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1 Introduction

Many financial assets are to some degree, valued not only as claims to streams of consumption

goods, but also for their liquidity–their usefulness in the mechanism of exchange. This ob-

servation materializes in its purest form with fiat money: an asset that is universally used in

exchange and sells at a positive price, even though it represents a formal claim to nothing. In

this paper I formulate a search-based model where money and an asset that represents a claim

to a stochastic stream of real dividends (an equity share) can be used as means of payment,

and use the theory to derive the asset-pricing implications of monetary policy.

In Section 2 I present the basic model. In Section 3 I show how liquidity considerations

affect equity prices and returns in an economy with no money. I find that if the asset can help

relax trading constraints in some state of the world, the equilibrium asset price is higher and

its measured rate of return (dividend yield plus capital gains) is lower than they would be in

an economy with no liquidity needs.

In Section 4 I introduce fiat money and define a recursive monetary equilibrium. In Section

5 I characterize a class of optimal monetary policies, and describe the behavior of asset prices,

asset returns, output, inflation, and the nominal interest rate under the optimal policy. Every

policy in this family implements Friedman’s prescription of zero nominal interest rates. Under

an optimal policy, equity prices and returns are independent of monetary considerations.

In Section 6, I consider perturbations of the optimal monetary policy that consist of targeting

a constant nominal interest rate, and discuss some of the positive implications of changes in the

nominal interest rate or the inflation rate on equity prices, equity returns, and output. I find

that the price of equity is increasing, and real balances are decreasing in the nominal interest rate

target. The analysis also provides insights on how monetary policy must be conducted in order

to support a recursive monetary equilibrium with a constant nominal interest rate (with the

Pareto optimal equilibrium in which the nominal rate is zero as a special case): The growth rate

of the money supply must be relatively low in states in which the real value of the equilibrium

equity holdings is below average. Something similar happens with the implied inflation rate:

it is relatively low between state x and a next-period state x0, if the realized real value of

the equilibrium equity holdings in state x0 is below its state-x conditional expectation. I also

find that on average, liquidity considerations can introduce a negative relationship between the

nominal interest rate (and the inflation rate) and equity returns. If the average rate of inflation
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is higher, real money balances are lower, and the liquidity return on equity rises, which causes

its price to rise and its real measured rate of return to fall.

This paper is related to a large literature that studies how monetary considerations may

help explain various features of asset prices. Some examples include Balduzzi (1996), Bansal

and Coleman (1996), Bohn (1991), Boyle and Young (1988), Danthine and Donaldson (1986),

Giovannini and Labadie (1991), Kiyotaki and Moore (2005), Svensson (1985), and Townsend

(1987). The approach I follow is different from these previous studies. First, these papers assume

that money plays a special role, either because it is the only financial asset that satisfies a cash-

in-advance constraint, or because it is the only financial asset that enters the agents’ utility

functions. In contrast, I do not assume that money plays a special role in exchange. Second, my

work builds on the literature that provides micro foundations for monetary economics based on

search theory, as pioneered by Kiyotaki and Wright (1989). Specifically, the model is a version

of Lagos and Wright (2005), augmented to allow for aggregate liquidity shocks, and another

financial asset that can be used as means of payment the same way money can.1

2 The model

Time is discrete, and the horizon infinite. There is a [0, 1] continuum of infinitely lived agents.

Each time period is divided into two subperiods where different activities take place. There are

three nonstorable and perfectly divisible consumption goods at each date: fruit, general goods,

and special goods.2 Fruit and general goods are homogeneous goods, while special goods come

in many varieties. The only durable commodity in the economy is a set of “Lucas trees.” The

number of trees is fixed and equal to the number of agents. Trees yield (the same amount of)

a random quantity dt of fruit in the second subperiod of every period t. The realization of

dt becomes known to all at the beginning of period t (when agents enter the first subperiod).

1Lagos and Rocheteau (2008) was the first paper to extend Lagos and Wright (2005) to allow for another asset
that competes with money as a medium of exchange. Lagos (2006) formulates a real version of Lagos and Wright
(2005) with aggregate uncertainty, in which equity shares and government bonds can serve as means of payment,
and uses it to study the equity premium and the risk-free rate puzzles. Ravikumar and Shao (2006) consider a
related model that combines features of Lucas (1978) with features of Lagos and Wright (2005) and Shi (1997) to
study the excess volatility puzzle. Geromichalos et al (2007) consider a version of Lagos and Rocheteau (2008)
in which the real asset that competes with money is in fixed supply. Lester et al (2008) consider a version of
Geromichalos et al (2007) in which money can be used as means of payment in all bilateral meetings, while the
real asset is only accepted in some bilateral meetings.

2“Nonstorable” means that the goods cannot be carried from one subperiod to the next. This formulation
with three consumption goods allows a parsimonious integration of the asset pricing model of Lucas (1978) with
the model of exchange in Lagos and Wright (2005).
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Production of fruit is entirely exogenous: no resources are utilized and it is not possible to

affect the output at any time. The motion of dt will be taken to follow a Markov process,

defined by its transition function F (x0, x) = Pr (dt+1 ≤ x0|dt = x), where F : R+ × R+ → R
is continuous. For each fixed x, F (·, x) is a distribution function with support Ξ ⊆ (0,∞).
Assume that the process defined by F has a stationary distribution ψ (·), the unique solution
to ψ (x0) =

R
F (x0, x) dψ (x), and that F has the Feller property, i.e., for any continuous real-

valued function g on Ξ,
R
g (x0) dF (x0, x) is a continuous function of x.

In each subperiod, every agent is endowed with n̄ units of time which can be employed as

labor services. In the second subperiod, each agent has access to a linear production technology

that transforms labor services into general goods. In the first subperiod, each agent has access

to a linear production technology that transforms his own labor input into a particular variety

of the special good that he himself does not consume. This specialization is modeled as follows.

Given two agents i and j drawn at random, there are three possible events. The probability that

i consumes the variety of special good that j produces but not vice-versa (a single coincidence)

is denoted α. Symmetrically, the probability that j consumes the special good that i produces

but not vice-versa is also α. In a single-coincidence meeting, the agent who wishes to consume

is the buyer, and the agent who produces, the seller. The probability neither wants anything

the other can produce is 1− 2α, with α ≤ 1/2. In contrast to special goods, fruit and general
goods are homogeneous, and hence consumed (and in the case of general goods, also produced)

by all agents.

In the first subperiod, agents participate in a decentralized market where trade is bilateral

(each meeting is a random draw from the set of pairwise meetings), and the terms of trade

are determined by bargaining. The specialization of agents over consumption and production

of the special good combined with bilateral trade, give rise to a double-coincidence-of-wants

problem in the first subperiod. In the second subperiod, agents trade in a centralized market.

Agents cannot make binding commitments, and trading histories are private in a way that

precludes any borrowing and lending between people, so all trade–both in the centralized and

decentralized markets–must be quid pro quo.

Each tree has outstanding one durable and perfectly divisible equity share that represents the

bearer’s ownership of a tree and confers him the right to collect the fruit dividends. I will later

introduce another perfectly divisible asset–fiat money. All assets are perfectly recognizable,

cannot be forged, and can be traded among agents both in the centralized and decentralized
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markets. At t = 0 each agent is endowed with as0 equity shares (and possibly also a
m
0 units of

fiat money).

Let the utility function for special goods, u : R+ → R+, and the utility function for fruit,
U : R+ → R+, be continuously differentiable, bounded by B on Ξ, increasing, and strictly

concave, with u (0) = U (0) = 0. Let −n be the utility from working n hours in the first

subperiod. Also, suppose there exists q∗ ∈ (0,∞) defined by u0 (q∗) = 1, with q∗ ≤ n̄. Let both,

the utility for general goods, and the disutility from working in the second subperiod, be linear.

The agent’s preferences are:

lim inf
T→∞

E0

(
TX
t=0

βt [u(qt)− nt + U (ct) + yt − ht]

)
,

where β ∈ (0, 1), qt and nt are the quantities of special goods consumed and produced in the

decentralized market, ct denotes consumption of fruit, yt consumption of general goods, ht the

hours worked in the second subperiod, and Et is an expectations operator conditional on the

information available to the agent at time t, defined with respect to the matching probabilities

and the probability measure induced by F .3

3 Asset prices and liquidity in a real economy

I begin by considering a real economy where the equity share is the only asset. Let W (at, dt)

denote the value function of an agent who enters the centralized market holding at shares in a

period when dividends are dt, and let V (at, dt) denote the corresponding value when he enters

the decentralized market. These value functions satisfy the following Bellman equation:

W (at, dt) = max
ct,yt,ht,at+1

{U (ct) + yt − ht + βEV (at+1, dt+1)}

s.t. ct + wtyt + φtat+1 = (φt + dt) at + wtht

0 ≤ ct, 0 ≤ ht ≤ n̄, 0 ≤ at+1.

The agent chooses consumption of fruit (ct), consumption of general goods (yt), hours of work

devoted to production of general goods (ht), and an end-of-period portfolio (at+1). Dividends

are paid to the bearer of the equity share after decentralized trade, but before the time-t

3 I follow Brock (1970) in the use of an overtaking criterion to rank sequences of consumption and labor
because the period utility function is unbounded. The same criterion was adopted by Green and Zhou (2002).
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centralized trading session. Fruit is used as numéraire: wt is the relative price of general

goods, and φt is the (ex-dividend) price of a share. Substitute the first two constraints into the

objective, let λt ≡ 1
wt
(φt + dt), and rearrange to arrive at:

W (at, dt) = λtat + max
ct

∙
U (ct)−

ct
wt

¸
+ max

at+1

∙
−φtat+1

wt
+ βEV (at+1, dt+1)

¸
. (1)

When a buyer and a seller have share holdings a and ã respectively, the terms at which they

trade in the decentralized market are [q (a, ã) , p (a, ã)], where q (a, ã) ∈ R+ is the quantity of
special good traded, and p (a, ã) ∈ R+ represents the transfer of assets from the buyer to the

seller. The value of an agent who enters the decentralized market with share holdings a in a

period when the dividend realization is d, satisfies

V (a, d) = α

Z
{u [q (a, ã)] +W [a− p (a, ã) , d]} dG (ã)+

α

Z
{−q (ã, a) +W [a+ p (ã, a) , d]} dG (ã) + (1− 2α)W (a, d) , (2)

where G denotes the distribution of share holdings among the population.

