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Abstract

The �Texas Top Ten� law guaranteed admissions to all students ranking in the top decile

of their high school class to each public university in the state of Texas, including the state

�agship universities. This paper evaluates the e�ects of Texas Top Ten and associated schol-

arship programs on the distribution of college applications, admissions, and matriculation and

on students' performance in college. I construct a model of students' application portfolios

and �nancial-aid application decisions, colleges' preferences and admissions rules, students'

choice of college, and students' grades and persistence in college. I estimate this model us-

ing a survey of a cohort of Texas high school seniors, together with administrative records

of Texas universities. I �nd that Texas Top Ten led to a 10% increase in underrepresented

minority enrollment at the state �agship universities. Next, I consider a large expansion of the

Longhorn Opportunity Scholarship, which provides scholarships at UT Austin. Expanding

the program to cover all high schools with poverty rates above 60% would cost an additional

$60 per student enrolled at UT Austin and lead to an increase in underrepresented minor-

ity enrollment of about 5%. The e�ects on students from poor high schools are larger than

those of purely informational interventions. Relative to Texas Top Ten, a hypothetical race-

conscious a�rmative action policy that awards points to minority applicants would attract

underrepresented minority students with relatively poor class rank from relatively a�uent

high schools. These students would achieve lower college GPAs at �agship universities than

those minority students admitted under Texas Top Ten.
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1 Introduction

In the late 1990s and early 2000s, several of the largest US states introduced policies that guarantee
admissions to public university systems on the basis of local comparisons of students to their
high school peers. Florida's Talented 20 law guaranteed admission to some public university to
all students in the top twenty percent of their high school class. The University of California,
through its policy of Eligibility in the Local Context, guaranteed admission to some UC campus
to students who satisfy course requirements and rank in the top 4% of their high school class.1

In Texas, the �Texas Top Ten rule�, formally Texas House Bill 588, guaranteed admission to all
Texas public colleges and universities, including the state �agship universities, to all students
who �nish in the top decile of their high school class in Texas schools.2 Moreover, in the years
following Texas Top Ten's 1998 introduction, Texas' �agship universities introduced scholarship
programs attached to speci�c low-income high schools that had previously sent few students to
those institutions. These race-blind policies, rather than explicitly race-based a�rmative action
programs, were the primary methods that the state universities used in order to increase racial,
economic and geographic diversity.

The purpose of this paper is to assess the consequences of the largest race-blind a�rmative
action policy in U.S. higher education, the �Texas Top Ten� rule and its associated targeted schol-
arship programs. To measure the e�ects on the distribution of college applications, admissions and
enrollment, and students' outcomes in college, I estimate a model of the college market in Texas,
using survey data on high-school seniors in Texas public high schools together with administrative
data from Texas colleges and universities. I ask the following questions. First, what were the
e�ects of Texas Top Ten and associated scholarship programs on the distribution of college atten-
dance and achievement in college, both for intended bene�ciaries of these programs and for other
students? Second, how do the e�ects of the policy compare to those of a race-based a�rmative
action program that does not provide guaranteed admission? Finally, which channels and which
frictions in the college market are the most promising targets for future interventions aimed at
increasing attendance at selective colleges and persistence at those colleges? What is the value of
the provision of information about admissions chances, of automatic completion of �nancial aid
applications, and of the availability of additional �nancial aid through targeted scholarships?

1At the same time, the University of California introduced a policy of �comprehensive review� which considered
students' high school and family backgrounds, and their performance relative to the opportunities available to them
(e.g. the fraction of their high school's AP courses that they had taken.) In this way also, UC's policy resembled
that of the University of Texas. In 1998, together with the introduction of Texas Top Ten, the University of Texas
began computing a �personal achievement index� for applicants not automatically admitted, which served a purpose
similar to that of comprehensive review.

2The policy was adjusted in the mid-2000s to include certain coursework requirements as well as top-decile
placement; in 2001 the Texas legislature amended the law to require certain coursework, but these rules �rst took
e�ect with the 2004-2005 ninth-grade class. The data in this paper predate this change.
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Texas Top Ten and other percent plans were responses to a sequence of court cases and ballot
propositions that banned race-based a�rmative action programs. The University of California
overhauled its admissions policies as a response to the 1996 passage of California ballot proposition
209, which outlawed the use of race as a criterion in state universities' admissions policies. The
passage of Texas House Bill 588 in 1997 followed a court decision banning the consideration of
race in college admissions.3 At the same time, universities made other changes to their admissions
policies which also placed increased weight on local comparisons. The University of California
introduced a policy of �comprehensive review� which considered a student's neighborhood and
high school characteristics in admissions. The University of Texas at Austin similarly began to
calculate a personal score for all applicants not automatically admitted, which used measures of
applicants' circumstances and high school characteristics including the average standardized test
scores of applicants' high schools.

Texas Top Ten has been the subject of political controversy because of its scope. While the
University of California guarantees admission to some campus, but not necessarily one where the
applicant applied, Texas Top Ten guarantees admission to every institution including the state
�agship universities.4 In the years after 1997, the University of Texas at Austin expanded in order
to meet rising demand caused in part by the program. Nonetheless, In 2009 it saw eighty-one
percent of its entering class admitted automatically under Texas Top Ten. The university argued
that these automatic admits displaced many applicants that it would have liked to accept. As
a result, a legislative compromise limited �Top Ten� automatic admissions to 75% of its entering
class beginning in 2010, in practice resulting in a �Top 8%� plan.5

To understand the consequences of changes in the program, I construct and estimate a model
of colleges' admissions and �nancial aid rules, students' choice of application portfolios and ma-
triculation decisions, students' probability of applying for �nancial aid, and students' persistence
in college. I then use the model to perform counterfactual experiments, removing Texas Top Ten,
providing information about admissions chances and the possibility of �nancial aid, expanding

3In 1996, the Fifth Circuit Court of Appeals ruled in Hopwood v. Texas that race could not be used as a factor
in admissions decisions at the University of Texas School of Law nor, by extension, at any Texas public universities.
In 2004, Grutter v. Bollinger allowed Texas universities to again consider race as a factor in admissions, but the
Top Ten rule remained in e�ect. Following Grutter, UT Austin began using race as a factor for students not
automatically admitted under Texas Top Ten. The data used in this paper predate this change.

4In Florida, The Talented Twenty program o�ers automatic admission to state universities based on high-school
GPA cuto�s. Each university uses a di�erent rule in practice. Moreover, the policy is somewhat opaque. The
�talented twenty� program therefore does not guarantee admission to all public universities, like Eligibility in the
Local Context but unlike Texas Top Ten. See Zimmerman (2013) for an evaluation of the returns to college for
students who just cross the lowest �talented twenty� threshold for admission. See Arcidiacono, Aucejo, Coate and
Hotz (2014) for an evaluation of the e�ects of California ballot Proposition 209 on graduation rates.

5See the university's announcement, http://www.utexas.edu/news/2009/09/16/top8_percent/ posted on Sept.
16, 2009. More recently, the US supreme court heard a challenge to the University of Texas' admissions policies, in
particular challenging the consideration of race for students not automatically admitted.
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scholarship programs, and introducing race-based a�rmative action at the �agship universities.
The model that I use has the following structure. First, students simultaneously choose appli-

cation portfolios and complete applications for �nancial aid. Students face a cost for each college
application, which they trade o� against the probability of admission and �nancial aid and the
value of the option to attend that school. Students have noisy information about the quality of
their applications as perceived by admissions o�ces. They also face uncertainty about the �nancial
aid o�ers they will receive, and may fail to complete �nancial aid applications. Next, each college
makes o�ers of admission to maximize the quality of its entering class subject to a constraint on
the expected size of the class and the constraints imposed by the Top Ten law. Colleges simulta-
neously consider their applicants and students receive o�ers of admission and �nancial aid. Third,
students observe their o�ers and choose their preferred colleges, if any. Finally, in each semester
that they are enrolled in college, students' grades realize and the students drop out or continue.

I make use of individual-level survey and administrative data together with aggregate data on
�nancial aid. My primary data source is the Texas Higher Education Opportunity Project,6 which
consists of a survey of a cohort of high school seniors in 2002, together with administrative records
on all applicants to nine colleges and universities over several years before and after 2002. The
2002 cohort's high school careers took place while Texas Top Ten was in e�ect, and the survey
reveals that students were well informed about Texas Top Ten. In the survey, I observe students'
application portfolios, �nancial aid applications and outcomes, high school characteristics, test
scores and class rank.

Additionally, for a subset of these students I observe a followup survey which measures which
college(s), if any, they attend during the following year. This data provides information about
students' preferences and information, the probability that students complete their �nancial aid
applications, and colleges' admissions rules and probability of giving �nancial aid. Administrative
data from Texas universities provides information on students' GPAs and persistence as a function
of their academic characteristics, parents' income and occupation, and high school characteristics.
Finally, while the survey reveals from which institutions a student received an o�er of �nancial aid
or a scholarship, it does not provide the amount. I use aggregate data from IPEDS on the average
award at each institution, together with the choice model, to determine the size of �nancial aid
o�ers.

In the data I observe speci�c scholarship programs, attached to some high schools, that target
speci�c state �agship universities. The Longhorn Opportunity Scholarship, introduced in 1999,
provides four-year scholarships at UT-Austin for students from certain low-income, low-�agship-
attendance high schools. The Century Scholarship program similarly provides scholarships to
students attending Texas A&M. In the survey and the administrative records we observe whether
each student's high school was a Longhorn or Century school. The data allow me to look at UT-
Austin and Texas A&M, the two �agship universities, and examine the e�ects of speci�c changes

6http://www.texastop10.princeton.edu/
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in their admissions guarantees and expansions of their scholarship programs.
I obtain parameter estimates via the method of simulated moments. With estimates in hand,

I conduct counterfactual experiments evaluating the removal of Texas Top Ten, the introduction
of race-based a�rmative action, the expansion of targeted scholarship programs, increasing the
probability that students complete �nancial-aid applications, and provision of information about
admissions chances. I solve for the new admissions rules that colleges would choose, the applications
that students would submit, and the choices that they would make.

I �nd that Texas Top Ten led to a large increase in �agship attendance among Black and Latino
students and a small increase in �rst- and second-year college GPA for students attending the
state �agship universities. My estimates imply that the removal of the Texas Top Ten admissions
guarantee would lead to a 10.0% decrease in state �agship attendance among underrepresented
minority students. The e�ects are more dramatic for minority students in the top decile of their
high school class. The removal of Texas Top Ten would cause a 17% increase in state �agship
attendance, in contrast, among students from a�uent high schools.7 These students are more
likely to attend religious colleges, out-of-state universities, and non-�agship public institutions
under Texas Top Ten.

Additionally, I �nd that expanding the Longhorn scholarship program to cover all schools at
which at least 60% of seniors had ever quali�ed for free lunch would lead to a large increase in
minority enrollment at UT Austin. This expansion, which increases by a factor of �ve the number
of students eligible for Longhorn scholarships, would lead to a 5% increase in share of minority
students, and a 2% increase in the share of �rst-generation college students, attending the Uni-
versity of Texas at Austin. These e�ects are similar to those of a best-case purely informational
intervention of automatically completing all �nancial aid applications and providing information
about admissions chances. Moreover, the informational intervention has a large e�ect on overall
college attendance as well as a large percentage e�ect on the share of students matriculating at
highly selective private universities. Accounting for the direct costs of the informational interven-
tion as well as the e�ects on the amount of �nancial aid awarded, I show that the informational
intervention entails $900 in additional expenditure per poor-high-school student induced to attend
a state �agship university. This �gure is roughly a third of the cost per additional poor student
enrolled at a state �agship university under an expansion of the Longhorn Scholarship program.

Finally, I show that Texas Top Ten would attract stronger students to �agship universities
than would a hypothetical race-based a�rmative action policy in which the �agship universities'
admissions o�ces award points to Black and Hispanic applicants. The points are chosen to match
the same share of Black and Hispanic students matriculating at each �agship university as under
Texas Top Ten. This hypothetical policy would attract minority students with relatively poor class
rank from relatively a�uent high schools who would attain lower college grade point averages than
those minority students enrolled under Texas Top Ten. There are two reasons why Texas Top Ten

7That is, high schools at which fewer than 15% of students have ever quali�ed for free or subsidized lunch.
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attracts stronger students. First, the preferences of colleges' admissions o�ces are not perfectly
aligned with the predictors of grades. Second, Texas Top Ten has a large e�ect on students'
application decisions, drawing fewer minority applicants from a�uent high schools but many more
minority applicants with top-decile class rank.

The remainder of the paper proceeds as follows. In section 2 I discuss the paper's relation
to the literature and its contributions to literatures on a�rmative action and on the sources of
�undermatching� of talented students and competitive colleges. Section 3 presents the model.
Section 4 introduces the data and argues that my modeling choices are consistent with patterns
in the data. In section 5 I discuss identi�cation and estimation. Section 6 presents the results.
Section 7 concludes.

2 Relation to Literature

This paper presents the �rst model of supply and demand for higher education under a �percentage
plan�. Crucially, it allows colleges' admissions rules to respond strategically to students' and other
colleges' policies. Because of the size of the Texas Top Ten program, a change in the admissions
guarantee would a�ect the admissions chances of a large share of college applicants. Indeed, the
main criticism made by opponents of the plan is that the rule displaces many non-automatically-
admitted students from the University of Texas.8 Therefore, in order to model of the consequences
of changes in the Top Ten law, this paper allows for colleges to adjust their admissions policies.

My model allows three frictions that may lead to undermatching: Low-income students may
face higher application costs. Some individuals may be unaware of �nancial aid opportunities.
Low-income applicants may be worse-informed about their admissions chances. Because the model
allows for several sources of undermatching, and we observe variation in costs (from scholarship
programs) and in information about admissions chances (from Texas Top Ten), one can use the
model as a laboratory to measure the importance of sources of undermatching or mismatch, and
to assess the likely consequences of interventions such as completion of �nancial aid forms or
information provision when they are applied at large scale.

