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Abstract

We develop a methodology to derive formulas that facilitate interpretation of the forces determining
optimal labor and savings distortions and taxes in dynamic settings. The formulas for the labor wedges
extend the static optimal taxation analysis of Diamond (1998) and Saez (2001) to dynamic settings.
Compared to the static analysis, the dynamic nature of the problem o¤ers three novel insights. First,
the opportunity to provide incentives dynamically adds a force lowering labor distortions. Second,
labor distortions in dynamic settings may di¤er signi�cantly from those in static settings because a key
determinant of the former is the conditional rather than the unconditional distribution of skill shocks.
The conditional distribution of shocks di¤ers signi�cantly from the unconditional one. Third, the
persistence of shocks manifests itself as an increase in the redistributionary motive of the government.
We also derive a novel formula to analyze the determinants of the savings distortions. In the i.i.d.
case and under certain conditions in the case of persistent shocks, we show that the labor wedge tends
to zero for su¢ ciently high skills. This is in sharp contrast to the static case with Pareto tail of the
skill distribution of Diamond (1998) and Saez (2001), who show that taxes on the high skill agents are
increasing and tend to potentially high levels depending on the parameters of the tail.

Our second set of results is to numerically simulate the optimal labor and savings distortions. The
analysis is conducted for a realistically calibrated economy based on empirical income distributions.
The computed optimal dynamic distortions di¤er signi�cantly from the optimal static distortions, high-
lighting the importance of the forces in the theoretical analysis. The welfare gains compared to optimal
linear taxes are non-trivial in the case of the utilitarian social planner and are signi�cant (close to 5%
of consumption) for a more redistributive Rawlsian criterion.

Our third contribution is a novel implementation of the optimal allocations. We show that a tax
system based on consolidated income accounts (CIA) implements the optimum. The labor income tax
depends on the current labor income and on the balance on the CIA. The savings tax depends only on
the amount of savings. The CIA balance is updated as a function of the labor income and the previous
balance.
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1 Introduction

A sizeable New Dynamic Public Finance (NDPF) literature studies optimal taxation in dy-

namic settings1. The models in this literature extend the classic Mirrlees equity-e¢ ciency

trade-o¤s to dynamic settings in which agents�skills change stochastically over time.

This paper provides a methodology to derive simple formulas that facilitate interpretation of

the forces behind the optimal taxation results in dynamic settings. The formulas easily connect

to empirically observable data. Diamond (1998) and Saez (2001) signi�cantly expanded the

understanding and policy relevance of static Mirrlees models by deriving an easily interpretable

formula in terms of elasticities and the shape of income distribution. Our paper extends their

analysis to dynamic settings.

Our �rst contribution is to derive easily interpretable formulas for the �rst-order conditions

for the dynamic labor and savings distortions. As in the static case, the shape of the income

distribution, the redistributionary objectives of the government, and labor elasticity play im-

portant roles in the determination of labor distortions. However, the dynamic model adds three

signi�cant di¤erences to the analysis of optimal distortions: (i) the use of dynamic incentives

adds a force that tends to lower labor income wedges; (ii) conditional rather than uncondi-

tional distributions of skills is a key determinant of wedges; (iii) persistence of shocks acts as

a larger redistributionary motive for the government. We also derive a novel representation of

the savings wedge that allows the analysis of the forces determining it.

Speci�cally, we study T -period dynamic optimal taxation economies with i.i.d. and persist-

ent shocks based on Golosov, Kocherlakota, and Tsyvinski (2003) with preferences represented

by utility with no income e¤ects. Consider �rst an illustrative case of i.i.d. shocks in two peri-

ods. There are two key insights in this part of the analysis for the nature of labor distortions

in the �rst period (early in life): (i) the dynamic nature of the incentives represents itself as

an additional term in the formula for the optimal distortions changing the weights assigned to

agents by the social planner, and (ii) this reweighing represents the fact that using dynamic

incentives allows to lower marginal taxes. The derivation of the easily interpretable formulas

for the labor distortions is novel to the New Dynamic Public Finance literature as theoretical

analysis primarily focused on the intertemporal (savings) distortion. Next, we derive a for-

1See, for example, Golosov, Kocherlakota, and Tsyvinski (2003) or reviews in Golosov, Tsyvinski, and
Werning (2006) and Kocherlakota (2010).
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mula representing the savings distortion. The derivation of the formula interpreting the savings

distortion is new to the NDPF literature, as it provides a way to study the economic forces

determining savings wedges. We show that there is a force driving savings distortion higher

for the high income agents as a way to lower their labor distortion. The intuition is that the

e¤ort of the highly skilled agents is very valuable in production and deterring their deviations

is particularly important. The use of the savings wedge allows provision of incentives while

lowering the need for labor distortions which are overly costly for these agents.

We then study the case of persistent shocks. There are two additional key insights to

the analysis of the static and the i.i.d. cases. The �rst di¤erence is that the optimal labor

distortions formulas now depend on conditional rather than on the unconditional distributions

of skills. Empirical conditional and unconditional distributions di¤er signi�cantly. Therefore,

the optimal dynamic taxes may be very di¤erent from the static ones. The second insight is

that persistence yields an additional force for redistribution to the optimal tax problem. The

intuition is based on the optimal provision of dynamic incentives. An agent with a low skill

early in life is likely to be low skill later in life; the same persistence is present for a high type.

An agent who has a low income early in life and high income later in life is more likely to be

a deviator, i.e., a high skilled agent pretending to be low skilled early in life. Changing the

weights in the social welfare function by redistributing away from high income agents worsens

bene�ts from such deviation and improves incentives.

In the i.i.d. case as well as under certain conditions in the case of persistent shocks, we

show that the labor wedge tends to zero for su¢ ciently high skills. This is in sharp contrast to

the static case with Pareto tail of the skills distribution of Diamond (1998) and Saez (2001),

who show that the taxes on the high skill agents are increasing and tend to high levels (50-70%)

depending on the parameters of the tail ratio of skills.

We note that our analysis of the case of the persistent shocks builds on the �rst-order

approach developed in Kapicka (2008) and Pavan, Segal, and Toikka (2010). In numerical

simulations, we verify its su¢ ciency.

The second contribution of the paper is to numerically simulate the optimal labor and

savings wedges in a realistically calibrated economy based on the empirical income distribu-

tions. First, consider the case of the i.i.d. shocks. The results show that dynamic wedges

are signi�cantly di¤erent from the static taxes emphasizing the importance of the theoretical
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forces we study. We �nd that the labor distortion for the early periods are smaller than for the

later periods. This result is also related to �ndings in Ales and Maziero (2007), who numeric-

ally solve a version of a life cycle economy with i.i.d. shocks drawn from a discrete, two-type

distribution, and �nd that the labor distortions are lower early in life of the household. The

second di¤erence from the static model is that we provide calculations for the savings tax and

�nd it numerically signi�cant and increasing. The numerical simulations for the empirically

calibrated persistent shocks add two important di¤erences. The �rst is that the consideration

of conditional rather than the unconditional empirical distributions of income and skills signi-

�cantly alters the pattern of wedges compared to the static and the i.i.d. cases. The second

di¤erence is that agents face very di¤erent labor distortions conditional on the previous shocks.

This is due to the di¤erences among the conditional distributions and also due to the planner�s

increase in the redistributionary objectives to deter earlier deviations. Finally, we provide the

calculations of the welfare gains of using the optimal policy. A natural benchmark to compare

the constrained e¢ cient optimum is an environment with the optimal linear taxes. First, con-

sider the case of the utilitarian social planner. The optimal age-dependent linear labor wedges

yield a welfare loss of 0.6% of consumption compared to the constrained optimum. The op-

timal age-independent labor distortion yields a welfare loss of 1.4%. While these magnitudes

are non-trivial, linear taxes can still yield reasonably good policies. This is a well-known res-

ult in numerical simulations of the static Mirrlees models (e.g.,Mirrlees (1971), Atkinson and

Stiglitz (1976), Tuomala (1990)) that illustrate that linear taxes with utilitarian social planner

approximate the optimal policy rather well. This literature also points out that if the planner

is more redistributive than utilitarian planner, the tax policy is substantially di¤erent from

linear, and nonlinear taxes may yield large welfare gains. We also calculate welfare gains of

using optimal policies when the social planner is more redistributive, in particular Rawlsian.

The optimal age-dependent linear labor wedges yield a welfare loss of 4.5% compared to the

constrained optimum. The optimal age-independent labor distortion yields a welfare loss of

5.1%. We conclude that the welfare gains of using optimal nonlinear policies are signi�cant.

Our third contribution is a novel implementation of the optimal allocations �consolidated

income accounts (CIA) tax system. In a given period, the labor income tax depends on labor

income and on the balance of the CIA, the savings tax depends only on the amount of savings;

the CIA balance is updated as a function of the labor income and the previous balance. The
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CIA balance plays a role of the record-keeping device summarizing the previous labor choices

of agents. The savings tax is constructed following Werning (2009) as an envelope of the best

possible deviations. We then show that the CIA system takes a particularly simple form if

the utility is exponential and the shocks are i.i.d. The tax system consists of a non-linear

tax on savings income, a non-linear labor income tax, and a CIA account. In each period, a

taxpayer can deduct the balance of the account from the total income tax bill. Thus, while all

agents with the same labor income are facing the same marginal tax rate, the total tax bill is

smaller for the agents with a higher CIA account. Similarly, updating the CIA balance follows

a simple rule. In each period the increase on agent�s CIA balance is determined solely by his

labor income in that period. Moreover, if the distribution of the shocks does not change over

time, taxes do not depend on age of the agent. We conclude with a numerical simulation of the

optimal taxes. In our simulation, labor income taxes are lower than labor income distortions

as they incorporate the e¤ects of updating the CIA balance.

The recursive characterization of the problem, especially in the i.i.d. case, has similarities

to the Mirrlees (1986) setup with two consumption goods. In Section 5, we further explore this

connection and show the role that the nonseparability of preferences plays in the di¤erence

between static and dynamic models.

There are several papers related to our work. The �rst-order approach for persistent

shocks is developed in Kapicka (2008) and Pavan, Segal, and Toikka (2010), who mainly focus

on the risk-sharing properties of the taste shock model with exponential utility and Pareto

shocks. There have been very limited theoretical analysis of the labor taxation in dynamic

Mirrlees models. One important exception is Battaglini and Coate (2008) who provide a

complete characterization of the optimal program with Markovian agents. While incorporating

persistence in abilities, most of their analysis for tractability assumes only two ability types

and risk neutral individuals.

An important contribution of Farhi and Werning (2010) is an analysis deriving a di¤erent

way of characterizing the �rst order conditions of the optimal dynamic taxation model, provide

numerical simulations, and also uses continuous time approach to derive additional insights.

The analysis of Farhi and Werning (2010) and this paper are complementary. Our work focuses

on a comprehensive study of cross-sectional properties of optimal wedges and on deriving

elasticity based formulas following Diamond (1998) and Saez (2001). Farhi and Werning (2010)
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focus on the comprehensive study of the intertemporal properties of allocations and wedges.

Numerical simulations in our paper are also related to Weinzierl (2008). He derives the-

oretically and analyzes numerically an elasticity-based formula with which he studies optimal

age-dependent taxation, in a dynamic Mirrlees setting. Albanesi and Sleet (2006) is a com-

prehensive numerical and theoretical study of optimal capital and labor taxes in a dynamic

economy with i.i.d. shocks. Golosov and Tsyvinski (2006) study a disability insurance model

with fully persistent shocks. Golosov, Tsyvinski, and Werning (2006) is a two-period numer-

ical study of the determinants of dynamic optimal taxation in the spirit of Tuomala (1990).

However, none of these papers, with the exception of Weinzierl (2008), base their analysis on

an elasticity-based formula.

Our implementation is related to the work of Kocherlakota (2005), Albanesi and Sleet

(2006), Grochulski and Kocherlakota (2007) and, importantly, Werning (2009). Both Kocher-

lakota (2005) and Werning (2009) discuss only capital taxation, and our construction of savings

taxation builds directly on Werning (2009). The work by Albanesi and Sleet (2006) is another

important predecessor to our decentralization. As in our paper, Albanesi and Sleet (2006)

keep track of the summary of individuals�past histories summarized by one variable, which

is individual�s stock of wealth in their case. There are two main di¤erences between our im-

plementation and that in Albanesi and Sleet (2006). First, their implementation is applicable

only for the i.i.d. shocks. Second, in Albanesi and Sleet (2006) savings of households play two

roles: intertemporal smoothing and tracking history of previous labor incomes. This allows

households to misrepresent their past histories by changing the amount of savings. To prevent

households from doing this, the tax on capital should not only be non-linear, but the degree of

non-linearity and the amount of capital taxes should depend on the realization of labor income.

In our implementation, we keep track of the history of labor incomes in a separate CIA account

and do not condition capital tax on income realization which substantially simpli�es the tax

system, as illustrated in the next section. The implementation we describe is relatively easy to

implement in practice as it shares many of the existing elements of the current US tax code.

It is also closely related to some long advocated ideas in public �nance, such as income tax

averaging, which go back at least to Vickrey (1939) and Vickrey (1947).

5



2 Environment

We consider an economy that lasts T periods, denoted by t = 1; :::; T where T is a �nite number.

Each agent�s preferences are described by a time separable utility function over consumption

of a good ct and labor lt,

E1
TX
t=1

�t�1U(ct; lt); (1)

where � 2 (0; 1) is a discount factor, E1 is an expectations operator and U : R2+ ! R. We

assume that U is twice continuously di¤erentiable, and partial derivatives with respect to c

and l satisfy Uc; Ucc > 0, Ul; Ull < 0:

In period t = 1, agents draw their initial type (skill), �1, from a distribution F1(�). For

t � 2, skills follow a Markov process Ft (�j�t�1), where �t�1 is agent�s skill realization in

period t � 1: We denote the probability density function by ft(�j�t�1) and assume that ft is

di¤erentiable in both arguments. We assume that, in each period t, skills are non-negative:

�t 2 � = R+. The set of possible histories up to period t is denoted by �t.

