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Abstract

Private information and limited enforcement are two frictions that impede the provision
of first best insurance against income risk. To mitigate these frictions, societies make costly
investments into technologies such as auditing and court systems. The implicit assumption
through most of the literature is that either or both of these technologies is either costless
or infinitely costly. I consider a model of efficient insurance in which at each point in time
the principal can choose a level of enforceability that inhibits an agent’s ability to renege on
the contract and a level of auditing that inhibits his ability to conceal income. The dynamics
of the optimal contract imply an endogenous lower bound on the lifetime utility of an agent,
strictly positive auditing at all points in the contract and positive enforcement only when the
agent’s utility is sufficiently low. Furthermore, the two technologies operate as complements and
substitutes at alternative points in the state space, uncovering dynamics that differ dramatically
from the case in which the technologies are studied separately.

JEL Classification Numbers: C73, D60, D80, E21, H76, K49
Keywords : Private Information, Auditing, Limited Commitment, Third-party Enforcement.

1 Introduction

Limited commitment and private information are two sources commonly identified as impediments
to an agent’s ability to insure himself against idiosyncratic income risk. However, models of efficient
insurance with limited commitment generally ignore all considerations of private information and
implicitly assume both that enforcement is prohibitively costly and that information is completely
costless. Similarly, models of efficient insurance under private information often abstract away from
the issue of enforcement, assuming that it is costless to compel agents to remain in the contract.

In this paper, I consider the provision of efficient insurance under both limited commitment
and private information when the insurer has access to enforcement and auditing technologies that,
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respectively, reduce the returns from walking away from the contract and concealing income. While
this is not the first paper in the literature to consider an insurance problem with both information
and enforcement frictions, it is among the first that I am aware of to allow for an insurer’s access to
one or more technologies designed to mitigate these frictions in a dynamic environment.1 I show that
the implications on an agent’s consumption, along with use of these technologies, critically depend
on the presence of both frictions and the relative costs of auditing and enforcement. Therefore,
analyses that ignore one dimension of the problem may provide misleading conclusions on the
nature of the problem.

Consumption seems to react to idiosyncratic income shocks in a variety of settings.2 To account
for this observation, both normative and positive models have been adapted to include limited com-
mitment and information frictions. In environments with limited commitment, an agent is assumed
to have access to an “outside option,” typically taken to be his value of consuming his contem-
poraneous income and autarky consumption thereafter. Should the contract ever be sufficiently
undesirable, the agent may then choose to break the contract and receive the value of this option.
A first best contract that requires the transfer of income from high income types to low income
types may then be impossible to implement as an agent receiving a large income may prefer a high
consumption today and the outside option to paying the transfer. Meanwhile, in environments with
private information, low income agents are indistinguishable from high income agents. Thus, first
best insurance is impossible to implement as all agents would choose to mimic the agent who is due
the largest net transfer; any insurance plan that transfers resources from high income to low income
agents must also provide high income agents the appropriate incentives to reveal their information.

Most applications of insurance problems not only are likely to entail some level of both these
frictions, but also endogenous choices on the part of insurers that affect the extent to which one
would expect these frictions to impede first best insurance. For example, implementation of efficient
unemployment insurance entails decisions on the monitoring of agents’ income claims, job offers, or
search effort to mitigate these sources of information frictions. Moreover, efficient unemployment
insurance also relies on a choice of investment in a court system, law enforcement, and even prisons
to compel employed agents with high income to pay taxes. This paper’s analysis can then be thought
of as one of optimal unemployment insurance. The analysis of this paper could also be cast in the
literature on managerial compensation, in which private information and limited commitment are
thought to play an important role. Jensen (1986) hypothesizes that firm structure is the result
of the optimal balancing of agency and information frictions between institutional investors and
management. The ability of debt and equity holders to internally audit management and hire
lawyers to sue opportunistic managers for fraud will then have implications on corporate financial
structure. Finally, this paper applies to the informal risk sharing literature3 to the extent that small

1One exception is Krasa and Villamil (2000) who study a three period model with private information and en-
forcement, allowing enforcement to be endogenous.

2See, for example, Cochrane (1991) for evidence from US consumer data, Townsend (1994) for evidence in village
India.

3See Townsend (1994) and Ligon, et al (2002).
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villages suffer from these frictions and have the capacity to mitigate them.
I study three dynamic principal agent problems in which the principal is risk neutral and the

agent is risk averse. The first is one of limited commitment (costless information) and an enforcement
technology and is referred to as the Enforcement Model, the second is one of private information
(costless enforcement) and an auditing technology and is referred to as the Auditing Model, and
the third features both sets of frictions and technologies and is referred to as the General Model.
From the first two models, I show how the principal optimally uses enforcement and auditing,
respectively, to insure the agent. In the General Model, I show how the implications of a joint
model differ dramatically from the joint implications of the separate models.

The Enforcement Model is a version of the limited commitment and endogenous enforcement
model studied in Koeppl (2007) and the results from this section are used to contrast and provide
insight into the role of enforcement in the General Model. As in environments with exogenous
enforcement, such as Thomas and Worrall (1988), the limited commitment in the Enforcement
Model implies an increasing level of consumption and long run consumption constant and equal to
an amount at which the highest income type would not choose to renege. Efficient insurance that
requires the transfer of income from high to low income states must also provide an agent who realizes
high income with an incentive to not renege. Such a transfer can be implemented by increasing
future consumption across future shocks for an agent with high income. Higher consumption across
future income states then diminishes the agent’s future incentives to renege and, eventually, first best
insurance is possible. With the addition of endogenous enforcement, enforcement is decreasing as
the agent’s promised utility increased. Enforcement alters these dynamics by slowing the growth of
consumption to allow for smoother inter-temporal consumption. However, in the long run insurance
is first best and the principal uses no enforcement. Notice that this long run result relies heavily on
the costless information assumption, as long run consumption patterns are identical for high and
low income types. Such a model should then be viewed skeptically if it is believe that there is any
level of information friction.

Models of efficient insurance with private information4 deliver a conflicting prediction on con-
sumption. In these models, providing an agent with high income realization the incentives to reveal
his information is “cheap” at lower levels of consumption and utility. The reason for this is that
when marginal utility of consumption is high, agents with high income and agents with low income
evaluate quite differently small differences in transfers. This eases the ability of the principal to
separate income realizations and yields the well known immiseration result in the long run in which
agents are driven down to their lower bound of utility (or toward −∞ if utility is unbounded below)
almost surely. This extreme prediction of models with private information is a direct consequence
of the implicit costless enforcement assumption; given any capacity to renege an agent would surely
undertake such an option to avoid the consequences of the implied contract.

In the Auditing Model I show that while the auditing technology slows this process, it does not
4See, for example, Green (1987), Atkeson and Lucas (1992), and Thomas and Worrall (1990)
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prevent immiseration and thus, also relies heavily on costless enforcement. Furthermore, I show
that as the agent is immiserised, the principal’s use of auditing also vanishes. A novel feature of
the Auditing Model is its specification of the auditing technology, which allows for more complete
analytic results than have been obtained in other dynamic contracting environments with private
information and some form of auditing. For example, Wang (2005) studies a dynamic version of
costly state verification á la Townsend (1979). However, the complex nature of his problem hampers
his ability to make statements on, for example, the qualitative response of the agent’s future utility
to income shocks. The auditing technology I consider is such that the level of investment into the
technology reduces the agent’s return to misreporting directly, but does not itself reveal information.
This greatly simplifies the information structure of the problem and allows for more analytic results.

The dependence of both the Enforcement and Auditing models on costless information and
enforcement, respectively, reveals the tension that exists in a model where both technologies are
assumed to be costly. In the General Model, I study such a model. Past models that consider
environments with both sources of frictions include Atkeson and Lucas (1995), who study unem-
ployment insurance when job offers are unobservable and there is an exogenous lower bound on
wealth. Phelan (1995) similarly studies an environment of limited commitment and private infor-
mation in which competitive insurance contracts determine the lower bound on an agent’s utility.
However, neither paper allows a principal any recourse against these frictions, thus assuming that
both information and enforcement are infinitely costly.

Studying auditing and enforcement together reveals that the two technologies interact in im-
portant ways that cannot be seen when studying the frictions and technologies separately. For
example, the opposing forces on wealth of limited commitment and private information give rise
to an endogenous lower bound. To contrast this result to those aforementioned papers with both
frictions, their lower bounds are assumed by the (sometimes implicit) assumption of infinitely costly
enforcement.5 I do not rely on infinitely costly enforcement to establish this lower bound and show
that such a bound exists whenever enforcement costs are convex, independent of its costs relative
to auditing and consumption.

Lastly, I show that auditing and enforcement technologies act alternatively as both complements
and substitutes at alternative points in the state space. Consider the case when wealth is at a level
such that the high income agent is indifferent between remaining in the contract and reneging.
Additional auditing allows the principal to better smooth the agent’s consumption between high
and low states, reducing the principal’s consumption cost. However, this smoothing can be done
only when accompanied by additional enforcement cost, as the high income agent must be kept
from reneging. Thus, the two technologies are complements. On the other hand, when wealth is
sufficiently low, it is the agent with a low income realization who is indifferent between reneging
and remaining in the contract. In this case, an increase in auditing that increases the low agent’s
utility and smooths utility across states is accompanied by a decrease in the necessary enforcement.

5The lower bound in Phelan paper is still endogenous via competitive insurance markets.
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Thus, the two technologies are substitutes in this region.
The remainder of the paper is organized as follows. Section 2 lays out the general problem

and shows how the problem can be written recursively, which is used as the basis for the rest of
the paper. Sections 3 and 4 examine the Enforcement (costless information) and Auditing (costless
enforcement) models, respectively, while Section 5 analyzes the General Model. Section 6 provides
s numerical example of the Enforcement, Auditing, and General models. Section 7 concludes.

2 Model

There are three models considered in this paper. The first is a model of efficient insurance with
limited commitment and an enforcement technology, the second is a model with private information
and an auditing technology, and the last model has both frictions and both the enforcement and
auditing technologies. The enforcement technology makes breaking the contract costly to the agent.
The agent could walk away from the contract at any time, consume that period’s income and his
autarky consumption at any point thereafter.6 However, with an investment of γ ∈ Γ = R+

into enforcement, his utility from leaving the contract is shifted down by γ units of utility. We
could think of this cost as being a disutility of court proceedings to break a contract or even more
extreme measures such as debtor prisons. The first model studied is one of costless information and
limited commitment with endogenous enforcement and will be called the Enforcement Model. This
environment is similar to the contracting problem studied by Koeppl (2007), only that the principal
is assumed to be risk neutral in this paper and the enforcement penalties on the agent differ slightly.

The second model considers an environment of private information in which the principal has
access to an auditing technology. The nature of the auditing technology makes hiding income (or
consumption) costly to the agent. Namely, for each unit of output that he tries to hide, α will be lost
in an effort to avoid detection, where α ∈ A = [0, 1]. For simplicity, I assume that should the agent
choose to lie about his output (which he will, of course, not do in the optimal allocation) he will
also choose to hide his income. The cost to hiding income can be interpreted as an agent having to
consume less desirable goods (for example, the agent may have to buy a smaller house or less fancy
car to remain inconspicuous). Thus, the purpose of auditing solely serves the function of reducing
the incentives of the agent to lie. This model is one of costless enforcement and private information
and will be referred to as the Auditing Model. It is worthwhile to note that the auditing technology
in this paper differs from the common “costly state verification” auditing model. In the model
here, auditing does not change the principal’s information on the agent’s true income, but rather,
decreases the agent’s return to misreporting. The third model combines the first two models, so
that there are both enforcement and information frictions and the principal has access to auditing
and enforcement to mitigate each friction.