2.1 models of college applications and admissions

I build on earlier studies of college applications, admissions and matriculation: especially relevant
are Arcidiacono (2005) and Howell (2010), who examine the consequences of race-based a�rmative
action programs. The programs that those papers consider were much smaller in scope than Texas's
rule: Arcidiacono argues that we can ignore their �general equilibrium� e�ects. That is, he argues

8Again see e.g. �New Law in Texas Preserves Racial Mix in State's Colleges�, New York Times, November 24
1999.
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that a su�ciently small fraction of students were a�ected by race-based a�rmative action that
we can ignore the e�ects on non-minority applicants. His counterfactual, and Howell's, consist of
removing the bene�t of a�rmative action for minority students, and thereby reducing the total
number of students admitted.9 These papers do not allow colleges' admissions rules to change in
response to the removal of a�rmative action. Because of the scale of Texas Top Ten, in contrast,
it is crucial to allow admissions chances to adjust for students outside the top decile after policy
changes.

Two other papers estimate equilibrium models of college admissions, including optimal behavior
by colleges. Epple, Romano and Sieg (2006) estimate an equilibrium model of college choice in
which colleges maximize a �quality� measure subject to a budget constraint. They allow for peer
e�ects, in that a college's quality depends on the average test score and (inverse) income of its
students. In their model, however, each college chooses the tuition that makes the marginal
student indi�erent between their choice and the next-best option, and the market clears via prices.
Fu (2014) also estimates colleges' choice of tuition. Fu, and Epple, Romano and Sieg, take a
di�erent approach to modeling colleges' preferences and behavior than does this paper.10 As I
consider public institutions, I take tuition as exogenous to the decisions of the admissions o�ce.
As I describe later, Texas' �agship universities' admissions o�ces do not choose among in-state
students on the basis of ability to pay.11 In the year that the surveyed students entered college,
Texas public universities were not able to choose tuition levels, as the maximum level was set by
the state legislature.12

9A student's chance of admission at a set of colleges Ja when applying to a set J ⊃ Ja is given by:

Pr(Ja|J) =
∏
j∈J

(
γaXaj

exp [γaXaj ] + 1

)1(j∈Ja)( 1

exp [γaXaj ] + 1

)1(j /∈Ja)

where γa are parameters to be estimated, and Xaj are observable characteristics including demographics 1(black).
The counterfactual experiment adjusts the admissions policy by setting γa,1(black) = 0. Arcidiacono argues convinc-
ingly that this counterfactual is reasonable in his setting because of the relatively low numbers of students whose
admissions outcomes would change.

10See also Epple, Romano and Sieg (2008) and Epple, Romano, Sarpca and Sieg (2014).
11In each year, 90% of matriculating students at UT Austin are categorized as �in-state� and pay in-state tuition.
12In 2003, Texas House Bill 3015 deregulated tuition in Texas universities. Prior to that year, the state had set

maximum tuition levels. See http://www.utexas.edu/tuition/history.html. Deregulation took e�ect for the 2003-04
class, one year after the surveyed cohort in this paper entered college. After deregulation, each year tuition levels at
UT were set by a committee based on budget projections and approved by the board of regents of UT. Deregulation
was coupled with a reduction in state funding to universities, so that overall tuition increased, and has continued
to increase in the following years. See http://www.dallasnews.com/news/state/headlines/20120922-texas-college-
tuition-up-55-percent-since-2003-deregulation-analysis-shows.ece for context.
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2.2 E�ects of costs, admissions chances, and �nancial aid di�culties on

applications and matriculation

This paper also draws on a literature documenting the responsiveness of students' applications
and matriculation decisions to �nancial aid and application costs, and contributes to a literature
on policy channels for increasing matriculation at selective colleges among students with good test
scores and grades at underserved high schools. Avery and Hoxby (2003) investigate matriculation
decisions and their sensitivity to �nancial aid o�ers. Two key papers show that students' appli-
cation portfolios respond to incentives: Using SAT-sending as a proxy for applications, Card and
Krueger (2005) provide evidence that students' application portfolios responded in the anticipated
way to the removal of a�rmative action; Pallais (2009) shows that students' application decisions
were highly sensitive to a change in the number of schools to which the ACT could be sent for
free.

Texas Top Ten and associated scholarship programs a�ected students' application decisions.
Using a dataset of all SAT takers in Texas in 1996-2004, Andrews, Ranchhod and Sathy (2010)
examine the e�ects of the introduction of Texas Top Ten. Consistent with our model, they show
that after the introduction of the Texas Top Ten program, students in the top decile became less
likely to send 4 or more applications, suggesting a reduction in uncertainty, and that top-decile
students became more likely to apply to UT-Austin. Additionally, they provide evidence that the
presence of Longhorn Opportunity Scholarship, which supports students at UT-Austin, greatly
increases the probability that top-decile students apply to UT-Austin.13 Using administrative
data from an urban school district, Daugherty, Martorell and McFarlin (2012) show that the
Top Ten Percent law has a signi�cant impact on on attendance at Texas �agship universities and
increases the total number of semesters enrolled.14

A growing literature is examining the �undermatching� of low-income and minority students
and selective colleges. Avery and Hoxby (2012) document the existence of a large number of
high-achieving, low-income high school students who do not apply to selective colleges.15 Hoxby
and Turner (2014) show that providing information on net costs of college, information about
admissions chances, and completed application-fee waivers have large e�ects on applications.16

I contribute to this literature by comparing the best case for interventions in the style of
Hoxby and Turner to the bene�ts and costs of an expansion of scholarship programs. That is, I
evaluate the e�ects of completing �nancial aid applications for students and providing all students

13They �nd that the Century Scholarship has a similar but smaller e�ect on the probability of application to
Texas A&M.

14Interestingly, they do not �nd a signi�cant increase in college enrollment overall. The authors suggest that the
Texas Top Ten law shifted applicants to �agship schools from private and out-of-state universities of similar quality.

15See also Bowen, Chingos and McPherson for evidence on �undermatching�.
16See also Dynarski and Scott-Clayton, and Bettinger et al, for experimental evidence on frictions in college

applications.
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full information about their unobserved quality as perceived by admissions o�ces,17 interventions
which the literature estimates to have relatively low costs per student. I compare the e�ects on
the distribution of college applications, attendance and persistence to those of an expansion in the
Longhorn Opportunity Scholarship to cover a large set of poor high schools. In the model, I am
able to evaluate the e�ects of greater scholarship provision at scale, accounting for the ways in
which it a�ects students' application decisions and colleges' admissions rules.

2.3 Percentage plans and a�rmative action bans

The current paper begins with SAT-taking high school seniors considering freshman applications,
and ends with outcomes in the �rst two years of college. Using aggregate match data, Hickman
(2014) models students' choice of human capital investment prior to college applications. He uses
the model to evaluate the e�ects a�rmative action policies on students' pre-college human capital
investments. Cullen, Long and Reback (2013) consider strategic high school choice under the
Texas Top Ten law. They focus on the small fraction of students who have multiple available
public schools and would stand to increase their chances of guaranteed admission the most by
changing schools. A signi�cantly higher than normal fraction of such students indeed change
schools..

It is important to place this paper in the context of studies that link college admissions in
Texas to later outcomes. Examining the labor market, Andrews, Li and Lovenheim (2012) estimate
quantile treatment e�ects on earnings from attending various Texas colleges. In another paper,
these authors document that many students enter the �agship universities via transfer admissions
from two-year colleges and non-�agship four-year institutions, and that there are many transfers
across colleges within Texas.

A series of papers examine Texas Top Ten using the Texas Higher Education Opportunity
Project (THEOP) datasets that I use in this paper. Niu, Tienda and Cortes use the THEOP se-
nior survey to document the ways in which students' reported preferences, and realized admissions
outcomes, di�er by high school background.18 Cortes (2010) examines the e�ects of the end of
a�rmative action and the introduction of Texas Top Ten on students' persistence and graduation,
using a di�erence-in-di�erences strategy.19 Niu and Tienda (2010) use a regression discontinuity

17One could provide this information e.g. by hiring college counselors to read students' applications.
18Niu, Tienda and Cortes show that students from resource-poor schools are less likely to list selective colleges

as their �rst preferences, but that there are no signi�cant di�erences in selectivity in enrollment among top-decile
graduates.

19Cortes �nds that persistence and graduation rates for non-top-decile minority students were lower under the
percent plan than under race-based a�rmative action, while top decile students' persistence was higher, so that
graduation rates and early persistence for minority students with low class rank were lower relative to those of
top-decile students after the reform. I show, however, that Texas Top Ten increased the share of top-decile minority
students, and decreased the share of non-top-decile minority students, relative to race-based a�rmative action.
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design on the THEOP survey data used in this paper. They do not �nd a statistically signi�cant
e�ect of Texas Top Ten on �agship enrollment when considering all seniors, but do �nd a large and
signi�cant positive e�ect for Hispanic students. Using administrative data from THEOP, Fletcher
and Mayer (2013) provide evidence that students di�er discontinuously across the Top Ten Percent
threshold, showing that the law a�ects application decisions. Importantly, these regression dis-
continuity designs characterize the e�ects on the marginal student of gaining automatic admission
via Texas Top Ten, but admissions chances for students outside the top decile are di�erent in the
presence of Texas Top Ten than in its absence. The e�ects of �threshold crossing� are the di�erence
of the e�ects of Texas Top Ten on top decile students, relative to the counterfactual in which it
is not present, and the e�ects of Texas Top Ten on non-top-decile students.20 This paper extends
the analysis of Texas Top Ten's e�ects to consider the consequences for inframarginal students and
measure the indirect e�ects of the policy through its e�ects on the college market.

Finally, this paper relates to the literature on race-based a�rmative action and its e�ects on
college applications and admissions rules. A series of papers by Antonovics and Backes examines
the removal of a�rmative action in California; which saw policy changes similar to those in Texas.
Antonovics and Backes (2013) argue that, in response to a ban on race-conscious a�rmative action,
University of California campuses changed the weights they place on SAT scores, grades, and family
characteristics.21 Backes (2012) surveys a�rmative action bans across states using institution-level
data, �nding that Black and Hispanic enrollment dropped at �agship institutions, but failing to
�nd signi�cant e�ects on graduation rates. Antonovics and Backes (2013b) examine the e�ects of
California's a�rmative action ban on minority applications.

3 Model

In this section I describe the model of college applications, admissions, enrollment and persistence
in detail. The model closely matches the actual admissions rules at UT, and is designed to account
for key facts about �nancial aid applications, application portfolios and the structure of students'
and colleges' information. I �rst discuss the timing of actions and information revelation. I then
describe students' utilities given �nancial aid and admissions o�ers, colleges' admissions decisions,
students' �nancial aid applications, and students' beliefs at the time of applications. Finally, I

20Similarly, when examining application and matriculation patterns a di�erence-in-di�erences approach does not
separate the e�ect of the introduction of Texas Top Ten on top-decile students from the e�ects on non-top-decile
students. There is no �control group� whose admissions chances and application patterns do not change. In
particular, Texas Top Ten provided information to top-decile students which encouraged them to apply to state
�agship universities, and it crowded out some other students. Moreover, because of population changes in Texas it
would be di�cult to use a neighboring state as a control.

21In the current version of the model, colleges may change their admissions cuto�s, but the weights on charac-
teristics such as SAT scores and class rank re�ect the colleges' utility functions, which are held constant.
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describe college persistence and equilibrium.

3.1 Model timing

The model has the following timing structure. First, high-school seniors simultaneously choose
which colleges to apply to and whether to apply to �nancial aid at those colleges. Second, colleges
observe which students applied, and their characteristics, and choose which students to accept and
whom to o�er �nancial aid. Third, students observe their admissions and �nancial aid outcomes, as
well as matriculation-time preference shocks, and choose where to matriculate among the colleges
that admit them. Finally, students' college outcomes (GPA, number of semesters, graduation) are
realized. Note that the model begins with SAT-taking (or ACT-taking) high school seniors; I do
not model e�ort in high school or the decision to take a standardized test.22

3.2 Students' preferences and matriculation decisions

I begin with the third stage of the model and work backwards. At the time of matriculation
decisions, student i ∈ I picks the college j in his admissions set Bi o�ering the highest value Uij,
where

Uij ≡ uij(Aidij) + εCij.

uij(Aidij) is a utility term, de�ned below, that depends on the �nancial aid o�er Aidij. Each
student has the outside option of not attending any college immediately, which gives utility

Ui0 = ui0 + εCi0.

The vector of matriculation-time shocks εCi = ({εCij}j∈J , εCi0) is correlated within an individual's
college o�ers. This correlation allows for common shocks, such as �nancial shocks, that shift
student i's utility for the outside option relative to all colleges. In particular, ({εCij}j∈J , εCi0) have
the generalized extreme value distribution that gives a nested logit, with all colleges in a common
nest, the outside option in its own nest, and correlation parameter λ among the inside choices
j = 1, . . . , J .

The utility function uij(Aidij) is given by

uij(Aidij) =δj + βSATranki · τSATj + βSATi · SAT jt − βpi · pj(Aidij) + βdisti Distij

+ βdist×pov ·Distij · hspovi + βXi Xjt + εAij,

22In other work (�E�ects of Texas Top Ten on High School Achievement�) I use administrative data from the
Texas Education Agency, the Texas Higher Education Coordinating Board, and the Texas Workforce Commission
to estimate the incentive e�ects of Texas Top Ten and trace the e�ects of high school human capital changes induced
by Texas Top Ten through college and into the labor market.
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where
δj = β

SAT
SAT jt + β

X
Xjt + ξj.

τSATjt is the rank of i's SAT scores among the entering class at college j. SAT jt is the average
of the 25th and 75th percentile SAT scores among the entering class at college j.23 Together, these
terms allow students to care about both the academic quality of their peers and their relative
position in their cohort. The term pj(Aidij) is a measure of net price which I will discuss below.
Distij is the distance (in miles) between i's high school and college j. Xjt is the student-faculty
ratio at j, which proxies for expenditure on educational inputs. hspovi is the fraction of students
at i's high school who have ever received free or reduced-price lunch, which is a common proxy for
poverty.