An agent of type �t who supplies lt units of labor produces yt = �tlt units of output. The

skill shocks and the history of shocks are privately observed by the agent. Output yt = �tlt

and consumption ct are observed by the planner. In period t, the agent knows only his skill

realization for the �rst t periods �t = (�1; :::; �t). Denote by ct
�
�t
�
: �t ! R+ agent�s allocation

of consumption and by yt
�
�t
�
: �t ! R+ agent�s allocation of output in period t. Denote by

�t
�
�t
�
: �t ! �t agent�s report in period t. We denote the set of all such reporting strategies

in period t,
�
�1
�
�1
�
; :::; �t

�
�t
��
by �t. Resources can be transferred between periods with a

rate on savings � > 0. The observability of consumption implies that all savings are publicly

observable. Hence, without loss of generality,we can assume that the social planner controls all

the savings. We also assume that the social planner has a social welfare function G : R ! R,

where G is increasing and concave. In particular since the lifetime utility of the agent is given

by (1), the social welfare is given by
R
G
�
E1
PT

t=1 �
t�1U (ct; lt)

�
dF1(�):

The optimal allocations solve the dynamic mechanism design problem (see, e.g., Golosov,

Kocherlakota, and Tsyvinski (2003)):

max
fct(�t);yt(�t)g�t2�t;t=1;::;T

Z
G

 
E1

TX
t=1

�t�1U
�
ct
�
�t
�
; yt
�
�t
�
=�t
�!

dF1(�) (2)
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subject to the incentive compatibility constraint:

E0

(
TX
t=1

�t�1U
�
ct
�
�t
�
; yt
�
�t
�
=�t
�)

� E0

(
TX
t=1

�t�1U
�
ct
�
�t
�
�t
��
; yt
�
�t
�
�t
��
=�t
�)

;8�T 2 �T ;

(3)

and the feasibility constraint:

E0

(
TX
t=1

�t�1ct
�
�t
�)

� E0

(
TX
t=1

�t�1yt
�
�t
�)

: (4)

Here the expectation E0 above is taken over all possible realizations of histories. The �rst

constraint above is a dynamic incentive compatibility constraint that states that an agent

prefers to truthfully report its history of shocks rather than to choose a di¤erent reporting

strategy. The second constraint is the dynamic feasibility constraint.

We follow Fernandes and Phelan (2000) and Kapicka (2008) to re-write this problem re-

cursively. Here, we brie�y describe the recursive formulation and refer to these two paper for

the technical details. Let !
�
�j~�
�
: ���! R denote promised utility. We use notation !(�)

and ! to denote functions !(�j�) and !(�j�) respectively. Let c : �! R+ and y : �! R+:

The optimal allocations solve the cost minimization problem for period t = 1:

V1 (!̂) = min
c;y;!

Z
(c (�)� y (�) + �V2 (! (�) ; �)) f1 (�) d� (5)

subject to the incentive compatibility constraint:

U (c (�) ; y (�) =�) + �! (�j�) � U
�
c
�
~�
�
; y
�
~�
�
=�
�
+ �!

�
~�j�
�
; 8~� 2 �; � 2 �; (6)

and to the promise keeping constraint:

!0 �
Z
G (U (c (�) ; y (�) =�) + �! (�j�)) f1 (�) d�: (7)

The initial promised utility !0 is a solution to V1(!0) = 0.

For t > 1, the social planner takes the period t�1 realization of the shock which we denote

by ��, and the chosen promised utility function !̂ (��) as given and solves:

Vt (!̂ (��) ; ��) = min
c;y;!

Z
(c (�)� y (�) + �Vt+1 (! (�) ; �)) ft (�j��) d� (8)
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subject to the incentive compatibility constraint (6) and

!̂(��j~�) �
Z
(U (c (�) ; y (�) =�) + �! (�j�)) ft

�
�j~�
�
d� for all ~� 2 �; (9)

where constraint (9) must hold with equality for !̂(��j��):

Function VT+1 (! (�) ; �) = 0 if ! (�) = 0 and VT+1 (! (�) ; �) = 1 otherwise. All other

functions Vt are de�ned by backward induction. The function Vt is the resource cost of deliv-

ering promised utilities ! (�).

The incentive compatibility constraint states that an agent prefers to reveal his true type �,

receive utility U (c (�) ; y (�) =�) and a continuation utility ! (�j�) rather than claim a di¤erent

type ~�, receive utility U
�
c
�
~�
�
; y
�
~�
�
=�
�
and a continuation utility !

�
�j~�
�
: Promise keeping

constraints (9) ensure that next period allocations indeed deliver the expected utility !
�
�j~�
�

to any type ~� who sends a report �:

We proceed in this section by using the �rst order approach developed by Kapicka (2008)

and Pavan, Segal, and Toikka (2010) to obtain characterization of distortions. Since this

approach only provides the necessary conditions, we verify numerically its su¢ ciency in the

simulations in Section 4.2. Under the assumption that only local incentive constraints bind,

the number of state variables reduces dramatically. One needs to keep track only of the "on

the path" promise utility ! (�j�) and the utility from a local deviation !2 (�j�) where !2 (�j�)

is the derivative of ! with respect to its second argument evaluated at (�j�) : Then de�ning

functions w : �! R and w2 : �! R the maximization problem (8) can be re-written as

Vt(ŵ; ŵ2; ��) = min
fc(�);y(�);u(�);w(�);w2(�)g�2�

Z
(c (�)� y (�) + �Vt+1 (w (�) ; w2(�); �)) ft (�j��) d�

(10)

u0 (�) = Ul(c(�); y(�)=�)

�
�y (�)

�2

�
+ �w2 (�) ; (11)

ŵ =

Z
u (�) f (�j��) d�; (12)

ŵ2 �
Z
u (�) f2(�j��)d�; (13)

u(�) = U(c(�); y(�)=�) + �w(�): (14)

There are three state variables in this recursive formulation. The �rst, ŵ, is the promised

utility associated with the promise-keeping constraint (12). The second, ŵ2, is the state variable

associated with the threat-keeping constraint (13). Finally, �� is the last period reported type.

8



Before characterizing the problem, we re-write the optimal problem in a di¤erent form that

allows to highlight the e¤ects of persistence.

Lemma 1. Let fc (�)� ; y (�)� ; u (�)� ; w (�)� ; w2 (�)�g�2� be a solution to (10). Then

fc (�)� ; y (�)� ; u (�)� ; w (�)� ; w2 (�)�g�2�

is a solution to

min
fc(�);y(�);u(�);w(�);w2(�)g�2�

Z
(c (�)� y (�) + �Vt+1 (w (�) ; w2(�); �)) ft (�j��) d� (15)

s.t. (11), (14) and

ŵ =

Z �
� � f2(�j��)

f(�j��)

�
u (�) f (�j��) d�

for some constant �:

Proof. In the Appendix.

In problem (15), utility u (�) is multiplied by the term
�
� � f2(�j��)

f(�j��)

�
. This pseudo-objective

is equivalent to the objective function of a social planner that has (non-normalized) weights�
� � f2(�j��)

f(�j��)

�
instead of the utilitarian weights equal to 1 for all types � in period t. To see

the implications of these new weights, consider �rst an example of the function f that has a

property that if �H > �L then f (�j�L) =f (�j�H) is decreasing in �. For such function, the

ratio f2(�j��)=f (�j��) is monotonically increasing in �. The term
�
� � f2(�j��)

f(�j��)

�
assigns the

highest weight to the lowest type and monotonically decreases for the higher types. In other

words, the planner�s objective is more redistributionary towards the lower types in period t.

The intuition for this change in weights is as follows. Consider a marginal deviation in period

t� 1. Suppose type �� + " claims to be �� for some small ". Under the above assumption on

f (�j��), this type is relatively more likely to receive high shocks � and relatively less likely to

receive low shocks � in period t. The social planner who is more redistributive in period t and

puts higher (pseudo) weights on the low types allocates relatively low utility to this agent. The

type �� is not signi�cantly a¤ected, since his probability of having high shocks � is relatively

low. This agent bene�ts from more redistribution as for him the high shocks � in period t are

less likely. The same intuition generalizes for other stochastic processes. The general insight

is that the social planner allocates relatively higher pseudo weights on those realizations of

9



shocks � for which there is large di¤erence in the probability of occurrence between types �_

and types close to ��.

Now we characterize optimal distortions. For an agent with the history of shocks �t at time

t, we de�ne a labor distortion:

1� T 0D;t
�
�t
�
�
�Ul

�
ct
�
�t
�
; yt
�
�t
�
=�t
�

�tUc
�
ct
�
�t
�
; yt
�
�t
�
=�t
� (16)

and a savings distortion

�S;t (�) = 1�
�Uc

�
ct
�
�t
�
; yt
�
�t
�
=�t
�

�Et
�
Uc
�
ct+1

�
�t+1

�
; yt+1

�
�t+1

�
=�t+1

�	 : (17)

For the rest of the section we focus on the quasi-linear preferences of the form

U (c; l) = �U

�
c� 1


l
�
; (18)

where we denote derivatives of �U by �Uc and �Ucc:

When utility function satis�es (18), equation (11) becomes:

u0 (�) = �Uc

�
c (�)� l (�)



�
l (�)

�
+ w2(�): (19)

We can re-write the optimal problem (8) such that u (�) is a state variable of optimization.

De�ne function m implicitly by �Uc (x) = m
�
�U (x)

�
. For an agent with the skill �, period utility

of reporting the true type is given by U (�) = U (c (�) ; y (�) =�). Since u (�) = U (�) + �w (�),

then

u0 (�) = m (u (�)� �w (�)) l (�)


�
+ �w2(�): (20)

From (18) we can express:

c (�) =
1


l (�) + �U�1 (u (�)� �w (�)) : (21)

Substituting (20) and (21) in the optimal program (8), we obtain:

Vt (ŵ; ŵ2; ��) =

min
fl(�);u(�);w(�);w2(�)g�2�

Z �
1


l (�) + �U�1 ([u (�)� �w (�j�)])� �l (�) + �Vt+1 (w (�) ; w2 (�j�) ; �)

�
dF (�j��)

(22)

subject to (12), (13) and (20).
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Note that we changed the variables of minimization. Variables l (�) and w (�j�) ; w2(�j�) are

now control variables, and u (�) is a state variable. We can apply optimal control techniques

to characterize (22).

We characterize the solution for the general model in Section 4. However, we �rst focus

in Section 3 on the illustrative example that highlights the key determinants of the dynamic

distortions.

3 Illustrative example

In this section, we consider a two-period economy with i.i.d. shocks which are drawn from the

same distribution F (�). We assume that utility function satis�es

U (c; l) = � 1
 
exp

�
� 

�
c� 1


l
��

(23)

where  > 0. We also assume that the social welfare function is linear, G(x) = x:

Most of the derivations in this section is a special case of the general model considered in

Section 4, in particularly Propositions 1 and 2. We then compute optimal capital and labor

distortions. The analysis of this section provides insights into the nature of the optimal capital

and labor distortions that hold in a general model.

3.1 Characterizing optimal wedges

When shocks are i.i.d., analysis of (22) signi�cantly simpli�es. The i.i.d. shocks imply that

f2(�j��) = 0 for all ��. The value function in period 2 has as a state variable only the

promised utility, w, instead of the three state variables, w;w2; ��: For a given w; let �Uc;t (�) be

the marginal utility of consumption of the agent whose period t shock is �. With exponential

preferences (23) �Uc = exp
�
� 

�
c� 1

 l

��

; but we keep a slightly more general notation for

the ease of comparison with the results in section 4. After setting up a Hamiltonian to (22)

and taking the �rst order conditions, it can be shown that the optimal labor distortions in

period 2 are:
T 0D;2 (�)

1� T 0D;2 (�)
= 

1� F (�)
�f (�)

Z 1

�

�
1�

�Uc;2 (x)

�2

�
f (x) dx

1� F (�) (24)

where

�2 =

Z 1

0

�Uc;2 (x) f (x) dx:
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In this expression �Uc;2 (x) is a function of w and in general T 0D;2(�) would also be an implicit

function of w and, indirectly, of the �rst period realization of the skill �1. With exponential

preferences it can be shown that in the solution to (22), �Uc;2 (x) =�2 is independent of w, so

that T 0D;2(�) is independent of w and depends only on the realization of � in period 2:

The expression (24) for the optimal labor distortion in period 2 is identical to that obtained

in the static model with quasi-linear preferences as in Diamond (1998). His analysis of the

static Mirrlees problem applies in this setting. In particular, it can be shown that �Uc;2 (x)! 0

as x!1, and the term Z 1

�

�
1�

�Uc;2 (x)

�2

�
f (x) dx

1� F (�) ;

converges to 1 from below. This expression simpli�es further if F has a Pareto tail with the

coe¢ cient a. Pareto distribution implies that the term (1� F (�)) = (�f (�)) is constant and

equal to a�1. For su¢ ciently large � the term T 0D;2=(1 � T 0D;2) is increasing and converges to

=a: Since T 0D;2=(1 � T 0D;2) is increasing in T
0
D;2; it also implies that T

0
D;2 increases for high �

and converges to a positive limit.

The labor distortion in period 1 is:

T 0D;1 (�)

1� T 0D;1 (�)
= 

1� ~F (�)

� ~f (�)

Z 1

�

�
1�

�Uc;1 (x)

�1

� ~f (x) dx

1� ~F (�)
; (25)

where

�1 =

Z 1

0

�Uc;1 (x) ~f (x) dx

and ~f(x) = 	(x)f(x), where 	(x) is

	(�) =
exp

�
�
R �
0 � 

w0(x)
�Uc(x)

dx
�

R1
0 exp

�
�
R ~�
0 � 

w0(x)
�Uc(x)

dx
�
f(~�)d~�

:

We now compare the optimal labor distortion in period 1 given by (25) to the labor distor-

tion 1 given by (24). The key di¤erence is in an additional term 	(�) that re-scales the density

f(�): This term depends on the promised utility w(�) as a function of the current realization

of the skill shock �. Equation (25) shows that the optimal labor distortion in period 1 has the

same form as the optimal labor distortion in a static economy in which types are drawn from

a distribution ~F (�), with the density ~f (�). We immediately see that for the lowest type in

the distribution 	(0) = 1, and that 	0 (�) = �� w0(x)
�Uc(x)

	(�).
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In general, it is di¢ cult to determine the sign of marginal promised utility, w0 (�). It is

instructive, however, to consider a case when w is increasing for all �, and w0 (�) > 0 which

holds in all our numerical simulations in Section 3.2. In this case, 	0 (�) � 0 for all �, and the

distribution F has a property:
1� ~F (�)

� ~f (�)
� 1� F (�)

�f (�)
;

with a strict inequality for interior �.