Consider a meeting in the decentralized market between a buyer who holds at and a seller

who holds ãt. The terms of trade (qt, pt) are determined by Nash bargaining where the buyer

has all the bargaining power.4 Thus, (qt, pt) solves

max
qt,pt≤at

[u (qt) +W (at − pt, dt)−W (at, dt)] s.t. − qt +W (ãt + pt, dt) ≥W (ãt, dt) .

The constraint pt ≤ at indicates that the buyer cannot spend more assets than he owns. Since

W (at + pt, dt)−W (at, dt) = λtpt, the bargaining problem reduces to:

max
qt,pt≤at

[u (qt)− λtpt] s.t. − qt + λtpt ≥ 0.

If λtat ≥ q∗, the buyer exchanges pt = q∗/λt ≤ at of his shares for q∗ special goods. Else, he

gives the seller all his shares, i.e., pt = at, in exchange for qt = λtat special goods. Hence, the

quantity of special goods traded is q (λtat), where

q (x) = min (x, q∗) . (3)

With the bargaining solution and the linearity of W (a, d), the value of search (2) becomes

V (a, d) = S (λa) +W (a, d) , (4)

4See Lagos (2006) for an analysis with generalized Nash bargaining in a related model.
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where

S (x) ≡ α{u[q(x)]− q(x)} (5)

is the expected gain from trading in the decentralized market. Observe that S is twice dif-
ferentiable almost everywhere, with S 0 (x) ≥ 0 and S 00 (x) ≤ 0 (both inequalities are strict

for x < q∗). Having characterized the terms of trade in decentralized exchange, I turn to the

agent’s individual optimization problem in the centralized market.

The agent’s problem in the second subperiod is summarized by (1). Given that U is strictly

concave, the optimal consumption of fruit satisfies

wtU
0 (ct) = 1, (6)

and the first-order necessary and sufficient condition for the choice of at+1 is

U 0 (ct)φt = βEtV1 (at+1, dt+1) .

From (4), V1 (at+1, dt+1) = [1 + α (u0 [q (λt+1at+1)]− 1)]λt+1, and V11 (at+1, dt+1) ≤ 0 (< 0 for

λt+1at+1 < q∗). None of the agent’s choices depend on his individual asset holdings, so as in

Lagos and Wright (2005), G will be degenerate (at the mean) in equilibrium.5

I will consider an equilibrium in which all prices are time-invariant functions of the aggregate

state, dt: wt = w (dt), φt = φ (dt), and therefore, λt = 1
w(dt)

[φ (dt) + dt] ≡ λ (dt). In words,

λ (dt) is the (cum-dividend) price of an equity share in state dt, in expressed terms of general

goods. With (6),

λ (x) = U 0 (x) [φ (x) + x] .

Definition 1 A recursive equilibrium for the economy with equity is a collection of individual

decision rules ct = c (dt), at+1 = a (dt), pricing functions wt = w (dt) and φt = φ (dt), and

bilateral terms of trade qt =q(dt) and pt = p (dt) such that: (i) given prices and the bargaining

protocol, the decision rules c (·), and a (·), solve the agent’s problem in the centralized market;

(ii) the terms of trade in a bilateral meeting where the buyer holds a, are determined by Nash

bargaining, i.e., q(dt) = q[λ (dt) a], and p (dt) = q[λ (dt) a]/λ (dt); and (iii) prices are such that

the centralized market clears: c (dt) = dt, and a (dt) = 1 for all dt.

5Also, if λt+1at+1 < q∗ for some realizations of the dividend process, the portfolio choice problem at date
t has a unique solution, implying that the distribution of assets must be degenerate at the beginning of each
decentralized round of trade. Regarding the constraints, the agent’s maximization is subject to 0 ≤ ct, which
will not bind if, for example, U 0 (0) = +∞. Similarly, in equilibrium, shares will be valued and somebody has to
hold them, so 0 ≤ at+1 will not bind either.
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The Euler equation for equity holdings implies the pricing function for equity shares satisfies

U 0 (x)φ (x) = β

Z
L
£
φ
¡
x0
¢¤
U 0
¡
x0
¢ £
φ
¡
x0
¢
+ x0

¤
dF
¡
x0, x

¢
, (7)

where

L
£
λ
¡
x0
¢¤
≡ 1− α+ αu0

¡
q
£
λ
¡
x0
¢¤¢

.

This can be written as

U 0 (x)φ (x) = β

Z
Ω

©
1− α+ αu0

£
λ
¡
x0
¢¤ª

U 0
¡
x0
¢ £
φ
¡
x0
¢
+ x0

¤
dF
¡
x0, x

¢
+

β

Z
Ωc

U 0
¡
x0
¢ £
φ
¡
x0
¢
+ x0

¤
dF
¡
x0, x

¢
, (8)

where

Ω = {x ∈ Ξ : λ (x) < q∗}

and Ωc denotes its complement. The set Ω contains the realizations of the aggregate dividend

process for which the asset has value for its role as a medium of exchange, in addition to its

“intrinsic” value, i.e., that which stems from the right that ownership of the asset confers to

collect future dividends. So there is a sense in which L in (7) can be thought of as a stochastic

liquidity factor. Notice that equation (8) reduces to equation (6) in Lucas (1978) if either Ω = ∅
(the asset has no liquidity value in any state of the world, i.e., L [λ (x)] = 1 for all x), or α = 0

(agents have no liquidity needs). In what follows, it will often prove convenient to express (7)

as a functional equation in λ:

λ (x) = β

Z
L
£
λ
¡
x0
¢¤
λ
¡
x0
¢
dF
¡
x0, x

¢
+ xU 0 (x) . (9)

In applications, one will typically have to solve (9) numerically, but some useful insights regard-

ing the properties of φ (x) and the structure of the set Ω, can be gained by considering some

special cases that can be solved by paper-and-pencil methods.6

3.1 i.i.d. returns

Suppose {dt} is a sequence of independent random variables: F (dt+1, dt) = F (dt+1). In this

case, (9) implies λ (x)− xU 0 (x) = β∆, where ∆ satisfies

∆ =

Z £
1− α+ αu0

¡
q
£
β∆+ zU 0 (z)

¤¢¤ £
β∆+ zU 0 (z)

¤
dF (z) . (10)

6Notice that for the case of α = 0 analyzed by Lucas (1978), it is straightforward to show that (9) is a
contraction. It appears that this may not the case for α ∈ (0, 1], unless some more restrictive assumptions are
made on u.
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Lemma 1 There exists a unique ∆ that solves (10). This solution is positive, and strictly

increasing in α.

Given the value of ∆ characterized by (10), the equity price function is

φ (x) =
β∆

U 0 (x)
, (11)

and the set of realizations of the dividend process for which there is a liquidity return is

Ω = {x ∈ Ξ : xU 0 (x) < q∗ − β∆}. (12)

The following result provides a more detailed characterization of the set Ω.

Claim 1 Assume Ξ = [x,∞), with x > 0, and let ρ (x) ≡ −xU 00(x)
U 0(x) .

(i) If q∗ ≤ β
1−β

R
zU 0 (z) dF (z), then Ω = ∅.

(ii) If q∗ > β
1−β

R
zU 0 (z) dF (z), and ρ (x) > 1 for all x, then:

(a) Ω = ∅ if q∗ − β∆ ≤ limx→∞ xU 0 (x)

(b) Ω = {x ∈ Ξ : x > x∗} if limx→∞ xU 0 (x) < q∗−β∆ ≤ xU 0 (x), where x∗ is the unique

solution to x∗U 0 (x∗) = q∗ − β∆

(c) Ω = Ξ if xU 0 (x) < q∗ − β∆

(iii) If q∗ > β
1−β

R
zU 0 (z) dF (z), and ρ (x) < 1 for all x, then:

(a) Ω = Ξ if limx→∞ xU 0 (x) ≤ q∗ − β∆

(b) Ω = {x ∈ Ξ : x < x∗} if xU 0 (x) < q∗−β∆ < limx→∞ xU 0 (x), where x∗ is the unique

solution to x∗U 0 (x∗) = q∗ − β∆

(c) Ω = ∅ if q∗ − β∆ ≤ xU 0 (x)

(iv) If q∗ > β
1−β

R
zU 0 (z) dF (z), and ρ (x) = 1 for all x, then Ω = ∅ if q∗ ≤ 1

1−β , and Ω = Ξ

if q∗ > 1
1−β .

One can think of q∗ as indexing the economy’s liquidity needs. For instance, if q∗ ≤
β
1−β

R
zU 0 (z), then Ω = ∅, and ∆ = 1

1−β
R
zU 0 (z). That is, if q∗ is relatively low, then
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asset prices reduce to those in the i.i.d. example in Lucas (1978). Clearly, the same happens if

one simply specifies that the asset is completely illiquid, say by setting α = 0.

In general, the gross one-period return to equity between any two states xi and xj is defined

as Rs (xj , xi) =
φ(xj)+xj
φ(xi)

. For the i.i.d. case,

Rs (xj , xi) =

∙
1 +

xjU
0 (xj)

β∆

¸
U 0 (xi)

U 0 (xj)
. (13)

Lemma 1 shows that ∆ is increasing in α, so as the probability the asset can be used in exchange

rises, (11) indicates that the price of equity rises, and (13) that its (state-by-state) return falls.

