dynamic

games where minimal winning coalitions arise in equilibrium, see, among others, Kalandrakis (2004, 2009),
and Battaglini and Coate (2007, 2008), apart from the results discussed in this paper.

18Note that, if minimal winning coalition proposals are optimal also in the unrestricted game where all
s ∈ ∆ are feasible, this MPE coincides with a MPE of the unrestricted game, at least for all periods t > 1.
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to minimal-winning coalitions, we have si = 0 for some i, possibly different across periods,

in all periods. Let ∆1 be the set of allocations where one legislator gets everything, that is,

the vertices of the simplex. Now, first consider allocations in which exactly two legislators

have a positive share of the dollar, i.e. s ∈ ∆2\∆1. If, in equilibrium legislator i with si = 0

does not object to new divisions of the dollar z with zi = 0, we have three possibilities:

1. if j 6= i is recognized in period t + 1 and the veto power is in the hands of either i or

j, a coalition of i and j vote for a proposal that allocates the whole dollar to j;

2. if j 6= i is recognized in period t + 1 and the veto power is in the hands of the third

legislator l 6= j 6= i, the proposer cannot extract the whole dollar because l will object

to it;

3. if i is the proposer, regardless of the identity of the veto player, he will propose the most

favorable allocation in ∆2, as he is not able to allocate the whole dollar to himself.19

Once we transition to an allocation in ∆1, where one legislator gets everything, the

implemented policy will always be in ∆1, and it will either be unchanged or move to another

vertex of the simplex. Call i the legislator with the whole dollar in s ∈ ∆1. If i has the

proposal or veto power, which happens with probability 5/9, the policy does not change.

If i has neither power, then the proposer can extract the whole dollar, and will do so.

Convergence to the equilibrium absorbing set of policy outcomes is fast, with a maximum

expected time before absorption equal to one and a half periods.20 This implies that—when

legislators are patient—permanent veto power promotes less extreme outcomes than rotating

veto power. To see why remember that, with permanent veto power, the convergence to the

veto player’s ideal outcome happens in infinitely many periods, and—along the equilibrium

path—the veto has to share the resources with one non-veto player.21

19Note that, when the other two legislators have nearly equal allocations, legislator i with si = 0 mixes
between coalition partners. See the proof in the Appendix for details.

20Absorption is not deterministic as it depends on the identity of the proposer recognized in each period.
21Note that the equilibrium of the game with rotating veto power is similar to the equilibrium of the

game without veto power studied by Kalandrakis (2004): it has the same absorbing set—the vertices of the
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Figure 8: Transition probabilities with temporary veto power: (a) for s ∈ ∆1; (b) When s ∈ ∆2\∆1

Figure 8 represents the transition probabilities for allocations s in the absorbing set ∆1,

and in the complementary set of minimal winning coalition allocation. To understand the

transition probabilities consider that, ex ante, each legislator has a 1/3 chance of being

selected as the proposer and independent 1/3 chance of being assigned the power to veto.

This means that, ex-ante, with probability 1/9 an agent has both the power to veto and to

propose, with probability 2/9 he has the power to veto but not to propose, with probability

2/9 he has the power to propose but not to veto, and, finally, with probability 4/9 he has

neither power.

6 Discussion

This paper studies the distributive consequences of veto power in a legislative bargaining

game with an evolving status quo policy. As the importance of the right to block a decision

crucially depends on the status quo, a static analysis cannot draw general conclusions about

the effect of veto power on gridlock and policy capture by the veto player. Instead of making

simplex—and similar dynamics, the main difference being a greater status quo inertia with rotating veto
power.
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ad hoc assumptions on the status quo policy, I study veto power by exploring the inherently

dynamic process via which the location of the current status quo is determined. I prove that

there exists a Markov Perfect Equilibrium of this dynamic game such that the veto player is

eventually able to extract all resources, irrespective of the discount factor, the probability of

proposing, and the initial allocation of resources. This result shows that the right to veto is

extremely powerful, especially if coupled with proposal power. This is true even when other

legislators are patient, and take into account the loss in future bargaining power implied by

making concessions to the veto player in the current period.

This paper is the first to derive theoretical predictions on the consequences of veto power

in a dynamic setting. While the results certainly add to our understanding of the incentives

present in real world legislatures, the setup is intentionally very simple and uses a number of

specific assumptions. In the remainder of this section, I discuss some directions for further

research.

Extension to General Number of Legislators. I have limited the analysis to legis-

latures with two non-veto players and, at most, two veto players. It would certainly be

interesting to extend the asymptotic result of full appropriation by the veto player(s) to

legislatures with an arbitrary number of veto and non-veto legislators. However, the exis-

tence proofs for the equilibria proposed in this paper rely on constructing the equilibrium

strategies, and the associated continuation values, for any allocation of the dollar, s ∈ ∆.

It is a very challenging task to extend this existence result and to characterize a Markov

equilibrium with a higher number of legislators, as the dimensionality of the state space

increases and tractability is quickly lost. Future research could explore the dynamics of a

larger legislature using numerical methods, a solution often adopted in the literature on dy-

namic models with endogenous status quo (Baron and Herron 2003, Penn 2009, Battaglini

and Palfrey 2011, Duggan, Kalandrakis and Manjunath 2008).
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Extension to Concave Utilities. The equilibrium I characterize exhibits proposals where

at most the members of a minimal winning coalition get a positive share of the dollar. An

open question is whether there exist other Markovian equilibria of this game where universal

coalitions prevail. One possible avenue for future research is to relax the assumption that

legislators’ utilities are linear in stage payoffs. It would be interesting to assess whether the

equilibrium with minimal winning coalitions is robust to concavity in legislators’ utilities,

and whether equilibria without minimal winning coalitions may arise when stage payoffs

are sufficiently concave. Indeed, Battaglini and Palfrey (2011) have recently explored such

equilibria in the context of simple majority without a veto player. Using numerical methods,

they find Markov equilibria in which players share the surplus in all periods when stage

preferences exhibit sufficient concavity.

Non-Markovian Equilibria. I have focused on Markov perfect equilibria where agents’

strategies depend only on the status quo policy. However, this legislative game is an infinite

horizon dynamic game with many subgame perfect equilibria, and the Markovian assump-

tion of stationary strategies is very restrictive. As noted in the seminal paper of Baron

and Ferejohn (1989), these bargaining games usually have other subgame perfect equilibria

that can sustain more equitable outcomes through the use of history-dependent strategies,

that is, punishment and rewards for past actions. Bowen and Zahran (2009) explored this

avenue without a veto player. They show the existence of non-Markovian equilibria in which

players share the surplus as long as the legislators are neither too patient nor too impatient.

Interestingly—and related to the previous point—this alternative equilibrium does not sur-

vive when players are risk neutral. In the Appendix, I propose strategy profiles for the

dynamic game analyzed in this paper such that the initial allocation is an absorbing state

and, thus, there is no convergence to full appropriation by the veto player, as long as the

discount factor is high enough, and the two non-veto players receive enough at the beginning

of the game.
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Extension to Different Policy Domains. This study analyzes a divide-the-dollar game

where legislators’ preferences are purely conflicting. This is a natural starting point to

analyze the consequences of veto power in a dynamic setting as it lays bare the incentives

at work. However, there are two important reasons to extend the policy space beyond the

pure distributive case. First, many applications, and policy domains, are better modeled

with a spatial setting where legislators’ preferences are partially aligned. Second, the pure

distributive setting leaves little room to ask whether giving a legislator the power to veto is

desirable from the societal point of view as, with linear utilities, all outcomes are Pareto-

efficient. The welfare consequences, and the normative implications of introducing a veto

player can be better analyzed in a setting with less conflicting preferences. One interesting

possibility for future research is to analyze the consequences of veto power in a dynamic

setting with a unidimensional policy space, and single peaked legislators’ preferences over

outcomes.22 An alternative way of exploring a setting with a lower degree of conflict could

be to study a different divide-the-dollar game where the dollar can also be allocated to a

public good.

