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Abstract

Under a quantile restriction, randomly censored regression models can be written in

terms of conditional moment inequalities. We study the identified features of these mo-

ment inequalities with respect to the regression parameters. These inequalities restrict

the parameters to a set. We then show regular point identification can be achieved un-

der a set of interpretable sufficient conditions. Our results generalize existing work on

randomly censored models in that we allow for covariate dependent censoring, endoge-

nous censoring and endogenous regressors. We then provide a simple way to convert

conditional moment inequalities into unconditional ones while preserving the informa-

tional content. Our method obviates the need for nonparametric estimation, which

would require the selection of smoothing parameters and trimming procedures. Main-

taining the point identification conditions, we propose a quantile minimum distance

estimator which converges at the parametric rate to the parameter vector of interest,

and has an asymptotically normal distribution. A small scale simulation study and an

application using drug relapse data demonstrate satisfactory finite sample performance.
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1 Introduction

Much of the recent econometrics, statistics, and biostatistics literature has been concerned

with distribution-free estimation of the parameter vector β0 in the linear regression model

yi = x′
iβ0 + ǫi (1.1)

where the dependent variable yi is subject to censoring that can potentially be random.

For example, in the duration literature, this model is known as the accelerated failure

time1 (or AFT) model where y, typically the logarithm of survival time, is right censored at

varying censoring points due usually either to data collection limitations or competing risks.

The semiparametric literature which studies variations of this model is quite extensive

and can be classified by the set of assumptions that a given paper imposes on the joint distri-

bution of (xi, ǫi, ci) where ci is the censoring variable. Under very weak assumptions on this

joint distribution, one strand of the literature gives up on point (or unique) identification

of β0 and provides methods that estimate sets of parameters that are consistent with the

assumptions imposed and the observed data. The bounds approach, explained in Manski

and Tamer (2002), emphasizes robustness of results and clarity of assumptions imposed at

the cost of estimating sets of parameters that might be large2. The more common approach

to studying the model above starts with a set of assumptions that guarantee point identifica-

tion and then provides consistent estimators for the parameter vector of interest under these

assumptions. Work in this area includes3 the papers by Buckley and James (1979), Powell

(1984), Koul, Susarla, and Ryzin (1981), Ying, Jung, and Wei (1995), Yang (1999), Buchin-

sky and Hahn (2001) Honoré, Khan, and Powell (2002) and, more recently Portnoy (2003)

and Cosslett (2004). Some of the assumptions that these papers use are: homoskedastic

errors, censoring variables that are independent of the regressors and /or error terms, strong

support conditions on the censoring variable which rule out fixed censoring, and exogenous

regressors.

We aim to recast the model above in a framework that delivers point identification yet

1An alternative class of models used in duration analysis is the (Mixed) Proportional Hazards Model.

See Khan and Tamer(2007) and the references therein for recent developments in those models.
2Recently. Honoré and Lleras-Muney(2006) derive bounds for a competing risk model, which is related

to the randomly censored regression model above.
3None of these papers impose that ci itself is restricted to behave like a mixed proportional hazards or

accelerated failure time model, as was assumed in point identification results in Heckman and Honoré (1990)

and Abbring and van den Berg(2003). In many settings it is difficult to justify any modelling of the censoring

process, and inconsistent results generally arise when this process is misspecified.
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weakens many of the assumptions used in the existing literature. In particular, we wish

to construct an estimation procedure that allows for endogenous regressors, the censoring

variable to be endogenous (i.e. correlated with the error terms) and depend on the covariates

in an arbitrary way, and also permits the error terms to be conditionally heteroskedastic.

Our approach to attaining such generalizations will be to write the above censored re-

gression model as a conditional moment inequality model, of the form

E[m(zi; β0)
∣∣xi] ≤ 0 (1.2)

where m(.) is a known function (up to β0), (zi, xi) are observed. This class of models has

been studied recently in econometrics. See Manski and Tamer (2002), Chernozhukov, Hong,

and Tamer (2002), Andrews, Berry, and Jia (2003), Pakes, Porter, Ho, and Ishii (2005),

Andrews and Soares (2007), and Rosen (2006). Usually, in conditional moment equality

models, if those moment conditions are satisfied uniquely at a given parameter, then one can

obtain a consistent estimator of this parameter by taking a sample analog of an unconditional

moment condition with an appropriate weight function. The choice of weight functions in

moment equality models is motivated by efficiency gains (Dominguez and Lobato (2004) is

an exception4) and not consistency. Other papers that consider moment inequalities are

Andrews and Soares (2007), Canay (2007) and references therein.

With moment inequality models, transforming conditional moment inequalities into un-

conditional ones is more involved since this might entail a loss of identification. This comes

from the fact that, E[m(zi; β0)|xi] ≤ 0 ∀xi a.e. ⇒ E[w(xi)m(zi; β0)] ≤ 0 for an appropri-

ate nonnegative weight function, but generally E[w(xi)m(zi; β0)] ≤ 0 6⇒ E[m(zi; β0)|xi] ≤
0 xi a.e. More importantly, in models that are partially identified, the choice of the “in-

strument function” w(.) affects identification in that different weight function can lead to

different identification regions (as opposed to methods with equality constraints like GMM,

where choice of w generally impacts efficiency, but not point identification). Ideally, one

would want a weight function that leads to the identified (or sharp) set.

One approach to handling moment inequalities while preserving the information con-

tent is in Manski and Tamer (2002), who estimated the conditional moment condition non-

parametrically in a first step. This is not practically attractive since xi might be multidimen-

sional and nonparametric estimation requires choosing smoothing parameters and trimming

procedures. On the other hand, Pakes, Porter, Ho, and Ishii (2005) use an unconditional

version of the above moment inequality as the basis for inference. Other papers on mo-

ment inequality takes a set of unconditional moment conditions as its starting point. In this

4We thank Adam Rosen for bringing this to our attention.
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paper, we use insights from Bierens (1990) and Chen and Fan (1999) where a conditional

moment equality is transformed into an unconditional one in testing problems while preserv-

ing power. Although their weight functions do not generally apply to models with inequality

restrictions, we will show that a variant of their approach that uses more “localized” weight

functions can be used for conducting inference on the parameters of interest. In particular,

we transform the conditional moment condition to an unconditional one using a class of two

sided indicator functions.

We show under sufficient conditions that the estimator based on this transformation is

consistent and we derive its large sample distribution. While we illustrate this method in

detail in the context of the randomly censored regression model, our approach can be used

for any point identified conditional moment inequality model.

The next section describes the censored model studied in this paper in detail, and estab-

lishes the resulting moment inequalities. We then transform the randomly censored model

with conditional inequality restriction into one with unconditional moment inequalities which

will motivate our proposed minimum distance estimation procedure. We then establish the

asymptotic properties for the proposed procedure, specifying sufficient regularity conditions

for root-n consistency and asymptotic normality. Section 5 explains how to modify the pro-

posed procedure to an i.v. (instrumental variable) type estimator with the availability of

instruments. Section 6 explores the relative finite sample performance of the estimator in

two ways- section 6.1 reports results from a simulation study, and 6.2 applies the estimator

to explore a comparison of two courses of treatment for drug abuse. Section 7 concludes

by summarizing results and discussing areas for future research. A mathematical appendix

provides the details of the proofs of the asymptotic theory results.

2 Inequality Conditions in Randomly Censored Re-

gression Models

Throughout the rest of this paper we will be concerned with inference on the k dimensional

parameter vector β0 in the model

yi = x′
iβ0 + ǫi (2.1)

where xi is a k-dimensional vector of covariates, β0 is the unknown parameter of interest,

and ǫi denotes the unobserved error term. Complications arise due to the censoring of the
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outcome yi. In particular, we observe the random vector (xi, vi, di) such that

vi = min(yi, ci)

di = I(yi < ci)

where vi is a scalar variable and di is a binary variable that indicates whether an observation

is censored or not. The random variable ci denotes the censoring variable that is only

observed for censored observations, and I[·] denotes an indicator function, taking the value

1 if its argument is true and 0 otherwise. In the absence of censoring, x′
iβ0 + ǫi would be

equal to the observed dependent variable, which in the accelerated failure time model context

will usually be the log of survival time. In the censored model, the log-survival time is only

partially observed. Another example of the above model can be a Roy/competing risk model

where y can be denoted as the negative of wage in sector 1 and c is the negative of wage in

sector 2 and one observes y for worker i in sector 1 if and only if yi > ci.

Next, we describe a set of assumptions that we use for inference on β0. We first start

with a conditional median assumption.

A1 med(ǫi|xi) = 0 where yi = x′
iβ0 + ǫi

This assumption restricts the conditional median5 of ǫ|x. Our model is thus based on quantile

restrictions on durations, which are similar to assumptions made in the quantile regression

literature- see Koenker and Bassett (1978). The median restriction here is without loss

of generality and our results apply for any quantile. In the case of censoring, our median

restriction is similar to one used in other models in the literature- e.g. Powell (1984), Honoré,

Khan, and Powell (2002) and Ying, Jung, and Wei (1995). It permits general forms of

heteroskedasticity, and is weaker than the independence assumption ǫi ⊥ xi as was imposed

in Buckley and James (1979)), Yang (1999), and Portnoy (2003). This assumption alone, in

the presence of random censoring, provides inequality restrictions on a set of appropriately

defined functions. Let the functions τ1(xi, β) and τ0(xi, β) be defined as:

τ1(xi, β) = E[I[vi ≥ x′
iβ]
∣∣ xi] −

1

2

τ0(xi, β) = E[(1 − di) + diI[vi > x′
iβ]
∣∣xi] −

1

2
=

1

2
− E[diI[vi ≤ x′

iβ]|xi]

We can show that the above functions, when evaluated at the true parameter, satisfy in-

equality restrictions. This is described in the following lemma.

5Implicitly, this assumption requires that this median is unique and hence that the conditional distribution

of ǫ|x is strictly increasing around zero.
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Lemma 2.1 At the truth (β = β0), and on SX, the support6 of x, the following holds:

∀xi ∈ SX , τ1(xi, β0) ≤ 0 ≤ τ0(xi, β0) (2.2)

proof: First, we have for τ1:

τ1(xi, β0) = E[I[vi ≥ x′
iβ0]
∣∣ xi] −

1

2

= E[min(yi, ci) ≥ x′
iβ0]
∣∣ xi] −

1

2

= E[I[ǫi ≥ 0; ci ≥ x′
iβ0]
∣∣ xi] −

1

2

≤ E[I[ǫ ≥ 0]
∣∣ xi] −

1

2
= 0

where the inequality follows from the fact that {ǫi ≥ 0; ci ≥ x′
iβ0} ⊆ {ǫi ≥ 0}. Now, for τ0:

τ0(xi, β0) =
1

2
− E[diI[vi ≤ x′

iβ0]|xi]

=
1

2
− E[I[yi ≤ ci, yi ≤ x′

iβ0]|xi]

=
1

2
− E[I[ǫi ≤ ci − x′

iβ0, ǫi ≤ 0]|xi]

≥ 0

where the inequality follows using similar arguments as above. �

As we can see, the randomly censored regression model can be written as a conditional

moment inequalities model. With only assumption A.1, the model provides the above

inequality restrictions that hold at the true parameter β0. So, these inequalities can be used

to construct the set ΘI that contains observationally equivalent parameters (including β0).

