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Abstract. We consider a random utility model of strategic network formation, where we

derive a tractable approximation to the distribution of network links using many-player

asymptotics. Our framework assumes that agents have heterogeneous tastes over links, and

allows for anonymous and non-anonymous interaction effects among links. The observed

network is assumed to be pairwise stable, and we impose no restrictions regarding selection

among multiple stable outcomes. Our main results concern convergence of the link frequency

distribution from finite pairwise stable networks to the (many-player) limiting distribution.

The set of possible limiting distributions is shown to have a fairly simple form and is charac-

terized through aggregate equilibrium conditions, which may permit multiple solutions. We

analyze identification of link preferences and propose a method for estimation of preference

parameters. We also derive an analytical expression for agents’ welfare (expected surplus)

from the structure of the network.
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1. Introduction

Network models can be used to describe systems of contracts, transactions, and other

formal or informal relationships between economic agents. In many economic contexts, the

incentives to form new network connections exhibit strategic interdependencies across links.

In models of trust and social capital, risky exchanges may be secured through transactions

with third parties (see e.g. Jackson, Rodriguez-Barraquer, and Tan (2012), Ambrus, Mobius,

and Szeidl (2014), Gagnon and Goyal (2016)) which may help with screening, monitoring, and

enforcement of an agreement. When networks provide access to information, link formation

incentives depend crucially on how a signal is transmitted through that network (see Calvó-

Argmengol (2004) and Calvó-Armengol and Jackson (2004)). For example, an agent may

obtain more widely sourced information through a more central nodes, but may at the

same time have to compete with a larger number of network neighbors for access to that

information. For friendship networks, Currarini, Jackson, and Pin (2009) formulate a model
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for racial segregation with homophilous preferences, where agents choose endogenously how

much effort to spend on searching for potential friends. For theoretical or empirical models

of peer effects or social coordination, for example in the decision to smoke or engage in other

types of risky behavior among high school students, the friendship network often has to be

regarded as endogenous with respect to the relevant outcome if that activity itself plays

a significant role in agents’ social life, or the decision depends on unobservables that may

also influence friendship formation (see e.g. Goyal and Vega-Redondo (2005), Goldsmith-

Pinkham and Imbens (2012), and Badev (2016)). Strategic incentives of this type may or

may not lead to formation of the most beneficial links in terms of aggregate welfare or a social

planner’s objective. In either case, distinguishing “strategic” externalities from “intrinsic”

preferences for forming social or economic relationships are of immediate policy relevance.

This paper proposes a canonical empirical framework for models of network formation

which allows to translate premises and predictions of (typically more stylized) theoretical

models into testable hypotheses. Specifically, we consider a random utility model where

network links are undirected and discrete, and link preferences may depend on agents’ ex-

ogenous attributes and (endogenous) position in the network. To frame ideas, a parametric

model could specify a net payoff to agent i from establishing a link to agent j that depends

on either node’s exogenous attributes xi, xj, the respective number of agents si, sj either

node is directly connected to, and an indicator tij whether i and j have another network

neighbor in common. The incremental benefit to i from forming such a link could then be

of the form

Uij = x′iβ1 + x′jβ2 + |xi − xj |′β3 + γ1si + γ2sj + δtij + ηij

where ηij an idiosyncratic shock to i’s preferences of forming a link to j. These random

utilities could be regarded as continuation values or “reduced form” payoffs from economic

activity on the resulting network, reflecting strategic motives of the kind discussed at the

beginning of this introduction. Our framework allows for more general payoffs depending

on exogenous and endogenous characteristics, and assumes that the observable network is

pairwise stable (Jackson and Wolinsky (1996)), where a link ij forms if and only if the

incremental benefit of that link to either node exceeds the cost of maintaining that link.

Pairwise stability is the default solution concept for models strategic network formation

in economics (see e.g. Jackson (2008)) and imposes only minimal requirements on agents’

strategic sophistication. The main technical challenges in estimating a model of this form is

that the variables si, sj, tij are a function of the network graph, and therefore endogenous to

the network formation model.

The main theoretical result is a tractable approximation to the resulting distribution(s)

over networks, assuming that the number of nodes (agents) in the network is large. Our

analysis identifies the relevant aggregate state variables that characterize equilibrium and
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interdependence of individual link formation decisions, and shows how to use (many-agent)

limiting approximations to simplify the representation of the network in terms of these vari-

ables. We derive a sharp characterization of the set of link distributions that can be generated

by pairwise stable networks. With strategic interaction effects between links, this set is in

general not a singleton. Based on this limiting approximation we then propose strategies

for estimation and inference regarding the model parameters. We also derive an analytical

limiting expression for the expected surplus to the agent of forming the links of the pairwise

stable network - in particular, when preferences depend only on exogenous node attributes,

expected surplus for a given node equals the expected number of its network neighbors.

That characterization of surplus can be used to analyze incentives for participating in net-

work formation or exerting effort searching for potential friends (as in the model of Currarini,

Jackson, and Pin (2009)), as well as welfare analysis for policy interventions that affect the

shape of the network.

The asymptotic approximation is obtained by embedding the finite-player network cor-

responding to the observable data into a sequence of network formation models with an

increasing number of agents. Using statistical approximation techniques, we derive the limit

for the distribution of links along that sequence. The primary motivation for many-agent

asymptotics in the network model is to arrive at a tractable model that does not require an

explicit account for certain interdependencies that are not of first order in the limiting exper-

iment. In particular, the limiting sequence considered has the following qualitative features:

(1) each agent can choose from a large number of possible link formation opportunities, and

(2) similar agents face similar choices, at least as measured by the inclusive values corre-

sponding to link opportunity sets. (3) By construction, additional links become increasingly

costly along the asymptotic sequence, so that the resulting network remains sparse. (4)

The limiting distribution of links resulting from pairwise stable network formation need in

general not be unique. Rather, a given realization of payoffs may support multiple pair-

wise stable networks that differ qualitatively both in terms of global, aggregate features, as

well as locally in assigning nodes different roles under alternative equilibria. The limiting

sequence does not impose any additional qualitative constraints on agents’ incentives for

forming network links.

Our approach incorporates some qualitative insights on many-agent limits of game-theoretic

models and matching markets from Menzel (2016), Dagsvik (2000), and Menzel (2015).

However the main new technical challenges in analyzing large networks cannot be addressed

using the formal tools developed in these papers. Most importantly, many realistic models

of strategic externalities in link formation need to allow for strong (statistical) dependence

across the entire network. The limiting arguments developed in this paper (most impor-

tantly Lemma 4.1) relying on symmetric (exchangeable), rather than weak dependence are
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to my knowledge entirely new and may serve as a blueprint for limiting arguments in large

games beyond the context of networks. Furthermore, in a network formation problem with

link externalities, non-uniqueness of stable outcomes results in a non-singleton set of limiting

distributions, adding conceptual difficulties in taking many-player limits. In contrast, the

structure of the matching problem in Menzel (2015) was shown to imply weak dependence

of matching outcomes and resulted in a unique limiting distribution.

Literature. A powerful and convenient formal framework for describing networks are expo-

nential random graph models (ERGM) that treat links as conditionally independent random

variables. Mathematical properties of ERGM are by now fairly well understood, and some

fairly general results on estimation and large-sample theory are already available.1 For strate-

gic models of network formation, strategic interdependence between link formation decisions

typically leads to stochastic dependence between links and can therefore in general not be

represented as ERGM. Also, network data often exhibit clustering and degree heterogeneity

in excess of levels compatible with the standard ERGM. One approach to accommodate

this empirical regularity into econometric models of link formation is to allow for prefer-

ential attachment and unobserved heterogeneity in the propensity of a node to form links

(see Graham (2014) and Dzemski (2014)). As an alternative, the model may directly in-

corporate (endogenous) network attributes - including degree centrality or network distance

- as determinants of the link probability in a generalized ERGM. Here Chandrasekhar and

Jackson (2016) develop a flexible approach to match not only pairwise frequencies, but also

subgraph counts involving three or more nodes. Our framework differs from these papers in

that we characterize the network formation process using link preferences that may depend

directly on endogenous network attributes. This introduces a strategic element into the

model which in some cases produces interdependencies of link formation decisions between

“distant” nodes, and typically yields a multiplicity of stable network outcomes. In partic-

ular, Chandrasekhar and Jackson (2016)’s assumption that subnetworks of certain types

form independently is not generally consistent with pairwise stability under preferences that

exhibit strategic interdependencies between different links. Lovasz (2012) showed how to

characterize a finite network graph as a sample from a continuous limiting object. However

when the graph is the result of strategic decisions by the agents associated with the (finitely

many) nodes, the relationship between features of the descriptive limiting “graphon” to sta-

ble, “structural” features of an underlying population is generally not transparent or even

well-defined, especially if the network formation model admits multiple stable outcomes.

1See e.g. Frank and Strauss (1986), Wasserman and Pattison (1996), Bickel, Chen, and Levina (2011), or
Snijders (2011) for a survey. Jackson and Rogers (2007) analyze characteristics of large networks of homoge-
neous agents that result from a sequential random meeting process where links may be added “myopically”
at each step.
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Most existing approaches to structural estimation rely heavily on simulation methods - this

includes Hoff, Raftery, and Handcock (2002), Christakis, Fowler, Imbens, and Kalyanara-

man (2010), Mele (2012), Sheng (2014), and Leung (2016) - whereas our approach focusses

on analytic characterizations of pairwise stable networks. Instead of considering the joint

distribution of the adjacency matrix or larger local “neighborhoods” within the network

(as considered by Sheng (2014), de Paula, Richards-Shubik, and Tamer (2014) or Graham

(2012)), we argue that it is typically sufficient for estimation to consider the frequencies of

links between pairs of nodes (dyads) with a given combination of exogenous attributes and

endogenous network characteristics. Our analysis differs from de Paula, Richards-Shubik,

and Tamer (2014) in that our limiting model is constructed as a limiting approximation to a

finite network, whereas their model assumes a continuum of players. Furthermore, we model

link preferences as non-anonymous in the finite network, and therefore have to character-

ize explicitly how subnetworks interact with the full network through link availability and

strategic interaction effects with neighboring nodes. Our asymptotic approximations allow

to characterize that dependence using aggregate state variables that satisfy certain equilib-

rium conditions in order for the network to be pairwise stable. Boucher and Mourifié (2012)

give conditions for weak dependence of network links under increasing domain asymptotics,

whereas our approach can be thought of as “infill” asymptotics where link frequencies be-

tween distant nodes are non-trivial under any metric on the space of node characteristics. A

concurrent paper by Leung (2016) gives conditions under which strategic interaction effects

remain limited to subnetworks of finite size as the number of nodes grows large. Our ap-

proach does allow for long-range dependence of arbitrary strength, and relies on symmetry

and exchangeability arguments instead.

The remainder of the paper is organized as follows: we first describe the economic model,

including alternative solution concepts. Section 3 defines the limiting model, and section 4

gives formal results regarding convergence to that limit. Section 5 discusses strategies for

identification and estimation based on that representation, and gives an analytical charac-

terization of agents’ welfare (expected surplus) from the structure of the network. Section 6

gives an outline of the main formal steps for the convergence argument. Section 7 presents

a Monte Carlo study illustrating the theoretical convergence results.

2. Model Description

The network consists of a set of n agents (“nodes” or “vertices”), which we denote with

N = {1, . . . , n}. We assume that each agent is associated with a vector of exogenous

attributes (types) xi ∈ X , where the type space X is some (continuous or discrete) subset

of a Euclidean space, and the marginal distribution of types is given by the p.d.f. w(x). We

also use X = [x1, . . . , xn]
′ to denote the matrix containing the n nodes’ exogenous attributes.
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Using standard notation (see Jackson (2008)), we identify the network graph with the

adjacency matrix L, where the element

Lij =

{

1 if there is a direct link from node i to node j

0 otherwise

As a convention, we do not allow for any node i to be linked to itself, Lii = 0. We assume

that all links are undirected, so that the adjacency matrix L is symmetric, i.e.Lij = Lji. We

also let L − {ij} be the network resulting from deleting the edge ij from L, that is from

setting Lij = Lji = 0. Similarly, L + {ij} denotes the network resulting from adding the

edge ij to L.

In an idealized application, the observed network data consists of X and L. However, the

limiting approximations do not distinguish between observable and unobservable components

of xi and can therefore also be used in settings in which relevant exogenous characteristics are

unobserved. Furthermore, our results can also be applied when the researcher only observes

attributes and links for a randomly selected subset of nodes according to a known sampling

rule.

2.1. Payoffs. Player i’s payoffs are of the form

Πi(L) = Bi(L)− Ci(L)

where Bi(L) denotes the gross benefit to i from the network structure, and Ci(L) the cost of

maintaining links. We will see below that identification of costs and benefits entails a location

normalization of some kind. Hence, we will generally assume that the cost Ci(L) is only a

function of the number of direct links to player i, but not the identities or characteristics of

the individuals that i is directly connected to under the network structure L.

We specify the model in terms of the incremental benefit of adding a link ij to the network

L,

Uij(L) := Bi(L + {ij})−Bi(L− {ij})
and the cost increment of adding that link,

MCij(L) := Ci(L + {ij})− Ci(L− {ij})

With a slight departure from common usage of those terms, we refer to Uij(L) and MCik(L)

as the marginal benefit and marginal cost (to player i), respectively, of adding the link ij to

the network.

Throughout our analysis we specify the marginal benefit function as

Uij(L) = U∗
ij(L) + σηij (2.1)
6



where U∗
ij(L) is a deterministic function of attributes x1, . . . , xn and the adjacency matrix

L, and will be referred to as the systematic part of the marginal benefit function. The

idiosyncratic taste shifters ηij are assumed to be independent of xi and xj and distributed

according to a continuous c.d.f. G(·), and σ > 0 is a scale parameter. Also, marginal costs

are given by

MCij(L) := max
k=1,...,J

σηi0,k (2.2)

where ηi0,k are independent of xi and across draws k = 1, 2, . . . , and the choice of the number

of draws J will be discussed in section 4. In particular, we let J to grow as n increases in

order for the resulting network to be sparse. In this formulation, marginal costs do not

depend on the network structure, so that in the following we denote marginal cost of the

link ij by MCi without explicit reference to j or the network L. Note that in the absence of

further restrictions on the systematic parts of benefits U∗
ij(L), this is only a normalization.

The main application of our asymptotic results concerns identification of - parametric or

nonparametric models for the function U∗
ij(L), where the distribution of taste shocks G(·)

need not be specified by the researcher as long as its upper tail is assumed to satisfy the

shape restriction in Assumption 4.2 below. We find below that for some relevant aspects of

the model, only the sum of the systematic part of marginal utilities between the two nodes

constituting an edge matters, we also define the pseudo-surplus for the edge {ij} as

V ∗
ij(L) := U∗

ij(L) + U∗
ji(L)

Obviously V ∗
ij(L) = V ∗

ji(L), so pseudo-surplus is symmetric with respect to the identities of

the two nodes.

Our framework allows for various types of interaction effects on the marginal benefit

function. The marginal benefit from adding the link from i to j may depend on agent i and

j’s exogenous attributes xi and xj , and the structure of the network through vector-valued

statistics Si, Sj, Tij that summarize the payoff-relevant features,

U∗
ij(L) ≡ U∗(xi, xj;Si, Sj, Tij) (2.3)

Specifically, the marginal benefit of a link may directly depend on node i and j’s exogenous

attributes, xi and xj , respectively, as well as interaction effects between the two. U∗
ij(L) may

vary in xi, e.g. because some node attributes may make i attach more value to any additional

links. On the other hand, dependence on xj allows for target nodes with certain attributes

to be generally more attractive as partners. Finally, a non-zero cross-derivative between

components of xi and xj could represent economic complementarities, or a preference for

being linked to nodes with similar attributes (homophily).

In addition to preferences for exogenous attributes, the propensity of agent i to form an

additional link, and the attractiveness of a link to agent j may depend on the absolute
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position of either node i and j in the network. To account for effects of this type, we can

include node-specific network statistics of the form

Si := S(L,X; i)

where we assume that the function S(·) is invariant to permutation of player indices.2

Example 2.1. (Degree and Composition) Node specific network statistics include the

network degree (number of direct neighbors),

S1(L,X; i) :=
∑

j 6=i

Lij

Another statistic could measure the share of i’s direct neighbors that are of a given exogenous

type,

S2(L,X; i) :=

∑

j 6=i Lij1l{xjk = x̄k}
∑

j 6=i Lij

where the kth component of xj may be e.g. gender or race, and x̄k the value corresponding

to the category in question (e.g. with respect to gender or race).

The network degree of a node plays a special role in the description of the link frequency

distribution. In the remainder of the paper, we therefore partition the vector of node i’s

network characteristics into si = (s1i, s
′
2i)

′, where s1i :=
∑n

j=1Lij denotes the network degree

of node i, and s2i a vector of other payoff-relevant network statistics.

Node-specific network statistics depending on node types can also be used to develop joint

models of link formation other economic decisions that may be subject to peer effects on the

same network:

Example 2.2. (Peer Effects) Suppose that xi includes a subvector (z′i, vi)
′, where vi is

not observed by the econometrician. Suppose that in addition to forming links, each agent

chooses a discrete action Yi ∈ {0, 1}, where her best response is characterized by the random

payoff inequality

yi = 1l

{

z′iγ + δ
1

s1i

∑

j 6=i

Lijyj + vi ≥ 0

}

where s1j := S1(L,X; j) is node j’s degree, and γ, δ are model coefficients. If link preference

and the discrete action are determined simultaneously, we can incorporate the interaction

effect into the network formation model through a node-specific statistic of the form

S3(L,X; i) := 1l

{

z′iγ + δ
1

s1i

∑

j 6=i

Lijs3j + vi ≥ 0

}

2Formally, we assume that for any one-to-one map π : {1, . . . , n} → {1, . . . , n} and i = 1, . . . , n we have
S(Lπ,Xπ ;π(i)) = S(L,X; i), where the matrices Xπ and Lπ are obtained from X and L by permuting the
rows (rows and columns, respectively) of the matrix according to π.
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where s3j := S3(L,X; j), provided a solution to the recursive system exists.

An example for peer effects of this type would be a model for youth smoking behavior,

where smokers could e.g. be more likely to form friendships with each others. Models of

peer effects with endogenous friendship networks have been analyzed, among others, by

Goldsmith-Pinkham and Imbens (2012) and Badev (2016). Our asymptotic results for the

link frequency distribution can therefore also be used to analyze the large-network outcomes

of a model of this type. However a full discussion of identification and estimation of models

of peer effects with endogenous link formation is beyond the scope of this paper and will be

left for future research.

Payoffs may also depend on the relative position of the node i with respect to j in the

network. Specifically, the researcher may also want to include edge-specific network statistics

of the form

Tij := T (L,X; i, j)

where T (·) may again be vector-valued, and we assume that the function T (·) is invariant

to permutations of player indices.3 In the following, we also assume that the statistic is

symmetric, Tij = Tji.
4 In our description of preferences regarding Tij we will occasionally

use t0 to denote an arbitrarily chosen “default” value for the statistic.

Example 2.3. (Transitive Triads) A preference for closure of transitive triads can be

expressed using statistics of the form

T1(L,X; i, j) =
∑

k 6=i,j

LikLjk, or T2(L,X; i, j) = max {LikLjk : k 6= i, j}

Here, T1ij counts the number of immediate neighbors that both i and j have in common, and

T2ij is an indicator whether i and j have any common neighbor. More generally, Tij could

include other measures of the distance between agents i and j in the absence of a direct link,

or indicators for potential “cliques” of larger sizes.

Patterns of transitivity may emerge for example in economic models of social capital where

supporting links to common neighbors may enhance the value or viability of a connection

between an agent pair, see e.g. Jackson, Rodriguez-Barraquer, and Tan (2012) or Gagnon

and Goyal (2016). Transitivity may also reflect a biased search process where agents may

be more likely to “meet” through common neighbors.

Some of our results concern special cases in which the network statistics Si, Sj, and Tij only

depend on nodes at up to a finite network distance from i and j, respectively. Specifically,

3That is, we assume that for any permutation π : {1, . . . , n} → {1, . . . , n} and i, j = 1, . . . , n we have
T (Lπ,Xπ;π(i), π(j)) = T (L,X; i, j).
4In order to accommodate the general case of asymmetric edge-specific statistics, it would be possible an
additional argument in the marginal benefit function, and the technical results would continue to go through
without substantive modifications.
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we say that Si is a function of the network neighborhood of radius rS around i if S(L,X; i) =

S(L̃,X; i) for any networks L, L̃ such that L̃kl = Lkl whenever the network distance between

i and k is less than or equal to rS. Similarly, we say that Tij is a function of the network

neighborhood of radius rT around i and j if T (L,X; i, j) = T (L̃,X; i, j) for any networks

L, L̃ such that L̃kl = Lkl whenever the network distance of k to i or j is less than rT .

In contrast to node attributes xi, xj , the variables Si, Sj, and Tij are endogenous to the

network formation process, and the characterization of the limiting model therefore must

include equilibrium conditions for the joint distribution of types xi and network statistics Si

and Tij . We therefore refer to the payoff contribution of the exogenous attributes xi, xj as

exogenous interaction effects, and the contribution of the endogenous network characteristics

si, sj, tij as endogenous interaction effects.

In terms of this specification, we can also rewrite the pseudo-surplus function as

V ∗
ij(L) = V ∗(xi, xj; si, sj, tij) := U∗(xi, xj; si, sj, tij) + U∗(xj , xi; sj, si, tij)

Dependence of payoffs on network statistics si, sj, tij also allows to incorporate other con-

straints on the shape of the network by setting payoffs for links that are not “permissible”

to minus infinity. For example, in a many-to-many matching model nodes may face capacity

constraints on how many partners they are allowed to match with, e.g. the stable roommate

problem admits at most one link per node. Such a restriction can be formulated using the

network degree s1i. For coalition formation games, which produce partitions on the set of

players, we can define edge-specific indicators tij that are equal to one if i and j are only

connected to nodes in the same connected component of L − {ij} and zero otherwise, and

only permit connections with tij = 0. Adapting our framework to problems of this type

requires some, in certain cases only minor, modifications of our benchmark framework.5

2.2. Solution Concept. Our formal analysis assumes pairwise stability as a solution con-

cept, which was first introduced by Jackson and Wolinsky (1996).

Definition 2.1. (Pairwise Stable Network) The undirected graph L is a pairwise

stable network (PSN) if for any link ij with Lij = 1,

Πi(L) ≥ Πi(L− {ij}), and Πj(L) ≥ Πj(L− {ij})

and any link ij with Lij = 0,

Πi(L+ {ij}) < Πi(L), or Πj(L + {ij}) < Πj(L)

5Specifically the requirement of bounded systematic payoffs in Assumption 4.1 below has to be relaxed to
allow for infinite negative payoffs, and commonly used notions of stability in matching or coalition formation
models often allow for a richer set of deviations than pairwise stability, as defined in Definition 2.1. As an
illustration, we discuss an extension of our results for many-to-many matching models in Appendix A.
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Pairwise stability as a solution concept only requires stability against deviations in which

one single link is changed at a time. For a pairwise stable network there may well be an

agent who can increase her payoff by reconfiguring two or more links unilaterally. While it

is possible to consider stronger notions of individually optimal choice which require stability

against more complex deviations, PSN gives a set of necessary conditions which have to be

met by any such refinement.

Pairwise stability also does not necessarily impose particularly high demands on partic-

ipating agents’ knowledge and strategic sophistication: Jackson and Watts (2002) showed

that pairwise stable networks can be achieved by tâtonnement dynamics in which agents

form or destroy individual connections, taking the remaining network as given and not an-

ticipating future adjustments. This makes PSN a plausible static solution concept for a

decentralized network formation process even when agents have only a limited understand-

ing of the network as a whole, and link decisions may in fact take place over time, where the

exact sequence of adjustments is not known to the researcher.

A major limitation of PSN as a solution concept is that, without additional restrictions on

payoffs a pairwise stable network is not guaranteed to exist. While to our knowledge there

are no fully general existence results, there are some relevant special cases for which existence

of a PSN is not problematic.6 Our approach builds on local stability conditions for each link

in isolation, and therefore only requires that any given link satisfies the pairwise stability

conditions with probability approaching 1. Hence in the context of tâtonnement dynamics,

existence of a pairwise stable network will not be strictly necessary for our approach to work

as long as the share of links satisfying the conditions for PSN goes to one as n grows large.