In order to capture substitution patterns, I add two additional terms to the utilities of attend-
ing the �agship universities, UT Austin and Texas A&M. I add interactions 1(white) × 1(j =
Texas A&M) and 1(white)× 1(j = UT Austin) to capture the racial divide in preferences for �ag-
ship colleges, and a random coe�cient βTAMU which enters with weight 1 when j = Texas A&M
and −1 when j =UT Austin.

The mean utility term δjt consists of a school-speci�c �xed e�ect dj, the �peer e�ect� β
SAT

SAT jt,
student-faculty ratio, and a year-speci�c shock for each college. The constant dj captures elements
of the college's quality that are not measured by SAT scores and inputs, such as prestige or the
reputation of its athletic teams.

Let 0 denote the outside option, i.e. not attending any four-year college. The utility of the
outside option, not including the matriculation-time shock, is given by

ui0 = εAi0.

where εAij is an extreme-value shock that is independent across students and schools. It follows
that the value of the outside option at the matriculation stage is

Ui0 = εAi0 + εCi0.

It is important to have shocks εA at the application stage as well as shocks εC at the time of
�nal choices. Application-stage shocks are needed to match observed application decisions. As
applications are costly, however, if students have full information at the time of applications they
will apply to at most one college each. If there is only uncertainty about admissions outcomes,
students will attend college with probability 1 if admitted.24

23As discussed below, the 25th and 75th percentile SAT scores are easily observable; in initial estimation I allowed
SAT jt to be the average of 25th and 75th percentile scores.

24We will see that students also do not know their �nancial aid o�ers.
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Random coe�cients Because the mean utility term δjt contains a shifter for each variable in
Xjt, we assume without loss that the mean of the random coe�cients βXi is zero; βXi is indepen-
dently normally distributed with variance σ2

X and mean µX . Other variables, which vary across
individuals, have random coe�cients that are independently normally distributed with mean and
variance to be estimated, e.g. βdisti ∼ N(µdist, σ2dist) independently across i, and independent of
other random coe�cients.

Peer characteristics In the empirical application, I estimate SAT rank in the following manner:
I divide the college's 75th and 25th percentile SAT scores by 1600 so that the maximum possible
score is 1. I then �t a beta distribution to these quantiles via GMM. I calculate the quantile of
this distribution that student i's SAT score represents.

Two factors motivate this procedure. First, while the 25th and 75th percentiles at each college
are easily available to students via college guides and the colleges' websites, the entire distribution
is not. Second, at colleges where I have access to the full distribution of SAT scores, the beta
distributions �t well.25

I assume that at the time of applications, the values of SAT jt and other characteristics are
precisely known by all potential applicants. That is, students know what the 25th and 75th
percentile SAT scores will be at each college after students make matriculation decisions. This
perfect foresight assumption is reasonable given the large number of applicants at most of the
colleges in the dataset; UT-Austin admitted 13,476 students in 2002, for instance, of whom 7,935
enrolled.26Each individual represents a small fraction of the thousands of students who will attend
each college, and has a negligible impact on quantiles of SAT scores.

3.3 Financial Aid

Federal student aid eligibility in the U.S. is based on a comparison of of two dollar amounts,
the estimated cost of attendance at a given college for a particular student, and the student's
expected family contribution, which I denote EFCi. The expected family contribution of student
i is given by a nonlinear function of the income and assets of i's parents, i's own income if any,
and characteristics of i's household.27 In practice, many universities, including the University of
Texas at Austin, determine institutional �nancial aid awards as well as a function of students'
federal EFC. As a result, the expected family contribution plays an important role in the model
of �nancial aid.

25See �gure 3 in the appendix for the graphical �t at UT Austin.
26See table S-22 of UT Austin's O�ce of Institutional Research 2003-04 statistical handbook,

http://www.utexas.edu/academic/ima/sites/default/�les/SHB03-04Students.pdf.
27Each applicant for �nancial aid calculates her EFCi as part of the Free Application for Federal Student Aid

(FAFSA), a form that is required for applications for need-based �nancial aid.
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3.3.1 Probability of receiving �nancial aid

Students receive �nancial aid at college j with a probability that depends on household income
and di�ers across colleges. I allow the probability of receiving aid to be discontinuous in income at
the point where federal student aid becomes unavailable. Let pmaxj denote the list price of college
j. Once the expected family contribution EFCi is greater than pmaxj , the student may receive
merit scholarships but not income-based aid.28 Let yi denote the income of i's household. The
probability of receiving aid at j conditional on applying for aid is

Pr(Aidij|i applied for �nancial aid at j) =1(EFCi < pmaxj )Φ
(
αfj + αfyyi

)
+

1(EFCi ≥ pmaxj )Φ(αfjα
schol
j + αfyyi).

3.3.2 Financial aid amounts

pj(Aidij) is the net cost of attending college j with the �nancial aid o�er Aidij. I assume that
conditional on receiving nonzero aid at j, the amount of aid ∆pij is a deterministic function of
i's expected family contribution EFCi at each school. Importantly, colleges may fail to provide
su�cient aid to match the student's need as speci�ed by the federal formula. I assume that if
a student receives �nancial aid, the amount varies across colleges and decreases to zero as the
student's income increases: total �nancial aid is given by ∆pij below:

Iaid = αaidj + αaidy · EFCi

∆pij =
(cm + pmaxj )

1 + exp(Iaid)

The net cost is given by

pj(Aidij) = cm + pmaxj − Aidij∆pij, Aidij ∈ {0, 1},
where cm is a parameter that captures additional costs relative to the outside option, including
the cost of moving, books and supplies, and foregone wages. The functional form is designed to
allow the amount of aid received to decrease to zero as income increases. cm, {αaidj }j∈J , and αaidy
are parameters that are estimated jointly with all other parameters.

3.3.3 Targeted scholarships

Recall that the Longhorn Opportunity Scholarship and the Century Scholarship program provide
�nancial aid and mentorship at the University of Texas at Austin and Texas A&M, respectively,

28This assumption is motivated by the fact that institutional need-based aid at UT Austin is a function of federal
EFC only.
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and are associated to certain high schools. I make the following adjustments for students whose
high schools participate in the Longhorn Opportunity Scholarship program. First, if a student
graduates in the top 10% of his class, he faces no uncertainty about whether he will receive aid
at UT-Austin. If he completes an application for aid at UT Austin and chooses to attend that
university, he receives the Longhorn scholarship with probability 1. Second, if a student receives
the Longhorn scholarship and matriculates at UT Austin, he pays at most the extra cost cm,
regardless of his income. (If pj(Aidij) is less than this extra cost, he pays pj(Aidij).) If he is aware
of aid at UT Austin, he is fully aware that he will pay at most cm. His probability of completing
an application for �nancial aid, however, is exactly the same as if he were not at a Longhorn high
school. I model the Century scholarship at Texas A&M analogously.

3.3.4 Random coe�cients

The coe�cient on price is given by:

βpi = βp0 + βpy/max(yi, $10000).

That is, disutility from paying for college29 varies with income, among incomes that may reasonably
come from full-time work. For su�ciently low incomes, βpi does not depend on income. The main
purpose of this functional form is to prevent distaste for price from increasing unboundedly as
income approaches zero. We estimate βp0 and βpy jointly with the full model.

3.3.5 Financial aid applications

We will see in the descriptive analysis that many students fail to complete �nancial aid applications,
even where it appears that those applications would be likely to succeed and to have large e�ects
on net price. There is a great deal of evidence in the literature that households have di�culty
completing �nancial aid applications. In my model, students fail to complete �nancial-aid appli-
cations with some probability, either because of unawareness or because of di�culties or frictions
in completing and submitting the forms. Applicants may not complete �nancial-aid applications
although the implied bene�ts may be very large.

In the model, conditional on applying to j a student completes an application for �nancial aid
at j if and only if Awareij = 1. That is, Awareij is a latent variable which determines whether i
is able to apply for �nancial aid at college j. If Awareij = 1 I will say that i is aware of �nancial
aid at college j. Awareij need not be taken literally as awareness, but may re�ect di�culty in
completing the FAFSA, unawareness of deadlines, or other frictions.

Students are aware of �nancial aid at college j with probability

Pr(Awareij) = Φ(γfinaidAzfinaidAi +ηawarei )1(EFCi < pj)+Φ(γscholAzfinaidAi +ηawarei )1(EFCi ≥ pj).

29i.e. marginal utility from consumption of the numeraire good, if utility is a function of college and a numeraire.
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Observed �nancial aid application terms zfinaidAi are a constant, i's SAT composite score, and the
fraction of students at i's high school who have ever quali�ed for free or subsidized lunch. The
coe�cients may change discontinuously as students' income rises and they become ineligible for
federal aid. For such students, applying for �nancial support entails �nding particular scholarship
or aid programs rather than simply completing the FAFSA. ηawarei is an unobserved shock which
allows for correlation in i's awareness across colleges. I assume that ηawarei is normally distributed,
with mean zero and a variance σawarei .

A student's awareness of �nancial aid at j means that he understands that the college's list
price is not necessarily the price he will pay if he matriculates, and that he correctly calculates his
aid amount Aidij conditional on receiving aid as well as Pr(Aidij > 0), his chances of receiving
�nancial aid at j conditional on admission. Students who are not aware of �nancial aid at college j,
in contrast, assume that they will pay list price when calculating the expected value of application
portfolios.

There is an important di�erence between my treatment of �nancial aid applications and the
model of applications for admission. Students calculate the expected value of each portfolio given
their characteristics (including what they expect to pay) and weigh the bene�ts against application
costs, but they do not trade o� the bene�ts of �nancial aid against an analogous �nancial-aid
application cost because they do not calculate the bene�ts of �nancial aid at schools where they
fail to complete applications for aid. My model says that before an applicant completes the FAFSA
and applies for aid he does not know what amount of �nancial aid he should expect to receive; we
allow for the possibility that talented low-income students underapply because, failing to account
for �nancial aid, they assume that colleges are una�ordable, although they stand to pay much less
than the list price.

The model of �nancial aid applications is similar in some ways to the concept of consideration
sets. A student may fail to �consider� aid at college j, and therefore considers j expensive and may
be less likely to apply. I could, in addition to application costs, allow students to be unaware of
some colleges. One would be able to estimate the model similarly, allowing each student to apply
only to schools within his �consideration set,� using high-school characteristics as shifters of the
probability that student i considers college j.30 A crucial di�erence is that I partially observe the
�nancial aid �consideration� set, as we see whether the student applied for aid at every school in
his application portfolio.

30Goeree (2008) estimates a model of demand for personal computers in which individuals can choose only
products within a �consideration set� that the econometrician does not observe. There, advertising exposure serves
as a shifter of consideration sets that is excluded from utility conditional on consideration.
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3.4 Colleges' admissions policies

Each college maximizes the expected quality of its entering class subject to the constraint that its
expected enrollment is less than its capacity. In this section I de�ne the expected quality of a class
and show that colleges' optimal admissions policies are cuto� rules.

From the perspective of college j, the quality of student i is given by

π̃ij = π0
j + zijγ + qi + µij

where π0
j is a college-speci�c constant term, zij is a vector of observable student characteristics,

µij is an idiosyncratic match term, and qi ∈ R consists of components of student i's application,
such as the quality of his essays or special talents not measured by test scores and class rank, that
a�ect the quality of his application at all colleges. In particular, college j observes

zij = (testscorei, classrankiclassranks(i))

as well as the residual quality qi of each student who applies, and the match term µij. I assume

µij ∼ N(0, 1)

independently across i and j. Importantly, µij is orthogonal to qi, zij.
From each college's point of view, the quality of a class is the sum of the quality of students.

Let
πij = π̃ij − π0

j

The quality of a class C(j) ⊂ I is given by:

Πjt(C(j)) =
∑
i∈C(j)

(
πij + π0

j

)
.

This separability assumption31 implies that colleges do not engage in �class balancing�. Indeed, it
does not appear that any public institutions in the sample engaged in explicit class balancing.32

31i.e. the assumption that utility is additive over students; put di�erently, colleges' preferences are responsive in
the sense of Roth and Sotomayor (1990).

32This model is designed to conform to UT Austin's admissions policies as described by its admissions o�ce.
In short, since the end of a�rmative action in 1997, the university has computed two scores for each applicant.
The �rst, the �academic index�, is a linear function of grades and class rank, with parameters that depend on the
applicant's intended major. The second score, the �personal achievement index�, re�ects personal characteristics
including the extent to which the applicant took advantage of opportunities, and includes the student's essays as well
as factors including the ratio of the applicant's SAT scores to his high school's mean score, combined according to an
unspeci�ed formula. After admitting top-decile students, the university assigns the remaining positions using (up to
discretization into �cells�) a cuto� in a weighted sum of the two indices. See 570 U.S. ___ (2013) page 4, for a brief
discussion. (The court's decision is available at http://www.supremecourt.gov/opinions/12pdf/11-345_l5gm.pdf).
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Under my assumptions, UT-Austin may have preferences that result in a class that is half male
and half female given the observed distribution of applications, for instance, but the marginal value
of a male applicant is not decreasing in the fraction of admits who are male. If more males with
characteristics similar to those of current admitted students were to apply, my model predicts that
the distribution of admissions o�ers would change proportionally.33

College j does not observe µij′ for j
′ 6= j. I assume that college j observes (zi, qi, µij) for all

applicants before choosing who to admit.34 Given any set of admitted students, the set of matric-
ulating students C(j) is random from j′s perspective because it depends on students' preferences
and on their other o�ers of admission and �nancial aid which in turn depend on shocks that are
not observed by j.

Taking expectations over these unknowns conditional on its application set A(j), college j
chooses a (possibly random) admission rule, solving

max
B{j}∈[0,1]A(j)

EΠj(C(j)|A(j)) s.t. E(C(j)|A(j)) ≤ Kj,

where Kj ∈ R+ is college j's capacity, C(j) ⊆ I is the set of students matriculating at j, and
A(j) ⊆ I is the set of students submitting an application to I. I assume that colleges cannot
commit to an admission rule that is not optimal given applications.35

3.4.1 Texas Top Ten

I model Texas Top Ten as a constraint on admissions: if student i applies to j, and i is in the top
decile of his class, then j's admission set must include i ∈ B(j).