In general and under only A.1, this set is not a singleton. However, this set is robust to any

kind of correlation between ci and xi and also ci and ǫi and so allows for general types of

censoring that can be random and can be endogenous, or dependent on yi (conditional on

xi)
7. The statistical setup is exactly one of competing risks where the risks are allowed to

6Throughout we will be assuming that the regressors (with the exception of the constant corresponding

to the intercept term in β) will be continuously distributed on SX . This assumption is only made for

notational convenience, though as pointed out to us by a referee, in the discrete regressor case, both finite

sample performance and limiting distribution theory will be affected if strict inequalities are used in our

objective function.
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be dependent, or a Roy model setup. It is well known that a general dependent competing

risk model is not (point) identified- see, e.g. ?. So, additional assumptions are needed to

shrink the set to a point.

It is possible to obtain sufficient point identification conditions in some censored regres-

sion models. Heuristically, one looks for conditions under which for every b 6= β0, we can

find a set of positive measure for x, where one of the two inequalities above is reversed. For

example, in the case of fixed (right) censoring at zero (ci = 0), the set ΘI shrinks to a point

if the set of xi’s for which x′
iβ0 is negative has positive mass and xix

′
i is full rank on this

set. This intuition was used to derive similar point identification conditions in Manski and

Tamer (2002) and was also essentially shown by Powell (1984). We extend this intuition

to our model setup where the censoring is allowed to be random and correlated with the

regressors and error terms.

Let β 6= β0 and let x′
iδ = x′

iβ − x′
iβ0. Then, we have

τ1(xi, β) = P (ǫ ≥ x′
iδ; ci ≥ x′

iβ|xi) −
1

2
(2.3)

τ0(xi, β) =
1

2
− P (ǫ ≤ x′

iδ; ǫi ≤ ci − x′
iβ0|xi) (2.4)

So, a sufficient condition for point identification is for (2.3) to be positive for some xi, or for

(2.4) to be negative. One needs to find such xi’s for every b 6= β0. A sufficient condition for

this is the following assumption.

A2 The subset

C = {xi ∈ SX : Pr(ci ≥ x′
iβ0|xi) = 1}

does not lie in a proper linear subspace of Rk

A2 imposes relative support conditions on the censoring variable and the index. Specifically

it requires the regressor values for which the lower support point of the censoring distribution

(which we permit to vary with the regressor values) exceeds the index value.

7By construction, we have y1 ≤ y ≤ y2 where y1 = y × d + (1 − d) × (−∞) and y2 = y × d + (1 − d) × c.

Hence, by A.1, we have med(y1|x) ≤ x′β0 ≤ med(y2|x). Now, define the set Θ = {b : Med(y1|x) ≤ x′b ≤
Med(y2|x)}. This set is the sharp set, since for any b ∈ Θ, there exists a y ∈ [y1, y2] such that Med(y|x) = x′b

(of course this presumes that Θ is nonempty, since β0 belongs to it.). These bounds on medians contain

exactly the same information as the inequalities in (2.2) above and hence the identified set constructed using

(2.2) is sharp.
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A2 is a sufficient condition for identification and it is related to the notion of “regular

identification” since this condition is necessary (but not sufficient) for root n estimation

of β0. For example, when (yi, xi, ci) are jointly normal, we see that C has measure 0, but

it can be shown that β0 here is point identified. This type of “identification at infinity”

in the jointly normal model is delicate and typically leads to slower rates of convergence,

analogous to results in Andrews and Schafgans (1998). To estimate β0 at the regular rate,

we strenghten A2 in section 3 below and require that the set C has positive measure.

We note also that this condition easily allows for the fixed censoring case, and it reduces

to the condition in Powell (1984) and Honoré, Khan, and Powell (2002). Our ability to

accommodate the fixed censoring case is in contrast with other work which imposes relative

support conditions- e.g. Ying, Jung, and Wei (1995) and Koul, Susarla, and Ryzin (1981).

We also note that A2 does not impose relative support conditions on the latent error term,

ǫi. This is in contrast to the condition in Koul, Susarla, and Ryzin (1981) which requires that

the censoring variable ci exceeds the support of x′
iβ0 + ǫi, effectively getting identification

from values of the regressors where censoring cannot occur.

Remark 2.1 Assumptions A.1 and A.2 allows for correlation between the censoring vari-

able, the regressors and the latent error terms. On the other hand, statistical independence

between ǫi and (xi, ci) is imposed in Buckley and James (1979) and Yang (1999), Portnoy

(2003). Independence between ci and (xi, ǫi) was imposed in Ying, Jung, and Wei (1995),

and Honoré, Khan, and Powell (2002) 8. This is important in competing risks setups since

assuming independence between durations is strong. In Roy model economies, independence

is ruled out since one’s skill in one sector is naturally correlated to his/her skill in another9

sector. Our conditions above permit conditional heteroskedasticity, covariate dependent cen-

soring, and even endogenous censoring (ci dependent on ǫi), which is more general than

the conditional independence condition ci ⊥ ǫi|xi. The cost of these generalities is in terms

of strong point identification conditions. A.2 requires support restrictions on the censoring

variables relative to the index. Naturally, under only assumption A.1, the model identifies a

set of parameters that includes β0.

8Both of these papers suggest methods to allow for the censoring variable to depend on the covariates.

These methods involve replacing the Kaplan-Meier procedure they use with a conditional Kaplan Meier which

will require the choice of smoothing parameters to localize the Kaplan-Meier procedure, as well as trimming

functions and tail behavior regularity conditions. Furthermore, it is not clear how to allow endogenous

censoring in their setups.
9In that literature, one models the process for c also, typically assuming that ci = z′

i
γ0+νi, where exclusion

restrictions (some variable in z are not in x) and support or continuity condition deliver identification of β0

(and γ0). See Heckman and Honoré (1990).
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The next lemma provides a set of inequality restrictions that only hold at β0. Those

inequalities are in terms of the observed variables (vi, di, xi).

Lemma 2.2 Let assumptions A1-A2 hold. For each β 6= β0

P
(
xi ∈ SX : τ1(xi, β) > 0 or τ0(xi, β) < 0

)
> 0 (2.5)

and the parameter of interest β0 is point identified.

Lemma 2.1 states that at the true value the function τ1 is negative and τ0 is positive ev-

erywhere on the support of xi, while lemma 2.2 states that at β 6= β0, either τ1 is strictly

positive somewhere on the support of xi or τ0 is strictly negative somewhere on the support

of xi. Hence, under A2 (and A1), the true parameter β0 is point identified.

Proof of Lemma 2.2: Recalling τ1(xi, β) = P (ǫ ≥ x′
iδ; ci ≥ x′

iβ|xi) − 1
2

and

τ0(xi, β) = 1
2
− P (ǫ ≤ x′

iδ; ǫi ≤ ci − x′
iβ0|xi) consider first the case when x′

iδ < 0. Then for x

satisfying condition A2 for β0,

x′
iδ < 0 =⇒ (2.3) ≥ P (ǫi ≥ x′

iδ; ci ≥ x′
iβ0|xi) −

1

2
(1)
= P (ǫi ≥ x′

iδ|xi) −
1

2
(2)
> 0

where (1) follows from x belonging to the special set postulated in A2, and (2) follows from 0

being the unique conditional median. Now for the case when x′
iδ > 0. Consider xi satisfying

the condition in A2. Hence for that xi, we have

x′
iδ > 0 =⇒ (2.4) < 0

where the inequality follows from the fact that x′
iδ is positive and ci ≥ xiβ0. �

Remark 2.2 Condition A2 is sufficient for the model to point identify the parameter, but

if A2 is considered too strong in some settings, then one can maintain only assumption

A1 and consistently estimate the set of parameters which include the truth, β0, using the

estimator we propose below (this estimator is “adaptive” in the sense that it estimates the

identified set, which under A2 is the singleton β0). Another way to obtain weaker sufficient
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point identification conditions is require independence between ci and ǫi as in Honoré, Khan,

and Powell (2002). In some empirical settings, it is plausible to maintain independence

between ci and ǫi. These include some statistical experiments where the censoring is random

and is set independently of the process that generated the outcome (usually the censoring

is part of the experimental design). In other settings, especially in economic applications,

independence or even conditional independence can be suspect, since censoring can be affected

by unobservables that also affect outcomes and so maintaining independence would lead to

inconsistent estimates (that might not fall in the identified set).

Remark 2.3 Our identification result in Lemmas 2.1 and 2.2 uses available information

in the two functions τ1(·, ·) and τ0(·, ·). We can contrast this with the procedure in Ying,

Jung, and Wei (1995) which is only based on the function τ1(·, ·), and consequently requires

reweighting the data using the Kaplan-Meier estimator. As alluded to previously, this imposes

support conditions which can rule out, among other things, fixed censoring, and does not allow

for covariate dependent censoring, unless one uses the conditional Kaplan Meier estimator of

Beran (1981). Reweighting the data by the conditional Kaplan Meier is complicated since it

involves smoothing parameters and trimming procedures, and furthermore, it does not address

the problem of endogenous censoring.

We conclude this section by pointing out that our identification results readily extend

to the doubly censored regression model. For this model the econometrician observes the

doubly censored sample, which we can express as the pair (vi, di) where

di = I[c1i < x′
iβ0 + ǫi ≤ c2i] + 2 · I[x′

iβ0 + ǫi ≤ c1i] + 3 · I[c2i < x′
iβ0 + ǫi]

vi = I[di = 1] · (x′
iβ0 + ǫi) + I[di = 2]c1i + I[di = 3]c2i

where c1i, c2i denote left and right censoring variables, whose distributions may depend on

(xi, ǫi) and who satisfy P (c1i < c2i) = 1.

Note we have the following two conditional moment inequalities:

E[I[di 6= 2]I[vi ≥ x′
iβ0]|xi] −

1

2
≤ 0 (2.6)

1

2
− E[I[di 6= 3]I[vi ≤ x′

iβ0]|xi] ≥ 0 (2.7)

from which we can redefine the functions τ0(xi, β), τ1(xi, β) accordingly. With these functions

we can set identify the parameter vector under A1. To get point identification in the double

censoring case we would change A2 to:



Khan and Tamer 11

A2 The subset

CD = {xi ∈ SX : Pr(c1i ≤ x′
iβ0 ≤ c2i|xi) = 1}

does not lie in a proper linear subspace of Rk

3 Estimation: Transforming the Conditional Moment

Inequalities Model

In this section, we propose an objective function that can be used to conduct inference on

the parameter10 β0. We study the large sample properties of the extrema of this objective

function in the case of point identification, i.e. when A2 above holds. In cases where A2

does not hold, one can use set estimation methods such as those in Chernozhukov, Hong,

and Tamer (2002) using the same objective function.