A second challenge is that pairwise stability does not predict a unique outcome for the

network formation game. Neither the static nor the tâtonnement interpretation of pairwise

stability in a model of decentralized network formation appear to suggest a particular rule for

selecting one stable outcome over another. In their most general version our results therefore

do not constrain the mechanism for selecting among multiple pairwise stable matchings, but

give sharp bounds on the distribution of network outcomes.

It is also interesting to contrast our use of an essentially static solution concept to the

approaches in Christakis, Fowler, Imbens, and Kalyanaraman (2010) and Mele (2012) who

consider link distributions resulting from myopic random revisions of past link formation

decisions, where agents are not assumed to be forward-looking regarding future stages of the

formation game. Christakis, Fowler, Imbens, and Kalyanaraman (2010) specify an initial

condition and a stochastic revision process, so that (in the absence of further shocks to the

6As an example, Miyauchi (2012) considers the case of non-negative link externalities, in which case pairwise
stability can be represented as Nash equilibrium in a finite game with strategic complementarities. Hence,
existence and achievability through a myopic tâtonnement mechanism follow from general results by Milgrom
and Roberts (1990).
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process) further iterations of the tâtonnement process would generate a distribution over

pairwise stable outcomes or cycles with mixing weights depending on that specification. The

revision process in Mele (2012) is represented by a potential function, favoring formation

of links that lead to larger cardinal utility improvements, and networks generating a large

“systematic” surplus. Our approach allows for any pairwise stable outcome and does not

take an implicit stand on equilibrium selection.

For a revealed-preference analysis it is useful to represent the pairwise stability conditions

as a discrete choice problem, where preferences are given by the random utility model de-

scribed above, and the set of available “alternatives” for links arises endogenously from the

equilibrium outcome. Specifically, given the network L we define the link opportunity set

Wi(L) ⊂ N as the set of nodes who would prefer to add a link to i,

Wi(L) := {j ∈ N\{i} : Uji(L) ≥MCj(L)}

Using this notation, we can rewrite the pairwise stability condition in terms of individually

optimal choices from the opportunity sets arising from a network L.

Lemma 2.1. Assuming that all preferences are strict, a network L∗ is pairwise stable if and

only if for all i = 1, . . . , n,

L∗
ij =

{

1 if Uij(L
∗) ≥ MCij(L

∗)

0 if Uij(L
∗) < MCij(L

∗)
(2.4)

for all j ∈ Wi(L
∗), and L∗

ij = 0 for all j /∈ Wi(L
∗).

The proof for this lemma is similar to that of Lemma 2.1 in Menzel (2015) and is given in

the appendix.

2.3. Equilibrium Selection. Since a pairwise stable network is generally not unique, we

assume that the observed network is generated by an equilibrium selection mechanism which

we formalize as a distribution over initial conditions for a tâtonnement process. Since that

myopic best-response dynamics is not guaranteed to converge to a PSN even if one exists,

we use the notion of closed cycles introduced by Jackson and Watts (2002) to characterize

the outcome of tâtonnement.7

7For a definition of a closed cycle, we say that in a given network L(0), the edge ij is active if either
Uij(L

(0)) − MCi(L
(0)) or Uji(L

(0)) − MCj(L
(0)) violate the payoff inequalities in Definition 2.1. We then

say that the chain of networks L(1),L(2), . . . is an improving path if for each s, L(s) is obtained from L(s−1)

after sequentially adjusting one single link that is active under L(s−1).
A finite set of networks L∗ := {L(1), . . . ,L(s)} is a closed cycle if (a) it is a cycle in that for any two networks
L,L′ ∈ L∗ there exists an improving path from L to L′, and (b) it is closed in that there exists no networks

L ∈ L∗ and L̃ /∈ L∗ with an improving path from L to L̃.
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For an initial state of the network corresponding to the adjacency matrix L(0), we let L∗

denote the pairwise stable network, or the first network in a closed cycle, reached by my-

opic adjustment process, where in the sth step, the network L(s) results from the preceding

adjacency matrix L(s−1) by simultaneously replacing each link L
(s)
ij = 1 − L

(s−1)
ij if the pair-

wise stability conditions for that link do not hold given the network L(s−1), and leaving it

unchanged otherwise. This process continues until it reaches a pairwise stable network, or

a closed cycle, which is guaranteed to occur after a finite number of iterations according to

Lemma 1 by Jackson and Watts (2002).

Representing a distribution over pairwise stable networks with a distribution over initial

conditions is without loss of generality since any pairwise stable network is a fixed point

with respect to the adjustment step, and therefore can be reached via tâtonnement. Note

also that for the purposes of this paper, the tâtonnement process only serves as a purely

representational device, and not an empirical description of the mechanism agents follow to

coordinate on the pairwise stable network observed in the data.

Given the tâtonnement process defined above, a mechanism for selecting among pairwise

stable outcomes is a distribution over initial network states L(0), which may also depend on

realized node attributes xi, taste shifters ηij , and marginal costsMCi. Since any agent’s link

preferences depend on network structure only through the network attributes si, tij we can

summarize the network state L(0) equivalently by the resulting statistics S(L(0), X ; i) and

T (L(0), X ; i, j).

Since our aim is to describe the set of pairwise stable networks, our asymptotic results

below first consider the outcome of tâtonnement from arbitrary fixed initial states L(0), where

convergence is shown to be uniform with respect to the choice of L(0). We can thereby obtain

an asymptotic characterization of the full set of outcome distributions that are supported by

some pairwise stable network. For large n, the distribution over network outcomes from any

selection mechanism can therefore be approximated by a mixture over outcome distributions

from that set, where the mixing weights may depend on node attributes (xi,MCi)
n
i=1 and

taste shifters (ηij)
n
i,j=1.

Since our main representational results rule out closed cycles of networks that are not

pairwise stable, the support of the selection mechanism has to be restricted to initial con-

ditions from which tâtonnement converges to pairwise stable networks, and that restriction

may generally depend on the realizations of the taste shifters (ηij)
n
i,j=1. An exception to this

are link preferences with strategic complementarities: If the marginal benefit of forming any

new link is nondecreasing in L, then tâtonnement dynamics are monotone, and can therefore

only sustain trivial closed cycles that consist of a single pairwise stable network.

13



3. Asymptotic Representation of Network

This section presents the limiting model for the network for the leading case in which

the local structure of the network is uniquely determined by payoffs in a manner to be

made more precise below. A description of that limiting model for the fully general case

requires additional notation and definitions and is therefore relegated to appendix A. This

asymptotic approximation to the model can then be used for identification analysis, or to

construct likelihoods and probability bounds for parametric estimation. We derive analytic

characterizations for various specifications of the payoffs in (2.3) in Section 6.

3.1. Link Frequency Distribution. Our limiting results will be stated in terms of the

link frequency distribution, which we define as

Fn(x1, x2; s1, s2, t12) :=
1

n

n
∑

i=1

∑

j 6=i

P (Lij = 1, xi ≤ x1, xj ≤ x2, si ≤ s1, sj ≤ s2, tij ≤ t12)

Note that our analysis will focus on the case of sparse networks (i.e. networks with a degree

distribution that remains bounded in n), so that the natural normalization of Fn(·) is by the

number of nodes rather than the number of dyads.

The link frequency distribution is not a proper probability distribution but integrates to

a non-negative value (measure) equal to the average degree across nodes, which is in general

different from one. Nonetheless and with an abuse of standard terminology we refer to

the Radon-Nikodym derivative of Fn as the p.d.f. of the link frequency distribution and

denote it with fn(x1, x2; s1, s2, t12). Apart from the different rate normalization, fn(·) can be

interpreted in analogy to the network density, i.e. the share of possible links of a given type

that are being formed, for a dense graph.

Most existing approaches for describing distributions of networks are based on the distri-

bution of the entire adjacency matrix (see e.g. Christakis, Fowler, Imbens, and Kalyanara-

man (2010), Chandrasekhar and Jackson (2011), or Mele (2012)), which typically requires

simulation of the entire network at a substantial computational cost. However for typical

specifications of a network formation model, the link frequency distribution contains most

of the relevant information for identification and estimation of the preference parameters:

Specifically we can encode a sparse adjacency matrix more efficiently (i.e. requiring less

memory) as a list of pairs of nodes that are connected by a direct link. Furthermore, under

a parameterization of the model as in (2.3) the nodes are exchangeable in that the joint

distribution of payoffs Uij(L) and exogenous attributes xi is invariant to permutations of the

node labels 1, . . . , n. Instead of node-identifiers, it is therefore sufficient to retain node-level

information about the corresponding exogenous attributes xi, xj , and endogenous network

characteristics si, sj and tij . While in principle knowing which specific other links emanate

from a common node could also be informative, we find that in the limit, stability of the link
14



Lij and any other link Lik are conditionally independent events given the characteristics of

nodes i, j, k. We do not attempt to make this informal claim more precise, but also note that

the formal arguments developed in this paper can be used to describe the joint distribution

of several (but finitely many) entries of the adjacency matrix.

3.2. Limiting Model F∗
0 . We next describe the limiting model F∗

0 for the link frequency

distribution F̂n. Formal conditions for convergence of the finite-n network to this “as if”

statistical experiment are given in section 4. In general the limit of the link frequency

distribution is not uniquely defined, due to multiplicity of pairwise stable networks in the

finite-n model. Instead, we can give a sharp characterization of the set F∗
0 of distributions

such that any link frequency distribution F̂n resulting from some pairwise stable network

can be approximated by some element F ∗
0 ∈ F∗

0 . This limiting model then forms the basis

of our approach to identification and estimation of link preferences discussed in Section 5.

While decisions about whether to form or destroy a link are interrelated across nodes, the

asymptotic approximation developed in this paper allows to characterize the link frequency

distribution in terms of aggregate states at the network level, and a edge-level “best response”

to those aggregate states.

Specifically, the limiting model F∗
0 can be described in terms of pairwise stable subnet-

works on finite network neighborhoodsNij around a pair of nodes i, j. Such a network neigh-

borhood Nij is defined as the set of nodes l ∈ N such that Ulk(L) ≥MCl and Ukl(L) ≥MCk

for either k = i or k = j, so that the nodes k, l may be mutually acceptable under some

configuration of the network L. Under the assumptions made in Section 4, the number of

nodes in any such network neighborhoods is stochastically bounded.

Furthermore, each node l is associated with its exogenous attributes xl, and potential val-

ues for the endogenous network attributes sl, tkl. Here, the potential values for endogenous

network attributes are given by the network statistics S(L̃, l) and T (L̃, k, l) evaluated at any

network L̃ that coincides with the pairwise stable network L∗ everywhere except on edges

between node pairs in Nij.

The model F∗
0 describes the distribution generating the network neighborhoods Nij in the

many-player limit, as well as the distribution of network outcomes on these neighborhoods.

That distribution can be fully described in terms of three components:

• the reference distribution M∗ which is a cross-sectional p.d.f. of potential out-

comes for the endogenous node characteristics sl and tl· given exogenous attributes

in the relevant subnetwork,

• the inclusive value function H∗(x, s) which gives a sufficient statistic for the link

opportunity set Wi(L
∗) of a node with characteristics xi = x and si = s with respect

to her link formation decisions. and
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• the edge-level response Q∗(l12, s1, s2, t12|x1, x2) := Q∗(l12, s1, s2, t12|x1, x2;H∗,M∗)

which corresponds to a conditional probability of a link ij forming together with the

resulting values of the endogenous network variables s1, s2, t12.
8

We say that the edge-level response is unique if for any given realization ofNij, all pairwise

stable networks on the neighborhood Nij result in the same network outcomes (Lij , si, sj , tij)

for the edge ij. In general, the edge-level response need not be unique. For example, if j

and k’s payoff from a link to i increase with i’s network degree s1i, and i is available to

either node, then there may be values of ηji, ηki such that both outcomes Lij = Lik = 1 and

Lij = Lik = 0, respectively, are supported by different pairwise stable networks on Nij.

In general the limiting model F∗
0 is a set of distribution functions corresponding to

the edge-level response Q∗(1, s1, s2, t12|x1, x2;H∗,M∗) such that H∗ and M∗ satisfy a global

equilibrium condition corresponding to fixed-point mappings Ψ0 and Ω0, respectively, to be

characterized below. For expositional purposes, this section gives a characterization of the

limiting distribution only for the special case of a unique edge-level response and anonymous

endogenous interaction effects with a radius of interaction rS = 1. Specifically, we do not

allow for edge-specific interaction effects, i.e. we let T = {t0}. Sharp bounds on F∗
0 for the

general case are given in Appendix A. Examples with a unique edge-level response include

models with payoffs that depend exclusively on exogenous attributes, as well as a many-to-

many matching model with capacity constraints described in further detail in Appendix A.

For this special case, the only relevant potential value of the node characteristic sj for a node

j in the network neighborhood around i is its value in the presence of a direct connection

to i. Hence for the remainder of this section, we take the reference distribution M∗ to be

the marginal distribution of the potential value for sj corresponding to the network L̃ that

is obtained from L∗ after setting Lij = 1.

The resulting limiting link frequency distribution has p.d.f.

f ∗
0 (x1, x2; s1, s2) =

s11s12 exp{U∗(x1, x2; s1, s2) + U∗(x2, x1; s2, s1)}
(1 +H∗(x1, s1))(1 +H∗(x2, s2))

×M∗(s1|x1, x2)M∗(s2|x2, x1)w(x1)w(x2) (3.1)

and can therefore be characterized in closed form given the aggregate state variables H∗,M∗.

The inclusive value function H∗(x1, s1) is a nonnegative function satisfying the fixed-point

condition

H∗(x; s) = Ψ0[H
∗,M∗](x; s) (3.2)

8Recall that in the Logit model for multinomial choice, the inclusive value serves as a sufficient statistic for
the set of available alternative with respect to conditional choice probabilities, see e.g. Train (2009). The
inclusive value function takes that role in the many player limit of the network formation model, see Menzel
(2015) for a more extensive discussion for the special case of one-to-one matching markets.

16



where the fixed-point operator Ψ0 is defined as

Ψ0[H,M ](x; s) :=

∫

s12 exp{U∗(x, x2; s, s2) + U∗(x2, x; s2, s)}
1 +H(x2; s2)

M∗(s2|x2, x1)w(x2)ds2dx2

We show below that for any fixed reference distribution M∗(s1|x1, x2), the fixed point of

(3.2) is generally unique.

The reference distribution M∗(s1|x1, x2) must solve the equilibrium condition

M∗(s1|x1, x2) = Ω0[H
∗,M∗](x1, x2; s1) (3.3)

where the operator Ω0 maps H,M to the conditional distribution for the network statistic

si given xi resulting from the edge-level response in the cross section.

The limiting model F∗
0 then corresponds to the set of all distributions satisfying (3.1)-(3.3)

for some inclusive value function H∗ and reference distribution M∗. Note that for a given

value of H∗, the solution to the fixed-point condition (3.3) may admit multiple solutions, so

that the resulting link frequency distribution need not be uniquely defined even in the case

of a unique edge-level response. In the case of no endogenous interaction effects, S = {},
the fixed-point mapping for the degree distribution is given by

Ω0[H,M ](x1, x2; s11) :=
H(x1)

s11

(1 +H∗(x1))s11+1

where according to the convention introduced earlier in section 2.1, s11 denotes the network

degree of node 1. Note that the fixed point mapping and the resulting reference distribution

do not depend on x2, which is generally the case whenever the network statistics S(L,X; i)

do not depend on X. In general, the fixed-point mapping Ω0 has to be derived separately for

each type of payoff-relevant network statistics, and we give additional examples in Appendix

A.3.

Since the taste shifters ηij are independent across nodes j = 1, . . . , n, link formation

decisions are also conditionally independent. As a result, for a given pairwise stable network

the selected reference distributionM∗(s1|x1, x2) coincides with the conditional distribution of

s1 given that node 1 is directly linked to a node 2 with attributes x2. This observation is useful

for estimation since that conditional distribution can be estimated directly from the cross-

sectional sample of nodes i = 1, . . . , n, without having to solve the fixed-point condition (3.3)

and explicitly addressing the multiplicity of solutions to that problem.9 Furthermore, under

the maintained assumption of bounded systematic payoffs and unbounded taste shifters, the

9As pointed out in Menzel (2016), an approach of this form can be justified as conditional estimation or
inference given a sufficient statistic for the selected equilibrium. The strategy of replacing equilibrium
quantities with sample analogs in order to side-step a nested fixed-point problem has already been fruitfully
applied in dynamic discrete choice Hotz and Miller (1993) and dynamic games Bajari, Benkard, and Levin
(2007).
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probability of a link between nodes with attributes x1, x2 is nonzero, so that this conditional

distribution is always well-defined.

More generally, a local subnetwork is consistent with pairwise stability on N0 if we can

find a combination of potential outcomes for the network variables (si, tij : i, j ∈ N0) that

jointly satisfy the stability conditions given the realized types and payoff shocks. The fully

general case which is discussed in Appendix A has to deal with the added complication that

such a combination need not be unique. Nevertheless, the general representation retains

the general structure discussed in this section in which the link Lij together with network

variables si, sj, tij is determined locally in the subnetwork on Nij which interacts with the

full network only through the aggregate state variables H∗ and M∗.

4. Convergence to the Limiting Distribution

This section presents the main convergence results for the link frequency distribution. We

first state our formal assumptions, followed by the main results. An outline of the formal

argument, including the main intermediate steps, is given in Section 6. The main result

in this section is contained in Theorem 4.2 below. The results in this section refer to, and

are proven for, the limiting model F∗
0 for the general case, which is developed in Appendix

A. Proposition A.1 in that appendix establishes that the general formulation for F∗
0 indeed

simplifies to the limiting model presented in the previous section.

4.1. Formal Assumptions. The main formal assumptions regarding the random utility

model are similar to those in Menzel (2015). For one, we will maintain that the deterministic

parts of random payoffs satisfy certain uniform bounds and smoothness restrictions:

Assumption 4.1. (Systematic Part of Payoffs) (i) The systematic parts of payoffs

are uniformly bounded in absolute value for some value of t = t0, |U∗(x, x′, s, s′, t0)| ≤
Ū < ∞. Furthermore, (ii) at all values of s, s′, the function U∗(x, x′, s, s′, t0) is p ≥ 1

times differentiable in x with uniformly bounded partial derivatives. (iii) The supports of the

payoff-relevant network statistics, S and T , and the type space X are compact sets.

These conditions are fairly standard, where the uniform bound on systematic payoffs in

part (i) serves primarily to simplify the formal argument, and might be replaced by bounds

on other norms on the function U∗(·), a question we will leave for future research. Part (iii)

may require a reparametrization of network statistics that can take arbitrarily large values,

as e.g. the network degree of a node.

We next state our assumptions on the distribution of unobserved taste shifters. Most

importantly, we impose sufficient conditions for the distribution of ηij to belong to the

domain of attraction of the extreme-value type I (Gumbel) distribution. Following Resnick

(1987), we say that the upper tail of the distribution G(η) is of type I if there exists an
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auxiliary function a(s) ≥ 0 such that the c.d.f. satisfies

lim
s→∞

1−G(s+ a(s)v)

1−G(s)
= e−v

for all v ∈ R. We are furthermore going to restrict our attention to distributions for which

the auxiliary function can be chosen as a(s) := 1−G(s)
g(s)

, where g(s) denotes the density

associated with the c.d.f. G(s). This property is shared for most standard specifications

of discrete choice models, e.g. if ηij follows the extreme-value type I, normal, or Gamma

distribution, see Resnick (1987). We can now state our main assumption on the distribution

of the idiosyncratic part of payoffs:

Assumption 4.2. (Idiosyncratic Part of Payoffs) ηij and ηi0,k are i.i.d. draws from

the distribution G(s), and are independent of xi, xj, where (i) the c.d.f. G(s) is absolutely

continuous with density g(s), and (ii) the upper tail of the distribution G(s) is of type I with

auxiliary function a(s) := 1−G(s)
g(s)

.

We also need to specify the approximating sequence of networks. Here it is important to

emphasize that the main purpose of the asymptotic analysis is a reliable approximation to

the (finite) n-agent version of the network rather than a factual description how network

outcomes would change if nodes were added to an existing network. Hence our approach

is to embed the n-agent model into an asymptotic sequence whose limit preserves the main

qualitative features of the finite-agent model.

Specifically, we design the asymptotic sequence to match the following properties of a finite

network: (1) the network should remain sparse in that degree distribution does not diverge

as the size of the market grows. (2) The limiting conditional link formation frequencies given

node-level attributes should be non-degenerate, and depend non-trivially on the systematic

parts of payoffs. Finally, (3) the limiting approximation should retain network features at

a nontrivial frequency that are deemed important by the researcher, e.g. closed triangles or

other forms of clustering among links.

For the first requirement, it is necessary to increase the magnitude of marginal costs

MCi as the number of available alternatives grows, whereas to balance the relative scales

of the systematic and idiosyncratic parts we have to choose the scale parameter σ ≡ σn at

an appropriate rate. For the last requirement we have to scale the effect of edge-specific

network attributes tij on the payoff functions at an appropriate rate, which we discuss for

specific cases below.

Specifically we are going to assume the following in the context of the reference model:

Assumption 4.3. (Network Size)(i) The number n of agents in the network grows to

infinity, and (ii) the random draws for marginal costs MCi are governed by the sequence

J =
[

n1/2
]

, where [x] denotes the value of x rounded to the closest integer. (iii) The
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scale parameter for the taste shifters σ ≡ σn = 1
a(bn)

, where bn = G−1
(

1− 1√
n

)

, and

a(s) is the auxiliary function specified in Assumption 4.2 (ii). Furthermore, (iv) for any

values t1 6= t2 ∈ T , |U(x, x′, s, s′, t1) − U(x, x′, s, s′, t2)| may increase with n, and there ex-

ists a constant BT < ∞ such that for any sequence of pairwise stable networks (L∗
n)n≥2,

supx,x′,s,s′ (E [exp {2|U(x, x′, s, s′, T (L∗
n, x, x

′, i, j))− U(x, x′, s, s′, t0)|}])1/2 ≤ exp{BT} for n

sufficiently large.

The rate conditions for marginal costs and the scale parameter in parts (i) and (ii) are

analogous to the matching case and discussed in greater detail in Menzel (2015). Specifically,

the rate for J in part (ii) is chosen to ensure that the degree distribution from a pairwise stable

network will be non-degenerate and asymptotically tight as n grows. The construction of the

sequence σn in part (iii) implies a scale normalization for the systematic parts U∗
ij = U∗

ij(L),

and is chosen as to balance the relative magnitude for the respective effects of observed and

unobserved taste shifters on choices as n grows large. Rates for σn for specific distributions

of taste shifters are also given in Menzel (2015).

The requirement that the sequence of networks remains sparse is primarily needed to

obtain the limiting characterization of link opportunity sets with inclusive value functions,

where the some of the arguments break down for a network that is more dense than what

is implied by the asymptotic sequence in Assumption 4.3 (ii). However, asymptotic (condi-

tional) independence of subnetworks across distinct network neighborhoods does not rely on

sparsity but continues to hold for dense or semi-sparse network sequences.

Part (iv) of Assumption 4.3 allows the effect of the edge-specific network effect tij on

payoffs to increase with n, where the second half of the statement gives an upper bound

on that rate of increase. We can illustrate the rate condition in part (iv) for the case of a

preference for completion of transitive triads:

Proposition 4.1. Let tij = maxk 6=i,j {LikLjk} and consider the model U∗(x, x′, s, s′, t) =

U∗(x, x′, s, s′, 0) + βT t. Then Assumption 4.3 (iv) holds if exp{|βT |} = O(n1/4).

For the rate condition on βT , we find below that in order to achieve a nondegenerate

degree of clustering in the limit (i.e. a clustering coefficient taking values strictly between

zero and one) we need to choose a sequence for βT satisfying exp{|βT |} = O(n1/6), which is

strictly slower than the maximal rate permitted by this proposition, so that Assumption 4.3

is satisfied for this knife-edge case.

While there are alternative sets of primitive conditions for existence of a pairwise stable

network, we make the following high-level assumption on the observed network L∗:

Assumption 4.4. (Pairwise Stability) Let Ns ⊂ {1, . . . , n} be the subset of nodes for

which the network L∗ satisfies the payoff conditions for pairwise stability in Definition 2.1.

