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Abstract

Idiosyncratic labor incomes are typically modeled either by stochastic processes featuring
heterogeneous income profiles (HIP) or restricted income profiles (RIP). The HIP assumes
that individual labor income grows deterministically at an unobserved rate and contains a
persistent but stationary component, while the RIP assumes that income contains a random
walk, a stationary component, and no unobserved deterministic growth-rate component. I
show that if idiosyncratic labor income contains a persistent component, a deterministic
household-specific trend, and a random walk component, then all of the components can be
identified. Using data on idiosyncratic labor income growth from the Panel Study of Income
Dynamics, I find that the estimated variance of deterministic income growth is zero, i.e.,
the HIP model can be rejected. The RIP model with a permanent component cannot be
rejected. This result is important for an appropriate choice of modeling the heterogeneity
in individual incomes and calibrating/estimating macro models with incomplete insurance
markets and heterogeneous agents.
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1 Introduction

Individuals and households face substantial amounts of idiosyncratic labor market risk. Layoffs,

health shocks, bonuses, promotions, demotions, and time-varying returns to the individual skills

valued by labor market contribute towards fluctuating individual labor incomes. Idiosyncratic

labor income risk, absent perfectly functioning credit and insurance markets, affects individual

and aggregate welfare. The importance of risk in real life is mirrored by its importance in

modern macro models featuring agents with heterogeneous income fortunes.

Two different approaches to modeling individual and household labor income risks currently

stand out.1 The first approach, with a long-standing tradition, models each individual’s income

growing at the individual-specific, deterministic rate, with the level of income affected by a

stochastic component with moderate persistence. Since each individual’s labor income profile,

even in the absence of shocks, is unique, I label this model, following Guvenen (2007a), the

“Heterogeneous Income Profiles” (HIP) model. The second approach models idiosyncratic labor

income as the sum of a permanent random walk component, the shocks to which persist for

the entire working lifetime of an individual, and a mean-reverting stationary component, the

shocks to which die out quickly. Since this model abstracts from the deterministic growth-rate

heterogeneity, I label it the “Restricted Income Profiles” (RIP) model. Even though variants

of the RIP are currently a preferred choice in macro models, there is no consensus in the labor

income processes literature on which income model best fits the earnings data. As Guvenen

(2007b) concludes: “ . . . it is fair to say that this literature has not produced an unequivocal

verdict.” This paper is a step towards finding a verdict in favor of the RIP model.

I start with a general income model that encompasses the RIP and HIP models. I then

conduct a Monte Carlo study to explore identification of different income processes found in

the literature, obtained when certain restrictions on this general process are imposed. I find

that if the true income process is the RIP with a permanent random walk component and an

econometrician estimates the misspecified HIP model instead, he will typically find statistically

significant amounts of the growth-rate heterogeneity, of magnitudes comparable with those in

the literature. I show that the general income process composed of a deterministic growth rate,

a permanent random walk, and transitory components can be identified when the earnings data

used in estimation are in first differences. The results of a Monte Carlo study confirm that the
1See Table 1 and its discussion in Section 2 for details.
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parameters of this general process should be precisely recovered. I then proceed by estimating

the model utilizing labor income data for male household heads from the Panel Study of Income

Dynamics (PSID). I find that the estimate of the variance of the deterministic growth-rate

component is zero, while the variance of the shock to the random walk component is significant

and substantial. Hence, the data utilized in this paper favor the RIP model with a permanent

random walk component and a mean-reverting persistent process.

The results of this paper are important as they contribute to understanding a number of

issues. First, they speak to the economists’ choices for modeling of household consumption,

savings, and wealth. If the correct model for idiosyncratic labor income is the HIP, one needs to

model individuals sequentially learning about their own labor income profiles to jointly fit the

features of consumption and income data. Guvenen (2007b) is an example of such a model that

successfully explains the profile of consumption inequality observed in U.S. micro data and the

co-movement of the life-cycle profiles of earnings and consumption for households with different

levels of schooling. If a substantial variation in incomes is due to permanent and persistent

shocks, as is found in this paper, an appropriate model for household choices of consump-

tion, savings, and wealth is an incomplete markets model with uninsurable persistent and/or

permanent shocks. Castañeda, Dı́az-Giménez, and Rı́os-Rull (2003), utilizing such a model,

successfully explain the U.S. wealth and earnings inequality; Scholz, Seshadri, and Khitatrakun

(2006) explain more than 80% of the 1992 cross-sectional variation of household wealth observed

in data from the Health and Retirement Study. Krebs (2003) is an example of a model where

permanent idiosyncratic risk, absent in the estimations of the HIP processes but found to be

substantial in this and some other papers,2 reduces economic growth and individual welfare.

De Santis (2007) develops a model where log-individual consumption is a random walk due to

permanent uninsurable idiosyncratic income shocks and shows that such a model can potentially

produce large welfare gains from eliminating business cycles.

Second, the results of this paper speak to the literature on the importance of initial conditions

at the start of the individual’s working career versus life-cycle shocks for the lifetime inequality

in earnings and welfare (for recent contributions, see Storesletten, Telmer, and Yaron (2004a)

and Huggett, Ventura, and Yaron (2007)). If household incomes contain a random walk and

persistent components, the marginal propensity to consume from the permanent shock should be
2The prominent papers that find substantial amounts of permanent idiosyncratic labor income risk are Carroll

and Samwick (1997), Meghir and Pistaferri (2004), and Moffitt and Gottschalk (1995).
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close to one, and this reaction should translate one-for-one into consumption inequality among

a cross-section of households with similar labor market experience. The contribution of the

life-cycle labor income shocks will be understated if one models household incomes as the HIP,

since, as shown in this paper, initial conditions at the start of the individual’s working career—

determined by the variance of initial incomes and the growth-rate heterogeneity—will capture

the variation in incomes due to permanent shocks. Third, the contribution of the variance due

to persistent components towards the rising earnings inequality observed in the U.S. will be

underestimated if the random walk component is ignored.3

Lastly, the idiosyncratic labor income process, best fitting the data utilized in this paper,

places restrictions on the models attempting to endogenize labor incomes. A fruitful starting

point can be the model in Krebs (2003), where, in equilibrium, permanent shocks to individual

human capital translate into permanent shocks to individual labor incomes. Perhaps it could

be profitable to adopt distinct forms of human capital: human capital, shocks to which are

permanent (e.g., disability shocks, or idiosyncratic returns to such general skills as computer

skills), and human capital, shocks to which are dying out fast (e.g., temporary illness, or returns

to skills that are non-transferable across occupations or even employers in the same occupation).

From a policy perspective, it also matters whether the true income process is the HIP or RIP.

If an objective of the policymaker is to reduce consumption inequality and the true idiosyncratic

income process is the HIP with a stochastic component of moderate persistence, the policymaker

may want to implement policies that subsidize human capital investments by disadvantaged;

self-insurance will be a sufficient shield against the shocks of moderate persistence. If, however,

the true income process is the RIP with substantial permanent shocks, an appropriate policy,

in addition to the above-mentioned, is to educate the public about risk-sharing instruments

provided by credit institutions, stock, and insurance markets.

The rest of the paper is structured as follows. In Section 2, I present a Monte Carlo study

of income processes found in the literature and introduce the HIP and RIP models. I estimate

income processes on simulated data both in levels and first differences. I also discuss identifica-

tion of the models containing a random walk and deterministic growth-rate components when

data used for estimation are in first differences. In Section 3, I first describe the data I use and

then present the empirical results. Section 4 concludes.
3See Baker and Solon (2003), which elaborates on this issue using Canadian earnings data.
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2 A Monte Carlo Study

In this section, I present the income processes estimated in the literature and perform a Monte

Carlo study to explore identification of those income processes.

Let the true income process be:

yiht = αi + βih+ piht + τiht + uiht,me (1)

piht = pih−1t−1 + ξiht (2)

τiht = θ(L)εiht, (3)

where yiht is the idiosyncratic log-income of individual i with h years of labor market experience

at time t; βi is individual i’s growth rate of income; αi is individual i’s initial level of income; piht

is the permanent stochastic component of income; ξiht is a mean-zero shock to the permanent

component; τiht is the transitory stochastic component of income; εiht is a mean-zero shock to

the transitory component; uiht,me is a mean-zero measurement error; L is the lag operator so

that Lkxt = xt−k, ∀k = 0,±1,±2, . . . ; and θ(L) is a moving average polynomial in L.

The income process outlined in equations (1)–(3) encompasses most of the income processes

estimated in the literature.4 In Table 1, I list the most cited studies of idiosyncratic labor

income processes for individuals or households, along with the specific restrictions on the process

in (1)–(3) imposed in those studies.5 Hause (1980), Lillard and Weiss (1979), and more recently

Guvenen (2007a) estimate the income process that is driven by “deterministic effects,” αi and

βi; an AR(1) transitory component affected each period by the transitory shock, εiht; and

measurement error, uiht,me. I label this process the HIP. Meghir and Pistaferri (2004) and

4Baker and Solon (2003) estimate a similar process but allow the contribution of the deterministic component—
αi + βih—towards individual earnings to vary by calendar year, and the variance of the transitory shock by
age. Haider (2001) assumes away the permanent component, models the transitory component as an ARMA(1,1)
process, and allows the contribution of the deterministic component to vary by calendar year. These modifications
of the model in (1)–(3) are largely done to fit the time-varying cross-sectional variances and covariances observed
in earnings data. Most of the studies in the literature, to account for time-varying variances and covariances,
allow instead for time-varying variances of stochastic (transitory and, if present, permanent) disturbances. This
is the strategy I adopt in Section 3.2.

5Note that even though, say, Guvenen (2007a) does not model the permanent stochastic component of income
explicitly, he allows a root of the autoregressive representation of τiht to be one. The studies not modeling the
permanent component explicitly find that the largest root of the stochastic component is below unity. They
interpret this as the absence of the random walk component in idiosyncratic labor income, i.e., as if piht = 0 for
all t.
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Carroll and Samwick (1997) are the prominent examples of the studies that assume the presence

of a random walk and transitory components in idiosyncratic income but assume away (or

present some evidence against) the deterministic idiosyncratic growth-rate component. I label

this process the RIP. My ultimate goal is to determine whether the process containing random

walk, transitory and deterministic components can be identified empirically.

2.1 Simulation Details

To see whether different processes are identified, I conduct a Monte Carlo study. I simulate

data for 3,000 individuals “observed” for at most 30 periods using the data generating process

of equations (1)–(3). I purposefully do not create a balanced panel data set—to mimic the

patterns of the PSID data, which I will later use in empirical analysis. The PSID may contain

at most 30 consecutive records on income for each head of household (from the 1968–1997 waves),

but, since many heads of household first enter the labor market in different years and because of

attrition and non-response, many heads contribute one or more observations on labor income.