6I could consider the agent as having an option to recontract with another principal should he choose to renege
on the contract. Under the enforcement environment in this paper, this set up would be identical to one in which the
agent’s outside option is the value of this alternative contract rather than autarky. See Krueger and Uhlig (2006).
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A risk neutral principal looks to provide insurance to a risk averse agent who is subject to a
risky income stream. Each period, an agent’s income shock θt ∈ Θ = {θ1, .., θS} is realized with θt

i.i.d. over time with θs < θs+1. Generic elements in Θ are denoted by θs and occur with probability
ps where

∑
s ps = 1. I assume that the principal and the agent share a common discount factor

β ∈ (0, 1). In the General Model, there is an information friction and an enforcement friction. The
enforcement friction implies that the agent can renege on the contract at any point in time with
the consequence of being restricted from future insurance. In the absence of enforcement, I take
the future value of the walk away option, U0, to be the autarky value: U0 =

∑
s u(θs)ps.

Before each period’s realization of income the principal can invest in two technologies to ame-
liorate these frictions: an auditing technology α and an enforcement technology γ at costs of f(α)
and g(γ), respectively. The choice of investment is observed by the agent and the investment is
effective only for one period. 7

After observing his private income, θt, and the principal’s choice of auditing and enforcement,
the agent reports income to the principal. Based on the history, the principal provides transfers τt
to the agent each period, so that his consumption is τt + θt and his contemporaneous utility given
this consumption is (1− β)u(τt + θt). It is assumed that the agent is an expected utility maximizer
and that utility is separable across periods. Thus, the agent’s t-period consumption when his true
income is θs under a falsely reported income, θs̃, is τs̃ + θs−α(θs− θs̃). For ease of notation, define
xs ≡ τs + θs, so that the agent’s consumption under truth telling is xs and his consumption under
a false report, θs̃, is xs̃ + (1 − α)(θs − θs̃). Let the period t public information of reports, truthful
consumption level (which has a one-to-one mapping with transfers), auditing levels and enforcement
levels be denoted by ht = (θ̃t, xt, αt, γt) with private information (θt, ht). Denote the t-period public
history ht = (h0, .., ht) ∈ Ht, where Ht is the set of t-period public histories. Denote the set of
private histories by H̃t

A plan, ν = (ν0, ν1, .., ), where νt = (ν1
t , ν

2
t ) such that ν1

t : Ht → A× Γ and ν2
t = Ht ×A× Γ×

Θ→ R, is a sequence of duple mappings of the principal’s enforcement and auditing choices given
public histories and the principal’s choice of transfers given the public history, this period income
report, and this period’s auditing and enforcement choices. The set of plans is denoted by N . An
agent’s strategy is the mapping of private histories and this period’s auditing, enforcement, and
income realizations into income reports.8 Let σt : H̃t−1 × A × Γ × Θ → Θ be agent’s the t-period
announcement. Denote Σ = {(σ0, σ1, ..)}∞t=0 as the set of strategies such that histories are consistent
with strategies. I make one additional and non-standard restriction on allowable strategies; namely,
given an income θt, the agent cannot report any income θ > θt. The thought behind this assumption
is that it costless to validate that the agent does not have a high income by virtue of his inability

7The fact that the auditing choice is made and observed before the agent’s income is realized implies that the
principal would never have an ex-post incentive to reverse his auditing choice. In the costly state verification literature,
the auditing technology allows the principal to decide, conditional on the agent’s announced income, to observe the
true state at some cost. However, as the optimal contract is written as one in which the agent never misreports, the
principal has no ex-post incentive to monitor the agent given the income announcement. See Khalil (1997).

8Note that I ignore the agent’s decision to walk away. See the discussion in the following paragraph.
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to show resources when asked. This assumption is also useful in simplifying the constraints in the
recursive formulation of the General Model.

If at any point in the contract it is optimal to let the agent walk away then there also must
exist an optimal contract in which the agent chooses to not walk away and the principal replicates
the autarky consumption profile by setting transfers equal to 0 every period. This has no cost to
the principal relative to the agent reneging, and can therefore be incorporated into any contract.
Furthermore, a version of the Revelation Principle applies. Thus, the principal’s problem is to
choose the plan that maximizes resources such that the agent never reneges and that the agent has
no incentive to lie. Denote the probability of a history given a plan ν and a strategy σ by π(h̃t|σ, ν),
where the conditioning variables are dropped when there is no confusion.

Given a plan ν and a strategy σ, an agent’s utility at time t′ given history h̃t
′

is

Ut′(σ|ν, h̃t′−1) =
∞∑

t=t′

(1−β)βt−t′
∑

h̃t∈H̃t|h̃t′

u
(
x(ht−1, αt, γt, θ̃t) + (1− αt(ht−1))(θt(h̃t)− σ(h̃t−1, αt, γt, θt))

)
π(h̃t|h̃t′−1)

where x, α denote the consumption component and auditing components of plan ν, θ̃t is the agent’s
t period announcement given the private history, and the notation h̃t ∈ H̃t|h̃t′ denotes the set of
histories that are consistent with the t′-period private history ht

′
and ht denotes the public history

consistent with private history h̃t. Denote the truth-telling strategy σ∗ as the strategy such that for
all histories and periods σ∗t (h̃

t) = θt. Abusing notation slightly, let Ut′(σ|ν, h̃t
′−1), θs be the agent’s

t′-period valuation of the contract under a plan ν and strategy σ conditional on the t period income
realization θs.

Given an initial reservation value of autarky, the principal’s problem, (P1), can be written as
the maximum net present value of resources such that truth-telling is incentive compatible and the
agent never chooses to renege:

(P1) Ṽ = max
ν∈N

∑
t

βt
∑
h̃t

[(1− β)(θt(h̃t)− x(ht−1, αt, γt, θ̃t))− f(α(ht))− g(γ(ht))]π(h̃t|σ, ν)

s.t.(PK) U(σ∗|ν) = U0

∀ σ̃ ∈ Σ; t′, ht
′
(IC) Ut′+1(σ∗|ν, h̃t′) ≥ Ut′+1(σ̃|ν, h̃t′)

∀ s, t′, ht′−1(E) (1− β)u(x(ht−1, νt′,1(ht
′−1), θs)) + βUt′+1(σ∗|ν, h̃t′) ≥ (1− β)u(θs) + βU0 − γ(ht

′−1)

A dynamic model of costless information and limited commitment is one where f(α) = 0 for all
α. Similarly, a dynamic model of asymmetric information and costless enforcement is one in which
g(γ) = 0 for all γ. These models are considered separately, respectively, in Sections 3 and 4. The
General Model is analyzed in Section 5.

Before analyzing the separate models, I first state a proposition following Spear and Srivastava
(1987) that allows us to write the problem recursively using the agent’s expected utility of the
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continuation contract, ω as a state variable. The interpretation of the state variable is that this
represents the agent’s wealth (or indebtedness). I use the recursive model as the starting point for
the Enforcement, Auditing, and General models in subsequent sections.

Proposition 1 The problem (P1) can be written recursively as:

V (ω) = max
α,γ,{xs,ω′s}s∈S

∑
s

[(1− β)(θs − xs)− βV (ω′s)]ps − f(α)− g(γ)

s.t. (IC) (1− β)u(xs) + βω′s ≥ (1− β)u(xs̃ + α(θs − θs̃)) + βω′s̃, ∀ s ∀ s > s̃ ∈ S

(E) (1− β)u(xs) + βω′s ≥ (1− β)u(θs) + βU0 − γ, ∀ s ∈ S

(PK)
∑
s

[(1− β)u(xs) + βω′s]ps = ω

All omitted proofs appear in the appendix.

Notice that the expected transfer to the agent each period is E[θs − xs]. As E[θs] is constant, I
drop it hereafter when writing the principal’s maximization problem.

The following assumptions that will be used throughout the remainder of the paper:

Assumption 1 i) u : [c,∞)→ (−∞, ū] is unbounded below with u′,−u′′ > 0
ii) u′′/u′ is non-decreasing.
iii) limx→0 u(x) = −∞ and limx→+∞ = ū

iv) f ′, f ′′, g′, g′′ > 0.
v) limα→0 f

′(α) = 0, limα→1 f
′(α) = +∞, limγ→0 g

′(γ) = 0, limγ→+∞ g
′(γ) = +∞

Assumptions i, iii, iv, and v are fairly common assumptions on the regularity properties of the
cost functions and the utility function. Note that utility is unbounded below and bounded above
and consumption is unbounded above and may or may not be bounded from below. Assumption ii
states that the agent’s absolute risk aversion is non-increasing and is a sufficient condition for the
concavity of the value function in the dynamic programming problem when the information friction
is non-trivial.

3 Enforcement Model

In this section I consider a special case of the General Model in which information is free (f(α) = 0
for all α ∈ [0, 1]). Namely, the principal’s problem is:

V (U0) = max
γ,{xs,ω′s}s∈S

∑
s

[−(1− β)xs + βV (ω′s)]− g(γ)
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subject to (E) for all s ∈ S and (PK). Concavity and differentiability of the value function are
established for the General Model in Section 5. The proof here follows accordingly and is omitted.

Letting λ be the multiplier on the promise keeping constraints and ξsps be the multipliers on
enforcement constraints, the first order conditions and envelope condition for this problem are:

u′(xs)(λ+ ξs)− 1 = 0

V ′(ω′s) + λ+ ξs = 0

g′(γ)−
∑
s

ξsps = 0

V ′(ω′s) = −λ′s

An immediate conclusion from this model is that the highest income agent determines the level
of enforcement. Namely, if (E) binds from some state s, then it also binds for all s̃ > s. This
result is common in the limited commitment literature, but does not hold in the model considered
in Section 5.

Lemma 1 If ξs = 0 then ξs̃ = 0 for all s̃ < s.

Proof. Suppose not. Then (1−β)u(xs)+βω′s > (1−β)u(θs)+βU0−γ and (1−β)u(xs̃)+βω′s̃ =
(1 − β)u(θs̃) + βU0 − γ where θs̃ < θs so that the RHS of the former is greater than that of the
latter. This implies that either (i) xs > xs̃ or (ii) ω′s > ω′s̃. For whichever of (i) or (ii) holds, we can
increase the variable (say x) for s̃ and decrease it for s in such a way that γ is unchanged and PK
holds. The concavity of u and the value function imply that this yields strictly more resources to
the principal.

The previous lemma is what would be expected from results in the limited enforcement literature.
Namely, for any level of promised utility, an agent with the highest income realization has the largest
incentive to walk away from the contract. For low income realizations, an agent does not have an
incentive to renege and the principal can perfectly smooth consumption across such realizations.
Thus, for each level of incoming promise there is some threshold level of income below which
consumption and future promises are smoothed across states and above which the principal receives
a net payment from the agent, θs−xs > 0. An agent with a high income realization is then deterred
from reneging via increased consumption in future periods.

The dynamics of the agent’s promised utility are simple in this environment and can easily be
seen from the first order conditions. If the agent receives an income θs for which the enforcement
constraint does not bind, then ξs = 0 and λ′s = λ, implying that the agent’s wealth remains constant.
Likewise, consumption is equalized over states in which the enforcement constraint does not bind
and is increased when income shocks are sufficiently high. At the moment when the constraint
binds, promised utility increases and the process repeats itself. Thus, the continuation promise is
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weakly increasing over time, eventually reaching a maximum value of (1− β)u(θS) + βU0 when the
highest income state is realized.