Then for any ε > 0, |Ns|/n > 1− ε with probability approaching 1 as n increases.
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This condition is clearly satisfied if the network L∗ is pairwise stable. Primitive con-

ditions for existence of pairwise stable networks include cases in which links are strategic

complements (see Miyauchi (2012)) or substitutes (see Sheng (2014)). Alternatively, there

are conditions under which a pairwise stable outcome need not exist, but the share of “mis-

matched” nodes becomes arbitrarily small as n increases. One example for this is the stable

roommate problem analyzed by Pȩski (2014).

We next give high-level conditions on the fixed point mapping Ω0 for the reference distri-

bution in (3.3) and (A.4) for the general case, respectively. We let R denote the support

of the reference distribution, which is a finite Cartesian product of the sets S and T . Let

Ω̂n[H,M ] denote the empirical analog of the mapping Ω0[H,M ] in (A.3), where we take xi

to be distributed according to its empirical distribution in the cross-section across nodes.

In the general case of set-valued edge-level responses, Ω0 maps to a a capacity rather than

a single probability distribution, where we can represent its image as the subset of elements

M̃ of the probability simplex ∆R for distributions over R satisfying the constraints
∫

S

M̃(s|x1, x2)ds ≤ Ω0[H,M ](x1, x2;S) for all S ⊂ R

That subset is generally referred to as the core of Ω0, see Appendix A for a formal definition.

Since the selection mechanism on the individual response may vary discontinuously in x,

the set of distributions satisfying the bounds in (3.3) and (A.4), respectively, can be fairly

rich, many of which do not meet any useful smoothness criteria. However for our analysis

of convergence of the set of equilibrium reference distributions, it is sufficient to restrict

our attention to distributions that determine the boundary of that set on the probability

simplex ∆(X ×R). Specifically, we say that the distribution M(s1|x1, x2) is on the boundary

of the core of Ω0 if for some values of x1, x2, there exists a set S(x1, x2) ∈ R such that
∫

S(x1,x2)
M(s|x1, x2)ds = Ω0(x1, x2, S(x1, x2)) with equality.

We can now formulate the main assumptions on the fixed-point mappings Ω̂n and Ω0 for

the reference distributions in the finite network and the limiting economy, respectively:

Assumption 4.5. (i) The mapping Ω0 is compact and upper hemi-continuous in H,M for

all x ∈ X and S ⊂ R, and (ii) the core of Ω0[H,M ] is nonempty, where the boundary of

the core of Ω0[H,M ] is in some compact subset U ⊂ ∆(X ×R) for all values of H,M . (iii)

supx,Z⊂R

∣

∣

∣
Ω̂n[H,M ](Z)− Ω0[H,M ](Z)

∣

∣

∣
→ 0 uniformly in H ∈ G and distributions M ∈ U .

These high-level assumptions on the equilibrium mapping Ω0 have to be verified on a case

by case basis. Furthermore, as we already argued in section A.1, the core of a capacity is a

convex subset of a probability simplex, which simplifies the argument for existence of a fixed

point below.
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Uniform convergence of Ω̂n with respect to M in part (iii) is only stated only as a high-

level condition in order to keep the result as general as possible.10 As the case of interactions

through the degree distribution in section A.3 illustrates, for some cases of applied interest

the mapping Ω0 does not depend on the sampling distribution of types, in which case uniform

convergence as in part (iii) trivially holds.

4.2. Main Limiting Results. We can now state the main formal results of this paper.

One potential concern is that the limiting distribution in (3.1) may not be well defined

if there exists no fixed point for the population problem (3.2) and (3.3). We find that

the assumptions on the fixed-point mapping Ω0 are sufficient to guarantee existence of an

equilibrium inclusive value function and reference distribution, as stated in the following

proposition.

Theorem 4.1. (Fixed Point Existence) Suppose that Assumptions 4.1 and 4.5 (i)-(ii)

hold. Then the mapping (H,M) ⇒ (Ψ0,Ω0)[H,M ] has a fixed point.

See the appendix for a proof. Taken together, Assumption 4.4 and Theorem 4.1 ensure the

respective models for the finite network as well as the limiting model are always well-defined.

We can now state our main asymptotic result, which establishes convergence to the limiting

model described in Sections 3 and A, respectively.

Theorem 4.2. (Convergence) Suppose that Assumptions 4.1-4.5 hold, and let F∗
0 be the

set of distributions characterized by (3.1)-(3.3) (A.7,A.4, and A.5, respectively). Then for

any pairwise or cyclically stable network there exists a distribution F ∗
0 (x1, x2; s1, s2) ∈ F∗

0

such that the link frequency distribution

sup
x1,x2,s1,s2,t12

|F̂n(x1, x2; s1, s2, t12)− F ∗
0 (x1, x2; s1, s2, t12)| = op(1)

Furthermore, convergence is uniform with respect to selection among pairwise stable net-

works.

We describe the main ideas behind this convergence result in Section 6, a formal proof of

the theorem is given in the appendix. This limiting model gives a tractable characterization

of the link distribution. By considering only the distribution of links rather than the full

adjacency matrix, we do not need to characterize the structure of the full network explicitly,

10Note that the boundary distributions are pointwise minima of a selection of {Ω(·;S) : S ⊂ R} and
{

Ω̂n(·;S) : S ⊂ R
}

, respectively. Hence, if S is finite, and Ω0(x1, x2;S) and Ω̂n(x1, x2;S) have bounded

partial derivatives with respect to x1, x2 of order p ≥ 1, then the boundary distributions can be represented
using a finite intersection of Glivenko-Cantelli classes, which is also Glivenko-Cantelli. In that case, uniform
laws of large numbers with respect to potential boundary distributions of the core can be established under
otherwise standard regularity conditions, which can be used to establish uniform convergence if Ω̂n(x1, x2;S)
depends on sample averages with respect to the sampling distribution of xi.

22



but the model is closed via equilibrium conditions on the aggregate state variables H∗ and

M∗. In contrast, the expressions in Chandrasekhar and Jackson (2011) and Mele (2012) can

only be approximated by simulation over all possible networks, the number of which grows

very fast as n increases.

Finally, we want to give conditions under which the characterization of the limiting model

is sharp in the sense that all distributions satisfying the fixed-point conditions (3.2) and

(3.3) can be achieved by a sequence of finite networks. To this end, we rely on the notion

of regularity for the solutions of the fixed-point problem which correspond to standard local

stability conditions in optimization theory (see e.g. chapter 9 in Luenberger (1969), or

chapter 3 in Aubin and Frankowska (1990)).

To simplify notation, we define the set-valued mapping Υ0 : (G × U) ⇒ (G × U), where

Υ0 :

[

H

M

]

→
[

Ψ0[H,M ]

core Ω0[H,M ]

]

Using the notation z = (H,M) ∈ Z := G × U , the fixed-point conditions (3.2) and (3.3)

can be written in the more compact form z∗ ∈ Υ0[z
∗]. We also define the sample fixed

point mapping Υ̂n in a completely analogous manner. The contingent derivative of Υ0 at

(z′0, y0)
′ ∈ gph Φ is defined as the set-valued mapping DΥ0(z0, y0) : Z ⇒ Z such that for

any u ∈ Z
v ∈ DΥ0(z, y)(u) ⇔ lim inf

h↓0,u′→u
d

(

v,
Υ0(z0 + hu′)− y

h

)

where d(a, B) is taken to be the distance of a point a to a set B.11 Note that if the correspon-

dence Υ0 is single-valued and differentiable, the contingent derivative is also single-valued

and equal to the derivative of the function Υ0(z). The contingent derivative of Υ0 is surjective

at z0 if the range of DΥ0(z0, y0) is equal to Z.

The following theorem states that for equilibrium points that are regular in a specific

sense, the characterization of the limiting model is sharp in that any solution of (3.2) and

(3.3) can be achieved as the limit of a sequence of solutions to the finite-agent network.

Theorem 4.3. Suppose that Assumptions 4.1-4.5 hold. Furthermore, suppose that for each

point z∗ satisfying z∗ ∈ Υ0[z
∗], the contingent derivative of Υ0[z] is surjective. Then for

any z∗0 := (H∗
0 ,M

∗
0 ) solving z

∗ ∈ core Υ0[z
∗], there exists a sequence ẑn := (Ĥ∗

n, M̂
∗
n) solving

ẑn ∈ core Υ̂n[ẑn] such that d(ẑn, z
∗
0)

p→ 0.

See the appendix for a proof.

11See Definition 5.1.1 and Proposition 5.1.4 in Aubin and Frankowska (1990)
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5. Identification, Estimation, and Welfare Analysis

We next illustrate some potential uses of the limiting approximation in Theorem 4.2, in-

cluding a strategy for estimating structural payoff parameters from network data and welfare

analysis. In the following we assume that all payoff-relevant attributes xi and network char-

acteristics si are observed for a random sample of nodes i = 1, . . . , K included in the sample.

The arguments below could be extended to different sampling protocols and certain cases

in which some components of xi are not directly observed but generated from a distribution

that is known up to a parameter to be estimated. The primary focus of this section is on

the case of a single-valued best-response, a more general approach to estimation will be left

for future research.

5.1. Identification. We first consider identification of the payoff functions U∗(x1, x2; s1, s2, t12),

where we assume that the researcher observes either the full network L,X , or a random sam-

ple of edges, i.e. K ≤ n(n − 1)/2 pairs i, j together with the variables Lij, xi, xj, si, sj, tij .

Note that in this case, the link frequency distribution f(xi, xj ; si, sj , tij) is nonparametrically

identified. These arguments can be adjusted for other sampling protocols with known sam-

pling weights.12 In the case of knowledge of the complete network L and perfectly observable

attributes xi, the network statistics Si and Tij can also be computed from the available data.

5.1.1. Nonparametric Identification with no Endogenous Interaction Effects. In the absence

of any interaction effects between links, the marginal benefit of link ij is given by

Uij ≡ U∗(xi, xj) + σηij

From our results in sections 3 and 4, it follows that we can fully characterize the limit-

ing distribution of links in pairwise stable networks in terms of the pseudo-surplus function

V ∗(x1, x2) := U∗(x1, x2) + U∗(x2, x1), so that the function U∗(x1, x2) is not separately iden-

tified. Specifically, if we let s1i denote the degree of node i, the density for the limiting

distribution is given by

f ∗
0 (x1, x2; s1, s2) =

s11s12 exp{V ∗(x1, x2)}M∗(s11|x1, x2)M∗(s12|x2, x1)w(x1)w(x2)
(1 +H∗(x1))(1 +H∗(x2))

where the inclusive value function H∗(x) satisfies the fixed-point condition

H∗(x) = Ψ0[H
∗,M∗](x) :=

∫

X×S
s
exp{V ∗(x, x2)}
1 +H∗(x2)

M∗(s|x2, x)w(x2)dsdx2

12For example, the researcher may sample nodes at random and eliciting all links emanating from each node
(“induced subgraph”), or only the links among the nodes included in the survey (“star subgraph”), see
Chandrasekhar and Lewis (2011) for a discussion.
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and the degree distribution M∗(s|x) is given by

M∗(s1|x1, x2) =
H(x1)

s1

(1 +H∗(x1))s1+1

and does not depend on x2. In particular, we have for any r = 0, 1, . . . that

P (s1i ≥ r|xi = x) =

∞
∑

s=r

H∗(x)s

(1 +H∗(x))s+1
=

(

H∗(x)

1 +H∗(x)

)r

so that the ratio
P (s1i = r|xi = x)

P (s1i ≥ r|xi = x)
=

1

1 +H∗(x)

for any natural number r, including zero. Hence for any arbitrarily chosen r = 0, 1, . . . , we

can write the pseudo-surplus function in terms of log differences of link frequencies,

V ∗(x1, x2) = log
f ∗
0 (x1, x2; s1, s2)

s11s12w∗(x1; s1)w∗(x2; s2)

− log
P (s1i = r|xi = x1)

P (s1i ≥ r|xi = x1)
− log

P (s1j = r|xj = x2)

P (s1j ≥ r|xj = x2)

where w∗(x; s) is the p.d.f. of the cross-sectional distribution of xi, si. Note that all quanti-

ties on the right-hand side can be estimated nonparametrically from the observed network.

Hence, the pseudo-surplus function V ∗(x1, x2) is nonparametrically identified for the “pure

homophily” model. Note that the identification argument is constructive and does not re-

quire knowledge of the (unobserved) inclusive value function H∗(x).

5.1.2. Identification of the Reference Distribution. In the fully general case, the reference dis-

tributionM∗ is a joint distribution of the potential values of the network statistics (sl, til, tjl)

under all possible configurations rijl of the subnetwork among the nodes i, j, l. Appendix

A shows that if selection from the edge-level response is independent across nodes in the

general case of a multi-valued edge-level response, then the network is characterized by a

unique reference distribution M∗. In that event, the reference distribution for the potential

value of sl for any specific value of rijl equals the conditional distribution of sl given rijl in

the cross-section, and is therefore nonparametrically identified for all values of rijl that occur

with strictly positive probability.

Note however thatM∗ is the joint distribution over potential values for all values of rijl, so

that this argument does not guarantee nonparametric identification ofM∗ from the marginal

distributions for specific potential values. In the case of a unique edge-level response, the

link frequency distribution depends only on the respective marginal distributions for the

potential outcomes. In that event, we can use the implied nonparametric estimator for the

marginals of M∗ for estimation which obviates the need to solve the fixed-point problem

(3.3) explicitly.
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5.1.3. Set-Valued Edge-Level Response. In the general case of a set-valued edge-level re-

sponse, there is no guarantee that the pseudo-surplus function, or parameters governing its

form, are point-identified. By Theorem 4.3, the bounds on the large-network distribution

implied by the model are in general sharp, and can be used to construct moment inequalities

that bound an identified set of pseudo-surplus function or other payoff parameters. This step

is fully analogous to the analysis of other models with set-valued predictions, see Beresteanu,

Molchanov, and Molinari (2011) and Galichon and Henry (2011).

In the literature on discrete games it is known that bounds in more tightly parameterized

models may shrink to a point e.g. under large-support conditions on relevant exogenous

characteristics, see Tamer (2003). It may be possible to establish similar conditions for the

limiting bounds derived in this paper, however a more systematic analysis of the set-valued

case is beyond the scope of this paper and will be left for future research.

5.2. Parametric Estimation. We now turn to estimation of parametric models for link

preferences, where we assume that systematic utilities are specified as

U∗(xi, xj ; si, sj, tij) = U∗(xi, xj ; si, sj, tij|θ)

for a finite-dimensional parameter θ. We also define the resulting pseudo-surplus function

V ∗(xi, xj ; si, sj, tij|θ) = U∗(xi, xj ; si, sj , tij|θ) + U∗(xj , xi; sj, si, tij |θ)

For the case of a non-unique edge-level response, we also maintain the assumption of inde-

pendent equilibrium selection stated formally in Example A.4 in the appendix.

Estimation and inference for θ in the network model is complicated by the presence of

multiple stable outcomes. However, while the fixed-point conditions in (3.3) and (A.4),

respectively, may admit multiple solutions, as discussed before the distributionM∗(s1|x1, x2)
resulting from the equilibrium chosen in the data can be estimated consistently from the

observed network. Our approach is therefore conditional on the non-unique equilibrium

distribution M∗, which we replace by a consistent estimate. This strategy for dealing with

multiple equilibria is analogous to Menzel (2016)’s approach for the case of discrete action

games.

The other potential difficulty is that the limiting distribution in (A.7) depends on the

(unobserved) inclusive value function. Following the approach in Menzel (2015) for the case

of matching markets, we suggest to treat H∗(x; s) as an auxiliary parameter in maximum

likelihood estimation of the surplus function V ∗(x1, x2; s1, s2|θ) satisfying the fixed-point

condition (A.5).
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We propose maximum likelihood estimation of θ, where the log-likelihood contribution for

node i,

ℓi(θ,H) :=

n
∑

j=1

dij log f
∗(xi, xj ; si, sj|θ,H)

is obtained from the limiting model. Hence, when the researcher observes the full network

with n nodes, the log-likelihood function corresponding to the limiting distribution is

Ln(θ,H) :=

n
∑

i=1

ℓi(θ,H)

We also estimate the fixed-point mapping Ψ0[H,M
∗] by its sample analog

Ψ̂n(·) :=
1

n

n
∑

i=1

ψi(θ,H)

where the node-level contributions ψi(θ,H) are again derived from the limiting representa-

tion. When only a random sample of nodes or edges of the network is observed according

to some known sampling protocol with uniformly bounded qualification probabilities, the

formulae for Ln(·) and Ψn(·) can be adjusted using weights.

The maximum likelihood estimator is then obtained by maximizing the log-likelihood,

where H∗(x; s) is treated as an auxiliary parameter that has to satisfy the sample analog of

the fixed-point condition (3.2). Specifically we solve the problem

max
θ,H

Ln(θ,H) s.t. H = Ψ̂n(H) (5.1)

The structure of this optimization problem, where a nuisance function is defined by a fixed-

point problem, is very similar to that of maximum likelihood estimation of dynamic discrete

choice models where the value function has to be recomputed for each candidate value of

the preference parameters. Popular approaches for estimating these models are nested fixed-

point algorithms (Rust (1987), Ishakov, Lee, Rust, Schjerning, and Seo (2016)) and the

MPEC algorithm (Su and Judd (2012)).

To conclude our discussion of estimation, we give the expressions for the log-likelihood L̂n

and the fixed-point mapping Ψ̂n for a few illustrative examples which form the basis for the

Monte Carlo experiments in the last section of this paper. We only consider cases for which

the edge-level response is unique, or we specify the equilibrium selection rule since the main

purpose of these examples is to illustrate our convergence results, abstracting from potential

issues with partial identification in the general case. In each case the likelihood function is

derived from the corresponding limiting model F∗
0 , assuming that the researcher observes

the relevant exogenous characteristics for all nodes, x1, . . . , xn, and the full adjacency matrix

L.
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Example 5.1. (No Endogenous Interaction Effects) We first consider the case of

no endogenous interaction effects, with systematic marginal utility functions of the form

U∗(x1, x2) = U∗(x1, x2; θ). For this case, the only relevant network variable is the network

degree s1i :=
∑n

j=1Lij, and the inclusive value function does not depend on endogenous

network characteristics, so that H(x; s) = H(x) for all s ∈ S.
Then the information in the sample can be summarized by the degree sequence s11, . . . , s1n

together with the non-zero link indicators, and the limiting model implies that the log-

likelihood contribution of the ith node is given by

ℓi(θ,H) =
1

2

n
∑

j=1

Lij (V
∗(xi, xj |θ)− log(1 +H(xi))− log(1 +H(xj)))

+ log s1i − log(1 +H(xi))

Note that the first term of the log-likelihood only receives weight one half to avoid double-

counting of non-zero link indicators as we sum the log-likelihood contributions over the

nodes i = 1, . . . , n. The constrained maximum likelihood estimator maximizes the net-

work log-likelihood Ln(θ,H) :=
∑n

i=1 ℓi(θ,H) subject to the fixed-point condition H(x) =
1
n

∑n
i=1 ψi(θ,H) with

ψi(θ,H) = wis1i
exp{V (x, xi|θ)}

1 +H(xi)

where wj :=
1l{s1j>0}

1

n

∑n
k=1

1l{s1k>0} . The importance weights wj are used to obtain an unbiased

estimator for the operator Ψ0 in (3.2), noting that the reference distribution for the potential

value of s1j from setting Lij = 1 is equal to the conditional distribution of s1j given s1j > 0

in the cross-section over nodes in the network.

Example 5.2. (Many-to-Many Matching and Capacity Constraints) Next, we

state the likelihood for a many-to-many matching model that assumes the same preferences

as in the previous case, but allows each node to form at most s̄ direct links, i.e. capping the

network degree at s̄. Furthermore, in accordance with classical matching models, we modify

the notion of pairwise stability for networks (PSN, Definition 2.1) to allow for deviations in

which a node simultaneously severs one link and forms another, see Definition A.3 (PSN2)

in the appendix for a formal definition.

The log-likelihood contribution of the ith node resulting from the limiting model is then

obtained as

ℓi(θ,H) =
1

2

n
∑

j=1

Lij (V
∗(xi, xj |θ)− log(1 +H(xi))− log(1 +H(xj)))

+ log s1i − 1l{s1i < s̄} log(1 +H(xi))
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and the fixed-point mapping for the inclusive value function is the average of contributions

ψi(θ,H) := wis1i
exp{V (x, xi|θ)}

1 +H(xi)

where wj :=
1l{s1j>0}

1

n

∑n
k=1

1l{s1k>0} as in the previous case.

Example 5.3. (Strategic Complementarities in Network Degree) Finally, we con-

sider the case in which link preferences depend on the respective network degrees of nodes

i and j, si =
∑n

k=1Lik ≡ s1i and sj =
∑n

k=1Ljk ≡ s1j. For simplicity, we assume that

si, sj are strategic complements with Lij, that is the systematic part U∗(xi, xj ; si, sj|θ) is

nondecreasing in si and sj.

With preferences of this form, the edge-level response is generally not unique, and in what

follows we assume that for any realization of payoffs, the observed network is selected as

the maximal pairwise stable network under the partial order L ≥ L′ if Lij ≥ L′
ij for all

i, j. It follows from standard arguments for monotone comparative statics (see Milgrom and

Roberts (1990)) that the maximal stable network is well-defined and can be obtained from

myopic best-response dynamics starting at the complete graph Lij = 1 for all i 6= j.

Under these assumptions the probability that a given network L is generated by this se-

lection mechanism is equal to the probability that L is pairwise stable times the conditional

probability that payoffs do not support any larger network L′ > L given that L is pairwise

stable. After some standard calculations, we find that under F∗
0 , the probability that the

values s0 < s1, · · · < sr for s1i are jointly supported is equal to

p(s0, . . . , sr) =
H(x; s0)

s0
∏r

q=1(H(x; sq)−H(x; sq−1))
(sq−sq−1)

(1 +H(x; sr))r+1

If we define

π∗(s0; r) :=
∑

s0<..<sr

p(s0, s1 . . . , sr)

p(s0)
= 1−

∑

s0<..<sr

(1 +H(x; s0))
s0+1

∏r
q=1(H(x; sq)−H(x; sq−1))

(sq−sq−1)

(1 +H(x; sr))r+1

the conditional probability that s0 is the largest network degree for node i given that s0 is

supported by a pairwise stable network is given by

π∗(s0) = 1 +

∞
∑

r=1

(−1)rπ∗(s0; r)

For an implementation of the MLE in the Monte Carlo experiments in the next section, we

partially vectorize computation of π∗(s0). Specifically, if H(x; s) only changes its value at a

finite number r of values for s, then π∗(s0) can be computed by a double loop with a total of

2r iterations.
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The log-likelihood contribution of the ith observation can then be written as

ℓi(θ,H) =
1

2

n
∑

j=1

Lij (V
∗(xi, xj ; si, sj|θ)− log(1 +H(xi; si))− log(1 +H(xj; sj)))

+ log s1i − log(1 +H(xi; si)) + log π∗(si)

and the fixed-point condition for the inclusive value function is obtained from the sample

average of

ψi(θ,H) := wis1i
exp{V (x, xi; s, si|θ)}

1 +H(xi; si)

where wj :=
1l{s1j>0}

1

n

∑n
k=1

1l{s1k>0} as in the previous case.

5.3. Set Estimation and Bounds. In the general case of a non-unique edge-level response,

the limiting model provides bounds on the link frequency distribution. In complete analogy

to estimation of discrete games, probability bounds of this type can then be used to con-

struct moment inequalities to estimate identification regions for the payoff parameters, see

Tamer (2003), Ciliberto and Tamer (2009), Beresteanu, Molchanov, and Molinari (2011),

and Galichon and Henry (2011).