Part (iv) of Claim 1 shows that the case of ρ (x) = 1 for all x, is particularly simple: the asset

either provides liquidity in every state or in no state, and the latter is the case if q∗ ≤ 1
1−β ,

which implies ∆ = 1
1−β , and therefore φ (x) =

β
1−βx. Conversely, if

1
1−β < q∗, then Ω = Ξ, and

φ (x) = β∆x, where ∆ solves u0 (1 + β∆) = 1 + (1−β)∆−1
α(1+β∆) . It is easy to show that the solution

satisfies 1
1−β < ∆ < q∗−1

β . The first inequality means that asset prices are higher in every

state in the economy with liquidity needs (the economy with high q∗). The liquidity factor is

constant in all states: L = 1+ α {u0 [min (1 + β∆, q∗)]− 1}, and L > 1 since ∆ < q∗−1
β . In this

case it is also possible to show that the liquidity factor, L, is increasing in α.

3.2 Correlated returns with log preferences over special goods

Next, generalize the dividend process by allowing it to be serially correlated over time, but

specialize preferences over special goods by assuming u (q) = log q.7 In this case , q∗ = 1, so

u0 {q [λ (x)]} = max[1, λ (x)−1] and (9) becomes

λ (x) = β

Z ©
(1− α)λ

¡
x0
¢
+ αmax

£
λ
¡
x0
¢
, 1
¤ª

dF
¡
x0, x

¢
+ xU 0 (x) . (14)

Lemma 2 There exists a unique continuous and bounded function, λ, that solves (14). More-

over, λ (x) > 0 for all x.

In general, the liquidity constraint λ (x) ≤ 1 may bind in some states and not in others, but
to illustrate, consider two special cases. First, if the constraint never binds, i.e., λ (x) ≥ 1 for
all x ∈ Ξ, then (14) reduces to

λ (x) = β

Z
λ
¡
x0
¢
dF
¡
x0, x

¢
+ xU 0 (x) , (15)

7Strictly speaking, standard CRRA preferences do not satisfy the maintained assumption u (0) = 0. But as

in Lagos and Wright (2005), similar results would obtain by adopting u (q) = (q+b)1−σ−b1−σ
1−σ with σ > 0, and

b > 0 but small. Note that −qu
00(q)

u0(q) = σ
1+b/q

, and as σ → 1, u (q)→ ln (q + b)− ln (b), and −qu00(q)
u0(q) → 1

1+b/q
.
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which is identical to equation (6) in Lucas (1978), after substituting λ (x) = U 0 (x) [φ (x) + x].

Alternatively, if the constraint binds in every state of the world, i.e., λ (x) < 1 for all x ∈ Ξ,
then (14) becomes

λ (x) = β (1− α)

Z
λ
¡
x0
¢
dF
¡
x0, x

¢
+ βα+ xU 0 (x) . (16)

Let x = xt, x0 = xt+1, φ (x) = φt, revert to a sequential formulation and iterate on (16), to

arrive at

φt =
αβ

1− β (1− α)

1

U 0 (xt)
+Et

∞X
j=1

[β (1− α)]j U 0 (xt+j)

U 0 (xt)
xt+j . (17)

If one shuts down the decentralized market, say by setting α = 0, then (17) reduces to a

standard textbook asset pricing equation (e.g., equation (3.11) in Sargent (1987), p. 96). Note

that (17) was derived under the assumption that λ (xt) < 1 for all xt, or equivalently, that

U 0 (xt) (φt + xt) < 1 for all xt. This is indeed the case in equilibrium if

αβ

1− β (1− α)
+Et

∞X
j=1

[β (1− α)]j U 0 (xt+j)xt+j + U 0 (xt)xt < 1, for all xt. (18)

For a particular specification of preferences, the following result provides a more explicit char-

acterization of the set Ω under correlated returns.

Claim 2 Suppose u (c) = log c and U (c) = εu (c). If ε < 1− β, then Ω = Ξ, and

φ (x) =
β [α+ (1− α) ε]

ε [1− β (1− α)]
x. (19)

Alternatively, if ε ≥ 1− β, then Ω ⊂ Ξ (the asset provides no liquidity in some state).

4 Asset prices and liquidity in a monetary economy

Consider the economy analyzed in the previous section, but suppose there is a second asset:

money. Money is intrinsically useless (it is not an argument of any utility or production func-

tion), and unlike equity, ownership of money does not constitute a right to collect any resources.

Let st = (dt,Mt) denote the aggregate state of the economy at time t, where Mt is the money

supply at time t. The money supply is set by a government that injects or withdraws money

via lump-sum transfers or taxes in the second subperiod of every period, i.e., Mt+1 =Mt + Tt,

where Tt is the lump-sum transfer (or tax, if negative). Let a =(as, am) denote the portfolio of
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an agent who holds as shares and am dollars. LetW (a, s) and V (a, s) be the values from enter-

ing the centralized, and decentralized market, respectively, with portfolio a when the aggregate

state is s. These value functions satisfy the following Bellman equation:

W (at, st) = max
ct,yt,ht,at+1

{U (ct) + yt − ht + βEV (at+1, st+1)}

s.t. ct + wtyt + φtat+1 = (φ
s
t + dt) a

s
t + φmt (a

m
t + Tt) + wtht

0 ≤ ct, 0 ≤ ht ≤ n̄, 0 ≤ at+1,

where φt ≡ (φst , φ
m
t ). The agent chooses consumption of fruit (ct), consumption of general

goods (yt), labor supply (ht), and an end-of-period portfolio (at+1). Again fruit is used as

numéraire: wt is the relative price of the general good, φst is the (ex-dividend) price of a share,

and 1/φmt the dollar price of fruit. Substitute the budget constraint into the objective and

rearrange to arrive at:

W (at, st) = λtat + τt + max
ct

∙
U (ct)−

ct
wt

¸
+ max

at+1

∙
−φtat+1

wt
+ βEV (at+1, st+1)

¸
, (20)

where τt = 1
wt
φmt Tt, and λt = (λ

s
t , λ

m
t ), with λst ≡ 1

wt
(φst + dt) and λmt ≡ 1

wt
φmt .

Let [q (a, ã) ,p (a, ã)] denote the terms at which a buyer who owns portfolio a trades with

a seller who owns portfolio ã, where q (a, ã) ∈ R+ is the quantity of special good traded, and
p (a, ã) = [ps (a, ã) , pm (a, ã)] ∈ R+ × R+ represents the transfer of assets from the buyer to

the seller (the first argument is the transfer of equity). The value of search in the decentralized

market satisfies

V (a, s) = α

Z
{u [q (a, ã)] +W [a− p (a, ã) , s]} dH (ã)

+ α

Z
{W [a+ p (ã,a) , s]− q (ã,a)} dH (ã) + (1− 2α)W (a, s) ,

where H denotes the distribution of portfolios.

Consider a meeting in the decentralized market between a buyer with portfolio at and a

seller with portfolio ãt. The terms of trade, (qt,pt), are determined by Nash bargaining where

the buyer has all the bargaining power:

max
qt,pt≤at

[u (qt) +W (at − pt, st)−W (at, st)] s.t. W (ãt + pt, st)− qt ≥W (ãt, st) .
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The constraint pt ≤ at indicates that the buyer in a bilateral meeting cannot spend more than
the assets he owns. Since W (at + pt, st)−W (at, st) = λtpt, the bargaining problem is

max
qt,pt≤at

[u (qt)− λtpt] s.t. λtpt − qt ≥ 0.

If λtat ≥ q∗, the buyer gets qt = q∗ special goods in exchange for a vector pt of assets with

real value λtpt = q∗ ≤ λtat. Else, the buyer gives the seller pt = at, in exchange for qt = λtat

special goods. Hence, the quantity of output exchanged is q (λtat), with q (·) given by (3). Note
that, ∂q(λtat)

∂ast
= λst if λtat < q∗, and ∂q(λtat)

∂ast
= 0 if λtat ≥ q∗, and ∂q(λtat)

∂amt
= ∂q(λtat)

∂ast

λmt
λst
. With

the bargaining solution, the value function in the decentralized market becomes

V (at, st) = S (λtat) +W (at, st) , (21)

with S (·) given by (5).
The agent’s problem in the second subperiod is summarized by (20). The optimal consump-

tion of fruit still satisfies (6). The necessary and sufficient first-order conditions for the choices

of ast+1 and amt+1 are
8

U 0 (ct)φ
s
t = βE

∂V (at+1, st+1)

∂ast+1

U 0 (ct)φ
m
t ≥ βE

∂V (at+1, st+1)

∂amt+1
, “ = ” if amt+1 > 0.

Again, the agent’s choices do not depend on his individual asset holdings, and the distribu-

tion of assets, H, will be degenerate (at the mean) in equilibrium. From (21), 1
λst

∂V (at,dt)
∂ast

=
1
λmt

∂V (at,dt)
∂amt

= 1− α+ αu0 [q (λtat)], so these first-order conditions can be written as

U 0 (ct)φ
s
t = β

Z ©
1− α+ αu0 [q (λt+1at+1)]

ª
λst+1dF (dt+1, dt)

U 0 (ct)φ
m
t ≥ β

Z ©
1− α+ αu0 [q (λt+1at+1)]

ª
λmt+1dF (dt+1, dt) , “ = ” if mt+1 > 0.