In models of efficient insurance and limited commitment, the set of continuation promises that
can be reached with positive probability from any state ω (with the exception of that amount) are
a subset of U ≡ {(1 − β)u(θs) + βU0}s∈S . The reason for this is that the outside option of an
agent who receives an income realization of θs is equal to (1 − β)u(θs) + βU0 independent of his
promised utility upon entering the period. As the optimal mix of consumption and future promises
to delivering this level of utility does not depend on history, the set of possible values for ω is
always a subset of U . However, in a model with endogenous enforcement, the enforcement variable
and, consequently, the value of the agent’s outside option, depend on the contractual state variable
ω. Thus, in a model with endogenous enforcement, the continuation promise of an agent receiving
income θs is history dependent.

In particular, as the continuation promise increases and the autarky option is less attractive to
the agent, then enforcement also decreases. This is established in the following proposition and is
similar to the result achieved in Koeppl (2007). He studies a case in which two risk averse agents
split a fixed amount of resources and finds that enforcement increasing in inequality. Alternatively
phrased, his result shows that enforcement decreases as the wealth of the poorest agent increases.
A parallel result is achieved here.

Proposition 2 γ is strictly decreasing in ω when γ > 0.

Given the dynamics of the continuation promise, the dynamics of enforcement are easily de-
termined. Namely, the use of the enforcement technology is constant over time so long as the
enforcement constraint does not bind and decreases when sufficiently high income shocks cause the
enforcement constraint to bind and increase future ω. One consequence of this is that in the long
run, enforcement goes to zero almost surely. Therefore, the enforcement technology is eventually
obsolete.

Proposition 3 γt → 0 almost surely.

Note also that the enforcement technology implies that the principal could implement any level of
ω, in particular those below U0. In the Enforcement Model where there are no information frictions,
the agent’s continuation promise is increasing and implementing ω < U0 is off the equilibrium path.
However, this will not be the case in later sections. Furthermore, costly enforcement implies that
V is increasing for ω sufficiently small. This can easily be seen as γ ≥ U0−ω from the enforcement
constraints.

4 Auditing Model

In this section I consider a model in which the agent has private information on his income shocks
and a planner has access to an auditing technology; enforcement is costless (g(γ) = 0 for all γ).
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The efficient contracting problem with only auditing is as follows:

V (ω) = max
α,x,ω′

∑
s

[−(1− β)xs − βV (ω′s)]ps − f(α)

s.t. (IC) u(xs) + βω′s ≥ u(xs̃ + α(θs − θs̃)) + ω′s̃ ∀s̃ < s

(PK)
∑
s

[u(xs) + βω′s]ps = ω

Concavity and differentiability of the value function follow a similar argument to the one pre-
sented in Proposition 9. The proof is therefore skipped.9

The problem can be simplified further by showing that it is enough to consider only local
incentive compatibility constraints and that these constraints bind. That is, if for each type s the
agent does not have the incentive to lie downward to s − 1, then all of the incentive compatibility
constraints are satisfied. To do this, I first establish that higher income realizations receive higher
consumption and lower transfers than lower income realizations in the optimal allocation. This is
a straightforward result, as one would expect insurance schemes to generally give a larger transfer
payment (or demand a smaller fee) to an agent who realizes low income than to one who realizes
high income. The second lemma establishes that it is enough to only consider “local” lies. Define
∆s ≡ θs − θs−1.

Lemma 2 For all s, xs−1 ≤ xs ≤ xs−1 + ∆s(1− α).

Throughout the remainder of the paper let ũ(x, α, θs − θs̃) = u(x+ (1− α)(θs − θs̃)) denote an
agent’s contemporaneous utility from reporting an income θs̃ when his true income is θs.

Lemma 3 Local constraints are enough. Let Cs̃,s = (1− β)[u(xs̃)− ũ(xs, α, θs̃ − θs)] + β[ω′s̃ − ω′s].
Then, Cs+1,s ≥ 0 and Cs,s−1 ≥ 0 for all s imply that Ck,s ≥ 0.

Furthermore, it is also the case that all of the local downward constraints bind. Fixing any level
of auditing, if the downward constraint were to ever not bind, then the principal could increase
consumption to the agent when a low state is realized and decrease consumption when a high
state is realized without affecting any of the other IC constraints. From Lemma 2, the marginal
consumption under low realizations is greater than under high realizations so that such a scheme
would increase the principal’s utility.

Lemma 4 Local constraints bind so that α > 0 for all ω.
9The one major difference is the domain of V , which is unbounded below here. To adapt the argument for this

environment it is sufficient to note that the value function defined here lies between the functions F1 and F2 defined in
the proof. Furthermore, absent enforcement, the difference between these functions is bounded for all ω, established
in the proof of the proposition and the fact that the slope of the value function tends toward 0 as ω → −∞. See
Thomas and Worrall (1990).
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Auditing is useful to the principal in that it allows for better smoothing of agent’s consumption
across states. In a world with costless information, if marginal utility is higher in low states than
in high states, then a risk neutral planner can increase his utility while holding the agent’s utility
constant by decreasing consumption in the high state and increasing consumption in the low state.
With costly auditing, this requires an increase in auditing costs to keep an agent with high income
from lying. The following proposition derives an expression for the optimal auditing when S = 2,
with ∆ = θH − θL > 0 so that the marginal cost of auditing is equal to the principal’s benefit from
consumption smoothing. A similar, but more cumbersome, expression is easily derived for the case
where S > 2. The left hand side of the expression can be interpreted as the marginal auditing
cost of smoothing consumption, while the right hand side is the marginal benefit to the principal
of smoothing the agent’s consumption.

Proposition 4 The optimal allocation satisfies f ′(α)
∆

[
1 + u′(xL)pL

ũ′(xL,α,∆)pH

]
= pL

[
u′(xL)
u′(xH) − 1

]
Proof. Consider the following scheme. Increase α by ε/∆, increase xL by ηL and decrease xH

by ηH . The cost of this scheme is −f ′(α)
∆ − ηLpL + ηHpH . Now, we must show that we can choose

values such that IC and PK are satisfied, while decreasing resource costs. Choose ηH = ηL
u′(xL)pL
u′(xH)pH

so that the PK constraint holds. Under this scheme, the LHS of the IC constraint is decreased by
ηL

u′(xL)pL
pH

while the RHS is decreased by (ε− ηL)u′(xL, α,∆). Choosing ε = ηL

[
1 + u′(xL)pL

u′(xL,α,∆)pH

]
,

the total cost of the scheme is then

ηL

[
−f
′(α)
∆

(
1 +

u′(xL)pL
u′(xL, α,∆)pH

)
− pL +

u′(xL)pL
u′(xH)

]
which must be less than or equal to zero in an optimal allocation. The opposite perturbation implies
that the expression must be greater than or equal to zero.

Although auditing is positive for all ω, it vanishes as ω tends toward−∞ and, under an additional
assumption on the utility function (which is satisfied by CRRA utility functions), auditing also
vanishes as ω approaches its upper bound ū. Auditing tends toward zero in the extremes for
different reasons. As ω becomes small, providing incentives for truth-telling to the agent is cheap.
The reason for this is that as the marginal utility from consumption increases, small consumption
differences across states are enough to induce truth telling. Meanwhile, the agent’s high marginal
utility implies that the value function is flat as ω diverges to −∞. As the incentive compatibility
constraint is inexpensive to satisfy via variations in current and future consumption, the auditing
technology becomes unnecessary. In the case of ω large, the agent is already being promised high
consumption. The fixed differences between income levels combined with the concavity of the utility
function guarantees that the marginal value to the agent from lying is small. Thus, less auditing is
necessary to deter him from doing so.

Proposition 5 α→ 0 as ω → −∞
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Proposition 6 If limx→+∞ u
′(x)/u′(x+ ∆) = 1 for ∆ = θS − θ1 (which is true under CRRA with

a coefficient greater than 1), then α→ 0 as ω → ū.

Consequently, α reaches a maximum in the interior of (−∞, ū] and vanishes in the limits. This
is in contrast to the Enforcement Model in which enforcement costs are high when the promises
are low and are decreasing in ω. One could extend these insights by thinking of this model as the
“component planner” problem10 in a model of efficient insurance with a continuum of agents and a
period by period resource constraint equal to the expected value of income. The implications in a
more general model with a resource constraint would be that inequality requires large enforcement
costs to overcome the friction arising from the agent’s limited commitment. However, the Auditing
Model implies that costs of auditing are lower when there are large inequalities and agents are
toward the utility extremes and higher when there is more equality.

Perhaps surprisingly, the long run dynamics of the Auditing Model resemble that of a model in
which information is prohibitively costly. That is, despite the presence of an auditing technology
designed to mitigate the information friction, the principal’s incentive to front-load consumption and
push ω toward where incentives are “cheap” dominates and in the long run the auditing technology
becomes obsolete.

Proposition 7 ω → −∞ almost surely.

Proof. First, it is straightforward to show that λt is a martingale by summing over states the
first order conditions on ω′s. Furthermore, as V is decreasing it must be the case that λ is bounded
below by 0. Then, by the Martingale Convergence Theorem, λt converges almost surely. Suppose
λt converges to any interior value. This is a contradiction as for every ω ∈ Ω it is the case that
ω′L < ω < ω′H . This implies that ω → −∞.

The robustness of the immiseration result to auditing can be understood in relation to the
relative costs of auditing when consumption is front-loaded and back-loaded. An agent with low
income or high income realizations values continuation contracts identically, but values current
transfers differently. Therefore, the more front-loaded the contract facing an agent, the easier the
principal can induce truth-telling by manipulating this difference. Consider an optimal insurance
plan and imagine reallocating consumption for the low income realization from the future period
into the current period. That is, increase xL and decrease ω′L such that the agent’s overall utility
(and his utility from the low state in particular) is unchanged. What effect does this have on
auditing? Denote by εx and εω the increase and decrease, respectively of current consumption and
future utility. Then (1 − β)εxu′(xL) − βεω = 0 by assumption. It is clear that such a reallocation
of future consumption to current consumption relaxes the IC constraint as the change in the right
hand side of the constraint is (1 − β)εxũ′(xL, α,∆) − βεω < 0 while the left hand side of the IC
constraint is unchanged. It follows that front-loading consumption to agent reduces auditing costs.

10See Atkeson and Lucas (1992)
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Thus, as in standard models of insurance with private information, the principal continues to have
an incentive to front-load payments to the agent.

5 General Model

From the Enforcement and Auditing models one is led to ask, to what extent do the conclusions of
these models rely on the assumptions of costless information and costless enforcement, respectively?
Looking at the Auditing Model, the principal relies heavily on cheap truth-telling incentives for the
agent at low levels of ω. However, we know from the Enforcement Model that this is precisely when
the principal chooses the largest levels of enforcement. Conversely, in the Enforcement Model the
principal back-loads the agent’s consumption, with long run utility equal to the walk-away option
when income is high and there is no enforcement. From the Auditing Model we know that it is in
this interior region where the information friction binds the most tightly.

To answer this question we turn to the General Model of costly auditing and enforcement. The
conclusions from this section demonstrate that these technologies interact in a non-uniform manner.
Thus, in environments with both limited commitment and private information where technologies
ameliorating each friction are costly, examining the problems separately may provide misleading
conclusions.