The details of simulations are as follows. I assume that αi and βi are mean-zero, possibly

correlated normally distributed fixed effects, with which the head is endowed when he enters the

labor market. I further assume that ξiht is an i.i.d. mean-zero shock to the permanent component

of income normally distributed with the variance equal to σ2
ξ ; εiht ∼ iidN(0, σ2

ε ); uiht,me ∼
iidN(0, σ2

u,me); and τiht is either a moving average process of order 1 or an autoregressive process

of order 1. I use these particular representations of the transitory component of earnings for

the following reasons. First, RIP studies, such as Abowd and Card (1989) and Meghir and

Pistaferri (2004), find that the growth rate in male earnings can be represented by a moving

average process of order 2, suggesting that the transitory component is a moving average process

of order 1. Second, HIP studies, such as Lillard and Weiss (1979) and Guvenen (2007a), model

the transitory component as an autoregressive process of order 1. The estimated AR(1) process

is easy to deal with in computational models featuring incomplete insurance markets and agents

with idiosyncratic earnings histories, as argued in Guvenen (2007a). Third, a moving average

process of order 1 with the moving average parameter of a small magnitude is hard to distinguish

from an autoregressive process of order 1.6

6If the true transitory process is τit = (1 + θL)εit, it can be represented by an infinite order autoregressive
process, τit = θτit−1 − θ2τit−2 + θ3τit−3 − . . . + εit, and approximated by τit = θτit−1 + υit, where υit =
−θ2τit−2+θ3τit−3−. . .+εit. Galbraith and Zinde-Walsh (1994) show that low order autoregressive approximations
of an MA(1) process—of order 1 up to order 3—with a moving average parameter of 0.5 and less in absolute value
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In the first year of a simulated data set, I observe a cross section of households whose heads’

labor market experience ranges from one to 30 years, 100 of each type; heads with one year of

experience in the first sample year contribute 30 observations towards the final sample, while

heads with 30 years of experience are observed in the first year only. In the second year, since

all of the heads have one more year of experience and those with 30 years of experience exit

the sample, I add 100 households whose heads just enter the labor market and have only one

year of experience. I repeat these steps until I simulate a data set with the time dimension

of 30 years. This procedure ensures that there are 100 households whose heads’ experience

levels range from one to 30 observed in each year, and the cross-sectional mean of experience is

constant across the years of each simulated data set. For each estimated income model, I report

the results based on 100 simulated samples. The models are identified by fitting the theoretical

autocovariances to the autocovariances in the simulated data. Estimation is performed using

the minimum distance method, with the identity weighting matrix.7 I now turn to estimation

results for different simulated income processes.

2.2 Models Estimated on Data in Levels

Most of the HIP models are estimated on income data in levels while most of the RIP models are

estimated on income data in first differences. The income process (1)–(3) provides restrictions on

the variances and autocovariances for the data both in levels and first differences. In this section,

I present estimation results on simulated data in levels. In the next section, I first simulate data

in levels, then transform them to first differences, estimate the models, and present the results

of those estimations.

First, I simulate the income process that consists of the deterministic effects and measurement

error; i.e., I set piht and τiht to zero for all individuals and years. This exercise helps determine

how well the distribution of initial conditions is identified under the best circumstances, when the

cross-sectional variances and covariances are not affected by stochastic permanent and transitory

components. I set the true variance of the individual-specific growth rate, σ2
β, to 0.0004, the

true variance of the individual-specific intercept, σ2
α, to 0.03, the correlation between them to

–0.3, and the variance of measurement error, σ2
u,me, to 0.04. The results of estimation are

perform the best in terms of minimizing the mean squared error.
7Altonji and Segal (1996) showed that an identity weighting matrix is the best choice for weighting the moments

while estimating models of autocovariance structures on micro data with small samples. Most of the papers listed
in Table 1, guided by this result, utilize this weighting matrix.
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presented in column (1) of Table 2. The variance of the individual-specific growth rate and

the variance of measurement error are well identified and tightly estimated. The variance of

the intercept and the correlation between the intercept and individual-specific growth effects

are biased downward. Indeed, the estimated standard deviation of the intercept is 25% below

its true value. Poor identification of the correlation and the variance of the intercept is due

to the fact that many combinations of these two parameters lead to a similar fit of the auto-

covariance function in simulated data. When taken to the data, this poor identification may

create numerical problems while calculating the standard errors of the parameters.

In column (2), the true income process is the same while I set the covariance between αi

and βi to zero when estimating the model. The purpose of this exercise is to see whether the

variance of the individual-specific growth rate, βi, the main disagreement of the HIP and RIP

models, is well identified (if present) when one assumes away the correlation between individual-

specific fixed effects. Again, the variance of the individual-specific growth rate and the variance

of measurement error are well identified even though the estimated model is misspecified. The

variance of the intercept is substantially biased downward.

In column (3), I set the true correlation between the individual-specific growth rate and

intercept to zero. Estimation recovers the true variances of the growth rate, intercept, and

measurement error very well. In the following, I will estimate the variances of the individual-

specific fixed effects setting the true correlation between them to zero.8 One should keep in

mind that the estimated variance of the individual-specific intercept will be biased downward if

the true correlation between the fixed effects is non-zero in empirical data.

Next, I estimate income processes that contain a random walk component, deterministic

individual-specific fixed effects, and measurement error. As before, I assume that σ2
β = 0.0004,

σ2
α = 0.03, and σ2

u,me = 0.04; I also set τiht = 0 for all individuals and years. The results are

presented in Table 3. In columns (1) and (2), the true variance of the shock to the random

walk component, σ2
ξ , is equal to 0.02 and 0.01, respectively. I label these processes the HIP with

random walk components with high- and low-variance permanent shocks, respectively. The

purpose of these estimations is to see how well the model is identified if it contains a random

walk component, a special case of the models estimated by Baker (1997), Guvenen (2007a),
8In Section 3, I find, for PSID data, that the variance of individual-specific growth rates is equal to zero; the

correlation between individual-specific intercepts and growth rates is not identified in this case and can, therefore,
be set to zero.
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Hause (1980), and Lillard and Weiss (1979). Estimation recovers well the variances of the

random walk shock and measurement error; the estimated variance of the individual-specific

intercept is slightly biased downward. The persistence of the stochastic permanent component,

measured by an autoregressive coefficient, is underestimated. Since the contribution of the

random walk component towards the empirical autocovariance function is “downward-biased,”

estimation places a larger weight on the deterministic growth-rate component—this results in an

upward biased estimate of the variance of βi. The null hypothesis of no permanent component,

however, will be rejected, on average, if the true process contains the individual-specific growth

rate and permanent components and no stochastic transitory components.

The literature estimating RIP, say, Meghir and Pistaferri (2004), presents some evidence that

labor income contains a permanent random walk component and a mean-reverting stationary

component but no individual-specific growth-rate component.

In Table 4, I show the results of estimations on simulated data that are generated in accor-

dance with the RIP but are estimated as the HIP processes. Specifically, I assume that the true

income process contains a random walk component, an AR(1) component, measurement error,

and individual-specific intercepts. In column (1), I assume that an autoregressive coefficient of

the transitory component is equal to 0.25. In column (3), I set an autoregressive coefficient to

0.50—a more persistent transitory component of earnings. In both columns, I set the variance

of the shock to the transitory component to 0.04, and the variance of the permanent shock

to 0.02. I estimate this process by fitting the autocovariance function from simulated data to

the autocovariance function of the HIP process that contains individual-specific intercepts, the

growth-rate component, and a potentially non-stationary autoregressive component. Estima-

tion fails to recover all of the coefficients. The variance of the individual-specific intercepts is

downward biased, while the variance of measurement error is substantially biased upward. Im-

portantly, the estimated persistence of an autoregressive component can be as low as 0.84 and

the variance of the deterministic growth-rate component can be as high as 0.0008, while the true

value of the latter is equal to zero. These estimates are consistent with the estimates of the HIP

process in the literature: significant estimates of the growth-rate heterogeneity, and estimates of

the persistence of an autoregressive component below unity. In columns (2) and (4), I present

the results of the same estimations assuming that the variance of measurement error is known

and is equal to 0.04. The estimated persistence of an autoregressive component is even lower,
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at about 0.74 for the process with a permanent random walk component and an autoregressive

component with lower persistence, and at about 0.76 for the process with a permanent random

walk component and an autoregressive process with higher persistence. The estimated variance

of idiosyncratic deterministic growth rates is even higher, while their true value is equal to zero.

In Figure 1, I plot the theoretical autocovariance functions for the RIP process with σ2
β =

0.00, σ2
ξ = 0.02, φ = 0.25, σ2

ε = 0.04, σ2
α = 0.03, σ2

u,me = 0.04, T = H = 30 and the HIP

process, whose parameters are estimated on the data simulated by the RIP with the parameters

just specified (σ̂2
β=0.0009, φ̂=0.742, σ̂2

ε=0.038, σ̂2
ξ=0.0, σ̂2

α=0.01, and σ2
u,me=0.04)—see Table 4,

column (2) for details. As can be seen from the graph, the autocovariance functions are hardly

distinguishable. Thus, it is challenging, if possible at all, to distinguish between the HIP and

RIP processes using income data in levels.

Abowd and Card (1989), MaCurdy (1982), and Meghir and Pistaferri (2004) present some

evidence that the transitory component is a moving average process of at most order 1. In

Table 5, therefore, I show the estimates of the misspecified HIP when the true transitory com-

ponent is a moving average process of order 1, while the estimated stochastic component is an

autoregressive process of order 1. In column (1), the true moving average coefficient is 0.25,

while in column (3) it is equal to 0.50. The results in Table 5 are qualitatively similar to those

reported in Table 4.

Summing up, the HIP model can be reasonably identified using data in levels if the true

income process contains a permanent random walk component, the individual-specific intercept

and growth rate, and no transitory component. If, however, the true income process contains

a persistent transitory component along with a random walk component and no deterministic

growth rate, an econometrician estimating the misspecified HIP model will find significant and

substantial growth-rate heterogeneity, and the persistence of an autoregressive component below

unity.

2.3 Models Estimated on Data in First Differences

In the previous section, I presented some Monte Carlo evidence on identification of the HIP and

RIP income processes when data used for estimation are in levels. In this section, I present esti-

mation results on simulated data transformed into first differences. I first discuss identification

of the processes containing a random walk component, a transitory component, a deterministic
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growth-rate component, and measurement error.

Note that both the variances and autocovariances estimated from data in levels contain

contributions from the growth-rate heterogeneity, the permanent component, and the mean-

reverting persistent component (see Appendix A). It is therefore challenging to identify all the

components utilizing data in levels. The autocovariance function for the data in first differences,

however, can be used to identify the growth-rate heterogeneity and random walk components,

if both are present in the data. Permanent shocks will contribute only to the diagonal elements

of the autocovariance function, i.e., the variances, while the growth-rate heterogeneity will con-

tribute, in addition, towards all the off-diagonal elements of the autocovariance function. This

information can be used to identify all the components as is shown in detail below.