Since our identification results are based on conditional moment inequalities holding for

all values xi, one might be tempted to use similar moments that are unconditional11 on xi.

However, in general, this strategy might yield a loss of information, i.e., the implied model

is not able to point identify β0. So, to ensure identification, an estimator must preserve

the information contained in the conditional inequalities, i.e., ensure that the inequalities

hold for all xi, a.e. Our estimation procedure will have to differ from frameworks used to

translate a conditional moment model (based on equality constraints) into an unconditional

moment model while ensuring global identification of the parameters of interest. To avoid

estimating conditional distributions (which involve smoothing parameters), we extend in-

sights from works by Bierens (1990), Stute (1986), Koul (2002), Chen and Fan (1999) and

recently Dominguez and Lobato (2004) and transform the conditional moment inequalities

into unconditional ones while preserving the informational content.

We first define the following functions of β, and two vectors of the same dimension as xi.

Specifically let t1, t2 denote two vectors the same dimension as xi and let H1(.) and H2(.) be

10In this and subsequent sections we will focus on the singly censored model. We note from our remark

in the previous section that we can easily modify our objective function to conduct inference in the doubly

censored model as well.
11For example, E[m(yi; xi)|xi] ≤ 0 ⇒ E[w(xi)m(yi; xi)] ≤ 0, where w(xi) is an appropriate positive weight

function.
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defined as follows:

H1(β, t1, t2) = E {τ1(xi; β)I[t1 ≤ xi ≤ t2]} = E

{
[I[vi ≥ x′

iβ] − 1

2
]I[t1 ≤ xi ≤ t2]

}
(3.1)

H0(β, t1, t2) = E {τ0(xi; β)I[t1 ≤ xi ≤ t2]} = E

{
[
1

2
− diI[vi ≤ x′

iβ]]I[t1 ≤ xi ≤ t2]

}
(3.2)

where the above inequality t1 ≤ xi is to be taken componentwise. From fundamental proper-

ties of expectations,12 conditional moment conditions can be related to unconditional moment

conditions with indicator functions as above comparing regressor values to all vectors on the

support of x. As we will see below, this translates into estimation procedures involving a

third order U-process. The crucial point to notice about the functions H0, H1 is that al-

though they preserve the information contained in τ0 and τ1 above, they are not conditional

on xi. This means that our procedures will not involve estimating conditional probabilities,

and hence there will be no need for choosing smoothing parameters or employing trimming

procedures.

In general, one can transform a model with an inequality moment condition such as

E[m(yi; β0)|xi] ≤ 0 for all xi

into an informationally equivalent unconditional model as

H(β0, x1, x2) = E [m(yi; β0)1[x1 ≤ xi ≤ x2]] ≤ 0 for all (x1, x2)

Our global identification result is based on the following objective function of distinct real-

izations of the observed regressors, denoted here by xj , xk:

Q(β) = Exj ,xk

[
H1(β, xj, xk)I[H1(β, xj, xk) ≥ 0]−H0(β, xj , xk)I[H0(β, xj, xk) ≤ 0]

]
(3.3)

and the following additional assumptions: first we will strengthen Assumption A2 to require

the set C to have positive measure:

A2’ The matrix E[I[xi ∈ C]xix
′
i] is of full rank.

This is a sufficient condition for regular identification of β0. It is slightly stronger than

assumption A2 since it requires that C has positive measure. This for example rules the

12See for example Shiryaev (1984) page 185.
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case in which (y, c, x) are jointly normal. Our estimation approach is still valid (provides

consistent estimates for the identified features of the model) even when A2’ (or A2) do

not hold. Next, we impose the following smoothness conditions on the error distribution,

regressors and censoring variable:

A3 The regressors xi are assumed to have compact support, denoted by X , and are con-

tinuously distributed13 with a density function fX(·) that is bounded away from 0 on

X .

A4 The error terms ǫi are absolutely continuously distributed with conditional density func-

tion fǫ(ǫ | x) given the regressors xi = x which has median equal to zero, is bounded

above, Lipschitz continuous in ǫ, and is bounded away from zero in a neighborhood of

zero, uniformly in xi.

The main identification result is stated in the following lemma:

Lemma 3.1 Under A1, Q(β) is minimized at the set ΘI , where

ΘI = {β ∈ Rk : τ1(xi, β) ≤ 0 ≤ τ0(xi, β) a.e. xi}

In addition, if A2’,A3,A4 hold, then Q(β) is minimized uniquely at β = β0.

Proof: To prove the point identification result under A1,A2’,A3-A4 we first show that

Q(β0) = 0 (3.4)

To see why, note this follows directly from the previous lemmas which established that

τ1(xi, β0)I[τ1(xi, β0) ≥ 0] = τ0(xi, β0)I[τ0(xi, β0) ≤ 0] = 0 for all values of xi on its support.

Similarly, as established in that lemma, for each β 6= β0, there exists a regressor value x∗, such

that, under A4, for all x in a sufficiently small neighborhood of x∗, max(τ1(x, β)I[τ1(x, β) ≥
0],−τ0(x, β)I[τ0(x, β) ≤ 0]) > 0 . Let Xδ denote this neighborhood of x∗, which under A3

can be chosen to be contained in X . Since xi has the same support across observations, for

each x∗∗ ∈ Xδ, we can find values of xj , xk s.t. xj ≤ x∗∗ ≤ xk, establishing that Q(β) > 0. �

13This is assumption is made for convenience- discrete regressors with finite supports can be allowed for

as well.
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4 Consistency and Asymptotic Normality

Having shown global identification, we propose an estimation procedure, which is based

on the analogy principle, and thus minimizes the sample analog of Q(β). Our estimator

involves a third order U-process which selects the values of t1, t2 that ensures conditioning

on all possible regressor values, and hence global identification. Specifically, we propose the

following estimation procedure:

First, define the functions:

Ĥ1(β, xj, xk) =
1

n

n∑

i=1

(I[vi ≥ x′
iβ] − 1

2
)I[xj ≤ xi ≤ xk] (4.1)

Ĥ0(β, xj, xk) =
1

n

n∑

i=1

(
1

2
− diI[vi ≤ x′

iβ])I[xj ≤ xi ≤ xk] (4.2)

Then, our estimator β̂ of β0 is defined as follows:

β̂ = arg min
β∈B

Q̂n(β) (4.3)

= arg min
β∈B

1

n(n − 1)

∑

j 6=k

{
Ĥ1(β, xj, xk)I[Ĥ1(β, xj, xk) ≥ 0] (4.4)

−Ĥ0(β, xj, xk)I[Ĥ0(β, xj, xk) ≤ 0]

}

where B is the parameter space to be defined below.

Remark 4.1 We note the above objective is similar to a standard LAD/median regression

objective function, since for a random variable z, we can write |z| = zI[z ≥ 0] − zI[z ≤
0]. The difference lies in the fact that our objective function “switches” from Ĥ1(·, ·, ·) to

Ĥ0(·, ·, ·) when moving from the positive to the negative region. Switching functions are what

permits us to allow for general forms of censoring.

Note also that the above estimation procedure minimizes a (generated) second order U-

process. We note also that analogously to existing rank estimators, (e.g., Han (1987), Khan

and Tamer (2005)), this provides us with an estimation procedure without the need to select

smoothing parameters or trimming procedures. However, our estimator is more computa-

tionally involved than the aforementioned rank estimators, as the functions inside the double

summation have to be estimated themselves, effectively resulting in our objective function

being a third order U-process. We discuss a way to reduce this computational burden at the

end of this section.
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We next turn attention to the asymptotic properties of the estimator in (4.3).

We begin by establishing consistency under the following assumptions.

C1 The parameter space B is a compact subset of Rk.

C2 We have an iid sample (di, vi, x
′
i)
′, i = 1, . . . , n.

The following theorem establishes consistency of the estimator; its proof is left to the

appendix.

Theorem 4.1 Under Assumptions A1,A2’,A3,A4, and C1-C2,

β̂
p→ β0

For root-n consistency and asymptotic normality, our results our based on the following

additional regularity conditions:

D1 β0 is an interior point of the parameter space B.

D2 The regressors xi and censoring values {ci} satisfy

P{| ci − x′
iβ |≤ d} = O(d) if ‖β − β0‖ < η0, some η0 > 0;

The following theorem establishes the root-n consistency and asymptotic normality of

our proposed minimum distance estimator. Due to its technical nature, we leave the proof

to the appendix.

Theorem 4.2 Under Assumptions A1,A2’,A3-A4, C1-C2, and D1-D2

√
n(β̂ − β0) ⇒ N(0, V −1ΩV −1) (4.5)

where we define V and Ω are as follows. Let

C = {x : P (ci ≥ x′
iβ0|xi = x) = 1}

Adopting the notation Iijk = I[xj ≤ xi ≤ xk], define the function

G(xj , xk) = I[[xj , xk] ⊆ C]

∫
fǫ(0|xi)xiIijkfX(xi)dxi (4.6)
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where fX(·) denotes the regressor density function. The Hessian matrix is

V = 2E[G(xj, xk)G(xj , xk)
′] (4.7)

Next we define the outer score term Ω. Let

δ0i = E[G(xj , xk)Iijk|xi](I[vi ≥ x′
iβ0] − diI[vi ≤ x′

iβ0]) (4.8)

so we can define the outer score term Ω as

Ω = E[δ0iδ
′
0i] (4.9)

To conduct inference, one can either adopt the bootstrap or consistently estimate the

variance matrix, using a “plug-in” estimator for the separate components. As is always the

case with median based estimators, smoothing parameters will be required to estimate the

error conditional density function, making the bootstrap a more desirable approach.

We conclude this section by commenting on computational issues. The above estimator

involves optimizing a third order U -statistic. Significant computational time can be reduced

if one uses a “split sample” approach (see Honoré and Powell (1994) for an example). This

would result in an estimator that minimizes a second order U -process that is much simpler

computationally, though less efficient14. For the problem at hand, the split sample version

of our proposed estimator would minimize an objective function of the form:

β̂SS = arg min
β∈B

Q̂SSn(β) (4.10)

= arg min
β∈B

1

n

n∑

j=1

{
Ĥ1(β, xj, xn−j+1)I[Ĥ1(β, xj, xn−j+1) ≥ 0] (4.11)

− Ĥ0(β, xj, xn−j+1)I[Ĥ0(β, xj, xn−j+1) ≤ 0]

}

5 Endogenous Regressors and Instrumental Variables

In this section we illustrate how the estimation procedure detailed in the previous section

can be modified to permit consistent estimation of β0 when the regressors xi as well as the

14An alternative procedure would be a “resampling” based estimator, where one resamples O(n) regressor

values (with replacement) in the construction of the functions Ĥ1(β, ·, ·), Ĥ0(β, ·, ·). We leave the asymptotic

properties of this procedure for future work.
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censoring variable ci are endogenous. Our identification strategy now requires one to have a

vector of instrumental variables zi.