Empirical Tests of Theoretical Predictions. The theory provides sharp empirical im-

plications: the ratchet effect for the allocation of the veto player, the monotonic convergence

to his ideal point, and the comparative statics on the discount factor, the recognition proba-

bilities, the number of veto players, and the nature of the veto right (permanent vs rotating).

One important goal of future research is to assess the empirical validity of these theoretical

predictions, in particular with the use of laboratory experiments, which have some important

advantages over field data when studying a highly structured dynamic environment such as

the one in this paper (Battaglini and Palfrey 2011, Battaglini, Nunnari and Palfrey 2011).

22A similar setting is studied by Baron (1996) in the context of simple majority without veto power.
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Appendix

Proof of Proposition 1

The results of Proposition 1 follow from the existence of a symmetric MPE with the following

minimal winning coalition proposal strategies for all s ∈∆, where s1 ≥ s2:

• Case A
(
s1 ≤ 1− 3−δ

3−2δs2, s1 ≥ 3−δ
3−2δs2

)
:

xv = [1− d2, 0, d2],x1 = [dv, 1− dv, 0],x2 = [dv, 0, 1− dv]

dv = sv −
δs2

3− 2δ

d2 = δ

3− 2δ s1 + (3− δ)
(3− 2δ)s2

• Case B
(
s1 > 1− 3−δ

3−2δs2, s1 ≥ 27−27δ+3δ2+δ3

(3−2δ)(3−δ)2 s2 + δ2

(3−δ)2

)
:

xv = [1− d2, 0, d2],x1 = [dv, 1− dv, 0],x2 = [dv, 0, 1− dv]

dv = 0

d2 = 9− 12δ + 3δ2

(3− 2δ)2 s2 + δ

(3− 2δ)

• Case C
(
s1 > 1− 3−δ

3−2δs2, s1 <
27−27δ+3δ2+δ3

(3−2δ)(3−δ)2 s2 + δ2

(3−δ)2

)
:

xv =


[1− d2, d2, 0]

[1− d2, 0, d2]

w/ Pr = µCv

w/ Pr = 1− µCv
,x1 = [dv, 1− dv, 0],x2 = [dv, 0, 1− dv]

dv = 0

d2 = 9− 12δ + 3δ2

(3− 2δ)2 s2 + δ

(3− 2δ)

µCv = (−27 + 36δ − 15δ2 + 2δ3)s1

2δ((9− 12δ + 3δ2)s2 − 2δ2 + 3δ)
+ (27− 27δ + 3δ2 + δ3)s2 + 3δ2 − 2δ3

2δ((9− 12δ + 3δ2)s2 − 2δ2 + 3δ)
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• Case D s
(

1 ≤ 1− 3−δ
3−2δs2, s1 <

3−δ
3−2δs2

)
:

xv =


[1− d2, d2, 0]

[1− d2, 0, d2]

w/ Pr = µDv

w/ Pr = 1− µDv
,x1 = [dv, 1− dv, 0],x2 = [dv, 0, 1− dv]

dv = sv −
δs2

3− 2δ

d2 = δ

3− 2δ s1 + (3− δ)
(3− 2δ)s2

µDv = 3
2

(−3 + 2δ)s1 + (3− δ)s2

δ(δs1 + (3− δ)s2)

It is tedious but straightforward to check that, if players play the proposal strategies in

cases A-D and these proposals pass, their continuation values are as follows:

• Case A

vv(s) = 1
1− δ −

2− δ
(3− δ)(1− δ)s1 −

1
(1− δ)s2 (8)

v1(s) = (3− 3δ + δ2)
(3− δ)2(1− δ)s1 + (3− δ)

(3− δ)2(1− δ)s2 (9)

v2(s) = (3− 2δ)
(3− δ)2(1− δ)s1 + (6− 5δ + δ2)

(3− δ)2(1− δ)s2 (10)

• Case B

vv(s) = 1
(1− δ)(3− δ) −

(3− 4δ + δ2)
(3− 2δ)(1− δ)(3− δ)s2

v1(s) = (3δ − 4δ2 + δ3)
(3− δ)2(1− δ)(3− 2δ)s2 + (9− 15δ + 9δ2 − 2δ3)

(3− δ)2(1− δ)(3− 2δ)

v2(s) = (3− 2δ)
(3− δ)2(1− δ) + (3− 4δ + δ2)

(3− δ)2(1− δ)s2
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• Case C

vv(s) = 1
(1− δ)(3− δ) −

(3− 4δ + δ2)
(3− 2δ)(1− δ)(3− δ)s2

v1(s) = (−9 + 18δ − 11δ2 + 2δ3)
2δ(3− δ)(1− δ)(3− 2δ)s1 + (9− 15δ + 7δ2 − δ3)

2δ(3− δ)(1− δ)(3− 2δ)s2 + 6δ − 7δ2 + 2δ3

2δ(3− δ)(1− δ)(3− 2δ)

v2(s) = (9− 18δ + 11δ2 − 2δ3)
2δ(3− δ)(1− δ)(3− 2δ)s1 + (−9 + 21δ − 15δ2 + 3δ3)

2δ(3− δ)(1− δ)(3− 2δ)s2 + 6δ − 7δ2 + 2δ3

2δ(3− δ)(1− δ)(3− 2δ)

• Case D

vv(s) = 1
1− δ −

2− δ
(3− δ)(1− δ)s1 −

1
(1− ∂)s2

v1(s) = (−3 + 6δ − 2δ2)
2δ(3− δ)(1− δ)s1 + 1

2δ(1− δ)s2

v2(s) = (3− 2δ)
2δ(3− δ)(1− δ)s1 + (−3 + 7d− 2δ2)

2δ(1− δ)(3− δ)s2

On the basis of these continuation values, we obtain players’ expected utility functions,

Ui(x) = xi+δVi(x). The reported demands are in accordance with Definition 2. In particular,

di, i = 1, 2 and dv can be easily derived from the following equations:

si + δVi(s) = di + δVi([1− di, di, 0])

sv + δVv(s) = dv + δVv([dv, 1− dv, 0])

The demands for non-veto player 1 are never part of a proposed allocation and have

therefore been omitted in the statement of the equilibrium proposal strategies above but we

will use them in the remainder of the proof. In cases C and D, the mixing of the veto player

is such that d1 = d2. In the other two cases, d1 is as follows:

• Case A
(
s1 ≤ 1− 3−δ

3−2δs2, s1 ≥ 3−δ
3−2δs2

)
:

d1 = (4δ2 − 12δ + 9)
(3− 2δ)2 s1 + (3δ − δ2)

(3− 2δ)2 s2
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• Case B
(
s1 > 1− 3−δ

3−2δs2, s1 ≥ 27−27δ+3δ2+δ3

(3−2δ)(3−δ)2 s2 + δ2

(3−δ)2

)
:

d1 = (27− 63δ + 51δ2 − 17δ3 + 2δ4)
(3− 2δ)3 s1 + (3δ2 − 4δ3 + δ4)

(3− 2δ)3 s2 + 9δ − 15δ2 + 9δ3 − 2δ4

(3− 2δ)3

Furthermore, all reported non-degenerate mixing probabilities are well defined. On the

basis of the expected utility functions, Ui, we can then construct equilibrium voting strate-

gies, A∗i (s) = {x|Ui(x) ≥ Ui(s)}, i = v, 1, 2, for all s ∈ ∆. These voting strategies obviously

satisfy equilibrium condition (4). Then, to prove Proposition 1 it suffices to verify equi-

librium condition (5). To do so, we make use of five lemmas. We seek to establish an

equilibrium with proposals that allocate a positive amount to at most one non-veto player.