In this section I take Θ = {θL, θH} with ∆ = θH − θL > 0. The principal solves:

V (ω) = max
α,x,ω′

∑
s=L,H

[−(1− β)xs − βV (ω′s]ps − f(α)

s.t. (IC) (1− β)u(xH) + βω′H ≥ (1− β)u(xL + (1− α)∆) + βω′L

(E) (1− β)u(xs) + βω′s ≥ (1− β)u(θs) + βU0 − γ

(PK)
∑
s=L,H

[(1− β)u(xs) + βω′s]ps = ω

First I establish the regularity properties of the value function. The assumption of non-increasing
absolute risk aversion plays an important role in establishing concavity.

Proposition 8 V is concave.

The following proposition establishes the differentiability of the value function over a bounded
interval of ω. Setting the lower bound sufficiently low, I use differentiability to establish the prop-
erties of the value function. It is later shown in Proposition 10 that bounding utility from below is
without loss of generality, as low enough values of ω are never reached.

Proposition 9 For any ω < ū, V is differentiably continuous on [ω, ū).
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Denote the Lagrange multipliers for the IC, E, and PK constraints as ηs, ξs, and λ, respectively.
Then, the first order conditions and the envelope condition are:

xH : pH = (pHλ+ η + pHξH)u′(xH)
xL : pL = (pLλ− η + pLξH)u′(xH)
ω′H : pHV

′(ω′H) = pHλ+ η + pHξH

ω′L : pLV
′(ω′L) = pLλ− η + pLξL

α : f ′ = ũ′(xL, α,∆)η
γ : g′ =

∑
s psξs

EC : V ′(ω) = λ

Summing up the constraint on ω′ yields λ + g′ = E[λ′]. Therefore λ is a sub-martingale with
E[λ′] > λ when at least one of the enforcement constraints binds and E[λ′] = λ otherwise. There
are two opposing forces at work. The first force is from the enforcement constraint. Because keeping
agents at a suppressed level of utility is costly, the optimal allocation features an upward push on
utility when ω is sufficiently low and is seen in the g′ term. When continuation promises are higher
and enforcement for both types is unnecessary, the contract resembles that in the Auditing Model.
In this region, the marginal cost of delivering utility to the planner today is equal to the expected
marginal cost of delivering utility to the agent tomorrow. The concavity of the value function then
suggests that the agent’s expected promise is less than his current promise.

As in the case of the Auditing Model, the high income agent never receives a larger transfer
(xs − θs) than the low income agent. This is naturally the case absent the enforcement constraints
given that smoothing consumption across states and holding the agent’s utility constant reduces
the principal’s consumption cost. The following lemma establishes that this continues to hold in
the General Model.

Lemma 5 xH ≤ xL + (1− α)∆.

In the Auditing Model, the value function is downward sloping because the principal could always
decrease the agent’s utility by decreasing the agent’s consumption for the lowest income realization
without affecting any of the incentive compatibility constraints. In the Enforcement Model, the
value function was downward sloping over the set of utilities reached with positive probability.
The reason for this is the same as in the Auditing Model, noting that starting at U0, the lowest
enforcement constraint never binds. In the model with both auditing and enforcement, this is not
necessarily the case. The information friction forces utility below U0 when the low state is realized
(proven in Corollary 2), thereby forcing an increase in future enforcement costs. Therefore, one
cannot exclude the possibility that the agent reaches some level of ω for which the value function is
upward sloping. Such a level of utility would not be Pareto efficient ex-post, but it may be optimal
ex-ante in providing the appropriate truth-telling incentives. The following establishes that the
value function is upward sloping for some ω, following from the costly enforcement necessary to
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induce such a level of utility.11

Lemma 6 There is some ω∗ such that V ′(ω) > 0 for all ω < ω∗.

Notice also that the first order conditions on xH and ω′H immediately imply that V ′(ω′H) < 0.
This implies that the principal will choose to increase the continuation promise to the decreasing
portion of the value function whenever the high state is realized.

I now turn to the binding patterns of the enforcement constraints and the incentive compatibility
constraints. Studying these binding patterns is useful in determining the nature of the frictions at
alternative points in the state space and, consequently, the principal’s choices of enforcement and
auditing.

Lemma 7 For ω sufficient small, EL binds.

It is shown further, in Lemma 12 in the Appendix, that if EL binds for some ω then it also binds
for all ω̂ < ω. This is useful in establishing the relationship between enforcement and auditing later
in the paper.

The following lemma establishes that the auditing technology is used at all nodes in the optimal
dynamic contract. This is in contrast to the enforcement technology which is used only when
the agent’s entitlements are sufficiently low. Unlike the case with only auditing, the fact that
the marginal cost of auditing at zero is zero does not guarantee that positive auditing is optimal.
The reason for this is that interstate smoothing of consumption may still be costly via the need
through increased enforcement. That is, decreasing high income consumption and increasing low
income consumption may require an increase in enforcement costs when EH is already binding. The
following lemma shows that some positive auditing is always optimal.

Lemma 8 The incentive compatibility constraint binds for all ω.

Having established that auditing is positive for all ω, I now turn to the interaction of the low
enforcement constraint with the incentive compatibility constraint. This interaction provides the
following lemma, which is unique to this environment. It states that as continuation promises
decrease, eventually only the low state enforcement constraint and the incentive compatibility
constraint bind. The reason for this is that satisfying the IC constraint when promises are low
enough guarantees that the high state enforcement constraint is also satisfied. To understand this,
imagine that xL is small. The IC constraint ensures that the utility in the high state is at least
u(xL+∆(1−α))−u(xL) ≈ u′(xL)(1−α)∆ greater than it is if the low state is realized. Meanwhile,
if both EL and EH bind, then the utility differential is exactly u(θH)− u(θL). In other words, the
gap between the agent’s valuation of the outside option is constant across xL, whereas the implied
gap between the high and low income agents’ utilities is decreasing in xL. As xL decreases, the IC
constraint will then imply that EH holds.

11I am not currently able to conclude whether such an ω is necessarily reached with positive probability.
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Lemma 9 Only EL and IC bind as ω sufficiently small.

As the cost of enforcement increases with lower wealth, the principal has higher incentives
to back-load consumption to the agent and forego future enforcement costs. Consequently, for
sufficiently low levels of entitlement the principal increases the agent’s wealth independent of the
income shock. This fact implies that ω′L crosses ω from above and establishes an endogenous lower
bound on entitlements.

Proposition 10 ω′L ≥ ω for some ω. There exists some ω < U0 such that for all periods and
histories, ω ≥ ω.

Having established the binding patterns in when ω is small, I show that at the initial utility
level, U0, only the enforcement constraint for the high type binds with the incentive compatibility
constraint. This is useful in showing that U0 falls in the interior of set [ω, ū) and also allows for the
demonstration of other properties of the value function and optimal contract at this point.

I now examine the binding of the constraints at the autarky (initial) level of utility. Under the
assumption that the marginal cost of enforcement and auditing vanish at zero, the principal finds
it optimal to smooth the agent’s consumption across states.

Proposition 11 At ω = U0, only the high type enforcement constraint and IC bind.

Corollary 1 V is downward sloping at U0.

The following corollary follows directly from the previous proposition and first order conditions
on continuation promises.

Corollary 2 At U0 continuation utilities are such that ω′L < U0 < ω′H .

Figure 1 summarizes the binding patterns of the enforcement and incentive compatibility con-
straints over the state space. When ω is high, the agent does not have incentives to renege on
the contract and the principal uses the auditing technology as a means of mitigating the informa-
tion friction. For levels of ω around the autarky level, smoothing the agent’s consumption across
the high and low income states increases the agent’s incentives to renege in the high income state
and, consequently, high income enforcement constraint binds. For lower levels of ω the benefit to
smoothing the agent’s consumption across states diminishes and the tension between the incentive
compatibility constraint and the enforcement constraints increase. Thus, as ω decreases the low
enforcement constraint begins to bind as well. Finally, for ω sufficient low, the tension between the
constraints is such that the high enforcement constraint ceases to bind.

The theory of the maximum guarantees that the multipliers and decision variables are continuous
in ω. For the region below U0 it is not possible that only IC binds, as the non-binding of both
enforcement constraints (combined with the implied zero enforcement) contradict the PK constraint.
However, we know that as ω decreases only the EL and IC constraints bind. Therefore, there must
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Figure 1: Binding Constraints for Values of ω

be a region in which EL, EH, and IC each bind. Within this region, α and γ are both decreasing in
ω. Additionally, it must be the case that ω is contained in a region where EL binds. This follows
from the fact that pLξL− η = 0 at ω so that EL must bind at the point where the low continuation
promise is equal to the current continuation promise.

An interesting implication of the model is that there is a positive probability that the agent
will reach a node at which he consumes less than θL, the low level of income. That is, after some
histories an agent receiving low income is a payor rather than recipient of transfers as part of the
efficient insurance plan. While this appears as contrary to the notion of insurance, it is necessary
to guarantee the appropriate incentives arising from the information friction.12 More specifically,
low continuation promises are used to induce truth-telling, but are also costly to the principal in
terms of enforcement. The latter effect pushes the principal to compensate the agent with more
consumption in future periods, reducing future enforcement costs. When ω is sufficiently small and
enforcement costs sufficiently high, this effect dominates.

Lemma 10 For some ω > ω, reached with positive probability, xL < θL.

Proof. It is enough to show that xL < θL at ω given continuity of consumption in the state
variable. ω, by definition, is such that ω′L = ω so that ξL = η > 0 and EL binds. The enforcement
constraints and promise keeping imply that U0−γ ≤ ω. Meanwhile, EL implies that (1−β)u(xL)+
βω = (1−β)u(θL) +βU0−γ. Together, these imply (1−β)(u(xL)−u(θL)) = β(U0−ω)−γ < 0.

5.1 Optimal use of Enforcement and Auditing Technologies

This section examines the use of the enforcement and auditing technologies in the optimal contract.
While the qualitative use of enforcement in the optimal contract is similar to that when there was
no information friction, the presence of the enforcement friction qualitatively changes the use of
auditing. The next proposition is akin to that in the Enforcement Model.

12A similar result is obtained in Atkeson (1991)
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Proposition 12 γ is decreasing in ω.

However, efficient auditing differs dramatically in the presence of the enforcement constraint.
The reason for this is that the principal uses auditing not only to smooth the agent’s consumption
across states, but also to diminish the costs of enforcement that arise at lower levels of wealth.
Unlike standard models of enforcement, enforcement is determined in for some states of ω by the
low income realization. Therefore, by increasing auditing and smoothing the agent’s consumption
across states, the principal can relax the level of enforcement. Because this incentive for auditing
increases with lower levels of promised utility, auditing is decreasing for levels of wealth in which
EL binds.

Proposition 13 α is decreasing in ω whenever EL binds.

When EL does not bind, auditing is qualitatively similar to the Auditing Model. As in Propo-
sition 6, auditing vanishes in the upper limit when the assumption of the proposition is satisfied.
When EL does not bind, but enforcement is still positive, the comparative statics of α are unclear
for the same reason they are unclear in the Auditing Model. Namely, as consumption increases
marginal utility from lying is decreased. However, manipulating future promises to the agent to
induce truth-telling is also more costly to the principal. The balance of these two forces determines
the direction of auditing as ω increases.

Propositions 12 and 13 together imply that an agent near the lower utility bound ω is costly to
the principal in terms of auditing and enforcement. While the consumption cost to the principal
of an agent with a low promised utility is low, the investment required to suppress the agent at
these levels of utility are high. Thus, as the agent’s promised utility decreases in this region, an
increasingly large percentage of the principal’s costs stem from the need to satisfy the enforcement
and incentive compatibility constraints rather than the direct costs of providing the agent with
consumption. This is examined further in the numerical example.