2.3.1 Identification

In this section, I provide the intuition behind identification of income processes that contain

individual-specific growth rates, a permanent random walk and mean-reverting transitory com-

ponents when the data used for estimation are in first differences. In the next section, I confirm

identification using the minimum distance method, which utilizes all the available information

in the autocovariance structure of the data.

Income Processes with Deterministic Growth-Rate Heterogeneity and a Random Walk

Component

In first differences, the process (1)–(3) is:

∆yit = βi + ξit + θ(L)∆εit + ∆uit,me, (4)

where ∆ ≡ 1− L.

For simplicity, assume that the transitory component is a moving average process of order 1,

i.e., τiht = (1 + θL)εiht.9 The theoretical autocovariance moments, γk = E [∆yit∆yit−k], of this

process are:
9Absent the growth-rate heterogeneity, the income process in first differences is a moving average process of

order 2. This is consistent with the results in Abowd and Card (1989) and Meghir and Pistaferri (2004).
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γ0 = σ2
ξ + σ2

β + (1 + (1− θ)2 + θ2)σ2
ε + 2σ2

u,me (5)

γ1 = σ2
β − (θ − 1)2σ2

ε − σ2
u,me (6)

γ2 = σ2
β − θσ2

ε (7)

γk = σ2
β, k ≥ 3. (8)

The empirical variance-covariance matrix contains T (T+1)/2 unique moments. The variance

of deterministic growth, σ2
β, can be identified from the following vector of moments:

E [∆yit∆yit+k] = σ2
β1, k = 3, . . . , T − t, t = 1, . . . , T − k, (9)

where 1 is a vector of ones of the row dimension (T − 3)(T − 2)/2. Empirical analogs of the

moments γ0, γ1, and γ2 can be further used to identify three out of the other four parameters:

σ2
ε , σ

2
ξ , σ

2
u,me, and θ. To identify the variances of transitory and permanent shocks and the

moving average coefficient, one needs to restrict the variance of measurement error.

The asymptotic variance of the scaled mean of a mean-zero stationary process, lim
T→∞

E

[
1√
T

T∑

t=1

∆yit

]2

,

will be equal to
∞∑

k=−∞
γ(k), or the sum of the variance and twice the sum of the non-zero au-

tocovariances, if the autocovariances are absolutely summable.10 This requirement is violated

for the HIP process since the higher-order autocovariances are all equal to σ2
β. One may, how-

ever, calculate the sample variance of the (scaled) sample mean. For a sample with a finite

time dimension equal to T and a covariance-stationary process, this variance will be equal to
1
T [Tγ0 + 2(T − 1)γ1 + 2(T − 2)γ2 + 2(T − 3)γ3 + . . .+ 2γT−1].

For the process in equation (5)–(8), the variance is equal to:

E

[
1√
T

T∑

t=1

∆yit

]2

= σ2
ξ + Tσ2

β +
2
T

[
σ2
ε (1 + θ2) + σ2

u,me

] ≈ σ2
ξ + Tσ2

β, (10)

where the quality of approximation is better in samples with larger time dimension.
10See, e.g., Hamilton (1994) Chapter 7 for a proof. This moment identifies the long-run variance of {∆yit}.
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This moment, together with the moment in equation (9), can be used to estimate the variance

of permanent shocks, σ2
ξ .

If τiht = (1 − φL)−1εiht, i.e., the transitory component is an AR(1) process, the theoretical

autocovariance moments of the income process in first differences are:11

γ0 = σ2
ξ + σ2

β +
2

1 + φ
σ2
ε + 2σ2

u,me (11)

γ1 = σ2
β −

1− φ
1 + φ

σ2
ε − σ2

u,me (12)

γk = σ2
β − φk−1 1− φ

1 + φ
σ2
ε , k ≥ 2. (13)

Note that σ2
β should be identified from higher-order autocovariances—when the contribution

of the transitory component towards the autocovariances approaches zero. One may expect

better identification of the growth-rate heterogeneity for the income processes with transitory

components of lower persistence. The moment condition in equation (10), for a sufficiently large

time dimension of the sample, can be used to identify the sum of the variance of permanent

shocks and the variance of the growth-rate heterogeneity, scaled by the time dimension of the

sample, for any mean-reverting transitory income process, inclusive of an AR(1) process.

Thus, if the income process contains individual-specific growth rates and intercepts, a perma-

nent random walk component, a mean-reverting transitory component, and measurement error,

it is possible to identify the variance of permanent shocks and the variance of the deterministic

growth-rate heterogeneity. I will confirm this intuition in estimations using simulated data in

Section 2.3.2.

Income Processes with a Random Walk Component but No Deterministic Growth-Rate

Heterogeneity—the RIP Processes

What if the true variance of the growth-rate heterogeneity is zero and the income process

contains a random walk component but an econometrician estimates the HIP model instead?
11Guvenen (2007a) estimates the parameters of this transitory income process since an AR(1) process is easy to

deal with in computational macro models and parsimonious enough to fit the autocovariance structure of earnings
dynamics in micro data. The population autocovariance moments in equations (11)–(13) are for the data with
the time dimension approaching infinity. As shown below, models with the transitory component modeled as
an AR(1) and simulated data with the time dimension of 30 periods for individuals with finite labor market
experience are well identified by matching the sample autocovariance moments to the population moments in
equations (11)–(13).
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For the income model in equation (4) with σ2
β = 0 and the transitory component modeled as an

MA(1), the asymptotic variance of the (scaled) sample mean is:12

lim
T→∞

E

[
1√
T

T∑

t=1

∆yit

]2

= σ2
ξ . (14)

The empirical analog of equation (14), for a covariance-stationary process, can be estimated

from 1
T [Tγ0 + 2(T − 1)γ1 + 2(T − 2)γ2] = σ2

ξ + 2
T

[
σ2
ε (1 + θ2) + σ2

u,me

]
.13 The estimated mo-

ment will be closer to σ2
ξ for a larger time dimension of the data, T . If, however, the random

walk is ignored in estimation, the theoretical autocovariance function is non-zero beyond order 2

and is equal to σ2
β. The moment in equation (14) will be estimated as 1

T [Tγ0 + 2(T − 1)γ1 +

2(T − 2)γ2 + . . .+ 2γT−1] = 1
T σ̂

2
β[T + 2(T − 1) + 2(T − 2) + . . .+ 4 + 2] + 2

T [σ̂2
ε (1 + θ̂2) + σ̂2

u,me] =

T σ̂2
β + 2

T [σ̂2
ε (1 + θ̂2) + σ̂2

u,me], where σ̂2
ε , σ̂

2
u,me, and θ̂ will differ from their true values.

Equating the two moments, one can show that if the true data generating process consists

of a random walk, a persistent moving average component, and measurement error, and an

econometrician estimates the (misspecified) HIP instead, the variance of the deterministic growth

component will be approximately equal to:

σ̂2
β ≈

1
T
σ2
ξ . (15)

Major micro data sets in the U.S. have no more than 30 years of consecutive observations

on individual labor income. Thus, if the true variance of permanent shocks is equal to 0.02 and

T = 30, then the variance of the deterministic growth will be estimated at about 0.0007—within

the bounds of the typical estimates of the HIP in the literature.

The same logic holds if the transitory stochastic component of income is an AR(1) process.

If the true income process is the RIP with a permanent random walk component, the empirical

analog of the moment in equation (14) is equal to 1
T [Tγ0 + 2(T − 1)γ1 + 2(T − 2)γ2 + . . . +

12If the transitory income component is an AR(1) process, the moment condition (14) will be the same; it will
also identify σ2

ξ only.
13The population moment condition, for the transitory process modeled as an MA(1), will be equal to γ0 +

2γ1 + 2γ2, and can be also estimated from E

"
∆yit

k=2X
k=−2

∆yit+k

#
, the moment used by Meghir and Pistaferri

(2004) to uncover the variance of the permanent shock.
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2γT−1] = σ2
ξ + 2σ2

ε
1+φ − 2

T
1−φ
1+φ

T−1∑

j=1

φj−1 +
2
T
σ2
u,me. If the random walk is ignored and the HIP is

estimated instead, the moment will be estimated as T σ̂2
β+ 2σ̂2

ε

1+φ̂
− 2
T

1−φ̂
1+φ̂

T−1∑

j=1

φ̂j−1 +
2
T
σ̂2
u,me. Thus,

equation (15) should approximately hold for any mean-reverting transitory process, provided the

true income process contains a random walk component and the estimated process is the HIP.

Income Processes with Deterministic Growth-Rate Heterogeneity but No Random Walk

Components—the HIP Processes

What if the true income process is the HIP but an econometrician estimates the RIP model

instead? If the transitory component is a moving average process of order 1, the econometrician

will match the sample autocovariance moments to the misspecified population autocovariance

moments, estimating σ2
ξ , θ, and σ2

ε . The model restricts the population autocovariance moments

of order 3 and higher to zero, while the true population moments will be equal to σ2
β. Heuristi-

cally, the matching procedure will look for σ2
ξ , θ, σ

2
ε that minimize the squared distance between

T sample and theoretical zero-order autocovariances, 2(T − 1) first-order autocovariances, and

2(T − 2) second-order autocovariances. The estimate of the moment E

[
1√
T

T∑

t=1

∆yit

]2

for the

misspecified model will be equal to σ̂2
ξ + 2

T

[
σ̂2
ε (1 + θ̂2) + σ̂2

u,me

]
, while the estimate of the same

moment for the true model, with zero restrictions placed on the autocovariances above order 2,

will be equal to 1
T σ

2
β(5T−6)+ 2

T

[
σ2
ε (1 + θ2) + σ2

u,me

]
. Thus, the estimated variance of permanent

shocks will be approximately equal to 1
T σ

2
β(5T − 6). If, e.g., the true variance of deterministic

growth-rate heterogeneity is equal to 0.0004, and the time dimension of the sample is 30 periods,

the variance of permanent shocks will be approximately estimated at 0.00192, even though the

true variance of these shocks is equal to zero. Similar arguments apply to the case when the

transitory component is an AR(1) process—the estimated variance of permanent shocks will be

non-zero when the true income process contains the deterministic idiosyncratic trends and an

autoregressive transitory component, but an econometrician estimates the RIP process.

2.3.2 Simulation Results

In this section, I present the results of estimations of income processes using simulated data in

first differences.
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In Table 6 column (1), the true income process contains the individual-specific intercept, a

random walk component, a transitory moving average component of order 1, and measurement

error. The true variance of the random walk shock is equal to 0.02, and the moving average

parameter is equal to 0.25—the process with a stationary stochastic component of low persis-

tence. The process is estimated as the HIP containing a deterministic growth-rate component

and an unrestricted moving average component of order 1. Since the variance of measurement

error is not identified in this case, I set it to the true variance while estimating the model. The

variance of the shock to the transitory component is estimated at about 0.05, while the moving

average parameter is estimated at about 0.28, both significant at the 1% level. Importantly,

when the random walk component is ignored in estimation, the long-run persistence of the pro-

cess is captured instead by the variance of the deterministic growth, with the estimated value

substantially and significantly away from its true value of zero. This is the estimate one can

expect given the time series dimension of 29 periods (see Section 2.3.1).