The semiparametric literature has seen recent developments in estimating censored re-

gression models when the regressors are endogenous. For fixed censoring models, instrumen-

tal variable approaches have been proposed in Hong and Tamer (2003) and Lewbel (2000),

whereas a control function approach has been proposed in ?, Blundell and Powell (2004),

?, for nonlinear models including censored regression. However, these estimators are not

applicable in the random censoring case, even in the case when the censoring variable is

distributed independently of the covariates. Furthermore, they all require the selection of

multiple smoothing parameters and trimming procedures.

Here we propose an estimator for the randomly censored regression model with endoge-

nous regressors. This problem arises in a variety of settings in duration analysis. For

example, in labor economics, if the dependent variable is unemployment spell length, an

explanatory variable such as the amount of training received while unemployed could clearly

be endogenous. Another example, studied more often in the biostatistics literature, is when

the dependent variable is time to relapse for drug abuse and the endogenous explanatory

variable is a course of treatment.

To estimate β0 in this setting we assume the availability of a vector of instrumental

variables zi which will be defined through the following assumptions. Here, our sufficient

conditions for identification are:

IV1 median(ǫi|zi) = 0.

IV2 The subset of the support of instruments

CZ0 = {zi : P (x′
iβ0 ≤ ci|zi) = 1}

has positive measure. Furthermore, for each δ 6= 0, at least one of the following subsets

of CZ0 also has positive measure:

CZ0− = {zi ∈ CZ0 : P (x′
iδ ≤ 0|zi) = 1}

CZ0+ = {zi ∈ CZ0 : P (x′
iδ ≥ 0|zi) = 1}

Remark 5.1 Before outlining an estimation procedure, we comment on the meaning of the

above conditions.

1. Condition IV1 is analogous to the usual condition of the instruments being uncorrelated

with the error terms.
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2. Condition IV2 details the relationship between the instruments and the regressors. It

is most easily satisfied when the exogenous variable(s) have support that are relatively

large when compared to the support of the endogenous variable(s).15 Empirical set-

tings where this support condition arises is in the treatment effect literature, where the

endogenous variable is a binary treatment variable, or a binary compliance variable.

In the latter case an example of an instrumental variable is also a binary variable

indicating treatment assignment if it is done so randomly- see for example Bijwaard

and Ridder (2005) who explore the effects of selective compliance to re-employment

experiments on unemployment duration.

Our IV limiting objective function is of the form:

QIV (β) = E [H∗
1 (β, zj , zk)I[H∗

1 (β, zj , zk) ≥ 0] − H∗
0 (β, zj , zk)I[H∗

0 (β, zj , zk) ≤ 0]] (5.1)

where here

H∗
1 (β, t1, t2) = E[(I[vi ≥ x′

iβ] − 1

2
)I[t1 ≤ zi ≤ t2]] (5.2)

H∗
0 (β, t1, t2) = E[(

1

2
− diI[vi ≤ x′

iβ])I[t1 ≤ zi ≤ t2]] (5.3)

And our proposed IV estimator minimizes the sample analog of QIV (β), using

Ĥ1(β, zj, zk) =
1

n

n∑

i=1

(I[vi ≥ x′
iβ] − 1

2
)I[zj ≤ zi ≤ zk] (5.4)

Ĥ0(β, zj, zk) =
1

n

n∑

i=1

(
1

2
− diI[vi ≤ x′

iβ])I[zj ≤ zi ≤ zk] (5.5)

The asymptotic properties of this estimator are based on regularity conditions analogous

to those in the previous section. The theorem below establishes the limiting distribution the-

ory for this estimator. Its proof is omitted since it follows from virtually identical arguments

used to prove the previous theorem.

15Lewbel(2000) also requires an exogenous variable with relatively large support. However, his conditions

are stronger than those imposed here in the sense that he assumes the exogenous variable has to have

large support when compared to both the endogenous variable(s) and the error term, effectively relying on

identification at infinity. In the censored setting, his assumption corresponds to obtaining identification from

the region of exogenous variable(s) space where the data is uncensored with probability 1.
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Theorem 5.1

√
n(β̂IV − β0) ⇒ N(0, V −1

IV ΩIV V −1
IV ) (5.6)

where we define VIV and ΩIV are as follows. Let

C = {z : P (ci ≥ x′
iβ0|zi = z) = 1}

Adopting the notation Iijk = I[zj ≤ zi ≤ zk], define the function

G(zj , zk) = I[[zj , zk] ⊆ C]

∫
fǫ(0|zi)E[xi|zi]IijkfZ(zi)dzi (5.7)

where fZ(·) denotes the instrument density function. The Hessian matrix is

VIV = 2E[G(zj, zk)G(zj , zk)
′] (5.8)

Next we define the outer score term ΩIV . Let

δ0i = E[G(zj , zk)Iijk|zi](I[vi ≥ x′
iβ0] − diI[vi ≤ x′

iβ0]) (5.9)

so we can define the outer score term Ω as

ΩIV = E[δ0iδ
′
0i] (5.10)

6 Finite Sample Performance

The theoretical results of the previous section give conditions under which the randomly-

censored regression quantile estimator will be well-behaved in large samples. In this section,

we investigate the small-sample performance of this estimator in two ways, first by reporting

results of a small-scale Monte Carlo study, and then considering an empirical illustration.

Specifically, we first study the effects of two courses of treatment for drug abuse on the time

to relapse ignoring potential endogeneity, and then we control for selective compliance to

treatment using our proposed i.v. estimator.

6.1 Simulation Results

The model used in this simulation study is

yi = min{α0 + x1iβ0 + x2iγ0 + ǫi, ci} (6.1)
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where the regressors x1i, x2i were chi-squared, 1 degree of freedom, and standard normal

respectively. The true values α0, β0, γ0 of the parameters are -0.5, -1, and 1, respectively. We

considered two types of censoring- covariate independent censoring, where ci was distributed

standard normal, and covariate dependent censoring, where we set ci = −x2
1i − x2i.

16

We assumed the error distribution of ǫi was standard normal. In addition, we simulated

designs with heteroskedastic errors as well: ǫi = σ(x2i) ·ηi, with ηi having a standard normal

distribution and σ(x2i) = exp(0.5∗x2i). We also simulated a design with endogenous censor-

ing where there was one regressor, distributed standard normal, the error was homoskedastic,

and the censoring variable was related to ηi as ci = (4+ui)∗η2
i where ui was an independent

random variable distributed uniformly on the unit interval.

For these designs, the overall censoring probabilities vary between 40% and 50%. For

each replication of the model, the following estimators were calculated17:

a) The minimum distance least absolute deviations (MD) estimator introduced in this paper.

b) The randomly censored LAD introduced in Honoré, Khan, and Powell (2002), referred

to as HKP.

c) The estimator proposed by Buckley and James (1979);

d) The estimator proposed by Ying, Jung, and Wei (1995), referred to as YJW;

Both YJW and MD estimators were computed using the Nelder Meade simplex algo-

rithm.18 The randomly-censored least absolute deviations estimator (HKP) was computed

using the iterative Barrodale-Roberts algorithm described by Buchinsky(1995)19; in the ran-

dom censoring setting, the objective function can be transformed into a weighted version of

the objective function for the censored quantile estimator with fixed censoring.

The results of 401 replications of these estimators for each design, with sample sizes of

50, 100, 200, and 400, are summarized in Tables I-V, which report the mean bias, median

bias, root-mean-squared error, and mean absolute error. These 5 tables corresponded to

16We note that for this design our set C defined in Assumption A2 does not have positive measure, violating

the sufficient condition for regular identification of our estimator. Nonetheless, as we see in the simulation

tables our estimator performs relatively well in finite samples.
17The simulation study was performed in GAUSS and C++. Codes for the estimators introduced in this

paper are available from the authors upon request.
18OLS, LAD, and true parameter values were used in constructing the initial simplex for the results

reported.
19OLS was used as the starting value when implementing this algorithm for the simulation study.
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designs with 1)homoskedastic errors and covariate independent censoring, 2)heteroskedastic

errors and covariate independent censoring, 3) homoskedastic errors and covariate depen-

dent censoring, 4) heteroskedastic errors and covariate dependent censoring, 5) endogenous

censoring. Theoretically, only the MD estimator introduced here is consistent in all designs,

and the only estimator which is consistent in designs 4 and 5,.

HKP and YJW estimators are consistent under designs 1 and 2, whereas the Buckley-

James estimator is inconsistent when the errors are heteroskedastic as is the case in designs

2 and 4.

The results indicate that the estimation method proposed here performs relatively well.

For some designs the MD estimator exhibits large values of RMSE for 50 observations, but

otherwise appears to be converging at the root−n rate.

As might be expected, the MD estimator, which does not impose homoskedasticity of the

error terms, is superior to Buckley-James when the errors are heteroskedastic. It generally

outperforms HKP and YJW estimator when the censoring variable depends on the covariates.

This is especially the case when the errors are heteroskedastic, as the proposed estimator is

the only estimator which performs reasonably well. Table 5 indicates that MD is the only

consistent estimator for the endogenous censoring design, as it is the only estimator whose

values of bias and RMSE decline with sample size.

6.2 Empirical Example: Drug Relapse Duration

We apply the minimum distance procedure to the drug relapse data set used in Hosmer and

Lemeshow (1999), who study the effects of various variables, on time to relapse. Those not

relapsing before the end of the study are regarded as censored. Similar data were used in

Portnoy (2003).

The data is from the University of Massachusetts Aids Research Unit Impact Study.

Specifically, the data set is from a 5-year (1989-1994) period comprising of two concurrent

randomized trials of residential treatment for drug abuse. The purpose of the original study

was to compare treatment programs of different planned durations designed to prevent drug

abuse and to also determine whether alternative residential treatment approaches are variable

in effectiveness. One of the sites, referred to here as site A randomly assigned participants

to 3- and 6-month modified therapeutic communities which incorporated elements of health

education and relapse prevention. Here clients were taught how to recognize “high-risk”

situations that are triggers to relapse, and taught the skills to enable them to cope with these
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situations without using drugs. In the other site, referred to here as site B, participants were

randomized to either a 6-month or 12-month therapeutic community program involving a

highly structured life-style in a communal living setting. This data set contains complete

records of 575 subjects.