We consider a parametric specification for payoffs,

U(xi, xj ; si, sj, tij) = U(xi, xj; si, sj, tij |θ0)

and will now focus on those cases in which the edge-level response is non-unique, so that the

limiting model F∗
0 consists of non-trivial set of distributions. This set can be described in

terms of lower and upper bounds for probabilities of events Aij in the variables dij , si, sj , tij

for a dyad ij in the n-player network. That is, denoting the probability of the event Aij in

the selected pairwise stable network with Pn(Aij|xi, xj), we can derive functions QL(·), QU(·)
from the limiting model such that

QL(Aij|xi, xj; θ0, H∗) ≤ lim
n
Pn(Aij |xi, xj) ≤ QU(Aij|xi, xk; θ0, H∗) (5.2)

As shown by Galichon and Henry (2011) and Beresteanu, Molchanov, and Molinari (2011),

a characterization of sharp bounds on F∗
0 typically has to account for composite events Aij ,

i.e. events of the form Aij = {(dij, si, sj, tij) ∈ Z} for certain non-singleton sets Z ⊂ {0, 1}×
S2 × T . As in the single-valued case, the bounds QL(·) and QU(·) depend on the aggregate

states H∗,M∗ where the inclusive-value function satisfies the fixed-point condition H∗ =

Ψ[H∗,M∗], and the reference distribution M∗ ∈ Ω0[H
∗,M∗] with the mappings Ψ0[·],Ω0[·]

are defined as before. In the remainder of this section, we focus on the case in which the

reference distribution M∗ is nonparametrically point-identified, so that we do not need to

solve the second fixed-point problem explicitly.
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Given these probability bounds, the identified set for the payoff parameter θ is

ΘI :=
{

θ ∈ Θ : QL(A
(r)|xi, xj ; θ0, H∗) ≤ lim

n
lim
n
Pn(A

(r)|xi, xj) ≤ QU (A
(r)|xi, xk; θ0, H∗) a.s. for each r =

for some H = Ψ0[H,M
∗](θ)

}

where A(r) := {(dij, si, sj , tij) ∈ Z(r)} and Z(1), . . . , Z(R) denote the subsets of {0, 1}×S2×T .

Estimation and inference regarding the identified set ΘI can be implemented using moment

functions of the form

m(A(r)|θ,H) :=

(

1l{A(r)
ij } −QL(A

(r)|xi, xj; θ,H)

QU(A
(r)|xi, xj ; θ,H)− 1l{A(r)

ij }

)

From our convergence results and the definition of the probability bounds, we then have the

asymptotic conditional moment restriction

lim
n

E[m(A(r); θ0)|xi, xj ] ≥ 0 a.s.

These conditional restrictions can then be transformed into systems of unconditional moment

equalities and inequalities for set estimation and inference, see e.g. Beresteanu, Molchanov,

and Molinari (2011) for a description for the case of finite discrete games. Since the bounds

in (5.2) are only satisfied as n→ ∞, these procedures can only be consistent (asymptotically

valid, respectively) under the many-player limit.

We conclude this section by giving two examples for how to derive the probability bounds

QL(·), QU(·) from the limiting model F∗
0 .

Example 5.4. Completion of Transitive Triads. Let payoffs be

Uij(D,X) = U∗(xi, xj) + βT,ntij + σηij

where tij = t(D,X; i, j) := maxk 6=i,j dikdjk is an indicator of i and j having a common

network neighbor. In order to obtain a potentially non-degenerate clustering coefficient in

the limiting model, we assume the sequence βT,n := 1
6
log n+ βT ≥ 0, which can be shown to

satisfy Assumption 4.3 (c). We also let tij(d1, d2, d3) denote the potential values for tij given

the structure of the network after fixing dij = d1, dik = d2, djk = d3 for d1, d2, d3 ∈ {0, 1}.
In particular, tij(1, dij, djk) = 1 only if i, j are part of a transitive triad for dij = 1.

We consider probability bounds for outcomes in the subgraph on the triad consisting of

nodes i, j, k, where either of the link indicators dij, dik, djk may be one or zero. We do

not assign specific roles to the nodes i, j, k, so it is without loss of generality sufficient to

consider events with dij ≥ dik ≥ djk. For orders of magnitude, under the asymptotic sequence

in Assumption 4.3 we can verify that the number of triads supporting l = 0, 1, 2, 3 stable links

grows at the order aln, where a0n = n3, a1n = n2, a2n = n, and a3n = n, and their respective
31



shares at rates aln/n
3. In particular, the dyad ij is part of n− 3 distinct triads outside ijk,

so that the probability for tij(1, 0, 0) = 1 is of the order na3n/n
3 = 1/n.

Next we notice that the structure of the complementarity restricts multiplicity in subnet-

work outcomes: Since βT,n ≥ 0, we can verify that for any payoffs supporting dij = dik = 1

and djk = 0, there exists no other pairwise stable subnetwork on the triad. Also, payoffs

under which a subnetwork with one or zero links is pairwise stable, may only support the

complete subgraph dij = dik = djk = 1 as an additional pairwise stable subnetwork.

To compute the probability bounds QL(dij , dik, djk|xi, xj , xk; ·) and QU (dij, dik, djk|xi, xj, xk; ·),
let dij(t) denote the potential value for dij from setting Tij = 1. Then define pik(t) :=

P (dik(t) = 1|xi, xj) so that from our previous results,

lim
n
npik(t) =

s1is1k exp{U∗(xi, xk) + U∗(xk, xi) + 2βT t}
(1 +H∗(xi))(1 +H∗(xk))

.

For any event Aijk in the variables dij, dik, djk, the upper bound QU(Aijk|xi, xj , xk) corre-

sponds to the probability that an outcome in Aijk is supported by random payoffs. Hence we

have

QU(0, 0, 0|xi, xj , xk; θ,H) = lim
n
(1− pij(0))(1− pik(0))(1− pjk(0)) = 1

QU(1, 0, 0|xi, xj , xk; θ,H) = lim
n
npij(0)(1− pik(0))(1− pjk(0))

QU(1, 1, 0|xi, xj , xk; θ,H) = lim
n
n2pij(0)pik(0)(1− pjk(0))

QU(1, 1, 1|xi, xj , xk; θ,H) = lim
n
n2pij(1)pik(1)pjk(1)

noting that, as argued before, the contribution of triads outside ijk to link probabilities is

asymptotically negligible. The limits on the right-hand side are then obtained by plugging in

component-wise limits for pkl(t) as functions of θ and H.

For the lower bounds, note first that the upper bound on the probability of transitive triads

is of a smaller asymptotic order that that for a triad with zero or one link, so that

QL(0, 0, 0|xi, xj, xk; θ,H) = QU(0, 0, 0|xi, xj , xk; θ,H)

QL(1, 0, 0|xi, xj, xk; θ,H) = QU(1, 0, 0|xi, xj , xk; θ,H).

Furthermore, for any payoffs resulting in a triad with two links, the pairwise stable sub-

network on that triad is unique for tij(1, 1, 0) = tik(1, 1, 0) = tjk(1, 1, 0) = 0, so that

QL(1, 1, 0|xi, xj , xk; θ,H) = QU(1, 1, 0|xi, xj , xk; θ,H). Finally, the transitive triad is the

unique pairwise stable subnetwork if and only if all three links are dominant,

QL(1, 1, 1|xi, xj , xk; θ,H) = lim
n
n2pij(0)pik(0)pjk(0) = 0

We can also verify that bounds for composite events of distinct values of dij, dik, djk do not

impose additional restrictions on the limiting distribution.
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We can then form moment inequality conditions by comparing these bounds to appropri-

ately normalized subgraph counts for triads in the observed network,

m̂(1)
n (θ,H) :=

1

n2

∑

ijk

(1l{dij = 1, dik = 0, djk = 0} −QL(1, 0, 0|xi, xj , xk; θ,H))ψ(xi, xj, xk)

m̂(2)
n (θ,H) :=

1

n

∑

ijk

(1l{dij = dik = 1, djk = 0} −QL(1, 1, 0|xi, xj , xk; θ,H))ψ(xi, xj , xk)

m̂(3)
n (θ,H) :=

1

n

∑

ijk

(QU(1, 1, 1|xi, xj , xk; θ,H)− 1l{dij = dik = djk = 1})ψ(xi, xj , xk)

for a vector-valued function ψ(x1, x2, x3) ≥ 0 that only takes non-negative values. By the

law of iterated expectations, the limit of the expectations for m̂
(k)
n (θ0, H

∗
0 ) is equal to zero for

k = 1, 2, and greater or equal to zero for k = 3, so that we can use the resulting moment

equalities and inequalities for testing and estimation.

Example 5.5. (Strategic Complementarities in Network Degree) Consider the pay-

offs from Example 5.3 with payoffs Uij(D) depending on si :=
∑n

j=1 dij and sj :=
∑n

i=1 dji.

We now show how to construct probability bounds for dyad-level outcomes in (dij, si, sj) which

do not assume a particular selection mechanism.

Similar to the discussion for the case of a specific selection mechanism, let

p(s1, . . . , sr|x) :=
H(x; s1)

s1
∏r

q=1(H(x; sq)−H(x; sq−1))
(sq−sq−1)

(1 +H(x; sr))r+1

for any s1 < · · · < sr, and define

τ ∗(s̄; r|x) :=
∑

s1<..<s̄<..<sr

p(s1, . . . , s̄, . . . , sr|x)
p(s̄|x)

where the summation is over any ordered tuple of r values for s1i, one component of which

equals s̄. Then the conditional probability that s̄ is the unique pairwise stable value of si

given that it is supported by a pairwise stable subnetwork is

π∗(s̄|x) = 1 +
∞
∑

r=1

(−1)rτ ∗(s̄; r|x)

Since the sharp upper bound for the probability of the outcome dij, si, sj corresponds to the

probability that these values are supported by some pairwise stable subnetwork, we obtain

QU(dij = 1, si, sj |xi, xj ; θ,H) := lim
n
nP (dij = 1, si, sj supported |xi, xj)

=
sisj exp{V (xi, xj; si, sj)}H(xi; si)

siH(xj; sj)
sj

(1 +H(xi; si))si+1(1 +H(xj ; sj))sj

Sharp lower bounds for specific values of these network outcomes correspond to the event that

no other values of dij, si, sj are supported by payoffs, and can be obtained by multiplying the
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upper bound with the conditional probability that the given pairwise stable outcome is unique.

Specifically, we let

QU(dij = 1, si, sj|xi, xj ; θ,H) := QU(dij = 1, si, sj |xi, xj ; θ,H)π∗(si|xi)π∗(sj|xj)

These bounds for singleton events are not sharp, but following Beresteanu, Molchanov, and

Molinari (2011) and Galichon and Henry (2011), we can obtain additional constraints by

considering composite events consisting of several distinct values of these network variables.

5.4. Welfare and Surplus. Our limiting framework also yields a straightforward analytic

approximation to expected surplus from being connected to the network. Surplus calculations

of this type are necessary e.g. to characterize ex ante incentives to participate in the network

and exert search effort (as e.g. in the setting described by Currarini, Jackson, and Pin

(2009)), or to evaluate welfare consequences of policies affecting the composition or structure

of the network.

Focusing on the case of no edge-specific endogenous interaction effects, let Uij(s) :=

U∗(xi, xj; s, sj(L
∗))+σηij and let Ui;r(s) denote the rth (largest) order statistic of the sample

{Uij(s) : j ∈ Wi(L
∗)}. Then if the sequence s1, . . . , ss1i = si of values for si results from

successively adding links corresponding to the 1, . . . , rth order statistics, agent is surplus can

be obtained by integrating the marginal utilities,

Πi(L
∗) =

s1i
∑

r=1

(Ui;t(sr)−MCi) (5.3)

Note that if marginal link utilities are indeed derived from a benefit function Bi(L) as in

Section 2.1, the expression for Πi(L
∗) does not depend on the particular choice of such a

sequence s1, . . . , sr.

For the Logit model it is known that the expected value of the first order statistic of

such a sample is equal to a function of the inclusive value (see e.g. Train (2009)). We first

show an analogous result for any other finite order statistic as Wi(L) grows in size, and then

derive limiting expressions for the expected net surplus in (5.3). In order to characterize the

expectation of Πi(L
∗), we also let Ai(r; s) denote the event that payoffs support si = s and

network degree s1i = r. We can then derive the following limiting expressions for expected

link surplus:

Proposition 5.1. Suppose that the assumptions of Theorem 4.2 hold. Then for any r′ ≥ r,

lim
n

E[Ui;r|Ai(r
′; s)]− 1

2
logn = log(1 +H∗(x; s)) + γ −

r−1
∑

q=1

1

q

lim
n

E[MCi|Ai(r
′; s)]− 1

2
logn = log(1 +H∗(x; s)) + γ −

r′
∑

q=1

1

q
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where H∗(x; s) is the inclusive value function and γ ≈ 0.5772 denotes the Euler-Mascheroni

constant.

See the appendix for the derivation of these expressions. Given this result, we can compute

the expected surplus from being connected in the network. Conditional on Ai(s1i, s), we have

lim
n

E[Πi(L
∗)|Ai(s1i, s)] = lim

n

s1i
∑

r=1

(E[Ui;r|Ai(s1i; s)]− E[MCi|Ai(s1i; s)])

=

s1i
∑

r=1

(log(1 +H∗(x; sr))− log(1 +H∗(x; ss1i))) +

s1i
∑

r=1

(

s1i
∑

q=1

1

q
−

r−1
∑

q=1

1

q

)

=

s1i
∑

r=1

(log(1 +H∗(x; sr))− log(1 +H∗(x; ss1i))) + s1i (5.4)

Hence, for the case where link preferences in exogenous attributes alone, it follows by the

law of iterated expectations that

lim
n

E[Πi(L
∗)] = E[s1i] = H∗(x)

where in the case of a non-unique edge-level response, the expectation is taken given the

equilibrium selection rule. On the other hand, with preferences depending on network degree,

the sequence s1, . . . , ss1i becomes 1, 2, . . . , s1i, so that

lim
n

E[Πi(L
∗)] = E

[

s1i
∑

r=1

(log(1 +H∗(x; r))− log(1 +H∗(x; s1i))) + s1i

]

where the expectation with respect to s1i also depends on the selection rule.

6. Outline of the Limiting Argument

This section gives an outline of the formal argument behind Theorem 4.2. One of the

challenges in characterizing the exact model for the finite-player network is that the set of

available link opportunities to each of the n nodes are unobserved and endogenous to that

node’s own choices. Furthermore, the pairwise stability conditions depend on the potential

values for the relevant network attributes for each node (edge, respectively) under all pos-

sible configurations of the network. Clearly, the corresponding latent state space grows in

dimension with the size of the network and contains both discrete and continuous compo-

nents. Our argument relies on the inclusive value function and the reference distribution as

asymptotically sufficient aggregate state variables to represent that state space, partly using

insights from Menzel (2015).

There are three additional aspects that complicate the formal argument: For one, strategic

externalities across links may lead to long-range dependence of link decisions and result in

simultaneity problems that do not exist in models without strategic interdependencies. Here
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we rely on a novel argument based on symmetric dependence which does not require any

type of ergodicity or weak dependence. Furthermore, network formation allows for several,

rather than just one direct connection to each node, so that not only the maximum, but

other extremal order statistics of marginal benefits are relevant for link formation decisions.

Finally, PSN allows for multiple edge-level responses to a given set of link opportunities, so

that even in the limit the link frequency distribution need not be unique.

Dependence. In a first step, we show that dependence between idiosyncratic taste shifters ηij

and endogenous network attributes of nodes in the link opportunity set Wi(L
∗), as defined

in section 2, vanishes as n grows large: In pairwise stable networks, establishing a link ij

may affect subsequent decisions by other nodes that are available to i or j, which may in

turn affect link choices by other agents that need not be directly linked to i or j. Such

a chain of adjustments may eventually link back to either i or j’s link opportunity sets.

Preference cycles of this type may generally lead to dependence between taste shocks ηij and

link opportunity sets Wi(L
∗) in finite network formation games, but our first technical result

below establishes that dependence becomes negligible as n increases:

In the following we let dji be a vector of dummy variables indicating availability of node

j to i for each configuration of the relevant overlap defined in Appendix A, and also let

sji, tji denote the potential values of the payoff-relevant endogenous network attributes for

the dyad (i, j) corresponding to an arbitrarily chosen initial network L(0). Note that for

the leading case of a unique edge-level response, the potential values corresponding to a

network L are given by sji = S(L + {ij}, X ; j), and tji = T (L + {ij}, X ; j, i), respectively.

We also let L∗ denote the pairwise stable network, or first element of a closed cycle reached

by the tâtonnement process described in section 2.3 starting from the initial condition L(0),

and denote the potential values of the network variables under L∗ with d∗
ji, s

∗
ji, t

∗
ji. We

also stack the potential values and attributes into vectors zij := (xi, xj,d
′
ji, s

′
ji, t

′
ji) and

z∗ij := (xi, xj, (d
∗
ji)

′, (s∗ji)
′, (t∗ji)

′), respectively.

Availability of a node j to i in a given network is fully determined by the potential values

of sj , tij, and the taste shocks ηji and MCj . To analyze dependence between node i’s taste

shifters and link opportunities, it is therefore sufficient to focus on the joint distribution of

MCi, (ηij)
n
j=1 and z∗ij for j = 1, . . . , n.

In the following, we denote the conditional c.d.f. of (ηi1, . . . , ηin,MCi) given z∗i :=

(z∗i1, . . . , z
∗
in) with

G∗
n(ηi1, . . . , ηin,MCi|z∗i ) := P (ηi1 ≤ η1, . . . , ηin ≤ ηn|z∗i1, . . . , z∗in)

with the associated p.d.f. g∗n(ηi1, . . . , ηin,MCi|z∗), and the unconditional distribution func-

tions with Gn(ηi1, . . . , ηin,MCi) and gn(ηi1, . . . , ηin,MCi), respectively. The following lemma
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summarizes the main finding regarding dependence between taste shifters ηi and link oppor-

tunities represented by Wi(L
∗).

Lemma 6.1. Suppose Assumptions 4.1, 4.2, 4.3 (i), and 4.4 hold. Then, for any pairwise

stable network,

lim
n→∞

G∗
n(ηi1, . . . , ηin,MCi|z∗i )
Gn(ηi1, . . . , ηin,MCi)

= 1

almost surely, where convergence is uniform with respect to the initial condition L(0). The

analogous conclusion holds for the joint distribution over any fixed finite subset of nodes

N0 ⊂ {1, . . . , n}, where the conditioning set excludes the dyad-level outcomes z∗ij for any pair

i, j ∈ N0.

The proof of this result is given in the appendix. Note that the conclusion is analogous to

that in Lemma 3.2 in Menzel (2015) for the problem of two-sided matchings. However the

structure of the problem differs in one crucial aspect: the structure of the matching problem

in Menzel (2015) was shown to rule out preference cycles that lead to interdependence among

a non-negligible share of agents in the market. However, with general link externalities the

length of preference cycles of this type is no longer bounded, and local perturbations of a

given pairwise stable network may trigger cascades of subsequent adjustments that percolate

through the entire network. Hence, the argument in Menzel (2015) cannot be easily extended

to the network formation problem except for very restrictive cases in which link externalities

are known to be sufficiently small.13

The proof of Lemma 6.1 considers the outcomes of tâtonnement starting from arbitrary

initial conditions, where we use symmetry arguments to show that for any node pair the

conditional distribution of z∗ij given the initial condition zij does not depend on the taste

shocks at the dyad level. This finding can then be combined with row-wise exchangeability

of the distribution g∗n(·) to establish the main conclusion of the Lemma. In particular, our

argument does not rely on sparsity of the network, weak dependence or ergodicity in the link

formation process. Instead, the conclusion of the Lemma can be interpreted as resulting from

conditional independence of dyad-level outcomes given the (potentially stochastic) reference

distribution associated with the selected pairwise stable network.

Conditional Choice Probabilities. The second step takes the limit of the conditional proba-

bility that agent i is willing to form a link to agent j given xi, zj , and her other links. As in

the case of the matching model (Lemma 3.1 in Menzel (2015)), we find that given our spec-

ification the number of links “accepted” by agent i is substantially smaller than the number

of “proposals” j ∈ Wi(L
∗), so that the conditional probability of proposing or accepting a

link depends only on the upper tail of G(·), the distribution for the taste shifters ηij . The

13A sufficient condition for preference cycles in networks to have finite length is given by Assumption 4
(“subcriticality”) in Leung (2016).
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assumption that G(·) has tails of type I can then be used to establish that conditional choice

probabilities can be approximated by those implied by the Logit model with taste shifters

generated by an extreme-value type-I distribution. Here a complication arises from the fact

that all links (and availability to j) are determined simultaneously, so that it is necessary to

consider joint probabilities of the form

Φ(i, j1, . . . , jr|z∗i ) = P (Uij1, . . . , Uijr ≥MCi > Uij′ all other j
′ ∈ Wi(L

∗)|z∗i )

Notice that marginal benefits Uij depends on Si and Tij , so that Φ(i, j1, . . . , jr|z∗i ) cannot be
directly interpreted as a conditional choice probability, but equals the probability that the

configuration Lij1 = · · · = Lijr = 1 and Lij′ = 0 for all other j′ ∈ Wi satisfies the pairwise

stability conditions regarding player i’s payoffs. Such a configuration is not necessarily

unique, but externalities among links emanating from i may support several stable outcomes

for a given realization of random payoffs.

We find that under our assumptions, we can approximate the conditional probability

Φ(i, j1, . . . , jr|z∗i ) with its analog under the assumption of independent extreme-value type-I

taste shifters. Let s∗i,+j, s
∗
j,+i, t

∗
ij,+ij denote the potential values for si, sj, and tij , respectively,

for the network L̃ that is obtained from L∗ after setting Lij = Lijs = 1 for all s = 1, . . . , r

and Lik = 0 for all k 6= j, j1, . . . , jr.

Lemma 6.2. Suppose that Assumptions 4.1-4.3 hold, and that the marginal benefit functions

Ui1, . . . , UiJ are J i.i.d. draws from the model (2.1), and marginal costMCi is an independent

draw from (2.2). Then as J → ∞,
∣

∣

∣

∣

∣

∣

∣

nr/2Φ(i, j1, . . . , jr|z∗i )−
r!
∏r

s=1 exp{U∗(xi, xjs; s
∗
i,+js, s

∗
js,+i, t

∗
ijs,+ijs)}

(

1 + 1
J

∑J
j=1 exp{U∗(xi, xj ; s

∗
i,+j, s

∗
j,+i, t

∗
ij,+ij)}

)r+1

∣

∣

∣

∣

∣

∣

∣

→ 0 (6.1)

for any r = 0, 1, 2, . . . .

This approximation allows the use of inclusive values for the link opportunity sets to re-

parameterize conditional choice probabilities even if the distribution of taste shifters ηij is

not extreme-value type-I, but belongs to its domain of attraction. We also find that we

can take joint limits for any finite set of nodes, i1, . . . , is conditional on z∗i1 , . . . , z
∗
is in an

analogous fashion.

It follows from the previous two steps that we can approximate the distribution of the

edge-level response using the inclusive value of agent i’s link opportunity set W , which we

defined as

Ii[W ] :=
1

n1/2

∑

j∈W
exp{U∗(xi, xj ; s

∗
i,+j, s

∗
j,+i, t

∗
ij,+ij)}

Most importantly, the composition and size of the set of link opportunities affects the con-

ditional choice probabilities only through the inclusive value, which is a scalar parameter
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summarizing the systematic components of payoffs for the available options, see Luce (1959),

McFadden (1974), and Dagsvik (1994).

Law of Large Numbers. The third step of the argument establishes a conditional law of

large numbers for the inclusive values I∗i := Ii[Wi(L
∗)] which are sample averages over the

characteristics of agents in the link opportunity setWi(L
∗), where the size of the set |Wi(L

∗)|
grows at a rate

√
n for any PSN.

Lemma 6.3. Suppose Assumptions 4.1, 4.2, and 4.3 hold. Then, (a) there exists a function

Ĥ∗
n(x, s) such that for any pairwise stable network, the resulting inclusive values satisfy

I∗i − Ĥ∗
n(xi, si) = op(1)

for each i drawn from a uniform distribution over {1, . . . , n}. Furthermore, (b), if the weight

functions ω(x, x′, s, s′) ≥ 0 are bounded and form a Glivenko-Cantelli class in (x, s), then

sup
x∈X s∈S

1

n

n
∑

j=1

ω(x, xj , s, sj)(I
∗
j − Ĥ∗

n(xj , sj)) = op(1)

See the appendix for a proof. The result implies that up to sampling error, for all but a

vanishing share of nodes, inclusive values only depend on agents’ own characteristics xi, si,

so that we do not need to account for the node-specific link opportunity sets separately as

we take limits. In the following, we refer to Ĥ∗
n(x, s) as the inclusive value function in the

finite network. Note also that part (a) still allows for some nodes to have inclusive values

that differ substantially from the respective value of the inclusive value function even for

large n, however their share among the n nodes vanishes as the network grows.

In the two-sided matching case an analogous result could be derived relying on bounds

exploiting the ordinal structure of the set of stable matchings (see Lemma B.5 in Menzel

(2015)), where the inclusive value was shown to converge to the inclusive value function for

each agent. For pairwise stable networks with a non-unique edge-level response, this is in

general not the case so that our argument has to rely on a different strategy.