33In principle, one could allow for class balancing via �assignment preferences� (see Hat�eld and Milgrom 2005).
College j has Rj roles, each with capacity Kjr, r = 1, . . . , Rj . The college sets cuto�s πjr in each role r such that
the capacity constraints are satis�ed for each r, with equality whenever πjr > 0. A student is admitted whenever

maxr

(
πijr − πjr

)
> 0. This preference structure allows a college to engage in class balancing. For example, it can

hold a fraction of seats in which underrepresented minority applicants receive a bonus to their admissions score.
Suppose the fraction of minority applicants changes greatly across cohorts while the fraction of minority admits
does not, holding SATs and class rank equal; this pattern would constitute evidence of class balancing.

34With a continuum of applicants, as in Chade, Lewis and Smith it does not matter whether the college chooses
an admissions cuto� before or after it observes who applied and what their characteristics are. With a �nite number
of students, if a college has su�cient applications from students that it would like to enroll, the college will admit
some students, and not admit others, so that the expected attendance shares of admitted students sum to just less
than the capacity. If the college knows the quality of each applicant, there is an interval in which the cuto� may
lie in which the admissions decisions of that college are identical. This interval shrinks to a point as the number of
applicants increases.

35A college might want to publicly commit to favoring certain applicants in order to a�ect application behavior.
In their model of early admissions, Avery and Levin similarly assume that admissions o�ces cannot commit to rules
that are suboptimal given some realization of students' applications.
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3.5 Beliefs and information

3.5.1 Admissions quality and admissions chances

While colleges observe students' admissions quality parameters (zi, qi), each student knows her
zi but observes only a noisy signal of her residual �caliber� qi. That is, colleges observe an
econometrician-unobserved characteristic of each student, but students observe only a potentially
uninformative signal. I assume that each applicant i observes a signal si ∈ R which is distributed
jointly normally with qi for each applicant and is independent across applicants:(

q
s

)
∼ N

((
0
0

)
,

(
σ2
q(i) ρ(i)σq(i)

ρ(i)σq(i) 1

))
.

Here σ2
q is the variance of unobserved quality q, and ρ is the coe�cient of correlation between q

and s. Without loss of generality the variance of the signal s is 1.
Importantly, the quality of students' information, as well as the importance of unobserved qual-

ity relative to the information provided by SAT scores and grades, may vary across students' high
schools. For instance, students from some schools may have worse information about admissions
chances, as represented by a lower value of ρ. I therefore allow the variance parameters to vary
with the fraction of students at i's high school who have ever received free or subsidized school
lunch, a common proxy for poverty which I denote Econdisadvs(i):

σq(i) = exp(βσ0 + βσ1Econdisadvs(i))

ρ(i) =
exp(βρ0 + βρ1Econdisadvs(i))

1 + exp(βρ0 + βρ1Econdisadvs(i))
,

This information structure is new to the literature on college choice. It allows for correlation in
admissions conditional on observed characteristics and, through the signal, it allows for selection
on an unobservable admissions-relevant characteristic in the application decision. We will see that
students' admissions calibers matter for their college grades as well as for their admissions out-
comes. Relatedly, Arcidiacono, Aucejo, Fang and Spenner (2012) test whether applicants to Duke
University possess private information about their �rst-year grades, unknown to the university at
the time of admissions. They conclude that the university possesses private information unknown
to the students, but fail to reject the hypothesis that students have no private information. My
modeling assumptions are consistent with this �nding.

3.6 Portfolio choice

At the time of applications, students know the functions uij(Aidij) that will determine their utilities
from attending each college, but do not know their �nancial aid o�ers or matriculation-time shocks.
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Given a choice set B ⊆ J , let AidiB denote a vector of �nancial aid o�ers {Aidij}j∈B. The value
of a choice set B ⊆ J before the student's shocks εcij are known

36 is given by

UB ≡ k +
∑

AidiB∈2|B|

Pr(Aidi) · log

1 +

(∑
j∈B

exp(uij(Aidij)/λ)

)λ
 .

In the model, students trade o� the gain in expected utility from college applications against
the applications' cost. I assume that the cost of applications depends on the number of colleges to
which a student applies. Let

C(n;ws(i)) = cfixedw(si)
+ cvarw(si)

n

be the cost of applying to n schools for a student from high school si with characteristics si.
In estimation, I assume

cfixedw(si)
= βfixed0 + βfixedecondisadvEcondisadvs(i)

cvarw(si)
= βvar0 + βvarecondisadvEcondisadvs(i).

That is, there is a �xed cost of submitting any applications, plus a constant marginal cost per
application. To capture heterogeneity in access to college counselors or other resources, I allow
the �xed and marginal costs to vary with the fraction of students at i's school who have ever
quali�ed for free or subsidized lunch. Here, application costs include not just application fees, but
the costs of time and e�ort in acquiring information and preparing applications. I hypothesize that
these costs are higher at poorer schools, where the families may have less familiarity with college
applications and o�er less support and the schools are likely to provide less college counseling
service.

Students are expected utility maximizers. The value of an application portfolio A ⊆ J to an
applicant with admissions chances {Pi(B|A)}B⊆A is given by

Vi(A) ≡
∑
B⊆A

Pi(B;A)Eaid

log

1 +

(∑
j∈B

exp(uij/λ)

)λ
+ k − C(|A|, ws(i)).

Students choose a portfolio to maximize Vi(A).
Importantly, the marginal gain from an additional application decreases as the portfolio grows.

The value of the �rst application to a regional Texas public university may be high. In contrast,
the �fth such application is less valuable, as the student can be enrolled in at most one college.

36The expression for UB follows from the nested logit error speci�cation. See e.g. Train, �Discrete Choice Methods
with Simulation� (2009), chapter 4.
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Students may submit multiple applications because of admissions risk, because of the value of
multiple draws of matriculation-time shocks, and because of the value of multiple �nancial aid
draws.

In the model, students have rational expectations and therefore calculate their admissions
chances correctly. They do not observe their residual quality qi or match-speci�c shocks µij, but
integrate over the conditional distribution of qi given their signals. From the student's perspective,
the chance of admission to a set B ⊆ A ⊆ J is:

Pi(B;A) =

ˆ
q

∏
j∈B

(Φ(zijγj + qi))
∏

j′∈A\B

(1− Φ(zijγj + qi))φ(qi; ρsi, 1− ρ2)dqi,

where Φ(·) is the standard normal CDF, andφ(·;µ, σ2) the density of a normal random variable
with mean µ and variance σ2, so that the conditional density of qi|si is φ(qi; ρsi, 1− ρ2).

3.7 Equilibrium

3.7.1 Cuto�s

My �rst result shows that colleges' strategies consist of cuto� rules. Note that since colleges
observe qi and zij, colleges have private values.

37If college j could observe the decisions of college
j′, it would gain additional information about its applicants' probability of matriculation, but
it would not learn any information that a�ects its best estimate of the value of its applicants.
Moreover, since students submit applications before colleges choose admissions rules, colleges do
not a�ect applications through their choice of admissions rule.

Proposition 1. Colleges' optimal admissions rules consist of cuto�s {πj}j∈J such that an ap-
plicant is admitted to j if and only if πij > πj, and either

∑
i:πij>πj ,j∈Ai

Pr(Ci = j) = kj or

πj = π0
j .

Proof. Let Admit{j} be an admissions rule that satis�es the expected capacity constraint, and
suppose it is not a cuto� rule. Then there are two applicants i and i′ such that πij < πi′j but
Admit{j}(i) > 0 and Admit{j}(i′) < 1. If admitted, i attends j with probability Pij and i′

attends with probability Pi′j, for some Pij, Pi′j ∈ (0, 1). It is feasible and pro�table for j to reduce
Admit{j}(i) by ε

Pij
and increase Admit{j}(i′) by ε

Pi′j
for some ε.

If πj > π0
j then college j can pro�tably increase expected enrollment by lowering πj.

37That is, the information observed by college j is su�cient for its valuation πij , and hence su�cient for the
expected valuation of i conditional on other colleges' information and i matriculating at j. Colleges' valuations of
a given student are not statistically independent. Indeed they are highly correlated, as they depend jointly on the
student's caliber, SAT scores, and grades.
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The proposition says that the college chooses a cuto� πj ≥ π0
j . Either the college admits every

applicant whom it �nds acceptable, in which case πj = π0
j , or its capacity constraint binds. If

πj > π0
j then the sum of attendance probabilities of students above the cuto� is equal to the

college's capacity. Given this result, for the remainder of the paper I describe colleges' strategies
as cuto�s πj ∈ R+ for j ∈ J .

3.7.2 Equilibrium De�nition

A rational-expectations equilibrium is a tuple{
{Ai}i∈I , {B{j}}i∈J , {Ci}i∈I , {X

peer
j }j∈J

}
that satis�es the following properties:

1. Ai ∈ A solves i's application problem

max
A∈A

Vi(A)

given admissions rules B{j}, peer characteristics Xpeer, and i's characteristics.

2. For each admission set Bi, Ci : 2Bi ×X peer → ∆J maximizes i's utility within Bi, i.e.

Ci

(
Bi, X̂

peer
)

[j] = 1
{
Uij(X̂

peer
j ) > Uik(X̂

peer
k ) ∀k ∈ Bi

}
.

3. For each college j, πj maximizes E (Πj|xi, zi, qi) subject to
∑

i∈Admit(j) Pr(Ci = j|xi, zi, qi) ≤
kj, where Pr(Ci = j|xi, zi, qi) are the matriculation probabilities induced by A and Xpeer,
integrating over the distribution of the student's other applications and admissions o�ers
given the characteristics xi, zi, qi observed by college j.

4. ∀j : Xpeer
j = Xpeer(C(j)), where Xpeer(C(j)) are characteristics of the entering class C(j).

For the purposes of (4), Xpeer
j = (SAT 25

j , SAT
75
j ) are the quantiles of the SAT distribution at j,

from which student i calculates SAT j and τ
SATj
i .

Because optimal admissions rules are cuto�s, we will identify admissions rules with the corre-
sponding cuto�s and consider equilibria38 of the form:

38If there were a continuum of potential applicants, together with a measure, then we could de�ne equilibrium as
a BNE of the game with the same timing structure, in which college j receives a large negative payo� if the measure
of students enrolled at j exceeds kj , and obtain the same properties and predictions. In the data, there is only a
large �nite number of applicants, not a continuum; hence colleges cannot perfectly predict their actual enrollment.
To adapt the model to the �nite dataset, I do not specify what colleges' payo�s would be if their enrollment were to
exceed their expected capacity, but constrain colleges to admit a class that has an expected number of enrollees not
greater than the expected capacity. Given the large number of students, one could attain very similar predictions
with a BNE in which each college pays a steep and increasing cost for exceeding its capacity, rather than a hard
constraint.
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{
{Ai}i∈I , {πj}j∈J , {Ci}i∈I , {X

peer
j }j∈J

}
.

3.7.3 Limited multiplicity of equilibria

In general, there is no guarantee that equilibrium is unique, for reasons similar to those in Chade,
Lewis and Smith. In this section, I show that given �xed distribution of application portfolio
choices, there is a unique mutual best response by colleges. That is, there is precisely one vector
of cuto�s π such that each πj is optimal given π−j and applications.

To show these results, I show that holding applications, �nancial aid, and peer characteristics
�xed, students' matriculation probabilities are isotone in π. As a result, market-clearing cuto�s π
form a complete lattice. As a corollary, for any set of applications, cuto�s exist that satisfy the
colleges' problems. Letting πL denote the lowest cuto� and πH denote the highest, When students'
choice probabilities satisfy a substitutes property, I show that πL 6= πH leads to a contradiction,
as the share of students attending the outside option and/or nonselective colleges must be strictly
higher under πH than under πL, but the share at each selective college cannot decrease.

Let Pr(Ci = j|B) denote the probability that student i enrolls in college j given admission to a
set of colleges B ⊆ A, holding �nancial-aid o�ers and peer characteristics �xed. Let Pr(Ci = 0|B)
denote the probability that i chooses the outside option.

Condition (Substitutes). For each individual, the following condition holds:

B ⊆ B′ =⇒ Pr(Ci = 0|B′) < Pr(Ci = 0|B).

This condition holds generally whenever the outside option is a possible substitute for each
college.39 In particular it is satis�ed for the nested logit speci�cation of utility in this model
conditional on random coe�cients, and hence for the mixed nested logit speci�cation.

Proposition 2. If the substitutes condition holds, then conditional on applications and expected
peer characteristics there is a unique cuto� vector π that satis�es equilibrium condition (3).

Proof. For each set B ⊆ A and and B′ ⊆ A with B ⊆ B′, each agent's choice probabilities must
satisfy40

Pr(Ci = j|B′) ≤ Pr(Ci = j|B). (*)

39The condition is related to the �connected substitutes� condition of Berry, Gandhi and Haile with continuous
prices. In my setting, what is needed is that when a capacity-constrained college is removed from the choice set,
the probability of not attending any capacity-constrained college strictly increases.

40This result is due to Block and Marschak (1960) and Falmagne (1978). See also Haile, Hortacsu and Kosenok
(2008). In particular, a direct application of Theorem 1 of Falmagne (1978) gives that for any sets B0, B1 ⊆ A, we
have Pr(Ci = j|B0)− Pr(Ci = j|B0 ∪B1) ≥ 0.
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De�ne π∗(π) : R|J | → R|J | by π∗j(π) = π∗j(π−j). That is, the jth component of π∗ is the cuto�
that college j optimally chooses given (�xed) applications and student preferences, and the cuto�s
of other colleges. By (*), the function π∗ is isotone in R|J |. Its �xed points therefore form a
complete lattice.

Let π∗L be the lowest equilibrium cuto�s, and π∗H be the highest. Let Ju ⊆ J denote the set of
schools that are not selective at πL, i.e. the union of the outside option and the set of schools for
which π∗Lj = π0

j . For a contradiction, suppose Bi(π
∗
H) 6= Bi(π

∗
L) for some student i.