Here, we use the log of relapse time as our dependent variable, and the following six

independent variables: SITE(drug treatment site B=1, A=0), IV(an indicator variable tak-

ing the value 1 if subject had recent IV drug use at admission), NDT(number of previous

drug abuse treatments), RACE(white(0) or “other”(1)), TREAT (randomly assigned type

of treatment, 6 months(1) or 3 months(0)), FRAC (a proxy for compliance, defined as the

fraction of length of stay in treatment over length of assigned treatment). Table VI re-

ports results for the 4 estimators used in the simulation study as well as estimators of two

parametric models- the Weibull and Log-Logistic. Standard errors are in parentheses.

Qualitatively, all estimators deliver similar results in the sense that the signs of the

coefficients are the same. However there are noticeable differences in the values of these

estimates, as well as their significance20. For example, the Weibull estimates are notice-

ably different from all other estimates, including the other parametric estimator, in most

categories, showing a larger (in magnitude) IV effect, which is statistically insignificant for

many of the semiparametric estimates, and a smaller TREAT effect. The semiparametric

estimators differ both from the parametric estimators as well as each other. The proposed

minimum distance estimator, consistent under the most general specifications compared to

the others, yields a noticeably smaller (in magnitude) SITE effect, and with the exception

of the HKP estimator, a larger TREAT effect.

We extend our empirical study by applying the IV extension of the proposed minimum

distance estimator to the same data set. The explanatory variable length of stay (LOS) could

clearly be endogenous because of “selective compliance”. Specifically, those who comply

more with treatment (i.e. have larger values of LOS) may not be representative of the

people assigned treatment, in which case the effect of an extra day of treatment would

be overstated by estimation procedures which do not control for this form of endogeneity.

Given the random assignment of the type of treatment, the treatment indicator (TREAT) is

a natural choice (see, e.g. Bloom (1984)) of an instrumental variable as it is correlated with

LOS.

We consider estimating a similar model to one considered above, now modelling the

relationship between the log of relapse time and the explanatory variables IV, RACE, NDT,

20Reported standard errors for the 4 semiparametric estimators were obtained from the bootstrap, using

575 samples (obtained with replacement) of 575 observations.
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SITE, and LOS. Table VII reports results from 4 estimation procedures: 1) ordinary least

squares (OLS) 2) two stage least squares (2SLS) using TREAT as an instrument for LOS

3) our proposed minimum distance estimator (MD) and 4) our proposed extension to allow

for endogeneity (MDIV) using TREAT as an instrument for LOS. We note that OLS and

2SLS are not able to take into account the random censoring in our data set. Nonetheless the

results from OLS and 2SLS are similar to MD and MDIV respectively. Most importantly both

procedures do indeed indicate selective compliance to treatment as the estimated coefficient

on LOS is larger for OLS and MD that it is for 2SLS and MDIV.

7 Conclusions

This paper introduces a new estimation procedure for models that are based on moment

inequality conditions. The procedure is applied to estimate parameters for an AFT model

with a very general censoring relationship when compared to existing estimators in the

literature. The procedure minimized a third order U-process, and did not required the

estimation of the censoring variable distribution, nor did it require nonparametric methods

and the selection of smoothing parameters and trimming procedures. The estimator was

shown to have desirable asymptotic properties and both a simulation study and application

using drug relapse data indicated adequate finite sample performance.

The results established in this paper suggest areas for future research. Specifically, the

semiparametric efficiency bound for this general censoring model has yet to be derived, and

it would be interesting to see how are MD estimator can be modified to attain the bound

in this specific model, as well as other models based on moment inequality conditions. We

leave these possible extensions for future research.
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A Proof of Theorem 4.1

Heuristically, to establish consistency, we need identification, compactness, continuity and

uniform convergence (See for example Theorem 2.1 in Newey and McFadden(1994)). Identi-

fication follows from Lemma 3.1. Compactness follows from Assumptions C1 and continuity

of the objection function follows from the smoothness conditions in A3,A4 respectively. It

remains to show uniform convergence of the sample objective function to Q(·). To establish

this result we will define the following functions to ease notation, we will show that

sup
β∈B

∣∣∣∣∣
1

n(n − 1)

∑

i6=j

Ĥ1(β, xj, xk)I[Ĥ1(β, xj, xk) ≥ 0] − Q1(β)

∣∣∣∣∣ = op(1) (A.1)

where

Q1(β) = E[H1(β, xj, xk)I[H1(β, xj, xk) ≥ 0]] (A.2)

noting that identical arguments can be used for the component of the objective function

involving Ĥ0(β, xj, xk). To show (A.1) we will first show that

sup
β∈B

∣∣∣∣∣
1

n(n − 1)

∑

i6=j

Ĥ1(β, xj, xk)I[Ĥ1(β, xj, xk) ≥ 0] − H1(β, xj , xk)I[H1(β, xj , xk) ≥ 0]

∣∣∣∣∣ (A.3)

is op(1). To show (A.3) is op(1), we first replace I[Ĥ1(β, xj, xk) ≥ 0] with I[H1(β, xj, xk) ≥ 0].

We will next attempt to show that

sup
β∈B

∣∣∣∣∣
1

n(n − 1)

∑

i6=j

(Ĥ1(β, xj, xk) − H1(β, xj, xk))I[H1(β, xj, xk) ≥ 0]

∣∣∣∣∣ = op(1) (A.4)

To do so, we expand Ĥ1(β, xj, xk), which involved a summation of observations denoted by

subscript i. The term

1

n(n − 1)(n − 2)

∑

i6=j 6=k

((I[vi ≥ x′
iβ]− 1

2
)I[xj ≤ xi ≤ xk]−H1(β, xj, xk))I[H1(β, xj , xk) ≥ 0]

is a mean 0 third order U -process. Consequently, by the i.i.d assumption in C2, and applying

Corollary 7 in Sherman(1994a), this term is uniformly op(1). It remains to show that re-

placing Ĥ1(β, xj, xk) with H1(β, xj, xk) inside the indicator function yields an asymptotically

uniformly negligible remainder term. Specifically, we will show that

sup
β∈B

∣∣∣∣∣
1

n(n − 1)

∑

i6=j

Ĥ1(β, xj , xk)(I[Ĥ1(β, xj, xk) ≥ 0] − I[H1(β, xj, xk) ≥ 0])

∣∣∣∣∣ = op(1) (A.5)
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Noting that Ĥ1(β, xj, xk) is uniformly bounded in β, xj, xk, it will suffice to show that

sup
β∈B

∣∣∣∣∣
1

n(n − 1)

∑

i6=j

|I[Ĥ1(β, xj , xk) ≥ 0] − I[H1(β, xj, xk) ≥ 0]|
∣∣∣∣∣ = op(1) (A.6)

To do so, we will, w.l.o.g., only show that

1
n(n−1)

∑
i6=j I[Ĥ1(β, xj, xk) ≥ 0]I[H1(β, xj , xk) < 0] is op(1) uniformly in β. To do so owe

will add and subtract the expectation of the term inside the double summation, conditional

on xj , xk. We note that by subtracting this conditional expectation from the double sum-

mation, we again have a mean 0 U -process, to which we can again apply Corollary 7 in

Sherman(1994a) to conclude this is uniformly op(1).

It thus remains to show that

1

n(n − 1)

∑

i6=j

E[I[Ĥ1(β, xj, xk) ≥ 0]I[H1(β, xj, xk) < 0]|xj , xk]

is op(1) uniformly in β.

We condition on values of xj , xk and decompose I[H(β, xj, xk) < 0] as

I[H1(β, xj, xk) < 0] = I[H1(β, xj, xk) ≤ −δn] + I[H1(β, xj , xk) ∈ (−δn, 0)] (A.7)

where δn = 1
log n

. We will first focus on the term

I[Ĥ1(β, xj, xk) ≥ 0]I[H1(β, xj, xk) ≤ −δn] (A.8)

The probability (i.e. conditional expectation) that the above product of indicators is positive,

recalling that we are conditioning on xj , xk, is less than or equal to the probability that

n∑

i=1

(I[vi ≥ x′
iβ] − 1

2
)Iijk − H1(β, xj, xk) > −nH1(β, xj, xk) (A.9)

with H1(β, xj , xk) ≤ −δn, where above Iijk = I[xj ≤ xi ≤ xk]. The conditional probability

of the above event is less than or equal to the conditional probability that

n∑

i=1

(I[vi ≥ x′
iβ] − 1

2
)Iijk − H1(β, xj, xk) > nδn (A.10)

to which we can apply Hoeffding’s inequality, see, e.g. Pollard(1984), to bound above by

exp(−2nδ2
n).
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Note this bound is independent of β, xj , xk, and converges to 0 at the rate n−2, estab-

lishing the uniform (across β, xj, xk) convergence of E[I[Ĥ(β, xj, xk) ≥ 0]I[H(β, xj, xk) ≤
−δn]|xj, xk] to 0. We next show the uniform convergence of

1

n(n − 1)

∑

i6=j

I[Ĥ1(β, xj, xk) ≥ 0]I[H1(β, xj, xk) ∈ (−δn, 0)] (A.11)

for which it will suffice to establish the uniform convergence of:

1

n(n − 1)

∑

i6=j

I[H1(β, xj, xk) ∈ (−δn, 0)] (A.12)

to 0. Subtracting E[I[H1(β, xj, xk) ∈ (−δn, 0)]] from the above summation we can again

apply Corollary 7 in Sherman(1994a) to conclude that this term is uniformly in β op(1).

The expectation E[I[H(β, xj, xk) ∈ (−δn, 0)]] is uniformly op(1) by applying the dominated

convergence theorem. Combining all our results we conclude that (A.3) is op(1).

Next, we will establish that

sup
β∈B

∣∣∣∣∣
1

n(n − 1)

∑

i6=j

H1(β, xj, xk)I[H1(β, xj, xk) ≥ 0] − Q1(β)

∣∣∣∣∣ = op(1) (A.13)

For this we can apply existing uniform laws of large numbers for centered U− processes.

Specifically, we can show the r.h.s. of (A.13) is Op(n
−1/2) by Corollary 7 in Sherman(1994a)

since the functional space index by β is Euclidean for a constant envelope. The Euclidean

property follows from example (2.11) in Pakes and Pollard (1989). �

B Proof of Theorem 4.2

Having shown consistency, our proof strategy will be to approximate the objective function

Q̂n(.), locally in a neighborhood of β0, by a an appropriate quadratic in β function. The

approximation needs to allow for the fact that this objective function is not smooth in β.

Quadratic approximation of objective functions have been provided in, for example, Pakes

and Pollard (1989), and Sherman (1994a), (1994b),(1993) among others. First we establish

root-n consistency. For root-n consistency we will apply Theorem 1 of Sherman (1994b).