Lemma 1 shows that the expected utility function for these proposals satisfies the following

continuity and monotonicity properties. Lemma 2 proves that minimal winning coalition

proposals are optimal among the set of feasible proposals in ∆. Lemma 3 establishes that

the equilibrium demands of the veto player and one non-veto player sum to less than unity

and that the demands of the two non-veto players are (weakly) ordered in accordance to

the ordering of allocations under the state s. Lemma 4 then establishes that the proposal

strategies for legislators i = v, 1, 2 in Proposition 1 maximize Ui(x) over all x ∈ W (s) ∩∆;

these proposals would then maximize Ui(x) over all x ∈ W (s) if there is no x ∈ W (s)∩∆/∆

that accrues i higher utility. We establish that this is indeed the case in Lemma 5.

Lemma 1. Consider a symmetric Markov Perfect strategy profile with expected utility

Ui(s), s ∈ ∆, determined by the continuation values in equations (8)-(10). Then, for all

x = (x, 1− x, 0) ∈ ∆ (a) Ui(x), i = v, 1, 2 is continuous and differentiable with respect to x,

(b) Uv(x) increases with x, while U1(s) and U2(s) does not increase with x.
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Proof. An allocation x = (x, 1 − x, 0) ∈ ∆ belongs to case A in Proposition 2. Therefore

we can write Ui(x) = xi + δVi(x) as follows:

Uv(x) = x+ δ

1− δ −
δ(2− δ)

(3− δ)(1− δ)(1− x) (11)

U1(x) = 1− x+ δ
(3− 3d+ δ2)

(3− δ)2(1− δ)(1− x) (12)

U2(x) = δ
(3− 2δ)

(3− δ)2(1− δ)(1− x) (13)

Ui(x) is linear and continuous in x for i = v, 1, establishing part (a) of the Lemma. Regarding

part (b):

∂Uv(x)
∂x

= 1 + δ(2− δ)
(3− δ)(1− δ) > 0

∂U1(x)
∂x

= −
(

1 + δ
(3− 3d+ δ2)

(3− δ)2(1− δ)

)
< 0

∂U2(x)
∂x

= −δ (3− 2δ)
(3− δ)2(1− δ) < 0

∂Uv(x)
∂x

> 0 for any δ ∈ [0, 1), since both the numerator and the denominator of δ(2−δ)
(3−δ)(1−δ) are

positive for any δ ∈ [0, 1); ∂U1(x)
∂x

< 0 for any δ ∈ [0, 1), since both the numerator and the

denominator of (3−3d+δ2)
(3−δ)2(1−δ) are positive for any δ ∈ [0, 1); and ∂U2(x)

∂x
< 0 for any δ ∈ [0, 1),

since both the numerator and the denominator of (3−2δ)
(3−δ)2(1−δ) are positive for any δ ∈ [0, 1).

By the definition of demands and the monotonicity established in part (b) of Lemma 1

we immediately deduce:

Lemma 2. Consider a symmetric Markov Perfect strategy profile with expected utility,

Ui(x), for x ∈ ∆, i = v, 1, 2, given by (11)-(13). Every minimal winning coalition proposal

of the veto player x(v, i, di(s)), i = {1, 2} is such that x(v, i, di(s)) ∈ arg max{Uv(x)|x ∈

∆, Ui(x) ≥ Ui(s)}; similarly, every minimal winning coalition proposal of a non-veto player

x(i, v, dv(s)), i = {1, 2} is such that x(i, v, di(s)) ∈ arg max{Ui(x)|x ∈ ∆, Uv(x) ≥ Uv(s)}.
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Lemma 3. For all s ∈ ∆, the demands reported in Proposition 1 are such that (a)

si ≥ sj ⇒ di ≥ dj, i.j = 1, 2, and (b) di + dv ≤ 1, i = 1, 2.

Proof. Part (a). Since we focus on the half of the simplex in which s1 ≥ s2, we want to

prove that d1 ≥ d2. In cases C and D the mixed strategy of the veto player is such that

d1 = d2, so we focus on cases A and B.

• Case A:

(4δ2 − 12δ + 9)
(3− 2δ)2 s1 + (3δ − δ2)

(3− 2δ)2 s2 ≥
δ

3− 2δ s1 + (3− δ)
(3− 2δ)s2

s1 ≥
3− δ
3− 2δ s2

• Case B:

(27− 63δ + 51δ2 − 17δ3 + 2δ4)
(3− 2δ)3 s1 + (3δ2 − 4δ3 + δ4)

(3− 2δ)3 s2 + 9δ − 15δ2 + 9δ3 − 2δ4

(3− 2δ)3

≥ 9− 12δ + 3δ2

(3− 2δ)2 s2 + δ

(3− 2δ)

s1 ≥
27− 27δ + 3δ2 + δ3

(3− 2δ)(3− δ)2 s2 + δ2

(3− δ)2

Part (b). Since we focus on the half of the simplex in which s1 ≥ s2, by part (a) of the

same Lemma, it is enough to prove that d1 + dv ≤ 1.

• Case A:

sv −
δs2

(3− 2δ) + (4δ2 − 12δ + 9)
(3− 2δ)2 s1 + (3δ − δ2)

(3− 2δ)2 s2 ≤ 1

sv + s1 + δ2

(3− 2δ)2 s2 ≤ 1

which holds for any δ ∈ [0, 1), because sv + s1 + s2 = 1 and δ2

(3−2δ)2 ∈ [0, 1). To see this

notice that δ2

(3−2δ)2 is monotonically increasing in δ and is equal to 1 when δ = 1.
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• Case B:

(27− 63δ + 51δ2 − 17δ3 + 2δ4)s1

(3− 2δ)3 + (3δ2 − 4δ3 + δ4)s2

(3− 2δ)3 + 9δ − 15δ2 + 9δ3 − 2δ4

(3− 2δ)3 ≤ 1

Notice that (27−63δ+51δ2−17δ3+2δ4)
(3−2δ)3 ≥ (3δ2−4δ3+δ4)

(3−2δ)3 for any δ ∈ [0, 1), so the LHS has an upper

bound when s1 = 1 and s2 = 0. Therefore, we can prove the following inequality:

(27− 63δ + 51δ2 − 17δ3 + 2δ4)
(3− 2δ)3 + 9δ − 15δ2 + 9δ3 − 2δ4

(3− 2δ)3 ≤ 1

(3− 2δ)3

(3− 2δ)3 ≤ 1

• Case C:

9− 12δ + 3δ2

(3− 2δ)2 s2 + δ

(3− 2δ) ≤ 1

s2 ≤
3− 2δ
3− δ

which holds for any δ ∈ [0, 1), since sv + s1 + s2 = 1 and 3−2δ
3−δ ≤ 1 for any δ ∈ [0, 1). To

see this notice that 3−2δ
3−δ is monotonically decreasing in δ and it is equal to 1 when δ = 0.

• Case D:

sv −
δs2

3− 2δ + δ

3− 2δ s1 + (3− δ)
(3− 2δ)s2 ≤ 1

sv + s2 + δ

3− 2δ s1 ≤ 1

which holds for any δ ∈ [0, 1) because sv + s1 + s2 = 1 and δ
3−2δ ∈ [0, 1). To see this

notice that δ
3−2δ is monotonically increasing in δ and is equal to 1 when δ = 1.

We now show that equilibrium proposals are optimal over feasible alternatives in ∆.

Lemma 4. µi[z|s] > 0⇒ z ∈ arg max{Ui(x)|x ∈ W (s) ∩∆}, for all z, s ∈ ∆.
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Proof. All equilibrium proposals take the form of minimal winning coalition proposals:

x(v, j, dj(x)) when the veto player is proposing and x(j, v, dv(x)) when a non-veto player is

proposing. Also, whenever µv[x(v, 1, d1)|s] > 0 and µv[x(v, 2, d2)|s] > 0, we have d1 = d2

so that Uv(x(v, 1, d1)) = Uv(x(v, 2, d2)). Thus, in view of Lemma 2 it suffices to show that

if µi[x(i, j, dj)|s] = 1, then Ui(x(i, j, dj)) = Ui(x(i, h, dh)), h 6= i, j, i.e. proposer i has no

incentive to coalesce with player h instead of j. This is immediate for a non-veto player,

since only coalescing with the veto player guarantees the possibility to change the state. To

show that - for the veto player - if µv[x(v, j, dj)|s] = 1, then Uv(x(v, j, dj)) = Uv(x(v, h, dh)),

j 6= h, it suffices to show dh ≥ dj by part (b) of Lemma 1. In Proposition 1 we have s1 ≥ s2,

(by part (a) of Lemma 3) d1 ≥ d2, and when d1 6= d2, we have µv[x(v, 1, d1)|s] = 0 which

gives the desired result.