The share of students attending the outside option must strictly increase. Moreover, in any
random utility model the the share of students attending other colleges in Ju must also weakly
increase.41 Therefore the share of students attending colleges in Ju must strictly increase:∑

i

Pr(Ci ∈ Ju|π∗H) >
∑
i

Pr(Ci ∈ Ju|π∗L).

Cuto�s of college in J \Ju are weakly higher under π∗H , however, implying that they are at full
capacity in both π∗L and π∗H , i.e.∑

i

Pr(Ci /∈ Ju|π∗H) =
∑
i

Pr(Ci /∈ Ju|π∗L),

which is a contradiction.

This �limited multiplicity� result is helpful in evaluating counterfactuals. It shows that in-
teraction among colleges is not itself a source of multiplicity. In the appendix I prove that an
equilibrium exists.

3.8 College outcomes

I model persistence in college as an outcome of interest. In each semester t, student i at college j
obtains grades that depend on his pre-college academic characteristics including unobserved caliber,
the college that he attends, and whether he receives a targeted scholarship program. We allow the
slope of grades with respect to SAT scores to di�er across colleges, re�ecting the possibility that
colleges di�er in the ability to educate students across the distribution of academic preparation.

41For j ∈ Ju, if π∗Hj = π∗Lj then the share must weakly increase by (*). Alternatively, π∗Hj > π∗Lj if and only if
college j has �lled its capacity under π∗H .
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Semester grades are given as follows:

gpa∗ijt =βgpaj + βgpasat sati + βgparankclassranki + βgpaq qi + βgpalos losi · 1(j = UTA)

+ βgpasatXuta · sati · 1(j = UTA) + εGPAi

gpaijt =


0 if gpa∗ijt < 0

gpa∗ijt if gpa∗ijt ∈ [0, 4]

4 if gpa∗ijt > 4

Cumulative GPA is given by

gpaijt =
1

t

∑
r≤t

gpaijt.

In each semester, student i continues with probability

Pr(continueij) = Φ(βcontinueGPA GPAijt + βcontinuefirstyear · (t ≤ 2) + βcontinuey yi + βcontinuej )

and drops out with complementary probability.
I focus on UT Austin and Texas A&M because access to state �agship schools is a primary goal

of the Texas Top Ten program and because these institutions o�er the most detailed administrative
data.

4 Data and Descriptive Analysis

I rely on the administrative records of Texas colleges and universities, and a set of surveys of high
school students, conducted by the Texas Higher Education Opportunity Project. The adminis-
trative data consist of 629,388 applications to nine Texas colleges in the years 1990-2004. They
include admissions and enrollment decisions, test scores, grades and demographics of applicants,
as well as transcript data (major, grades, time to graduation) of enrollees at those institutions. In
addition, the dataset contains a survey of students in the spring of 2002, 13,803 seniors and 19,969
sophomores in total from Texas public high schools. There are also two follow-up surveys with the
seniors, in 2003 and 2006, and one with the sophomores.

4.1 THEOP survey

THEOP selected 105 Texas public high schools at random in the spring of 2002. Of these, 86
high schools gave permission for in-class surveys; all seniors and sophomores who were present
in school on �survey� day �lled out a paper-and-pencil survey. These �survey days� took place
between March 4, 2002 and May 27, 2002. At 12 additional schools, students completed surveys
by mail in May 2002.
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2002 2003 2004 2006

Senior cohort Wave 1: N=13,803 Wave 2: N=5,836 Wave 3: N~5,800

Sophomore cohort Wave 1: N=19,969 Wave 2: N=3,092

Source: http://www.texastop10.princeton.edu/survey_overview.html

Table 1: Survey

The initial wave surveyed 13,803 seniors: for cost reasons, the survey designers followed up
with a randomly selected subsample, interviewing 5,836 of the original seniors the following year
in the survey's second wave.42

The data include the year and term an applicant desired to enroll, demographics including
gender, ethnicity, citizenship and Texas residency, and many academic characteristics: high school
class rank (by decile), SAT/ACT score, and AP classes taken. We also observe high school char-
acteristics including mean SAT scores, fraction of students receiving free or reduced-price lunch,
and fraction of SAT-takers.

Most importantly, I see up to �ve college applications, together with indicators for �nancial
aid applications, admissions and �nancial aid outcomes at each college. I do not see the student's
matriculation choice in wave one, but if a student appears in wave two I see which institution, if
any, she is currently attending, as well as any college or university the student attended within the
past year.

4.1.1 Final dataset

In estimation, I restrict the dataset to students who have taken the SAT or ACT and are not missing
class rank or standardized test scores; the �nal dataset consists of 4144 high school seniors. Of
these, 1975 were tracked in wave two of the survey and hence have observable college choices.

4.1.2 ACT scores

Some students take the ACT instead of the SAT; if a student took both exams, I keep that student's
SAT scores. Otherwise, I convert ACT composite scores to SAT combined scores using the College
board's 1999 ACT-SAT concordance tables.43

42The survey designers included in wave two all Black and Asian students in the original sample, as well
as random samples of Hispanics and non-Hispanic whites. The 5836 students who completed the wave
two survey represent a 70 percent response rate. See the �Senior Wave 2 Survey Methodology Report� at
http://theop.princeton.edu/surveys/senior_w2/senior_w2_methods_pu.pdf for details.

43http://research.collegeboard.org/sites/default/�les/publications/2012/7/researchnote-1999-7-concordance-sat-
act-students.pdf
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4.1.3 Income

The data do not provide i's household income; I do, however, observe the education and occu-
pational category of each of i's parents. I draw incomes from the March CPS. To do so, for
each household I construct the household head's education and occupational category. For each
simulation draw, I then draw from incomes in the 2002 and 2003 March CPS samples of Texas
residents with the same occupational category and education. Because the THEOP dataset uses a
di�erent encoding of occupations, I convert the CPS sample occupation codes to 1990 CPS codes
as described in the data appendix. If either parents' occupation category or education is missing
in the THEOP data, but one variable is present, I draw from the March CPS conditional on the
variable that is present.

4.1.4 Expected family contribution

In estimation, I use the family's expected family contribution (EFC) as a measure of the amount of
�nancial aid the student is likely to receive. I use the federal government's �simpli�ed EFC formula
worksheet A� from the 2002-2003 FAFSA, using parents' income, the number of parents/guardians
who live with the applicant, and the number who work full-time, if the applicant lives with two
parents. In practice, I draw a large number of income draws for each student from the CPS, and
for each draw calculate the EFC using the formula. In estimation I integrate over these draws
when calculating the likelihood and moments.

4.2 Comparison to administrative data

In addition to the survey, THEOP provides admissions, enrollment, and demographic data for
applicants to the nine colleges/universities in table 2.

I observe the year and term an applicant desired to enroll. I also see demographics: gender, eth-
nicity, citizenship, TX residency; and academic characteristics: high school class rank, SAT/ACT
score, AP classes taken, as well as characteristics of the student's school including high school
mean SAT scores and fraction eligible for free/reduced lunch. By semester, for enrolled students,
I observe credit hours earned, semester GPA, department and �eld of study.

At UT Austin and Texas A&M there is additional detail. These datasets provide the exact
class rank as well as the student's �rst- and second-choice majors and the major for which the
applicant was considered. I make use of the enrollment data for the state �agship universities,
UT Austin and Texas A&M, together with characteristics of the students including class rank,
SAT/ACT scores, and high school characteristics, students' semester grades, and whether they are
present for all semesters.

A good description of the data can be found in Tienda and Niu (2010). That paper documents
regression discontinuity e�ects, showing that variation in top-decile status indeed appears to a�ect
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Application Data College Transcript Data

Institution N Years N Years

Texas A&M 163,027 1992-2002 637,018 1992-2007

Texas A&M Kingsville∗ 18,872 1992-2002 91,106 1992-2004

UT Arlington 29,844 1994-2002 51,315 1994-2002

UT Austin 210,006 1991-2003 659,102 1991-2004

UT Pan American∗∗ 44,747 1995-2002 115,812 1995-2005

UT San Antonio# 61,221 1990-2004 160,604 1990-2004

Texas Tech 81,153 1995-2003 211,771 1995-2004

Rice 36,190 2000-2004 18,149 2000-2005

SMU 45,549 1998-2005 60,607 1998-2005
* Applicant data for enrollees only: 1992-1994

** Limited variables provided

# Applicant data for enrollees only, 1990-1997

http://www.texastop10.princeton.edu/admin_overview.html

Table 2: Administrative dataset

students' application decisions and the type of college that they attend. Andrews, Ranchhod and
Sathy (2010) show that the introduction of Texas Top Ten a�ected matriculation decisions.

The THEOP survey is based on a strati�ed sampling design that placed unequal weights on
di�erent types of high schools. Using the population weights, however, one obtains patterns very
similar to those in the administrative data. A sequence of papers by Marta Tienda and coauthors
describes the survey design and �ndings. I have con�rmed that population-weighted mean SAT
scores, class rank, and high school characteristics (poverty, SAT scores) of students in the survey
who attend �agship universities closely match the actual numbers in the administrative data.

4.3 Descriptive Analysis

In this section, I provide evidence that the modeling choices are reasonable. It is necessary to
allow for matriculation-time shocks and to allow students to fail to apply for �nancial aid, as well
as to allow for correlation and private information in admissions outcomes.

4.3.1 Variation over time in applications, admissions, and enrollment shares

I begin with a description of the time-series variation in applications, admissions and enrollment
at the University of Texas at Austin. While I obtain the main results using a survey of a single
cohort, the relative changes that the model predicts from the removal of Texas Ten are close to these
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numbers. Table 37 shows the raw number of applications, o�ers of admission, and matriculation
at UT Austin over the years 1992-2003 among all Texas public high school students, and among
Black, Hispanic and Native American Texas public high school students.

In 1996 and previous years, the university admitted students on the basis of predicted �rst-
year grades, together with a race-based a�rmative action policy. In 1997, there was no o�cial
a�rmative action policy, although UT Austin essentially admitted all top-decile applicants. In
1998, Texas Top Ten began, together with the university's policy of computing academic and
personal indices for each applicant outside the top decile. The survey cohort entered college in the
fall of 2002 as �rst-time freshmen.

Table 38 shows Black, Hispanic and Native American applications, admissions and matricula-
tion as a share of the totals at UT Austin listed in table 37. Minorities' enrollment as a share of
the total was 14% lower in 1997 than in 2002. We will see that the model predicts that minori-
ties' enrollment would be 10% lower in 2002 if Texas Top Ten were not in e�ect. The di�erence
may in part re�ect population changes, in particular the increasing share of Hispanic students in
Texas high schools, as well as other changes in demand for colleges and in UT Austin's admissions
policies.

The administrative data shows also that the share of applications and enrollment of top-decile
students increased following the introduction of the Texas Top Ten policy. Tables 39 and 40 show
changes at UT Austin in the share of students in the top decile of their high school class and of
minority students in the top decile respectively. Table 40 shows that in 2002, 10.3% of applications
to UT came from top-decile minority students, while in 1997 the share was 7.3%, a 31% decrease
relative to 2002. I will show that Texas Top Ten led minority students with high class rank to
apply to the University of Texas at Austin by providing a guarantee of admission. This �nding is
consistent with the di�erence in shares across years.

4.3.2 Matriculation-time shocks

1574 out of the 1975 SAT-taking students in the estimation sample who appear in �wave 2� of the
dataset were admitted to at least one college. Of these, 297 students did not matriculate at any
four-year college. Using the survey's population weights, 14.01% of SAT- or ACT-taking students
were admitted to some four-year college but did not matriculate at any four-year college. Allowing
for this fact is important, and for this reason the model contains matriculation-time preference
shocks and uncertainty about �nancial aid.

4.3.3 Financial aid

In the survey data, while 69% of students submit �nancial aid with all applications (or submit no
applications), 19% submit at least one application for admissions but no �nancial aid applications,
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and 11% apply for aid from some but not all colleges to which they applied. Table 32 shows a
descriptive probit regression of �nancial aid application conditional on submitting an application
for admission. An observation is an application to a school by an individual. We include individual-
level random e�ects.

The probability of submitting an application for aid is decreasing in the average income of the
household head's occupation, measured in units of $10000 2002 dollars. Other factors that a�ect
the expected family contribution correlate with application probabilities in the expected way. The
number of parents or guardians appears in the FAFSA formula, with single-parent households
having a lower EFC. Indeed, two-parent households are less likely to apply for aid. Higher high
school poverty correlates with additional aid applications. Finally, the individual random e�ects
are highly signi�cant. This pattern is consistent with a common source of di�culty in �nancial
aid applications across colleges, such as a di�culty in completing the FAFSA.

4.3.4 Admissions

It is empirically true that students' outcomes are correlated within portfolios. To provide descrip-
tive evidence I estimate random-e�ects probit estimates of admissions chances using the survey
data. Table 33 in the appendix displays the results. The analysis is descriptive only because it
does not use the full model to control for selection on application decisions.44 We can obtain the
implied admissions cuto�s by multiplying the coe�cient on each college dummy by -1. These
results show reasonable values for admissions cuto�s. Most importantly, the residual covariance
of admissions outcomes within a portfolio is signi�cant. That is, there is strong evidence for the
existence of individual-level unobservables which a�ect admissions chances at all colleges. I �nd
a variance of �caliber� of approximately 1. (As in the full model, the variance of match terms µij
is normalized to 1.) A likelihood-ratio test of σu = 0 is massively rejected, with a p-value of less
than .0001.

Without allowing correlation within applications, one may overestimate application costs. All
else equal, higher correlation implies smaller application portfolios because a rejection is �bad news�
about other outcomes.45 (In the extreme case, imagine that the only uncertainty a student faces
is about admissions. If all outcomes are perfectly correlated, there is no sense in applying to more
than one college.) Hence if I did not allow for correlation in admissions outcomes via students'
caliber, I might incorrectly ascribe �undermatching� to application costs rather than information.