Keeping our notation deliberately close to Sherman(1994b), here we denote our sample

objective function Q̂n(β) by Gn(β) and denote our limiting objective function Q(β) by G(β).

From Theorem 1 in Sherman(1994b), sufficient conditions for rates of convergence are that

1. β̂ − β0 = Op(δn)
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2. There exists a neighborhood of β0 and a constant κ > 0 such that G(β) − G(β0) ≥
κ‖β − β0‖2 for all β in this neighborhood.

3. Uniformly over Op(δn) neighborhoods of β0

Gn(β) = G(β) + Op(‖β − β0‖/
√

n) + op(‖β − β0‖2) + Op(ǫn) (B.1)

which suffices for β̂ − β0 = Op(max(ǫ
1/2
n , n−1/2)). With this theorem we will establish root-n

consistency in two stages. Having already established consistency we will first set δn = o(1),

ǫn = O(n−1/2), and show the above three conditions are satisfied. This will imply that the

estimator is fourth-root consistent. We will then show the conditions of the theorem are

satisfied for δn = O(n−1/4) and ǫn = O(n−1), establishing root-n consistency.

Regarding the showing the first result of fourth root consistency, in what follows through-

out the rest of our proof, it will prove convenient to subtract the following term, which does

not depend on β, from our objective function:

1

n(n − 1)

∑

j 6=k

Ĥ1(β0, xj , xk)I[H1(β0, xj , xk) ≥ 0]−Ĥ0(β0, xj , xk)I[H0(β0, xj , xk) ≤ 0] (B.2)

We note that since β does not enter (B.2), the value of the estimator is not affected by

including this additional term. We also note that the expectation of this term conditional

on xj , xk is 0.

To show the second of the three conditions, we will first derive an expansion for G(β)

around G(β0). We note that even though Gn(β) is not differentiable in β, G(β) is sufficiently

smooth for Taylor expansions to apply as the expectation operator is a smoothing operator

and the smoothness conditions in Assumption A3,A4,D2 imply differentiability after taking

expectations. Taking a second order expansion of G(β) around G(β0), we obtain

G(β) = G(β0) + ∇βG(β0)
′(β − β0) +

1

2
(β − β0)

′∇ββG(β∗)(β − β0) (B.3)

where ∇β and ∇ββ denote first and second derivative operators and β∗ denotes an interme-

diate value. We note that the first two terms of the right hand side of the above equation

are 0, the first by how we defined the objective function, and the second by our identification

result in Theorem 1. We will later formally show that

∇ββG(β0) = V (B.4)

and V is invertible by Assumption A2’, so we have

(β − β0)
′∇ββG(β0)(β − β0) > 0 (B.5)



Khan and Tamer 31

∇ββG(β) is also continuous at β = β0 by Assumptions A3 and D2, so there exists a neigh-

borhood of β0 such that for all β in this neighborhood, we have

(β − β0)
′∇ββG(β)(β − β0) > 0 (B.6)

which suffices for the second condition to hold.

To show the third condition, our first step is to replace the indicator functions in the objec-

tive function, I[Ĥ1(β, xj, xk) ≥ 0], I[Ĥ0(β, xj, xk) ≤ 0], with the functions I[H1(β, xj, xk) ≥
0], I[H0(β, xj, xk) ≤ 0] respectively, and derive the corresponding representation. (We will

deal with the resulting remainder term from this replacement shortly) We expand the terms

Ĥ1(β, xj, xk) and Ĥ0(β, xj, xk), first, exclusively dealing with the first expansion since the

second is similar. This results in the third order U -process:

1

n(n − 1)(n − 2)

∑

j 6=k 6=l

I[H1(β, xj , xk) ≥ 0](I[vl ≥ x′
lβ] − 1

2
)Iljk ≡ 1

n(n − 1)(n − 2)

∑

j 6=k 6=l

m(zj , zk, zl)(B.7)

where zi = (xi, vi), Iljk = I[xj ≤ xl ≤ xk]. (B.7) is a third order U-statistic and we analyze

its properties by representing it as a projection plus a degenerate U -process- see, e.g. Ser-

fling (1980). Note that the unconditional expectation corresponds to the first ”half” of the

limiting objective function, which recall here we denoted by G(β). We will evaluate represen-

tations for expectations conditional on each of the three arguments, minus the unconditional

expectation. In particular, first we write (B.7) as:

(B.7) = PnPm(zj, ., .) + PnPm(., zk, .) + PnP (., ., zl) + Unh (B.8)

where PnPm(zj , ., .) is equal to 1
n

∑
j Pk,lm(zj , zk, zl) where Pk,l denotes expectation with

respect to second and third arguments, and Unh is a degenerate U -statistic (see Sherman

(1994a)). Hence, to get the first order term in (B.1), we need to take the first order expansion

of the projection terms in (B.8).

We first turn attention to the expectation conditional on the third argument l. This

summation will be of the form

1

n

n∑

l=1

(I[vl ≥ x′
lβ] − 1

2
)E [I[H1(β, xj, xk) ≥ 0]Iljk| xl] (B.9)

To get the Op(
1√
n
) term in (B.1), we will take a mean value expansion of the term inside the

above summation around β = β0. Note by our normalization (i.e the subtraction of (B.2)

from the objective function), the initial replacement of β with β0 yields a term that is op(
1
n
)

uniformly in β in op(1) neighborhoods of β0. Notice also that I[H1(β0, xj , xk) ≥ 0] · Iljk = 1

implies that [xj , xk] ⊂ C, as is xl; we next evaluate

∇βE [I[H1(β, xj, xk) ≥ 0]Iljk|xl] (B.10)
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at β = β0. Here by definition of H1, we have:

H1(β, xj, xk) =

∫
I[xj ≤ u ≤ xk]

{
P
(
c ≥ u′β; ǫ ≥ u′(β − β0)|u

)
− 1

2

}
fX(u)du (B.11)

When integrating over the different values of xj , xk, we decompose the set of values into

those satisfying the interval [xj , xk] contained in C and those that do not. We do this

because H1(β0, xj , xk) < 0 in the latter case and the expectation term in (B.10) is 0. Two

applications of the dominated convergence theorem on the subset of values where [xj , xk] is

contained in C yields that (B.10) is of the form:

E [G(xj, xk)] = E

[
I[[xj , xk] ⊆ C]

∫
fǫ|X(0|u)IujkufX(u)du

]

This is so since ∇βP
(
c ≥ u′β; ǫ ≥ u′(β − β0)|u

)
= −fǫ|x(0) on the set C. So combining this

expansion term with (B.9), yields

1

n

n∑

l=1

I[xl ∈ C](I[vl ≥ x′
lβ0] −

1

2
)E [G(xj , xk)]

′ (β − β0) (B.12)

Next we evaluate

1

n

n∑

l=1

∇β(I[vl ≥ x′
lβ] − 1

2
)E [I[H1(β0, xj , xk) ≥ 0]Iljk|xl] (B.13)

This term will cancel out with the corresponding derivative term from the H0(·, ·, ·) “half”

of the objective function, completing the representation of the linear term in our expansion,

which remains as it is in (B.12). We note that using similar arguments, along with the

law of large numbers, it follows that the remainder term in the mean value expansion of

(I[vl ≥ x′
lβ]− 1

2
)E[I[H1(β, xj, xk) ≥ 0]] yields a term that is op(‖β−β0‖2). Also, we note that

the expectation of this term, which must be subtracted from our U−statistic decomposition

can be shown to be negligible using similar arguments.

As far as the other two projections in (B.8), it can be shown that the expectation conditional

j, when combined with the corresponding conditional expectation of the other “half” of the

objective function, has the representation:

op(‖β − β0‖2) (B.14)

as does the expectation conditional on the second argument, indexed by k. So, the Op(||β −
β0||/

√
n) term is (B.1) is (B.12) and since it has expectation (across vl, xl ) of 0, and finite

variance it is bounded in probability by a CLT. So we have established that so far the sample

objective function can be represented as the limiting objective function plus

Op(‖β − β0‖/
√

n) + op(‖β − β0‖/
√

n) + op(‖β − β0‖2) + op(
1

n
) (B.15)
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Finally, we note the higher order terms in the projection theorem are op(n
−1) uniformly

for β in op(1) neighborhoods of β0 using arguments similar to those in Theorem 3 in Sher-

man(1993). So by Theorem 1 in Sherman(1994b), we are able to show, that it can be

expressed as the limiting first ”half” of the objective function plus a remainder term that is

(uniformly in op(1) neighborhoods of β0),

Op(‖β − β0‖/
√

n) + op(‖β − β0‖2) + op(
1

n
) (B.16)

Collecting terms, we conclude that the infeasible estimator, which replaced I[Ĥ1(β, xj, xk) ≥
0], I[Ĥ0(β, xj, xk) ≥ 0] with I[H1(β, xj, xk) ≥ 0], I[H0(β, xj, xk) ≥ 0] respectively, is

Op(n
−1/2).

To derive a rate of convergence for the actual estimator, we will derive a rate for:

∑

j 6=k

(I[Ĥ1(β, xj, xk) ≥ 0] − I[H1(β, xj, xk) ≥ 0])Ĥ1(β, xj , xk) (B.17)

as well as the second ”half” involving H0(β, xj, xk). To establish the negligibility of (B.17),

we will first derive a rate of convergence for

1

n(n − 1)

∑

j 6=k

I[Ĥ1(β, xj, xk) < 0]I[H1(β, xj, xk) ≥ 0] (B.18)

uniformly in β in op(1) neighborhoods of β0. To do so, we decompose

I[Ĥ1(β, xj, xk) < 0] = I[Ĥ1(β, xj, xk) < −δn] + I[Ĥ1(β, xj, xk) ∈ [−(δn, 0)] (B.19)

where δn is a sequence of positive numbers converging to 0 at the rate log n/
√

n. We aim to

show each of the above indicator functions multiplied by Ĥ1(β, xj, xk) and I[H1(β, xj, xk) ≥
0] corresponds to a negligible term, uniformly in β in op(1) neighborhoods of β0. First,

dealing with

1

n(n − 1)

∑

j 6=k

Ĥ1(β, xj, xk)I[Ĥ1(β, xj, xk) < −δn]I[H1(β, xj, xk) ≥ 0] (B.20)

Noting that since Ĥ1(β, xj, xk) is bounded uniformly in β, xj, xk it will suffice to show the

negligibility of

1

n(n − 1)

∑

j 6=k

I[Ĥ1(β, xj, xk) < −δn]I[H1(β, xj, xk) ≥ 0] (B.21)

As we did before, we will add and subtract the conditional expectation of the term inside the

double summation. First dealing with the subtraction, we now have a centered U -process,
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where the variance of the term in the double summation vanishes at the rate of o(1). Thus,

by Theorem 3 in Sherman(1994b) the centered process is uniformly op(n
−1) Now, dealing

with the addition of the conditional expectation:

1

n(n − 1)

∑

i6=j

E[I[Ĥ1(β, xj, xk) < −δn]I[H1(β, xj, xk) ≥ 0]|xj , xk] (B.22)

we can follow the same arguments as in our consistency proof to conclude that it is uniformly

op(n
−1).