Let μ : Ξ → R+ be continuous and bounded, and suppose that the government follows

a stationary monetary policy, Mt+1 = μ (dt)Mt. Throughout, I restrict the analysis to ad-

missible monetary policies, by which I mean any μ ∈ C+, where C+ is the space of contin-

uous, bounded, and nonnegative real-valued functions on Ξ. Let st = (xt,Mt) denote the

8Note that ∂2V (λtat,st)

∂(ast)
2 = αu00 [q (λtat)] (λ

s
t )
2 if λtat < q∗, and ∂2V (λtat,st)

∂(ast)
2 = 0 if λtat ≥ q∗. So ∂2V (λtat,st)

∂(ast)
2 ≤

0 (and < 0 if λtat < q∗). Also, ∂2V (λtat,st)

∂(amt )
2 = ∂2V (λtat,st)

∂(ast)
2 (λmt /λ

s
t )
2, and ∂2V (λtat,st)

∂ast∂a
m
t

= ∂2V (λtat,st)

(∂ast)
2

λmt
λst
, so

V (λtat, dt) is concave in at (strictly concave for λtat < q∗).
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state of the economy at time t. The transition function F together with the policy func-

tion μ, induces a transition function for st, i.e., if s = (x,M), and s0 = (x0,M 0), then

Pr(st+1 ≤ s0|st = s) = I{μ(x)M≤M 0}F (x
0, x) ≡ F (s0, s). Let Ψ be the associated stationary

distribution, i.e., let Ψ be the unique solution to Ψ (s0) =
R
F (s0, s) dΨ (s). I will consider a

recursive equilibrium in which all prices are time-invariant functions of the aggregate state,

st = (xt,Mt), i.e., wt = w (st), φst = φs (st), φmt = φm (st), and λt = λ (st) = [λ
s (st) , λ

m (st)],

where λs (st) ≡ 1
w(st)

[φs (st) + xt] and λm (st) =
1

w(st)
φm (st).

Definition 2 Given a monetary policy rule μ, a recursive equilibrium is a collection of indi-

vidual decision rules ct = c (st), at+1 = a (st) = [as (st) , am (st)], pricing functions wt = w (st),

φst = φs (st), φmt = φm (st), and bilateral terms of trade qt =q(st) and pt = p (st) such

that: (i) given prices and the bargaining protocol, the decision rules c (·), and a (·), solve the
agent’s problem in the centralized market; (ii) the terms of trade are determined by Nash bar-

gaining, i.e., q(st) = q (λ (st)a (st)) and λ (st)p (st) = min [λ (st)a (st) , q
∗]; and (iii) prices

are such that the centralized market clears, i.e., c (st) = dt, as (st) = 1. The equilibrium is

monetary if φm (st) > 0 for all st, and in this case the money-market clearing condition is

am (st) = μ (dt)Mt.

From (6), if the current state is s = (x,M), then

λs (s) = U 0 (x) [φs (s) + x] and λm (s) = U 0 (x)φm (s) .

In words, λs (s) is the real value (in terms of general goods) of an agent’s equilibrium equity

holding in the search market, and λm (s) is the real value of a unit of money (also in terms of

marginal utility of fruit). Let z (s) represent the value of the equilibrium money holdings in

state s = (x,M), i.e.,

z (s) ≡ λm (s)M, (22)

and let Λ (s) be the value (in terms of general goods) of the equilibrium portfolio that an agent

carries into the search market in state s, i.e.,

Λ (s) ≡ λs (s) + z (s) .

In equilibrium, the Euler equations for equity and money holdings imply

λs (st) = β

Z
L [Λ (st+1)]λ

s (st+1) dF (xt+1, xt) + xtU
0 (xt) (23)

z (st) ≥
β

μ (xt)

Z
L [Λ (st+1)] z (st+1) dF (xt+1, xt) (24)
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respectively, where (24) holds with “=” if am (st) > 0, and

L [Λ (st+1)] ≡ 1− α+ αu0 (min {Λ (st+1) , q∗}) .

Note that L (st+1) ≥ 1 for all dividend realizations, xt+1 ∈ Ξ, with L (st+1) > 1 for xt+1 ∈
Ωm (st), where

Ωm (st) = {xt+1 ∈ Ξ : λs [xt+1, μ (xt)Mt] + λm [xt+1, μ (xt)Mt]μ (xt)Mt < q∗} .

Notice that z (st) = 0 for all st solves (24), and also, that z (st) = 0 for all st implies Λ (st) =

λs (st) for all st, so a nonmonetary equilibrium exists provided the functional equation (9) has

a solution.

4.1 Observables

In this section I derive expressions for the nominal interest rate, the rate of increase in nominal

prices, the return on equity, and other empirically observable functions of the equilibrium

allocations and prices. In Section 6, I will discuss the relationships between these variables to

highlight some of the empirical predictions of the theory.

Relative prices. There are three goods in this economy: special goods, general goods, and

fruit. Recall that φm (s), φs (s), and w (x) (which equals 1/U 0 (x)) are expressed in terms of

fruit. The bargaining solution implies that in every bilateral trade, the buyer hands over a

portfolio of assets that is worth min (Λ (s) , q∗) general goods, in exchange for min (Λ (s) , q∗)

special goods. Hence, the relative price of special goods in terms of general goods equals 1.

The following table summarizes the full set of relative prices.

Price of
↓

in terms of
→ special good general good fruit money

special good 1 1 1
U 0(x)

1
U 0(x)φm(s)

general good 1 1 1
U 0(x)

1
U 0(x)φm(s)

fruit U 0 (x) U 0 (x) 1 1
φm(s)

money U 0 (x)φm (s) U 0 (x)φm (s) φm (s) 1

Table 1: Relative prices in state s = (x,M)

Nominal interest rate. In order to derive an expression for the “shadow” nominal interest

rate, imagine there existed an additional asset in this economy, a one-period risk-free bond
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that pays a unit of money in the centralized market, which cannot be used in the decentralized

exchange. Let φn (st) denote the state-st price of this nominal bond. In equilibrium, this price

must satisfy

U 0 (xt)φ
n (st) = β

Z
U 0 (xt+1)φ

m (st+1) dF (xt+1, xt) . (25)

Notice that φn(st)
φm(st)

is the dollar price of a nominal bond in state st, so 1 + i (st) =
φm(st)
φn(st)

is the

gross nominal interest rate in state st. Hence, in a monetary equilibrium,

1 + i (st) =

R
L [Λ (st+1)] z (st+1) dF (xt+1, xt)R

z (st+1) dF (xt+1, xt)
. (26)

Inflation. The price of money, φm (s), is quoted in terms of fruit. Since the relative price

of fruit in terms of general goods in state s =(x,M) is U 0 (x), the price of money in terms of

general goods is φmg (s) = U 0 (x)φm (s). Let

πf
¡
s0, s

¢
=

φm (s)

φm (s0)
− 1 (27)

denote the change in the dollar price of fruit between state s =(x,M) and a next-period state

s0 = (x0, μ (x)M) that follows from s under a monetary policy μ. Similarly, let

πg
¡
s0, s

¢
=

φmg (s)

φmg (s
0)
− 1 (28)

denote the change in the dollar price of the general good. Expected (gross) inflation as mea-

sured by the dollar price of the general good, conditional on the information available in state

s =(x,M), under the monetary policy μ, is 1 + π̃g (s) =
R
[1 + πg (s

0, s)] dF (x0, x), where

s0=(x0, μ (x)M). Expected inflation measured by the dollar price of fruit, π̃f (x), is defined

analogously. The average (long-run) inflation rate, measured by the dollar price of good i = f, g,

is π̄i =
R
π̃i (s) dΨ (s).

Real interest rate. In order to derive an expression for the real interest rate, imagine there

existed an additional asset in this economy, a one-period risk-free bond that pays a unit of

fruit in the centralized market, which cannot be used in the decentralized exchange. Let φr (st)

denote the state-st price of this real bond. In equilibrium, this price must satisfy

U 0 (xt)φ
r (xt) = β

Z
U 0 (xt+1) dF (xt+1, xt) . (29)
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Notice that φr (xt) is the relative price of a sure claim to fruit in period t+ 1 in terms of fruit

in state st = (xt,Mt), so

1 + r (xt) =
1

φr (xt)
(30)

is the gross real interest rate in state st. In a monetary equilibrium, we can combine (26) with

(22), (24), (29), and (30) to arrive at

1 + r (xt)

1 + i (st)
=

Z
ω (xt+1, xt) [1 + πf (st+1, st)]

−1 dF (xt+1, xt) , (31)

where ω (xt+1, xt) ≡ U 0 (xt+1)
£R

U 0 (xt+1) dF (xt+1, xt)
¤−1. Condition (31) is a stochastic gen-

eralization of the simple Fisher equation: it equates the real-to-nominal gross interest rate

ratio, to the conditional expectation of the marginal-utility-of-fruit-weighted reciprocal of the

inflation rate (in this case, as measured by the price of fruit).9

Output. In state s =(x,M), the quantity of fruit equals the endowment, x. The quantity

of special goods produced equals αmin (Λ (s) , q∗). Production of general goods is carried out

by agents who acted as buyers in the previous round of decentralized trade. From the budget

constraint that each agent faces in the centralized market, we see that in order to replenish

his asset holdings, each agent who was a buyer in the previous decentralized market needs

to produce min (Λ (s) , q∗) general goods. Hence the total output of general goods in state

s is αmin (Λ (s) , q∗). Aggregate output, expressed in terms of general (or special) goods, is

Yg (s) = xU 0 (x) + 2αmin (Λ (s) , q∗). Aggregate output expressed in terms of fruit is Yf (s) =

Yg (s) /U
0 (x). Nominal aggregate output in state s =(x,M) is Yn (s) = Yf (s) /φ

m (s).

Real return on equity. The real (in terms of fruit) gross return on equity between state

s =(x,M) and a next-period state s0 = (x0,M 0) is Rs (s0, s) = φs(s0)+x0

φs(s) . The expected return

on equity, conditional on the information available in state s, under monetary policy μ is

R̃s (s) =
R
Rs (s0, s) dF (x0, x), where s0=(x0, μ (x)M). The average (long-run) equity return is

R̄s =
R
R̃s (s) dΨ (s).

5 Optimal monetary policy

The Pareto optimal allocation can be found by solving the problem of a planner who wishes to

maximize average (equally-weighted) expected utility. Given the initial condition d0 ∈ Ξ, the
9Svensson (1985) derives an expression like (31) for his cash-in-advance economy.
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planner’s problem consists of finding the sequence {ct, qt}∞t=0 that achieves

V ∗ = max
{ct,qt}∞t=0

W ({ct, qt}∞t=0) (32)

s.t. 0 ≤ qt, 0 ≤ ct ≤ dt,

where

W ({ct, qt}∞t=0) = E0

( ∞X
t=0

βt {α [u(qt)− qt] + U (ct)}
)
.