Auditing and Enforcement as Complements and Substitutes

As shown above, the space of utility promises can be divided into sections, the first in which EL
is binding, the second in which EH and EL bind, the third in which EH binds, and the last in
which no enforcement constraint binds. When EL is binding, the principal must pay a cost of
enforcement that is determined by the utility conditional on receiving the low income shock. The
intuition for this is as follows. Suppose that EL binds and there is an increase in auditing. The
effect of the increase in auditing is that consumption may be better smoothed across the high and
low income state. This implies that less enforcement cost is needed to prevent an agent with a low
income realization from reneging. That is, more interstate smoothing of consumption then has the
consequence of reducing the necessary enforcement costs, implying that auditing and enforcement
are substitutes for low levels of utility promise. This is evidenced by the expression at the optimal
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allocation13

f ′
[
1 +

pLu
′(xL)

pHu′(xL + (1− α)∆

]
= pL

[
u′(xL)
u′(xH)

− 1 + g′
]

> pL

[
u′(xL)
u′(xH)

− 1
]

The LHS of the equation is the cost of auditing, while the RHS of the inequality is the benefit
to the principal of smoothing the agent’s consumption across states. Supposing that enforcement
were increased so that the EL constraint was slack, the inequality implies that the principal would
find it optimal to decrease auditing and un-smooth consumption across states.

On the other hand, as EH binds and EL is slack, interstate smoothing of consumption becomes
costly to the principal in the form of higher enforcement. In this region, the auditing and enforcement
technologies are complements. Suppose that the principal were to increase auditing in the region
in which EH binds and EL is slack. This increase in auditing allows the principal to smooth the
agent’s consumption across states, lowering the total consumption cost to the principal, only if it
is accompanied by an increase in enforcement as well. If we look at the region in which EH and IC
bind (but not EL), the optimal allocation satisfies:

f ′
[
1 +

pLu
′(xL)

pHu′(xL + (1− α)∆

]
= pL

[
u′(xL)
u′(xH)

− 1− g′u′(xL)
pHu′(xH)

]
< pL

[
u′(xL)
u′(xH)

− 1
]

Supposing now that enforcement were increased so that the EH constraint were slack, the in-
equality implies that the cost of auditing in this case is less than the benefit to the principal from
smoothing the agent’s consumption across states. Therefore, an increase in enforcement in this case
is accompanied with an increase in auditing as well.

The argument above, together with a threshold value of ω for which EL binds (see Lemma 12
in the Appendix) imply that auditing and enforcement are substitutes below this threshold and
complements above it.

Unfortunately, there is no immediate proof for the existence of an ergodic distribution. While
it must be the case that ωt ∈ [ω, ū), there is no uniform bound on the probability that ω reaches
any particular value. In fact, as the set of histories is countable, there are only a countable number
of values of ω that can be reached with positive probability. As such, for there to exist an ergodic
distribution it would have to be the case that from some node ω∗ there is a non-zero probability
that the contract returns to exactly this value. However, the forces of the model suggest that the

13To derive this expression, one can use first order conditions. Alternatively, imagine an allocation in which xL is
raised and xH is decreased. So that PK still holds. When only EL and IC bound initially, this scheme requires an
increase of α and decrease of γ to maintain that IC and EL continue to bind. This scheme cannot yield any more
resources to the principal than the optimal scheme. We can perform the opposite perturbation as well which then
implies the expression.
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process ωt is mean reverting. This follows from the downward pressure on ω′ when promises are
high and the upward pressure on ω′ when promises are low.

6 Numerical Example

In this section I explore the properties of auditing and enforcement through a numerical example.
Let Θ = {θL = 1, θH = 5} with pL = pH = 0.5 and β = 0.9. I take u = c1−σ

1−σ with σ = 2. These
imply that U0 = −0.6. For the cost functions let g(γ) = γ2 and f(α) = α2

250(1−α)4
, α ∈ [0, 1]. Note

that f ′(0) = g′(0) = 0, g′, g′′, f ′, f ′′ > 0 and limα→1 f
′(α) = limγ→+∞ g(γ) = +∞.

First, consider the Enforcement Model. Figure 2 shows the decreasing relationship of enforce-
ment, γ, in continuation promises, ω, as is consistent with Proposition 2. As ωt is weakly increasing
over time, ω is shown only for those values greater than the initial promise U0. Note that some of
those ω plotted will not be reached with positive probability, see the left panel of Figure 3.

The left panel of Figure 3 shows the continuation promises ω′H and ω′L as a function of state
ω as well as the 450 line. The right panel of Figure 3 shows a sample path of ωt for a draw of
income shocks {θt}500

t=1. For the remainder of the section, all sample paths will use this same draw.
As there are only two shocks, the enforcement constraint binds only if θt = θH , so that ω′L = ω

and ω′H ≥ ω with strict equality if and only if ω < (1 − β)u(θH) + βU0 = −0.56. Contrast this
to the case in which enforcement is prohibitively costly. In that case, the first draw of θH would
push ω immediately to −0.56. Because this valuation is at least as great as the high income type’s
outside option, first best insurance is implementable thereafter. When enforcement is endogenous,
the growth of ω is slowed by the fact that enforcement keeps the high income agent’s outside option
below −0.56. Thus, wealth approaches −0.56 more slowly than in the model with no enforcement.

Next, consider the Auditing Model. Figure 4 shows the relationship of auditing, α, to continua-
tion promises, ω. Note that auditing is vanishing in the limits consistent with Propositions 5 and
6. In this and other numerical examples, auditing is single peaked in wealth, but I am unable to
generally prove that this is the case.

The left panel of Figure 5 shows the continuation promises ω′H and ω′L as a function of state
ω as well as the 450 line. Auditing is positive for all interior ω and the incentive compatibility
constraint, combined with Lemma 5 implies that ω′L < ω < ω′H . The right panel of Figure 5 shows
a sample path of ωt for the same sample draw of {θt}500

t=1 when auditing costs are specified as above.
Note the downward drift of ωt corresponding to the immiseration result.

Finally, I turn to the General Model. As determined in Proposition 12, enforcement is decreasing
in ω and is show in Figure 8. Note that it behaves qualitatively similarly to that in the Enforcement
Model depicted in Figure 2. Auditing in the General Model, on the other hand, differs qualitatively
from that in the Auditing Model. At lower values of ω, auditing is sharply decreasing in ω. In
this region, the IC constraint combined with the PK constraint interact so as to force the low
income agent’s enforcement constraint to bind. The principal then uses auditing as a substitute for
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enforcement, as it allows for greater interstate income smoothing. At the point where EL ceases to
bind, auditing behaves more similarly to that in the Auditing Model. Namely, it is single peaked
in this region and vanishes in the upper limit. One conclusion from this numerical example is that
low income agents are institutionally very costly, in the sense that greater resources are required
both greater enforcement and auditing investment relative to other agents. As xL and xH are also
smaller when ω decreases, a decreasingly small percentage of the principal costs are used to deliver
consumption to the agent.

As discussed in Section 5, there exists an endogenous lower bound ω on the continuation promises
of the agent. This is consistent with the left panel of Figure 7, which shows the continuation promises
from high and low income shocks. When ω = ω, continuation promises are qualitatively like that
in the Enforcement Model, namely: promises respond positively to high income shocks, but are
unchanged by low income shocks. The implication of this is that consumption is heavily back-
loaded in this region. As promised utility increases and enforcement decreases, the dynamics more
closely resemble that of the Auditing Model; high (low) income shocks propel increases (decreases)
in the utility promise and, as enforcement vanishes, the utility promise begins to experience a
downward drift. In this region, the consumption is predominantly front-loaded.

Given the draw of income shocks as above, the right panel of Figure 7 depicts the sample path ωt.
Unlike the other models, ω exhibits mean reversion as a consequence of the forces described in the
previous paragraph. The relative costs of auditing and enforcement then play a role in establishing
both the mean and volatility of this process.

Finally, consider the components of the principal’s costs in the General Model. First, there is
the principal’s cost of delivering consumption to the agent E[xs]; second, there are the institutional
costs of auditing and enforcement f(α) + g(γ) that are used in providing the appropriate incentives
for the agent, but do not directly provide the agent with utility. At the point where EL binds,
Propositions 12 and 13 establish that the institutional costs increase as ω decreases. Meanwhile, as
ω decreases the principal also delivers fewer consumption resources to the agent. Thus, the fraction
of that period’s costs devoted to consumption, E[xs]/ (E[xs] + f(α) + g(γ)) shrinks as ω declines.

7 Concluding Remarks

In this paper, I evaluated a problem of efficient insurance under limited commitment and private
information frictions when the principal has access to auditing and enforcement technologies. I
showed that long run use of auditing depends on the presence of the limited commitment friction
and, likewise, long run usage of enforcement depends on the information friction. Furthermore, the
combination of frictions implies a lower bound on the wealth of the agent with the lower bound
determined endogenously by the interaction of frictions and technologies. At the lower bound
the contract resembles that of the Enforcement Model and the incentives to back-load the agent’s
consumption dominate. At higher levels of wealth, the contract resembles the Auditing Model and
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the contract is front-loaded. Finally, I show alternatively how the auditing technology acts as a
complement to enforcement to smooth consumption at higher levels of wealth, but is used instead
to substitute enforcement at low levels of wealth.

By examining the extent to which agents are able to insure themselves against idiosyncratic
risk, future work could use the analysis of this paper to determine the relative costs of mitigating
information and enforcement frictions. In particular, the cheaper is enforcement relative to auditing,
the more front-loaded one should expect consumption. On the other hand, as enforcement is more
expensive relative to auditing, the more one should expect consumption to resemble that of the
Enforcement Model and contracts should be increasingly back-loaded. The framework provided in
this paper may then allow future work to tease out these costs.

8 Appendix

Proposition 1: Proof. Consider an optimal allocation under (P1). Now, suppose that the
principal could reoptimize after some history ht

′
. Clearly, the principal can be no worse off at that

node given the option to change plans. Then, it is sufficient to show that the original plan does as
well as when given the chance to reoptimize after the history ht

′
. Consider some alternative plan,

ν ′ that is equal to ν along every path, but switches to the reoptimized plan after ht
′
.

By the assumption of reoptimization, the profile ν ′ satisfies enforcement constraints for all
period after t′ and incentive compatibility constraints after t′. Furthermore, after history ht

′
it

must guarantee the agent a promised utility of Ut′(σ|ν, ht
′
).

Because all future nodes of ν ′ other than ht
′

are identical to ν and ν ′ satisfies the constraints for
all periods after ht

′
, it is only possible that ν ′ violates some constraint for k < t′ along the nodes

consistent with history ht
′
. Rewrite the agent’s utility at some time k < t′ and some realized income

θs as:

(1− β)u(xs) +
t′∑

t=k+1

∑
h̃t|h̃k

[βt−k(1− β)u(xt(·)) + βt
′−kUt′(σ|ν ′, ht)]π(h̃t)

It immediately follows that ν ′ necessarily satisfies promise keeping and enforcement as the LHS
of each of those conditions is unchanged moving to plan ν ′ from ν.