It thus remains to show the negligibility of

1

n(n − 1)

∑

i6=j

I[Ĥ1(β, xj, xk) ∈ [−δn, 0)]Ĥ1(β, xj, xk)I[H1(β, xj , xk) ≥ 0] (B.23)

Note the absolute value of the above summation is bounded above by

δn
1

n(n − 1)

∑

i6=j

I[Ĥ1(β, xj, xk) ∈ [−δn, 0)]I[H1(β, xj , xk) ≥ 0] (B.24)

In the above double summation, we add the sum of indicators I[[xj , xk] ⊂ C]+I[[xj , xk] 6⊂
C]

First we evaluate the rate for

δn
1

n(n − 1)

∑

i6=j

I[Ĥ1(β, xj, xk) ∈ [−δn, 0)]I[H1(β, xj , xk) ≥ 0]I[[xj , xk] ⊂ C] (B.25)

(Similar arguments can be used for the subset [xj , xk] 6⊂ C, but we omit the details.) We

again add and subtract the conditional (on xj , xk) expectation of the term inside the above

double summation; the centered process (i.e. after subtracting the conditional expectation)

is op(n
−1) uniformly in op(1) neighborhoods of β0 after we multiply by δn. Now, regarding

the expectation

E[I[Ĥ1(β, xj, xk) ∈ [−δn, 0)]I[H1(β, xj , xk) ≥ 0]I[[xj , xk] ⊂ C]]

we can decompose I[H1(β, xj, xk) ≥ 0] into I[H1(β, xj, xk) = 0] + I[H1(β, xj, xk) > 0]. We

first deal with the term:

E[I[Ĥ1(β, xj, xk) ∈ [−δn, 0)]I[H1(β, xj , xk) = 0]I[[xj, xk] ⊂ C]]

Note that the indicator I[H1(β, xj, xk) = 0] is 0 unless β = β0 as [xj , xk] ⊂ C, and note we

have

E[I[Ĥ1(β0, xj, xk) ∈ [−δn, 0)] = op(n
−1)
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Therefore it only remains to establish a rate for

E[I[Ĥ1(β, xj, xk) ∈ [−δn, 0)]I[H1(β, xj , xk) > 0]I[[xj, xk] ⊂ C]]

We will simply expand the term E[I[H1(β, xj , xk) > 0]I[[xj, xk] ⊂ C]] as a function of

β around β0- the lead term is 0, and the remainder term is O(‖β − β0‖) which is op(1).

However this will not suffice to conclude that the estimator is root-n consistent, only that is

o(
√

δn). But by a second application of Theorem 1 in Sherman(1994b), this time looking in

o(
√

δn) neighborhoods of β0 we can conclude the estimator is indeed
√

n-consistent.

Now that root-n consistency has been established we can apply Theorem 2 in Sher-

man(1994b) to attain asymptotic normality. A sufficient condition is that uniformly over

Op(1/
√

n) neighborhoods of β0,

Gn(β) − Gn(β0) =
1

2
(β − β0)

′V (β − β0) +
1√
n

(β − β0)
′Wn + op(

1

n
) (B.26)

where Wn converges in distribution to a N(0, Ω) random vector, and V is positive definite.

In this case the asymptotic variance of β̂ − β0 is V −1ΩV −1.

We will turn to (B.26). Here, we will again work with the U -statistic decomposition in,

for example, Serfling(1980) as our objective function is a third order U -process. We will first

derive an expansion for G(β) around G(β0), since G(β) is related to the limiting objective

function. We note that even though Gn(β) is not differentiable in β, G(β) is sufficiently

smooth for Taylor expansions to apply by Assumptions A4, D2. Taking a second order

expansion of G(β) around G(β0), we obtain

G(β) = G(β0) + ∇βG(β0)
′(β − β0) +

1

2
(β − β0)

′∇ββG(β∗)(β − β0) (B.27)

where ∇β and ∇ββ denote first and second derivative operators and, and β∗ denotes an

intermediate value. We note that the first two terms of the right hand side of the above

equation are 0, the first by how we defined the objective function, and the second by our

identification result in Theorem 1. We will thus show the following result:

∇ββG(β∗) = V + op(1) (B.28)

The form of the matrix V is as the second derivative with respect to β of the following

function evaluated at β = β0.

E[H1(β, xj, xk)I[H1(β, xj , xk) ≥ 0]] − E[H0(β, xj, xk)I[H0(β, xj , xk) ≤ 0]] (B.29)
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Note that by definition:

H1(β, xj, xk) =

∫ xk

xj

(
P
(
c ≥ u′β; ǫ ≥ u′(β − β0)|u) − 1

2

)
fX(u)du

H0(β, xj, xk) =

∫ xk

xj

(
1

2
−
∫ u′(β−β0)

∫

e+xβ0

f(c,ǫ)|u(c, e)dcde

)
fX(u)du

So, the second derivative is:

V = E [∇ββH1I1 + 2∇βH1∇βI1 + H1∇ββI1 −∇ββH0I0 − 2∇βH0∇βI0 − H0∇ββI0] (B.30)

where I1 = I[H1(xj , xk; β0) ≥ 0] and similarly for I0. The above expression for V can be

simplified. For example, we have ∇ββH1(xj , xk; β) −∇ββH0(xj , xk; β) = 0 on the set C.

Next, notice that by a simple integration by parts argument,

E[∇βH1∇βI1 + H1∇ββI1] = 0 (B.31)

and similarly for its H0 part. Hence, what remains is

V = E [∇βH1∇βI1 −∇βH0∇βI0] (B.32)

= 2E

[
1[[xj , xk] ⊂ C]

∫ xk

xj

xfǫ(0|x)dFx

∫ xk

xj

x′fǫ(0|x)dFx

]
(B.33)

= 2E[I[[xj , xk] ⊆ C]G(xj , xk)G(xj , xk)
′] (B.34)

We next turn attention to the deriving the form of the outer product of the score term

in Theorem 2 in Sherman(1994b). Note this was basically done in our arguments showing

root-n consistency. This involves the conditional expectation, conditioning on each of the

three arguments in the third order process, subtracting the unconditional expectation. We

first condition on the first argument, denoted by the subscript j. Note here we are tak-

ing the expectation of the term I[vl ≥ x′
lβ] − 1

2
as well as 1

2
− dlI[vl ≤ x′

lβ], so using the

same arguments as we did for the unconditional expectation, the average of this conditional

expectation is Op(‖β−β0‖2)/
√

n, and thus asymptotically negligible for β in Op(n
−1/2) neigh-

borhoods of β0. The same applies to the expectation conditional on the second argument of

the third-order U -process, denoted by the subscript k.

We therefore turn attention to expectation conditional on the third argument, denoted

by the subscript l. Here we proceed as before when showing root-n consistency, expanding

I[H1(β, xj, xk) ≥ 0]I[vl ≥ x′
lβ] − 1

2
(B.35)
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around β = β0. Recall this yielded the mean 0 process:

1

n

n∑

l=1

E[G(xj , xk)Iljk](I[vl ≥ x′
lβ0] −

1

2
) (B.36)

plus a negligible remainder term. Consequently, using the same arguments of the half of the

objective function involving H0(·, ·, ·) we can express the linear term in our expansion (used

to derive the form of the outer score term) as:

1

n

n∑

l=1

E[G(xj , xk)Iljk](I[vl ≥ x′
lβ0] − dlI[vi ≤ x′

lβ0])
′(β − β0) + op(n

−1) (B.37)

which corresponds to

1√
n

(β − β0)
′Wn (B.38)

Wn ⇒ N(0, E[δ0lδ
′
0l]) (B.39)

where

δ0l = E[G(xj , xk)Iljk](I[vl ≥ x′
lβ0] − dlI[vi ≤ x′

lβ0]) (B.40)

This completes a representation for the linear term in the U-statistic representation. The

remainder term, involving second and third order U-processes (see, e.g. equation (5) in

Sherman(1994b)), can be shown to be asymptotically negligible (specifically it is op(n
−1)

uniformly in β in an Op(n
−1/2) neighborhood of β0 using Lemma 2.17 in Pakes and Pollard

(1989) and Sherman(1994b) Theorem 3).

Combining this result with our results for the Hessian term, and applying Theorem 2 in

Sherman(1994b), we can conclude that

√
n(β̂ − β0) ⇒ N(0, V −1ΩV −1) (B.41)

where

Ω = E[δ0lδ
′
0l]

which establishes the proof of the theorem. �



Khan and Tamer 38

TABLE I
Simulation Results for Censored Regression Estimators

CI Censoring, Homosked. Errors

α β

Mean Bias Med. Bias RMSE MAD Mean Bias Med. Bias RMSE MAD

50 obs.

MD 0.2411 0.1159 0.6098 0.1963 -0.1617 -0.0695 0.7169 0.1948

HKP -0.0322 -0.0356 0.2746 0.2182 0.0009 0.0051 0.1600 0.1249

Buckley James -0.0296 -0.0437 0.2124 0.1461 0.0025 -0.0049 0.1245 0.0693

YJW -0.2163 -0.2288 0.3106 0.2534 0.0789 0.0655 0.1555 0.1158

100 obs.

MD 0.1059 0.0594 0.2979 0.1232 -0.0824 -0.0408 0.2781 0.1106

HKP -0.0111 -0.0112 0.1744 0.1375 0.0035 0.0017 0.0948 0.0754

Buckley James -0.0235 -0.0273 0.1299 0.0918 0.0061 0.0052 0.0794 0.0535

YJW -0.1524 -0.1441 0.2283 0.1839 0.0527 0.0370 0.1058 0.0783

200 obs.

MD 0.0438 0.0368 0.1711 0.0935 -0.0235 -0.0126 0.1328 0.0735

HKP 0.0015 -0.0040 0.1332 0.1051 -0.0011 -0.0023 0.0686 0.0545

Buckley James -0.0210 -0.0240 0.1048 0.0738 0.0083 0.0091 0.0525 0.0347

YJW -0.0934 -0.0776 0.1655 0.1293 0.0300 0.0276 0.0696 0.0532

400 obs.

MD 0.0095 0.0003 0.1056 0.0626 -0.0097 -0.0088 0.0808 0.0492

HKP -0.0048 -0.0142 0.0945 0.0736 0.0042 0.0032 0.0492 0.0383

Buckley James -0.0047 -0.0048 0.0725 0.0492 0.0002 -0.0009 0.0369 0.0253

YJW -0.0391 -0.0358 0.1077 0.0835 0.0129 0.0116 0.0467 0.0358
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TABLE II
Simulation Results for Censored Regression Estimators

CI Censoring, Heterosked. Errors

α β

Mean Bias Med. Bias RMSE MAD Mean Bias Med. Bias RMSE MAD

50 obs.