The conditional expectation E0 is defined with respect to the transition probability F (dt+1, dt).

The solution is to set {ct, qt}∞t=0 = {dt, q∗}
∞
t=0. From Definition 2, it is clear that the competitive

allocation in the centralized market always coincides with the efficient allocation. However, the

equilibrium allocation may have qt < q∗ in some states. That is, in general, consumption and

production in the decentralized market may be too low in a monetary equilibrium.

Proposition 1 Let k be an arbitrary constant with k ≥ 1, and z̄ : X→ R++ be an arbitrary
bounded function. Define

z∗ (x) =

½
kq∗ − λs (x) if x ∈ Ω
z̄ (x) if x ∈ Ωc, (33)

where λs (x) is the unique continuous, bounded, and strictly positive solution to (15).

(i) There exists a recursive monetary equilibrium under the monetary policy

μ∗ (x) = β

R
z∗ (x0) dF (x0, x)

z∗ (x)
, (34)

and the equilibrium prices of equity and money are

φs (x) =
λs (x)− xU 0 (x)

U 0 (x)
(35)

φm (s) =
z∗ (x)

U 0 (x)M
(36)

for x ∈ Ξ, and s =(x,M) ∈ Ξ×R+.
(ii) The monetary policy μ∗ is optimal.

(iii) The nominal interest rate is constant and equal to 0 under the policy (34).

(iv) The equilibrium state-by-state gross inflation rate is

1 + π∗f
¡
x0, x

¢
= β

R
z∗ (x0) dF (x0, x)

z∗ (x0)

U 0 (x0)

U 0 (x)
(37)
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if measured by the price of fruit, or

1 + π∗g
¡
x0, x

¢
= β

R
z∗ (x0) dF (x0, x)

z∗ (x0)
(38)

if measured by the price of general goods. Let π̄∗g denote the average (long-run) inflation in the

price of general goods. Then, π̄∗g ≥ β−1, with strict inequality unless z∗ is a degenerate random
variable.

Part (i) of Proposition 1 characterizes a family of optimal stochastic monetary policies indexed

by the number k and the function z̄. A monetary policy in this class induces qt = q∗ in every

bilateral trade for every realization of the aggregate state. Under (34), the pricing function (35)

is identical to the one derived for the nonmonetary economy with Ω = ∅, which is the pricing
function in Lucas (1978). An optimal monetary policy ensures that the marginal return to the

agent from carrying an additional dollar into the decentralized market is zero, i.e., equal to

the government’s (marginal) cost of providing real balances. An optimal policy induces agents

to hold just enough money so that L [Λ (s)] = 1 with probability 1 in the equilibrium. Part

(iii) confirms that a monetary policy in the family characterized in part (i) implements the

Friedman rule: it induces a monetary equilibrium with the nominal interest rate equal to zero

in every state.10 In deterministic environments, the Friedman rule can often be described by

the simple deterministic monetary policy rule of deflating at the rate of time preference (see,

e.g., Lagos and Wright, 2005). In this environment there are stochastic liquidity needs, and the

family of optimal policies in (34), are stochastic.11 According to part (iv), neither (37) nor (38)

need to equal β, and in fact, the long-run average inflation rate, π̄∗g , exceeds β − 1 in general.
One way to think of the family defined in (34), is that it is constructed so that the real

money balances z∗ as defined in (33) can be part of a monetary recursive equilibrium. Since

the constant k ≥ 1 and the bounded function z̄ that define the real balances z∗ are arbitrary,

it is apparent that there is a large class of monetary policies for which there exists a monetary

recursive equilibrium with zero nominal rate in every state. For example, Proposition 1 goes

through if we replace z∗ in (33) with any strictly positive, bounded function ẑ with the property

10Even with no illiquid nominal bonds of the kind used to derive the nominal interest rate, (26), this marginal
cost of holding nominal money balances (which in equilibrium equals the marginal benefit of holding money) has
a natural interpretation as the price that the agent is willing to pay to own a dollar at the beginning of period t
(and be able to use it in exchange) rather than at the end of period t, after the round of decentralized trade.
11 In Lagos (2008) I characterize a large family of deterministic monetary policies that implement the Friedman

rule in a generalization of this stochastic environment.
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that ẑ (x)+λs (x) ≥ q∗ for all x ∈ Ξ. The class of policies described by z∗ is of interest because
as shown below (Proposition 3), it can be obtained as the limit of the class of policies that

implement a constant (but possibly nonzero) nominal interest rate, as this target nominal

interest rate approaches zero. Proposition 2, to which I turn next, provides another reason why

the class of policies described in Proposition 1 is of interest.

Define the allocation rule Q(s, μ) : Ξ × R+ × C+ → R+, and a price rule Φm (s, μ) :
Ξ× R+ × C+ → R+. The allocation rule Q(s, μ) specifies the quantity of special goods traded
in every bilateral meeting of a monetary recursive equilibrium under the policy rule μ, in a

period when the aggregate state is s. The price rule Φm (s, μ) specifies the value of money (in

terms of fruit) in a monetary recursive equilibrium under the policy rule μ, in a period when

the aggregate state is s.

Proposition 2 Assume B ≤ (1− β) q∗, and let λs (x) be the unique continuous, bounded, and

strictly positive solution to (15). Let μ∗ be as in (34), but with z∗ (x) = q∗−λs (x) for all x ∈ Ξ,
and let

M =
©
μ ∈ C+ : Q (s, μ) = q∗ for all s ∈ Ξ×R+

ª
.

Then μ∗ ∈M, and for all μ ∈M, Φm (s, μ∗) ≤ Φm (s, μ) for all s ∈ Ξ×R+.

Proposition 2 corresponds to a parametrization for which, if the equity was priced as in an

economy with no liquidity needs, agents would in fact experience a shortage of liquidity in

every state. More formally, the assumption B ≤ (1− β) q∗ implies λs (x) ≤ q∗ for all x ∈ Ξ,
or equivalently, Ω = Ξ. The proposition identifies, among the whole class of optimal monetary

policies, the monetary policy that minimizes the value of money, and shows that this policy lies

within the particular class of optimal policies described in Proposition 1.

6 Asset prices, liquidity, and monetary policy

In this section I consider a class of (possibly non-optimal) policies to study the relationship

between asset prices, liquidity returns, and monetary policy from a positive standpoint. The

class of optimal policies described in Proposition 1 can be characterized by the fact that they

induce a nominal interest rate that is: (a) constant, and (b) equal to zero. The following

proposition studies equilibrium under policies that induce a constant nominal interest rate,

which is possibly higher than zero.
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Proposition 3 Let L (δ) = 1− α+ αu0 (δq∗), and δ be defined by L (δ) = 1/β. Let δ0 ∈ (δ, 1)
be given, and suppose that B ≤ [1− βL (δ0)] δ0q

∗. For any δ ∈ [δ0, 1] define

z (x; δ) = δq∗ − λ (x; δ) (39)

where λ (x; δ) is the unique continuous, bounded, and strictly positive solution to (15), but with

β replaced by βL (δ).

(i) There exists a recursive monetary equilibrium under the monetary policy

μ (x; δ) = βL (δ)

R
z (x0; δ) dF (x0, x)

z (x; δ)
, (40)

and the equilibrium prices of equity and money are

φs (x; δ) =
λ (x; δ)− xU 0 (x)

U 0 (x)
(41)

φm (s; δ) =
z (x; δ)

U 0 (x)M
(42)

for s =(x,M) ∈ Ξ×R+.
(ii) The gross nominal interest rate in state s, 1 + i (s; δ), is constant and equal to L (δ)

under the policy (40).

(iii) The equilibrium state-by-state gross inflation rate is

1 + πf
¡
x0, x; δ

¢
= βL (δ)

R
z (x0; δ) dF (x0, x)

z (x0; δ)

U 0 (x0)

U 0 (x)
(43)

if measured by the price of fruit, or

1 + πg
¡
x0, x; δ

¢
= βL (δ)

R
z (x0; δ) dF (x0, x)

z (x0; δ)
(44)

if measured by the price of general goods.

(iv) Consider the recursive monetary equilibrium induced by the monetary policy (40) with

δ ∈ (δ0, 1], and the recursive monetary equilibrium induced by (40) with δ0 ∈ [δ0, δ). Then: (a)
λ (·; δ) < λ (·; δ0), (b) z (x; δ0) < z (x; δ), (c) φs (·; δ) < φs (·; δ0), (d) φm (·; δ0) < φm (·; δ), (e)
i (·; δ) < i (·; δ0). Let π̃g (x; δ) ≡

R
πg (x

0, x; δ) dF (x0, x), then: (f) 1 + π̃g (x; δ) ≥ βL (δ) (with

strict inequality unless λ (x; δ) is a degenerate random variable).

(v) limδ→1 μ (x; δ) = μ (x; 1) = μ∗ (x), with μ∗ (x) as given in Proposition 2.
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The class of monetary policies described in part (i) is indexed by the parameter δ, which

according to part (ii), effectively determines the level of the constant nominal interest rate

that the policy targets. Part (iv) shows that under the proposed policy, the price of equity is

increasing in the nominal interest rate target (decreasing in δ), while real balances and the value

of money are decreasing in the nominal interest rate implemented by the policy (increasing in

δ). Expected inflation as measured by the dollar price of general goods, conditional on the

information available in state s =(x,M), and π̄g (δ) ≡
R
π̃g (x; δ) dψ (x), are bounded below by

βL (δ). Part (v) shows that as δ → 1 the policy μ (x; δ) approaches the optimal policy described

in Proposition 2, and therefore the monetary equilibrium characterized by (39)—(42) converges

to the efficient equilibrium of Proposition 2.