We conclude the proof by showing that optimum proposal strategies cannot belong in

∆/∆. In particular, we show that if an alternative in ∆/∆ beats the status quo by majority

rule, then for any player i we can find another alternative in ∆ that is also majority preferred

to the status quo and improves i’s utility.

Lemma 5. Assume x ∈ W (s)∩∆/∆; then for any i = v, 1, 2 there exists y ∈ W (s)∩∆

such that Ui(y) ≥ Ui(s).

Proof. Consider first the veto player, i = v. Let x ∈ W (s) ∩ ∆/∆. Consider first

the case x ∈ A∗v(s). Then, x is weakly preferred to s by v and at least one i, i = 1, 2.

Now set y = x(v, j, dj(x)), where dj(x) is the applicable demand from Proposition 1. We

have Uj(x(v, j, dj(x))) ≥ Uj(x), by the definition of demand. From part (b) of Lemma

3 have dv(x) + dj(x) ≤ 1 and as a result xv(v, j, dj(x)) = 1 − dj(x) ≥ dv(x); hence,

Uv(x(v, j, dj(x))) ≥ Uv(x), which follows from the weak monotonicity in part (b) of Lemma

1. Thus, y = x(v, j, dj(x)) ∈ W (s) (because is supported by v and j), and we have com-

pleted the proof for this case. Now consider the case x 6∈ A∗v(s), i.e. Uv(s) > Uv(x).

Part (a) of Lemma 3 ensures that dv(s) + dj(s) ≤ 1, hence proposal y = x(v, j, dj(s)) has

xv(v, j, dj(s)) = 1− dj(s) ≥ dv(s). Then Uv(y) ≥ Uv(s) > Uv(x), and y ∈ W (s) ∩∆.
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Now consider a non veto player, i = 1, 2. Let x ∈ W (s)∩∆/∆. Consider first the case x ∈

A∗i (s). Then, x is weakly preferred to s by v and (at least) i. Now set y = x(i, v, dv(x)), where

dv(x) is the applicable demand from Proposition 1. We have Uv(x(i, v, dv(x))) ≥ Uv(x), by

the definition of demand. From part (b) of Lemma 3 have dv(x) + di(x) ≤ 1 and as a result

xi(i, v, dv(x)) = 1− dv(x) ≥ di(x); hence, Ui(x(i, v, dv(x))) ≥ Ui(x), which follows from the

weak monotonicity in part (b) of Lemma 1. Thus, y = x(i, v, dv(x)) ∈ W (s)∩∆ (because is

supported by v and i), and we have completed the proof for this case. Finally, consider the

case x 6∈ A∗i (s), i.e. Ui(s) > Ui(x). Part (a) of Lemma 3 ensures that dv(s)+di(s) ≤ 1, hence

proposal y = x(i, v, dv(s)) has xi(i, v, dv(s)) = 1−dv(s) ≥ di(s). Then Ui(y) ≥ Ui(s) > Ui(x),

and y ∈ W (s) ∩∆, which completes the proof.

As a result of Lemmas 4 and 5, equilibrium proposals are optima over the entire range

of feasible alternatives. It then follows that proposal strategies in Cases A-D of Proposition

2 satisfy the equilibrium condition (5) which completes the proof. �

Proof of Proposition 4

The result of Proposition 4 follows once we establish that the proposal strategies in the

equilibrium from Proposition 1 are weakly continuous in the status quo s, i.e. that in

equilibrium a small change in the status quo implies a small change in proposal strategies

and, by extension, to the equilibrium transition probabilities.

Lemma 6.The equilibrium proposal strategies µ∗i in the proof of Proposition 1 are such

that for every s ∈ ∆ and every sequence sn ∈ ∆ with sn → s, µ∗i [·|sn] converges weakly to

µ∗i [·|s].

Proof: The equilibrium is such that µ∗i [·|s] i = 1, 2 has mass on only one point x(i, v, dv(s))

and that µ∗v[·|s] has mass on at most two points x(v, 1, d1(s)), and x(v, 2, d2(s)). It suffices

to show that these proposals (when played with positive probability) and associated mixing

probabilities are continuous in s (see Kalandrakis (2004) and Billingsley (1999)). Continuity

holds in the interior of Cases A-D in Proposition 1, so it remains to check the boundaries
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of these cases. In order to distinguish the various applicable functional forms we shall write

dwi and µwv [·|s] where w = {A,B,C,D} identifies the case for which the respective functional

form applies.

• Boundary of Cases A and B: at the boundary (as in the interior of the two cases) we

have µAv [x(v, 1, d2)|s] = µBv [x(v, 1, d2)|s] = 0; at the boundary we have s1 = 1− 3−δ
3−2δs2,

then:

dAv = dBv = 0

dA1 = dB1 = 1− 9− 12δ − 3δ2

(3− 2δ)2 s2

dA2 = dB2 = 9− 12δ − 3δ2

(3− 2δ)2 s2 + δ

(3− 2δ)

• Boundary of Cases B and C: at the boundary we have s1 = 27−27δ+3δ2+δ3

(3−2δ)(3−δ)2 s2 + δ2

(3−δ)2 ;

then:

µBv [x(v, 1, d2)|s] = µCv [x(v, 1, d2)|s] = 0

dBv = dCv = 0

dB1 = dC1 = 9− 12δ + 3δ2

(3− 2δ)2 s2 + δ

(3− 2δ)

dB2 = dC2 = 9− 12δ − 3δ2

(3− 2δ)2 s2 + δ

(3− 2δ)

• Boundary of Cases C and D: at the boundary we have s1 = 1− 3−δ
3−2δs2; then:

µCv [x(v, 1, d2)|s] = µDv [x(v, 1, d2)|s] = 3
2

(−3 + 2δ)((−2 + 2s2)δ + 3− 6s2)
δ((3s2 − 2)δ2 + (−12s2 + 3)δ + 9s2)

dCv = dDv = 0

dC1 = dD1 = dC2 = dD2 = 9− 12δ − 3δ2

(3− 2δ)2 s2 + δ

(3− 2δ)
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• Boundary of Cases D and A: at the boundary we have s1 = 3−δ
3−2δs2; then:

µDv [x(v, 1, d2)|s] = µAv [x(v, 1, d2)|s] = 0

dDv = dAv = sv −
δs2

3− 2δ

dD1 = dA1 = dD2 = dA2 = (3− δ)2

(3− 2δ)2 s2

�

Proof of Proposition 5

We want to show that x = (xv, x1, x2) is not an absorbing policy, unless x = (1, 0, 0). It

is straightforward to prove that (1,0,0) is absorbing. We can show that no other policy

x 6= (1, 0, 0) is absorbing by contradiction. Assume x 6= (1, 0, 0) is absorbing. Then EUv(x),

the expected utility of the veto player from x, is xv/(1−δ). First, notice that the veto player

would be better off with a different policy y, such that yv > xv. This is because, moving

to y the veto player can guarantee to himself an expected utility of at least yv/(1 − δ) (by

vetoing any future proposed change). To run into a contradiction and show the desired

result, we therefore need to show that the veto player, when proposing, can always find a

non-veto player who is at least indifferent between the status quo policy x and a new policy

y such that yv > xv. Assume that, in x, x2 > x1 ≥ 0 (this is without loss of generality,

because we can switch labels for all other policies different than (1,0,0)). Consider the policy

x′ = (xv, x1 + x2, 0). By the weak monotonicity condition, this policy is strictly preferred

to x by non-veto player 1 (the veto player gets the same amount and he gets more). By

continuity of the value functions, there always exists ε > 0 such that EU1 of the policy

x′′ = (xv + ε, x1 + x2− ε, 0) is weakly greater than EU1(x). This means that the veto player

is able to and willing to move to a different policy, when proposing (an event that happens

with positive probability), and that, thus, 6=(1, 0, 0) cannot be absorbing. �
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Proof of Proposition 6

As before, we focus on the allocations in which s1 ≥ s2. The other cases are symmetric.