To illustrate the difficulty, suppose that there exists a stable network in which both values

sj = s and sj = s̄ 6= s are supported by the edge-level response for a nontrivial share of nodes.

Then switching between a network in which sj = s to another in which sj = s̄ may make j

more likely to be available to i, or increase the marginal benefit to i of forming a link with

j. For a given realization of taste shifters ηji it may then be possible to construct a pairwise

stable network in which nodes j with high values of ηji choose sj = s, whereas nodes with

high values of ηjk for another node k choose sj = s̄. Hence, if selection of pairwise stable

networks is allowed to depend on the idiosyncratic taste shifters ηji, the inclusive values

I∗i , I
∗
k could deviate substantially from the average for a small number of nodes. However,

we find that for any pairwise stable network the share of nodes whose inclusive value differs
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substantially from the respective conditional average must vanish as the size of the network

grows. In particular, we find that the problematic term in the characterization of the “worst-

case” selection from edge-level responses can be bounded by the eigenvalue of a symmetric

random matrix which is known to converge to a finite limit.

Fixed-Point Mapping for Inclusive Value Functions. Next, we derive an (approximate) fixed-

point condition for the inclusive value function H(x; s) resulting from the law of large num-

bers in the previous step.

For any conditional distribution M(s|x), define the mapping

Ψ̂n[H,M ](x; s) :=
1

n

n
∑

j=1

∫

s1j exp{U∗(x, xj ; s, sj, t0) + U∗(xj, x; sj , s, t0)}
1 +H(xj; sj)

M(sj |xj)dsj

(6.2)

If we let M̂∗
n(s|x) denote the empirical distribution of endogenous network characteristics

given exogenous traits in the PSN, the next Lemma states that the inclusive value function

is a fixed point of the mapping Ψ̂n[·, M̂∗
n]:

Lemma 6.4. The inclusive value function Ĥ∗
n(x, s) resulting from a PSN has to satisfy the

approximate fixed-point condition

Ĥ∗
n(x; s) = Ψ̂n[Ĥ

∗
n, M̂

∗
n](x; s) + op(1) (6.3)

where the remainder converges in probability uniformly in the arguments x, s.

See the appendix for a proof.

Fixed-Point Existence and Uniqueness for Inclusive Value Functions. Next we can charac-

terize the limit for Ĥ∗
n. The analog of the fixed-point operator in (6.2) for the limiting model

is given by

Ψ0[H,M
∗](x; s) :=

∫

s∗1j,+1 exp{U∗(x, xj ; s, sj) + U∗(xj , x; sj, s)}
1 +H(xj; s∗1j,+1)

M∗(s∗1j,+1|xj , x)dxjdsj
(6.4)

for an appropriately chosen reference distribution M∗ in the set given by (A.4). Given that

reference distribution, we then let H∗(x; s) be a solution of the fixed-point problem

H∗ = Ψ0[H
∗,M∗]

We next give conditions under which for any given reference distribution, the fixed point

exists and is unique:

Proposition 6.1. Suppose that Assumptions 4.1-4.3 hold. Then (i) for any given reference

distribution M∗(s|x) for which the network degree s1i satisfies E[s1i|xi] < Bs < ∞ almost

surely, the mapping logH 7→ log Ψ[H ] is a contraction mapping with contraction constant
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λ < Bs exp{2Ū}
1+Bs exp{2Ū} . Moreover, (ii) the fixed points in (3.2) are continuous functions that have

bounded partial derivatives at least up to order p.

The formal argument for this result closely parallels the proof of Theorem 3.1 in Menzel

(2015) with contraction constant equal to Bs exp{2Ū}
1+Bs exp{2Ū} , a separate proof is therefore omitted.

One case of particular interest for which the contraction property holds without additional

assumptions is that of no endogenous interaction effects, as shown by the following corollary:

Corollary 6.1. Suppose Assumptions 4.1-4.3 hold, and U∗(x1, x2; s1, s2, t12) = U∗(x1, x2).

Then the solution H∗(x; s) = H∗(x) to the fixed point problem (3.2) is unique.

The proof of this corollary is given in the appendix.

6.0.1. Fixed Point Convergence. Finally, we can characterize the cross-sectional distribution

M̂∗
n(s1|x1, x2) of potential values for si in the cross-section of nodes in the n-agent network

with the equilibrium conditions
∫

S

M̂∗
n(s|x1, x2)ds ≤ Ω̂n[Ĥ

∗
n, M̂

∗
n](x1, x2;S) + op(1) for all S ∈ S (6.5)

We can now combine the previous steps to show joint convergence for the reference distribu-

tion M̂∗
n and the inclusive value function Ĥ∗

n(x; s) to solutions of the population fixed-point

problem (3.2) and (3.3). Specifically, Lemmata 6.2 and 6.3 imply that link opportunity sets

can be parameterized with the inclusive value functions, whereas the fixed-point conditions

for the inclusive value function and reference distribution converge to their respective pop-

ulation limits. Finally, under our assumptions convergence of the fixed-point mappings also

implies convergence of the (set of) fixed points:

Lemma 6.5. Suppose that Assumptions 4.1-4.5 hold. Then for any stable network, the

inclusive value function Ĥ∗
n(x; s) and reference distribution M̂∗

n(s1|x1, x2) satisfy the fixed-

point conditions in (6.3) and (6.5). Moreover, there exist H∗,M∗ satisfying the population

fixed-point conditions in (3.2) and (3.3) such that ‖Ĥ∗
n−H∗‖∞ = op(1) and ‖M̂∗

n −M∗‖∞ =

op(1).

See the appendix for a proof. Finally, the state variables Ĥ∗
n, M̂

∗
n are asymptotically suffi-

cient for the global structure of the network with respect to the conditional link acceptance

probabilities. Hence convergence of the fixed points together with the Logit representation

of the link acceptance probabilities in Lemma B.5 imply convergence of the link frequency

distribution as claimed in Theorem 4.2.

7. Simulation Study

This section reports results from Monte Carlo experiments to illustrate the performance of

the limiting approximations for the case of a unique best response. We focus on simulation
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Design 1 Design 2

E[si|xi = x] E[Ii|xi = x] E[si|xi = x] E[Ii|xi = x]
n x = 0 x = 1 x = 0 x = 1 x = 0 x = 1 x = 0 x = 1

100 1.971 1.948 2.307 2.300 7.540 6.560 10.557 8.955
(2.128) (2.106) (0.531) (0.535) (6.018) (5.353) (1.538) (1.364)

500 2.435 2.439 2.613 2.610 11.082 9.334 13.087 10.965
(2.740) (2.726) (0.413) (0.412) (9.945) (8.560) (1.334) (1.175)

1000 2.403 2.395 2.523 2.524 11.530 9.812 13.005 10.920
(2.745) (2.767) (0.344) (0.344) (10.725) (9.332) (1.153) (1.022)

5000 2.579 2.577 2.637 2.636 13.294 11.128 14.072 11.721
(2.989) (2.993) (0.241) (0.241) (13.088) (11.069) (0.854) (0.753)

10000 2.632 2.637 2.675 2.675 13.836 11.580 14.406 12.008
(3.055) (3.061) (0.206) (0.206) (13.815) (11.661) (0.738) (0.651)

DGP 2.660 2.664 2.718 2.718 13.883 11.617 15.012 12.463

Table 1. Average degree (left) and average inclusive value (right).

designs with discrete types, where the only exogenous covariate xi ∈ {0, 1} (e.g. “red” nodes

vs. “blue” nodes) is a Bernoulli random variable with success probability 0.4. The taste

shifters ηij are i.i.d. draws from an extreme-value type-I distribution.

7.1. Convergence of the Link Frequency Distribution. We first simulate pairwise

stable networks without endogenous interaction effects (“pure homophily” case). Link pref-

erences are given by

Uij = β0 + β1xi + β2|xi − xj |+ ηij

A nonzero coefficient for β1 allows for the propensity to form links to vary between the

two types, whereas β2 can be interpreted as a complementarity between nodes of the same

type. We use two different designs in our simulation experiments which set the preference

parameters equal to (β0, β1, β2) = (0.5, 0, 0) and (1.5, 0,−0.5)}, respectively. All simulation

results were obtained using 200 Monte Carlo draws.

To illustrate the formal results on convergence of the link frequency distribution, we com-

pare summary statistics of the simulated distribution and their theoretical counterparts from

the limiting distribution in Table 1: The first set of columns reports the conditional mean

and standard deviation (in parenthesis) of the degree of a node si :=
∑

j 6=i Lij given the co-

variate xi = 0, 1, and the second set of columns the conditional mean and standard deviation

of the inclusive value Ii := n−1/2
∑

j 6=i 1l{Uji ≥ MCj} exp{U∗(xi, xj)}. The DGP values in

Table 1 correspond to the inclusive value function (left) and the expected degree conditional

on xi under the limiting distribution (right).

The first simulation design results in a very sparse network in which nodes have an average

degree of around 2.6, whereas for the second design, the degree distribution is centered around
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12-14 links per node, which may be more typical for real-world social networks. In the first

design, types do not matter for agents’ preferences since β1 = β2 = 0, so that, at least up to

sampling and numerical errors, inclusive values and degree distributions do not differ across

types xi = 0, 1. For the second design, nodes with xi = 0 have larger inclusive values and

degree distributions than nodes with xi = 1 since the complementarity β2 is positive and the

share of nodes with xi = 1 was set to 0.4. This leaves nodes of the type xi = 0 with a larger

number of link opportunities within their own type category than nodes with xi = 1.

The simulation results replicate by and large the theoretical predictions for large networks.

In particular, the conditional means of Ii and si converge to their asymptotic counterparts,

and the cross-sectional variance of Ii decreases, although at a fairly slow rate.14 Note also

that the conditional distribution of si given xi remains non-degenerate in the limit.

7.2. Parameter Estimation with no Endogenous Interaction Effects. We next turn

to estimation of the preference parameter β := (β0, β1, β2)
′. We estimate β via pseudo-

maximum likelihood, using the asymptotic log-likelihood given in Example 5.1. Note also

that in the absence of strategic interaction effects E[si|xi = x] = H∗(x) in the limiting model,

so that we can use any consistent nonparametric estimator for E[si|xi = x] to obtain starting

values for H∗(x). We use the same design values for the parameter vector β, and results are

for 200 Monte Carlo replications.

One source for small-sample bias in the likelihood results from the use of the inclusive value

function H∗(x) in the limiting representation for the distribution of the edge-level response

when the node forms more than one link. The derivation for Lemma 3.2 suggests a (partial)

bias correction in which we replaceH∗(xi) with Ĩi := H∗(xi)−n−1/2
∑n

j=1Lij exp{U∗(xi, xj)}.
Since the degree distribution remains stochastically bounded as n increases, the correction

term becomes negligible in a very large network. However our simulation results suggest

that such a correction substantially reduces bias for networks of moderate size, especially in

the second design for which the average degree is larger than 10.

The simulation results suggest that the estimators indeed converge to the population values

of the parameter β, where both bias and standard deviation of the estimator decrease as n

grows. However, in contrast to standard nonlinear estimators for i.i.d. samples from a fixed

DGP, the bias of the MLE in our simulation results appears not to vanish at a rate faster

than its standard deviation - in fact the simulation results are consistent with a root-n rate

for both bias and standard error, similar to the findings for the two-sided matching model

in Menzel (2015). This behavior is primarily a result of the slower convergence rate of the

inclusive value functions.

14Based on the argument for Lemma 6.3, we conjecture that the rate of convergence is n−1/4.
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n β̂ML
0 β̂ML

1 β̂ML
2 β̂ML

0 β̂ML
1 β̂ML

2

100 0.442 0.027 0.006 1.116 -0.018 -0.371
(0.203) (0.249) (0.120) (0.460) (0.804) (0.061)

500 0.564 0.002 0.004 1.413 -0.022 -0.432
(0.077) (0.099) (0.046) (0.229) (0.444) (0.022)

1000 0.542 0.004 0.003 1.451 -0.024 -0.450
(0.053) (0.071) (0.030) (0.177) (0.364) (0.016)

5000 0.535 0.001 0.000 1.512 0.003 -0.476
(0.027) (0.032) (0.013) (0.024) (0.031) (0.007)

10000 0.531 -0.002 -0.000 1.521 0.004 -0.483
(0.016) (0.022) (0.009) (0.016) (0.022) (0.004)

DGP 0.500 0.000 0.000 1.500 0.000 -0.500

Table 2. Model without capacity constraints - mean and standard deviation
(in parentheses) of MLE

7.3. Parameter Estimation with Capacity Constraints. For another set of simulation

results we modify the previous design by adding a capacity constraint, where the degree

of each node is not permitted to exceed s̄ = 5. We also impose the modified stability

notion PSN2 introduced in Appendix A.3 rather than pairwise stability. This setup can be

interpreted as a model of many-to-many matching where each node can be matched with at

most 5 partners.

The constrained MLE maximizes the asymptotic log likelihood given in Example 5.2.

Since in this design the degree of any node is capped at s̄ = 5, we omit the bias correction of

inclusive values used in the first set of results, which produces less precise (higher-variance)

estimates for networks of moderate sizes. The starting values forH∗ were obtained by solving

the fixed-point equations with the preference parameters β held fixed at their respective

starting values. The simulation results for the MLE for the preference parameter β are

reported in Table 3 and are by and large comparable to those for the baseline model.

7.4. Endogenous Interactions based on Network Degree. For the last simulation

design, we allow for complementarities in network degree, where nodes with greater degree

centrality are regarded as more “attractive” link prospects. Specifically we consider link

preferences of the form

Uij = β0 + β1xi + β2|xi − xj |+ β3min{10, 2 ∗ ⌈sj/2⌉}+ ηij

where sj :=
∑n

k=1Ljk denotes the network degree of node j, and ⌈x⌉ is the value of x ∈ R

rounded up to the next integer. This specification groups agents into 6 discrete categories in

terms of network degree, partitioning S into {{0}, {1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10, . . .}}.
This design follows the setup in Example 5.3, where the pairwise stable network is obtained
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n β̂ML
0 β̂ML

1 β̂ML
2 β̂ML

0 β̂ML
1 β̂ML

2

100 0.375 0.033 0.011 1.455 0.088 -0.434
(0.279) (0.287) (0.132) (0.337) (0.437) (0.095)

500 0.526 -0.009 0.004 1.521 0.153 -0.471
(0.116) (0.115) (0.053) (0.185) (0.276) (0.037)

1000 0.491 0.013 0.002 1.517 0.079 -0.477
(0.086) (0.091) (0.036) (0.140) (0.221) (0.029)

5000 0.503 0.002 -0.000 1.517 0.026 -0.491
(0.038) (0.038) (0.015) (0.066) (0.098) (0.013)

10000 0.509 -0.003 -0.001 1.514 0.018 -0.493
(0.024) (0.028) (0.011) (0.045) (0.062) (0.009)

DGP 0.500 0.000 0.000 1.500 0.000 -0.500

Table 3. Model with capacity constraints - mean and standard deviation (in
parentheses) of MLE

n β̂ML
0 β̂ML

1 β̂ML
2 β̂ML

3 β̂ML
0 β̂ML

1 β̂ML
2 β̂ML

3

200 0.820 -0.009 -0.387 0.045 0.956 -0.399 0.009 0.079
(0.357) (0.173) (0.040) (0.039) (0.405) (0.124) (0.024) (0.041)

500 0.711 -0.008 -0.424 0.071 0.965 -0.426 0.003 0.093
(0.256) (0.101) (0.023) (0.028) (0.264) (0.089) (0.014) (0.026)

1000 0.640 0.008 -0.447 0.080 0.973 -0.462 0.001 0.098
(0.203) (0.077) (0.017) (0.021) (0.112) (0.069) (0.009) (0.010)

5000 0.528 -0.002 -0.482 0.097 1.042 -0.536 -0.001 0.100
(0.059) (0.031) (0.007) (0.006) (0.096) (0.074) (0.004) (0.007)

DGP 0.500 0.000 -0.500 0.100 1.000 -0.500 0.000 0.100

Table 4. Model with degree externalities - mean and standard deviation (in
parentheses) of MLE

from myopic best-response dynamics starting at the full network graph, Lij = 1 for all i 6= j,

in order to select the largest stable network.

We assume throughout that β3 ≥ 0 and choose the other design parameters β0, β1, β2 in a

way that generates a degree distribution with a reasonable amount of variation across these

categories. Specifically, we use two different designs in our simulation experiments which set

the preference parameters equal to (β0, β1, β2, β3) = (1,−0.5, 0, 0.1) and (0.5, 0,−0.5, 0.1)},
respectively.15 All simulation results were obtained using 100 Monte Carlo draws.

15A back of the envelope calculation and simulation evidence suggest that both specifications exhibit cas-
cading adjustments to small local changes to the network and do not meet the “subcriticality” condition of
Assumption 6 in Leung (2016).
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Simulation results are reported in Table 4. Bias and dispersion of the MLE appear to be

of a comparable order of magnitude as the previous cases, where the bias on the constant

β0 is particularly large for smaller networks. Separate maximization over (β0, β1, β2) and β3,

respectively, constraining the remaining parameters to DGP values yield much more accurate

partial estimates (not reported here), suggesting that for small n the likelihood may be fairly

flat in the direction of some linear combination of the two parameters.

8. Discussion

This paper develops an asymptotic representation of the link frequency distribution re-

sulting from a network formation game. In this limiting approximation, interdependence of

link formation decisions can be split into a “local” component at the level of a given pair

of nodes which is characterized through the edge-level response, and a “global” component,

which is captured entirely by the inclusive value function H∗ and reference distribution M∗

which serve as aggregate state variables. The same applies to multiplicity of stable outcomes,

where “local” multiplicity is resolved by selecting from a multi-valued edge-level response

corresponding to an individual potential link, and “global” multiplicity corresponds to se-

lecting among multiple roots solutions for the equilibrium conditions for the inclusive value

function and reference distribution.

Appendix A. General Characterization of the Limiting Model F∗
0

This appendix gives a general characterization of the limiting model F∗
0 , allowing for multiplicity in the

edge-level response. In the absence of a unique edge-level response, pairwise stability may be consistent with

a family of probability distributions each of which is generated by a different random selection from multiple

pairwise stable outcomes for a given value of the relevant aggregate states. In this section we first give the

most general characterization of that set in the absence of auxiliary assumptions on equilibrium selection.

We then show how additional restrictions on the equilibrium selection rule can simplify that representation

considerably.

Following the approach in Galichon and Henry (2011) and Beresteanu, Molchanov, and Molinari (2011), we

characterize the set of distributions generated by non-unique stable outcomes using capacities (see Choquet

(1954), Molchanov (2005)). We next introduce the main formal concepts, and then describe the capacities

and equilibrium conditions that define F∗
0 . Several illustrative examples are given in Appendix A.3.

A.1. Choquet Capacities. For an arbitrary set S, let 2S denotes the set of all subsets of S, and ∆S the

probability simplex of distributions over elements of S. For the following definition, we say that a sequence

of sets (An)n≥0 is increasing (with respect to set inclusion) if An ⊂ An+1 for all n, and we say that the

sequence is decreasing if An+1 ⊂ An for all n.

Definition A.1. (Choquet capacity) A mapping Q̄ : 2S → [0, 1] is called a Choquet capacity (upper

probability) on the set S if (a) Q̄(∅) = 0, Q̄(S) = 1, (b) Q̄ is monotone with respect to set inclusion,

i.e. Q̄(S′) ≤ Q̄(S) whenever S′ ⊂ S ⊂ S, and (c) for any increasing sequence of subsets (Sn)n≥0 of
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S, limn Q̄(Sn) = Q̄
(

⋃

n≥0 Sn

)

, whereas for any decreasing sequence of subsets (Sn)n≥0, limn Q̄(Sn) =

Q̄
(

⋂

n≥0 Sn

)

.

The normalization of the values of the capacity in part (a) is not part of the usual (i.e. more general)

definition of a Choquet capacity, but is assumed throughout in this paper, so that a capacity can be in-

terpreted as representing a set of proper probability distributions, as we discuss below. The monotonicity

property in part (b), and continuity from the right in part (c) generalize the corresponding properties of

standard probability distributions. Note that in order to characterize the capacity fully, it is in general not

sufficient to state the upper bounds for the elementary events of the form {si = s}, but sharp bounds may

be determined in part by composite events of the form si ∈ S, for arbitrary subsets S ⊂ S.
Choquet capacities can be used to represent sets of probability distributions, where that set is referred to

as the core of the capacity:

Definition A.2. (Core) The core of the capacity Q̄ is the set of all probability distributions Q(s) over S
such that

∫

S

Q(s)ds ≤ Q̄(S) for all subsets S ⊂ S

In that event, we also write Q ∈ core(Q̄).

Hence, the core of the capacity Q̄ is a subset of the probability simplex ∆S. Clearly, the core of Q̄ is convex:

if Q1 and Q2 are in the core, then we also have that for any λ ∈ [0, 1]
∫

S (λQ1(s) + (1− λ)Q2(s)) ds ≤ Q̄(S)

for all S ⊂ S, so that λQ1 + (1− λ)Q2 is also in the core of Q̄.

Moreover, if Q̄ describes a set of distributions generated by pairwise stable networks under various selection

mechanisms, every distribution in the core can be attained by pairwise stable network as long as the rule for

selecting from the edge-level response is unrestricted: Consider any two points in Q̄ that are supported by

selection rules corresponding to mixture weights α, α′. Then any convex combination of the two distributions

can be generated by the mixture λα + (1 − λ)α′ as λ varies on the unit interval. Hence, in the absence

of additional constraints on the selection mechanism we can represent the set of reference distributions

consistent with pairwise stability using a capacity Ω0 to convex subsets of the probability simplex ∆S. We

illustrate the construction of the capacity Q̄ describing the possible distributions of endogenous network

statistics, and the associated fixed-point mapping Ω0 with several examples in the last subsection of this

appendix.

A.2. Limiting model F∗
0 . We now give a representation of the limiting model F∗

0 , which can be charac-

terized in terms of subnetworks on an appropriately defined network neighborhood around a pair of nodes

i, j. We start by defining the main components of our representation of F∗
0 , most importantly the edge-level

response Q∗, the reference distribution M∗ and the inclusive value function H∗, where the last two serve as

aggregate state variables that summarize the relevant global properties of the network. We then state the

equilibrium conditions determining these objects in the limit of pairwise stable networks.

A.2.1. Main Components. The random network neighborhood Ni around a node i is the set of nodes l

such that i and l are mutually acceptable (i.e. Uil(L) ≥ MCi(L) and Uli(L) ≥ MCl(L)) at least for some

combination of values for the endogenous network attributes si, sl, til. The network neighborhood around

an edge ij is the union of the random network neighborhoods around the nodes i and j, and will be denoted

by Nij := Ni ∪ Nj .

Since the network attributes sl, til of nodes l ∈ Ni are determined endogenously in the subnetwork

on Nl, we need to solve the model on overlapping subnetworks of a similar form. We parameterize the
47



interdependence between adjacent subnetworks in terms of the collection of network variables Lkm, sk, tkm

of nodes k ∈ Nij ∩Nl\{l} and m ∈ Nij ∩Nl. We say that the vector rijl containing network variables from

that list is the relevant overlap for Nij and Nl if it is a sufficient statistic for the subnetwork on Nij ∩Nl

with respect to the variables sl, til, tjl. For a given network L, we also write rijl(L) to denote the values of

the network attributes in the relevant overlap.

Example A.1. If there are only anonymous interaction effects, i.e. T = {t0}, then under the distribution of

network neighborhoods given below in this section, distinct nodes in Nij are mutually available with probability

zero. Hence the relevant overlap of Nij and Nl is given by rijl = (si) if l ∈ Nj, and rijl = (sj) if l ∈ Nj.

Example A.2. If the only endogenous interaction effect is a preference for transitive triads, i.e. Tij =

maxk∈N LikLjk, then the relevant overlap of Nij and Nl is given by rijl = (Lil, Ljl).

Note also that in general the number of relevant entries of rijl may vary with the realized structure of

the network neighborhoods Nij and Nl. In the following we will assume that the number of nodes in the

relevant overlap is bounded at some integer d∩ < ∞, and w.l.o.g. constant, potentially after introducing

a placeholder for attributes that are irrelevant for a given draw of Nij and Nl. We also use the boldface

notation xijl := (xk)k∈Nij∩Nl
∈ X d∩ and tijl := (tkl)k∈Nij∩Nl

∈ T d∩ to denote the exogenous covariates

(edge-specific network statistics with respect to the node l, respectively) for the nodes in the intersection of

Nij and Nl. We also denote the range of the relevant overlap rijl by R ⊂ {0, 1}d2
∩Sd∩T d2

∩ . In many cases

it is possible to reduce the dimension of R to a substantially smaller number of components necessary to

describe the outcome distribution, as illustrated by the previous examples.