It can be shown that similarly to period 2, the marginal utility of consumption in period

1 must be decreasing and converging to zero as the, which implies that T 0D;1 asymptotically

increases to  lim�!1
1� ~F (�)
� ~f(�)

. This argument implies that labor distortions for all � above some

threshold �̂ in period 1 are lower than in period 2.

There is also another force that a¤ects the taxes. Note that, in period 1, the planner gen-

erally provides more redistribution than in the second period. The intuition for the additional

redistribution is as follows. Let wS be the value that a Utilitarian social planner can achieve

in a static model. When there is an additional period, it is feasible for the planner to set

w(�) = wS for all �. The optimal allocations of labor and consumption in both periods coin-

cides with those in the static economy and achieve the same welfare wS : However, by varying

w(�) the planner generally is able to provide higher welfare in period 1. Higher welfare implies

more redistribution which �attens Uc;1(�) relative to the static model (and relative to period

2). The �atter pro�le of Uc;1(�) brings the term Uc;1(�)=�1;t closer to 1 and lowers the value

of the integral term in (25). This e¤ect generates a force for lower taxes in period 1.

We now consider the savings distortion. The �rst order conditions with respect to w in

period 1 imply that

1� �S;1(�) = z

�
1�  


T 0D;1(�)y1(�)

�
; (26)

where z is a positive constant.

The �rst important term in the expression (26), T 0D;1(�), shows that there is a force that

increases the savings wedge for the agents with the highest incentive problem. That is for those

with a large labor wedge. The intuition behind this force is that the savings distortions is an

additional instrument used to alleviate the incentive problem. It is optimal to have higher

distortions on the agents who face the most severe incentive constraints. The second term,

y1 (�), shows that the there is a force that increases the savings wedge for the higher skilled

13



agents who produce a high level of output. The savings wedge is an additional instrument of

providing incentives to these agents valuable to the planner. The reason is that the same rate

of labor distortions leads to a larger output loss when applied to high types than to the low

types. Therefore it is optimal to substitute from labor distortions to savings distortions when

the social planner provides incentives to the more productive types.

To see the implication of (26) for the asymptotic behavior of T 0D;1(�); note that when

preferences are quasi-linear, equation (16) becomes

1� T 0D;t(�t) =
y(�t)�1

�
:

Therefore, if T 0D;1(�) does not converge to 1, y1(�) diverges to in�nity. Since the de�nition

of �S in (17) implies that �S;1(�) � 1; equation (26) can hold only if T 0D;1(�) converges to either

zero or one. A simple perturbation argument can be used to rule out the latter case (see the

proof of Proposition 2) which implies that T 0D;1(�)! 0:

3.2 Numerical illustration

In this subsection, we compute optimal labor and savings wedges for the illustrative two-period

example considered above. We study the di¤erences between the labor distortions in a static

and this dynamic model. This intuition is helpful to understand the results of the computations

in the general economy with the shock processes that are estimated from the US data.

We extend the analysis of Saez (2001) to determine the cross-sectional distribution of skills

and the unconditional distribution. We use the 1996 wave of the Panel Study of Income Dynam-

ics (PSID) dataset. We treat heads of households and their spouses as separate observations.

Our sample is restricted to include only the observations with the total labor income of at least

$1; 000 and total hours worked at least 250. We estimate the e¤ective marginal tax rates faced

by the individuals using National Bureau of Economic Research�s (NBER) program, TAXSIM.

We compute individual liabilities under U.S. federal and state income tax laws, by supplying

TAXSIM with the individual labor income as well as with other individual data from the PSID

such as marital status, dependent exemptions, dividend income, other property income.2As in

Saez (2001), given the actual e¤ective marginal tax rates, we determine the skill distribution

generating the labor income of the agents in the sample. We assume that the elasticity of labor

2See Section 4.2 and Appendix 9 for more details on the sample selection and the use of TAXSIM.
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supply of 0:5 which implies that  = 3: This allows us to compute the implied skill for each

type from the individual �rst-order conditions as follows:

�i =
Yi

(Yi (1� T 0 (Yi)))1=
: (27)

In this equation, Yi is the labor income of individual i and T 0 (Yi) is the e¤ective marginal tax

rate for that individual. Note that with the preferences of the form (23) there are no income

e¤ects. Hence, the individual labor supply decision is una¤ected by the individual savings

choice. The implied skills thus can be determined from the static consumption-labor margin.

We non-parametrically estimate the implied unconditional distribution of skills using a

kernel density estimation method. There are two considerations to address. First, the PSID

is "top coded". That is, there is an income cuto¤ level above which no observations are

collected. Second, high income individuals are undersampled in the PSID. The analysis of

Diamond (1998), Saez (2001) in the static settings, and our results above imply that the upper

tail of the distribution is an important determinant of the shape of the optimal tax code. We

follow Heathcote, Perri, and Violante (2009) and �t a Pareto tail in our skill distribution above

the income level of $150; 000. We �nd a Pareto parameter of 2:68 to be statistically signi�cant

at the 1% level.3

The coe¢ cient of absolute risk aversion,  , is set equal to 10. We set the discount factor

� = 0:9852 and chose the marginal rate of transformation across periods � = 1:015 so that the

social planner at the solution of the optimal program chooses not to transfer resources between

the two periods.

The results of the numerical simulation are presented in Figure 1. First, consider the

optimal marginal labor distortions in period 2 (higher dashed line in Figure 1). The distortions

coincide with those in a static economy and are similar to those in Diamond (1998) and Saez

(2001). The optimal distortions exhibit a pronounced U-shaped pattern for lower incomes,

increase above income of $75; 000, reach 52% at income of $700; 000 and tend to the analytic

limit of 52.81% given the Pareto tail.

Next, consider the optimal marginal labor distortions in period 1 (lower dashed line in

3When the tail of the distribution of skills F (�) converges to a; the tail of the distribution of income converges
to a=(1 + �) where � is the elasticity of labor supply (see Chapter 2 of Saez (1999)). This is consistent with the
estimated coe¢ cient for income distribution in the US at the values of 1:6� 1:8 found in Atkinson, Piketty, and
Saez (2009).
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Figure 1: Optimal labor and capital distortions with iid shocks and T = 2

Figure 1). These distortions are lower for all individuals compared to those in period 2. This

is consistent with the intuition of formulas (24) and (25). The labor distortion start to decline

around annual income of $430; 000. Consistent with the theoretical results discussed above,

they tend to zero at incomes above $2 million.

Finally, the savings distortion is represented by the solid line in Figure 1. The savings

wedge increases for all income levels and ranges from close to zero for low income individuals,

increases with income and approaches 68% for income of $700; 000. This pattern is consistent

with the discussion of the equation (26) whereas the optimal savings distortion is used by the

planner to substitute away from the labor distortion for the most valuable high skilled agents.

4 General case with persistent shocks

We now return to the general problem stated in (22).

4.1 Characterizing optimal wedges

Before we state the proposition characterizing optimal wedges we de�ne a coe¢ cient of absolute

risk aversion  t(x) = � �Ucc;t(x)= �Uc;t(x).
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Proposition 1. Suppose that U (c; l) satis�es (18).

Part 1. The optimal labor distortion in period t satis�es

T 0D;t (�)

1� T 0D;t (�)
= 

1� ~Ft (�j��)
� ~ft (�j��)

Z 1

�

�
1� �t(x) �Uc;t (x)

�t

� ~ft (xj��) dx
1� ~Ft (�j��)

(28)

where

~ft (�j��) =
	 (�) ft (�j��)R1

0 	(x0) ft (x0j��) dx0
;

	(�) = exp

�
�

Z �

0
� t(x)

!1;t (xjx)
�Uc;t (x)

dx

�
;

~Ft (�) =

Z �

0

~ft (x) dx;

�t =

Z 1

0
�t(x) �Uc;t (x) d ~Ft (xj��) > 0;

and

�t(x) =

(
G0( �Uc;1 (x)) for t = 1�
�t �

f2;t(xj��)
ft(xj��)

�
for t > 1

Part 2. The savings distortion in period t < T satis�es

1� �S;t(�) = zt(�)

�
1�  t(�)


T 0D;t(�)yt(�)

�
(29)

where

zt(�) =

R1
0

�
1� ~�t+1

f2;t+1(xj��)
ft+1(xj��)

�
�Uc;t+1 (x) ~ft+1(xj�)dxR1

0
�Uc;t+1 (x) ft+1(xj�)dx

: (30)

and ~�t and �t are constants.

The expressions for the optimal labor and savings distortions are similar to those obtained

in the two period example in Section 3. Comparing (28) to (25) there are several di¤er-

ences. First, marginal utility �Uc(x) in (28) is multiplied by the modi�ed social welfare weights

�1 (x) = G0
�
�Uc(x)

�
for t = 1, and �t (x) =

�
� � f2(xj��)

f(xj��)

�
for t > 1. The term G0

�
�Uc(x)

�
captures redistributive objective of the social planner. This terms was not present in (25) as

we assumed that planner was Utilitarian in Section 3. For all periods t > 1, the additional

term
�
� � f2(xj��)

f(xj��)

�
changing the social welfare weights appears because of the Lemma 1. The

second di¤erence is that the conditional distribution of types Ft(�j��) rather than the uncon-

ditional distribution F (�) determines the shape of the skill distribution. Similarly to the i.i.d.
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case, this distribution is adjusted by a dynamic term 	(�). The term 	(�) depends on the

dynamic incentive provision term !1(�j�) which is a generalization of the static term w0(�).

Similarly to the illustrative example in Section 3, we immediately notice that for the low-

est type in the distribution 	(0) = 1 and that 	0 (�) = �� (x)!1;t(xjx)�Uc;t(x)
	(�). Moreover, if

!1 (xjx) > 0; then 	0 (�) � 0 for all � and the distribution F has a property:

1� ~Ft (�j��)
� ~ft (�j��)

� 1� Ft (�j��)
�ft (�j��)

; (31)

with a strict inequality for interior �. The assumption that !1;t (xjx) > 0 is stronger than in

the case of i.i.d. shocks. In the i.i.d. case, one generally expects that the report of a higher

skill in period t leads to higher rewards by the planner in period t+ 1 because of the dynamic

incentive provision. In the case of persistent shocks an additional force is present. Conditional

on the high realization of a shock in period t the planner may learn that the agent is likely to

be very productive in the future. This may lead to more redistribution away from that type

in the future. Still in vast majority of our simulations we found that !1 (xjx) > 0:

Now consider savings distortions (29). Similar forces determine these distortions as in the

example of Section 3. The main di¤erence is that generally terms z(�) and  (�) are endogenous

and depend on the state (w;w2; ��) :

Next, we characterize asymptotic labor distortions. In section 3 we argued that, in a

two period model, labor distortions behave signi�cantly di¤erently from static model and in

particular are decreasing and small for high skill types. We now extend this result for the

general model of this section.

Proposition 2. Assume that U (c; l) satis�es (18). Moreover, assume that there exists some

 > 0 s.t. � �Ucc(x)= �Uc(x) �  for all x:

Part 1. Suppose that ft(�j��) is independent of �� for all t: Then T 0D;t (�)! 0 as � !1

for all t < T:

Part 2. Consider a family of distributions f"t+1(�j��) with a property that lim"!0 f"2;t+1(�j��)!

0 uniformly. Suppose the optimal
�
w"; w"2; T

"0
D;t

�
are bounded. Then there exists �00 > 0 s.t. for

all j"j < �00 T "0D;t (�)! 0 as � !1.

Part 3. Suppose that U(c; l) satis�es (23). Suppose that there exists $ > �1 s.t.

ft+1;2(�j��)=ft(�j��) � $ for all �; t: Then if there exists �x s.t. �t(x) > 0 for all x � �x

then T 0D;t (�)! 0 as � !1:
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Proof. In the Appendix.

The �rst two parts of this Proposition show that if shocks are either i.i.d. or are su¢ ciently

close to i.i.d. shocks the optimal labor distortions must converge to zero asymptotically in all

periods except for the last period. The proof proceeds similarly to the arguments sketched

in Section 3. We can show the that �rst order conditions implies that T 0D;t (�) must converge

to either 0 or 1: Then we consider an argument by contradiction to rule out T 0D;t (�) ! 1.

If T 0D;t (�) ! 1, we construct an allocation that does not distort labor supply of any type

above some �� and collects as much resources
R1
�� (y(�)� c(�))dFt(�) from those types as the

original allocation. This perturbation is incentive compatible, leaves utility of all types below

�� unchanged, and makes the types above �� strictly better o¤. With shocks that are i.i.d. or

close to i.i.d., this argument implies that the ex-ante welfare must be higher.

Under conditions of Part 3, we can show that T 0D;t (�) must converge to either 0 or 1 for

much more general set of stochastic processes. The same perturbation argument as in i.i.d. case

can be used to show that if T 0D;t (�) ! 1; there is an allocation which is incentive compatible

in period t and improves expected utility of all types. This perturbation, however, may violate

constraint (13). Intuitively, by making high types better o¤ in period t, the planner also makes

the deviation in period t � 1 by high types more desirable, since with persistent shocks they

are more likely to be high in period t: Therefore, this perturbation is welfare improving only

as long as the Pareto weights �t(x) are positive. Although it is di¢ cult to �nd the conditions

on the primitives in general, from the de�nition of �t it can be easily seen that �1(x) > 0 for

all x. Part 3 shows that with exponential preferences result holds for a much large class of

Markov processes provided that f2;t(�j��)=ft(�j��) is bounded and !1;t(�j�) > 0.