Consider the following equilibrium proposal strategies (all supported by a minimal winning

coalition) and demands (as defined in the proof of Proposition 1):

• CASE A: s1 ≥ 1− 2−δ(1−pv)
2−δ(1+pv)s2; s1 ≥ 2pvδ

2+10δ−8−3δ2−2pvδ+p2
vδ

2

(2−δ(1+pv))(1−pv)δ s2 + 4−4pvδ−4δ+δ2+p2
vδ

2+2pvδ
2

(2−δ(1+pv))(1−pv)δ

xv = [1− dA2 , 0, dA2 ],x1 = [dAv , 1− dAv , 0],x2 = [dAv , 0, 1− dAv ]

dAv = sv −
2pvδ

2− (1 + pv)δ
s2

dA2 = δ(1− pv)
2− δ(1 + pv)

s1 + 2− δ(1− pv)
2− δ(1 + pv)

s2

dA1 = −4pvδ + 4 + 2pvδ2 − 4δ + p2
vδ

2 + δ2

(2− δ(1 + pv))2 s1 + −p
2
vδ

2 − δ2 − 2pvδ + 2δ + 2pvδ2

(2− δ(1 + pv))2 s2

• CASE B:

s1 < 1− 2−δ(1−pv)
2−δ;(1+pv)s2; s1 ≥ −2δ3p2

v+p3
vδ

3+pvδ
3+δ2+p2

vδ
2−2pvδ

2−4δ+4
(pvδ−δ+2)(pvδ−1)(−2+pv+pvδ) s2+ −pvδ

3−2p2
vδ

2+p3
vδ

3+2pvδ
2

(pvδ−δ+2)(pvδ−1)(−2+pv+pvδ)

xv = [1− dB2 , 0, dB2 ],x1 = [dBv , 1− dBv , 0],x2 = [dBv , 0, 1− dBv ]

dBv = 0

dB2 = −2pvδ2 + 2δ2 + 2pvδ − 6δ + 4
(2− δ(1 + pv))2 s2 + p2

vδ
2 − δ2 − 2pvδ + 2δ
(2− δ(1 + pv))2

dB1 = −16δ + 10δ2 + 2pvδ4 + 2p3
vδ

3 − 10pvδ3 − 2p2
vδ

2

(2− δ(1 + pv))3 s1 + ...

+16pvδ2 + 2δ3p2
v + 8− 2δ3 − 2p3

vδ
4 − 8pvδ

(2− δ(1 + pv))3 s1 + ...

+2pvδ2 − 4p2
vδ

2 − 6pvδ3 − 4p2
vδ

4 + 4pvδ2 + 8p2
vδ

3 − 2p3
vδ

3 − 2p3
vδ

4

(2− δ(1 + pv))3 s2 + ...

+4δ − 4pvδ − 2pvδ4 − 4δ2 − 5δ3p2
v + 7pvδ3 − 3p3

vδ
3 + δ3 + 8p2

vδ
2 − 4pvδ2 + 2p3

vδ
4

(2− δ(1 + pv))3

• CASE C:
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s1 < 1− 2−δ(1−pv)
2−δ;(1+pv)s2; s1 <

−2δ3p2
v+p3

vδ
3+pvδ

3+δ2+p2
vδ

2−2pvδ
2−4δ+4

(pvδ−δ+2)(pvδ−1)(−2+pv+pvδ) s2+ −pvδ
3−2p2

vδ
2+p3

vδ
3+2pvδ

2

(pvδ−δ+2)(pvδ−1)(−2+pv+pvδ)

xv =


[1− dC2 , dC2 , 0]

[1− dC2 , 0, dC2 ]

w/ Pr = µCv

w/ Pr = 1− µCv

,x1 = [dCv , 1− dCv , 0],x2 = [dCv , 0, 1− dCv ]

dCv = 0

dC1 = dC2 = −2pvδ2 + 2δ2 + 2pvδ − 6δ + 4
(2− δ(1 + pv))2 s2 + p2

vδ
2 − δ2 − 2pvδ + 2δ
(2− δ(1 + pv))2

µCv = (−3p2
vδ

2 + 3pvδ2 − 3δ − 3pvδ + 6)s1
2(−2 + δ + pvδ)δdC2

+ (3p2
vδ

2 − 3pvδ2 + 3δ + 3pvδ − 6)s2
2(−2 + δ + pvδ)δdC2

+ . . .

+δ2dC2 pv + δ2dC2 − 2δdC2
2(−2 + δ + pvδ)δdC2

• CASE D: s1 ≥ 1− 2−δ(1−pv)
2−δ(1+pv)s2; s1 <

2pvδ
2+10δ−8−3δ2−2pvδ+p2

vδ
2

(2−δ(1+pv))(1−pv)δ s2 + 4−4pvδ−4δ+δ2+p2
vδ

2+2pvδ
2

(2−δ(1+pv))(1−pv)δ

xv =


[1− dD2 , dD2 , 0]

[1− dD2 , 0, dD2 ]

w/ Pr = µDv

w/ Pr = 1− µDv

,x1 = [dDv , 1− dDv , 0],x2 = [dDv , 0, 1− dDv ]

dDv = sv −
2pvδ

2− (1 + pv)δ
s2

dD1 = dD2 = δ(1− pv)
2− δ(1 + pv)

s1 + 2− δ(1− pv)
2− δ(1 + pv)

s2

µDv = (−3p2
vδ

2 + 3pvδ2 − 3δ − 3pvδ + 6)s1
2(−2 + δ + pvδ)δdD2

+ (3p2
vδ

2 − 3pvδ2 + 3δ + 3pvδ − 6)s2
2(−2 + δ + pvδ)δdD2

+ . . .

+δ2dD2 pv + δ2dD2 − 2δdD2
2(−2 + δ + pvδ)δdD2

where µCv and µDv are the probabilities that the veto player coalesces with non-veto 1 in

cases C, and D respectively. These are well defined probability in [0,1] such that dC1 = dC2

and dD1 = dD2 , or such that s1 + δv1(s, µv, d2) = s2 + δv2(s, µv, d2) .

It is tedious but straightforward to show that these equilibrium strategies and the asso-

ciated value functions are part of a symmetric MPE, using the same strategy employed in

the proof of Proposition 1. �
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Proof of Proposition 7

In this case an allocation is s = [sv1, sv2, s1, s2], where svi, i = 1, 2, denote the share to a veto

player and sj, j = 1, 2, denote the share to a non-veto player. In the remainder of the proof,

we focus on the allocations in which s1 ≥ s2 and sv1 ≥ sv2. The other cases are symmetric.

The equilibrium I characterize is similar to the one from Proposition 1 and the steps behind

the proof are the same. In particular, we partition the state space into regions where the veto

proposer mixes or not between coalition partners and regions where the “demand” of a veto

player to the proposal of a non-veto (as defined in the proof of Proposition 1) is bounded

at zero. Since there are two veto players we have 6 regions, 3 where the veto proposers do

not mix and three where they do (in order to keep the demand of the two non-veto players

equal). The three regions with no mixing are characterized by A) dv1 ≥ dv2 > 0; B) dv1 > 0

and dv2 = 0; and C) dv1 = dv2 = 0. In these regions, a veto proposer coalesces with non-veto

player 2 with probability 1. The remaining three regions are analogous with the difference

that the veto proposer coalesces with non-veto player 1 with probability µ ∈ [0, 1].