In column (2), I estimate the process that contains the individual-specific intercepts and

growth rates, a random walk component, a stationary moving average component of order 1,

and measurement error. The parameters and their true values that can be estimated using

data in first differences are: σ2
β = 0.0004, σ2

ξ = 0.02, θ = 0.25, and σ2
ε = 0.04. All of these

parameters are recovered without any biases and precisely by the equally weighted minimum

distance method.

In columns (3) and (4), I present similar results for the income processes with σ2
ξ = 0.02 and

θ = 0.50. Again, if the random walk component is ignored in estimation, the growth-rate hetero-

geneity captures the long-run variance of income growth—column (3). The estimated variance

of the growth-rate component, in accordance with equation (15), should be approximately equal

to 0.02/29 ≈ 0.0007, the exact match of the estimate in column (3). If both the growth-rate

and random walk components are present and accounted for in estimation, all of the structural

parameters are recovered extremely well—column (4).

Next, I assume that the true income process contains the individual-specific intercept, mea-

surement error, a permanent random walk component with the variance equal to 0.02, and a

transitory component modeled as an autoregressive process of order 1 with the autoregressive

coefficient equal to 0.25 (0.50) and the variance of the transitory shock equal to 0.04 (0.04)—

column (1) (column (3)) of Table 7. In columns (2) and (4), the income processes, in addition,

15



contain the deterministic growth-rate component with the variance equal to 0.0004. The re-

sults are qualitatively similar to those in Table 6. If the transitory component is modeled as

an autoregressive process, it is possible, in addition, to identify the variance of measurement

error.14

Guvenen (2007a), in a simulation exercise, shows that the tests of higher-order autocovari-

ances equal to zero will falsely reject the growth-rate heterogeneity even when the true income

process contains idiosyncratic growth rates. This test was previously used by MaCurdy (1982).

Table 8 confirms this result. I first create 1,000 samples generated in accordance with the model

in Table 6 column (4), which contains deterministic idiosyncratic growth rates, a permanent

random walk component, and a transitory moving average process with the moving average

parameter equal to 0.50. For each simulated sample, I calculate the empirical autocovariance

function. The results in the first column are the averages of the autocovariances of a given order

across 1,000 simulated samples; standard errors, in parentheses, are calculated as the standard

deviations of these estimates across 1,000 simulated samples. As can be seen from the column,

only autocovariances of orders 0, 1, and 2 are significant. The rest are insignificant, even though

the magnitude of the autocovariances of orders 3 and higher will correctly identify the magni-

tude of the variance of the deterministic growth-rate heterogeneity. In the second column of

Table 8, I perform the same exercise for the income process that contains the transitory compo-

nent modeled as an AR(1) process with persistence equal to 0.50. The autocovariance function

is significant only from order 0 to order 4, inclusive; the contribution of the transitory compo-

nent towards the autocovariance function dissipates quickly and higher-order autocovariances

will, on average, correctly identify the size of the growth-rate heterogeneity. Intuitively, what

matters for identification of the growth-rate heterogeneity is the average magnitude of higher-

order autocovariances. The minimum distance procedure uses the entire autocovariance function

and its sample variability to uncover correctly and precisely the variance of the deterministic

growth-rate heterogeneity—Table 6, column (4) and Table 7, column (4).

Summing up, when using data in first differences it is feasible to identify the variance of the
14I also performed estimations of misspecified RIP income processes, when the true income processes contain

deterministic growth-rate heterogeneity while the estimated models contain a random walk component and no
idiosyncratic deterministic growth rates. The results, not reported here, largely confirm identification arguments
outlined above. E.g., when the true income processes are such that the variance of deterministic growth-rate
heterogeneity, σ2

β , is equal to 0.0004, the transitory process is modeled as an MA(1) process with the moving
average parameter equal to 0.25, and the estimated models ignore the growth-rate heterogeneity, the estimated
variance of random walk shocks is equal to 0.0091. This is in line with the theoretical prediction calculated from
the formula 1

T
σ2
β(5T − 6), with T=29.
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shock to the random walk component, the variance of the shock to the transitory component, and

the variance of the growth-rate heterogeneity. If, however, the process contains a random walk

permanent component and no deterministic growth-rate component and the model is estimated

as the HIP, estimation will capture the long-run variance of income growth due to permanent

shocks with a significant estimate of the growth-rate heterogeneity. The magnitude of the

estimate will depend on the true variance of the permanent shock and the time dimension of a

data set.

3 Empirical Results

In this section, I estimate time series processes for idiosyncratic labor incomes of male household

heads from the PSID. I first describe the data I utilize.

3.1 Data

I use income and demographic data from the 1968–1997 waves of the PSID. I select male house-

hold heads of ages 20–64, with labor market experience between one and 40 years.15 I exclude

data for households from the Survey of Economic Opportunity (SEO) sub-sample, which over-

samples the poor. The measure of income utilized is the head’s labor income from all sources,

inclusive of the labor part of farm and business income. Income data in the PSID refer to the

previous calendar year; I adjust them appropriately by the consumer price index for all items

normalized to 100 in 1982–1984. I set income observations to missing if the head’s labor income

in any year is below 1,000 dollars in 1982–1984 prices. I further drop observations for the years

when the change of log-labor income in adjacent years is above two in absolute value. The

measure of the idiosyncratic head’s labor income in each year is the head’s residual from a cross-

sectional regression of log-labor income on the full set of experience and education dummies.16

This regression specifying the deterministic component common to all heads is general enough

and assumes that returns to the head’s experience and education are affected by the aggregate
15The head i’s potential experience in year t is calculated as max(0, ageit −max(educationit, 12)− 6).
16In the 1969–1974 family files of the PSID a continuous measure of education is either absent or the files contain

just a few observations. For these waves, I impute years of schooling to the heads using a categorical measure
of education that is widely available. Specifically, I assign two years of schooling to those heads who indicate
they finished zero to five grades of schooling; seven years—if they finished six to eight grades; 10 years—for nine
to eleven grades; 12 years—for 12 grades, or 12 grades plus some non-academic training; 14 years—for college
with no degree; 16 years—for college with a bachelor’s degree; 17 years—if they finished college, advanced or
professional degree.
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state of the economy, i.e., differ by year. My main sample contains data for 4,551 heads with at

least three, not necessarily consecutive, observations on idiosyncratic labor income and at least

two observations on idiosyncratic labor income growth. Some basic summary statistics for the

main sample are presented in Table 15.

3.2 Results

The models are estimated by fitting the empirical autocovariance function to the theoretical

autocovariance function, utilizing the identity weighting matrix, i.e., by the equally weighted

minimum distance method.

In Table 9, I present the results of estimations of income processes utilizing the data on

idiosyncratic log-labor income in levels. Column (1) contains the results of estimation of the

HIP process, the income process that contains the individual-specific intercepts and growth

rates, an autoregressive process of order 1, and measurement error. The point estimates of the

parameters are very similar to the ones in Guvenen (2007a), Table 1 row (4). The variance of the

deterministic growth-rate heterogeneity is estimated at 0.0003 and is significant. One standard

deviation in idiosyncratic growth rate translates into almost two percentage points difference in

the earnings growth rate over the life-cycle—a very large effect. The variance of initial log-income

levels (intercepts) is estimated at about 0.03 but is insignificant; the initial income levels and

growth rates are negatively correlated with the estimated correlation coefficient of about –0.37;

an autoregressive component is found to be persistent yet the persistence is substantially below

unity; the variance of the shock to the persistent component is estimated at 0.05, and the variance

of measurement error at about 0.07. Note that both the variance of the individual-specific initial

incomes and the covariance between the deterministic components are insignificant. This may

indicate that they are either poorly identified (see discussion in Section 2.2), or that these effects

are not present in the sample I utilize.17 In column (2), I restrict the correlation to zero and

re-estimate the model. The estimate of an autoregressive coefficient becomes slightly larger and

the variance of the initial individual-specific incomes is estimated at zero. The latter result is

consistent with the simulation results in Table 2 column (2). In Table 9 column (3), I restrict the

variance of the individual-specific growth rates to zero. This model corresponds to the model

for household idiosyncratic incomes estimated in Storesletten, Telmer, and Yaron (2004b) and
17See also Guvenen (2007a), Table 1, rows (4)–(8). He was not able to find significant σ̂2

α and σ̂αβ in all of his
estimations as well.
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Hubbard, Skinner, and Zeldes (1994).18 The estimate of an autoregressive parameter increases

to 0.91, and the variance of measurement error increases to 0.09. These results are expected

for a model of income processes that contain both a random walk component and a stationary

mean-reverting component.

Next, I present the results for estimations on the same sample and labor income data in first

differences—Table 10.19

In column (1), I estimate the HIP process, which ignores the potentially important random

walk component in idiosyncratic labor incomes. The variance of individual-specific growth rates

is estimated at 0.0007, significant at the 1% level. The estimate of the variance of measurement

error is substantially below the estimates from the specifications in levels and is equal to about

0.02.

In column (2), I allow for both a random walk and a deterministic growth-rate component in

earnings. Monte Carlo results and theoretical arguments spelled out in Section 2.3.1 indicated

that, if both these components are present, the process should be empirically identified. In

column (2), the estimate for the variance of the individual-specific growth rates binds at zero

while the estimate of the variance of the shock to the random walk component is equal to 0.036

and is significant at the 1% level. An autoregressive parameter of the transitory process is

estimated at 0.40, capturing the fast decline of the empirical autocovariance function of labor

income growth rates beyond the first order. The estimate of the variance of measurement error

is, perhaps, too low.

In column (3), I set the variance of measurement error to the value estimated in column (1)

and re-estimate the process of column (2).20 The main results hold: the estimated variance of

the growth-rate heterogeneity is zero, while the estimated variance of the random walk shock is

substantial and significant.

In column (4), I estimate the model of column (1), assuming that the transitory component

is a moving average process of order 1. In this case, the variance of measurement error is not
18Hubbard, Skinner, and Zeldes (1994), in addition, restrict σ2

α to zero.
19Most of the studies listed in Table 1 allow for time-dependent variances of permanent and/or persistent

shocks. My estimates of these parameters in Tables 9–11 should be interpreted as the unconditional variances of
transitory and permanent shocks.

20The variance of idiosyncratic income growth in the sample is equal to 0.16. If measurement error is i.i.d., it
contributes twice its variance towards the variance of idiosyncratic income growth. For this choice of the variance
of measurement error, the share of total variance of idiosyncratic income growth “explained” by measurement
error is (2 ∗ 0.023)/0.16 ≈ 0.29, or 29%. This share is higher than the 27% found in Bound and Krueger (1991)
using matched earnings data from the Current Population Survey and Social Security payroll tax records, and
the 22% found in Bound, Brown, Duncan, and Rodgers (1994) using the PSID Validation Study.
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identified; I therefore fix it at 0.023—the estimate of column (1). The results do not change

qualitatively: ignoring the random walk component, the estimated variance of the growth-rate

heterogeneity is large and highly significant. In column (5), the results, again, indicate that

including the random walk component into the model leads to a substantial estimate of the

variance of the random walk shock and an estimate of zero for the growth-rate heterogeneity.