4.2 Numerical simulations with persistent shocks

In this subsection, we provide numerical calculations for the case of the persistent shocks. The

calculations are conducted for the same parameters as in the i.i.d. section. The number of

time periods is T = 40. The details of our calibration and computational techniques can be

found in the Appendix. Here, we highlight the main steps and discuss the results.

First, we obtain an entire unconditional (cross-sectional) distribution of skills, F . As in

the illustrative example of Section 3.2, the dataset we use is the PSID. Since our fourty-period
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model has individuals from age 25 to age 65, we start with an empirical distribution of labor

income for 25 year old individuals. We then follow the procedure described in the Appendix

to impute the distribution of skills. To proceed to compute our main numerical problem with

persistence of shocks, we also need to estimate the transition probabilities for the skills. We

estimate two di¤erent transition probabilities: an earlier age transition for 25-45 year old

individuals, and a later age transition for 45-65 year old individuals. That is, we allow age-

dependent transition probabilities: younger individuals experience di¤erent transitions than

older individuals. Within each age group, we assume age-independent transitions.
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Figure 2: Labor distortions with persistent shocks and T = 40.

Figure 2 and Figure 3 present the results of our numerical simulations. Consider �rst Figure

2. The left panel in this �gure presents the labor wedges in period t (t = 1; 10; 20; 30; 40 are

displayed, with darker, generally lower lines representing earlier periods) for the agent with

a history of shocks up to that period such that in each previous period he had income of

$50,000. The right panel displays the labor wedges in period t (once again, t = 1; 10; 20; 30; 40

are displayed, with darker, generally lower lines representing earlier periods) for the agent

with a history of shocks up to that period such that in each previous period he had income of

$200,000. The lowest, and darkest, lines in each panel are the unconditional labor wedge in

period t = 1; which is identical in both panels. There are three key features of interest with

the labor wedges results.

First, both for the agent with the history of $50,000 incomes and for the agent with the
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history of $200,000 incomes, the average conditional labor wedges are increasing with age. This

is consistent with our theoretical �ndings where the provision of incentives dynamically allows

to lower labor wedges early in life.

Second, the conditional labor wedges for the agent with a history of $50,000 incomes are

lower than those for the agent with a history of incomes of $200,000. There are two forces

driving the di¤erences in taxes for these two agents that follow from the discussion of Pro-

position 1: (i) the di¤erences between conditional and unconditional distributions of skills as

well as the di¤erences in conditional distributions among agents, speci�cally between those

who were relatively low income and relatively high income; (ii) the additional redistribution

implied by the term
�
� � f2(xj��)

f(xj��)

�
in equation (28). The intuition behind the �rst force is as

follows. From (28), conditional probabilities are one of the key determinants of the optimal

marginal labor distortions. Let us consider the estimated probabilities of transition. Consider

�rst an individual with $50; 000 income. His income and skills are likely to remain low in

the next period. The conditional probability of having the same income is relatively high as

the conditional distribution for this agent is very concentrated just above $50; 000. For those

income levels, the ratio (1� F (�)) =�f (�) for conditional probabilities is lower than for the

unconditional probabilities in the i.i.d. case, which is a force driving taxes lower on those types.

For higher types the term 1 � F (�) is close to zero, which drives the labor wedge lower than

in the case of unconditional distribution even if such individuals make incomes signi�cantly

above $50; 000 in the next period. Similarly, an agent who had a relatively high income of

$200; 000 is likely to receive high income in the next period. Therefore, for such individual the

term f (�) is small for low � while the term 1 � F (�) is large. The ratio (1� F (�)) =�f (�)

works towards higher marginal taxes. Once such agents reach su¢ ciently high income levels

where the conditional probability is substantial, labor distortions fall. The second force, is

represented by the higher welfare weights that the planner assigns to the agents with relatively

low incomes to provide appropriate threat-keeping constraints.

Third, consistent with Proposition 1, the labor wedge decreases for the high incomes. This

is one of the important di¤erences in the pattern of labor wedges in the dynamic economy that

is in contrast to the static analysis. Recall, that in the static case with the Pareto tail of the

skills the labor wedges are increasing and can reach rather high levels.

Next, consider the savings distortions. Just like in the case of labor wedges, Figure 3
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Figure 3: Savings distortions with persistent shocks and T = 40.

displays two panels. The left panel in this �gure presents the savings wedges in period t

(t = 10; 20; 30; 40 are displayed, with darker, generally lower lines representing earlier periods)

for the agent with a history of shocks up to that period such that in each previous period he

had income of $50,000. The right panel displays the savings wedges in period t (once again,

t = 10; 20; 30; 40 are displayed, with darker, generally lower lines representing earlier periods)

for the agent with a history of shocks up to that period such that in each previous period he

had income of $200; 000. The lowest, and darkest, lines in each panel are the unconditional

labor wedge in period t = 1; which is identical in both panels. In both cases, the conditional

savings distortions are positive and increasing in current period realization of income: they are

close to zero for current incomes below $50; 000 and increase up to 14% and 22% at $300; 000

income for the agents with a history of $50; 000 and $200; 000 incomes respectively.4

Finally, we perform the calculations of the welfare gains of using the optimal dynamic

non-linear policy. We conduct these in a version of the model with the empirically calibrated

persistent shocks that lasts T = 5 periods (each period represents 10 years of agent�s life). A

natural benchmark for comparison is optimal linear taxes.

First, consider the case of the utilitarian social planner. Using the optimal age-dependent

linear labor wedges instead of the constrained optimal wedges results in a welfare loss of 0:6%

4Recall the classical result of Judd (1985) and Chamley (1986) obtained in representative-agent macroeco-
nomic Ramsey settings: the Chamley-Judd result states that in the long-run capital should go untaxed. Judd
(1999) extends that analysis to environments whith no steady state.
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of consumption. The optimal age-independent labor distortions increase the welfare loss to

1:4%. While these magnitudes are non-trivial, linear taxes can still yield reasonably good

policies. This is a well-known result in numerical simulations of the the static Mirrlees models

(e.g.,Mirrlees (1971), Atkinson and Stiglitz (1976), Tuomala (1990)) who �nd that linear taxes

with utilitarian social planner approximate the optimal policy rather well. Additionally, we

�nd that age-dependence cuts the welfare loss by more than half.

The static literature also points out that if the planner is more redistributive than utilit-

arian, the tax policy is substantially di¤erent from linear, and non-linear taxes may yield large

welfare gains. In particular, we calculate the welfare gains of using optimal policies when the

social planner is Rawlsian. The optimal age-dependent linear labor wedges yield a welfare loss

of 4:5% of consumption compared to the constrained optimum. The optimal age-independent

labor distortion yields a welfare loss of 5.1%. We conclude that the welfare gains of using

optimal non-linear policies are signi�cant.

5 Extensions and generalizations

In this subsection, we further explore the relationship between dynamic and static models.

First we focus on the case when shocks are i.i.d..

An important point to note that the recursive formulation of the dynamic model is equi-

valent to a static model with two goods: consumption, c, and promised utility, w. These two

goods are perfect substitutes in production. The preferences over these two goods are given

by

�U

�
c� l



�
+ h(w)5: (32)

An equivalent way to think about the dynamic economy (in the recursive formulation) is as

of a static economy in which a planner imposes a non-linear tax on l and w. We now compare

the asymptotic properties of labor taxes in a two good model versus a one good model.

First, consider a static model with preferences given by (18). Suppose that the marginal

labor distortion converges to a linear tax T 0 < 1 for su¢ ciently high types. As we argued above

this tax implies that �Uc(�) ! 0. Asymptotically, the planner does not value utility allocated

to the highest types. For this reason, the optimal tax extracts the maximal revenues from the

5Recall that with iid shocks the value function Vt(w;w2; ��) simpli�es to Vt(w): In this case h(w) = V �1
t (w):
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high types to allocate to the lower types.

Consider a perturbation in which for types between [��; �� + d�] the planner raises the mar-

ginal taxes from T 0 to T 0+d�: Note that since preferences are quasi-linear such a perturbation

does not a¤ect labor supply of any types above �� + d�, and it raises their tax liability by

dy (�) d� : The increase in tax revenues is given by M = d�dy (�)
R1
�� f(�)d�. It can be shown

that dy(�) = (1 + �) y(�)� d�, so that

M = d�d� (1 + �)
y(��)

�
(1� F (��));

where � is the elasticity of labor supply.6

All the types in the interval [��; �� + d�] reduce their labor supply by dy(��) = �� y(�
�)

1�T 0d� .

The total revenue loss from the changes in the labor supply is given by

B =
T 0

1� T 0 y(�
�)f(��)d�d�:

If T 0 is chosen optimally, then this perturbation should leave the tax revenues unchanged,

so that M +B = 0 or

T 0(��)

1� T 0(��) =
�
1 +

1

�

�
1� F (��)
��f(��)

= 
1� F (��)
��f(��)

:

For general preferences U(c; l) the analysis is similar except that now there is an additional

income e¤ect that a¤ects the labor supply of agents above �� + d� (see Saez (2001)).

Consider a two-good economy with preferences (32). In this case, there is an additional tax

on good w, P (wjy); which we assume to converge to P 0 for high types. The same perturbation

of taxes T 0 generally decreases consumption of good w through income e¤ects by amount

dw(�)=d� . There is an additional revenue e¤ect P 0
R1
�

dw(�)
d� f(�)d�: If P 0 > 0; this e¤ect

decreases tax revenues and results in lower optimal T 0: From the static multi-good analysis

(see Mirrlees (1986)), P 0 > 0 is optimal if Ucl < 0, which is satis�ed in the case of quasi-linear

preferences.

This reasoning suggests that the cross partial elasticity Ucl is important to understand the

distinction between the static and dynamic economies. We investigate this further and consider

general preferences U(c; l), where U is increasing, twice di¤erentiable and jointly concave in c

6 In particular, � = 1= ( � 1) :
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and �l: To make comparisons with the previous result more straightforward, we assume that

U(c; l) satis�es

Ucl
Ul
Uc
= Ucl

Ucl
Ucc

: (33)

We also de�ne a Frisch elasticity of labor supply �Fr:

�Fr =
Ul

l
�
Ull � U2cl=Ucc

� :
In general, �Fr depends on the allocations c(�) and y(�) as well as the type �. We denote

�Fr evaluated at the optimal values of c(�) and y(�) for type � by �Fr(�). For many standard

preferences, �Fr is constant. For example, 1 + 1=�Fr =  in the quasi-linear utility case and

in a separable utility case U(c; l) = U(c)� l

 .

Proposition 3. Suppose that U (c; l) satis�es (33). Then

T 0D;t (�)

1� T 0D;t (�)
=

�
1 +

1

�Fr(�)

�
1� ~Ft (�j��)
� ~ft (�j��)

Z 1

�

Uc(�)

Uc(x)

�
1� �t(x) �Uc;t (x)

�t

� ~ft (xj��) dx
1� ~Ft (�j��)

where ~ft; �t; �t are de�ned as in Proposition 1, and

	(�) = exp

�Z �

0
� Ucl(x)

Uc(x)Ul(x)

�
U 0t(x) + �!1;t (xjx)

�
dx

�
:

When U(c; l) is quasi-linear, as in the analysis above, it is easy to show that the same result

as in the previous analysis. When U(c; l) does not satisfy (33), the optimal labor distortions

satisfy the same equation but �Fr(�) cannot longer be interpreted as a Frisch elasticity.

This proposition shows the in�uence of the cross-partial Ucl on the optimal labor wedges.

Note that the only place in which a dynamic term appears in the expressions is the term

!1(xjx) in the expression for 	(�): When Ucl < 0, it creates a force that makes the tail ratio
1� ~Ft(�j��)
� ~ft(�j��)

thinner and lowers the optimal labor wedges. When Ucl > 0, there is a force that

makes the tail ratio fatter and increases the optimal labor wedges.

When preferences are separable, Ucl = 0, the dynamic labor wedges are similar to those in

static model. In this case 	(�) = 1 and ~f = f: With i.i.d. shocks (or as long as �t � 0 with

persistent shocks) the integral
R1
�

Uc(�)
Uc(x)

�
1� �t(x) �Uc;t(x)

�t

�
~ft(xj��)dx
1� ~Ft(�j��)

goes to 1 for su¢ ciently

high types, and labor wedges converge as in the static model to�
1 +

1

�Fr(�)

�
1� Ft (�j��)
�ft (�j��)

,

and with U(c; l) = U(c)� l

 this expression becomes 
1�Ft(�j��)
�ft(�j��) :
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6 Consolidated Income Accounts - A Theory of Decentraliza-
tion

Previous sections characterized the optimal labor and savings distortions (wedges). In dynamic

Mirrleesian taxation models, optimal wedges do not necessarily coincide with the taxes imple-

menting the optimal allocations (see, e.g., Kocherlakota (2005), Albanesi and Sleet (2006),

Golosov and Tsyvinski (2006)). In this section, we provide a novel implementation of the

optimal allocations � a consolidated income accounts (CIA) tax system. In a given period,

the labor income tax depends on labor income and on the balance of the CIA, the savings

tax depends only on the amount of savings; the CIA balance is updated as a function of the

labor income and the previous balance. We then show that the CIA system takes a particu-

larly simple form if the utility is exponential and the shocks are i.i.d. The tax system consists

of a non-linear tax on capital income, non-linear labor income tax, and a CIA account. In

each period a taxpayer can deduct the balance of the account from the total income tax bill.

Thus, while all agents with the same labor income are facing the same marginal tax rate, the

total tax bill is smaller for the agents with a higher CIA balance. Updating the CIA balance

follows a simple rule. In each period a change in the CIA balance is determined solely by the

individual�s labor income in that period. Moreover, if the distribution of the shocks does not

change over time, taxes do not depend on age of the agent. We conclude with a numerical

simulation of the optimal taxes. In our simulation, labor income taxes are lower than labor

income distortions as they incorporate the e¤ects of updating the CIA balance.