Consider the following equilibrium proposal strategies (all supported by a minimal win-

ning coalition) and demands (as defined in the proof of Proposition 1):

49



• CASE A: sv1 ≥ sv2 ≥ δ(δ3−36δ2+72δ−32)
2(3δ2−10δ+8)(δ2+6δ−8)s2; s1 ≥ 2(4−5δ+δ2)

δ2−10δ+8 s2

xv1 = [1− dAv2 − dA2 , dAv2, 0, dA2 ],xv2 = [dAv1, 1− dAv1 − dA2 , 0, dA2 ]

x1 = [dAv1, d
A
v2, 1− dAv1 − dAv2, 0],x2 = [dAv1, d

A
v2, 0, 1− dAv1 − dAv2]

dAv1(v) = sv1 + 4δ(1− δ)
16− 16δ + 3δ2 s1 + (3δ5 − 9δ4 + 72δ3 − 248δ2 + 320δ − 128)δ

(−4 + 3δ)(δ − 4)(δ2 + 6δ − 8)(δ − 2)
s2

dAv1(nv) = sv1 −
δ(δ3 − 36δ2 + 72δ − 32)

2(3δ2 − 10δ + 8)(δ2 + 6δ − 8)
s2

dAv2(v) = sv2 + 4δ(1− δ)
16− 16δ + 3δ2 s1 + (3δ5 − 9δ4 + 72δ3 − 248δ2 + 320δ − 128)δ

(−4 + 3δ)(δ − 4)(δ2 + 6δ − 8)(δ − 2)
s2

dAv2(nv) = sv2 −
δ(δ3 − 36δ2 + 72δ − 32)

2(3δ2 − 10δ + 8)(δ2 + 6δ − 8)
s2

dA2 = δ

4− 3δ s1 + 4δ3 + 48δ − 18δ2 − 32
3δ3 + 14δ2 − 48δ + 32

s2

dA1 = −δ
7 − 62δ5 + 5δ6 − 72δ4 + 736δ3 + 3072δ − 3264δ2 − 1024

(32− 56δ + 32δ2 − 7δ3 + δ4)(−4 + 3δ)(δ2 + 6δ − 8)
s1 + ...

− 4δ7 − 752δ4 − 58δ6 + 330δ5 − 256δ2 + 736δ3

(32− 56δ + 32δ2 − 7δ3 + δ4)(−4 + 3δ)(δ2 + 6δ − 8)
s2
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• CASE B: sv1 ≥ δ(δ3−36δ2+72δ−32)
2(3δ2−10δ+8)(δ2+6δ−8)s2 ≥ sv2; s1 ≥ 2(4−5δ+δ2)

δ2−10δ+8 s2

xv1 = [1− dBv2 − dB2 , dBv2, 0, dB2 ],xv2 = [dBv1, 1− dBv1 − dB2 , 0, dB2 ]

x1 = [dBv1, d
B
v2, 1− dBv1 − dBv2, 0],x2 = [dBv1, d

B
v2, 0, 1− dBv1 − dBv2]

dBv1(v) = sv1 + δ(18δ6 − 428δ4 + 816δ3 + 384δ2 − 1792δ + 1024)
4(−4 + 3δ)2(δ + 4)(δ − 2) s1 + ...

+δ(21δ6 − 80δ5 − 108δ4 + 1296δ3 − 3136δ2 + 3072δ − 1024)
4(−4 + 3δ)2(δ + 4)(δ − 2) s2 + ...

+δ(18δ6 − 284δ4 + 864δ3 − 1088δ2 + 512δ)
4(−4 + 3δ)2(δ + 4)(δ − 2) sv1 + . . .

+δ(284δ4 + 1088δ2 − 512δ − 18δ6 − 864δ3)
4(−4 + 3δ)2(δ + 4)(δ − 2)

dBv1(nv) = sv1 −
δ(−22δ2 − 32 + 48δ + 3δ3)
(−4 + 3δ)2(δ + 4)(δ − 2) s1 −

(−8δ + 2δ2 + 2δ3)δ
(−4 + 3δ)2(δ + 4)(δ − 2)s2 + ...

−(−22δ2 − 32 + 48δ + 3δ3)δ
(−4 + 3δ)2(δ + 4)(δ − 2) sv1 −

(32− 48δ − 3δ3 + 22δ2)δ
(−4 + 3δ)2(δ + 4)(δ − 2)

dBv2(v) = sv2 + δ(18δ6 − 428δ4 + 816δ3 + 384δ2 − 1792δ + 1024)
4(−4 + 3δ)2(δ + 4)(δ − 2) s1 + ...

δ(21δ6 − 80δ5 − 108δ4 + 1296δ3 − 3136δ2 + 3072δ − 1024)
4(−4 + 3δ)2(δ + 4)(δ − 2) s2 + ...

+δ(18δ6 − 284δ4 + 864δ3 − 1088δ2 + 512δ)
4(−4 + 3δ)2(δ + 4)(δ − 2) sv2 + . . .

+δ(284δ4 + 1088δ2 − 512δ − 18δ6 − 864δ3)
4(−4 + 3δ)2(δ + 4)(δ − 2)

dBv2(nv) = 0

dB2 = −16δ2 − 5δ4 + 6δ5 − 16δ3

(−4 + 3δ)2(δ + 4) s1 −
−576δ + 400δ2 + 256− 25δ4 + 7δ5 − 64δ3

(−4 + 3δ)2(δ + 4) ss + ...

−14δ4 + 6δ5 − 28δ3 + 96δ2 − 64δ
(−4 + 3δ)2(δ + 4) sv1 −

−6δ5 + 64δ + 14δ4 − 96δ2 + 28δ3

(−4 + 3δ)2(δ + 4)

dB1 = − 44544δ2 + 8320δ4 + 784δ5 + 8192− 30720δ
(32− 56δ + 32δ2 − 7δ3 + δ4)(δ + 4)(−4 + 3δ)3 s1 + ...

− −30336δ3 − 47δ8 + 6δ9 − 1016δ6 + 265δ7

(32− 56δ + 32δ2 − 7δ3 + δ4)(δ + 4)(−4 + 3δ)3 s1 + ...

−−2048δ + 8192δ2 + 10624δ4 − 4160δ5 − 13184δ3 − 74δ8 + 7δ9 + 412δ6 + 227δ7

(32− 56δ + 32δ2 − 7δ3 + δ4)(δ + 4)(−4 + 3δ)3 s2 + ...

−−492δ6 + 4640δ4 − 656δ5 − 8320δ3 + 6656δ2 − 2048δ − 56δ8 + 6δ9 + 262δ7

(32− 56δ + 32δ2 − 7δ3 + δ4)(δ + 4)(−4 + 3δ)3 sv1 + ...

−−6δ9 + 2048δ + 8320δ3 + 492δ6 − 6656δ2 − 4640δ4 − 262δ7 + 656δ5 + 56δ8

(32− 56δ + 32δ2 − 7δ3 + δ4)(δ + 4)(−4 + 3δ)3
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• CASE C: δ(δ3−36δ2+72δ−32)
2(3δ2−10δ+8)(δ2+6δ−8)s2 ≥ sv1 ≥ sv2; s1 ≥ 2(4−5δ+δ2)

δ2−10δ+8 s2

xv1 = [1− dCv2 − dC2 , dCv2, 0, dC2 ],xv2 = [dCv1, 1− dCv1 − dC2 , 0, dC2 ]

x1 = [dCv1, d
C
v2, 1− dCv1 − dCv2, 0],x2 = [dCv1, d

C
v2, 0, 1− dCv1 − dCv2]

dCv1(v) = sv1

(
1 + δ(−36δ3 + 240δ2 − 448δ + 256)

8(−4 + 3δ)2(δ − 4)

)
+ δ(9δ4 − 54δ3 + 8δ2 + 160δ − 128)

8(−4 + 3δ)2(δ − 4) s1 + ...