Turning to the signal of caliber, and its sources of identi�cation in the data, I demonstrate
that higher selectivity of an application portfolio correlates with increased admissions chances

44For simplicity we also do not vary the variance of caliber with high school poverty, i.e. we impose σq =
exp(σconst

q ). If in the model we imposed ρ = 0 for all students, so that no student had any signal of his/her caliber,
then the �rst column of this table would give us exactly the model estimates of admissions parameters.

45See Naygpal (2004)
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conditional on observables. In the second column of table 33 I estimate admissions chances via
probit, adding a proxy for the aggressiveness of application portfolios. I use the average selectivity
of colleges in each individual's portfolio as ranked by Barron's guide to colleges in 2002. I also add
an interaction of this selectivity measure and high school poverty to see if patterns of selection
vary. Having highly selective schools in the portfolio will predict better admissions outcomes if
and only if students have some signal of their caliber; if students are informed about caliber, then
those with better signals will apply more aggressively. Indeed I �nd that selectivity of portfolios
predicts admissions outcomes. In this descriptive regression I do not see any pattern with changes
in high school poverty.

4.3.5 College Outcomes

In the model I assume that scholarship programs a�ect grades but conditional on grades do not
a�ect dropout rates. The descriptive evidence is consistent with this assumption. Two regressions
provide descriptive evidence on grades and dropout rates using the administrative datasets. In
the �rst speci�cation, GPA is a linear function of academic and high-school characteristics with
individual random e�ects, i.e. grade-point average in term t is given by:

GPAijt = Xiβj + µ̃ij + ẽijt.

The sample is the population of all Texas public high school students entering the �agship uni-
versities as freshmen in the fall of 2002. In the second speci�cation, dropout rates are given as a
probit on grades, characteristics, and time dummies for the population of students who entered
state �agship universities in the spring of 2002.

I display the results in tables 34 and 35 in the appendix. I �nd that, conditional on grades, the
relation between persistence and participation in the LOS and Century scholarship programs is not
signi�cant. In particular, the LOS program includes a mentoring component as well as �nancial
support; nonetheless, coming from a Longhorn Opportunity Scholars high school correlates with
higher grades, but conditional on grades there is no apparent association between the program and
persistence in college.

4.3.6 In-state applicants

I will assume in counterfactuals that colleges do not adjust the fraction of out-of-state students
that they admit. The data support this assumption. In the administrative data, both before
and after the introduction of Texas Top Ten, 90% of enrolled students at UT Austin came from
within Texas, suggesting that the university targets a speci�c percentage of in-state students.
There is little support in the UT Austin admissions o�ce's decisions for the hypothesis that the
university has changed the fraction of students paying in-state tuition as a means of controlling its
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budget.46 At Texas A&M and regional campuses, a larger fraction of students come from within
Texas, and there is less reason to worry about changes in apparent capacity for in-state students
in counterfactuals.

5 Estimation and Simulation

I estimate cuto�s
{
πj
}
j∈J and all parameters except the �peer characteristics� βj via the method

of simulated moments.

5.1 Overview

I use three sets of moments in the simulated GMM procedure. The �rst set of moments is the score
of the likelihood of all observables in the THEOP survey. Each student has an application portfolio
Ai, a set of schools Bi o�ering admission, �nancial aid applications and o�ers (Afinaidi , Aidi), a
matriculation decision Ci, and college outcomes if he attends college. For students in the �rst
wave of the survey only, we see Ai, Bi and �nancial aid applications and o�ers, whose likelihood
we compute. For students who are in both waves of the survey, we observe matriculation decisions
as well, which appear in the likelihood for these students. The second set of moments matches
average �nancial aid awards in IPEDS to those predicted by the model at each school. In the
administrative data, we observe admissions to j, matriculation at j, and grades and the decision
to drop out each semester. The third set of moments requires that grade point averages and
dropout rates of surveyed students as predicted by the model match the observed grades and
dropout rates in the administrative data. This �nal set of moments makes use of an �indirect
inference� strategy.

5.2 Identi�cation in practice

Although the model is estimated via simulated GMM, there are clear sources of identi�cation of
particular components of the model.

46Table 36 in the appendix provides statistics on admissions and matriculations by in-state and out-of-state
applicants at UT Austin over the years 1991 through 2003 as given in the administrative data. The fraction of the
enrolled students whom the university classi�ed as in-state applicants remained slightly above 90% in each year
with the exception of 1997, where 89.9% of �rst-time freshmen were in-state. This lack of change tells us that
despite changes in policy � the removal of a�rmative action, the introduction of Texas Top Ten � the university
did not greatly adjust the fraction of out-of-state students. The share of students from in-state public high schools
is also nearly constant.
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Information structure We �rst turn to the identi�cation of the information structure. To
identify the importance of the unobserved caliber q, it is crucial to see application portfolios. The
importance of caliber q is identi�ed from correlation in admissions outcomes within an individual's
application portfolio. If, �xing observables, admission to school j for student i does not predict a
higher chance of admission to school k for student i, then there is no role for a common �caliber�
that a�ects both admissions chances. In the language of the model, if admissions outcomes are
nearly uncorrelated after conditioning on the observable variables zi that a�ect admissions, then
we conclude that the variance of q is small.

Observing application portfolios together with admissions outcomes allows me to estimate the
quality of students' signals s. If students have private information about their admissions chances,
students with aggressive application portfolios will have relatively high probabilities of admission
conditional on observables. For example, consider two students with identical test scores, grades
and high schools, one of whom applies to a more selective portfolio (Rice and UT Austin, for
example, rather than UT Austin and a regional UT campus). Students may apply to di�erent
portfolios because of di�erences in application costs, varying preferences, or di�erences in beliefs
about admissions chances. Only in the latter case, however, should we see that the student who
applies to the riskier portfolio is more likely to gain admission to schools that are common to both
portfolios.

The covariance term ρ, therefore, can be backed out from the correlation between application
decisions and admissions outcomes. Conditional on observables, students with high signals will
apply as if likely to be admitted, e.g. to schools with high cuto�s, or to few schools, and will be
likely to gain admission. Students with low signals may send more applications to lower-ranked
schools. If, in contrast, all variation in portfolios conditional on observables is driven by preferences,
unusually aggressive portfolios should not predict higher admissions chances.

Additionally, the relation between application decisions and matriculation choices provides
information about beliefs. For intuition, consider a student considering applying to a college at
which the econometrician predicts that he has a very low chance of admission. If ρ ≈ 0 then the
student has no additional information about the econometrician-unobserved admissions quality
term qi. The student must therefore have a very strong taste for the �long-shot� college in order
to submit such an application. Therefore, students who submit �long-shot� applications are a
selected sample; if admitted, they should be highly likely to attend. In contrast, if ρ is high, then
the extent of selection is lower for students with low admissions indices zijγj; students can submit
applications that appear to the econometrician to have low probabilities of success, because the
students have high signals of qi.

Admissions Parameters The admissions parameters γ and cuto�s π are identi�ed via the
distribution of admissions outcomes conditional on applications. I observe the probability of o�ers
of admission to sets B ⊆ A conditional on characteristics zi and applications to all colleges in A.
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For intuition, suppose there were no signal, i.e. cov(q, s) = 0 for all students. In this case, we
would know the probability of admission to colleges conditional on zi, and it would be possible to
estimate admissions parameters σq, γ, π separately using only the admissions data. In the model,
if cov(q, s) = 0 we could obtain consistent estimates of (σq, γ, π) via a standard random-e�ects
probit regression.47

When students have private information about admissions chances, there is a selection problem
in the above regression. The admissions model is linked to students' choices through the unobserved
caliber q and its signal. We observe admissions outcomes at j only for students who apply to j, but
these students have di�erent admissions chances at j conditional on observables because students'
signals a�ect their application decisions. To solve this problem, the estimation procedure makes
use of variation in characteristics, such as distance, that shift applications but are excluded from
admissions. Distance to the college appears in the utility function, and therefore a�ects application
probabilities, but does not a�ect admissions outcomes.

Utility functions To identify choice parameters, I use the matriculation decisions of students
as well as the choice of application portfolios. I observe the distribution of matriculation decisions
conditional on observables application sets, and admissions outcomes. In addition, the initial choice
of application portfolios reveals information about students' utilities, as an application portfolio is
a lottery over admissions sets. If college j has high mean utility, there will be many applications
to j and a high probability of matriculation among admitted students. If students with particular
characteristics, such as low distance to j, have high utility from attending j we will see the same
pattern among such students.

In addition, in order to identify the parameters that a�ect substitution patterns, it is especially
useful to observe application portfolios, as I do, rather than top choices only. If a particular form
of unobserved heterogeneity is important, there will be correlation in the relevant characteristic
within portfolios. For instance, if there is heterogeneity in the utility that students obtain from
peers' SAT scores, we will see that applying to a college with high SAT scores correlates with high
SAT scores in other colleges within an applicant's portfolio.48

47Let the unit of observation be an application Aij . Regress the admissions outcomes Bij on covariates and
college dummies with individual-level random e�ects.

48As with admissions, there is a selection problem, as a student's signal and caliber a�ect his applications and
admissions outcomes. Fortunately, there is random variation in admissions outcomes, admissions chances, and
�nancial aid o�ers that is independent of students' utilities, and that leads students who apply to a particular
portfolio to face di�erent choice sets. There are shifters of admissions chances which are excluded from utility. For
example, part of the variation in i's class rank comes from sampling error in tests and random noise in grading,
and another part of the variation comes from variation in i's peers. These sources of variation are unrelated to i's
utility function. In the model, shocks µij are excluded from i's utility, as is qi, si, and i's class rank.
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Financial aid The probability of receiving a �nancial aid o�er conditional on application is
observed, as is the distribution of income yi for each student. Using variation in parents' education
and occupation as a shifter of income, we can identify the distribution of �nancial aid o�ers
conditional on income and observables, and hence the parameters governing �nancial aid o�ers.
The size �nancial aid awards is not observed in the survey, but the average amount disbursed at
each college must match known numbers from IPEDS.

To identify the joint distribution of �nancial aid awareness and other characteristics, I make
use of the fact that �nancial aid awareness is partially observed. In the standard consideration
set model, an instrument is needed that is excluded from utility but shifts the probability that a
particular alternative is in the consideration set. Here, in contrast, we observe a set of applications
to colleges, some of which may be without applications for �nancial aid. There is still selection, as
being unaware of �nancial aid at college j will make a student less likely to submit an application to
j. If I simply estimated probit regressions of �nancial aid application on covariates, conditional on
application to j, I would overestimate the probability of �nancial aid awareness. If an application
is su�ciently attractive, however, then a student may apply even without being aware of �nancial
aid. Observable characteristics such as distance, and unobservables such as s about which it
is possible to make inferences, will shift application probabilities but do not a�ect awareness of
�nancial aid.

Outcomes If I observed q and income in the administrative data, I could directly observe the
joint distribution of college grades, persistence, and all relevant individual characteristics. Hence, I
could identify the parameters governing grades and persistence. The administrative data does not
provide these variables, however. I use a set of instruments, including high school characteristics
and parents' education, that are present in both datasets and correlate with q and with income
but do not directly a�ect students' outcomes conditional on the students' characteristics.

5.3 Choice set

I restrict portfolios to contain a maximum of �ve colleges. In the �nal survey dataset, most
individuals apply to no more than �ve colleges; among students in our �nal dataset, 97.9% submit
�ve or fewer applications. To further speed computation, I restrict the possible set of portfolios:
while we allow all portfolios of up to three colleges, we restrict the set of possible large portfolios.
Among portfolios containing �ve applications, I allow only those that some applicant in the data
was observed to have chosen. We allow portfolios of four colleges that are subsets of the allowed
5-college portfolios as well as all portfolios of four colleges which appeared in the data. This
restriction reduces the choice set from |A| = 4480 to |A| = 817 possible portfolios. It rules out
certain unlikely combinations of colleges; for instance a student cannot apply to three highly
selective private institutions and two of the smaller regional non-�agship public colleges.
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5.4 Likelihood

I observe {xij, zij, Aij, Bij, Aware
obs
ij , AidijCij}i∈Isample,j∈J , where Aware

obs
ij ∈ {0, 1} is an indicator

for completing an application for �nancial aid at college j and is observed only for j ∈ Bi. Let
θ ∈ Θ ⊂ RN be a vector of parameters, where Θ is the set of allowed parameter values. Recall
that Aij, Bij, Cij denote applications, admission, and matriculation respectively for student i and
college j. Awareobsij = 1(i applied for �nancial aid at j) is generally not the full vector of �nancial-
aid awareness, because we do not observe whether i would have completed an application for aid
at colleges outside his application set.

Let ωi denote the vector of random coe�cients βi of individual i as well as income yi.
The likelihood of applications `Api is the measure of the set of preference and signal draws such

that the observed application portfolio maximizes expected utility among all application portfolios:

`Ai (θ, ωi, q
s) = Pr{Ai = arg max

A∈A
Vi(Applyi|ωi, θ)}.

The following expression is the likelihood of admissions:

`
B|A
i (θ, qs) =

ˆ ∏
j∈B

(
Φ(zijγj + qi − πj)

) ∏
j∈A\B

(
1− Φ(zij′γj′ + qi − πj′)

)
dFi(q|qs).

Note that admissions chances do not depend on students' random coe�cients. The likelihood
of �nancial aid awareness is the probability that the applicant completes �nancial aid applications
where he is observed to have applied:

`
F |A,B
i (θ, ωi) =

 ∑
Ã:Ã∩Ai=Awareobsi

∏
j∈Ã

Pr(Awareij |zfinaidAi , ηaware
i , EFCi)

∏
j /∈Ã

(
1− Pr(Awareij |zfinaidAi , ηaware

i , EFCi)
)

∗
∏

j∈Aidi

Φ
(
αf
j + αf

yyi + αf
i

) ∏
j∈Bi\Aidi

(
1− Φ

(
αf
j + αf

yyi + αf
i

))
.