6.1 Implementation in a general case

We consider a T period model of the economy described in the previous sections. The optimal

allocations
�
c�t
�
�t
�
; y�t
�
�t
�	

�t2�t solve a generalized version of (2):

max
fct(�t);yt(�t)g�t2�t

E0

(
TX
t=1

�tU
�
ct
�
�t
�
; yt
�
�t
�
=�t
�)

(34)

subject to the incentive compatibility constraint

E0

(
TX
t=1

�tU
�
ct
�
�t
�
; yt
�
�t
�
=�t
�)

� E0

(
TX
t=1

�tU
�
ct
�
�
�
�t
��
; yt
�
�t
�
�t
��
=�t
�)

for all �t
�
�t
�
; (35)
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and the feasibility constraint

E0
TX
t=1

�t�1ct
�
�t
�
� E0

TX
t=1

�t�1yt
�
�t
�
:

As in Kocherlakota (2005), we impose the following assumption on the optimal allocations.

Assumption 1. For any �t�1; if � 6= �0 then y�
�
�t�1; �

�
6= y�

�
�t�1; �0

�
.

The tax system that we propose consists of three elements. First, taxes depend on a

consolidated labor income account (CIA) which keeps track of agents�past earning. We denote

by !t 2 R the balance on that account, which is updated according to a rule

!t = gt (ytj!t�1) ; (36)

where gt : R+�R! R. That is, given a previous balance !t�1 and the current amount of labor

income yt, the agent is assigned a new CIA balance of !t according to the function gt. The

second element of the tax system is a nonlinear tax on labor income yt in period t, Tt (ytj!t),

where Tt : R+�R! R. The third element of the tax system is a savings tax � t (ktj!t), where

� t : R+ � R! R.

Next, we formally de�ne the CIA tax system.

De�nition 1. A CIA tax system, f(!t; gt (ytj!t�1)) ; Tt (ytj!t) ; � t (kt)gt, consists of, 8t: (1)

the updating rule for the CIA balance gt (ytj!t�1) with the associated balance !t = gt (ytj!t�1)

and the initial balance !0 = 0, (2) the labor income tax Tt (ytj!t), and (3) the savings tax

� t (kt).

We now formally de�ne the notion of implementation.

De�nition 2. A CIA tax system f(!t; gt (ytj!t�1)) ; Tt (ytj!t) ; � t (kt)gt implements an alloca-

tion
�
~ct
�
�t
�
; ~yt
�
�t
�	

�t2�t if this allocation solves

max
fct(�t);yt(�t);kt+1(�t)g�t2�t

E0

(
TX
t=1

�tU
�
ct
�
�t
�
; yt
�
�t
�
=�t
�)

(37)

subject to the budget constraint

ct
�
�t
�
+kt+1

�
�t
�
� yt

�
�t
�
+��1kt

�
�t�1

�
�Tt

�
yt
�
�t
�
j!t
�
�� t

�
kt
�
�t�1

��
;8t, �t 2 �t and �t � �t�1;

(38)

the updated balances given by (36), and k1; !0 = 0.
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Note that the agents�problem above assumes that the agent can borrow or lend at the

interest rate ��1.7 We are now ready to prove the main result of this section that a CIA

system implements the optimum. The proof of the theorem shows how to construct this

system.

Theorem 1. Suppose that solution to the optimal program (34),
�
c�t
�
�t
�
; y�t
�
�t
�	

�t2�t, sat-

is�es Assumption 1. Then there exists a CIA system that implements
�
c�t
�
�t
�
; y�t
�
�t
�	

�t2�t.

Proof. We prove this theorem in two steps. The �rst step is to construct a tax system

~Tt (yjy1; :::; yt�1) ; � t (k) in which labor income taxes in period t depend on the whole history of

labor earnings. We show that such a system implements the solution to (34),
�
c�t
�
�t
�
; y�t
�
�t
�	

�t2�t .

In the second step, we invoke a standard set theory result to show that the constructed tax

system can be equivalently written as gt (yj!t�1) ; Tt (yj!t�1) ; � t (k). That is, it is su¢ cient

to condition the tax system on the consolidated income account.

Step 1.

We start by recursively constructing the amounts of savings in the optimal allocation:

k�1 = 0;

k�t = ��1k�t�1 + E0
�
y�t
�
�t
�
� c�t

�
�t
�	
; 8t > 1: (39)

For any history �t 2 �t, construct the labor tax

~Tt
�
y�t
�
�t
�
jy�1
�
�1
�
; :::; y�t�1

�
�t�1

��
= y�t

�
�t
�
� c�t

�
�t
�
+ ��1k�t � k�t+1

and set

~Tt
�
yjy�1

�
�1
�
; :::; y�t�1

�
�t�1

��
=1

if there exists no � 2 �t such that y = y�t
�
�t�1; �

�
. Note that this tax is well de�ned because

of Assumption 1 since we can invert history of incomes y�1; :::; y
�
t�1 into the sequence of shocks

�t�1.
7To derive the implications for taxes implementing the optimum one needs to take a stand on what private

insurance contract are available. As it is well known in the literature (see, e.g., Prescott and Townsend (1984) or
Golosov and Tsyvinski (2007)), if unrestricted multi-period contracts are allowed, the competitive equilibrium
allocations are e¢ cient. At the same time, in practice private markets do not provide e¢ cient insurance (see,
e.g., Kocherlakota (2005) for some of the arguments). To better understand the implications of the idiosyncratic
uncertainty on the optimal non-linear taxes, we consider an important benchmark in which without government
intervention no insurance is available to the households beyond borrowing and lending with a risk free rate.
This is the most commonly used benchmark in the literature on implementation.
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We now construct savings taxes following the contribution by Werning (2009). Let � t (k�t ) =

0. First, consider a savings decision in period t = 1 that is di¤erent from the optimal amount

k�2. We denote such saving by (k
�
1 + ") for some " 6= 0. LetW1 ("; �) denote the highest ex-ante

utility that any agent can achieve who saves " additional units in period t = 1 on which he

pays tax � in period t = 2:

W1 ("; �) =

sup
�(�T )2�

E0

(
U

 
c�1
�
�1
�
�1
��
� ";

y�1
�
�1
�
�1
��

�1

!

+ �U

 
c�2
�
�2
�
�2
��
+ ��1"� � ;

y�2
�
�2
�
�2
��

�2

!

+
TX
t=3

�t�1U

 
c�t
�
�t
�
�t
��
;
y�t
�
�
�
�t
��

�t

!)
Note from (35) that

W1 (0; 0) = E0

(
TX
t=1

�t�1U
�
c�
�
�t
�
; y�
�
�t
�
=�t
�)

:

Since W1 ("; �) is monotonically decreasing in � (for a given amount of savings in period t = 1,

"), there exists ��" such that the agent is indi¤erent between the best deviation and the optimal

allocation:8

W1 ("; �
�
") =W1 (0; 0) :

For all ", set �2 (k�1 + ") = ��"

Similarly, de�ne byW2 ("; �) the utility under best deviation (for a given amount of savings

") for period t = 2:

W2 ("; �) = sup
�(�T )2�;"1

E0

(
U

 
c�1
�
�1
�
�1
��
� "1;

y�1
�
�1
�
�1
��

�1

!

+ �U

 
c�2
�
�2
�
�2
��
+ ��1"1 � �2 (k�1 + "1)� ";

y�2
�
�2
�
�2
��

�2

!

+ �2U

 
c�3
�
�3
�
�3
��
+ ��1"� � ;

y�3
�
�3
�
�3
��

�3

!

+

TX
t=4

�t�1U

 
c�t
�
�t
�
�t
��
;
y�t
�
�
�
�t
��

�t

!)
8To be absolutely precise, this also requires W1 ("; 0) �W1 (0; 0), which is clearly true here.
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Given the amount of savings in period t = 2, ", and the tax in period t = 3, � , the agent

chooses the reporting strategy �
�
�T
�
2 � and the savings in period t = 1, "1. The agent pays

the savings tax �2 (k�1 + "1) on savings "1.

As before, we �nd ��" (for a given amount of savings in period t = 2, ") such that an agent

is indi¤erent between the best deviation and the optimal allocation:

W2 ("; �
�
") =W2 (0; 0)

We then set the savings tax in period t = 3, �3 (k�2 + ") = ��". We proceed by induction to

de�ne � t (kt) for all t > 1.

Now, we verify that constructed tax system
n
~Tt; � t

o
t
implements the optimum. Consider

any sequence of labor incomes yt
�
�t
�
, 8�t 2 �t. We want to show that for any such sequence,

and the equilibrium choice of consumption c
�
�t
�
and savings kt, agent�s utility is weakly less

than utility from choosing the optimal allocation
�
c�t
�
�t
�
; y�t
�
�t
�	

�t2�t and the corresponding

sequence fk�t gt. First, we can restrict our attention to the sequences yt
�
�t
�
that satisfy yt

�
�t
�
=

y�t

�
�̂
t
�
for some �̂

t
. From the de�nition of the labor taxes, all other sequences involve labor

taxes su¢ ciently large that an agent does not choose them. Construction of capital taxes

implies that the agent�s choice of savings satis�es kt = k�t , for all t: This implies that the

agent�s choice of consumption ct
�
�t
�
= c�t

�
�̂
t
�
: Let �̂t

�
�t
�
= �̂

t
for all t: Then the utility of

the agent from such a labor choice is

E0

(
TX
t=1

�tU
�
c
�
�̂
�
�t
��
; y
�
�̂
�
�t
��
=�t
�)

which, by (35), is less then his utility of optimal allocation.

E0

(
TX
t=1

�tU
�
c�t
�
�t
�
; y�t
�
�t
�
=�t
�)

:

In other words, the above reasoning is as follows. Labor taxes are constructed such that

agent chooses income from the menu of the optimal allocations under di¤erent strategies.

Capital taxes are constructed such that the agent�s savings and consumption are among the

menu of the optimal allocations. Finally, the incentive compatibility constraint insures that

the best choice of such consumption and labor menu is indeed the optimal allocation.

Step 2.
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We now construct a CIA tax system. Recall that a t-dimensional space of real numbers

is equivalent to R, i.e., there is a bijection qt : Rt ! R (see, e.g. Problem 9 on page 20 in

Kolmogorov and Fomin (1975)). Let !t = qt (y1; :::; yt) and denote by q�1t the inverse of qt.

De�ne taxes as

Tt (yj!t�1) = ~Tt
�
yjq�1t�1 (!t�1)

�
and

� t (kj!t�1) = � t
�
kjq�1t�1 (!t�1)

�
:

Finally de�ne a consolidated labor income account as

gt (yj!t�1) = qt
�
q�1t�1 (!t�1) ; y

�
:

It is clear from the construction that this system implements the same allocations as the tax

system constructed in Step 1.

Theorem 1 is quite general. In particularly, as long as Assumption 1 is satis�ed, the

theorem does not depend on the details of the stochastic process for skills or the form of

preferences and holds irrespective of whether only local incentive constraints bind. However,

despite the simplicity of construction, the tax functions would not be necessarily well behaved

with respect to !t: For example, the proof does not say anything about whether these functions

are continuous, monotonic, or di¤erentiable.

Theorem 1 establishes that the planner needs relatively limited amount of information to

design taxes that implement the optimal allocation. It is possible to set up a rule for the

consolidated income account that keeps track of a one dimensional summary statistics of the

past labor incomes, together with nonlinear taxes on labor (which is a function of that summary

statistics) and savings taxes to achieve the constrained-e¢ cient allocations.

6.2 Implementation in a simple case

At the level of generality in the previous section, it is di¢ cult to characterize the CIA rule gt

or the dependence of labor taxes on the CIA balance Tt (ytj!t) in more details. We turn to a

special case of our model which allows to understand the properties of a CIA system in simple

cases.
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Proposition 4. Suppose �t are i.i.d. with the distribution F (�t), and the utility satis�es (23).

Then there exists a CIA tax system that implements the optimal allocation and satis�es

Tt (ytj!t�1) = Tt (yt)� !t�1;

and

!t = gt (yt) + !t�1:

Proof. In the Appendix

This Proposition shows that when shocks and utility satisfy assumptions of Proposition

4, the tax system takes a particularly simple form. It consists of a non-linear tax on capital

income, a non-linear labor income tax, and a CIA account. In each period a taxpayer can

deduct the balance of the account from the total income tax bill. Thus, while all agents with

the same labor income are facing the same marginal tax rate, the total tax bill is smaller

for the agents with a higher CIA account. Similarly, rules for the updating the CIA balance

follow a simple rule. In each period the increase on your account is determined solely by the

individual�s labor income in that period.

To gain further understanding of the CIA tax system implementing the optimal allocation

in this case, we provide a numerical simulations in a two period version of our economy with

i.i.d. shocks. We compute T and g functions for an economy with the parameters described in

Section 3.2 and present them in Figure 4.

The marginal CIA function g0 is represented by a dashed line in Figure 4. The function

g0 is at a minimum of 3% at the level of income of $10; 000. It then reaches 10% at $61; 000

income, then increases reaching a maximum of 11% at $112; 000 income, and then declines for

higher incomes reaching 8% at $300; 000 income. We note that for higher income levels - at

least above $50; 000 - the marginal CIA function g0 stays close to 10%. The value of g0 equal

to 10% has the following interpretation: an agent�s $1 of additional income in period t = 1

reduces the agent�s tax liability in period t = 2 by 10 cents in real terms.

The solid lines in Figure 4 plot the marginal labor tax functions T 01 and T
0
2. We note that

the marginal labor tax functions T 01 and T 02 strongly resemble the shapes of the respective

optimal labor distortions we obtained in Section 3.2.

To facilitate the analysis, we reproduce optimal marginal labor distortions from subsection

3.2 together with the marginal labor tax functions T 01 and T
0
2 in Figure 5 for comparison. The
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Figure 4: Implementation with a CIA tax system.

labor distortion in period t = 1 is represented by a dashed line in Figure 5. A dot-dashed line

in Figure 5 - which coincides with T 02 - represents the labor distortion in period t = 2.

First, notice is that the marginal labor taxes in period t = 1, T 01(y), are lower than the mar-

ginal labor distortions, T 0D;1(y): To understand this result, consider the �rst order conditions

for problem (37):

�Ul
1

�
=
�
1� T 01 (y1)

�
Uc + �g

0
1(y1);

where � is a Lagrange multiplier on the balance of the CIA (36). As we saw from Figure 1,

in the optimal allocation agents with higher y1 receive higher period t = 2 utility, which, from

construction of g1, implies that g01 (y1) > 0. Therefore

T 01 (y1) < T 0D;1 (y1) :

The labor taxes are lower than then the distortions characterized in equation (25). This

relationship is not surprising. The labor choice of individuals is distorted by both the marginal

tax rate on labor income, and by the distortions arising from the CIA. The CIA is used to

provide incentives dynamically �agents with higher income are assigned a higher CIA balance.