δ(12δ4 − 134δ3 + 368δ2 − 384δ + 128)
8(−4 + 3δ)2(δ − 4) s2 + δ(−9δ4 − 104δ2 + 54δ3 + 64δ)

8(−4 + 3δ)2(δ − 4)
dCv1(nv) = 0

dCv2(v) = sv2

(
1 + δ(−36δ3 + 240δ2 − 448δ + 256)

8(−4 + 3δ)2(δ − 4)

)
+ δ(9δ4 − 54δ3 + 8δ2 + 160δ − 128)

8(−4 + 3δ)2(δ − 4) s1 + ...

δ(12δ4 − 134δ3 + 368δ2 − 384δ + 128)
8(−4 + 3δ)2(δ − 4) s2 + δ(−9δ4 − 104δ2 + 54δ3 + 64δ)

8(−4 + 3δ)2(δ − 4)
dCv2(nv) = 0

dC2 = − 3δ3 − 4δ2

2(−4 + 3δ)2 s1 −
4δ3 − 28δ2 + 56δ − 32

2(−4 + 3δ)2 s2 −
−3δ3 + 10δ2 − 8δ

2(−4 + 3δ)2

dC1 = −3δ7 − 1024− 4160δ2 + 2544δ3 − 824δ4 + 3328δ − 25δ6 + 160δ5

2(−4 + 3δ)2(32− 56δ + 32δ2 − 7δ3 + δ4)
s1 + ...

−4δ7 − 56δ6 + 308δ5 + 256δ − 896δ2 + 1232δ3 − 848δ4

2(−4 + 3δ)(32− 56δ + 32δ2 − 7δ3 + δ4)2 s2 + ...

−−256δ + 768δ2 + 544δ4 − 174δ5 + 31δ6 − 3δ7 − 912δ3

2(−4 + 3δ)2(32− 56δ + 32δ2 − 7δ3 + δ4)

• CASE D: sv1 ≥ sv2 ≥ δ(δ3−36δ2+72δ−32)
2(3δ2−10δ+8)(δ2+6δ−8)s2; s1 <

2(4−5δ+δ2)
δ2−10δ+8 s2

xv1 =


[1− dD2 − dDv2, d

D
v2, d

D
2 , 0]

[1− dD2 − dDv2, d
D
v2, 0, dD2 ]

w/ Pr = µDv

w/ Pr = 1− µDv

xv2 =


[dDv1, 1− dD2 − dDv1, d

D
2 , 0]

[dDv1, 1− dD2 − dDv1, 0, dD2 ]

w/ Pr = µDv

w/ Pr = 1− µDv

x1 = [dDv1, d
D
v2, 1− dDv1 − dDv2, 0],x2 = [dDv1, d

D
v2, 0, 1− dDv1 − dDv2]

dDv1 = dAv1

dDv2 = dAv2

dD1 = dD2 = dA2
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• CASE E: sv1 ≥ δ(δ3−36δ2+72δ−32)
2(3δ2−10δ+8)(δ2+6δ−8)s2 ≥ sv2; s1 <

2(4−5δ+δ2)
δ2−10δ+8 s2

xv1 =


[1− dC2 − dCv2, d

C
v2, d

C
2 , 0]

[1− dC2 − dCv2, d
C
v2, 0, dC2 ]

w/ Pr = µEv

w/ Pr = 1− µEv

xv2 =


[dCv1, 1− dC2 − dCv1, d

C
2 , 0]

[dCv1, 1− dC2 − dCv1, 0, dC2 ]

w/ Pr = µEv

w/ Pr = 1− µEv

x1 = [dAv1, d
A
v2, 1− dAv1 − dAv2, 0],x2 = [dAv1, d

A
v2, 0, 1− dAv1 − dAv2]

dEv1 = dBv1

dEv2 = dBv2

dC1 = dC2 = dB2

• CASE F: δ(δ3−36δ2+72δ−32)
2(3δ2−10δ+8)(δ2+6δ−8)s2 ≥ sv1 ≥ sv2; s1 <

2(4−5δ+δ2)
δ2−10δ+8 s2

xv1 =


[1− dF2 − dFv2, d

F
v2, d

F
2 , 0]

[1− dF2 − dFv2, d
F
v2, 0, dF2 ]

w/ Pr = µFv

w/ Pr = 1− µFv

xv2 =


[dFv1, 1− dF2 − dFv1, d

F
2 , 0]

[dFv1, 1− dF2 − dFv1, 0, dF2 ]

w/ Pr = µFv

w/ Pr = 1− µFv

x1 = [dFv1, d
F
v2, 1− dFv1 − dFv2, 0]

x2 = [dFv1, d
F
v2, 0, 1− dFv1 − dFv2]

dFv1 = dCv1

dFv2 = dCv2

dF1 = dF2 = dC2

where µJv ,is the probability that a veto proposer coalesces with non-veto 1 in case J ,

dJvi(v) is the demand of veto player i when the proposer is the other veto in case J , and

dJvi(nv) is the demand of veto player i when the proposer is a non-veto in case J . Notice
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that µJv are well defined probability in [0,1] such that di1 = di2, i = D,E, F , or such that

s1 + δv1(s, µv, d2) = s2 + δv2(s, µv, d2) .It is tedious but straightforward to show that these

equilibrium strategies and the associated value functions are part of a symmetric MPE,

using the same strategy employed in the proof of Proposition 1. In particular, the crucial

steps will be 1) showing that in the absorbing set where one non-veto player receives zero,

the expected utility of all agents are weakly increasing in their current allocation (the main

passage in proving that the proposed proposals are optimal among all minimal winning

coalition proposal), and 2) showing that the sum of the demands of a minimal winning

coalition is always weakly smaller than 1 (meaning that there always exists a minimal winning

coalition proposal that makes the proposer at least as well off as he is in a status quo where

everyone has a positive share). �

Proof of Proposition 8

By assumption, we are restricting the set of possible legislative outcomes to allocations on

the edges of the simplex, i.e. to s ∈ ∆2. I focus on allocations where s1 ≥ s2 ≥ s3 = 0

(the other cases being symmetric). Since the endowment is 1 and s3 = 0, we can reduce

the problem to one dimension replacing s2 = 1 − s1 and focusing on allocations where

s1 ≥ 1/2. Consider the proposal and voting strategies that would be part of an equilibrium

with perfectly impatient agents: each agent, when proposing, tries to maximize his current

allocation (i.e. he proposes the “acceptable” allocation, x ∈ W (s), that give him the greatest

share) and each agent votes yes to any proposal that gives him as much as he gets in the

status quo. I want to show that these strategies and the associated value functions are part

of an equilibrium even when agents are patient. First of all, consider the allocations in the

absorbing set s ∈ ∆1 where one agent gets the whole dollar. Denote with V 0 the continuation

value from an allocation s ∈ ∆1 where the agent gets nothing, and V 1 the continuation value

from an allocation s ∈ ∆1 where the agent gets the whole dollar. We can derive V 0 and V 1,
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using the transition probabilities discussed in Section 5.3:

V 1 = 5
9(1 + δV 1) + 4

9(0 + δV 0)

V 0 = 7
9(0 + δV 0) + 2

9(1 + δV 1)

=⇒ V 1 = 5− 3δ
3(3− 4δ + δ2)

=⇒ V 0 = 2
3(3− 4δ + δ2)

Using these continuation values, the probability of being selected as veto and as proposer,

and the conjectured strategies discussed in Section 5.3, we can derive the continuation values

for any allocation s ∈ ∆2. It is tedious but straightforward to verify that the value functions

are as follows:

• CASE A: s1 ≥ 134δ4+7371δ2−1665δ3+6561−12393δ
27(δ2+3−4δ)(8δ2−99δ+162)

vA1 (s) = − −4374δ + 2790δ2 + 39δ4 + 2187− 642δ3

3(δ − 1)(δ − 3)(13δ3 − 207δ2 + 729δ − 729)
s1 + . . .