Suppose that ν ′ violated the IC constraint. Then there is some σ, some k < t′ such that
Uk(σ|ν ′, hk) > Uk(σ∗|ν ′, hk). In turn, this implies that:

k∑
t=0

∑
ht

(1− β)βtu(x(·) + βkUk(σ|ν ′, ht
′
) >

k∑
t=0

∑
ht

(1− β)βtu(x(·) + βkUk(σ∗|ν ′, ht
′
)
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Because the plans are identical up until time t′, this can be rewritten as:

t′∑
t=0

∑
ht

(1− β)βtu(x(ht)) + βt
′
Ut′(σ|ν ′, ht

′
) >

t′∑
t=0

∑
ht

(1− β)βtu(x(ht)) + βt
′
Ut′(σ∗|ν ′, ht

′
)

However, by assumption we know that the continuation utilities at t′ are identical between ν

and ν ′ so the conditioning on ν ′ in equation 1 can be replaced with ν. This implies that the original
plan was not incentive compatible yielding a contradiction.

Proposition 2: Proof. First note that the concavity of u and convexity of g imply that V is
strictly concave (only weak concavity is proven for the general model in Proposition 8). Suppose
that the statement did not hold so that for some ˆ̂ω < ω̃ it was the case that ˆ̂γ ≤ γ̃. As γ is decreasing
for ω sufficiently large (it must be 0 in the region for which first best insurance is possible), there is
some ω̂ > ω̃ for which γ̂ = ˆ̂γ. Then, note that for any state s at which the enforcement constraint
binds it is the case that (1− β)u(x̂s) + (1− β)ω̂′s = (1− β)u(ˆ̂xs) + (1− β)ˆ̂ω′s and by the concavity
of V and u it must be that for any such state x̂s =ˆ̂xs and ω̂′s = ˆ̂ω′s. Let s be the lowest state for
which both ξ̂s > 0 and ˆ̂

ξs > 0. Consequently,
∑S

s=s λ̂+ ξ̂s =
∑S

s=s λ̂+ ξ̂s. As λ̂ > ˆ̂
λ it must be the

case that
∑S

s=s ξ̂s <
∑S

s=s
ˆ̂
ξs = g′(γ̂) so that there is some state s′ < s for which

(1− β)u(θs′) + βU0 − γ̂ = (1− β)u(x̂s′) + βω̂′s′

< (1− β)u(ˆ̂xs′) + β ˆ̂ω′s′

Additionally, by the fact that ω̂ > ˆ̂ω there must also exist some state s′′ < s′ where: (1−β)u(x̂s′′)+
βω̂′s′′ > (1−β)u(ˆ̂xs′′) +β ˆ̂ω′s′′ . As utility is constant across states of the double-hat profile for which
enforcement constraint does not bind this implies that (1− β)u(x̂s′′) + βω̂′s′′ > (1− β)u(x̂s′) + βω̂′s′

yielding a contradiction.

Proposition 3: Proof. Note that first order conditions imply that E[λ′] = λ+ g′ so that λt is
a sub-martingale. Furthermore, when ω ≥ u(θS) +βU0 = ω̄, first best insurance is possible without
any enforcement costs so that no enforcement constraints bind and ω′s = ω for all s. For ω > ω̄

it is the case that the cost of providing the agent additional utility is simply λ = u−1(ω) and as
λ′s is continuous in ω from the Theory of the Maximum, maxω,s λ′s(ω) is bounded on ω ∈ [U0, ω̄].
Therefore, λt is a submartingale that is bounded from above and converges almost surely by the
Martingale Convergence Theorem. If ever an enforcement constraint binds, it must be that λ′s > λ,
so it must be that g′ = 0 almost surely.

Lemma 2: Proof. Suppose that there are also upward constraints (specified by the C function
next defined). It will then be shown that the upward constraints do not bind. Let Cs,s−1 =
u(xs) + βω′s − u(xs̃ + (1 − α)(θs − θs̃)). Then, consider Cs,s−1 + Cs−1,s = u(xs) − u(xs − ∆s(1 −
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α)) +u(xs−1)−u(xs−1 + ∆s(1−α)) ≥ 0. The concavity of u guarantees that this expression is true
only if xs ≥ xs−1.

Let ∆s = θs − θs−1. For the second part of the statement, suppose that xs > xs−1 + ∆s(1− α).
Rearrange terms in the expression above to get,

{u(xs)− u(xs−1 + ∆s(1− α))} − {u(xs −∆s(1− α))− u(xs−1)} ≥ 0

The LHS of the expression is decreasing in xs and is equal to zero when xs is equal to the upper
bound specified.

Lemma 11 Assuming V is concave and that the problem features upward constraints in addition
to downward constraints, (i) Downward constraints always bind and (ii) the upward constraints are
not binding.

Proof. (i) To show that Cs,s−1 = 0. Suppose to the contrary that Cs,s−1 > 0, for some s. Then
ω′s > ω′s−1 by Lemma 2. Consider changing (xi, ω′i)i∈S as follows: keep ω′1 fixed and if the downward
constraint is slack, reduce ω′s so that the downward constraint binds. Do the same for s = 2, 3..
until all downward constraints bind. Add a constant to each ω′s so as to satisfy promise keeping.
Each ω′s − ω′s−1 has been reduced increasing the principal’s objective. The new contract offers the
borrower the same utility and satisfies upward constraints because xs ≤ xs−1 + ∆s(1−α) still holds
and this combined with the downward constraints binding implies that upward constraints also
hold.

(ii) Suppose we ignore the constraint Cs−1,s. If xs ≤ xs−1 + ∆s(1 − α) then by (i) the upward
incentive constraint is automatically satisfied. So suppose that the solution has xs ≥ xs−1 + ∆s(1−
α). Then ω′s < ω′s−1 and Cs−1,s < 0. But then replacing xs−1−(1−α)θs−1 by xs−(1−α)θs and ω′s−1

by ω′s cannot decrease the principal’s objective and cannot violate incentive compatibility. However,
by the concavity of the agent’s utility function, this increases his utility, yielding a contradiction.

Lemma 3: Proof. Consider the case of k > s. Note that

Ck,s =
k∑
j=s

Cj+1,j+

[
k−1∑
i=s+1

u(xi + (1− α)∆i+1)− u(xi)

]
−[u(xs + (θk − θs)(1− α))u(xs + ∆s+1(1− α))]

Lemma 2 implies that for i > s,

u(xi + (1− α)∆i−1)− u(xi) ≥ u(xs + (θi−1 − θs))− u(xs + (θi−2 − θs))

and the first term in brackets is thus larger than the second term in brackets.

Proposition 5: Proof. At the lower limit: First order conditions establish that λ = E[λ′s].
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We know that λ tends toward 0 and given that λ′L ≥ 0, it must be that λ′H vanishes as well. Then,
from the first order condition u′(xH)λ′H = 1 it must be that 1/u′(xH) vanishes. Then, dividing
numerator and denominator by u′(xH) in Equation 1 it must be that the numerator tends toward
zero. Given INADA conditions on f , α must be bounded strictly below 1 and the denominator of
Equation 1 is bounded away from 0.

Proposition 6: Proof. At the upper bound: From earlier propositions we have that

f ′ = pL

u′(xL)
u′(xH) − 1

1 + pLu′(xL)
pHu′(xL+(1−α)∆)

< pL

u′(xL)
u′(xL+(1−α)∆) − 1

1 + pLu′(xL)
pHu′(xL+(1−α)∆))

(1)

Notice that the denominator is bounded away from zero. As for the numerator, limx→∞
u′(x)

u′(x+(1−α)∆) ≤
limx→∞

u′(x)
u′(x+∆) = 1, proving that auditing vanishes at the upper limit.

Lemma 4: Proof. Suppose not. Then in the optimal allocation it is the case that u(xH) +
βω′H = u(xL + ∆) + βω′L so that either xH > xL or ωH > ωL. Suppose the former (the same
logic applies with the latter). Imagine increasing α by εα, decreasing xH by εH and increasing
xL by εL so that pHu′(xH)εH = pLu

′(xL)εL and (εα − εL)u′(xL + ∆) = u′(xH)εH . Then if IC
and PK held in the original allocation they continue to hold. The additional cost of this plan is
εαf
′(0)− εH

(
pH − pHu

′(xH)
u′(xL)

)
< 0 yielding a contradiction.

Proposition 8: Proof.

Consider the operator:

T V̂ (ω) = max
α,γ,x,ω′

∑
s

p
[
−(1− β)xs + βV̂ (ω′s)

]
− f(α)− g(γ) (2)

subject to the IC, E, and PK constraints. We will show that V is its fixed point. Consider the
space of functions

F = {F̂ ∈ C : [ω, ū)→ R|F1(ω) ≤ F (ω) ≤ F2(ω), ω ∈ [ω, ū)}

where C is the set of continuous functions defined on the appropriate domain. First, we show that
F is a complete metric space in the supremum metric and T is a contraction mapping on F .

Using the sup norm, we will construct F2 and F1 so that the distance between these two functions
bounded, which implies that F is a complete metric space. The upper bound function F2 is the first
best allocation, in which F2(ω) = u−1(ω) ≡ C(ω). The lower bound function F1 grants each agent
his income plus/minus a constant y and pays the necessary enforcement cost associated with this.
To guarantee that this satisfies PK it must be that

∑
s[u(y + θs)]ps = ω and that the enforcement

cost is
γ̄(ω) = max

s
{(1− β)u(θs) + βU0 − [(1− β)u(y + θs) + βω]} .
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As ω is bounded from below, the difference between these two functions is bounded. To show this,
note that

∑
s∈S u(y+ θs) = C for all ω so that y+ θ1 ≤ C and for all s, y+ θs + θ1 ≤ y+ θN + θ1 ≤

C + θN . Then, the difference in cost to the principal (ignoring enforcement) between the two plans
is
∑

s[y + θs − C] ≤ θN − θ1. Given that γ is bounded above from the plan associated with F1,
difference between F1 and F2 must be bounded. By construction, T (V ) lies in F and, in addition,
Bellman’s sufficient conditions are satisfied. Therefore, T is a contraction mapping on a complete
metric space, so that there exists a unique fixed point V .

Next, we show that T maps concave functions into concave functions. As V is the fixed point
of the contraction mapping T , and the set of concave functions is closed, V is then also concave.
Consider any ω̂ < ˆ̂ω with corresponding contracts {{x̂s, ω̂′s}s∈S , α̂, γ̂} and {{ ˆ̂xs,

ˆ̂
ω′s}s∈S , ˆ̂α, ˆ̂γ}. Con-

sider some ω = (1 − δ)ω̂ + δ ˆ̂ω, δ ∈ [0, 1]. Assume that V is concave and consider the contraction
mapping in Equation 2. We want to show that TV (ω) ≥ (1− δ)TV (ω̂) + δTV (ˆ̂ω).

Construct the following contract {{x∗s, ω′s}s∈S , α∗, γ∗} such that:

f(α∗) = (1− δ)f(α̂) + δf( ˆ̂α)

u(x∗s) = (1− δ)u(x̂s) + δu(ˆ̂xs)

ω∗′s = (1− δ)ω̂′ + δ ˆ̂ω′s

γ∗ = (1− δ)γ̂ + δˆ̂γ

and note that by convexity of f , concavity of u, V , it is the case that α∗ ≥ (1 − δ)α̂ + ˆ̂α, x∗s ≤
(1−δ)x̂s+ ˆ̂xs and that V (ω∗′s ) ≥ (1−δ)V (ω̂′s)+δV (ˆ̂ω′s) so that this yields at least as must resources
to the principal as the convex combination. Clearly, this scheme satisfies promise keeping and
enforcement given that the plans at ω̂ and ˆ̂ω satisfied those constraints. Then, we must show that
the starred plan satisfies incentive compatibility. There are two cases, one in which the α and x

move in the same direction, in which case concavity follows from standard arguments. In the case
where the α and x move in opposite directions u(x∗ + (1 − α∗)) need not be less than the convex
combination of u(x̂+ (1− α̂)) and u(ˆ̂x+ (1− ˆ̂α)), complicating the proof.