The sum of the two distortions is equal to the optimal labor distortion characterized in Section

3. Therefore, the marginal tax rate are lower than the optimal labor distortions.
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Figure 5: Implementation with a CIA tax system vs. optimal labor distortions.

We now compare our decentralization to the ideas of cumulative income tax averaging

proposed by Vickrey (1939) and Vickrey (1947). One of the main motivations behind Vickrey�s

proposal was to avoid �inequality of burden as between taxpayers of �uctuating and of steady

incomes�. Although the implementation details of our proposal di¤er from those of Vickrey�s,

conceptually they are closely related. Table 1 compares two individuals, with a similar present

value realization of labor income, and the total labor taxes they pay. The present value of taxes

for these individuals are similar, which is in line with Vickrey�s motivation for the cumulative

average income tax. The details di¤er. Under Vickrey�s proposal, an individual in period t = 2

should pay tax based on the lifetime present value of the labor income. In our decentralization,

the labor tax in period t = 2 is on labor income in that period, but the �rst individual gets

a bigger CIA credit for the higher taxes he paid in period t = 1. Our system is a natural

extension of Vickrey since it allows to provide better insurance against idiosyncratic shocks by

incorporating savings distortions.
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Table 1. Two realizations of labor income, labor taxes, and CIA balances
(optimal allocation is computed in Section 3.2,
units are normalized so that y1 (�1 = 10) = 1)

�1 �2 y1 (�1) + �y2 (�2) T1 (y1) + �T2 (y2) g1 (y1)

Realization 1: 10 9 1.66 0.64 0.14
Realization 2: 9 10 1.63 0.58 0.09

It is also relatively easy to extend the implementation to the case of the persistent shocks

in the environment with exponential utility. There, the tax functions would also need to keep

track of the CIA depending on the previous realization of income.

7 Conclusion

This paper provides a methodology to study the determinants of optimal distortions and taxes

using the �rst-order conditions of the optimal mechanism design problem. The dynamic op-

timal taxes di¤er signi�cantly from the static ones. Our formulas for the labor and the savings

wedges show the forces determining these wedges. We then provide numerical simulations for a

realistically calibrated economy. Finally, we derive a novel implementation using consolidated

income accounts.
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8 Appendix

Preliminary and incomplete

8.1 Proof of Lemma 1

Consider a Hamiltonian to (10) and use (14) to substitute for w(�)

H = �
�
c (�)� y (�) + �Vt+1

�
��1 (u(�)� U(c(�); y(�)=�)) ; w2(�); �

��
ft (�j��)

+�(�)Ul(c(�); y(�)=�)

�
�y (�)

�2

�
+ �w2 (�)

�pu (�) f (�j��)� p2u (�) f2(�j��)

= �
�
c (�)� y (�) + �Vt+1

�
��1 (u(�)� U(c(�); y(�)=�)) ; w2(�); �

��
ft (�j��)

+�(�)Ul(c(�); y(�)=�)

�
�y (�)

�2

�
+ �w2 (�)�

� p

p2
� f2(�j��)
f (�j��)

�
p2u (�) f (�j��)

and let (c�; y�; w�2; �
�; p�; p�2) be a solution. Let � = �p�=p�2: Using direct substitution it is

straightforward to verify that (c�; y�; w�2; �
�; p�2) is a solution to a Hamiltonian for (15).

8.2 Proof of Proposition 1

Form the Hamiltonian to (22):

H = �
�
1


l (�) + �U�1 ([u (�)� �w (�)])� �l (�) + �Vt+1 (w (�) ; w2 (�) ; �)

�
f (�j��)

+p2u (�) f (�j��)
�
p� f2(�j��)

f (�j��)

�
+ �(�)

�
m (u (�)� �w (�)) l (�)



�
� �w2 (�)

�
where p2 > 0 and �pp2 are the adjoint functions associated with (13) and (12) respectively.

First we characterize the labor wedge (28). De�ne r(�) = c(�) � 1
 l(�)

 : The �rst order

condition with respect to u (�) is�
� 1
�Uc (r(�))

+ p2

�
p� f2(�j��)

f (�j��)

��
f (�j��) + � (�)m0 (u (�)� �w (�)) l (�)



�
= ��0 (�) :

This is a second order di¤erential equation, that has a solution
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� (�) =Z 1

�
� 1
�Uc(r(x))

exp

0@Z x

�
m0
�
u
�
~�
�
� �w

�
~�
�� l �~��

~�
d~�

1A�1� p2�p� f2(�j��)
f (�j��)

�
�Uc(r(x))

�
dF (xj��) :

(40)

We proceed to take the �rst order condition of the Hamiltonian with respect to labor l (�):h
l (�)�1 � �

i
f (�) = �(�)m (u (�)� �w (�j�)) l (�)

�1

�
: (41)

>From the de�nition of labor distortion (16),

T 0D (�) = 1�
l (�)�1

�
; (42)

which implies together with (41) that

T 0D (�)

1� T 0D (�)
= ��(�)m (u (�)� �w (�))

�f (�j��)
(43)

= ��(�) �Uc(r(�))


�f (�j��)
:

We now proceed to characterize �(�) �Uc(r(�)) by substituting the expression for � (�) from

(40) and using the fact that m0 (�) =
�Ucc(r(�))
�Uc(r(�))

.

�(�) �Uc(r(�)) =

Z 1

�
�
�Uc(r(�))
�Uc(r(x))

exp

0@Z x

�

�Ucc(r(~�))
�Uc(r(~�))

l
�
~�
�
~�

d~�

1A�1� p2�p� f2(�j��)
f (�j��)

�
�Uc(r(x))

�
f (xj��) dx:

(44)

Observe that

�Uc (r(�))
�Uc(r(x))

= exp

�
ln

� �Uc (r(�))
�Uc(r(x))

��
= exp

 
�
Z x

�

�Ucc(r(~�))
�Uc(r(~�))

dr(~�)

!
:

To �nd dr(~�) observe that �U(r(~�)) = U(~�) and therefore �Uc(r(~�))dr(~�) = U 0(~�): This implies

that

dr(~�) =
U 0(~�)
�Uc(r(~�))

d~� =
u0(~�)� �w0(~�)
�Uc(r(~�))

d~�:

Therefore,
�Uc (r(�))
�Uc(r(x))

= exp

 
�
Z x

�

�Ucc(r(~�))
�Uc(r(~�))

u0(~�)� �w0(~�)
�Uc(r(~�))

d~�

!
: (45)
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Substitute expression for u0(~�) from (20) to (45) and observe that since w(�) = !(�j�) and

w2(�) = !2(�j�); then

w0(�) = !1(�j�) + !2(�j�)

= !1(�j�) + w2(�): (46)

Then expression (45) implies that

�Uc (r(�))
�Uc(r(x))

= exp

0@�Z x

�

�Ucc(r(~�))
�Uc(r(~�))

0@ l
�
~�
�
~�

� �!1(~�j~�)
�Uc(r(~�))

1A d~�

1A :

Substitute (45) into (44)

�(�) �Uc(r(�)) =

Z 1

�
� exp

0@Z x

�

�Ucc(r(~�))
�Uc(r(~�))

�!1

�
~�j~�
�

�Uc(r(~�))
d~�

1A�1� p2�p� f2(�j��)
f (�j��)

�
�Uc(r(x))

�
f (xj��) dx:

(47)

Substitute (47) into (43)

T 0D (�)

1� T 0D (�)
=



�f (�j��)
(48)

�
Z 1

�
exp

0@Z x

�

�Ucc(r(~�))
�Uc(r(~�))

�!1

�
~�j~�
�

�Uc(r(~�))
d~�

1A�1� p2�p� f2(�j��)
f (�j��)

�
�Uc(r(x))

�
f (xj��) dx

=


�f (�j��) exp
�R �

0

�Ucc(r(~�))
�Uc(r(~�))

�!1(~�j~�)
�Uc(r(~�))

d~�

�

�
Z 1

�
exp

0@Z x

0

�Ucc(r(~�))
�Uc(r(~�))

�!1

�
~�j~�
�

�Uc(r(~�))
d~�

1A�1� p2�p� f2(�j��)
f (�j��)

�
�Uc(r(x))

�
f (xj��) dx

De�ne

	(�) = exp

0@Z x

0

�Ucc(r(~�))
�Uc(r(~�))

�!1

�
~�j~�
�

�Uc(r(~�))
d~�

1A
and

~f(�j��) =
	(�)f(�j��)R1

0 	(x)f(xj��)dx
:

Then (48) can be re-written as

T 0D (�)

1� T 0D (�)
= 

1� ~F (�j��)
� ~f (�j��)

Z 1

�

�
1� p2

�
p� f2(�j��)

f (�j��)

�
�Uc (x)

�
f (xj��) dx
1� ~F (�j��)

(49)
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Using � (0) = 0; we obtain

0 =

Z 1

0

�
1� p2

�
p� f2(�j��)

f (�j��)

�
�Uc (x)

�
~f (xj��) dx: (50)

Let � � 1=p2: Then (50) implies that

� =
1

p2
=

Z 1

0

�
p� f2(�j��)

f (�j��)

�
�Uc (x) ~f (xj��) dx: (51)

Substitute (51) into (49) to obtain (28).

We proceed to derive the marginal capital wedge (29). Take the �rst order condition of the

Hamiltonian with respect to w(�)�
� �
�Uc (rt(�))

� @Vt+1 (w (�) ; w2 (�) ; �)

@w (�)

�
f (�j��) = ���t(�)

�Ucc (rt(�))
�Uc (rt(�))

lt (�)


�
: (52)

Rearrange (52)

� �
�

�Uc (rt(�)) @Vt+1 (w (�) ; w2 (�) ; �)

@w (�)
= 1� 1

f (�j��)
��t(�) �Uc (rt(�))

�Ucc (rt(�))
�Uc (rt(�))

lt (�)


�
:

Now use the expression (42) and (43)

� �

�

�Uc (rt(�)) @Vt+1 (w (�) ; w2 (�) ; �)

@w (�)
= 1�  (�) 1


T 0D;t (�) yt (�) : (53)

>From the envelope theorem

@Vt+1 (w (�) ; w2 (�) ; �)

@w (�)
= �pt+1p2;t+1;

where pt+1p2;t+1 can be determined from the equivalent of equation (50) for period t+ 1

pt+1p2;t+1 =

Z 1

0

�
1� ~� f2;t+1 (xj�)

ft+1(xj�)

�
�Uc (rt+1(x)) ~ft+1(xj�)dx

where ~� is a constant. Then the wedge on capital is given by

1� �S;t(�) = zt(�)

�
1�  (�)


T 0D;t(�)yt(�)

�
;

where

zt(�) =

R1
0

�
1� ~� f2;t+1(xj�)ft+1(xj�)

�
�Uc (rt+1(x)) ~ft+1(xj�)dxR1

0
�Uc (rt+1(x)) ft+1(xj�)dx

:

For future references it also will be useful to have the following �rst order condition with

respect to w2(�)

@Vt+1 (w(�); w2(�); �)

@w2(�)
= ��

�

�(�)

f(�j��)

=
�

�

T 0D;t(�)

1� T 0D;t(�)
�
�Uc(�)

:
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8.3 Proof of Proposition 2

Proof of part 1.

Suppose that ft+1(�j��) is independent of �� so that f2;t+1(�j��) = 0: In this case the

optimal allocation in period t + 1 minimizes (22) subject to (20) and (12). This problem is

independent of w2;t+1 and it is decreasing in wt+1, therefore @Vt+1(wt+1; w2;t+1; �)=@wt+1 < 0:

Let p01 = �@Vt+1(wt+1; w2;t+1; �)=@wt+1:

Let (l�; u�; w�; w�2) denote the solution to (22). Then they must satisfy equation (53).

The left hand side of that expression is positive, since @Vt+1(wt+1; w2;t+1; �)=@wt+1 is negat-

ive. Since  (�) is bounded away from zero, this implies that T 0D;t(�)y(�) is bounded from above.

Since y(�) = �=(�1)
�
1� T 0D;t(�)

�1=(�1)
; it must be true that �=(�1)

�
1� T 0D;t(�)

�1=(�1)
T 0D;t(�)

is bounded from above, which is possible only if T 0D;t(�) converges to either 0 or 1.

Next we show that T 0D;t(�)! 0:

Suppose T 0D;t(�) ! 1: Since �=(�1)
�
1� T 0D;t(�)

�1=(�1)
T 0D;t(�) is bounded, it must be

true that �
�
1� T 0D;t (�)

�
is bounded, and therefore �

�
1� T 0D;t (�)

�
! 0:

Since �
�
1� T 0D;t (�)

�
= l� (�)�1 and  > 1; this implies that l� (�)! 0: Moreover,

�
�
1� T 0D;t (�)

�
= ��1l� (�)�1

= y� (�)�1 ;

so that y�(�) is bounded. Let �y be the least upper bound of y:

Pick " > 0 and choose �� so that for all � � ��

1



� �y
�

�
� " (54)

and

�y + " �  � 1


�=(�1) (55)

Such �� exists because the left hand side of (55) is increasing in �; while the left is decreasing

in �:

For our purposes it will be convenient to consider a dual to (22), which can be written as

max
c;y;w

Z
(U(c(�); y (�)) + �w (�)) dFt (�)
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s.t. (20) and Z
(c(�)� y(�) + �Vt+1(w(�))) dF (�) � Vt(�):

The proof proceed in two steps. First we establish the bound for the utility at the tail of

the distribution [��;1) that the allocation may achieve if T 0D;t(�)! 1: Second we show that an

unconstrained allocation is incentive compatible and achieves higher utility.

Step 1.