− 1458− 100δ3 − 1620δ + 630δ2

3(δ − 1)(δ − 3)(13δ3 − 207δ2 + 729δ − 729)

vA2 (s) = 39δ4 − 696δ3 − 5508δ + 2916 + 3249δ2

3(δ − 1)(δ − 3)(13δ3 − 207δ2 + 729δ − 729)
s1 + . . .

−39δ4 − 4374 + 7047δ + 743δ3 − 3753δ2

3(δ − 1)(δ − 3)(13δ3 − 207δ2 + 729δ − 729)

vA3 (s) = −108δ2 + 81δ + 27δ3

3(δ − 1)(δ − 3)(13δ3 − 207δ2 + 729δ − 729)
s1 + . . .

+ −85δ3 + 243δ + 243δ2 − 729
3(δ − 1)(δ − 3)(13δ3 − 207δ2 + 729δ − 729)

dA1 = 35δ4 − 1998δ3 + 8424δ2 − 13122δ + 6561
81(δ2 + 3− 4δ)(δ2 − 15δ + 27)

s1 + −53δ4 + 126δ3 − 81δ2

81(δ2 + 3− 4δ)(δ2 − 15δ + 27)
dA2 = s2

dA3 = 0
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• CASE B: s1 <
134δ4+7371δ2−1665δ3+6561−12393δ

27(δ2+3−4δ)(8δ2−99δ+162)

vB1 (s) = −24δ4 − 393δ3 + 1746δ2 − 2835δ + 1458
3(δ − 1)(δ − 3)δ(8δ2 − 99δ + 162)

s1 −
−10δ3 − 207δ2 − 729 + 810δ

3(δ − 1)(δ − 3)δ(8δ2 − 99δ + 162)

vB2 (s) = 24δ4 − 393δ3 + 1746δ2 − 2835δ + 1458
3(δ − 1)(δ − 3)δ(8δ2 − 99δ + 162)

s1 + −24δ4 + 403δ3 − 1539δ2 + 2025δ − 729
3(δ − 1)(δ − 3)δ(8δ2 − 99δ + 162)

vB3 (s) = − 2(7δ2 − 27)
(δ − 1)(δ − 3)δ(8δ2 − 99δ + 162)

µB3 = −216δ4 − 3537δ3 + 15714δ2 − 25515δ + 13122
2(52δ3 + 207δ2 − 972δ + 729)δ

s1 + . . .

−−134δ4 + 1665δ3 − 7371δ2 + 12393δ − 6561
2(52δ3 + 207δ2 − 972δ + 729)δ

dB1 = dB2 = s2

dB3 = 0

where µB3 is the probability that legislator 3 chooses legislator 1 as coalition partner

when he is both the proposer and the veto player. The difference between Case A and

Case B lies in whether the legislator who receives zero in the status quo mixes between

coalition partners or not (when he is both the proposer and the veto player). As discussed

in Section 5.3, when the other two legislators have similar allocations, coalescing always

with the “poorer” one would not constitute an equilibrium because, for some states, the

“richer” legislator would be “cheaper”. When legislator 3 uses pure strategies and always

coalesces with legislator 2, legislator 1 demands more than legislator 2 as long as s2 ≤

d1 + δv2(1− d1) (or s1 + δv1 = s2 + δv2). This gives us the boundary between the two cases,

s1 ≥ 134δ4+7371δ2−1665δ3+6561−12393δ
27(δ2+3−4δ)(8δ2−99δ+162) .

Lemma 7. Consider a symmetric Markov Perfect strategy profile with expected utility

Ui(s), s ∈ ∆2, determined by the continuation values above. Then, for all x = (x, 1−x, 0) ∈

∆2, U1(x) does not decrease with x, while U2(x) does not increase with x.
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Proof. Denote x̂ = 134δ4+7371δ2−1665δ3+6561−12393δ
27(δ2+3−4δ)(8δ2−99δ+162) . Then we have:

U1(x, 1− x, 0) =



1 + δ 5−3δ
3(3−4δ+δ2)

x+ δvA1 (s1 = x)

x+ δvB1 (s1 = x)

x+ δvB2 (s1 = 1− x)

x+ δvA2 (s1 = 1− x)

δ 2
3(3−4δ+δ2)

if x = 1

if x ∈ (x̂, 1)

if x ∈ (1/2, x̂)

if x ∈ (1− x̂, 1/2)

if x ∈ (0, 1− x̂)

if x = 0

Notice that we have ∂U1(x)
x

> 0 for all pieces of the function and for any δ ∈ [0, 1).

Symmetry completes the proof for U2(x).

The optimality of the conjectured proposal and voting strategies for states s ∈ ∆2 follows

from the monotonicity established in Lemma 6. �

Non-Markov Equilibria

I propose strategy profiles such that the initial allocation can be supported as the outcome

of a Subgame Perfect Nash Equilibrium (SPNE) and, thus, there is no convergence to full

expropriation by the veto player. This SPNE exists as long as the discount factor is high

enough and the two non-veto players receive enough. In particular, I want to prove that:

Proposition 9. For any s ∈ ∆ such that minj=1,2 sj ≥ 1/4 , there is a δ(s) such that

for δ > δ(s) the initial division of the dollar can be supported as the outcome of a Subgame

Perfect Nash Equilibrium of the game.

The idea behind the proof is the following: if a non-veto player accepts a proposal

that expropriates the other non-veto player, we switch to a punishment phase in which we

reverse to the MPE characterized above. The discount factor needed to support this outcome

depends on the share granted to the two non-veto legislators at the beginning of the game:
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the lower the allocation an agent receives in the initial status quo, the more profitable a

deviation.

Proof. To support the initial allocation s0 as the outcome of a Subgame Perfect Nash

Equilibrium, employ the following strategy configuration:

1. whenever a member is recognized, he proposes the status quo allocation s0 and everyone

supports it;

2. if a proposer deviates by proposing z 6= s0, every non-veto player j votes against the

proposal;

3. if a non-veto player j deviates by voting contrary to the strategies above, from the

following period on we reverse to the MPE equilibrium proposal and voting strategies

characterized in Section 3.

The strategies for the punishment phase are clearly a SPNE as shown in the proof of

Proposition 1 (MPE being one of the many SPNEs of this game). We need to show that,

under certain conditions on s0 and δ, the non-veto players have no profitable deviation from

the equilibrium strategy on the equilibrium path. The payoff to a non-veto player if she

follows the equilibrium strategy is:

V j
EQ(s) = sj

1− δ

The payoff to deviating and proposing or voting in favor an allocation z 6= s0 is given by:

V j
DEV (x) = xj + δvjMPE(x)

where vjMPE(x) is the value function from the MPE characterized in the proof of Proposition

1. The most profitable deviation when proposing is a proposal that assigns the whole dollar

to oneself (if this is in the acceptance set of the veto player). Similarly, the most profitable
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deviation when voting is to accept a veto player’s proposal that assigns the whole dollar to

oneself. In both cases the expected utility from the deviation is as follows (assuming the

deviator is agent 2):

V j
DEV (0, 1, 0) = 1 + δ

3− 3δ + δ2

(3− δ)2(1− δ)

When is the payoff from the equilibrium strategies higher than the payoff from the most

profitable deviation?

sj
1− δ ≥ 1 + δ

3− 3δ + δ2

(3− δ)2(1− δ)

sj ≥
(3− 2δ)2

(3− δ)2

Since this condition has to hold for both non-veto players, we conclude that an equilibrium

where the initial status quo is never changed can be supported by a SPNE if the following

condition holds:

min
i=1,2

s0
i ≥

(3− 2δ)2

(3− δ)2

The right-hand side is a linear and decreasing function of δ, and it is equal to 1 when δ = 0

and to 1/4 when δ = 1. This means that there exists a discount factor for which the proposed

strategies can support the initial status quo allocation forever, only as long both non-veto

player have at least 1/4 of the dollar each at the beginning of the game. �
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