Proposition 3 provides insights on how the monetary policy (40) can support a recursive

monetary equilibrium with a constant nominal interest rate, with the optimal equilibrium in

which the nominal rate is constant and zero as a special case. According to (40), the money

growth rate should be relatively low in states in which the real value of the equilibrium equity

holdings, is below average. For example, with δ = 1 (the optimal policy of Proposition 2),

μ∗ (x) < β if and only if λ (x) <
R
λ (x0) dF (x0, x), and μ∗ (x) = β if λ (x) =

R
λ (x0) dF (x0, x).

Something similar happens with the implied inflation rate. From (44), for example, the inflation

rate between state x and a next-period state x0 is relatively low if the realized real value of the

equilibrium equity holdings in state x0 is below the conditional expectation held in state x.

Corollary 1 Consider the economy described in Proposition 3, with dF (x0, x) = dF (x). Then

for any δ ∈ [δ0, 1], there exists a recursive monetary equilibrium under the monetary policy

μ (x; δ) = βL (δ)
δq∗ − 1

1−βL(δ)
R
x0U 0 (x0) dF (x0)

δq∗ − βL(δ)
1−βL(δ)

R
x0U 0 (x0) dF (x0)− xU 0 (x)

, (45)

and the equilibrium prices of equity and money are

φs (x; δ) =
βL (δ)

1− βL (δ)

R
x0U 0 (x0) dF (x0)

U 0 (x)
(46)

φm (s; δ) =
δq∗ − βL(δ)

1−βL(δ)
R
x0U 0 (x0) dF (x0)− xU 0 (x)

U 0 (x)M
(47)

for s =(x,M) ∈ Ξ×R+. The state-by-state inflation rate measured by the price of fruit is

πf
¡
x0, x; δ

¢
=

U 0 (x0)

U 0 (x)
μ
¡
x0; δ

¢
− 1. (48)
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The state-by-state inflation rate measured by the price of general goods is

πg
¡
x0, x; δ

¢
= μ

¡
x0; δ

¢
− 1. (49)

As long as B ≤ (1− β) q∗, the monetary policy and the equilibrium obtained in Corollary 1 with

δ = 1, coincide with the optimal monetary policy and the efficient equilibrium we would obtain if

we assumed dF (x0, x) = dF (x) in Proposition 2. From (45), for every δ ∈ [δ0, 1], ∂μ (x; δ) /∂x
is proportional to 1 − ρ (x), i.e., the rate of money creation is procyclical if ρ (x) < 1. In

particular, notice that this is also true for the optimal policy, μ (x; 1). From (46), the level of

asset prices is increasing in the nominal interest rate, L (δ), so the state-by-state real return on

equity,

Rs
¡
x0, x; δ

¢
=

∙
1 +

1− βL (δ)

βL (δ)

U 0 (x0)x0R
x0U 0 (x0) dF (x0)

¸
U 0 (x)

U 0 (x0)
, (50)

is decreasing in the nominal interest rate. A higher nominal interest rate implies that buyers

are on average short of liquidity, so equity becomes more valuable as it is used by buyers to

relax their trading constraints. This additional liquidity value means that the real financial

return on equity, e.g., (50), will be lower, on average, at a higher interest rate.

Corollary 2 Consider the economy described in Proposition 3, with U (c) = log c, and assume

1 < [1− βL (δ0)] δ0q
∗. For any δ ∈ [δ0, 1], there exists a recursive monetary equilibrium under

the monetary policy

μ (x; δ) = βL (δ) , (51)

and the equilibrium prices of equity and money are

φs (x; δ) =
βL (δ)

1− βL (δ)
x (52)

φm (s; δ) =
δq∗ − 1

1−βL(δ)
M

x (53)

for x ∈ Ξ, and s =(x,M) ∈ Ξ×R+. The gross nominal interest rate in state s, i.e., 1+ i (s; δ),

is constant and equal to L (δ) under the policy (51). The equilibrium gross state-by-state gross

inflation rate is

1 + πf
¡
x0, x; δ

¢
= βL (δ)

x

x0
(54)

if measured by the price of fruit, or

1 + πg
¡
x0, x; δ

¢
= βL (δ) . (55)
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As long as B ≤ (1− β) q∗, the monetary policy and the equilibrium obtained in Corollary 1

with δ = 1, coincide with the optimal monetary policy and the efficient equilibrium we would

obtain if we assumed U (c) = log c in Proposition 2.

7 Conclusion

In this paper I have formulated a model in which agents hold assets not only for their intrinsic

value, but also to use them as means of payment. In particular, I have considered a financial

structure with two assets, equity shares of a stochastic real exogenous dividend, and fiat money.

In this context, I characterized a family of optimal, stochastic monetary policy rules. Every

policy in this family implements Friedman’s prescription of zero nominal interest rates. Under

an optimal policy, equity prices and returns are independent of monetary considerations.

I have also studied a class monetary policies that target a constant, but nonzero nominal

interest rate. For this perturbation of the family of optimal policies, I have found that the

model articulates the idea that, to the extent that a financial asset may be used to facilitate

transactions, this liquidity service will be priced in the asset and reflected in its measured

financial return. In addition, even if the asset is real, as would be the case with an equity

share that represents a claim to a real exogenous dividend stream, whenever it serves this

liquidity role alongside a monetary asset, the equity price and rate of return will depend on

monetary considerations. Since agents are free to use any combination of assets for exchange

purposes, even if the equity is real and its dividend exogenous, part of its return will be linked

to its liquidity return, and this liquidity return in turn depends on the quantity of real money

balances–which is a function of the inflation rate. On average, if the rate of inflation is higher,

real money balances are lower, and the liquidity return on equity rises, which causes its price to

rise and its real measured rate of return (dividend yield plus capital gains) to fall. This type of

logic could help to rationalize the fact that historically, real stock returns and inflation have been

negatively correlated–an observation long considered anomalous in the finance literature.12

The model has a number of implications for the time-paths of output, inflation, interest

rates, equity prices, and equity returns, and it would be interesting to explore these implications

further. For example, even though variations in aggregate output are effectively exogenous

under the types of monetary policies that were considered, for some parametrizations (e.g.,

12See, e.g., Bodie (1976), Bordo et al (2008), Boudoukh and Richardson (1993), Fama (1981), Fama and
Schwert (1977), Gultekin (1983), Jaffe and Mandelker (1976), Kaul (1987), Marshall (1992), Nelson (1976).
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Corollary 1 with ρ (x) < 1) the theory produces a negative correlation between the inflation rate

and the growth rate of output–a short-run “Phillips curve”–but one that is entirely generated

by a monetary policy designed to target a constant nominal interest rate in an economy with

stochastic liquidity needs.
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A Proofs

Proof of Lemma 1. Let

Υ (∆) ≡
Z ©

1− α+ αu0
¡
min

©
β∆+ xU 0 (x) , q∗

ª¢ª £
β∆+ xU 0 (x)

¤
dF (x)−∆, (56)

then Υ (∆) = 0 is equivalent to (10). Note that Υ (0) > 0. Also, Υ (∆) =
R
xU 0 (x) dF (x) −

(1− β)∆ for all ∆ ≥ q∗/β, so lim∆→∞Υ (∆) = −∞. Since Υ is continuous, there exists a

∆ > 0 such that Υ (∆) = 0. Differentiate Υ (∆) to get

Υ0 (∆) = − (1− β) + αβ

Z
Ω

£
β∆+ xU 0 (x)

¤
u00dF (x) + αβ

Z
Ω

¡
u0 − 1

¢
dF (x)

where Ω = {x ∈ Ξ : β∆+ xU 0 (x) < q∗}, and with u00 and, u0 evaluated at β∆+ xU 0 (x). Note

that Υ (∆) = 0 implies

αβ

Z
Ω

¡
u0 − 1

¢
dF (x) = 1− β − ς,

where ς = 1
∆

R
(1− α+ αu0)xU 0 (x) dF (x) > 0. Therefore

Υ0 (∆)
¯̄
Υ(∆)=0

= αβ

Z
Ω
u00λ (z) dF (z)− ς < 0,

so Υ (∆) = 0 has a unique solution. Finally,

∂Υ (∆)

∂α
=

Z
Ω

¡
u0 − 1

¢ £
β∆+ xU 0 (x)

¤
dF (x) ≥ 0, “ > ” if Ω 6= ∅,

so
d∆

dα

¯̄̄̄
Υ(∆)=0

=
∂Υ (∆) /∂α

− Υ0 (∆)|Υ(∆)=0
≥ 0, “ > ” if Ω 6= ∅.

Proof of Claim 1. (i) Note that q∗ − β∆ ≤ 0 if and only if Υ (q∗/β) ≥ 0, where the

function Υ is defined in (56). It is straightforward to verify that Υ (q∗/β) ≥ 0 if and only if
q∗ ≤ β

1−β
R
zU 0 (z) dF (z). But if this is the case, then Ω = ∅ since xU 0 (x) ≥ 0 for all x.

(ii) ρ (x) > 1 implies that xU 0 (x) is strictly decreasing. The condition in part (ii)(a) implies

that xU 0 (x) ≥ q∗−∆ for all x. The condition in part (ii)(c) implies that xU 0 (x) < q∗−∆ for all
x. Since xU 0 (x) is continuous and strictly decreasing, the condition in part (ii)(b) implies there

exists a unique x∗ ∈ [x,∞) characterized by x∗U 0 (x∗) = q∗ − β∆ such that xU 0 (x) < q∗ −∆
if and only if x > x∗.

(iii) ρ (x) < 1 implies that xU 0 (x) is strictly increasing. The condition in part (iii)(a)

implies that xU 0 (x) < q∗ −∆ for all x. The condition in part (iii)(c) implies that xU 0 (x) ≥
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q∗ − ∆ for all x. Since xU 0 (x) is continuous and strictly increasing, the condition in part

(iii)(b) implies there exists a unique x∗ ∈ (x,∞) characterized by x∗U 0 (x∗) = q∗ − β∆, such

that xU 0 (x) < q∗ −∆ if and only if x < x∗.