Given the relevant overlap, the potential values for the endogenous network statistics are defined as

sl(rijl) := S(L̃(rijl), l) tkl(rijl) := T (L̃(rijl), k, l)

where L̃(rijl) is a network that coincides with L∗ everywhere except on Nij∩Nl, where the network has been

reconfigured to generate the specified values of the network statistics corresponding to the relevant overlap

rijl. The potential outcomes for the case in which the relevant overlap is empty, rijl = {}, correspond to

the values of the network statistics evaluated at L∗. While there may be more than one such network L̃,

sufficiency of the relevant overlap for sl and tijl implies that either construction must result in the same

potential values.

Note that for a pairwise stable network L∗, the realized links and network variables on any network

neighborhood Nij must coincide with their potential values corresponding to the relevant overlap at rijl(L
∗).

For a given realization of payoffs, pairwise stability therefore amounts to a simultaneous solution of a sparse

system of “structural” potential value equations for the payoff-relevant network variables, where direct

interaction effects are restricted to the random network neighborhoods.

The reference distribution M∗(sl, tijl; rijl|xijl) is the joint distribution of potential values of sl and

tkl with components indexed by the relevant overlap rijl in the cross-section of nodes in N . That is, the

reference distribution is of the form

M∗(s̄l, t̄ijl; rijl|xijl) := P (sl(rijl) = s̄l, tijl = t̄ijl(rijl)|xijl)

Hence, M∗(sl, tijl, r|xijl) becomes a distribution over the network variables sl and tijl which is indexed by

conditioning variables xi, xj , xl and state variables rijl. We also use the notation M∗(sl, tijl; rijl|xi, xj) :=
∫

M∗(sl, tijl; rijl|xijl)
∏

l 6=i,j w(xl)dxl, and M∗(sl, tijl|xijl) = M∗(sl, tijl; ()|xijl) for the cross-sectional dis-

tribution of network outcomes for the pairwise stable network L∗, corresponding to a relevant overlap that

is empty.
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The reference distribution depends on the selection mechanism which may assign different initial values

of Lij to different dyads. In the absence of additional restrictions on equilibrium selection, the distribution

of endogenous network characteristics may therefore be different across distinct nodes. F∗
0 is therefore

characterized by a set M∗ of possible reference distributions, and the limiting model allows for the reference

distribution at each node to correspond to a different element in M∗.

Since the object of interest is the conditional probability of the network variables Lij , si, sj, tij given

xi, xj , we can treat edges with the same values of xi, xj symmetrically, and integrate out other features

of their network neighborhoods. Hence conditional on exogenous attributes xijl, the reference distribution

M∗(sl, tijl; rijl|xijl) is a joint distribution over values of network attributes at the network configurations

corresponding to different values of rijl. For our analysis it is necessary to condition on xi, xj since we aim to

obtain the conditional link-frequency distribution given the pair’s exogenous attributes, whereas dependence

on xk for k ∈ Nij∩Nl\{i, j} is integrated out when we take probabilities over random network neighborhoods.

The reference distribution therefore summarizes the influence of the network structure outside of a network

neighborhood Nij on the endogenous network attributes for nodes in Nij , and for a given draw of potential

values we can solve for any pairwise stable configurations on that subset of nodes.

The inclusive value function H∗(xi, si) is a nonnegative function of i’s attributes xi and si alone. We

find that in the limiting distribution, H∗(x; s) serves a sufficient statistic for that agent’s link opportunity

set with respect to the probability that for a given combination of links the pairwise stability conditions are

satisfied by agent i’s random payoffs. Taken together, M∗ and H∗ serve as aggregate state variables for

the network which satisfy the equilibrium (fixed point) conditions (A.4) and (A.5) if and only if they are

supported by a pairwise stable network.

These three objects - i.e. the distribution of subnetworks, reference distribution, and inclusive value func-

tion - are jointly determined through equilibrium conditions developed in the remainder of this subsection.

We start by specifying the distribution of the random network neighborhoods Nij and Nl, followed by equi-

librium conditions characterizing the edge-level response, reference distribution, and inclusive value function

under the limiting model F∗
0 . We can then put these individual components together to obtain the link

frequency distribution associated with F∗
0 .

A.2.2. Distribution of Nij . In order to characterize the distribution for drawing available nodes l ∈ Nij , we

define

p(xi, xl, sl, til; rijl) := s1l
exp{U∗(xl, xi; sl, si, til)}

1 +H∗(x1; s1)
M∗(sl, til; rijl|xi, xj , xl)

and

p̄(xi, xl) := sup
sl,tijl;rijl

p(xl, sl, tijl; rijl).

Since H∗(x; s) ≥ 0, it follows that p̄(x1, x2) ≤ exp{Ū} < ∞ whenever E[s1i|xi] is bounded and Assumption

4.1 holds.

Under F∗
0 , a network neighborhood Nij is generated as follows:

• For either node k = i, j, the link opportunity set Nk is generated by a point process with Poisson

intensity

µ(xl, xk) = p̄(xk, xl)w(xl)

• Payoffs on the subnetwork Nij := {i, j} ∪ Ni ∪Nj are constructed as

Ukl(L) := U∗(xk, xl; sk(L), sl(L), tkl(L)) + ηkl
49



for k = i, j and l ∈ Ni ∪ Nj , where sl(L) := sl(rijl(L)), tkl(L) ≡ tkl(rijl(L)), and the taste shifters

ηkl are i.i.d. draws from an extreme-value distribution of type I.

• For any fixed values of sl, tkl each node l ∈ Ni ∪ Nj is available to another node k ∈ N0/{l}
with probability

p(xk,xl,sl,tkl;rijl(L))
p̄(xk,xl)

∈ [0, 1], where availability is independent across k, l. In the

absence of edge-specific interaction effects, i.e. T = {0}, that probability is changed to zero for all

k, l ∈ W∗
i ∪W∗

j .

• Marginal costs are given by MCk = maxl∈Jk
ηk0,l for k = i, j, where Jk is Poisson with intensity

µ = 1, and ηk0,l are i.i.d. extreme-value type I, and the maximum over an empty set is taken to be

minus infinity.

While this description of the distribution over network neighborhoods Nij could in principle be used to

simulate from the limiting model, probabilities for availability and link stability from this statistical model

can also be obtained in closed form. The probabilities and bounds that constitute the limiting model F∗
0

can then be fully characterized in terms of the random subnetwork on Nij .

A.2.3. Edge-Level Response. The edge-level response describes link formation for the edge ij, together

with the values of the endogenous network variables si, sj , tij . Formally, we let Q∗(Lij , si, sj , tij |xi, xj) denote

the joint distribution of the link indicator Lij and the variables si, sj , tij in the limiting model, conditional

on xi, xj .

We say that Lij and si, sj , tij are supported by the subnetwork on Nij if there exists a pairwise stable

network L∗
0 on N0 given the payoffs defined above. Note that the number of nodes in Nij is random but

finite. Probabilities over events in Lij and si, sj, tij on this subnetwork are evaluated conditional on the

number of Poisson draws in Nk exceeding the minimum number of edges to k necessary to obtain the value

sk for the network characteristics for k = i, j. These probabilities are generally available in closed form given

the functions U∗(·) and the inclusive value function H∗(x, s) using results by Dagsvik (1994).

Since even at the level of the edge ij there may be multiple pairwise stable outcomes regarding si, sj , tij

and Lij , the model admits a set of edge-level responses which will be described in terms of upper bounds on

probabilities for events in these variables: For any sets L ⊂ {0, 1}, S1, S2 ⊂ S and T12 ⊂ T , we can obtain

the bound

Q̄∗(L, S1, S2, T12|x1, x2) = P
(

L∗
ij ∈ L, S(L∗, i) ∈ S1, S(L

∗, j) ∈ S2, T (L
∗, i, j) ∈ T12

for some pairwise stable network L∗
0 on Nij

∣

∣

∣xi = x1, xj = x2

)

In words, the upper bound Q̄∗(·|x1, x2) is the conditional probability that the link outcome Lij = l and some

values s ∈ Si, s
′ ∈ Sj and t ∈ Tij are supported by some pairwise stable subnetwork on Nij .

Using the terminology introduced in section A.1, we can interpret the bound Q̄∗ as a capacity character-

izing the family of edge-level responses, where any edge-level response Q∗(l, s1, s2, t12|x1, x2) has to satisfy

the constraints
∫

L

∫

S1

∫

S2

∫

T12

Q∗(l12, s1, s2, t12|x1, x2)dt12ds2ds1dl12 ≤ Q̄∗(L, S1, S2, T12|x1, x2) (A.1)

for any sets L, S1, S2, T12. In analogy to the approaches in Galichon and Henry (2011) and Beresteanu,

Molchanov, and Molinari (2011) for static discrete games, the set of edge-level responses can be formally

characterized as the core of a capacity.

To obtain the edge-level response from the distribution of subnetworks on Nij described above, we can

first consider the probability that an “elementary” outcome corresponding to specific values of Lkl, sl, tkl
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and rijl is supported by the subnetwork for k, l ∈ Nij . For a given configuration LNij
:= (Lkl)k,l∈Nij

of the

subnetwork on Nij , the probability for that event is given by

q(LNij
,Nij) :=

∏

k,l∈Nij

M∗(sl, tijl; rijl(LNij
)|xijl)(qklqlk)

Lkl(1− qklqlk)
1−Lkl

and zero otherwise, where qkl = p(xk, xl; sk, sl)/p̄(xk, xl) if k /∈ {i, j} and qkl = p(xk, xl; sk, sl) if k ∈ {i, j}.
Sharp bounds on the edge-level response Q∗(1, s1, s2, t12|x1, x2) can then be obtained by aggregating proba-

bilities over all “elementary” outcomes corresponding to a given event in the network variables Lij , si, sj , tij .

Specifically, the upper bound H̄∗ is given by

Q̄∗(L, S1, S2, T12|x1, x2) := E





∑

LNij

q(LNij
,Nij)1l{s1(LNij

) ∈ S1, s2(LNij
) ∈ S2, t12(LNij

) ∈ T12}

∣

∣

∣

∣

∣

∣

x1, x2





(A.2)

where the expectation is taken with respect to the distribution of Nij .

A.2.4. Fixed-Point Condition for the Reference Distribution. An upper bound on the reference distribution

M∗(sl, tkl; ·|·) is given by the probability that a given distribution of potential outcomes for node l is sup-

ported by some pairwise stable subnetwork on the network neighborhood Nl. To compute this bound, we

can draw a network neighborhood Nl for the node l with covariates xl = x3 as described in the previous

steps, where we fix the covariates of the first two nodes at x1, x2. Note that, since nodes in the network

neighborhood are realizations of a Poisson process, this gives the conditional distribution of Nl given the

respective values of exogenous attributes for the first two nodes.

Holding the relevant overlap between the nodes fixed at r123, a subnetwork LNl
:= (Lij)i,j∈Nl

is supported

by a pairwise stable network on Nl with probability

q(LNl
,Nl) =

∏

i,j∈Nl

M∗(si, sj , tijl; rijl(LNl
)|xijl)(qijqji)

Lij (1− qijqji)
1−Lij

where M∗(si, sj , tijl; rijl|xijl) = M∗(si, tijl; rijl|xijl)M
∗(sj ; rijl|xijl, tijl) denotes the joint distribution of

potential outcomes for si, sj , tijl given xijl implied by the reference distribution, and qij is defined in the

analogous way as for the description of the edge-level response. Hence for any event S3 ⊂ S and a given

reference distribution M∗, the probability that a value sl ∈ S3 for the endogenous network attributes

is supported on Nl after holding the overlap fixed at r123 is obtained after summing q(LNl
,Nl) over all

configurations of LNl
that result in sl ∈ S3.

We can then define the capacity

Ω0[H,M ](x123; r123, S, T ) := E





∑

LNl

q(LNl
,Nl)1l{sl(LNl

) ∈ S, t12l(LNl
) ∈ T, r(LNl

) = r123}

∣

∣

∣

∣

∣

∣

x123



 (A.3)

where dependence on M,H was implicit in the definition of the probabilities q(LNl
,Nl), and the expectation

is taken with respect to the distribution of Nl. Note that the exact form of Ω0 depends on the functions S(·)
and T (·) in the construction of the network characteristics. We derive the edge-level response and resulting

fixed point mappings for a few special cases in the next subsection below.

The model is then closed by the equilibrium condition that the reference distribution M∗(sl, t12l; r12l|x12l)

has to be generated by some mixture over edge-level responses in the cross-section. Specifically, for any given
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value of H , the set M∗ is the largest set of distributions satisfying

M∗ = conv

(

⋃

M∈M∗

core Ω0[H,M ]

)

(A.4)

where conv(A) denotes the convex hull of a set A. Note that the set M∗ in A.4 is nonempty whenever the

mapping Ω0[·,M ] has a fixed point with respect to M .

To illustrate the general structure of the set M∗(H), consider the case of link preferences with strategic

complementarities:

Example A.3. (Strategic Complements) Suppose that the function U∗(x1, x2; s1, s2, t12) is nondecreasing

in each component of s1, s2, t12 for each value of x1, x2, and that the network statistics S(L, ·) and T (L, ·)
are nondecreasing in L with respect to the partial ordering: L ≥ L′ iff Lij ≥ L′

ij for each i, j = 1, . . . , n. If

S, T are finite sets, it can then be shown using standard arguments (see Milgrom and Roberts (1990)) that

Ω0[H,M ] is (a) nondecreasing in M , where (b) its image is a lattice, and (c) its (nonempty) set of fixed

points forming a lattice on the distributions over S × S × T .

For the smallest fixed point M∗, we also have that M∗ ≤ Ω0[H,M∗]: if there was a point M̃ ∈ Ω0[H,M∗]

such that M̃ ≤ M∗ with strict inequality in at least one component, then by monotonicity and continuity of

Ω0 there would exist another fixed point that is strictly smaller than M∗. Similarly, for the largest fixed point

M
∗
we have M

∗ ≥ Ω0[H,M
∗
].

Hence, M∗ ⊂ {M : M∗ ≤ M ≤ M
∗}. Clearly, M∗ also contains the convex hull of the set of fixed points

of Ω0[H,M ].

We can also use auxiliary assumptions on the equilibrium selection mechanism to narrow the set M∗ of

reference distributions. In particular, if equilibrium selection exhibits independence across dyads (a condition

similar to the “no coordination” Assumption 5 in Leung (2016)), then the set M∗(H) is a singleton:

Example A.4. (Independent Selection) Suppose that equilibrium selection is independent across dyads in

that the links in the initial condition L
(0)
ij are independent draws from a common distribution with conditional

probability mass function p(L
(0)
ij |xi, xj). Then the resulting link frequency distribution can be characterized

by a singleton reference distribution M∗ = {M∗} which satisfies the fixed point condition

M∗ = Ω0[H
∗,M∗]

As discussed in Section 3 before, in the case of a single reference distribution, M∗(s1|x1, x2) can be

estimated directly from the observed sample as the conditional distribution of s1 given that node 1 is

directly linked to a node 2 with attributes x2. This obviates the need of explicitly characterizing the fixed-

point operator Ω0 and solving for the - possibly non-unique - fixed points of the mapping for estimation of

the payoff functions U∗(·).

A.2.5. Fixed-Point Condition for the Inclusive Value Function. For a given selection rule, we let

M̃∗(s|x) := 1

n

n
∑

l=1

M∗
l (s|x)

be the average reference distribution across nodes i = 1, 2, . . . , where M∗
l ∈ M∗ denotes the reference

distribution selected for node l. Note that the set M∗ is convex for any value of H so that the mixture

M̃∗ ∈ M∗. Under F∗
0 , the inclusive value function then satisfies the fixed-point condition

H∗(x; s) = Ψ0[H
∗, M̃∗](x; s) (A.5)
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for all values of x, s, where the mapping

Ψ0[H,M ](x; s) :=

∫

s12 exp{U∗(x, x2; s, s2, t0) + U∗(x2, x; s2, s, t0)}
1 +H(x2; s2)

M(s2|x2)w(x2)ds2dx2

Note that according to the notational convention introduced earlier, the first component of s2, s12 :=
∑

j 6=2 Lj2 denotes the network degree of node 2. Using the notation introduced before, the cross-sectional

distribution of network outcomes M̃∗(s2|x2) denotes the reference distribution corresponding to an empty

relevant overlap.

Hence, we can summarize the equilibrium conditions on the aggregate state variables H∗,M∗ as follows:

M∗ = conv

(

⋃

M∈M∗

core Ω0[H,M ]

)

H∗ = Ψ0[H
∗, M̃∗] for some M̃∗ ∈ M∗ (A.6)

A.2.6. Link Frequency Distribution. Our characterization of the set of limiting distributions F∗
0 consists

exclusively of these three components. The p.d.f. associated with F ∗
0 ∈ F∗

0 is of the form

f∗
0 (x1, x2; s1, s2, t12) = Q∗(1, s1, s2, t12|x1, x2)w(x1)w(x2), (A.7)

where the edge-level response Q∗(·|x1, x2) satisfies (A.1). Most importantly, the probability that a given

link {ij} is established depends on the structure of the larger network only through H∗ and M∗ in addition

to “local” characteristics of the two nodes i and j. This general representation simplifies considerably for

certain special cases of practical interest. We show how to derive the capacities Q̄(·) and Ω0(·) for some

special cases in Appendix A.3.

To understand how this limiting approximation simplifies the description of the network formation model,

notice that verifying the pairwise stability conditions in the small subnetwork onN0 in the construction of the

edge-level response is completely analogous to that of static game-theoretic models analyzed in Galichon and

Henry (2011) and Beresteanu, Molchanov, and Molinari (2011), and therefore amenable to the techniques

developed in these two papers. The resulting bounds are asymptotically sharp as the network grows large.

A.3. Characterization of F∗
0 for Special Cases. We now illustrate how to use this characterization to

derive the limiting distribution for four cases with non-trivial endogenous interaction effects.

Unique Edge-Level Response. First, we briefly show how the general model nests the case of a unique edge-

level response with only anonymous interaction effects with radius of interaction equal to rS = 1, which was

discussed in the main text. In the absence of edge-specific endogenous interaction effects, Ni ∩ Nl = {i, l},
and since the radius of interaction is equal to 1, the relevant overlap reduces to rijl = Lil if l ∈ Ni,

or rijl = Ljl if l ∈ Nj . Furthermore, availability of l to i only depends on the potential outcome of sl

for Lil = 1 by inspection, so that the other potential outcome is irrelevant for the construction of the

link frequency distribution or the fixed point mapping Ω0. Hence we can suppress dependence of the link

frequency distribution on rijl and xi and let M∗(sl|xl) = M∗(sl; 1|xl) denote the conditional distribution

of the potential value of sl in the presence of a direct link to i or j. Finally, uniqueness of the edge-level

response implies that the fixed point mapping Ω0 is also singleton-valued, so that the description of the

limiting model for this special case in Section 3 indeed derives from the more general formulation presented

in this appendix. We can summarize this finding in the following proposition:

Proposition A.1. In the case of a unique edge-level response, the limiting model F∗
0 is characterized by the

equations (3.1)-(3.3).
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Many to Many Matching with Capacity Constraints. The network formation problem considered in this paper

can be viewed as an extension of certain matching models, where we interpret a direct link between two

nodes as a match between the corresponding agents. This includes marriage markets, the stable roommate

problems, and the college admissions problem. One important “strategic” feature of matching models consists

in capacity constraints capping the number of matching partners at some maximum degree s̄, which could

in principle be allowed to vary across individuals. Specifically, let si denote node i’s network degree and

suppose that payoffs are Uij = U∗
ij + σηij , where

U∗
ij =

{

U∗(xi, xj) if si < s̄

−∞ if si ≥ s̄

In typical applications, agents may also have different “genders” (e.g. schools vs. students, firms vs. em-

ployees, etc.) where matches take place only between agents of different genders, but not within the same

group. This would require some minor and straightforward adjustments to our framework, but for greater

clarity we do not analyze that case explicitly in this paper. In general, additional restrictions on the set of

matching opportunities will simply remove some of the payoff inequalities from the derivation of the analog

to the conditional choice probability in (6.1).

For this type of problem, it is important to notice that the notion of pairwise stability in matching models

(see Gale and Shapley (1962) and Roth and Sotomayor (1990)) allows for richer deviations from a status

quo than PSN, the stability concept for networks. Specifically, a proposed matching is blocked by a pair if

at least one agent would prefer to reject her current match (i.e. break a current link) in favor of another

available matching partner (i.e. simultaneously form a link to a new available node). We can define PSN2

as stability of a network with regard to these slightly richer deviations:

Definition A.3. (Pairwise Stability, PSN2) The undirected network L is a pairwise stable network

according to PSN2 if for any link ij with Lij = 1,

Uij(L) ≥ max{MCi(L), Uik(L− {ij})}, and Uji(L) ≥ max{MCj(L), Ujl(L− {ij})}

and for any link ij with Lij = 0,

Uij(L) < min{MCi(L), Uik(L− {ij})}, , or Uji(L) < min{MCj(L), Ujl(L− {ij})}

for any k such that Uki(L) ≥ MCk(L) and l such that Ulj(L) ≥ MCl(L).

Note that for simplicity we formulate the stability conditions only in terms of marginal utilities, in analogy

with the characterization of pairwise stability in Lemma 2.1. The added requirement stipulates that at the

margin, each agent selects the “best” link opportunity over alternatives with lower marginal utility, thereby

removing one major source of multiplicity in the edge-level response. In particular for the case of matching

subject to a capacity constraint, the edge-level response under PSN2 is unique, so that we can use the same

simplified notation as in the main text.

To characterize the edge-level response, player i accepts the links to j1, . . . , jr and rejects links to

jr+1, . . . , jn if Uij1 , . . . , Uijr ≥ MCi > Uijr+1 , . . . , Uijn when r < s̄, and Uij1 , . . . , Uijr ≥ MCi, Uijr+1 , . . . , Uijn

when r = s̄. In particular the conclusion of Lemma 6.2 holds for the corresponding probabilities. The re-

maining steps of the formal argument go trough without any modifications, so that we obtain the p.d.f.

f(x1, x2; s1, s2) =
min{s11, s̄}min{s12, s̄} exp{U∗(x1, x2) + U∗(x2, x1)}M∗(s1|x1)M

∗(s2|x2)w(x1)w(x2)

(1 +H∗(x1))(1 +H∗(x2))
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for the limiting link frequency distribution. The inclusive value functions H(x) satisfy the fixed-point con-

dition

Ψ0[H,M ](x) :=

∫

X×S

min{s, s̄}exp{U
∗(x, x2) + U∗(x2, x)}
1 +H(x2)

M(s|x2)dsdx2

As a minor modification relative to the case of no interaction effects, the degree distribution M∗(s|X) is

given by

M∗(s|x) =















H(x1)
s1

(1+H(x1))s1+1 for s = 0, . . . , s̄− 1
(

H(x1)
1+H(x1)

)s1+1

for s1 = s̄

0 otherwise

Since s1i ≤ s̄ with probability 1, it follows from Proposition 6.1 that the fixed point mapping for the inclusive

value function H∗(x) is a contraction, so that the resulting matching distribution is again unique.

Anonymous Interactions: Degree Centrality. In order to illustrate the role of the equilibrium condition (A.4),

we show how to derive the edge-level response and reference distribution for the case of preferences over the

degree (i.e. the number of direct links) of an agent. The degree of node i is defined as the network statistic

si = S(L;xi, i) :=
∑

j 6=i

Lij

In terms of the latent random utility model, Si = s corresponds to the event that MCi is the (s + 1)st

highest order statistic of the sample {MCi} ∪ {Uij}j∈Wi(L∗). Given the scalar network characteristics Si, Sj

we can consider a version of the reference model (2.3) with payoffs

Uij ≡ U∗(xi, xj ; si, sj) + σηij

To simplify the exposition, we also assume that U∗(x1, x2; s1, s2) is nondecreasing in s1, s2. For other signs

of the interaction effect, the derivations are completely analogous.