Case 1: Suppose that α and x move in the same direction: (α̂− ˆ̂α)(x̂− ˆ̂x) ≥ 0.
We must show that C∗ = (1 − β)u(x∗H) + βω∗′H − [(1 − β)u(x∗L + (1 − α∗)∆) + βω∗′L ]. Consider

(1− δ)ĈH,L + δ
ˆ̂
CH,L ≥ 0, where the C terms represent the incentive constraints for the appropriate

contracts. Note that

C∗ = (1− δ)ĈH,L + δ
ˆ̂
CH,L + (1−β)[(1− δ)u(x̂+ (1− α̂)∆) + δu(ˆ̂x+ (1− ˆ̂α)∆)−u(x∗L + (1−α∗)∆)]

so given that the IC constraints hold for the hat contracts by assumption, it is enough to show that
(1 − δ)u(x̂ + (1 − α̂)∆) + δu(ˆ̂x + (1 − ˆ̂α)∆) − u(x∗L + (1 − α∗)∆) ≥ 0. Replace all of the α terms
with (1 − δ)α̂ + (1 − δ) ˆ̂α. This will decrease the sum of the first two terms as more weight is put
on the term with the lower marginal utility (by the assumption of Case 1) and the second term is
more negative as α∗ is greater than this term. Then, the case is proven by the assumption u′′/u′
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increasing.
Case 2: Suppose that α and x move in opposite directions: (α̂− ˆ̂α)(x̂− ˆ̂x) < 0.
By way of contradiction, suppose that TV is not concave and assume that TV (ω) lies below

secant connecting TV (ω̂) and TV (ˆ̂ω) for δ small.14 Then, it must be the case that the starred
profile violates incentive compatibility as δ increases above 0 (otherwise the starred profile would
be better than the convex combination). The following is true (using the inverse function theorem)
of the starred profile at δ = 0:

∂α∗

∂δ
=
f( ˆ̂α)− f(α̂)

f ′(α̂)

∂x∗

∂δ
=
u(ˆ̂x)− u(x̂)

u′(x̂)

So that at δ = 0,

∂C∗

∂δ
= −u′(x̂+ (1− α̂)∆))

[
u(ˆ̂x)− u(x̂)

u′(x̂)
− f( ˆ̂α)− f(α̂)

f ′(α̂)

]
+ u(ˆ̂x+ (1− ˆ̂α)∆)− u(x̂+ (1− α̂)∆)

Suppose that x̂ < ˆ̂x so that α̂ > ˆ̂α, an identical argument will hold for the opposite case. Then,

∂C∗

∂δ
≥ −u′(x̂+ (1− α̂)∆))

[
u(ˆ̂x)− u(x̂)

u′(x̂)

]
+ u(ˆ̂x+ (1− α̂)∆)− u(x̂+ (1− α̂)∆) ≥ 0

⇔ −u(ˆ̂x)− u(x̂)
u′(x̂)

+
u(ˆ̂x+ (1− ˆ̂α)∆)− u(x̂+ (1− ˆ̂α)∆)

u′(x̂+ (1− α̂)∆))
≥ 0

The following claim then concludes the proof.
Claim: For any ∆ > 0, z(x,∆) = u(x+∆)−u(x)

u′(x) is increasing in x by Assumption ii. Proof:

zx(x,∆) = [u′(x+∆)−u′(x)]u′(x)−u′′(x)[u(x+∆)−u(x)]
(u′(x))2

≥ 0 if and only if [u′(x+∆)−u′(x)]u′(x)−u′′(x)[u(x+
∆) − u(x)] > 0, which is increasing in ∆ by Assumption ii. The claim is proven by noting
lim∆→0 zx(x,∆) = 0.

Proposition 9: Proof.

To show that V is differentiably continuous we adapt the argument of Thomas and Worrall
(1990). Consider a neighborhood of ω around any ω̃, and consider a contract that satisfies IC, E,
and PK in which α and ω′ are held constant at their values implied by ω̃ so that only x and γ are
varied to yield ω in which IC continues to bind. There is a unique way to do this construction and
the cost of doing this is differentiably continuous and yields a utility to the principal less than or
equal to to V (ω) with equality holding at ω̃. That V is continuously differentiable then follows from

14If this is not true, then define ω̂ as the ω at which this is true.
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Lemma 1 of Benveniste and Scheinkman (1979).

Lemma 5: Proof. Suppose not. It then must be the case that IC binds. Note that IC not
binding implies ω′L, ω

′
H > ω. Consider the cases (i) xL ≥ θL and (ii) xL < θL. For case (i) note that

PK and ω′L, ω
′
H > ω imply that ω > u(xH) + u(xL) > U0 so that no constraints bind and xL = xH

yielding a contradiction. Case (ii) note that xL < θL implies that if the IC and EL constraints holds,
then so too must the EH constraint as the high type’s utility is at least u(xL + ∆)− u(xL) greater
than the low type’s utility. Then, the principal could be better off by raising xL and decreasing xH ,
fixing the agent’s utility, with no additional enforcement or auditing costs. Thus, IC must bind.

Given that IC binds, if xL+(1−α)∆ < xH then it must be that ω′L ≥ ω′H . First order conditions
imply that u′(xH)λ′H = 1 and u′(xL)λ′L + η(u′(xL) − u′(xL, α,∆))/pL = 1. Since u′(xH) < u′(xL)
and λ′H ≤ λ′L, this is a contradiction.

Lemma 6: Proof. By the concavity of V we need only establish that there exists some ω
such that V ′(ω) > 0. Note that the enforcement constraints combined with the promise keeping
constraint imply that U0−γ < ω so that γ increases indefinitely as ω decreases. Now, V (U0) ≥ E[θ]
as setting γ = α = 0 and xs = θs satisfies all conditions. Therefore, V ′(ω) > 0 for some ω < U0.

Lemma 7: Proof. First order conditions imply that (1−β)u′(xL)(pLλ+pLξL)−ηũ(xL, α,∆) >
0. As λ < 0 for ω sufficient small, it must be that ξL > 0 for all such ω.

Lemma 8: Proof. We show for each possibility of enforcement constraints binding that IC
must bind as well:

i) Neither EL nor EH bind. It is immediate that IC must bind, otherwise this would imply
implementation of the efficient allocation.

ii) EH and EL bind. This implies that the difference between the high type utility and low type
utility is (1 − β)(u(θH) − u(θL)). If IC does not bind, this implies that the difference between the
high type utility and low type utility is greater than u(xL+ ∆)−u(xL) which implies that xL > θL.
Both EL and EH binding, but IC not binding implies that η = 0 so that ω′L ≥ ω by the concavity
of V . The PK constraint then implies that (1 − β)[pHu(xL + ∆) + pLu(xL)] + βω′L < ω so that
pHu(xL + ∆) + pLu(xL) < ω. However, by xL > θL this implies that ω > U0 which implies that
γ = 0, contradicting the binding of EL and EH.

iii) EL only binding. This implies that ω′L > ω = ω′H . The IC constraint then implies that
u(xH) > u(xL + ∆) contradicting Lemma 2.

iv) EH only binding. This implies that (1 − β)u(θH) + βU0 − γ > (1 − β)u(xL + ∆) + βω′L >

(1 − β)u(θL) + βU0 − γ. This in turn implies that u(θH) − u(θL) > u(xL + ∆) − u(xL) so that
xL > θL. Furthermore, xL + ∆ is an upper bound on xH and FOC (along with IC, EL not binding)
imply that ω′L = ω. Together, these imply that ω < U0. The PK constraint and IC imply further
that (1 − β)[pHu(xL + ∆) + pLu(xL)] + βω < ω implying that U0 < pHu(xL + ∆) + pLu(xL) < ω

yielding a contradiction, where the first inequality follows from xL > θL.
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Lemma 9: Proof. Suppose not, so that EH also binds. Both enforcement constraints binding
imply ũ(xL, α,∆)−u(xL)) = u(θH)−u(θL) so that α = φ(xL) ≡ 1

∆

[
xL + 1− u−1(u(xL) + u(θH)− u(θL))

]
.

From first order conditions η = f ′

∆ũ(xL,α,∆) . Using the inverse function theorem and L’Hopital’s rule:

lim
xL→0

η = lim
xL→0

f ′′(φ)
[
1− u′(xL) 1

u′(xL)

]
ũ′′(xL, α,∆)(1− φ′)

= 0

As η vanishes, from first order conditions λ′L+ 1
u′(xL)η(u′(xL)−ũ(xL, α,∆) = pL

u′(xL) and λ′H = pH
u′(xL) .

Therefore, λ′s tends toward zero for s = L,H and continuation promises are equal. By the IC
constraint binding this implies that it cannot be the case that ũ(xL, α,∆)− u(xL) = u(θH)− u(θL)
yielding a contradiction.

Lemma 12 If EL binds for ω, then it also binds for all ω̂ < ω.

Proof. First, note that at the greatest ω for which EL binds it is the case that ω < U0 and so it
must also be the case that EH binds as well (this follows the proof from Lemma 11). Furthermore, if
EL does not bind at ˆ̂ω then it must be that V ′(ˆ̂ω) < 0. Finally, there must also be some ω̂ ∈ [ˆ̂ω, ω)
both EL and EH hold with equality and ξL = 0. Then, ω − ω̂ = u(θH) − u(θL). Furthermore
α = φ(xL where ũ(xL, φ,∆)−u(xL) = u(θH)−u(θL). Then, as xL decreases it is straightforward to
show that η = f ′

∆ũ(xL,φ(xL),∆) increases. Furthermore it must be that γ̂ − γ = ω − ω̂. As η̂ > η and
pH ξ̂ = g′(γ̂) > g′(γ) = pHξH + pLξL it must be that λ̂′H − λ̂′L > λ′H − λ′L. However, by concavity of
the value function it must be that the constant difference between the high and low utilities implies
that λ′H − λ′L decreases as promised utility decreases.

Proposition 10: Proof.

For some ω only EL and IC bind. First order conditions on continuation promises yield

pLλ
′
L + pHλ

′
H = λ+ g′. (3)

EH not binding implies ξL = g′ so that u′(xL)pL(λ+ g′)− ηu′(xL + (1− α)∆) = pL implying that
λ + g′ > 0. From the first order conditions on ω′H and xH we have that u′(xH)λ′H = pH so that
λ′H > 0 for all ω. Moreover, as ω decreases it is the case that λ′H tends toward 0. Thus, from the
Equation 3 it cannot be the case that λ′L decreases indefinitely with λ as ω decreases.

The lower bound is then established by the fact Theory of the Maximum, which guarantees that
the multipliers are continuous in ω. Finally, the fact that ω < U0 follows from Proposition 11.