In accordance with the discussion in Section 2.3.1, the variance of the growth-rate heterogeneity

should be estimated at σ2
ξ/T if the random walk component is ignored. Since the estimate of

σ2
ξ in column (5) is equal to 0.05 and the time dimension of the sample is 29 periods, σ̂2

β should

be equal to 0.0017, a slight overestimate of the value in column (4).

Previous results are based on a sample of heads with at least two observations on idiosyncratic

labor income growth. For robustness, I re-estimate the models in Table 10 on a sample of heads

who contribute at least 20, not necessarily consecutive, records on idiosyncratic labor income

growth. This sample consists of 1,034 heads. The results are presented in Table 11. The

estimated variances of different components are somewhat smaller; otherwise, the results are

qualitatively similar.

The variance of the growth-rate heterogeneity is largely identified from the off-diagonal

elements of the empirical autocovariance matrix. The number of heads contributing towards the

empirical autocovariance γ̂k is, in general, smaller the larger the lag length k is, which separates

the head’s income observation at time t from the income observation at time t+ k. Placing an

equal weight on all the variances and autocovariances in estimation may bias an estimate of the

growth-rate heterogeneity towards zero if higher-order empirical autocovariances are very close

to zero as, indeed, is found in empirical data.21 To take care of this concern, following Guvenen

(2007a), I re-estimate the models in Table 11 utilizing only the first 10 empirical autocovariances

and all the variances in estimation—Table 12. The main results remain unaltered.

Most of the studies reviewed in Table 1 allow for time-varying variances of disturbances

to better fit the autocovariance function in data. In Table 13, I re-estimate the models of

Table 10, columns (1)–(3) on my main sample of 4,551 male heads, allowing for time-varying

variances. I report the time averages of the estimated variances and their standard errors.

In column (1), I estimate the HIP. Compared with the results in Table 10 column (1), I find
21Note that the estimations performed on simulated data are based on unbalanced panels, with only 100

simulated heads out of 3,000 contributing towards estimation of the autocovariance of order 29, 200 towards
estimation of the autocovariance of order 28, etc. Even in that case the models are well identified; see, e.g.,
Table 7, columns (2) and (4).
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somewhat higher estimates for the variance of the deterministic growth-rate heterogeneity and

the (average) variance of shocks to the autoregressive component, and lower estimates of the

persistence and the variance of measurement error.

In column (2), I restrict the variance of measurement error to its estimate from Table 10,

column (1). This results in a higher estimate of the persistence parameter and a lower estimate

of the variance of shocks to the autoregressive component; the estimate of the variance of the

growth-rate heterogeneity is left unchanged.

In column (3), I repeat the analysis, introducing the permanent variance into the models.

Since the variances of time-varying persistent shocks are identified from a larger set of moments,

I first restrict the variance of the permanent shock to be the same across the sample periods.

The results are very similar to those in Table 10, column (2), the estimation that uncovers the

unconditional means of the variances of stochastic disturbances. Importantly, the variance of

the growth-rate heterogeneity is estimated at zero and the variance of the permanent shock is

estimated at about 0.04.

In column (4), I perform the same estimation, setting the variance of measurement error

to 0.023. As expected from previous results, the persistence of an autoregressive component

increases while the (average) variance of the shocks to the autoregressive component falls.

Finally, in column (5), I allow for time-varying variances of the shocks to the permanent and

transitory components. The (average) variances are similar to those in column (4). The full

sets of the transitory and permanent variances, along with their standard errors, are presented

in Table 14.

In Figure 2 and Figure 3, I plot the resulting time series of the estimated variances of

permanent and transitory shocks, respectively. The permanent variation in heads’ incomes

was increasing in the late 1970s and early 1980s, leveled off throughout most of the 1980s, and

started falling at the end of the 1980s. The pattern of the variances of permanent shocks mirrors

that in Meghir and Pistaferri (2004), for their pooled sample and their measure of household

idiosyncratic income constructed from the combined head’s and wife’s labor incomes. It is

also qualitatively similar to the hump-shaped pattern of the permanent volatility of household

incomes in the 1980s reported in Blundell, Pistaferri, and Preston (2008). The variance of

transitory shocks to the heads’ incomes was hump-shaped in the 1970s, increased in the early

1980s, flattened out in the mid-1980s and increased again in the early 1990s. For the 1980s, a
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similar pattern of transitory variances can be found in Blundell, Pistaferri, and Preston (2008).

For robustness, I estimate the models of Table 10 using separate samples for heads who did

not finish high school (“high school dropouts”), finished high school but did not finish college

(“high school graduates”), and those who have a bachelor’s degree or more (“college graduates”).

In some estimations, when I fix the variance of measurement error, I assume that it is equal to

0.023 in all sub-samples. The results are in Tables B-1–B-3. When the random walk component

is ignored in estimation, the variance of the deterministic growth-rate heterogeneity is always

substantial and statistically significant (columns (1) and (4) of those tables); the estimated

AR(1) persistence of the stochastic component is moderate, ranging from about 0.82 for the

college sample to 0.64 for high school graduates. Regardless of the choice of a model for the

transitory component, the variance of transitory shocks to the persistent (but mean-reverting)

component is estimated to be the highest for high school dropouts, yet these shocks exhibit

the lowest persistence for the dropouts; college graduates are hit by transitory shocks with

the smallest variance. Interestingly, the estimated variance of permanent shocks is the highest

for the sample of college graduates. Qualitatively similar results can be found in Meghir and

Pistaferri (2004), Table III.

Summarizing, for the samples utilized in this study, it appears that I can reject the HIP

model. The RIP model with a permanent random walk component and a transitory mean-

reverting component cannot be rejected.22

22There is some evidence, not relying on estimation of income processes, interpreted by some researchers as
favoring income models with heterogeneous income profiles. Haider and Solon (2006) and Böhlmark and Lindquist
(2006) study the association between current and lifetime income over the life cycle for U.S. and Swedish samples,
respectively. Specifically, they focus on the life-cycle variation in the slope coefficient from the following regression:
yia = βaVi + εia, where yia is individual i’s log-income at age a, Vi is individual i’s log-lifetime income, calculated
as (the log of) the annuity value of the discounted sum of annual real incomes observed for individual i, and εia
is individual i’s regression error at age a. Haider and Solon (2006) find that βa is estimated at about 0.20 at age
19, steadily increases afterwards, equals one at age 34 and levels off for the rest of the life cycle. Böhlmark and
Lindquist (2006), for a much larger Swedish sample, find that β̂a starts at about 0.20 at age 19, crosses one at
age 34 and peaks at 1.45 at age 48. The latter authors interpreted this result as evidence favoring the presence
of heterogeneous income profiles—income is low in the beginning of the life cycle and is well below the lifetime
income (which is estimated to be time-invariant by the authors); income then steadily grows until it exceeds the
lifetime income in the later part of the life cycle. This result is, however, also true for income processes that
contain random walks and do not have deterministic idiosyncratic trends. Using the estimates of the RIP process
in this paper, I was able to replicate, in simulations not reported here, the pattern of β̂a’s found in Böhlmark
and Lindquist (2006). The intuition behind this result is the following. Note that β̂a = cov(yia,Vi)

var(Vi)
. While the

denominator is constant over the life cycle, the cross-sectional covariance between current incomes and lifetime
incomes will be growing over the life cycle since current incomes will accumulate random walk shocks over the life
cycle and will, therefore, co-vary more strongly with lifetime incomes, which aggregate all the permanent shocks
to individual incomes over the entire life cycle.
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4 Conclusion

I estimate idiosyncratic labor income processes on simulated and empirical data. The main re-

sults of a Monte Carlo study are the following. If idiosyncratic labor income contains a random

walk and a deterministic growth-rate component, the estimated persistence of the stochastic

component modeled as an AR(1) is close to one. If, however, the stochastic component of id-

iosyncratic earnings consists of a random walk and a mean-reverting component, and there is no

growth-rate heterogeneity and an econometrician estimates the HIP, the estimated persistence

can be modest and the variance of the deterministic growth-rate heterogeneity can be substan-

tial and significant—as is found in the HIP studies. When data are in first differences, it is

possible to identify a general process containing all the elements of the HIP and RIP models.

The most important elements are the growth-rate heterogeneity and the variance of a random

walk component. For simulated data in first differences I show that both these elements, if

present, should be recovered precisely in empirical estimations. The results on simulated data

in first differences confirm another important finding of this paper: if the true income process is

the sum of a random walk and persistent components, i.e., the RIP, and the random walk is ig-

nored in estimation, the misspecified HIP model recovers significant and substantial growth-rate

heterogeneity and modest persistence.

I use data for male household heads from the 1968–1997 waves of the PSID to estimate

idiosyncratic labor income processes. I find that the estimated variance of the deterministic

growth-rate heterogeneity is zero; i.e., the HIP model can be rejected. The RIP model, with

permanent random walk and mean-reverting components, cannot be rejected. I find that the

estimated variance of the permanent component is significant and substantial. Thus, the results

of the paper favor the view that the observed variation in idiosyncratic income growth rates over

the life cycle is entirely due to the shocks of different “durability.”

The results of this paper are important for understanding a number of issues. Among

them are the choice of an appropriate model of the heterogeneity in individual and household

idiosyncratic incomes used in macro models; the importance of shocks versus initial conditions

for the life-cycle profiles of earnings and welfare inequality; and the importance of shocks versus

initial conditions for the time series of earnings and consumption inequality. The process, best

fitting the data utilized in this paper, places restrictions on the models that make earnings an

endogenous variable.
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In this paper, I utilize only income data to identify the variances of idiosyncratic permanent

and transitory shocks. Perhaps, more accurate estimates of the variances could be obtained by

jointly studying consumption and income data. For recent attempts at this approach see Hryshko

(2007) and Blundell, Pistaferri, and Preston (2008) (in the context of RIP), and Guvenen and

Smith (2008) (in the context of HIP).
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Böhlmark, A., and M. J. Lindquist (2006): “Life-Cycle Variations in the Association Be-
tween Current and Lifetime Income: Replication and Extension for Sweden,” Journal of Labor
Economics, 24(4), 879–896.

Bound, J., C. Brown, G. J. Duncan, and W. L. Rodgers (1994): “Evidence on the Va-
lidity of Cross-Sectional and Longitudinal Labor Market Data,” Journal of Labor Economics,
12(3), 345–368.

Bound, J., and A. B. Krueger (1991): “The Extent of Measurement Error in Longitudinal
Earnings Data: Do Two Wrongs Make a Right?,” Journal of Labor Economics, 9(1), 1–24.

Carroll, C. D., and A. A. Samwick (1997): “The Nature of Precautionary Wealth,” Journal
of Monetary Economics, 40(1), 41–71.
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Figure 1: The Autocovariance Function for RIP and HIP Processes
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Figure 2: The Variance of Permanent Shocks by Year
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Figure 3: The Variance of Transitory Shocks by Year
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Table 1: Income Processes Estimated in the Literature.