(iv) ρ (x) = 1 implies Ω = {x ∈ Ξ : 1 + β∆ < q∗}, so either Ω = ∅ or Ω = Ξ. Note that

1+β∆ < q∗, and hence Ω = Ξ, if and only if Υ ((q∗ − 1) /β) < 0. It is straightforward to verify
that Υ ((q∗ − 1) /β) < 0 if and only if q∗ > 1

1−β . Hence, q
∗ > 1

1−β implies Ω = Ξ, and q∗ ≤ 1
1−β

implies Ω = ∅.

Proof of Lemma 2. Let C denote the space of continuous and bounded real-valued functions
defined on R+. The right side of (14) defines a mapping T , i.e., for any g ∈ C,

(Tg) (x) = xU 0 (x) + β

Z ©
(1− α) g

¡
x0
¢
+ αmax

£
g
¡
x0
¢
, 1
¤ª

dF
¡
x0, x

¢
.

U is continuously differentiable, concave, and bounded, with U (0) = 0, so xU 0 (x) ∈ C. Also,
(1− α) g (x) + αmax [g (x) , 1] ∈ C, and since F has the Feller property, Tg ∈ C. Hence T :

C → C. Notice that for all f, g ∈ C such that f (x) ≤ g (x) for all x ∈ R+, (Tf) (x) ≤ (Tg) (x)
for all x ∈ R+. Let Ξ+ = {x ∈ Ξ : g (x) > 1}, and Ξ− = ΞÂΞ+. Then for all k, x ∈ R+,

[T (g + k)] (x)− (Tg) (x) = β

Z ©
(1− α)

£
g
¡
x0
¢
+ k

¤
+ αmax

£
g
¡
x0
¢
+ k, 1

¤ª
dF
¡
x0, x

¢
− β

Z ©
(1− α) g

¡
x0
¢
+ αmax

£
g
¡
x0
¢
, 1
¤ª

dF
¡
x0, x

¢
= β (1− α) k + βα

Z
max

£
g
¡
x0
¢
+ k, 1

¤
dF
¡
x0, x

¢
− βα

Z
max

£
g
¡
x0
¢
, 1
¤
dF
¡
x0, x

¢
= β (1− α) k + βα

Z
Ξ+

dF
¡
x0, x

¢
k

+ βα

Z
Ξ−
max

£
g
¡
x0
¢
− 1 + k, 0

¤
dF
¡
x0, x

¢
≤ βk.

Hence, if we let k·k denote the sup norm, i.e., kf − gk = supx∈R+ |f (x)− g (x)| for any f, g ∈ C,
T satisfies Blackwell’s sufficient conditions (Theorem 3.3 in Stokey and Lucas, 1989), so T is

a contraction mapping on the complete metric space (C, k·k). By the Contraction Mapping
Theorem (Theorem 3.2 in Stokey and Lucas, 1989), there exists a unique λ ∈ C that satisfies
λ = Tλ. To show that λ > 0, for any g ∈ C, define the mapping T+ as¡

T+g
¢
(x) = xU 0 (x) + β

Z ©
(1− α)max

£
g
¡
x0
¢
, 0
¤
+ αmax

£
g
¡
x0
¢
, 1
¤ª

dF
¡
x0, x

¢
.
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Clearly, T+ : C → C, and since T+ is a contraction on (C, k·k), there exists a unique λ+ ∈ C
such that λ+ = T+λ+. For any g ∈ C, T+g > 0, so T+λ+ = λ+ > 0. But notice that for any

g ∈ C with g > 0, Tg = T+g. Therefore Tλ+ = T+λ+ = λ+, so λ = λ+ > 0.

Proof of Claim 2. Guess Ω = Ξ, and substitute U (c) = ε log c in (17) to arrive at (19). Then

note that λ (x) = βα+ε
1−β(1−α) < 1 if and only if ε < 1− β, which verifies the guess. Clearly, there

cannot exist an equilibrium with Ω = Ξ if ε ≥ 1− β, so in this case the equilibrium must have

Ω ⊂ Ξ.

Proof of Proposition 1. The functional equation (15) is a special case of (14), so by Lemma 2,

it has a unique solution λs in the space of continuous and bounded functions, C, and this solution
is strictly positive. (i) To show that there exists a monetary equilibrium under (34), construct

one as follows. Let z∗ and λs be defined as in the statement of the proposition. Let s = (x,M)

denote a state, and let μ (x) be some monetary policy. Consider the price functions φs (x) in

(35), φm (s) in (35), and w (x) = 1/U 0 (x), together with the allocation functions c (s) = x,

as (s) = 1, am (s) = μ (x)M , and q(s) = q (Λ (x)), with Λ (x) = U 0 (x) [φs (x) + x] + z∗ (x).

The claim to be established is that these allocation and price functions constitute a monetary

recursive equilibrium if μ = μ∗. The allocation functions c (s), as (s), and q(s) clearly satisfy

the equilibrium conditions. Moreover, z∗ (x) > 0 for all x, so μ∗ (x) > 0 for all x, which implies

that am (s) = μ∗ (x)M > 0 for all s, so am (s) is consistent with a monetary equilibrium.

Next, we show that the proposed price functions indeed support the proposed allocations as a

monetary recursive equilibrium under the monetary policy μ∗. If μ = μ∗, in the conjectured

equilibrium,

Λ (x) = λs (x) +
©
I{x∈Ω} [kq∗ − λs (x)] + I{x∈Ωc}z̄ (x)

ª
≥ q∗ for all x ∈ Ξ, (57)

with strict inequality for x ∈ Ωc (since z̄ (x) > 0), and strict inequality for x ∈ Ω only if k > 1.

Next, verify that (35) and (36) satisfy the Euler equations (23) and (24) under the monetary

policy specified in (34). From (57), L [Λ (s)] = 1 for all s ∈ Ξ×R+, so the Euler equation (24)
reduces to

z (x) ≥ β

μ (x)

Z
z
¡
x0
¢
dF
¡
x0, x

¢
. (58)

(This condition would have to hold with “=” if we want to support a monetary equilibrium.)

Notice that z (x) = z∗ (x) (simply substitute (36) into the definition (22)), so (58) holds with

equality given that μ (x) = μ∗ (x). The fact that under μ∗, L [Λ (s)] = 1 for all s ∈ Ξ×R+, also
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implies that the Euler equation (35) reduces to (15), and λs is the solution to (15), so (35) is

satisfied in a monetary equilibrium under (34). Since λs solves (15), we have λs (x)−xU 0 (x) =
β
R
λs (x0) dF (x0, x), and since λs (x) > 0 for all x, φs (x) > 0 for all x. Also, since z∗ (x) > 0

for all x ∈ Ξ, φm (s) > 0 for all s ∈ Ξ×R+, so the equilibrium constructed is indeed monetary.

In Lagos (2008) (Proposition 1), I show that the following transversality conditions must be

satisfied in any equilibrium

lim inf
t→∞

E0

½
βt
1

wt
φsta

s
t+1

¾
= 0 (59)

lim inf
t→∞

E0

½
βt
1

wt
φmt a

m
t+1

¾
= 0. (60)

To conclude, notice that evaluated at the prices and allocations of the proposed equilibrium,

the left side of (59) becomes

lim inf
t→∞

E0
©
βtU 0 (xt)φ

s (xt)
ª
, (61)

and the left side of (60) becomes

lim inf
t→∞

E0
©
βtU 0 (xt)φ

m (st)μ
∗ (xt)Mt

ª
. (62)

With (35), (61) can be written as lim inf
t→∞

E0
©
βt [λs (x)− xU 0 (x)]

ª
, and since λs (x)−xU 0 (x) is

bounded (see the proof of Lemma 2),

lim
t→∞

E0
©
βtU 0 (xt)φ

s (xt)
ª
= 0.

With (34) and (36), (62) can be written as limt→∞E0
©
βt+1

R
z∗ (x0) dF (x0, xt)

ª
, and since

z∗ (x) is bounded,

lim
t→∞

E0
©
βtU 0 (xt)φ

m (st)μ
∗ (xt)Mt

ª
= 0.

Therefore, the proposed allocation and price functions constitute a monetary recursive equilib-

rium under the monetary policy (34).

(ii) The monetary equilibrium constructed in part (i) has c (s) = x, and from (57), also

q(s) = q∗ for all s = (x,M), so it implements the optimal allocation that solves (32).

(iii) Immediate from (26), and the fact that L [Λ (s)] = 1 for all s ∈ Ξ×R+ in the proposed
equilibrium.

(iv) Combine (36) and (34) with (27) to arrive at (37). Combine (36) and (34) with (28)

to arrive at (38). Let π̃∗g (x) =
R
π∗g (x

0, x) dF (x0, x), and π̄∗g =
R
π̃∗g (x) dψ (x). With (38) and
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Jensen’s Inequality,

1 + π̃∗g (x) = β

Z R
z∗ (x0) dF (x0, x)

z∗ (x0)
dF
¡
x0, x

¢
≥ β,

for all x, with strict inequality unless z∗ (x) is a degenerate random variable. This implies

π̄∗g =
R
π̃∗g (x) dψ (x) ≥ β − 1.