Now consider l ∈ Ni. Since there are no edge-specific interaction effects in this specification, l /∈ Nj with

probability 1. Also, si clearly doesn’t affect sl, holding Lil fixed. Hence the relevant overlap between the

network neighborhoods can be parameterized via rijl = Lil. Furthermore, the network degree of a node l

only affects the probability of link formation of a node i directly if Lil = 1, so that the potential outcome

for sl under Lil = 0 is irrelevant for the edge-level response and degree distribution. Hence it is sufficient to

explicitly model the reference distribution for the potential outcome of sl corresponding to the subnetwork

state Lil = 1.

The edge-level response and the fixed-point mapping Ω0 derive from the probabilities of elementary events

in Lij , si, sj which can in turn be calculated from the limiting model. Specifically, we consider subsets S̃1 =

{s11, . . . , s1r1} ⊂ S1 and S̃2 = {s21, . . . , s2r2} ⊂ S2, where we assume w.l.o.g. that s11 ≤ s12 · · · ≤ s1r1 and

s21 ≤ s22 · · · ≤ s2r2 . We then let q̄(L12, S̃1, S̃2|x1, x2) denote the probability that any possible combination

of values s1 ∈ S̃1, s2 ∈ S̃2 is supported by a pairwise stable network together with a direct link L∗
ij = 1.
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From Lemma 6.2 and elementary calculations we then obtain

q̄(L12, S̃1, S̃2|x1, x2) =
s11s21 exp{U∗(xi, xj ; s11, s21) + U∗(xj , xi; s21, s11)}

(1 +H(xi; s1r1))(1 +H(xj ; s2r2))

× H(xi; s11)
s11−1H(xj ; s21)

s21−1

(1 +H(xi; s11))s11 (1 +H(xj ; s21))s21

×
(

r1−1
∏

k=1

(

H(xi; s1(k+1))

1 +H(xi; s1(k+1))
− H(x1; s1k)

1 +H(xi; s1k)

)s1(k+1)−s1k
)

×
(

r2−1
∏

k=1

(

H(xj ; s2(k+1))

1 +H(xj ; s2(k+1))
− H(xj ; s2k)

1 +H(xj ; s2k)

)s2(k+1)−s2k
)

Similarly, the capacity q̄(S̃1, S̃2|x1, x2) for the event s1 ∈ S1, s2 ∈ S2 is given by

q̄(S̃1, S̃2|xi, xj) =
H(xi; s11)

s11H(xj ; s21)
s21

(1 +H(xi; s11))s11 (1 +H(xj ; s21))s21

×
(

r1−1
∏

k=1

(

H(xi; s1(k+1))

1 +H(xi; s1(k+1))
− H(x1; s1k)

1 +H(xi; s1k)

)s1(k+1)−s1k
)

×
(

r2−1
∏

k=1

(

H(xj ; s2(k+1))

1 +H(xj ; s2(k+1))
− H(xj ; s2k)

1 +H(xj ; s2k)

)s2(k+1)−s2k
)

Hence, given values for H(x; s), we can characterize the capacities Q̄∗ and Ω0 in closed form using the

formulae in (A.2) and (A.3), which is in turn sufficient to describe the core of link distributions generated

by pairwise stable networks. The same principle can be applied to other network attributes of node i. For

example, “deeper” network characteristics that depend on a wider network neighborhood of a given node

can be characterized recursively in this manner by defining S(L;x, i) as a function of network characteristics

of i’s neighbors.

Appendix B. Proofs

B.1. Proof of Lemma 2.1. To verify that the statement in Lemma 2.1 is indeed equivalent to the usual

definition of pairwise stability, notice that if L∗ is not pairwise stable, there exists two nodes i, j with L∗
ij = 0

such that Uij(L
∗) > MCij(L

∗) and Uji(L
∗) > MCji(L

∗). In particular, j is available to i under L∗, i.e.

j ∈ Wi(L
∗), violating (2.4). Conversely, if (2.4) does not hold for node i, then there exists j ∈ Ni[L

∗] such

that Uij(L
∗) ≥ MCij(L

∗). On the other hand, j ∈ Wi(L
∗) implies that Uji(L

∗) ≥ MCji(L
∗), where all

inequalities are strict in the absence of ties. �

B.2. Proof of Proposition 4.1. Note first that (E [exp {2|U(x, x′, s, s′, T (L∗
n, x, x

′, i, j))− U(x, x′, s, s′, t0)|}])1/2 =

P (Tij = 1)1/2 exp{βT}. Now consider the probability that i and j have a common neighbor, k. By the law

of total probability, we can write

P (Lik = Ljk = 1) = P (Lik = Ljk = 1, Tik = Tjk = 0) + P (Lik = Ljk = 1, Tik = Tjk = 1)

+P (Lik = Ljk = 1, Tik = 0, Tjk = 1) + P (Lik = Ljk = 1, Tik = 1, Tjk = 0) (B.1)

where

P (Lik = Ljk = 1, Tik = Tjk = 1) ≤ P (Lik = Ljk = 1, Lij = 1) + P (Lik = Ljk = 1, Tik = Tjk = 1, Lij = 0)

It is easy to verify that under the rates assumed in the claim of this proposition, the leading terms for the

right-hand side expression in (B.1) are P (Lik = Ljk = 1, Tik = Tjk = 0) and P (Lik = Ljk = 1, Lij = 1), so
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that for n large enough we can bound

P (Tij = 1) ≤ nP (Lik = Ljk = 1) ≤ 2n(P (Lik = Ljk = 1, Tik = Tjk = 0) + P (Lik = Ljk = 1, Lij = 1))

≤ 2

(

exp{4Ū}
n

+
exp{6(Ū + βT )}

n2

)

where the last line follows from the same steps as in the proof of Lemma 6.2. Hence, P (Tij = 1) exp{2βT} =

O(1) if exp{|βT |} = O(n1/4) �

B.3. Proof of Theorem 4.1. Let wijl := (s′l, tijl) and rijl ,xijl denote the state variables for the relevant

overlap, where in the following we omit the ijl subscript for notational convenience.

Note first that the conditions of Proposition 6.1 ensure that Ψ0[H,M ] is a continuous, single-valued com-

pact mapping. Next, notice that for any two distributionsM1(w; r|x),M2(w; r|x) satisfying
∫

S
Mj(w; r|x)dw ≤

Ω0(x; r,W ) for all core-determining sets W ⊂ S × T d∩ , the convex combination λM1 + (1 − λ)M2 satis-

fies the same inequality constraints. Hence, the core of Ω0 is a convex subset of the probability sim-

plex. Furthermore, if M3 is in the complement of the core, there exists at least one set S ∈ S◦ such that
∫

S M3(w; r|x)dw > Ω0(x; r,W ) + ε, where ε > 0. Then for any distribution M ′ with ‖M ′ −M3‖∞ ≤ ε/2,

we have
∫

S
M ′(w; r|x)dwds > Ω0(x; r,W ) + ε/2. Hence the complement of the core is open, implying that

the core is also a closed subset of the relevant probability simplex with respect to the L∞-norm. Hence,

given the conditions on Ω0 in Assumption 4.5 (i)-(ii), existence of a fixed point is a direct consequence of the

Kakutani-Fan fixed point theorem for Banach spaces (Theorem 3.2.3 in Aubin and Frankowska (1990)) �

B.4. Auxiliary results for the Proof of Theorem 4.2. We next prove the Lemmas from section 4 which

are then used to establish the conclusion of Theorem 4.2.

B.5. Proof of Lemma 6.1. We start by introducing some notation: fix an initial state of a network with n

nodes, corresponding to an arbitrarily chosen adjacency matrix L(0). We then let zij := (xi, xj ,dij , sji, tji)

be the potential values for the payoff-relevant network statistics resulting from L(0), as defined in Appendix

A. Also, let (ηi0j)
J
j=1 and (ηij)

n
i,j=1 be arrays of i.i.d. draws from the unconditional distribution of preference

shocks. In the following we denote the last J taste shocks ηi01, . . . , ηi0J , corresponding to the marginal cost

of establishing a link MCi = σmaxj=1,...,J ηi0j , with ηin+1, . . . , ηin+J for convenience. Similarly, let z∗ij
denote the vector of potential values for endogenous and exogenous attributes for the dyad (i, j) under the

pairwise stable network L∗, resulting from tâtonnment starting at L(0), as described in the main text. We

also let g∗n(·) denote the p.d.f. for the joint distribution of

ηi :=
(

ηi1, . . . , ηi(i−1), ηi(i+1), . . . , ηin+J

)

with z∗i :=
(

z∗i1, . . . , z
∗
i(i−1), z

∗
i(i+1), . . . , z

∗
in

)

. Similarly, we denote zi :=
(

zi1, . . . , zi(i−1), zi(i+1), . . . , zin
)

.

Recall also that for any initial condition, the conditional distribution of ηi given z∗i derives from the joint

distribution of these variables implied by the network formation model. That is for a given draw of exogenous

attributes and taste shifters, z∗i1, . . . , z
∗
in are the network and exogenous attributes for the pairwise stable

network resulting from tâtonnement starting at the initial network L with implied attributes zi1, . . . , zin. In

particular, the conditional distribution g∗n(ηi|z∗i ) implicitly regards the attributes and taste shifters for all

nodes other than i as random.
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We start by establishing pairwise invariance relationships at the level of a dyads (i, j) and (i, k), where

joint independence of all components of ηi and z∗i will follow by induction. Specifically, we claim that

z∗ij |zi,ηi
d
= z∗ik|zi,ηi (B.2)

(B.3)

almost surely for any ij and k 6= i, j.

We establish relation (B.2) by comparing the outcome of tâtonnement given zi and ηi to that given an

independent copy η̃i. Here tâtonnement is again assumed to follow the process defined in section 2.3 where

all other variables in the model are left unchanged. Now, some of the link opportunities are acceptable to

node i given ηi but not given η̃i. Hence a finite number of the adjustments that occur during the first

stage of tâtonnment given ηi do not occur given η̃i, and vice versa. Each of these adjustments may affect

subsequent stages of the process, so that changing node i’s taste shifters triggers a cascade of changes that

may percolate through the entire network.

Now suppose that after starting tâtonnement from the initial condition chosen above, one such chain

of adjustments reaches a node p with attributes xp and taste shocks ηpjl := (ηpj , ηpl,MCp) such that the

previous stage resulted in a change to (s′pj , t
′
pj)

′. Since by assumption zpl and ηpl for node l are drawn from

the same distribution as those for i (potentially after permuting node identifiers uniformly at random), we

have that the potential outcomes (s′pj , t
′
pj)

′ d
= (s′pl, t

′
pl)

′.

Whether such an adjustment to the direct links to p results in changes in the potential outcomes

(s′ji, t
′
ij)

′ or (s′lk, t
′
kl)

′ is fully determined by the potential outcomes (s′pj , t
′
pj)

′ = (s′pl, t
′
pl)

′ and the taste

shocks ηjp,MCj , ηpj ,MCp and ηlp,MCl, ηpl,MCp, respectively. Since the tuples (ηjp,MCj , ηpj ,MCp) and

(ηlp,MCl, ηpl,MCp) of payoff shocks follow the same distribution, the probability of a change to (d′
ji, s

′
ji, t

′
ij)

′

is equal to that of an equivalent adjustment of (d′
lk, s

′
lk, t

′
kl)

′ at any stage of the adjustment process, and

independent of ηij , ηkl and MCi,MCk. It follows that

g∗n(z
∗
ik|zi,ηi) = g∗n(z

∗
ij |zi,ηi) (B.4)

establishing (B.2).

Now for any permutation π−j of indices {1, . . . , j − 1, j + 1, . . . , n}, let ηπ−j

i = (ηπ−j(1), . . . , ηπ−j(n)) and

z
π−j

i = (zπ−j(1), . . . , zπ−j(n)). It is then immediate that

z∗ij |zi,ηi
d
= z∗ij |z

π−j

i ,η
π−j

i

In combination with (B.2), it then follows that for any permutation π of all J + n− 1 components ηi,

g∗n(z
∗
ij |zi,ηi) = g∗n(z

∗
ij |zπi ,ηπ

i ) = g∗n(zij |Gz,η
in )

where Ĝη
in(z, η) :=

1
J+n−1

∑J+n−1
j=1 1l{z ≤ zij , η ≤ ηij} denotes the empirical distribution of components of

zi,ηi. In particular Ĝz,η
in is a sufficient statistic for ziηi with respect to the distribution of z∗ij .

Also, by Assumption 4.1 and 4.2, the conditional probability that a value of z∗ij is the unique pairwise

stable outcome given that it is supported by some pairwise stable network is bounded away from zero. Hence

it follows from the dominated convergence theorem that

g∗n(ηi, zi|z∗ij , Ĝz,η
in )

gn(ηi, zi|Ĝz,η
in )

=
g∗n(ηi, zi, z

∗
ij|Ĝz,η

in )

g∗n(z
∗
ij |Ĝz,η

in )gn(ηi, zi|Ĝz,η
in )

=
g∗n(z

∗
ij |ηi, zi, Ĝ

z,η
in )gn(ηi, zi|Ĝz,η

in )

g∗n(z
∗
ij |Ĝz,η

in )gn(ηi, zi|Ĝz,η
in )

=
g∗n(z

∗
ij |zi,ηi, Ĝ

z,η
in )

g∗n(z
∗
ij |Ĝz,η

in )
= 1
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almost surely by sufficiency of Ĝz,η
in . Furthermore, since zi and ηi are independent by assumption, after

integrating out zi it also follows that
g∗n(ηi|z∗ij , Ĝz,η

in )

gn(ηi|Ĝz,η
in )

= 1

By induction, the analogous result holds for the joint distribution of z∗i1, . . . , z
∗
in given zi,ηi so that we obtain

g∗n(ηi|z∗i , Ĝz,η
in )

gn(ηi|Ĝz,η
in )

= 1

Finally notice that the joint distribution Gn(ηi|Ĝz,η
in ) corresponds to the experiment of drawing without re-

placement from {ηi1, . . . , ηin+J−1}. By the Glivenko-Cantelli theorem, Ĝin(η) converges almost surely to the

marginal c.d.f. G(η) specified in Assumption 4.2. It follows that the joint c.d.f. limn Gn(ηi|Ĝη
in)/

∏J+n−1
j=1 G(ηij) =

1 almost surely, which establishes the first part of the lemma.

For the second part of the conclusion, it is sufficient to notice that the preceding argument can be extended

to the joint distribution of taste shifters and network attributes for any finite number of nodes without any

further adjustments to the proof. �

B.5.1. Proof of Lemma 6.2. This result is a generalization of Lemma B.1 in Menzel (2015). We there-

fore refer to the proof of that result for some of the intermediate technical steps below. Define Ũij :=

U∗(xi, xj ; si, sj , tij) for j = 1, . . . , n, where si, sj, tij denote the potential outcomes of the respective network

variables after setting Lij = 1.

By independence of ηi1, . . . , ηiN ,

JrΦ(i, j1, . . . , jr|z∗i ) = JrP (Uij1 ≥ MCi, . . . , Uijr ≥ MCi, Uijr+1 < MCi, . . . , UijJ < MCi|z∗i )

= Jr

∫

(

r
∏

q=1

P (Uijq ≥ σs)

)(

J
∏

q=r+1

P (Uijq < σs|z∗i )
)

JG(s)J−1g(s)ds

= Jr

∫

(

r
∏

q=1

(1−G(s− σ−1Ũijq ))

)(

J
∏

q=r+1

G(s− σ−1Ũijq )

)

JG(s)J−1g(s)ds

=

∫

(

r
∏

q=1

J(1−G(s− σ−1Ũijq ))

)

J
g(s)

G(s)

× exp

{

J logG(s) +
1

J

J
∑

q=r+1

J logG(s− σ−1Ũijq )

}

ds

Now let bJ := G−1
(

1− 1
J

)

and aJ = a(bJ ), where a(·) is the auxiliary function in Assumption 4.2 (ii).

By Assumption 4.3 (iii), σ = 1
a(bJ )

, so that a change of variables s = aJ t+ bJ yields

JrΦ(i, j1, . . . , jr|z∗i ) =

∫

(

r
∏

q=1

J(1−G(bJ + aJ(t− Ũijq )))

)

J
aJg(bJ + aJ t)

G(bJ + aJ t)

× exp

{

J logG(bJ + aJ t) +
1

J

J
∑

q=r+1

J logG(bJ + aJ(t− Ũijq ))

}

dt

By Assumption 4.2 (ii), J(1−G(bJ + aJ t)) → e−t and

JaJg(bJ + aJ t) = Ja(bJ )g(bJ + a(bJ)t) = a(bJ)
1−G(bJ + aJ t)

a(bJ + aJ t)(1−G(bJ ))
→ e−t
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where the last step uses Lemma 1.3 in Resnick (1987). Also, following steps analogous to the proof of Lemma

B.1 in Menzel (2015), we can take limits and obtain

r
∏

q=1

J(1 −G(bJ + aJ(t− Ũijq ))) → exp

{

−rt+

r
∑

q=1

Ũijq

}

J logG(bJ + aJ(t− Ũijq )) → −e−t exp{Ũijq}

Combining the different components, we can take the limit of the integrand in (B.5),

RJ (t) :=

(

r
∏

q=1

J(1−G(bJ + aJ(t− Ũijq )))

)

J
aJg(bJ + aJ t)

G(bJ + aJ t)

× exp

{

J logG(bJ + aJ t) +
1

J

J
∑

q=r+1

J logG(bJ + aJ (t− Ũijq ))

}

= exp

{

−e−t

(

1 +
1

J

J
∑

q=r+1

exp{Ũijq}
)

− (r + 1)t+
r
∑

q=1

Ũijq

}

+ o(1) (B.5)

for all t ∈ R. Using the same argument as in the proof of Lemma B.1 in Menzel (2015), pointwise convergence

and boundedness of the integrand imply convergence of the integral by dominated convergence, so that we

obtain

JrΦ(i, j1, . . . , jr|z∗i ) →
∫ ∞

−∞

exp

{

−e−t

(

1 +
1

J

J
∑

q=r+1

exp{Ũijq}
)

− (r + 1)t+
r
∑

q=1

Ũijq

}

dt

=

∫ 0

−∞

exp

{

s

(

1 +
1

J

J
∑

q=r+1

exp{Ũijq}
)

+

r
∑

q=1

Ũijq

}

srds

=
r! exp{∑r

q=1 Ũikq
}

(

1 + 1
J

∑J
q=r+1 exp

{

Ũikq

})r+1

where the first step uses a change of variables s = −e−t, and the last step can be obtained recursively via

integration by parts. Furthermore, if r
J → 0, boundedness of the systematic parts from Assumption 4.1

implies that
∣

∣

∣

∣

∣

∣

1

J

J
∑

j=1

exp
{

Ũij

}

− 1

J

J
∑

q=r+1

exp
{

Ũikq

}

∣

∣

∣

∣

∣

∣

→ 0

so that

JrΦ(i, j1, . . . , jr|z∗i ) →
r!
∏r

q=0 exp{Ũikq
}

(

1 + 1
J

∑J
j=1 exp

{

Ũij

})r+1

which completes the proof �

B.5.2. Proof of Lemma 6.3. Without loss of generality, we develop the formal argument only for the case in

which the payoff-relevant network characteristic is binary, S = {s, s̄}, where U∗(x, x′; s, s′, t) ≤ U∗(x, x′; s̄, s′, t)

and U∗(x, x′; s, s, t) ≤ U∗(x, x′; s, s̄, t) for all values of x, x′, s′, t. An extension to the general case follows

the exact same steps but requires additional case distinctions. Also note that under Assumption 4.3 (iv),

the effect of edge-specific interaction effects through U∗(·, tij)− U∗(·, t0) on the inclusive value is negligible

in the limit, so that in the following, we evaluate all systematic utilities at t = t0.
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Let S∗
i ⊂ S denotes the set of values for si supported by the edge-level response for node i, and let

B0 := {j : S∗
j = S}

denote the set of nodes for whom both values for sj are supported by j’s edge-level response. For each node

i we also define

Ai := {j : U∗(xj , xi; s, si, t0) ≥ MCj − σηji} ∩B0

and

Bi := {j : U∗(xj , xi; s, si, t0) < MCj − σηji ≤ U∗(xj , xi; s̄, si, t0)} ∩B0

be the set of nodes with a non-unique edge-level response that are available to i for any value of sj . As a

notational convention, i /∈ Ai ∪ Bi. Note that by Assumption 4.3 and Lemma 6.2, P (j ∈ Ai), P (j ∈ Bi) =

O(n−1/2).

Define aij := 1l{j ∈ Ai} exp{U∗(xi, xj ; si, s, t0)}, bij := 1l{j ∈ Bi} exp{U∗(xi, xj ; si, s̄, t0)}, and cij :=

1l{j ∈ Ai}(exp{U∗(xi, xj ; si, s̄, t0)} − exp{U∗(xi, xj ; si, s, t0)}), and gij := bij + cij . Note that given xi, xj ,

(bij , cij) are conditionally independent across i, j. We also let ∆iaij := aij − E[aij |xi = x, s ∈ S∗
i ] and

∆igij := gij − E[aij |xi = x, s ∈ S∗
i ].

We now introduce the allocation parameter αj ∈ [0, 1] corresponding to the probability with which node

j is assigned to choose the edge-level response sj = s̄, so that sj = s will be chosen with probability 1− αj .

In particular, for a given choice of α := (α1, . . . , αn)
′, the inclusive value for agent i is given by

Ii[α] = n−1/2
n
∑

j=1

(aij + αjgij) ,

and the inclusive value function

Ĥ∗
n(x, s;α) := n−1/2

n
∑

j=1

(E[aij |xi = x, s ∈ S∗
i ] + αjE[gij |xi = x, s ∈ Si])

Hence, we can write

Ii[α]− Ĥ∗
n(x, s;α) = n−1/2

n
∑

j=1

(aij − E[aij |xi = x, s ∈ S∗
i ] + αj(gij − E[gij |xi = x, s ∈ Si]))

= n−1/2
n
∑

j=1

(∆iaij + αj∆igij)

We can now measure the average dispersion of Ii about its conditional mean by

V̂n[α] :=
1

n

n
∑

i=1

(Ii[α]− Ĥ∗
n(xi, si;α))

2

for a given value of α. To find an upper bound for a given realization of payoffs, we can solve the problem

max
α

V̂n[α] subject to α1, . . . , αn ∈ [0, 1]. (B.6)
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This upper bound is generally not sharp since for some nodes j only either value of sj may be supported by

the edge-level response. Multiplying out the square, we obtain

V̂n[α] =
1

n

n
∑

i=1



n−1/2
n
∑

j=1

(∆iaij + αj∆igij)





2

=
1

n

n
∑

i=1



n−1/2
n
∑

j=1

∆iaij





2

+ 2



n−1/2
n
∑

j=1

∆iaij







n−1/2
n
∑

j=1

αj∆igij



+



n−1/2
n
∑

j=1

αj∆igij





2

where by a LLN, n−1/2
∑n

j=1 ∆iaij → 0 (see also Lemma B.5 in Menzel (2015) for a detailed proof), so that

max
α

V̂n[α] =
1

n
max
α

n
∑

i=1



n−1/2
n
∑

j=1

αj∆igij





2

+ op(1)

=
1

n2
max
α

n
∑

j=1

n
∑

k=1

αjαk

n
∑

i=1

∆igij∆igik + op(1)

where in the last step we multiplied out the square and changed the order of summation.

Now, for j 6= k,

Var(∆igij∆igik) = E[(∆igij)
2(∆igik)

2]− (E[∆igij∆igik])
2
= O(n−1)−O(n−2)

and

Var(∆ig
2
ij) = E[(∆igij)

4]−
(

E[∆ig
2
ij ]
)2

= O(n−1/2)−O(n−1)

Hence, we can use a CLT to conclude that for any j 6= k

Zjk,n :=

n
∑

i=1

∆igij∆igik = Op(1), and Zjj,n := n−1/4
n
∑

i=1

∆ig
2
ij = Op(1)

where Assumption 4.1 implies that the asymptotic variances of Zjk,n and Zjj,n are bounded. Furthermore,

E[Zjk] = 0 for j 6= k, and Zjk,n are independent across 1 ≤ j ≤ k ≤ n.

Next, we can bound the sum corresponding to the “diagonal” elements Zjj,n by

1

n2

n
∑

j=1

α2
j

n
∑

i=1

∆ig
2
ij ≤

1

n2
max
α

n
∑

j=1

α2
jn

1/4Zjj,n = n−7/4
n
∑

j=1

Zjj,n = Op(n
−3/4)

noting that Zjj,n ≥ 0 a.s., so that the maximum in the second expression is attained at α1 = · · · = αn = 1.