The likelihood of matriculation is the nested-logit choice probability of school j conditional on
i's characteristics:

`
C|B,Aid
i (θ, ωi) =

exp(uij(ωi, Aidij)/λ)
(∑

j′∈B exp(uij′(ωi, Aidij′)/λ
)λ−1

1 +
(∑

j′∈B exp(uij′(ωi, Aidij′)/λ
)λ .

For students who appear in wave 1 of the survey, we set `
C|B,Aid
i = 1, as we do not observe

matriculation decisions. The likelihood of all observables in the data is given by

`i(θ) =

ˆ
s

ˆ
q

ˆ
ωi

`Ai (θ, ωi, q
s)`

B|A
i (θ, s, q)`

F |A,B
i (θ, ωi)`

C|B,Aid
i (θ, ωi)`

Outcome|C
i (θ, ωi, s)dFi(q, |s, θ)φ(s)dsdGi(ωi|θ).
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Let Nsurvey denote the number of surveyed students. The �rst set of moment conditions is given
by the score of the likelihood of all data in the survey:

gsurv(θ) =
1

Nsurvey

∇θ

∑
i

log `i(θ)

5.5 IPEDS moments

Expected aid conditional on enrollment is

Ei(Aidij(θ)|Ci = j) =

ˆ
ωi

E(Aidij|ωi, θ)dPr(ωi|Ai, Bi, Ci = j).

Because students' decisions to apply depend on characteristics, including income, that a�ect the
amount of aid received, we need to integrate over the posterior distribution of unobservables
including income given that the student has submitted his observed application portfolio, gained
admission to his observed admission set, and chosen to enroll at j. We estimate this posterior
distribution via simulation, following the computation of the likelihood. The distribution is given
by

Pr(ω|A,B,C) =
pr(A,B,C, ω)´

Pr(A,B,C, ω)dF (ω)
.

pr(ωm|A,B,C) ≈ Pr(A,B,C, ω)∑
m Pr(A,B,C, ωm)

for a particular draw ωm.
At each university, the model-predicted average �nancial aid award must match the average

award from IPEDS:

gaid =
1

Nsurvey

∑
i

popwti · 1(Ci = j) · Ei(Aidij(θ)|Ci = j)− AidIPEDSj ,

with gaid(θ) = 0 as θ = θ0.

5.6 College persistence moments

I estimate the parameters that a�ect college grades and persistence via moments which match
regression coe�cients in the following speci�cations in the administrative data to coe�cients ob-
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tained from simulated data. To de�ne these moments, I �rst de�ne the following auxiliary regres-
sion speci�cations.

outcome
(k)
ij = zoutcomei γ̃

(k)
j + ε

(k)
ij

gpaij1 = zoutcomei γ̃
(2)
j + ε

(1)
ij

semestersij = (gpaij1, gpaij, z
outcome
i )γ̃

(3)
j + ε

(3)
ij

log(semestersij) = (gpaij1, gpaij, z
outcome
i )γ̃

(4)
j + ε

(4)
ij .

zoutcomei = (1, SAT, class rank, HS average SAT, HS % free/reduced price lunch, SAT x poverty,
longhorn, century, parents' education) is a set of variables including every variable present in both
datasets that a�ects grades and persistence in the model, as well as high school characteristics and
parents' education (UT Austin data only), which correlate with students' caliber and income.

I simulate grades and semesters enrolled in survey using the model. The moments require
that the coe�cients of the auxiliary model estimated in administrative data, satisfy the OLS
orthogonality conditions in the simulated data:

Let Pr(m, q|i) denote the posterior probability of caliber q and random coe�cients and income
draw ωm, given i's observed characteristics, applications, admissions and matriculation, calculated
via Bayes' rule. The distribution of qi, yi conditional on matriculation to UT Austin is not the
same as the population distribution. For instance, the choice set depends on admissions outcomes
which are more likely to be positive when qi is high.

The moment condition requires that the coe�cients γ̃ obtained from the administrative datasets
satisfy the OLS conditions on the simulated data:

goutcome(θ) =
∑

i∈Survey,

popwti ·
∑
m,q

Pr(ωm, q|i) ·
(
outcome

(k)
ijmq(θ)− z′iγ̃(k)

)
· γ̃(k).

5.7 Computation

To compute the moments, I approximate the distribution of the caliber q and signal s with a
discrete grid, integrate over random coe�cients via simulation, and simulate �nancial-aid awareness
at schools to which i does not apply. I provide details in the computational appendix. In that
appendix I also state and prove a result that simpli�es the computation of the expected value of
application sets.

Computing the value of an application set A ⊂ A requires integrating over all possible outcomes
B ⊆ A, as the value depends on the probabilities and utilities of each admissions set B that is
possible given application to A. In principle, and dropping i subscripts, computing V (A) for
all A requires computing |A| utility terms {U(B)}B∈A, and O(|A|2) multivariate normal CDF
evaluations {P (B|A)}B⊆A,A∈A. With over 800 portfolios, it would be expensive to compute all
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of these probabilities directly for each draw for each individual at each trial parameter value.
I show that one needs only evaluate |A| multivariate normal CDFs and perform some matrix
multiplication. In particular, it is necessary to evaluate only the multivariate CDFs of the form
P (A|A), i.e. the probability of a student's being admitted to all schools in her application set,
for each possible application set A ∈ A. I show that an application of the inclusion-exclusion
principle gives the probabilities P (B|A) via a linear transformation of these probabilities, that is
via multiplication with known sparse matrices.

5.8 Selective and unselective colleges

In evaluating counterfactual policies, it will be important to determine which colleges' capacity
constraints bind, as these colleges' cuto�s will adjust to hold the total size of the entering class
�xed, while other colleges' class sizes may adjust. The following de�nition formalizes the notion
that a selective college is one whose capacity constraint binds.

De�nition 3. A college j is selective at a set of cuto�s π if πj = π0
j .

That is, a college is selective in a particular equilibrium if it turns away quali�ed applicants
because of limited capacity. If a college is not selective, it does not follow that it admits all
applicants. Rather, the college sets its cuto� such that the least-preferred student that it would
admit has value 0. It may reject some candidates who apply because it prefers to keep their seats
empty.

It is not possible to identify π0
j from the data and model. In particular, while we observe the

college's actual enrollment and can estimate its cuto�, there is no way to observe directly whether
its capacity constraint binds. We see that a college rejects a student, but admissions data alone
cannot tell us whether the college would have liked to admit that student if space permitted or if
it would always reject him in favor of an empty seat. Nonetheless, reputation, and college guides
such as Barron's, give a good indication of which colleges' capacity constraints bind. If a college is
known to be selective, we infer its expected capacity from the number of students who enroll, and
in this case we hold its capacity �xed in counterfactuals. If it is not selective, its total enrollment
may change. My key assumption is that colleges that are selective in the baseline remain selective
under the counterfactuals that we consider, and colleges that are not selective remain so. This
assumption is reasonable for the policies that we consider, which hold students' preferences �xed
and are unlikely to cause su�ciently drastic changes.

I will assume throughout out counterfactual experiments that the state �agship universities,
in-state private colleges and universities, and Texas Tech University are selective. Moreover, as
discussed in section 4, I assume that these colleges have a �xed capacity for in-state students. I will
assume that the marginal seats at a Christian college and at the marginal public four-year college
are such that the aggregate Christian college and the aggregate other four-year Texas college are not
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selective. In addition to the assumptions on selectivity, I assume that out-of-state universities and
aggregate private institutions do not change cuto�s under counterfactuals, as Texas public school
students make up relatively small fractions of the current and counterfactual sets of matriculating
students at those universities.

6 Results

All of the parameters in this section are estimated jointly. As there are 103 estimated parameters,
I split the maximum-likelihood parameter estimates into several tables for readability. The full set
of parameter estimates is given in the appendix. Table 3 shows estimation results for admissions
cuto�s π, college preference parameters γ, and college-speci�c �nancial aid parameters. Tables 4,
5, 6 and 7 show the remaining results. I �rst describe the estimated parameters and model �t.
The main results begin in section 6.2.

6.1 Parameter estimates

We �rst focus on informational parameters, which are displayed in table 5 on page 59. These
estimates lead to three immediate �ndings. First, variation in unobserved caliber q is an important
source of variation in students' admissions chances. An increase of one standard deviation in q is
worth three and a half times more than a standard-deviation increase in SAT scores.49 Second, the
variance of unobserved caliber is larger at poorer high schools. That is, σqecondisadv < 0. The higher
the poverty rate of the student's high school, the more important is q, relative to observables
such as SAT scores and class rank, in predicting college admissions for students who are not
automatically admitted via Texas Top Ten. Third, the covariance term ρ is decreasing in high
school poverty rates, (ρecondisadv < 0). That is, students from poorer schools have a noisier signal
of their unobserved caliber q. It follows from the second and third �ndings that students at poorer
high schools have worse information about their admissions chances.

The cuto�s π and admissions parameters are such that the average student has high admissions
chances at all colleges except highly selective private universities. Importantly, admissions chances

49Among students the median value of econdisadvs(i) is equal to .2788. That is, the median student's high school
has just over a quarter of seniors receiving free or reduced-price lunch. For this student, at the point estimates,

σq
i = exp(σq

const + σq
econdisadv) ≈ exp(σconst + σecondisadv ∗ .2788) ≈ 1.66

ρqi = exp(ρconst + ρecondisadv)/(1 + exp(ρconst + ρecondisadv ∗ .2788)) ≈ 0.764.

I rescale SAT scores to have a minimum of zero and a maximum of 1. Within the sample used for estimation, the
standard deviation in SAT scores is 0.1190, so that a one-standard-deviation increase increases i's admissions index
by approximately γ1 ∗ .1190 ≈ .48 points. Admissions indices are measured in �probit units�, i.e. relative to an
independent error term µij which has a standard normal distribution.
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Figure 1: Admission chances for mean non-top-decile student

at most colleges are close to one for the average student as well as for students with caliber q that
is above average, but decrease as q decreases. This nonlinearity means that greater uncertainty
about q given a signal s results in lower perceived admissions chances from the applicant's point
of view conditional on s. Recall that Texas Top Ten provides certainty about admissions chances
for top-decile students. Because perceived chances are lower at poorer high schools, this certainty
has a larger e�ect on the perceived admissions chances of students from those schools.

Figure 1 shows average students' perceived admissions chances at all colleges for students
outside the top decile of class rank. The chances are calculated for a student with a signal of
caliber s = 0. Within each college, the upper bar shows the chances for students with mean SAT
scores, class rank, and high school characteristics among non-top-decile students at schools with
rates of free/reduced lunch above 60%. The lower bars show the chances for average students
at high schools with rates below 60%. The mean student at a�uent high schools is essentially
guaranteed admission everywhere except private colleges and �agship institutions. Students from
poorer high schools face lower perceived chances everywhere except at highly selective private
colleges. (At highly selective colleges, having a caliber of 0 will lead to rejection with probability
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near 1, so that greater uncertainty, i.e. greater variance in caliber given one's information, leads
to higher admissions chances conditional on s). As a result, the guarantee provided by Texas Top
Ten may be especially valuable for students from less a�uent schools.

Admissions chances are high for these average students. They are even higher for students
who �barely miss� the cuto� for automatic admissions. Figure 4 in the appendix shows model-
predicted admissions chances for a student with a signal s that is one standard deviation above
the average, in the 12th percentile of his high school class at an a�uent high school. I assign this
student the average SAT scores and information structure for students outside the top decile at
schools with less than 15% poverty rates. Despite claims that such students are displaced from
the �agship universities, this hypothetical student is very likely to be admitted everywhere except
highly selective private colleges. (His chance of admission to the University of Texas at Austin is
95%.)

The full set of estimates is given in table 3. The order of cuto�s makes sense. Selective private
universities have the highest cuto�s, followed by UT Austin and Texas A&M. The regional four-
year Texas public institutions (Stephen F Austin State University, and Other TX Public 4-year
colleges and universities) have the lowest cuto�s, and therefore o�er the best chances of admission.
SAT and class rank (normalized to a maximum of 1, for bottom decile students) move admissions
chances in the expected direction.

We now turn to the parameters of the utility function. As with cuto�s, the pattern of mean
utilities makes sense. Selective private universities have the highest mean utility term δj, followed
by UT-Austin and then by Texas A&M. I �nd that students' utility is decreasing in distance, but
that there is no additional e�ect of distance when interacted with income yi. Utility is increasing
in students' expected rank τSAT among their peers at college j, but the e�ect is not enormous
given the range of SAT scores within each college; the di�erence in mean utilities between Texas
A&M and �Other Texas Public Four-year Institutions� is nearly equal to the value of moving from
the very bottom of the SAT distribution at a college to the very top; in practice, a student who
has the lowest SAT score at Texas A&M would not have the highest score at a non-�agship school.

To help interpret the utility parameters, �gure 2 shows the share of students who would choose
to attend each college if o�ered admission to all of the colleges.50 The top bar for each college shows
tastes, taking �nancial aid awareness and the probability of receiving �nancial aid as estimated.
Here we �nd that 70% of students would choose to attend a four-year college, the most popular
being UT Austin, with 12% of students preferring the �agship school. Nine percent of students
would choose to attend a selective private school. This low number raises the question of whether
students' distaste for the most selective schools is based on the perceived expense of attending
them, especially given that some students fail to complete �nancial aid forms and treat the list
price as the true price. I therefore calculate preference shares under the assumption that every

50The student is o�ered admission at exactly one college within each aggregate group; for instance, he gets exactly
one draw of εM for �other Texas public universities�.

42



pop.-weighted fraction of students
0.00 0.05 0.10 0.15

as estimated
fully aid aware.

legend

TX Public

Private Nonrelig.

Religious

Non-TX Public

Highly Selective

Baylor U.

U. Houston

U. North Texas

S.F. Austin State U.

SW Texas State U.

Texas A & M

U. Texas

Texas Tech U.
fir

st
 c

ho
ic

e 
co

lle
ge

Figure 2: Preference shares if admitted everywhere

student completes �nancial aid applications at each school, and that each student whose expected
family contribution is less than the list price receives �nancial aid, but without changing size of
the �nancial aid o�er as a function of income. Presumably, failure to receive need-based aid comes
from failing to list the school or properly complete the FAFSA. In this calculation I remove this
friction. I �nd that the share of students preferring highly selective private colleges increases to
13% of the total population. This result suggests that di�culty with �nancial aid applications
may be especially important at the margin of applications to highly selective private colleges.