Let K�� =
R1
�� (y�(�)� c� (�)) dF (�) =(1�F

�
��
�
) and 
�� =

R
Vt+1(w

�(�))dF (�) =(1�F (�)):

De�ne allocation
�
cfb; wfb

�
as a solution to

W fb
��
= max

c;w

Z 1

��
(U(c(�); y� (�)) + �w (�))

dFt (�)

1� Ft
�
��
� (56)

s.t. Z 1

��
c (�)

dFt (�)�
1� Ft

�
��
�� = Z 1

��
y� (�)

dFt (�)�
1� Ft

�
��
�� �K��

and Z 1

��
Vt+1(w (�))

dFt (�)�
1� Ft

�
��
�� = 
��

It can be shown that V is concave, so wfb(�) = 
�� for all � is a solution. Since this

is an unconstrained maximization problem that consumes the same amount of resources as

(c�; y�; w�), it must be true that

W fb
��
�
Z 1

��
u� (�)

dFt (�)

1� Ft
�
��
� : (57)

Since u� (�) is increasing in � because of incentive compatibility, (57) implies

W fb
��
� u�

�
��
�
: (58)

The �rst order conditions to (56) also imply that

cfb (�)� 1



�
y� (�)

�

�
= cfb

�
�0
�
� 1



 
y�
�
�0
�

�0

!
(59)

for all �; �0 � ��: Therefore from (54) for all �; �0 � ��

cfb (�)� cfb
�
�0
�
� ":
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Since
R1
�� cfb (�) dF (�)

(1�F(��))
=
R1
�� y� (�) dF (�)

(1�F(��))
�K��; this implies that for all � � ��

cfb
�
��
�
�

Z 1

��
y� (�)

dFt (�)�
1� Ft

�
��
�� �K�� + "

� �y �K�� + ":

Therefore

U
�
cfb (�) ; lfb (�)

�
< U

�
cfb (�) ; 0

�
� �U (�y �K�� + ")

and

W fb
��
�
Z 1

��

�
�U (�y �K�� + ") + wfb

� dFt (�)

1� Ft
�
��
� :

Now, de�ne an autarkic allocation. Let laut (�) = �1=(�1) and yaut (�) = �=(�1); caut (�) =

yaut (�)�K�� and w
aut (�) = wfb for all � � ��; and yaut(�) = y

�
(�); caut(�) = c�(�); waut(�) =

w�(�) for all � < �� Also de�ne

Uaut (�) = �U

�
 � 1


�=(�1) �K��
�

and

W aut
�� =

Z 1

��
Uaut (�)

dF (�)

1� F
�
��
� + �wfb:

Note that W aut
��

> W fb
��
since

W aut
�� �W fb

��
=

Z 1

��

�
Uaut (�)� U

�
cfb (�) ; lfb (�)

�� dF (�)

1� F
�
��
�

>

Z 1

��

�
�U

�
 � 1


�=(�1) �K��
�
� �U (�y + "�K��)

�
dF (�)

1� F
�
��
�

� 0

where the last inequality follows from (55).

Not also that since the expression inside of the integral is positive for all � � ��; this implies

U
�
caut(��); yaut(��)=��

�
+ �waut(��) > W fb

��
� u�(��) (60)

By construction Z 1

��
(c�(�)� y�(�) + �V (w�(�))) dFt(�)

=

Z 1

��

�
cfb(�)� y�(�) + �V (wfb)

�
dFt(�)

=

Z 1

��

�
caut(�)� yaut(�) + �V (waut)

�
dFt(�)
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Also Z 1

��

�
U(caut (�) ; yaut(�)=�) + �waut

�
dFt(�)

�
Z 1

��

�
U(cfb (�) ; y�(�)=�) + �wfb

�
dFt(�)

�
Z 1

��
(U(c� (�) ; y�(�)=�) + �w�(�)) dFt(�)

Thus, if
�
caut; yaut; waut

�
it is incentive compatible, it is both feasible and give higher welfare

than (c�; y�; w�) ; which implies that (c�; y�; w�) cannot be optimal.

To show that
�
caut; yaut; waut

�
is incentive compatible, we need to verify that

U

�
caut (�) ;

yaut (�)

�

�
+�waut (�) � U

 
caut

�
�0
�
;
yaut

�
�0
�

�

!
+�waut

�
�0
�
for all �; �0 � �� (61)

and

U

�
caut (�) ;

yaut (�)

�

�
+�waut (�) � U

 
c�
�
�0
�
;
y�
�
�0
�

�

!
+�w�

�
�0
�
for all � � ��; �0 < �� (62)

Equation (61) follows from construction of allocation
�
caut; yaut; waut

�
:

Now consider equation (62). The single crossing property of U imply that if for � > �� > �0

U

�
caut (�) ;

yaut (�)

�

�
+ �waut (�) � U

 
caut

�
��
�
;
yaut

�
��
�

�

!
+ �waut

�
��
�

and

U

 
caut

�
��
�
;
yaut

�
��
�

��

!
+ �waut

�
��
�
� U

 
c�
�
�0
�
;
y�
�
�0
�

��

!
+ �w�

�
�0
�
for �0 < �� (63)

then

U

�
caut (�) ;

yaut (�)

�

�
+ �waut (�) � U

 
c�
�
�0
�
;
y�
�
�0
�

��

!
+ �w�

�
�0
�
:

Equation (63) is true because (60) and incentive compatibility of (c�; y�; w�) imply

uaut
�
��
�

> u�
�
��
�

� U

 
c�
�
�0
�
;
y�
�
�0
�

��

!
+ �w�

�
�0
�
for all �0 < ��:

Therefore (62) holds.

Proof of part 2
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Since f"2 (�j��) converges uniformly to 0, then f" (�j��) converges uniformly to f(�) (The-

orem 7.17 in Rudin (1976)). By Berge�s Theorem of Maximum then T "0D(�) ! T 00D (�) in sup

norm. Since from part 1 T 00D (�)! 0 as � !1; that implies that T "0D(�)! 0 as � !1 for all

" su¢ ciently small.

8.4 Proof of Proposition ??

First, we consider the �rst order conditions to the Hamiltonian (??) for which we explicitly

substitute (23) and (??).

The �rst order condition with respect to w is

�
� �

 U (�)
� � @Vt+1 (w (�) ; w2 (�) ; �)

@w(�)

�
f (�j��) = �� (�)� 

l (�)

�

and the �rst order condition with respect to w2 is

�
@Vt+1 (w (�) ; w2 (�) ; �)

@w2(�)
f (�j��) = ��(�)

Substitute (??) to obtain

@Vt+1 (w(�); w2(�); �)

@w(�)
= a0t

�w2
w
j��
��w2

w

��
� 1
w

�
� bt
 

1

w

and
@Vt+1 (w(�); w2(�); �)

@w2(�)
= a0t

�w2
w
j��
�� 1

w

�
:

Substitute these expressions into the FOCs for w2 and w :

a0t

�w2
w
j��
�� 1

w

�
=
�

�

�(�)

f (�j��)
(64)

and �
� �

 U (�)
� �a0t

�w2
w
j��
��w2

w

��
� 1
w

�
+ �

bt
 

1

w

�
f (�j��) = �� (�)� l (�)



��
1

U (�)
+  �a0t

�w2
w
j��
��w2

w

��
� 1
w

�
� �bt

1

w

�
=

� (�)

f (�j��)
 2
l (�)

��
1 +

� 

�
a0t

�w2
w
j��
��w2

w

��
�U(�)

w

�
� �

�
bt
U(�)

w

�
=

� (�)U(�)

f (�j��)
 2
l (�)

�

>From the previous analysis we showed that

T 0(�)

1� T 0(�) =
�(�) U(�)

�f(�j��)
(65)

44



and
� (�)U(�)

f (�j��)
 2
l (�)

�
=
 


T 0D;t(�)y(�):

Note that last expression implies that �(�) � 0. Therefore (64) implies that a0t
�
w2
w j��

�
� 0:

After substitutions,�
1 +

� 

�
a0t

�w2
w
j��
��w2

w

��
�U(�)

w

�
� �

�
bt
U(�)

w

�
=
 


T 0D;t(�)y(�)

or

1� �

�
bt
U(�)

w
=
 


T 0D;t(�)y(�) +

� 

�
a0t

�w2
w
j��
��w2

w

��U(�)
w

�
: (66)

Use (64) and (65) to get

 a0t

�w2
w
j��
��U(�)

w

�
=

�

�

�(�)U(�) 

�f (�j��)
�



=
�

�

�



T 0(�)

1� T 0(�)

Substitute it into (66)

1� �

�
bt
U(�)

w
=
 


T 0D;t(�)y(�) +

�w2
w

� �


T 0D;t(�)

1� T 0D;t(�)

or

1� �

�
bt
U(�)

w(�)
=
T 0D;t(�)�



 
 l(�) +

�
w2(�)

w(�)

�
1

1� T 0D;t(�)

!
(67)

We prove the result of the Proposition three steps.

Step 1: If f satis�es (??), then w2(�)=w(�) is bounded from below

Consider w2(�) :

w2(�) =

Z 1

0
u(�)

f2(�j�)
f(�j�) f(�j�)d�

=

Z
f2�0

u(�)
f2(�j�)
f(�j�) f(�j�)d� +

Z
f2<0

u(�)
f2(�j�)
f(�j�) f(�j�)d�

Since the �rst integral is negative and the second is positive

w2(�j�) �
Z
f2<0

u(�)
f2(�j�)
f(�j�) f(�j�)d�

� �$
Z
f2<0

u(�)f(�j�)d�
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This implies (since w(�) =
R
u(�)f(�j�)d� < 0) that

w2(�j�)
w(�j�) � �$

R
f2<0

u(�)f(�j�)d�R
u(�)f(�j�)d� � �$

Step 2. If w2(�)=w(�) is bounded from below, then either T 0D;t(�)! 0 or T 0D;t(�)! 1:

Suppose T 0D;t(�) does not converge to either zero or 1. Then there must exist some � > 0

and an in�nite subsequence �i s.t. T 0D;t(�i) 2 [�; 1� �] : This implies that

T 0D;t(�i)�i

 
!1:

>From the �rst order condition on labor

l(�)�1 = �(1� T 0D;t(�)) (68)

we get l(�i)!1; while �
w2(�i)

w(�i)

�
1

1� T 0D;t(�i)

is bounded from below. Therefore the right hand side of (67) goes to in�nity. Since U(�); w(�) <

0; the left hand side of (67) is bounded by 1, which leads to a contradiction.

Step 3. T 0D;t(�) cannot converge to 1.

This steps is analogous to Step 3 of the proof of Proposition 2.

8.5 Value functions in exponential case

In this section we will prove the form of the value function when utility is exponential that

were used in the paper. We prove it for the case when shocks are persistent. With i.i.d. shocks

the proof is analogous.

Following the same steps as the proof of Proposition ??, we can show that VT (w;w2; ��) =

aT
�
w2
w j��

�
� 1

 ln(�w): The rest of the proof is by induction. Re-write expression (10) for

t < T as

Vt(wt; w2t; ��) = max
fy(�);c(�);w0(�);w02(�)g

�
Z �

c(�)� y (�) + �Vt+1
�
w0 (�) ; w02 (�) ; �

��
f (�j��) d�

(69)

U (c (�) ; y (�) =�) + �w0 (�) � U
�
c
�
�0
�
; y
�
�0
�
=�
�
+ �w02

�
�0
�

(70)
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wt =

Z �
U(c(�); y(�)=�) + �w0(�)

�
f (�j��) d�; (71)

w2t =

Z �
U(c(�); y(�)=�) + �w0(�)

�
f2(�j��)d�: (72)

Suppose that Vt+1(w;w2; �) satis�es at+1
�
w2
w j�

�
� 1+�+:::+�T�t�1

 ln(�w):

Let c (�) = ~c (�) � 1
 ln (�w) and w

0 (�) = � ~w0 (�)w and w02 = � ~w02 (�)w Substitute the

newly de�ned variables to (70):

U (~c (�) ; y (�) =�) + � ~w0 (�) � U
�
~c
�
�0
�
; y
�
�0
�
=�
�
+ � ~w02

�
�0
�

(73)

and (71) becomes and (72) become

� 1 =
Z �

U(~c (�) ; y (�) =�) + � ~w0 (�)
�
f (�j��) d� (74)

and

� w2
w
=

Z �
U(~c (�) ; y (�) =�) + � ~w0 (�)

�
f2 (�j��) d� (75)

The objective function in (69) satis�esZ �
c (�)� y (�) + �

�
at+1

�w2
w
j�
�
� 1 + � + :::+ �

T�t�1

 
ln
�
�w0 (�)

���
dF (�j��)

=

Z �
~c (�)� y (�) + �

�
at+1at+1

�
~w2
~w
j�
�
� 1 + � + :::+ �

T�t�1

 
ln
�
� ~w0 (�)

���
dF (�j��)�

1 + � + :::+ �T�t

 
ln (�w)

Therefore for any w; (69) can be re-written as

Vt (w) = min
f~c(�);y(�); ~w0(�)g

Z �
c (�)� y (�) + �Vt+1

�
~w0(�)

��
dF (�j��)�

1 + � + :::+ �T�t

 
ln (�w)

s.t. (73), (74) and (75). Solution f~c (�) ; y (�) ; ~w0 (�)g depends only on �� and w2=w; therefore,

Vt (w;w2; ��) = at(
w2
w j��) �

1+�+:::+�T�t

 ln (�w)

8.6 Proof of Proposition 4

First, consider the recursive formulation of the optimal problem

Vt (w) = min
fc(�);y(�);w0(�)g

Z �
c (�)� y (�) + �Vt+1

�
w0(�)

��
dFt (�) (76)
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s.t. incentive constraints (6) and

w =

Z �
U(c (�) ; y (�) =�) + �w0 (�)

�
dFt (�) : (77)

By Proposition ??, VT (w) = aT � 1
 ln (�w) where aT is a constant. First we want to show

that Vt(w) = at � 1+�+:::+�T�t

 ln (�w) for all t where at are constants. The proof of this fact

is by induction. Suppose that Vt+1(w) = at+1 � 1+�+:::+�T�t�1

 ln (�w) and let at = Vt(�1):

Let c (�) = ~c (�)� 1
 ln (�w) and w

0 (�) = � ~w0 (�)w. Substitute the newly de�ned variables

to (6):