In the following, we let Zn be the symmetric matrix whose (j, k)th element is Zjk,n for j 6= k, and where we

set Zjj equal to zero.

Given these definitions, we can express the maximum in matrix notation and bound

max
α

V̂n[α] =
1

n
max
α

1

n
α

′Znα+ op(1) ≤
1

n
max
α

α
′Znα

α′α
+ op(1) ≡ n−1/2λmax(n

−1/2Zn) + op(1)

where λmax(A denotes the largest eigenvalue of a symmetric matrix A. For the second step, notice that

|αj |2 ≤ 1 for each j, so that the scalar product α
′
α ≤ n for each permissible α. Also, Zn is a symmetric

matrix, where the diagonal (and off-diagonal, respectively) elements are independent, mean zero random

variables. Furthermore, if we pre- and postmultiply the matrix Zn with the diagonal matrix H := diag(1/σi),

where σ2
i := 1

n

∑

j 6=i Var(∆ig
2
ij), then the diagonal (off-diagonal, respectively) elements are also identically

distributed. Noting that for each i = 1, . . . , n, σ2
i is bounded by a constant, it then follows from Theorem A
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of Bai and Yin (1988) that the maximal eigenvalue converges almost surely to a finite constant, so that

E

[

max
α

V̂n[α]
]

= O(n−1/2) (B.7)

which converges to zero.

Now let j̃ be a uniform random draw from the set {1, . . . , n}. Then we can use Chebyshev’s Inequality

to show that for an arbitrary selection from the edge-level responses, we can bound

P
(

(Ij̃ − Ĥ∗
n(xj̃ , sj̃))

2 > ε2
)

=
1

n

n
∑

i=1

P
(

(Ii − Ĥ∗
n(xi, si))

2 > ε2
)

≤ 1

ε2
1

n

n
∑

i=1

E[(Ii − Ĥ∗
n(xi, si))

2]

≤ 1

ε2
E

[

max
α

V̂n[α]
]

= o(1)

where the right-hand side bound is uniform across all possible selections from pairwise stable networks and

converges to zero by (B.7). This establishes convergence that is pointwise in x, s but uniform in all selections

from the best response.

This establishes claim (a) of the Lemma for the case in which S has only two elements. An generalization to

the case in which S hasK < ∞ elements follows the exact same steps but requires additional case distinctions

and an allocation parameter α in the K-dimensional probability simplex. Finally, for the general case in

which S may have infinitely many elements, note that by Assumption 4.1, the systematic part of payoffs

only varies over a bounded interval [−Ū , Ū ] as s1, s2 vary. Furthermore, U(x1, x2; s1, s2; t0) is Lipschitz in

s2, so that by compactness of S, we can cover the set of functions {exp{U(x1, x2; s1, s; t0)} : s ∈ S} with a

finite number K of L2-norm brackets of width ε/2, using standard arguments (see e.g. Example 19.7 in van

der Vaart (1998)). Identifying the kth bracket with an element exp{U(x1, x2; s1, s
(k); t0)}, for any s ∈ S we

can therefore find s(k) ∈ {s(1), . . . , s(K)} ⊂ S such that
∫

| exp{U(x1, x2; s1, s; t0)} − exp{U(x1, x2; s1, s
(k); t0)}|w(x1)w(x2)dx1dx2 < ε

for each s1 ∈ S. A simple calculation then shows that the difference between the analogs of the worst-case

bounds in B.6 for the discrete set s(1), . . . , s(K) ⊂ S and the full set S is less than ε, which can be made

arbitrarily small.

For claim (b), note however that the argument for point-wise convergence in part 1 still goes through

after multiplying the contribution of node i with bounded weights ω(xi; si). Uniformity with respect to ω(·)
then follows from the GC condition and using arguments that are analogous as for part (b) of Lemma B.5

in Menzel (2015). For the case of 2 < |S| < ∞, the argument is identical except that allocation parameter

αj is now (|S| − 1)-dimensional which increases the bounding constant by a finite multiple �

B.5.3. Size of Opportunity Sets. The next auxiliary result concerns the rate at which the number of available

potential spouses increases for each individual in the market. For a given PSN L∗, we let

J∗
i := Ji[L

∗] :=

n
∑

j=1

1l {Uji(L
∗) ≥ MCj}

denote the size of the link opportunity set available to agent i. Similarly, we let

K∗
i =

n
∑

j=1

1l {Uij(L
∗) ≥ MCi}
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so that K∗
i is the number of nodes to whom i is available.

Lemma B.1 below establishes that in our setup, the number of available potential matches grows at a

root-n rate as the size of the market grows.

Lemma B.1. Suppose Assumptions 4.1-4.3 hold. Then for any pairwise stable network,

exp{−Ū −BT } ≤ n−1/2J∗
i ≤ exp{Ū +BT }

exp{−Ū −BT } ≤ n−1/2K∗
i ≤ exp{Ū +BT }

for each i = 1, . . . , n with probability approaching 1 as n → ∞.

Proof of Lemma B.1: Notice that in the absence of interaction effects across links, Dji does not depend

on the number of “proposals” that can be reciprocated, but only the magnitude of MCi. Furthermore, by

Assumption 4.1, the systematic parts of payoffs are uniformly bounded for all values of si, sj . Hence the

proof closely parallels the argument for the matching case. We therefore only demonstrate that externalities

across links do not alter that conclusion, for the remaining technical steps we refer the reader to the proof

of Lemma B.2 in Menzel (2015), which is the analogous result for the two-sided matching problem.

Fix i, j ≤ n, and let Ũij := U∗(xi, xj , si, sj , T
∗
ij), where T ∗

ij := T (L∗
n, xi, xj , i, j). By Assumption 4.1,

|U∗(xi, xj , si, sj , t0)| ≤ Ū . Also, by Assumption 4.3 (iv) and Jensen’s Inequality, we have

E
[

exp
{

|U∗(xi, xj , si, sj , T
∗
ij)− U∗(xi, xj , si, sj, t0)|

}]

≤ exp{BT}

for n sufficiently large, so that, using the Law of iterated expectations and the triangle inequality, E
[

exp
{

|Ũij |
}]

≤
exp{Ū +BT } for n large enough.

Hence, following a similar series of steps as in the proof of Lemma 6.2, the marginal probability

JP (Uij ≥ MCi) = J

∫ ∞

−∞

GJ (Ũij + s)g(s)ds

≤ E

[

J

∫ ∞

−∞

GJ (Ū + |U∗(xi, xj , si, sj , T
∗
ij)− U∗(xi, xj , si, sj , t0)|+ s)g(s)ds

]

→ exp{Ū +BT }

Similarly, we find that

JP (Uij ≥ MCi) ≥ J

∫ ∞

−∞

GJ(−Ū + s)g(s)ds → exp{−Ū −BT }

Since K∗
i :=

∑n
j=1 1l{Uij ≥ MCi}, we can bound the expectation,

exp{−Ū −BT } ≤ n−1/2
E[K∗

i ] ≤ exp{Ū +BT }

as n grows large. Similarly, J∗
i :=

∑n
j=1 1l{Uji ≥ MCj} so that for n sufficiently large,

exp{−Ū −BT } ≤ n−1/2
E[J∗

i ] ≤ exp{Ū +BT }

These bounds are uniform for i = 1, 2, . . . . Given these rates for the expectation of the upper and lower

bounds for J∗
i and K∗

i , the conclusion of this lemma follows the same sequence of steps as in the proof of

Lemma B.2 in Menzel (2015) �
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B.5.4. Proof of Lemma 6.4. Aggregating over j 6= i, we obtain

Ĥ∗
n(xi; si) = n−1/2

∑

j 6=i

exp{U∗(xi, xj ; si, sj , tij)}P (Dji = 1|Wj(L
∗))

= n−1/2
∑

i∈Wj(L∗)

exp{U∗(xi, xj ; si, sj, tij)}P (Dji = 1|Wj(L
∗))

+n−1/2
∑

i/∈Wj(L∗)

exp{U∗(xi, xj ; si, sj , tij)}P (Dji = 1|Wj(L
∗))

The asymptotic approximation to the edge-level response in Lemma 6.2 implies

n1/2P (Dji = 1|Wj(L
∗)) = n1/2

E[Φ(j, i1, . . . , ir|z∗j )|Wj(L
∗)1l{i ∈ {i1, . . . , ir}}]

= n1/2
∑

r≥0

∑

i1,...,ir

Φ(j, i1, . . . , ir|z∗j )1l{i ∈ {i1, . . . , ir}}

=
∑

r≥0

(r + 1)!

r!

exp{U∗(xj , xi; (r, s
′
2j)

′, si, tji) + U∗(xi, xj ; si, (r, s
′
2j)

′, tji)}(I∗j )r
(1 + I∗j )

r+2
+ op(1) < ∞

Since the last expression is uniformly bounded in si and I∗j ≥ 0, it follows that

n−1/2
∑

i∈Wj(L∗)

exp{U∗(xi, xj ; si, sj , tij)}P (Dji = 1|Wj(L
∗)) = op(1)

noting that by Lemma B.1, |{j : i ∈ Wj(L
∗)}|/n → 0 almost surely. Hence the contribution of nodes j such

that i ∈ Wj(L
∗) to the inclusive value is negligible to first order.

Next consider the nodes j such that i /∈ Wj(L
∗). Note that in that case, a link proposal to i does not

result in a new link, and therefore Dji does not affect the network structure. Hence, for given values of

si, sj, tij and payoff shocks, the link proposal indicator Dji is uniquely determined. Hence, using Lemma 6.2

again,

Ĥ∗
n(xi; si) = n−1/2

∑

i/∈Wj(L∗)

exp{U∗(xi, xj ; si, sj , tij)}P (Dji = 1|Wj(L
∗)) + op(1)

=
1

n

n
∑

j=1

s∗1j,+i exp{U∗(xi, xj ; si, sj, tij) + U∗(xj , xi; sj , si, tij)}
1 + I∗j

+ op(1)

where the last expression depends on the empirical distribution of endogenous network characteristics given

exogenous traits. Using Lemma 6.3 and noting that under Assumption 4.3 (iv), the effect of edge-specific

interaction effects through U∗(·, tij) − U∗(·, t0) on the inclusive value is negligible in the limit, we can now

write

Ĥ∗
n(xi; si) =

1

n

n
∑

j=1

s∗1j,+i exp{U∗(xi, xj ; si, sj , t0) + U∗(xj , xi; sj , si, t0)}
1 + Ĥ∗

n(xj ; sj)
+ op(1) (B.8)

Substituting in the definition of Ψ̂n in (6.2), we obtain pointwise convergence in x, s. Uniformity follows from

the Glivenko-Cantelli property of the systematic payoff functions, noting that I∗j and Ĥ∗
n are guaranteed to

be nonnegative �

B.5.5. Proof of Corollary 6.1: Given part (i) of Proposition 6.1, it is sufficient to show that E[s1i|xi = x] is

uniformly bounded for x ∈ X . To this end, notice that for payoffs of the form U∗(x1, x2; s1, s2) = U∗(x1, x2),

the inclusive value function only depends on x, i.e. H∗(x; s) = H∗(x). Furthermore, the edge-level response

is unique so that the conditional degree distribution given xi = x has p.d.f. P (s1i = s|xi = x) = H∗(x)s

(1+H∗(x))s+1 .
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Hence, the conditional expectation of s1i is given by

E[s1i|xi = x] =

∞
∑

s=0

s
H∗(x)s

(1 +H∗(x))s+1
=

1

1 +H∗(x)

∞
∑

s=0

s

(

H∗(x)

1 +H∗(x)

)s

=:
1

1 +H∗(x)

∞
∑

s=0

sδs =
1

1 +H∗(x)

δ

(1− δ)2
= H∗(x)

where δ := H∗(x)
1+H∗(x) . Finally, it remains to be shown that H∗(x) is uniformly bounded: from the fixed-point

condition (3.2),

Ψ[H,M ](x) =

∫

s1j exp{U∗(x, xj ; s, sj) + U∗(xj , x; sj , s)}
1 +H(xj)

M(sj |xj , x)w(xj)dsjdxj

=

∫

H∗(xj) exp{U∗(x, xj ; s, sj) + U∗(xj , x; sj , s)}
1 +H(xj)

M(sj |xj , x)w(xj)dsjdxj

≤ exp{2Ū}

where Ū < ∞ is the bound in Assumption 4.1. Hence the range of Ψ0 is uniformly bounded, so that the

fixed point H∗ also has to satisfy this bound �

B.5.6. Proof of Lemma 6.5. To accommodate the general set-valued case, we state and prove a strengthened

version of the Lemma - let the set M̂∗
n be a solution to the fixed point problem

M̂∗
n = conv





⋃

M∈M̂∗
n

core Ω̂n[H,M ]



 (B.9)

Also, as in equation (A.4) let M∗ be a set solving

M∗ = conv

(

⋃

M∈M∗

core Ω0[H,M ]

)

Note also that the union M∗
max of all sets satisfying (A.4) is in turn a solution to that fixed point condition.

We now state and prove the following strengthened version of Lemma 6.5:

Lemma B.2. Suppose that Assumptions 4.1-4.5 hold. Then for any stable network, the inclusive value

function Ĥ∗
n(x; s) satisfy the fixed-point conditions in (6.3), and the reference distributions are in a set M̂∗

n

solving (B.9). Moreover, there exist H∗,M∗ satisfying the population fixed-point conditions in (3.2) and

(A.4) such that ‖Ĥ∗
n −H∗‖∞ = op(1) and supM∈M∗

n
d(M,M∗

0) = oP (1).

Proof: For the first claim of the Lemma, notice that the fixed point condition (6.3) is a direct consequence

of Lemmas 6.3 and 6.4. Furthermore, (B.9) holds by construction of the capacity Ω̂n, where the exact form

of the fixed-point mapping has to be derived separately for the problem at hand. For the proof of the second

claim, we first state the following Lemma:

Lemma B.3. Suppose the conditions for Proposition 6.1 hold. Then the mapping

Ψ̂n[H,M ](x; s)
p→ Ψ0[H,M ](x; s)

uniformly in H ∈ G, M ∈ U , and (x′, s)′ ∈ X × S as n → ∞.

This result is a straightforward extension of Lemma B.6 in Menzel (2015), a separate proof will therefore

be omitted.
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For the remainder of the proof of Lemma B.2, note that we can rewrite the fixed-point condition (A.4)

in a more compact vector form, M∗ ≤ Ω0[H
∗,M∗], where the respective components M∗(W ; r|x) :=

∫

W
M∗(w; r|x)dw and Ω∗[H∗,M∗](x; r,W ) are indexed by x ∈ X , r ∈ R, and W ⊂ S × T d∩ , and we

continue to use the notation introduced in the proof of Theorem 4.1.

Now let

Z∗ := {(H∗,M∗) : H∗ ∈ Ψ0[H
∗,M∗],M∗ ∈ M∗

max}
be the set of fixed points of (3.2) and (A.4). Since by Assumption 4.5 (ii), the respective ranges of Ψ0 and Ω0

are contained in G and U , respectively, any fixed points must be in G × U , so that it is sufficient to consider

the fixed-point mapping restricted to that compact space.

Now fix δ > 0 and define

η := inf

{

inf
M∈M∗

max

sup
x,r,W

|M(W ; r|x)− Ω0[H,M ](x; r,W )|+ + sup
x,s

|Ψ0[H,M ](x; s)−H(x; s)| : d((H,M),Z∗) ≥ δ

}

.

(B.10)

By definition of Z∗, we must have that either

inf
M∈M∗

max

sup
x,r,W

|M(W ; r|x)− Ω0[H,M ](x; r,W )|+ > 0

or

sup
x,s

|Ψ0[H,M ](x; s)−H(x; s)| > 0

for any (H,M) /∈ Z∗. Furthermore the δ-enlargement (Z∗)
δ
:= {(H,M) ∈ G × U : d((H,M),Z∗) < δ}

is open, so that its complement is closed. Since any closed subset of a compact space is compact, the set

{(H,M) ∈ G × U : d(H,M) ≥ δ} is compact. Since furthermore the quantities infM∈M∗
max

supx,r,W |M(W ; r|x)−
Ω0[H,M ](x; r,W )|+ and supx,s |Ψ0[H,M ](x; s)−H(x; s)| are continuous in H,M , the infimum in the defi-

nition of η in (B.10) is attained, which implies that η > 0.

Finally, by Lemma B.3 and Assumption 4.5 (iii), the fixed-point mappings Ω̂n and Ψ̂n converge uniformly

to the respective limits, Ω0 and Ψ0. In particular, for any ε > 0, we can find nε < ∞ such that for all n ≥ nε,

supM,H ‖Ω̂n[H,M ]−Ω0[H,M ]‖ < η/2 and sup ‖Ψ̂n[H,M ]−Ψ0[H,M ]‖ < η/2 with probability greater than

1− ε. It follows that as n increases, any point (Ĥ∗, M̂∗) satisfying the fixed point conditions (6.3) and (6.5)

is contained in (Z∗)δ w.p.a.1, establishing the second claim �

B.6. Proof of Theorem 4.2. Consider a pair of nodes i, j drawn from N independently and uniformly at

random. By Lemma B.1, the number of link opportunities available to either node is bounded from above

by n1/2 exp{Ū +BT }. By Lemma 6.1, i and j’s taste shifters are asymptotically independent of availability,

so that by Lemma 6.2 the number Rij := |N0| of nodes l ∈ N such that Ū + ηkl ≥ MCk and Ū + ηlk ≥ MCl

for any k ∈ {i, j}, is asymptotically tight.

Let l be a node drawn at random from the uniform distribution over N . From the definition of the

reference distribution, it follows that node l’s attributes, including the potential values for sl, are distributed

according to a p.d.f. M̂∗
l (sl|xijl)w(xl), where M̂∗

l (sl|xijl) ∈ M̂∗
n. By Lemma B.2, d(M̂l,M∗) = oP (1)

for some set M∗
0 satisfying the condition (A.4) and d(Ĥ∗

n, H
∗) = oP (1) for an inclusive value function H∗

satisfying condition (3.2).

Moreover, combining Lemmas 6.1 and 6.2, we have that for node l the probability n1/2P (Ū + σηli ≥
MCl) → s1l exp{Ū}

1+H∗(xl,sl)
, and the conditional probability P (Ũ +σηli ≥ MCl|Ū +σηli ≥ MCl) → exp{Ũ − Ū} for

any Ũ ≤ Ū . Since |N0| is asymptotically tight and the conclusion of Lemma 6.1 holds after conditioning on
67



finitely many link opportunity sets {W∗
l : l ∈ N0}, availability is conditionally asymptotically independent

across all nodes in N0.

To complete the stochastic representation of F∗
0 , let η∗km and η∗k0j be i.i.d. draws from the extreme-

value type I distribution for k = i, j, m ∈ W∗
k and j = 1, . . . , Jk. It then follows from the main result

in Dagsvik (1994) that the availability probabilities of the form s1k exp{U∗(xk,xl;sk,sl,tkl)}
1+H∗(xk,sk)

can be represented

as the probability that U∗(xk, xl; sk, sl, tkl) + η∗kl is among the s1k highest order statistics of the sample

{U∗(xk, xm; sk, sm, tkm) + η∗km, η∗k0j : m ∈ W∗
k , j ≤ Jk} conditional on |W∗

k | ≥ s1k + 1, which completes the

proof �

B.7. Proof of Theorem 4.3. For this proof, note that the tangent cone to a set K ⊂ Z (say) is defined as

the set TK(z) := lim suph↓0
1
h(K − z) where K − z := {(y − z) : y ∈ K}. In particular, the tangent cone at

a point z in the interior of K relative to Z is all of Z. The proof relies on a fixed point theorem for inward

mappings, where the mapping Υ0 is said to be inward on a convex set K ⊂ Z if Υ0[z]∩ (z + TK(z)) 6= ∅ for

any z ∈ K and TK(z) denotes the tangent cone to K in Z.

Since the contingent derivative of the mapping Υ0[z]− z is surjective by assumption, we can use Lemma

C.1 in Menzel (2016) to conclude that Υ0 is an inward mapping when restricted to a neighborhood of any

of its fixed points. Furthermore, Υ0 and Υ̂n are also convex-valued mappings since the sets Ψ̂n and Ψ0 and

core Ω0 are convex by standard properties of the core. Finally, Υ̂n converges uniformly to Υ0 by Lemma

B.3, so that w.p.a.1 Υ̂n is also locally inward. In complete analogy to the proof for Theorem 3.1 part (b)

in Menzel (2016), local existence of a fixed point then follows by Theorem 3.2.5 in Aubin and Frankowska

(1990), noting that this fixed point result applies to general Banach spaces �

Proof of Proposition 5.1. For notational simplicity, we let Ui0 := MCi which we can approximate by

Ui0 = log J + ση∗i0 as J grows large, where η∗i0 is a random draw from the same distribution as ηi1, . . . , ηiJ .

We therefore let Ũi0 := log J . Consider the case in which degree is equal to s, so that MCi is the (s + 1)

highest order statistic. Following Assumption 4.3 (ii), let J = n1/2 and denote the number of elements in

Wi(L
∗) with JW . Note also that by Lemma B.1, JW = OP (n

1/2), and by Lemma 6.1, taste shifters ηij are

asymptotically independent of Wi(L
∗).

In the following we let A+
i (r; s) denote the event that payoffs support si = s and network degree s1i ≥ r.

From the law of iterated expectations, the partial mean of the rth order statistic Ui;r given A+
i (r; s) is

E

[(

Ui;r −
1

2
log n

)

1l{A+
i (r; s)}

]

=

JW
∑

j=1

E[(Ũij + σηij − log J)1l{B+
i (r; s), Ui;r = Ũij + σηij}]

=
1

Jr−1

JW
∑

j=1

∑

j1 6=···6=jr−1 6=j

∫ ∞

−∞

s

(

r
∏

q=1

J(1−G(s− σ−1Ũijq )

)(

JW
∏

q=r+1

G(s− σ−1Ũijq )

)

×g(σ−1(s− Ũij + log J)ds+ o(1)

=
1

(r − 1)!

∫ ∞

−∞

s





1

J

JW
∑

j=1

exp{Ũij}





r

exp

{

−rs− e−s

(

1 +
1

J

JW
∑

k=1

exp{Ũik}
)}

+ o(1)

where the last step follows from the approximation in equation (B.5).

Now note that for any λ ≥ 0 we can write

d

dλ
vλ
∣

∣

∣

∣

λ=r

= log(v)vλ
∣

∣

∣

λ=r
= log(v)vr
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Hence, if we define a := 1
J

∑JW

j=1 exp{Ũij}, and after a change of variables v = e−w, we have

E

[(

Ui;r −
1

2
logn

)

1l{Ai(r; s)}
]

=
1

(r − 1)!

∫ ∞

−∞

arw exp{−rw − (1 + a)e−w}dw + o(1)

= − 1

(r − 1)!

(

a

1 + a

)r ∫ ∞

0

[log(v)− log(1 + a)] vr−1e−vdv + o(1)

=

(

a

1 + a

)r (
1

(r − 1)!
(log(1 + a)Γ(r) − Γ′(r)) + o(1)

)

=

(

a

1 + a

)r
(

log(1 + a) + γ −
r−1
∑

q=1

1

q
+ o(1)

)

where Γ(r + 1) :=
∫∞

0
vre−vdv denotes the Gamma function. Since P (A+

i (r; s)) =
(

a
1+a

)r

, it follows that

lim
n

E

[(

Ui;r −
1

2
logn

)∣

∣

∣

∣

A+
i (r; s)

]

= log(1 + a) + γ −
r−1
∑

q=1

1

q

Finally note that by Lemmas 6.3 and 6.5, 1
J

∑JW

j=1 exp{Ũij} p→ H∗(xi; si). Since the draws Ui:1(s), . . . , Ui:JW
(s)

are independent, this also establishes the first claim of the Lemma.

Similarly, the partial mean of MCi given that MCi is the (s+ 1)th order statistic is given by

E

[(

MCi −
1

2
logn

)

1l{Ai(t; s)}
]

=
1

s!

∫ ∞

−∞

asw exp{−(s+ 1)w − (1 + a)e−w}dw + o(1)

=
as

(1 + a)s+1

(

log(1 + a) + γ −
s
∑

q=1

1

q
+ o(1)

)

where P (Ai(r; s)) =
as

(1+a)s+1 , which establishes the second claim �
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