Proposition 11: Proof. To show this I show that other possible binding combinations are
not possible. i) Suppose neither EL nor EH were to bind. This immediately implies that γ = 0 and∑

s [(1− β)u(xs) + βω′s] > U0 yielding a contradiction.
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ii) Suppose only EL were to bind. Imagine that the planner did not have to pay g(γ) for the
first period only, so that the objective function was

∑
s[−(1 − β)xs + βV (ω′s)]ps − f(α) subject

to PK, E, IC. Call this problem (P ′). The solution to this revised problem looks like a problem
with private information in which income is shared across states (θL < xL < xH < θH), utility is
shared across states u(θL) + βU0 < u(xL) + βω′L < u(xH) + βω′H < u(θH) + βU0 and the following
relation holds: u′(xH)λ′H = pH . Call the original problem (P ) and the solution to this problem C1

and the maximum V ∗. Clearly, the planner could implement this allocation in the original problem
(in which the principal pays g(γ) by choosing C1 and setting γ1 = u(θH) + βω′H − u(xH) − βω′H .
Call the principal’s utility from this plan V1 and note that V ∗ = V1 + g(γ1). Now, suppose that
EL bound in the optimal allocation, C2 and the maximum principal utility was V2. Note that the
fact that C2 was not chosen in the revised problem implies that V ∗ > V2 + g(γ2), where γ2 is
the first period enforcement technology under the optimal allocation. Abusing notation, note that
u′(xH)λ′H = pH holds in this case as well. Since V2 > V1 by assumption, it must be that γ2 < γ1,
which will lead to the contradiction. Note that γ1 = (1 − β)[u(θH) − u(xH,1)] + β(U0 − ω′H,1) and
γ2 > (1 − β)[u(θH) − u(xH,2)] + β(U0 − ω′H,2), where subscript H, i infers the first period variable
implied by Ci. γ2 < γ1 together with u′(xH)λ′H = pH and the concavity of the value function imply
that xH,1 < xH,2. Consider a perturbation of the optimal allocation of the (P ′) problem in which
xL,1 is increased, xH,1 is decreased and α1 is increased and vice versa. Optimality requires that:

pL
pHu′(xH,1)

=
pL

u′(xL,1)
+
f ′

∆

[
pLu

′(xL,1) + u′(xL,1 + (1− α)∆)
pHu′(xL,1)u′(xL,1 + (1− α1)∆)

]
(4)

Note that a similar perturbation implies the following for problem (P ):

g′ +
pL

pHu′(xH,2)
=

pL
u′(xL,2)

+
f ′

∆

[
pLu

′(xL,2) + u′(xL,2 + (1− α)∆)
pHu′(xL,2)u′(xL,1 + (1− α2)∆)

]
(5)

If EL binds, then IC, PK imply that U0 = u(xL,2)+βU0 +pH [u(xL,2 +(1−α)∆)−u(xL,2)] where the
second term must be greater than u(θH)− u(θL), which is possible only if xL,2 ≤ θL. Finally, note
that α1 > α2 follows from the IC constraint and the fact that xH,1 < xH,2, xL,1 > xL,2 and that
u(xH,1) + βω′H,1 < u(xH,2) + βω′H,2. Looking toward equations 4 and 5 this yields a contradiction,
as the LHS of equation 5 is greater than that of 4 and the RHS of 5 is less than that of equation 4,
yielding a contradiction. The latter point requires that the term with f ′ is decreasing in α, which
is easily shown.

iii) Both EL and EH bind. IC must bind, otherwise we can perturb the allocation to smooth
utility across states at no cost f ′(0) = g′(0) = 0. All constraints binding imply that u(xL + (1 −
α)∆)− u(xL) = u(θH)− u(θL) implying that xL ≤ θL from the curvature of u. Because γ = 0, first
order conditions imply that ω′L < U0. Thus, (1 − β)u(xL) + βω′L < (1 − β)u(θL) + βU0 yielding a
contradiction.

iv) If EH only binds, the IC must bind. If EH binds then (1− β)u(xL) + βω′L > (1− β)u(θL) +
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βU0 − γ. The IC constraint and the concavity of u imply that if α = 0 so IC does not bind, the
high type’s utility is at least u(θH)− u(θL) higher than the low type, yielding a contradiction.

Corollary 1: Proof. If only EH binds then consider reducing the agent’s utility by some small
amount ε. The principal can guarantee U0− ε level of utility by replicating the allocation at U0 and
reducing xL by ε/u′(xL). Because EL is not binding, for ε sufficiently small, the EL constrain will
still hold. Furthermore, reducing xL loosens the IC constraint, while having no impact on the EH
constraint. Thus, the principal is strictly better off at U0 − ε.

Lemma 12: Proof. Claim: if EH and EL both bind for any ω then for any ω̂ < ω it is the
case that the corresponding levels of enforcement satisfy γ̂ > ω. Suppose not so γ̂ ≤ γ. Then, at ω
it is the case that

(1− β)u(xs) + βω′s = (1− β)u(θs + βU0 − γ

≤ (1− β)u(θs) + βU0 − γ ≤ (1− β)u(x̂s) + βω̂′s

Summing over states this implies that ω ≤ ω̂ yielding a contradiction.
Given the claim, we need only prove that γ is strictly decreasing when only EH and IC bind.

When EL does not bind, then pHξH = g′. Suppose that γ is not strictly decreasing over the region
in which only EH and IC bind. Then, continuity implies that there must be some ω̂ < ˆ̂ω at which
γ̂ = ˆ̂γ. As only EH binds it must be the case that (1 − β)u′(x̂H) + βω̂′H = (1 − β)u′(x̂H) + βω̂′H
and by the concavity of the value function and u, this implies that x̂H = ˆ̂xH and ω̂′H = ˆ̂ω′H . By
IC binding it is also the case that (1 − β)ũ(ˆ̂xL, ˆ̂α,∆) + β ˆ̂ω′L = (1 − β)ũ(x̂L, α̂,∆) + βω̂′L and by
PK it must be that pL[(1 − β)(u(x̂L) − u(ˆ̂xL) + β(ω̂′L −ˆ̂ω′L)] = ˆ̂ω − ω̂. Together these imply that
x̂L − ˆ̂xL < ˆ̂α− α̂ > 0. Given optimality at ω̂, this implies the principal could be strictly better off
by reducing ˆ̂α slightly and adjusting consumption and wealth accordingly.

Proposition 13: Proof. Suppose that EL and EH bind. Then u(xL + (1 − α)∆) − u(xL) =
u(θH)− u(θL). By the concavity of u, it is clear that α decreases as xL increases.

Now, consider some ω̂ at which only EL binds and consider ˆ̂ω < ω̂ sufficiently close to ω̂ such
that only EL binds at ˆ̂ω. Suppose, by way of contradiction, that ˆ̂α ≤ α̂. Using EL and IC, it is the
case that (1− β)u(θL) + βU0 − γ̂ + (1− β)pH [u(x̂L − (1− α̂)∆)− u(x̂L)] = ω̂ and similarly for the
double hat contract. Then:

ˆ̂γ − γ̂+ pH(1− β)
[
(u(x̂L − (1− α̂)∆)− u(x̂L))−

(
u(̂̂xL − (1−ˆ̂α)∆)− u(ˆ̂xL)

)]
= ω̂ − ˆ̂ω

Notice that it must be the case that ˆ̂γ − γ̂ − γ̂ ≤ ω̂− ˆ̂ω as the principal can do at least as well at ˆ̂ω
by taking the allocation at ω̂, reducing x̂L so that utility in the low state is reduced by ω̂ − ˆ̂ω and
increasing enforcement by ω̂ − ˆ̂ω. Therefore,

[
(ũ(x̂L, α̂,∆)− u(x̂L))−

(
ũ(̂̂xL ,̂̂ α,∆)− u(ˆ̂xL)

)]
> 0

which implies that α̂ ≥ ˆ̂α so long as x̂L ≥ ˆ̂xL, which is proven in Lemma 13.
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Lemma 13 xL is increasing in ω.

Lemma 13: Proof. Consider ˆ̂ω < ω̂ with corresponding double hat and single hat allocations.
Consider an allocation with the single hat contract and varying only xL, γ, and α. Let ˆ̂x∗L, ˆ̂γ

∗ and
ˆ̂α∗ be so that the agent’s utility is ˆ̂ω. Let x̂∗L, γ̂

∗ and α̂∗ likewise denote the components of the
allocation solving the principal’s problem for ω̂ when the other variables are as specified in the
double hat contract. Note that to satisfy PK, ˆ̂xL ≤ x̂∗L and ˆ̂x∗L ≤ x̂L. Optimality of the hat and
double hat contracts imply:

−pL ˆ̂xL − pH ˆ̂xH + pHV (ˆ̂ω′H) + pLV (ˆ̂ω′L)− f( ˆ̂α)− g(ˆ̂γ) ≥

−pL ˆ̂x∗L − pH x̂H+pHV (ω̂′H) + pLV (ω̂′L)− f( ˆ̂α∗)− g(ˆ̂γ∗)

−pLx̂L − pH x̂H + pHV (ω̂′H) + pLV (ω̂′L)f(α̂)− g(γ̂) ≥

−pLx̂∗L − pH ˆ̂xH+pHV (ˆ̂ω′H) + pLV (ˆ̂ω′L)− f(α̂∗)− g(γ̂∗)

⇒ pL(ˆ̂x∗L − ˆ̂xL) + f( ˆ̂α∗)− f( ˆ̂α) + g(ˆ̂γ∗)− g(ˆ̂γ) ≥ pL(x̂L − x̂∗L) + f(α̂)− f(α̂∗) + g(γ̂) ≥ −g(γ̂∗)

As the starred and unstarred profiles differ only on xL, α, and γ, then from the PK constraints

u(ˆ̂x∗L)− u(ˆ̂x) = u(x̂)− u(x̂∗L) (6)

Suppose it were the case that ˆ̂x > x̂, then it must be that

ˆ̂x∗L − ˆ̂x > x̂∗L − x̂ (7)

by the concavity of u. Similar calculations from the binding of EL constraints imply that u(x̂L)−
u(ˆ̂x∗L) = ˆ̂γ∗− γ̂ and u(ˆ̂xL)−u(x̂∗L) = γ̂∗− ˆ̂γ. Summing together an combining with (6) implies that

γ̂ − γ̂∗ = ˆ̂γ − ˆ̂γ∗ (8)

Given that utility in the high state is equalized across the ·̂ and ˆ̂·∗ profiles, ˆ̂x > x̂ implies that
ω̂′L > ω̂′L. Furthermore, from the IC constraints it must be that (1 − β)ũ(x̂L, α̂,∆) + βω̂′L =
(1 − β)ũ(ˆ̂x∗L, ˆ̂α∗,∆) + β ˆ̂ω′L implying that α̂ >≥ ˆ̂α∗ from x̂L ≥ ˆ̂x∗L. A similar calculation shows
ˆ̂xL ≥ x̂∗L. These two facts, combined with (8) and (7) contradict (6).
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36



-2.5 -2 -1.5 -1 -0.5 0
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

ω

α

Figure 4: Auditing as a Function of ω

-2.5 -2 -1.5 -1 -0.5 0
-3

-2.5

-2

-1.5

-1

-0.5

0

ω

ω'

ω'
L

ω'
H

45
0
 line

0 50 100 150 200 250 300 350 400 450 500
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

t

ω
t

Figure 5: Left Panel: Continuation Promises, Right Panel: Sample Path ω

-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ω

α

γ

Figure 6: Auditing and Enforcement as a Function of ω

37



-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0
-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

ω

ω'

ω'
L

ω'
H

45
0

0 50 100 150 200 250 300 350 400 450 500
-0.75

-0.7

-0.65

-0.6

-0.55

-0.5

-0.45

-0.4

-0.35

t

ω
t

Figure 7: Left Panel: Continuation Promises, Right Panel: Sample Path ω

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0
0.4

0.5

0.6

0.7

0.8

0.9

1

ω

C
on

su
m

pt
io

n 
P

ro
po

rt
io

n 
of

 C
os

ts

Figure 8: Proportion of Costs Devoted to Consumption

38