Proof of Proposition 2. The functional equation (15) is a special case of (14), so by Lemma

2, it has a unique solution λs in the space of continuous and bounded functions, C, and this
solution is strictly positive. Let C0 denote the space of continuous real-valued functions bounded
by q∗ in the sup norm, and let C00 be the space of continuous real-valued functions, g, that satisfy
supx∈Ξ |g (x)| < q∗. Let T be the mapping defined by (Tg) (x) = β

R
g (x0) dF (x0, x) + xU 0 (x),

so that λs satisfies λs = Tλs. Suppose g ∈ C0, then

|(Tg) (x)| =
¯̄̄̄
β

Z
g
¡
x0
¢
dF
¡
x0, x

¢
+ xU 0 (x)

¯̄̄̄
≤ β sup

x∈Ξ
|g (x)|+ sup

x∈Ξ

¯̄
xU 0 (x)

¯̄
< q∗,

where the last inequality follows from the fact that g ∈ C0, and

sup
x∈Ξ

¯̄
xU 0 (x)

¯̄
< sup

x∈Ξ
|U (x)| ≤ B,

together with the hypothesis B ≤ (1− β) q∗. Thus, T (C0) ⊆ C00 ⊆ C0, and since C0 is a closed
subset of C, it follows (Corollary 1 in Stokey and Lucas (1989), p. 52) that λs ∈ C00. That is,
0 < λs (x) < q∗, and therefore z∗ (x) > 0 for all x ∈ Ξ = Ω.

The monetary equilibrium induced by μ∗ given z∗ (x) = q∗ − λs (x) for all x ∈ Ξ, is the
same monetary equilibrium induced by μ∗ in Proposition 1 given (33), but for the special case

with Ωc = ∅ and k = 1. Hence, Q(s, μ∗) = q∗ for all s ∈ Ξ × R+, so μ∗ ∈ M. Next, define

the allocation rule Z(s, μ) : Ξ×R+ × C+ → R+, with the interpretation that Z(s, ·) represents
the value of the equilibrium money holdings in state s = (x,M), as defined in (22). Define the

price rule Φs (s, μ), i.e., the equity price in a monetary recursive equilibrium under the policy

rule μ, in a period when the aggregate state is s. Consider some μ ∈ M, such that μ 6= μ∗.

Since μ ∈M, Φs (s, μ) = Φs (s, μ∗) = φs (x), with φs (x) as given in (35). Also, μ ∈M implies

U 0 (x) [φs (x) + x] + Z (s, μ∗) = q∗ ≤ U 0 (x) [φs (x) + x] + Z (s, μ)

for all s ∈ Ξ × R+. Since Z(s, μ) ≡ U 0 (x)Φm (s, μ)M , this inequality implies Φm (s, μ∗) ≤
Φm (s, μ) for all s ∈ Ξ×R+.
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Proof of Proposition 3. (i) For any given δ ∈ (δ, 1], the function λ (x; δ) is the solution to

λ (x) = βL (δ)

Z
λ
¡
x0
¢
dF
¡
x0, x

¢
+ xU 0 (x) , (63)

which is the same as (15), but with discount factor βL (δ) ∈ [β, 1), instead of β ∈ (0, 1).
This functional equation is a special case of (14), so by Lemma 2, for any given δ ∈ (δ, 1],
it has a unique solution λ (·; δ) in the space of continuous and bounded functions, C, and
this solution is strictly positive. Let C0 denote the space of continuous real-valued functions
bounded by δ0q

∗ in the sup norm, and let C00 be the space of continuous real-valued func-
tions, g, that satisfy supx∈Ξ |g (x)| < δ0q

∗. Let Tδ denote the mapping defined by (Tδg) (x) =

βL (δ)
R
g (x0) dF (x0, x) + xU 0 (x), so that λ (·; δ) satisfies λ (·; δ) = Tδλ (·; δ). Ifg ∈ C0,

|(Tδ0g) (x)| =
¯̄̄̄
βL (δ0)

Z
g
¡
x0
¢
dF
¡
x0, x

¢
+ xU 0 (x)

¯̄̄̄
≤ βL (δ0) sup

x∈Ξ
|g (x)|+sup

x∈Ξ

¯̄
xU 0 (x)

¯̄
< δ0q

∗,

where the last inequality follows from the fact that g ∈ C0, and

sup
x∈Ξ

¯̄
xU 0 (x)

¯̄
< sup

x∈Ξ
|U (x)| ≤ B,

together with the hypothesis B ≤ [1− βL (δ0)] δ0q
∗. Thus, Tδ0 (C0) ⊆ C00 ⊆ C0, and since C0 is a

closed subset of C, it follows (Corollary 1 in Stokey and Lucas (1989), p. 52) that λ (·; δ0) ∈ C00.
Hence

0 < λ (x; δ0) < δ0q
∗ (64)

and therefore z (x; δ0) > 0 for all x ∈ Ξ.
Next, we establish that if λ (·; δ) = Tδλ (·; δ), and λ (·; δ0) = Tδ0λ (·; δ0), for δ, δ0 ∈ [δ0, 1], then

δ0 < δ ⇒ λ (·; δ) < λ
¡
·; δ0
¢
. (65)

Let h (x) ≡ λ (x; δ0)− λ (x; δ), then

h (x) = β̂

Z
h
¡
x0
¢
dF
¡
x0, x

¢
+ v (x) (66)

where β̂ = βL (δ0) ∈ (0, 1), and v (x) ≡ β [L (δ0)− L (δ)]
R
λ (x0; δ) dF (x0, x), with L (δ0) −

L (δ) > 0. Notice that v ∈ C and v (x) > 0 for all x, since λ (·; δ) ∈ C, and λ (x; δ) > 0 for all x

(the properties of λ (·; δ) follow from Lemma 2, since λ (·; δ) is the fixed point of (63)). Therefore,
by Lemma 2, the fixed point of (66) is strictly positive, i.e., h (x) > 0 for all x, which implies (65).
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Combined with (64), (65) implies that for every δ ∈ [δ0, 1], λ (x; δ) ≤ λ (x; δ0) < δ0q
∗ ≤ δq∗, so

z (x; δ) > 0 for all x ∈ Ξ and all δ ∈ [δ0, 1].
For a fixed δ ∈ [δ0, 1], the equilibrium is constructed in a similar manner as in the proof

of Proposition 2. Let z (x; δ) as given in (39) be the value of the equilibrium money holdings

(expressed in terms of marginal utility of fruit), then Λ (s) = λ (x; δ) + z (x; δ) = δq∗ for

all s =(x,M) ∈ Ξ × R+, which implies L [Λ (s)] = L (δ) for all s. With this, (23) becomes

(63), and as stated in the proposition, λ (·; δ) is the unique fixed point. The definition λ (x; δ) ≡
U 0 (x) [φs (x) + x] then gives the equilibrium price function for equity, (41). Under the proposed

monetary policy, (40), the Euler equation (24), holds with equality. Finally, (42) is obtained

from the definition z (x; δ) ≡ U 0 (x)φm (s)M . The equilibrium is monetary, since z (x; δ) > 0

for all x ∈ Ξ.
(ii) Immediate from (26), and the fact that L [Λ (s)] = L (δ) for all s in the proposed

equilibrium.

(iii) The equilibrium state-by-state gross rate of change in fruit price is 1+π (s0, s) = φm(s)
φm(s0) ,

which becomes (43) after substituting (42). The equilibrium state-by-state gross rate of change

in the price of general goods is 1+ πg (s
0, s) =

φmg (s)

φmg (s
0) , where φ

m
g (s) = U 0 (x)φm (s), which gives

(44).

(iv) (a) This was shown (i).

(b) From (39) and part (a),

z
¡
x; δ0

¢
= δ0q∗ − λ

¡
x; δ0

¢
< δq∗ − λ (x; δ) = z (x; δ) .

(c) Immediate from (41) and part (a).

(d) Immediate from (42) and part (b).

(e) Immediate from (ii) and L0 (δ) = αu00 (δq∗) q∗ < 0.

(f ) With (44), and Jensen’s Inequality,Z £
1 + πg

¡
x0, x; δ

¢¤
dF
¡
x0, x

¢
= βL (δ)

Z R
z (x0; δ) dF (x0, x)

z (x0; δ)
dF
¡
x0, x

¢
≥ βL (δ) ,

with strict inequality unless z (x; δ) is a degenerate random variable.

(v) limδ→1 z (x; δ) = q∗ − λ (x; 1), where λ (x; 1) is the unique continuous, bounded, and

strictly positive solution to (15), i.e., λs (x) in Proposition 2. Thus, z (x; 1) is the same function

as z∗ (x) in Proposition 2. Finally, from (40),

μ (x; 1) = βL (1)

R
z (x0; 1) dF (x0, x)

z (x; 1)
= β

R
z∗ (x0) dF (x0, x)

z∗ (x)
,
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is the same as μ∗ (x) described in Proposition 2.

Proof of Corollary 1. The expressions (45)—(49) are obtained from setting F (x0, x) = F (x)

in Proposition 3. Notice that the assumption B ≤ [1− βL (δ0)] δ0q
∗ implies

sup
x∈Ξ

¯̄
xU 0 (x)

¯̄
< sup

x∈Ξ
|U (x)| ≤ B ≤ [1− βL (δ0)] δ0q

∗ ≤ [1− βL (δ)] δq∗

for all δ ∈ [δ0, 1], so just as in Proposition 3, μ (x; δ) > 0, for all x ∈ Ξ and φm (s; δ) > 0 for all

s =(x,M) ∈ Ξ× R+. The value of the equilibrium money holdings in state s = (x,M), under

the policy μ (x; δ) in the equilibrium described in the statement, is

z (x; δ) = U 0 (x)φm (s; δ)M = δq∗ − βL (δ)

1− βL (δ)

Z
x0U 0

¡
x0
¢
dF
¡
x0
¢
− xU 0 (x) > 0

for all x ∈ Ξ.

Proof of Corollary 2. The expressions (51)—(55) are obtained from (40)—(44) by substi-

tuting U 0 (x) = 1/x. For any δ ∈ [δ0, 1], the assumption 1 < [1− βL (δ0)] δ0q
∗ guarantees

the equilibrium is indeed monetary, since the assumption implies that φm (s; δ) > 0 for all

s =(x,M) ∈ Ξ×R+ (money is valued), and that z (x; δ) = δq∗− 1
1−βL(δ) > 0 for all x ∈ Ξ (the

value of the equilibrium money holdings under the policy μ (x; δ) in the equilibrium described

in the statement is always positive).
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