U (~c (�) ; y (�) =�) + � ~w0 (�) � U
�
~c
�
�0
�
; y
�
�0
�
=�
�
+ � ~w0

�
�0
�

(78)

and (77) becomes

� 1 =
Z �

U(~c (�) ; y (�) =�) + � ~w0 (�)
�
dFt (�) : (79)

The objective function in (76) satis�esZ �
c (�)� y (�) + �

�
at+1 �

1 + � + :::+ �T�t�1

 
ln
�
�w0 (�)

���
dFt (�)

=

Z �
~c (�)� y (�) + �

�
at+1 �

1 + � + :::+ �T�t�1

 
ln
�
� ~w0 (�)

���
dFt (�)�

1 + � + :::+ �T�t

 
ln (�w)

Therefore for any w; (76) can be re-written as

Vt (w) = min
f~c(�);y(�); ~w0(�)g

Z �
c (�)� y (�) + �Vt+1

�
~w0(�)

��
dFt (�)�

1 + � + :::+ �T�t

 
ln (�w)

s.t. (78) and (79). Solution f~c (�) ; y (�) ; ~w0 (�)g is independent of w; therefore, Vt (w) = at

�1+�+:::+�T�t

 ln (�w)

For the rest of the proof it is useful to note that this implies that for any two �w; ŵ,

ŵ

�w
=
w0 (�; ŵ)

w0 (�; �w)
(80)

Now we de�ne the CIA tax system. First we de�ne all variables as a function of shocks,

and then we invert them. Let

~!t
�
�t
�
=
1

 
ln
�
�w0

�
�t
��

and have ~gt (~!t�1; �t) satisfy

~!t
�
�t
�
= ~gt (~!t�1; �t) : (81)
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Consider two histories, ��
t
and �̂

t
with a property that ��t = �̂t. Then

~!t

�
��
t
�
� ~!t

�
�̂
t
�
=
1

 
ln

0@w0
�
��
t
�

w0
�
�̂
t
�
1A

=
1

 
ln

0@w0
�
��
t�1�

w0
�
�̂
t�1�

1A
= ~!t

�
��
t�1�� ~!t ��̂t�1�

where we used (80) on the second line. This implies that (81) can be re-written

~!t
�
�t
�
= ~gt (�t) + ~!t�1: (82)

Finally, we are ready to de�ne the CIA system. Let

!t
�
y
�
�t
��
= ~!t

�
�t
�

and

gt
�
!t�1

�
y
�
�t�1

��
; y (�t)

�
= ~gt

�
~!t�1

�
�t�1

�
; �t
�
:

>From (82), gt and !t satisfy9

!t (y) = gt (y) + !t�1:

De�ne k�t as in (39). Finally, we de�ne taxes on labor as

~Tt
�
�t�1; �t

�
= yt

�
�t�1; �t

�
� ct

�
�t�1; �t

�
+ ��1k�t � k�t+1 � ~!t�1

�
�t�1

�
+At

where At is a constant. Since yt
�
�t�1; �t

�
does not depend on �t�1 since y

�
�t�1; �t

�
is a solution

to (??), and ct
�
�t�1; �t

�
+ ~!t�1

�
�t�1

�
do not depend on �t�1 by construction, ~Tt depends only

on the current realization of �t. Therefore, we can set

Tt (y (�t)) = ~Tt
�
�t�1; �t

�
:

Finally we choose At so that

At =

Z
~!t�1

�
�t�1

�
dF
�
�t�1

�
:

9 If yt is chosen such that there is no history � for which y (�) is a solution, we can set gt(y) = ! where ! is
a su¢ ciently low number
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9 Numerical Appendix: Calibration and Computation

Here, we provide the details of our calibrations and computations that enable us to produce

the numerical results in Sections 3 and 4. First, we discuss the calibration including the

estimation of unconditional and conditional distributions. Then, we discuss our computational

procedures.

9.1 Calibration

First, we need to obtain an entire unconditional (cross-sectional) distribution of types, F . We

start with an empirical distribution of labor income. The dataset we use is the Panel Study

of Income Dynamics (PSID).10 We treat heads of households and their spouses as separate

observations and restrict our sample to include only the observations with the total labor

income of at least $1; 000 and total hours of at least 250. We later relax these restrictions on

our sample to check the robustness of our numerical results. To obtain the initial unconditional

distribution we consider all 25-30 year old individuals. We later vary this subsample to consider

20-25 and 20-30 year old individuals to ensure the robustness of our results.

Next, we estimate the actual e¤ective marginal tax rates faced by the individuals in our

sample. We use the National Bureau of Economic Research�s (NBER) program TAXSIM.11

To compute individual liabilities under U.S. federal and state income tax laws, we supply

TAXSIM with individual labor income as well as with other individual data from the PSID

such as marital status, dependent exemptions, dividend income, other property income, etc.

Then, as in Saez (2001), given the actual e¤ective marginal tax rates, we determine the

skill distribution generating the labor income of the agents in the sample. We compute the

implied skill for each type using the individual �rst-order conditions as follows:

�i =
Yi

(Yi (1� T 0 (Yi)))1=
: (83)

In this formula, Yi is the labor income of individual i and T 0 (Yi) is the e¤ective marginal tax

rate for that individual. Note that with the preferences of the form (23) there are no income

e¤ects. Hence, the individual labor supply decision is una¤ected by the individual savings

10See http://psidonline.isr.umich.edu/
11 It is freely available for use at http://www.nber.org/~taxsim/.
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choice. The implied skills thus can be determined from the static consumption-labor margin

as in (83).

We then estimate the implied unconditional distribution of skills non-parametrically using

a kernel density estimation method. There are two considerations that we have to address.

First, the PSID is "top coded", i.e., it has an income cuto¤ level above which no observations

are collected. Second, high income individuals are undersampled in the PSID. At the same

time, the analysis of Diamond (1998), Saez (2001) in the static settings, and our results above

imply that the upper tail of the distribution is an important determinant of the shape of the

optimal tax code. We follow Heathcote, Perri, and Violante (2009) and �t a Pareto tail in our

skill distribution above the income level of $150; 000. We combine the �tted Pareto upper tail

with the non-parametrically estimated lower part of the distribution.

We choose  = 3, which corresponds to the Frisch elasticity of labor supply equal to 0:5.

The coe¢ cient of absolute risk aversion,  , is set equal to 10. We set the discount factor

� = 0:9852. We chose the marginal rate of transformation across periods � = 1:015 so that the

social planner at the solution of the optimal program chooses not to transfer resources between

the two periods.12

To proceed to compute our main numerical problem of Section 4, we also need to estimate

the transition probabilities for the skills. We estimate two di¤erent transition probabilities: an

earlier age transition for 25-45 year old individuals, and a later age transition for 45-65 year

old individuals. That is, we allow age-dependent transition probabilities: younger individuals

experience di¤erent transitions than older individuals. Within each age group, however, we

assume age-independent transitions.

We expand the dataset constructed above with observations for individuals of each age

group and keep track of each individual income and personal characteristics over time. Since

the PSID is a panel data set, with this extended sample we are now able to compute the

distribution of income (in real terms) conditional on income realization two years prior (since

PSID data comes in two-year waves). Next, we follow the procedure described above to impute

the distribution of skills. We estimate the conditional distribution of skills non-parametrically

applying a kernel density estimation method. Then, we extrapolate the tails to match the data

12To fascilitate comparison with the case of persistent shocks in Section 4, in Section 3 we take one period to
be 10 years, so that the discount factor is �10 and the marginal rate of tranformation between periods is �10.
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on the transitions of top earners from CBO (2007), CBO (2008), and Treasury (2008). Finally,

assuming age independent transitions within each age group, we compute one-year transitions

from the constructed two-year transitions so that we obtain transitions for each period as we

consider T = 40.

9.2 Computation

It is well known that incentive problems of mechanism design pose a signi�cant challenge

for numerical analysis - classical expositions of the computational approaches and challenges

are Wilson (1996) and Judd (1998). Signi�cantly, we have restricted ourselves here (as it is

generally done in the optimal taxation literature) to agents who are heterogeneous along a

single dimension - their skills.13 Nevertheless, it is di¢ cult to �nd global numerical solutions

to these types of problems with more than a small number of agent types living for a few

periods. To make progress with our numerical analysis, we rely on our theoretical analysis as

well as on recent contributions of Su and Judd (2007) to inform our choices of computational

techniques.

First, we discuss how we compute the optimal labor and savings distortions in the illus-

trative example of Section 3 with i.i.d. shocks and two periods (T = 2). The small number of

periods and uncorrelated shocks make the problem size tractable to be solved in sequential form

by direct optimization. Then, we discuss how we solve our main numerical problem in Section

4 with persistent shocks and forty periods (T = 40) by exploiting the recursive structure of

the dual formulation of the planner�s problem.

Because in the illustrative example of Section 3 we only have two periods and the distri-

bution in the second period does not depend on the shock realization in the �rst period, we

can attack the computational problem directly as a large nonlinearly constrained optimization

problem. We start by writing the primal formulation of the planner�s problem in the form of

problem (2). The mechanism design problem in its general form is a bi-level maximization

problem (alternatively, a mathematical programming problem with equilibrium constraints).

The outer-level maximization of the planner has to take into account the best response of the

13One notable exception is Judd and Su (2006). They show that when types are heterogeneous along more than
one dimension, the planner�s problem is a di¢ cult nonlinear optimization problem since the linear independence
constraint quali�cation does not need to hold at the solution. Judd and Su (2006) �nd that the results with
multidimensional types may di¤er substantially.

52



agents, which is the outcome of the inner-level maximization of each agent type with respect

to the type reported. In other words, incentive constraints are individual agent type max-

imization problems with type report as a choice variable. We follow the usual convention of

computationally approaching these types of problems (see e.g. Judd (1998)) by writing the

incentive constraints as inequalities (without relying on simplifying the incentive compatibility

constraints with the envelope theorem) as in problem (2).

The next step is to numerically �nd the allocation that is a global solution to the resulting

large nonlinearly constrained maximization problem. We use KNITRO with a crossover option

that has been shown to be able to accurately and robustly solve this type of problems. We use

the interior-point local method with conjugate gradient iteration. The acceptance criterion is

a penalty function. Our globalization strategy is to explore multiple (1000) feasible starting

points. Once the problem is correctly scaled, we observe quadratic convergence to the solutions

reported in Section 3.14

More speci�cally, we solve the planner�s maximization problem using KNITRO�s imple-

mentation of the interior-point algorithm with the conjugate gradient iteration to compute

the optimization step. Conjugate gradient iteration o¤ers a way of dealing with possible Jac-

obian and Hessian singularities. The interior-point approach is one of the most e¢ cient and

stable methods that are currently available for solving large nonlinear optimization problems.

The interior-point algorithm uses a trust-region Newton method to solve the barrier problem

and an l1 penalty barrier function. We �nd that the interior-point algorithm provides a good

approximate estimate of the solution and the optimal set of active constraints. To compute ac-

curate estimates of the solution, including Lagrange multipliers, we proceed to use KNITRO�s

crossover option. That is, we switch to an active-set iteration that uses the output of the

interior-point algorithm as its input. The implementation of the active-set algorithm is based

on the sequential linear quadratic programming.

Once we obtain the constrained optimal allocation, the �nal step is to compute the optimal

labor and savings distortions from their de�nitions in equations (16) and (17) respectively.

The illustrative numerical example of Section 3 provides us with a way to build intuition

in the dynamic model as well as with a benchmark test case for the computational algorithm

14To streamline communication with KNITRO we use AMPL. We gratefully acknowledge the use of software
licences provided to one of us during participation in the Institute on Computational Economics 2009 organized
by Ken Judd at the University of Chicago.
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for our main numerical problem of Section 4 that we discuss next.

Our main numerical problem in Section 4 has persistent shocks and forty periods (T = 40).

To be able to solve the problem of this size and complexity we exploit the recursive structure of

the dual formulation of the planner�s problem as well as the quasi-linear nature of preferences

(18).

We proceed in three stages. The �rst stage is a value function iteration. That is, we start

from period T and proceed by backward induction. First, we must solve period t = T problem

for a �xed set of values of the state vector and compute VT for each one of then. Then we can

approximate VT and proceed to period t = T � 1 where we use the approximation as the basis

for the interpolation of VT to any value of the state vector to solve for VT�1. And so on until

we compute V1. However, we know that with the exponential preferences that we use for our

numerical simulations we have

Vt (w;w2; ��) = at(
w2
w
j��)�

1 + � + :::+ �T�t

 
ln (�w)

and in particular

VT (w;w2; ��) = aT

�w2
w
j��
�
� 1

 
ln(�w):

This means two things for our computations. First, if we discretize the type space �, then we

only need to consider w and w2
w as the state variables. Second, we do not need to approximate Vt

as a whole, rather we only need to approximate at, which tremendously improves the quality

of approximation of Vt. We approximate at�s using a shape-preserving LAD method with

Chebyshev polynomials.15

To be able to compute the full constrained optimal allocation, we �nd w0 such that

V1 (w0) = 0. That is the second stage. Given V1 computed in the �rst stage, we search

for an interval containing zero by quadratically increasing steps. Then we converge to w0 by

bisection.

The third and �nal stage is to compute the optimal allocations and then the optimal labor

and savings distortions using their respective de�nitions. Given Vt�s and w0 from the �rst two

stages, we can now compute the optimal allocations by forward induction. We start with w0

computed in the second stage and roll out the solution from period t = 1 all the way to period

t = T .
15For more on this, see e.g. Judd (1996) and Judd (1998).

54



We note that for this three-stage computational procedure to be feasible it is absolutely

essential to have an exceptionally fast, e¢ cient, and robust optimization algorithm to solve

all of the separate period t problems of each stage. We use KNITRO implementation of

the interior-point method with conjugate gradient iteration and a crossover to the active-set

algorithm as described above. Note also that we can use our direct optimization approach to

the primal planner�s problem in the example above as a �rst check.

Finally, we verify that the �rst order approach is valid by solving for a competitive equilib-

rium given the optimal distortions and verifying that no individual agent is better o¤ at any

time by deviating.
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