MD 0.3083 0.1576 0.9230 0.2911 0.0156 -0.0072 0.9642 0.3599

HKP 2.2080 0.0252 31.5952 2.5406 -0.8822 -0.0768 10.4137 1.3964

Buckley James 1.9799 0.6611 5.5605 0.6679 -1.9703 -0.9228 4.3843 0.9757

YJW -0.1381 -0.1663 0.4222 0.3352 -0.0257 0.0435 0.6394 0.4794

100 obs.

MD 0.1642 0.0751 0.5633 0.1605 -0.0231 -0.0055 0.6197 0.2626

HKP 4.8267 -0.0131 86.1774 5.0571 -0.8983 -0.0609 14.1936 1.2946

Buckley James 2.5409 0.8277 8.3142 0.8277 -2.4717 -1.0941 7.1011 1.0941

YJW -0.1266 -0.1028 0.3794 0.2621 0.0354 0.0556 0.5035 0.3685

200 obs.

MD 0.0619 0.0456 0.2194 0.1245 -0.0025 0.0088 0.2847 0.1673

HKP 0.0665 0.0133 0.4674 0.2301 -0.0520 0.0012 0.4418 0.3236

Buckley James 4.6481 1.2122 34.5088 1.2122 -3.8331 -1.4037 22.0628 1.4037

YJW -0.0788 -0.0676 0.2301 0.1713 0.0352 0.0285 0.3415 0.2543

400 obs.

MD 0.0201 0.0072 0.1340 0.0808 -0.0134 -0.0165 0.2055 0.1378

HKP -0.0038 -0.0206 0.1888 0.1431 0.0180 0.0158 0.2979 0.2347

Buckley James 4.9056 1.5762 21.8564 1.5762 -4.2223 -1.7588 16.1604 1.7588

YJW -0.0454 -0.0493 0.1714 0.1323 0.0282 0.0294 0.2697 0.2017
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TABLE III
Simulation Results for Censored Regression Estimators

CD Censoring, Homosked. Errors

α β

Mean Bias Med. Bias RMSE MAD Mean Bias Med. Bias RMSE MAD

50 obs.

MD 0.2318 0.1273 0.6043 0.2937 0.2704 0.0679 1.0035 0.3673

HKP 0.1195 0.0230 0.6267 0.3883 -0.2123 -0.1960 0.6009 0.4385

Buckley James -0.0390 -0.0477 0.2693 0.1737 -0.0021 0.0007 0.2846 0.1394

YJW 0.8236 0.6180 1.3345 0.8776 -2.2428 -1.9628 2.7286 2.2450

100 obs.

MD 0.1151 0.0609 0.3790 0.1681 0.1739 0.0960 0.5459 0.2419

HKP 0.1042 0.0457 0.3656 0.2526 -0.1984 -0.1837 0.3914 0.3039

Buckley James -0.0355 -0.0459 0.1779 0.1312 0.0050 -0.0004 0.1779 0.0787

YJW 0.7568 0.7295 2.5556 0.9934 -2.0231 -1.9468 3.1495 2.2189

200 obs.

MD 0.0561 0.0342 0.2189 0.1207 0.1246 0.0740 0.3580 0.1947

HKP 0.0799 0.0602 0.2199 0.1700 -0.1817 -0.1778 0.2753 0.2247

Buckley James -0.0187 -0.0265 0.1216 0.0788 0.0057 0.0032 0.1071 0.0420

YJW 0.8143 0.7990 0.9926 0.8206 -1.9930 -1.9612 2.0831 1.9930

400 obs.

MD 0.0314 0.0215 0.1579 0.0998 0.0642 0.0391 0.2268 0.1114

HKP 0.0625 0.0590 0.1525 0.1202 -0.1811 -0.1859 0.2368 0.2013

Buckley James -0.0061 -0.0107 0.0838 0.0581 0.0016 0.0013 0.0620 0.0234

YJW 0.9022 0.8839 0.9728 0.9029 -2.0317 -1.9860 2.0777 2.0317



Khan and Tamer 41

TABLE IV
Simulation Results for Censored Regression Estimators

CD Censoring, Heterosked. Errors

α β

Mean Bias Med. Bias RMSE MAD Mean Bias Med. Bias RMSE MAD

50 obs.

MD 0.3221 0.1483 0.8822 0.3214 0.4476 0.1939 1.6561 0.4751

HKP 17.3471 0.4300 153.2266 17.4901 -4.7159 -1.0175 27.6868 4.8081

Buckley James 1.7253 0.3113 5.6605 0.3716 -2.3871 -0.9728 5.5402 0.9790

YJW 0.9745 0.5735 2.5513 1.0331 -2.7026 -2.1897 4.2208 2.7121

100 obs.

MD 0.1452 0.0492 0.4698 0.2012 0.2691 0.1049 0.7333 0.2933

HKP 20.1083 0.3676 163.0567 20.1872 -4.4281 -0.8931 24.1675 4.4517

Buckley James 2.3266 0.4856 7.4144 0.4856 -3.3150 -1.1578 9.8721 1.1578

YJW 0.7854 0.6658 3.6963 1.0380 -2.3131 -2.1072 4.7598 2.5239

200 obs.

MD 0.0674 0.0442 0.2425 0.1382 0.1570 0.0872 0.4477 0.2430

HKP 13.3405 0.3622 101.3273 13.3764 -3.2912 -0.9041 16.3618 3.2944

Buckley James 4.6914 0.6757 28.3437 0.6757 -5.4411 -1.3982 32.3954 1.3982

YJW 0.9670 0.7625 3.5172 0.9707 -2.4190 -2.1862 4.7660 2.4190

400 obs.

MD 0.0294 0.0142 0.1827 0.1045 0.1253 0.0862 0.3388 0.1779

HKP 83.9411 0.2946 663.8925 83.9501 -11.1658 -0.8572 76.6133 11.1658

Buckley James 6.4436 1.3839 30.7388 1.3839 -5.8856 -2.1991 19.2469 2.1991

YJW 0.8527 0.8572 0.9087 0.8534 -2.2082 -2.1888 2.2396 2.2082
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TABLE V
Simulation Results for Censored Regression Estimators

End. Censoring, Homosked. Errors

α β

Mean Bias Med. Bias RMSE MAD Mean Bias Med. Bias RMSE MAD

50 obs.

MD 0.3221 0.1483 0.8822 0.3214 0.4476 0.1939 1.6561 0.4751

HKP -0.2837 -0.3124 1.0604 0.6562 -0.1277 -0.1108 0.3055 0.1899

Buckley James -0.6154 -0.6246 0.9891 0.7096 -0.2267 -0.2375 0.3080 0.2419

YJW 1.3391 1.1141 2.2510 1.1936 1.6087 1.6710 1.9920 1.6710

100 obs.

MD 0.1452 0.0492 0.4698 0.2012 0.2691 0.1049 0.7333 0.2933

HKP -0.4087 -0.3632 0.8266 0.5193 -0.1684 -0.1586 0.2587 0.1689

Buckley James -0.6412 -0.6571 0.8280 0.6647 -0.2331 -0.2285 0.2723 0.2316

YJW 1.3479 1.0610 2.2394 1.1183 1.5984 1.6145 1.9851 1.6145

200 obs.

MD 0.0674 0.0442 0.2425 0.1382 0.1570 0.0872 0.4477 0.2430

HKP -0.4616 -0.4471 0.6359 0.4801 -0.1907 -0.1877 0.2241 0.1877

Buckley James -0.6280 -0.6255 0.7268 0.6255 -0.2310 -0.2346 0.2505 0.2346

YJW 10.5304 1.3098 175.7172 1.3183 3.4390 1.1062 39.9520 1.1190

400 obs.

MD 0.0294 0.0142 0.1827 0.1045 0.1253 0.0862 0.3388 0.1779

HKP -0.4656 -0.4236 0.5817 0.4236 -0.1906 -0.1809 0.2125 0.1809

Buckley James -0.6304 -0.6229 0.6765 0.6229 -0.2310 -0.2321 0.2405 0.2321

YJW 4.2454 1.4062 26.2483 1.4534 1.8082 -0.7231 6.7396 0.7727
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TABLE VI

Empirical Study of Drug Relapse Data

Weibull Log Log. LAD YJW HKP Buck. James Min. Dis.

INT 4.8350 3.8752 3.8368 3.8620 3.4108 3.7295 3.6130

(0.1187) (0.1110) (0.1070) (0.1457) (0.3533) (0.1310) (0.1411)

SITE -0.4866 -0.5254 -0.4926 -0.4952 -0.3547 -0.5559 -0.2578

(0.1040) (0.0938) (0.0959) (0.0944) (0.1352) (0.1016) (0.1176)

IV -0.3673 -0.1835 -0.1769 -0.1683 -0.1192 -0.1277 -0.0919

(0.0985) (0.0862) (0.0876) (0.0896) (0.0943) (0.0908) (0.1007)

NDT -0.0243 -0.0209 -0.0119 -0.0122 -0.0164 -0.0186 -0.0393

(0.0078) (0.007) (0.0075) (0.0062) (0.0065) (0.0071) (0.0065)

RACE 0.2964 0.3288 0.3393 0.3292 0.4411 0.3413 0.4050

(0.1073) (0.0952) (0.0948) (0.1131) (0.1147) (0.0990) (0.0987)

TREAT 0.4215 0.6114 0.6243 0.6075 0.7605 0.6120 0.7952

(0.0905) (0.0839) (0.0820) (0.0919) (0.1451) (0.0847) (0.1221)

FRAC 1.1543 1.468 1.2488 1.2357 1.6790 1.5732 1.5412

(0.0990) (0.0839) (0.0798) (0.0938) (0.3038) (0.0869) (0.1123)
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TABLE VII

Empirical Study of Selective Compliance using Drug Relapse Data

OLS 2SLS MD MDIV

INT 4.3726 4.3090 4.0869 4.5012

(0.0807) (0.2141) (0.1827) (0.1047)

IV -0.1783 -0.1863 -0.1219 -0.1457

(0.0777) (0.0812) (0.0668) (0.0551)

RACE 0.2840 0.2651 0.3087 0.3391

(0.0836) (0.0879) (0.0461) (0.0645)

NDT -0.0171 -0.0177 -0.0313 -0.0285

(0.0067) (0.0071) (0.0171) (0.0082)

SITE -0.4187 -0.2354 -0.3123 -0.2382

(0.0833) (0.1230) (0.0932) (0.1183)

LOS 0.0086 0.0050 0.0114 0.0067

(0.0005) (0.0018) (0.0013) (0.0009)
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