Study Restrictionsa Data Transformation Data/Data Set

Abowd and Card (1989) βi = 0; First head’s labor income/
τiht is MA(1) differences PSID: 1969–1979 waves;

other data sets

Baker (1997) piht = 0,∀t; Levels/first head’s labor income/
τiht is ARMA(1,1)/ differences PSID: 1968–1987 waves
ARMA(1,2)/AR(1)

Baker and Solon (2003) none; Levels earnings of Canadian men,
τiht is AR(1) 1976–1992

Carroll and Samwick (1997) βi = 0; First household non-capital income/
τiht is W.N./MA(1) differences PSID: 1987–1987 waves

Guvenen (2007a) piht = 0,∀t; Levels head’s labor income/
τiht is AR(1) PSID: 1968–1993 waves

Haider (2001) piht = 0,∀t; Levels head’s labor income/
τiht is ARMA(1,1) PSID: 1968–1992 waves

Hause (1980) piht = 0,∀t; Levels labor income/
τiht is AR(1) Swedish white collar workers,

1964–1969

Lillard and Weiss (1979) piht = 0,∀t; Levels labor income/
τiht is AR(1) NSF Register (scientists): 1960–1970

Moffitt and Gottschalk (1995)b βi = 0; Levels head’s wage/salary income/
τiht is ARMA(1,1) PSID: 1970–1988 waves

MaCurdy (1982) βi = 0; Levels/first head’s labor income/
τiht is MA(1)/MA(2), differences PSID: 1968–1977 waves

W.N., ARMA(1,1)

Meghir and Pistaferri (2004) βi = 0; First head’s labor income/
τiht is MA(1) differences PSID: 1968–1993 waves

Storesletten, Telmer, and Yaron (2004b) βi = 0; piht = 0,∀t; Levels head’s and wife’s
τiht is AR(1) labor and transfer income/

PSID: 1968–1993 waves
Notes: aRestrictions imposed on the income process: yiht = αi + βih + piht + τiht + uiht,me, where pih+1t+1 =
piht + ξih+1t+1, τiht is a mean-reverting stochastic process. bThe authors’ preferred specification.
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Table 2: Estimates of the HIP Without a Persistent Component. Simulated Data in
Levels.

(1) (2) (3)

σ̂2
β 0.0004 0.0004 0.0004

(0.00002) (0.00001) (0.00002)

σ̂2
α 0.017 0.0008 0.03

(0.009) (0.002) (0.006)

σ̂αβ –0.0006 0.00 0.00
(0.0003) — —

ĉorrαβ (implied) –0.246 0.00 0.00
(0.117) — —

σ̂2
u,me 0.04 0.04 0.04

(0.0008) (0.0009) (0.0009)

Notes: In column (1) the true income process is: yiht = αi + βih + uiht,me, where (αi, βi) ∼ iidN(0,Ω), uiht,me ∼
iidN(0, σ2

u,me), with σ2
α = Ω11 = 0.03, σ2

β = Ω22 = 0.0004, corrαβ = −0.30, σ2
u,me = 0.04. In column (2), the true

income process is the same, while I set the covariance between αi and βi to zero when estimating the model. In
column (3), the true income process is as in columns (1) and (2), with the true corrαβ = 0. Models are estimated by
the equally weighted minimum distance method. Standard errors in parentheses calculated as the standard deviations
of the estimates across 100 model simulations.
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Table 3: Estimates of the HIP With a Random Walk Component. Simulated Data in
Levels.

σ2
β=0.0004, σ2

ξ=0.02 σ2
β=0.0004, σ2

ξ=0.01
(1) (2)

σ̂2
β 0.00058 0.00047

(0.0003) (0.0002)

σ̂2
α 0.028 0.028

(0.016) (0.013)

ρ̂ 0.986 0.985
(0.025) (0.039)

σ̂2
ξ 0.019 0.0098

(0.004) (0.003)

σ̂2
u,me 0.04 0.04

(0.002) (0.001)

Notes: The true income process is: yiht = αi + βih + piht + uiht,me, where (1 − ρL)pih+1t+1 = ξih+1t+1, βi ∼
iidN(0, σ2

β), αi ∼ iidN(0, σ2
α), uiht,me ∼ iidN(0, σ2

u,me), ξiht ∼ iidN(0, σ2
ξ), with σ2

α = 0.03, σ2
β = 0.0004, corrαβ =

0.00, σ2
u,me = 0.04, ρ = 1. Models are estimated by the equally weighted minimum distance method. Standard errors

in parentheses calculated as the standard deviations of the estimates across 100 model simulations.
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Table 4: Estimates of the Misspecified HIP: Simulated Data in Levels, AR(1) Stationary
Component.

Low Pers., σ2
β=0.00 High Pers., σ2

β=0.00

(1) (2) (3) (4)

σ̂2
β 0.0006 0.0009 0.0008 0.0009

(0.0003) (0.00008) (0.0002) (0.00008)

σ̂2
α 0.021 0.01 0.017 0.012

(0.016) (0.012) (0.017) (0.013)

σ̂2
ξ 0.00 0.00 0.00 0.00

— — — —

φ̂ 0.915 0.742 0.840 0.764
(0.048) (0.062) (0.056) (0.042)

σ̂2
ε̃ 0.02 0.038 0.032 0.043

(0.003) (0.003) (0.004) (0.003)

σ̂2
u,me 0.072 0.04 0.059 0.04

(0.002) — (0.005) —

Notes: The true income process is: yiht = αi + piht + (1 − ϕL)−1εiht + uiht,me, where pih+1t+1 = piht + ξih+1t+1,
αi ∼ iidN(0, σ2

α), uiht,me ∼ iidN(0, σ2
u,me), ξiht ∼ iidN(0, σ2

ξ), εiht ∼ iidN(0, σ2
ε ), with σ2

α = 0.03, σ2
u,me = 0.04. In

the first and second columns, ϕ = 0.25, σ2
ε = 0.04, σ2

ξ = 0.02; in the third and fourth columns, ϕ = 0.50, σ2
ε = 0.04,

σ2
ξ = 0.02. The estimated income process is: yiht = αi + βih+ (1−φL)−1ε̃iht +uiht,me. Models are estimated by the

equally weighted minimum distance method. Standard errors in parentheses calculated as the standard deviations of
the estimates across 100 model simulations.
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Table 5: Estimates of the Misspecified HIP: Simulated Data in Levels, MA(1)
Stationary Component.

Low Pers., σ2
β=0.00 High Pers., σ2

β=0.00

(1) (2) (3) (4)

σ̂2
β 0.0005 0.0009 0.0007 0.0009

(0.00035) (0.00007) (0.00027) (0.00005)

σ̂2
α 0.026 0.0081 0.019 0.0068

(0.016) (0.01) (0.017) (0.009)

σ̂2
ξ 0.00 0.00 0.00 0.00

— — — —

φ̂ 0.929 0.715 0.862 0.689
(0.06) (0.069) (0.074) (0.052)

σ̂2
ε̃ 0.021 0.039 0.026 0.047

(0.003) (0.004) (0.004) (0.004)

σ̂2
u,me 0.074 0.04 0.071 0.04

(0.003) — (0.005) —

Notes: The true income process is: yiht = αi + piht + (1 + ϕL)εiht + uiht,me, where pih+1t+1 = piht + ξih+1t+1,
αi ∼ iidN(0, σ2

α), uiht,me ∼ iidN(0, σ2
u,me), ξiht ∼ iidN(0, σ2

ξ), εiht ∼ iidN(0, σ2
ε ), with σ2

α = 0.03, σ2
u,me = 0.04. In

the first and second columns, ϕ = 0.25, σ2
ε = 0.04, σ2

ξ = 0.02; in the third and fourth columns, ϕ = 0.50, σ2
ε = 0.04,

σ2
ξ = 0.02. The estimated income process is: yiht = αi + βih+ (1−φL)−1ε̃iht +uiht,me. Models are estimated by the

equally weighted minimum distance method. Standard errors in parentheses.
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Table 6: Estimates of the HIP: Simulated Data in First Differences, MA(1) Stationary
Component.

Low Pers. Trans. Comp. High Pers. Trans. Comp.

σ2
β=0.00 σ2

β=0.0004 σ2
β=0.00 σ2

β=0.0004
(1) (2) (3) (4)

σ̂2
β 0.0007 0.0004 0.0007 0.0004

(0.00004) (0.00008) (0.00005) (0.00008)

σ̂2
ξ 0.00 0.02 0.00 0.02

— (0.001) — (0.001)

θ̂ 0.28 0.25 0.475 0.501
(0.01) (0.01) (0.01) (0.013)

σ̂2
ε 0.052 0.04 0.052 0.04

(0.0006) (0.001) (0.0005) (0.001)

σ2
u,me 0.04 0.04 0.04 0.04

— — — —

Notes: In the first and third columns, the true income process is: yiht = αi + piht + (1 + θL)εiht + uiht,me, with
(1 − L)pih+1t+1 = ξih+1t+1, and σ2

α = 0.03, σ2
ξ = 0.02, θ = 0.25, σ2

ε = 0.04, σ2
u,me = 0.04 in the first column;

σ2
α = 0.03, σ2

ξ = 0.01, θ = 0.50, σ2
ε = 0.04, σ2

u,me = 0.04 in the third column. In the first and third columns, the

estimated income process is: yiht = αi + βih + (1 + θ̃L)ε̃iht + uiht,me. In the second and fourth columns, the true
income process is: yiht = αi + βih + piht + (1 + θL)εiht + uiht,me, with (1 − L)pih+1t+1 = ξih+1t+1, and σ2

α = 0.03,
σ2
β = 0.0004, σ2

ξ = 0.02, θ = 0.25, σ2
ε = 0.04, σ2

u,me = 0.04 in the second column; σ2
α = 0.03, σ2

β = 0.0004, σ2
ξ = 0.02,

θ = 0.50, σ2
ε = 0.04, σ2

u,me = 0.04 in the fourth column. Prior to estimation, simulated data are transformed to first
differences; models are estimated by the equally weighted minimum distance method. Standard errors in parentheses
calculated as the standard deviations of the estimates across 100 model simulations.
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Table 7: Estimates of the HIP: Simulated Data in First Differences, AR(1) Stationary
Component.

Low Pers. Trans. Comp. High Pers. Trans. Comp.

σ2
β=0.00 σ2

β=0.0004 σ2
β=0.00 σ2

β=0.0004
(1) (2) (3) (4)

σ̂2
β 0.0006 0.0004 0.0006 0.0004

(0.00005) (0.0001) (0.00005) (0.0001)

σ̂2
ξ 0.00 0.02 0.00 0.02

— (0.002) — (0.003)

ϕ̂ 0.60 0.243 0.682 0.488
(0.05) (0.095) (0.022) (0.063)

σ̂2
ε 0.044 0.046 0.054 0.04

(0.003) (0.016) (0.002) (0.003)

σ̂2
u,me 0.054 0.034 0.044 0.039

(0.003) (0.016) (0.001) (0.003)

Notes: In the first and third columns, the true income process is: yiht = αi + piht + (1− ϕL)−1εiht + uiht,me, with
(1 − L)pih+1t+1 = ξih+1t+1, and σ2

α = 0.03, σ2
ξ = 0.02, ϕ = 0.25, σ2

ε = 0.04, σ2
u,me = 0.04 in the first column;

σ2
α = 0.03, σ2

ξ = 0.02, ϕ = 0.50, σ2
ε = 0.04, σ2

u,me = 0.04 in the third column. In the first and third columns, the
estimated income process is: yiht = αi + βih+ (1− ϕ̃L)−1ε̃iht + uiht,me. In the second and fourth columns, the true
income process is: yiht = αi + βih+ piht + (1−ϕL)−1εiht + uiht,me, with (1−L)pih+1t+1 = ξih+1t+1, and σ2

α = 0.03,
σ2
β = 0.0004, σ2

ξ = 0.02, ϕ = 0.25, σ2
ε = 0.04, σ2

u,me = 0.04 in the second column; σ2
α = 0.03, σ2

β = 0.0004, σ2
ξ = 0.02,

ϕ = 0.50, σ2
ε = 0.04, σ2

u,me = 0.04 in the fourth column. Prior to estimation, simulated data are transformed to first
differences; models are estimated by the equally weighted minimum distance method. Standard errors in parentheses
calculated as the standard deviations of the estimates across 100 model simulations.
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Table 8: Autocovariances for Income Processes with Growth-Rate Heterogeneity and
a Random Walk Component.

Order σ2
β=0.0004, σ2

ξ=0.02 σ2
β=0.0004, σ2

ξ=0.02
τiht ∼MA(1), θ = 0.50 τiht ∼AR(1), φ = 0.50

0 0.16007 0.15356
(0.00085) (0.00083)

1 –0.04962 –0.05299
(0.00061) (0.00061)

2 –0.01959 –0.00633
(0.00067) (0.00065)

3 0.00039 –0.00296
(0.00068) (0.00066)

4 0.00045 –0.00129
(0.00072) (0.00069)

5 0.00037 –0.00043
(0.00073) (0.00072)

6 0.00039 –0.00002
(0.00073) (0.00075)

7 0.00040 0.00016
(0.00083) (0.00074)

8 0.00039 0.00032
(0.00085) (0.00081)

9 0.00044 0.00038
(0.00088) (0.00087)

10 0.00041 0.00037
(0.00093) (0.00088)

11 0.00039 0.00036
(0.00094) (0.00093)

12 0.00039 0.00038
(0.00101) (0.00103)

13 0.00040 0.00045
(0.00110) (0.00109)

14 0.00045 0.00035
(0.00119) (0.00115)

15 0.00031 0.00039
(0.00121) (0.00119)

16 0.00047 0.00044
(0.00136) (0.00124)

17 0.00032 0.00037
(0.00141) (0.00136)

18 0.00040 0.00040
(0.00154) (0.00154)

19 0.00038 0.00035
(0.00176) (0.00172)

20 0.00038 0.00040
(0.00194) (0.00193)

Notes: In the first column, the true income process is: yiht = αi+piht+(1+θL)εiht+uiht,me, with (1−L)pih+1t+1 =
ξih+1t+1, and σ2

α = 0.03, σ2
ξ = 0.02, θ = 0.50, σ2

ε = 0.04, σ2
u,me = 0.04. In the second column, the true income process

is: yiht = αi + βih + piht + (1 − φL)−1εiht + uiht,me, with (1 − L)pih+1t+1 = ξih+1t+1, and σ2
α = 0.03, σ2

β = 0.0004,
σ2
ξ = 0.02, φ = 0.50, σ2

ε = 0.04, σ2
u,me = 0.04. Simulated data are transformed to first differences. Autocovariances

of a given order are the averages of the autocovariances in simulated data across 1,000 simulations. Standard errors
in parentheses calculated as the standard deviations of the estimated autocovariances of a given order across 1,000
model simulations. 36



Table 9: Estimates of Income Processes. PSID Data in Levels.

(1) (2) (3)

σ̂2
β 0.0003 0.0003 0.00

(0.0001) (0.00008) —

σ̂2
α 0.025 0.00 0.06

(0.40) (0.03) (0.02)

σ̂αβ –0.001 0.00 0.00
(0.01) — —

φ̂ 0.769 0.80 0.91
(0.031) (0.03) (0.02)

σ̂2
ε 0.05 0.047 0.036

(0.004) (0.003) (0.003)

σ̂2
u,me 0.071 0.075 0.091

(0.004) (0.003) (0.004)

Notes: The estimated income process is: yiht = αi + βih + (1 − φL)−1εiht + uiht,me. Models are estimated by the
equally weighted minimum distance method. Sample consists of 4,551 male household heads. Standard errors in
parentheses.
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Table 10: Estimates of Income Processes. PSID Data in First Differences.

R.W. & AR(1) R.W. & MA(1)

(1) (2) (3) (4) (5)

σ̂2
β 0.0007 0.00 0.00 0.001 0.00

(0.00005) (0.0001) (0.0001) (0.00005) (0.0001)

σ̂2
ξ 0.00 0.036 0.03 0.00 0.052

— (0.003) (0.004) — (0.002)

φ̂ 0.659 0.392 0.56 0.355 0.33
(0.02) (0.059) (0.03) (0.012) (0.02)

σ̂2
ε 0.092 0.072 0.063 0.068 0.038

(0.004) (0.007) (0.004) (0.002) (0.002)

σ̂2
u,me 0.023 0.009 0.023 0.023 0.023

(0.002) (0.007) — — —

Notes: In columns (1)–(3), the estimated income process is: yiht = αi + piht + βih+ (1− φL)−1εiht + uiht,me, where
pih+1t+1 = piht+ξih+1t+1. In columns (4)–(5), the estimated income process is: yiht = αi+piht+βih+(1+φL)εiht+
uiht,me. Models are estimated by the equally weighted minimum distance method. Sample consists of 4,551 male
household heads. Standard errors in parentheses.
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Table 11: Estimates of Income Processes. PSID Data in First Differences; 20 or More
Observations per Head.

R.W. & AR(1) R.W. & MA(1)

(1) (2) (3) (4) (5)

σ̂2
β 0.00055 0.00 0.00 0.00083 0.00

(0.00004) (0.0001) (0.0002) (0.00005) (0.0001)

σ̂2
ξ 0.00 0.029 0.023 0.00 0.04

— (0.004) (0.005) — (0.003)

φ̂ 0.657 0.379 0.56 0.355 0.33
(0.033) (0.097) (0.05) (0.021) (0.04)

σ̂2
ε 0.073 0.059 0.052 0.055 0.031

(0.005) (0.01) (0.005) (0.003) (0.003)

σ̂2
u,me 0.023 0.01 0.023 0.023 0.023

(0.003) (0.01) — — —

Notes: In columns (1)–(3), the estimated income process is: yiht = αi + piht + βih+ (1− φL)−1εiht + uiht,me, where
pih+1t+1 = piht+ξih+1t+1. In columns (4)–(5), the estimated income process is: yiht = αi+piht+βih+(1+φL)εiht+
uiht,me. Models are estimated by the equally weighted minimum distance method. Sample consists of 1,034 male
household heads. Standard errors in parentheses.
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Table 12: Estimates of Income Processes. PSID Data in First Differences; 20 or More
Observations per Head; Variances and First 10 Autocovariances Used.

R.W. & AR(1) R.W. & MA(1)

(1) (2) (3) (4) (5)

σ̂2
β 0.001 0.00 0.00 0.0015 0.00

(0.0002) (0.0004) (0.0005) (0.0002) (0.0002)

σ̂2
ξ 0.00 0.029 0.023 0.00 0.04

— (0.006) (0.008) — (0.003)

φ̂ 0.640 0.379 0.561 0.355 0.33
(0.035) (0.115) (0.07) (0.021) (0.04)

σ̂2
ε 0.073 0.059 0.052 0.054 0.031

(0.005) (0.01) (0.008) (0.003) (0.003)

σ̂2
u,me 0.022 0.01 0.023 0.023 0.023

(0.004) (0.01) — — —

Notes: In columns (1)–(3), the estimated income process is: yiht = αi + piht + βih+ (1− φL)−1εiht + uiht,me, where
pih+1t+1 = piht+ξih+1t+1. In columns (4)–(5), the estimated income process is: yiht = αi+piht+βih+(1+φL)εiht+
uiht,me. Models are estimated by the equally weighted minimum distance method. Sample consists of 1,034 male
household heads. Standard errors in parentheses.
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Table 13: Estimates of Income Processes. PSID Data in First Differences.
Time-Varying Variances.

(1) (2) (3) (4) (5)

σ̂2
β 0.0008 0.0008 0.00 0.00 0.00

(0.00006) (0.00006) (0.0001) (0.0001) —

σ̂2
ξ 0.00 0.00 0.037 0.037 0.038a

— — (0.003) (0.004) (0.01)

φ̂ 0.605 0.650 0.410 0.525 0.516
(0.02) (0.013) (0.041) (0.03) (0.029)

σ̂2
ε 0.096a 0.091a 0.071a 0.057a 0.057a

(0.009) (0.009) (0.01) (0.009) (0.01)

σ̂2
u,me 0.018 0.023 0.01 0.023 0.023

(0.003) — (0.005) — —

Notes: aVariances differ by calendar year; average variances and average standard errors reported. The estimated
income process is: yiht = αi + piht + βih + (1 − φL)−1εiht + uiht,me, where pih+1t+1 = piht + ξih+1t+1. Models
are estimated by the equally weighted minimum distance method. Sample consists of 4,551 male household heads.
Standard errors in parentheses.
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Table 14: The Variances of Permanent and Transitory Shocks by Year.

Year Trans. shock St. err. Perm. shock St. err.
1968 0.01038a 0.01124 0.03992 0.01319
1969 0.01038a 0.00807 0.05569 0.01151
1970 0.02413 0.00842 0.04722 0.00841
1971 0.04144 0.00906 0.05835 0.01138
1972 0.04558 0.00896 0.03796 0.00838
1973 0.03294 0.00769 0.03584 0.00833
1974 0.03989 0.00824 0.04386 0.00821
1975 0.06184 0.00916 0.02531 0.00673
1976 0.06418 0.00986 0.03101 0.00765
1977 0.05425 0.00920 0.02235 0.00724
1978 0.04942 0.00826 0.02960 0.00723
1979 0.03480 0.00744 0.04407 0.00830
1980 0.03170 0.00768 0.04870 0.00899
1981 0.05268 0.00941 0.04182 0.00883
1982 0.08555 0.01151 0.05358 0.01083
1983 0.05267 0.00947 0.04184 0.00829
1984 0.06850 0.00990 0.05071 0.00909
1985 0.06362 0.00903 0.02575 0.00801
1986 0.04873 0.00813 0.03960 0.00775
1987 0.05606 0.00915 0.03796 0.00873
1988 0.06444 0.00971 0.04614 0.00982
1989 0.04370 0.00745 0.04083 0.00774
1990 0.05625 0.00851 0.03605 0.00768
1991 0.06827 0.01032 0.03411 0.00977
1992 0.11424 0.01240 0.02925 0.01054
1993 0.10641 0.01120 0.02840 0.01004
1994 0.09898 0.01283 0.02815 0.00976
1995 0.08906 0.01507 0.01845a 0.01349
1996 0.07437 0.01563 0.01845a 0.02210

Notes: Estimates from the model in Table 13, column (5). aVariances are restricted in estimation to be equal in
those years.
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Table 15: Summary Statistics.

Age Yrs. of schooling Labor income Number of heads
Survey year Mean Std. Mean Mean Std. of N

log-income
1968 38.55 9.89 11.85 25959 0.56 1285
1969 38.39 10.44 11.96 26476 0.60 1420
1970 38.19 10.84 12.02 26626 0.63 1536
1971 37.69 11.02 12.10 26072 0.65 1596
1972 37.38 11.21 12.16 26026 0.64 1673
1973 36.84 11.12 12.24 27118 0.60 1737
1974 36.52 11.03 12.32 27753 0.59 1788
1975 36.01 10.92 12.63 26704 0.62 1890
1976 35.89 10.89 12.70 25077 0.61 1918
1977 36.02 10.93 12.71 26079 0.62 1980
1978 36.07 10.86 12.76 26714 0.61 2020
1979 36.11 10.75 12.82 27479 0.62 2057
1980 36.19 10.67 12.87 27132 0.62 2101
1981 36.20 10.52 12.94 25552 0.65 2106
1982 36.31 10.39 13.01 24744 0.66 2122
1983 36.42 10.35 13.22 24984 0.73 2153
1984 36.56 10.19 13.22 25290 0.72 2152
1985 36.78 10.07 13.52 26533 0.70 2202
1986 36.99 9.96 13.53 26652 0.72 2221
1987 37.18 9.79 13.56 26992 0.73 2251
1988 37.38 9.66 13.56 27421 0.72 2271
1989 37.58 9.56 13.62 27975 0.73 2255
1990 37.76 9.45 13.63 27969 0.70 2272
1991 37.89 9.28 13.64 27381 0.72 2263
1992 38.15 9.16 13.66 27008 0.74 2288
1993 38.40 9.21 13.69 27973 0.75 2279
1994 38.60 9.22 13.70 28294 0.74 2469
1995 38.82 9.30 13.70 28350 0.74 2462
1996 39.54 9.19 13.71 29227 0.73 2382
1997 40.38 8.99 13.76 29659 0.71 2269

Notes: Mean head’s labor income in 1982–1984 dollars.
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Appendix A: The Autocovariance Function and Estimation De-
tails.

In this appendix, I present theoretical autocovariances and variances for the model (1)–(3) used to identify the
model. For convenience, I reproduce the model equations here, assuming that the transitory component is an
autoregressive process of order 1.

yiht = αi + βih+ piht + τiht + uiht,me

piht = pih−1t−1 + ξiht

τiht = (1− φL)−1εiht,

where (αi, βi) ∼ iid(0,Ω), with Ω11 = σ2
α, Ω12 = Ω21 = σαβ , Ω22 = σ2

β ; uiht,me ∼ iid(0, σ2
u,me); ξiht ∼ iid(0, σ2

ξ);
εiht ∼ iid(0, σ2

ε ). The moments used in matching estimations are:

var(yiht) = σ2
α + σ2

βh
2 + 2σαβh+ σ2

u,me + var(τiht) + var(piht), t = 1, . . . , T, h = 1, . . . , H

var(τi1t) = σ2
ε var(pi1t) = σ2

ξ , t = 1, . . . , T

var(τih1) = σ2
ε

h−1X
j=0

φ2j var(pih1) =

h−1X
j=0

σ2
ξ , t = 1, h = 2, . . . , H

var(τiht) = φ2var(τih−1t−1) + σ2
ε var(piht) = var(pih−1t−1) + σ2

ξ , t = 2, . . . , T, h = 2, . . . , H

cov(yiht, yih+kt+k) = φkvar(τiht) + var(piht) +

+ σ2
α + σαβ(2h+ k) + σ2

βh(h+ k), k = 1, . . . ,min(H − h, T − t), h = 1, . . . , H, t = 1, . . . , T,

where H is the maximum labor market experience in the sample, and T is the time dimension of the sample.
I am assuming that τi0t = 0 and pi0t = 0, i.e., a head with no labor market experience entering the labor

market at time t+ 1 is “endowed” with zero permanent and transitory components of earnings.
For idiosyncratic labor income growth, the above model is:

∆yit = βi + ξit + (1− φL)−1∆εit + ∆uit,me.

The autocovariance moments are shown in equations (11)–(13). If the transitory component is a moving
average process of order 1, see the autocovariance function in the text in equations (5)–(8).

The empirical moments, taking into account that the data used in estimations are unbalanced, are calculated
as:  

NX
i=1

ỹiỹ
′
i

!
/Ntt′ ,

where ỹi = (yi(h)1, yi(h+1)2, . . . , yi(h+T−1)T ) if data are in levels; and ỹi = (∆yi2,∆yi3, . . . ,∆yiT ) if data are in
first differences; N is the total number of heads in the sample; Ntt′ is a matrix with the row and column dimensions
T (T+1)

2
; N11 is the number of heads contributing towards estimation of the variance in period 1 (t = 1, t′ = 1);

N12—the number of heads contributing towards estimation of the first-order autocovariance between periods 1 and

2 (t = 1, t′ = 2), etc.23 The vector of data moments used in estimation is md
T (T+1)

2
= vech

��PN
i=1 ỹiỹ

′
i

�
/Ntt′

�
,

where T (T+1)
2

is the row dimension of the empirical moments’ vector. The model parameters, Θ, are recovered by

minimizing a squared distance function
�
m(Θ)−md

�′
IT (T+1)

2

�
m(Θ)−md

�
, where IT (T+1)

2
is an identity matrix

with the row dimension T (T+1)
2

.

Standard errors of the parameters are calculated as the square roots of the diagonal of (G′ΘGΘ)−1G′ΘV GΘ(G′ΘGΘ)−1′ ,

whereGΘ = ∂
∂Θ

h
m(Θ̂)−md

i
, a vector with the row dimension T (T+1)

2
, and the column dimension equal to the row

23Note that if the head’s income is missing, say, in period 1, this head’s contributions towards the variance at
time 1 and all the sample autocovariances involving this period are zero.
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dimension of the vector of estimated parameters; V is equal to
�
diag(vech(

√
Ntt′))

�−1
Ω
�
diag(vech(

√
Ntt′))

�−1′
,

where Ω is a matrix of the fourth moments and diag(·) is a diagonal matrix with the row and column dimension
T (T+1)

2
, with the diagonal elements equal to vech(

√
Ntt′).

24

24See MaCurdy (2007), Section 6.6.2 for more details on estimating time series models utilizing unbalanced
panel data.
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Appendix B: Additional Results.

Table B-1: Estimates of Income Processes for High School Dropouts. PSID Data in
First Differences.

R.W. & AR(1) R.W. & MA(1)

(1) (2) (3) (4) (5)

σ̂2
β 0.0007 0.00 0.00 0.001 0.00

(0.00005) (0.0004) (0.0004) (0.0003) (0.0003)

σ̂2
ξ 0.00 0.042 0.039 0.00 0.049

— (0.009) (0.01) — (0.007)

φ̂ 0.647 0.209 0.291 0.251 0.196
(0.089) (0.253) (0.089) (0.034) (0.056)

σ̂2
ε 0.089 0.094 0.078 0.095 0.066

(0.014) (0.09) (0.013) (0.006) (0.008)

σ̂2
u,me 0.048 0.004 0.023 0.023 0.023

(0.01) (0.09) — — —

Notes: In columns (1)–(3), the estimated income process is: yiht = αi + piht + βih + (1 − φL)−1εiht + uiht,me,
where pih+1t+1 = piht + ξih+1t+1. In columns (4)–(5), the estimated income process is: yiht = αi + piht + βih+ (1 +
φL)εiht + uiht,me. Models are estimated by the equally weighted minimum distance method. Sample consists of 778
male household heads. Standard errors in parentheses.
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Table B-2: Estimates of Income Processes for High School Graduates. PSID Data in
First Differences.

R.W. & AR(1) R.W. & MA(1)

(1) (2) (3) (4) (5)

σ̂2
β 0.0007 0.00 0.00 0.001 0.00

(0.00007) (0.0001) (0.0001) (0.00008) (0.0001)

σ̂2
ξ 0.00 0.032 0.027 0.00 0.048

— (0.004) (0.004) — (0.003)

φ̂ 0.641 0.402 0.535 0.343 0.312
(0.028) (0.074) (0.038) (0.016) (0.028)

σ̂2
ε 0.086 0.069 0.062 0.066 0.039

(0.005) (0.009) (0.005) (0.002) (0.003)

σ̂2
u,me 0.024 0.012 0.023 0.023 0.023

(0.003) (0.009) — — —

Notes: In columns (1)–(3), the estimated income process is: yiht = αi + piht + βih+ (1− φL)−1εiht + uiht,me, where
pih+1t+1 = piht+ξih+1t+1. In columns (4)–(5), the estimated income process is: yiht = αi+piht+βih+(1+φL)εiht+
uiht,me. Models are estimated by the equally weighted minimum distance method. Sample consists of 2,631 male
household heads. Standard errors in parentheses.
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Table B-3: Estimates of Income Processes for College Graduates. PSID Data in First
Differences.

R.W. & AR(1) R.W. & MA(1)

(1) (2) (3) (4) (5)

σ̂2
β 0.0005 0.00 0.00 0.001 0.00

(0.0002) (0.0005) (0.0003) (0.0002) (0.0002)

σ̂2
ξ 0.00 0.037 0.04 0.00 0.068

— (0.017) (0.01) — (0.006)

φ̂ 0.822 0.662 0.584 0.321 0.217
(0.03) (0.15) (0.089) (0.03) (0.084)

σ̂2
ε 0.084 0.052 0.053 0.064 0.024

(0.007) (0.011) (0.01) (0.004) (0.005)

σ̂2
u,me 0.03 0.027 0.023 0.023 0.023

(0.004) (0.006) — — —

Notes: In columns (1)–(3), the estimated income process is: yiht = αi + piht + βih + (1 − φL)−1εiht + uiht,me,
where pih+1t+1 = piht + ξih+1t+1. In columns (4)–(5), the estimated income process is: yiht = αi + piht + βih+ (1 +
φL)εiht + uiht,me. Models are estimated by the equally weighted minimum distance method. Sample consists of 450
male household heads. Standard errors in parentheses.
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