The cost parameters are reasonable as well. We see that the disutility of cost is declining in yi.
To aid interpretation, costs are measured in units of 10000 2002 dollars. There is an additional cost
cm = $2790 of attending college, beyond the list price. The probability of consideration of �nancial
aid is increasing in the student's SAT score and in the school's poverty, and decreasing in income.
While �nancial aid amounts di�er across schools, the colleges have similar probabilities of giving
�nancial aid, with the exception of Baylor University, other religious colleges, and non-�agship
colleges, which are unlikely to give awards.

Turning to application costs, we see that the �rst application is more costly than additional

43



applications, but only by a factor of roughly 1.5. (Recall the cost of submitting one application
is C0 + C1, with C0 = c0const + c0econdisadvecondisadvi and C1 de�ned similarly.) That is, the cost
of applying to two schools is less than twice the cost of applying to one. Application costs are
not increasing in economic disadvantage of the student's high school: c1econdisadv is close to zero,
with a small standard deviation relative to the magnitude of c1const, and c0econdisadv is also small.
Students from poorer schools have worse information, and preferences di�er when students are
made aware of �nancial aid, but I do not �nd that application costs di�er. As a result, I consider
interventions targeted at information and �nancial aid.

6.1.1 Model �t

In the appendix, I discuss model �t in detail. The distribution of applications, admissions, and ma-
triculation decisions generated by the model closely matches the population-weighted distribution
given by the survey. I examine the number of applications, admissions o�ers, and matriculations
at each college within several subpopulations: Black, Hispanic and American Indian (�underrep-
resented minority�) students, �rst-generation college students, students from a�uent high schools
with less than 15% free/reduced price lunch eligibility,51 and minority students at a�uent high
schools. I did not use moments designed to match shares within these populations. Nonetheless
the model �ts well within each of these groups.

I show also that the model produces estimates of policy-relevant e�ects that are consistent with
the literature. Niu and Tienda (2010)[35], however, use the same THEOP dataset to examine the
e�ects of threshold crossing on state �agship university attendance. (The THEOP dataset, which
this paper uses, was collected by Marta Tienda.) That is, they compute the di�erence between
matriculation probabilities of top decile students under Texas Top Ten and matriculation proba-
bilities of marginal non-top-decile students under the same policy, using a regression discontinuity
design. As I describe in the appendix, I replicate this di�erence within the model. I �rst evaluate
matriculation probabilities under automatic admissions, within a group of marginal applicants.
I then disable automatic admissions, holding π �xed, and reestimate matriculation probabilities.
My estimates imply that 27.7% of top decile students would attend a �agship university under
Texas Top Ten, but only 16.5% would do so in the counterfactual where there is no Texas Top Ten
law. As a result, I �nd a threshold-crossing e�ect on �agship attendance of 11.2 percentage points,
which is slightly above the point estimates of Niu and Tienda but well within their con�dence
intervals.

51I use a working de�nition of an a�uent high school as one where fewer than �fteen percent of students have
ever quali�ed for subsidized lunch.
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6.1.2 Peer characteristics

We will see that the policy experiments that we consider have small e�ects on 25th- and 75th-
percentile SAT scores. As a result, we are able to ignore the utility e�ects of changes in peer SAT
scores when we calculate new equilibria. Nonetheless, as I discuss in the appendix, we can obtain
bounds on the e�ect of peer SAT scores under the assumption that students prefer higher SAT
scores and that these are positively correlated with the unobservable qualities of colleges.

6.2 Impact of Texas Top Ten

We now move on to the main results of the paper. In the �rst policy experiment, I evaluate the
e�ects of removing Texas Top Ten, holding the population of Texas high school students �xed.
Colleges use the admissions preferences that they had used to evaluate students who were not
guaranteed admissions under Texas Top Ten. The colleges �nd new equilibrium cuto�s.52 I allow
Baylor University, University of Houston, University of Texas at Austin, Texas A&M and Texas
Tech to adjust admissions policies, as these are the institutions that are selective and draw most
of their students from Texas.

While Texas Top Ten had negligible e�ects on the total number of students attending each four-
year college, it had large e�ects on the demographics within each college's entering class. Consider
table 10 on page 63, which displays the number of college matriculations per 100 students in the
population, as predicted by the model.53 The �rst column, labeled �benchmark�, shows the number
of matriculating students at each college. The column labeled �no TTT� shows the percentage
changes in these numbers when Texas Top Ten is removed and colleges' cuto�s adjust. Under
Texas Top Ten, slightly more than half of the sample matriculates at some four-year college.
Non-�agship Texas public universities are the most popular, enrolling nearly 13 students per 100
SAT-taking high school seniors. The University of Texas at Austin is the second most popular.
In the counterfactual, the number of students attending non-�agship schools decreases by a small
amount (0.4% at the point estimates). Overall, removing Texas Top Ten would lead to a small
decrease in four-year college matriculation.

Increased matriculation at �agship universities under Texas Top Ten by underrepresented
groups o�sets decreased matriculation by students from a�uent high schools. Table 11 on page 64
shows enrollment changes for Black and Hispanic students.54 Again, we focus on the benchmark
and the TTT column. Under the benchmark, 48 out of every 100 minority students attend a
four-year college, with 11 out of this hundred attending the University of Texas at Austin. The

52In the computational routine I was able to �nd only one set of equilibrium cuto�s.
53That is, for each student in the survey, I use the model to generate the probability that that student will attend

college j. I then aggregate using population weights.
54See also table 14, which provides results for �rst-generation college students.
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removal of Texas Top Ten would lead to an ten-percent decrease in matriculations at UT Austin,
and an overall decline of 1.4 percent, or one student per 150, in four-year college attendance.

In contrast, we see large increases in attendance by students from relatively a�uent high
schools. We restrict attention to students in whose high school cohorts fewer than 15% of students
have ever received subsidized lunch. Table 13 on page 66 shows that roughly 1 out of every 6
such students attends a �agship university in the benchmark. The share of students attending UT
Austin would increase by 16.6%, or 1.2 students per 100, if Texas Top Ten is removed. Texas Top
Ten lowers �agship attendance especially for minority students at these high schools. In table 16
we see that the share of students attending UT Austin increases by a large amount, 30% of a base
of 7.2 students per hundred, when Texas Top Ten is removed.

One may worry that Texas Top Ten came at a cost of increased �nancial aid expenditures and
lower academic quality at �agship schools. I �nd that it did not. Table 21 on page 75 shows
average �nancial aid amounts under the benchmark and counterfactuals, in 2002 dollars, holding
�xed �nancial aid awareness and the distribution of �nancial aid o�ers and amounts. We see
that the selective private schools o�er the greatest average aid package or reduction in list price,
followed by other private schools. Per-capita expenditures at public universities change little with
the removal of the Top 10% plan. At our point estimates, removing Texas Top Ten causes Texas
A&M to spend one additional dollar per student per year; The University of Texas at Austin spends
an additional 20 dollars per student per year. The e�ect of Texas Top Ten on the distribution of
SAT scores is negligible.55

Given that the entering cohort's scores do not change, it is not surprising that Texas Top Ten
does not decrease students' grades. Table 20 shows the e�ects of Texas Top Ten on the distribution
of grade point averages at the �agship universities. I consider grades in the �rst two years of college
only. Each table displays a di�erent subpopulation: the full sample, underrepresented minority
students, �rst-generation college students, a�uent high schools, and underrepresented minorities
at a�uent high schools. Again, we focus on the �benchmark� and �no TTT� columns. In all cases,
average grades are higher under Texas Top Ten. Texas Top Ten attracts a population of students
who attain higher grade point averages in college than the population that would attend without
the policy.

There are two reasons why Texas Top Ten improves outcomes. First, colleges' preferences are
not perfectly aligned with the grade production function. The parameter estimates in table 7 and 4
show that better SAT scores and better class rank are better in grades as well as admissions, but the
weights are not the same. More importantly, in the grade equationβgq is insigni�cant but negative

55Table 22 on page 76 shows 10th, 25th, 75th, and 90th percentiles of SAT scores in the benchmark and without
Texas Top Ten. At UT Austin, the 25th-percentile SAT composite score in the entering cohort would fall from
0.644, or 1030 out of 1600, to 0.638, or 1020 out of 1600, with the removal of Texas Top Ten. The 75th percentile
SAT score would similarly fall by 10 points out of 1600. The e�ects at Texas A&M are negligible at the 25th and
75th percentiles.
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at the point estimate. That is, colleges overweight unobservables in admissions, among students
not automatically admitted, relative to their contributions to grade point averages. Texas Top
Ten speci�cally targets students with high class rank, who in turn earn high grade point averages.

Second, because Texas Top Ten a�ected colleges' admissions policies, it a�ected the distribution
of applications. Under Texas Top Ten, colleges had a larger pool of applicants with high class rank,
who had relatively high predicted grades, and whom they were required to admit. The removal
of Texas Top Ten would decrease applications to UT Austin from students in the top decile by
22.2%, and increase applications to the aggregate non-�agship public college by 24.2%.56 These
e�ects are large. Moreover, Texas Top Ten's removal would decrease underrepresented minority
students' applications to UT slightly, as shown in table 11, but there is substantial heterogeneity
within the population of minority students. In particular, the number of minority applicants to
�agship schools who were in the top decile of their high school class would fall dramatically (by
32% at UT Austin and 10% at Texas A&M, respectively) in the absence of Texas Top Ten.57

Admissions chances change for students outside the top decile as well. Table 8 shows that
colleges' cuto�s change in response to the removal of Texas Top Ten. At Baylor and the University
of Houston, the e�ects on admissions chances are small. In contrast, it becomes signi�cantly easier
to gain admission to the �agship universities and to Texas Tech University. The change in the
cuto� at UT Austin is equivalent to an increase of more than one standard deviation in SAT score
for applicants.58We have seen that total college enrollment falls slightly at the point estimate when
Texas Top Ten is removed. Table 10 shows that the total number of applications per 100 students
increases by 1.5% when Texas Top Ten is removed. Applications to �agship university campuses
increase as well.

The parameter estimates imply, however, that admissions chances do not change by a large
amount for students just across the threshold at a�uent high schools. These students have very
high admissions chances even under Texas Top Ten. For instance, consider a student with s one
standard deviation above the average, class rank of .12, and the average SAT score for a non-top-
decile student at an a�uent (<15% poverty rate) high school. If anything, by using the average
SAT score for all non-top-decile students I underestimate this student's chances. Nonetheless, this
student has a greater than 95% chance of admission at the state �agship universities.

56See the bottom panel of table 15. Applications to Texas A&M would have fallen as well.
57See table 17. This percentage change is close to the percentage change that was observed at UT Austin,

comparing the years 1997 (in which there was no Texas Top Ten) and 2002. See table 40, which shows that the
share of applications to UT Austin from in-state public high school students that were submitted by top-decile
minorities was 31% lower in 1997 than in 2002.

58The cuto� at UT changes from .60 to -0.05 when Texas Top Ten is removed. As discussed previously, an increase
of one standard deviation in SAT composite score is worth .470 points relative to the variance of the idiosyncratic
admissions shock, which is normalized to 1.
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6.3 Race-conscious a�rmative action

Recall that Texas Top Ten replaced race-based a�rmative action after 1996. My results imply that
Texas Top Ten would outperform a more conventional race-based a�rmative action policy. In par-
ticular, Texas Top Ten compares favorably to a policy that provides points to minority applicants
at �agship universities to enroll the same number of minority students, as Texas Top Ten would ad-
mit students who would have better academic achievement in college. Precisely, I consider a policy
consisting of cuto�s {πj}j∈J for all applicants to non-�agship universities and non-minority ap-

plicants to the �agship universities, and four speci�c cuto�s{πBlackUTA , π
Hispanic
UTA , πBlackTAMU , π

Hispanic
TAMU }for

minority applicants at �agship universities.59 As in the model, students are admitted if their ad-
missions score πij is above the relevant cuto�. I solve for the cuto�s that ensure that the shares of
black students and other minorities at each �agship university are the same as those under Texas
Top Ten. In its e�ects on college matriculation and grades this policy closely resembles the absence
of Texas Top Ten for non-minority students, but it greatly changes the distribution of minority
students at �agship universities.

Relative to Texas Top Ten, The race-based a�rmative action program would enroll minority
students from relatively a�uent high schools with relatively poor class rank. Table 16 shows that
within a�uent high schools, the number of minority students enrolling at UT Austin would be
44% higher than under Texas Top Ten. The remaining rows of the table show that these students
are less likely to attend all non-�agship colleges. In contrast, at high schools with greater than
60% poverty, the number of minority students matriculating at UT Austin would fall by 18%.60

Relative to Texas Top Ten, the number of minority students in the top decile of their high school
cohort who attend UT Austin falls by 38%, from a base of one student out of every four to roughly
one student out of every seven.61

As a result, the students admitted under a�rmative action have worse academic performance
than the students admitted under Texas Top Ten. We turn again to table 20 to see predicted �rst-
and second-year grade point averages at �agship universities. In the top panel, we see that overall
grades are lower under a�rmative action than under Texas Top Ten, falling from an average of
2.81 to 2.78 at UT Austin. The di�erence at Texas A&M is smaller. The second panel shows the
change within the population of underrepresented minority students. GPAs fall from 2.69 out of 4
to 2.64 at UT Austin. The bottom panel shows that minority students who were in the top decile

59The cuto� for Hispanic students applies also to Native American and paci�c islander applicants. Table 9
displays the simulated cuto�s.

60Table 12 gives the distribution of matriculation, admissions and applications on students from high schools at
which at least 60% of students have ever quali�ed for free or subsidized school lunch. The number of such students
(of all races) attending UT Austin would fall by 26%. Table 18 gives the distribution of matriculation, admissions
and applications for minority students at these high schools.

61These �gures come from the top panel of table 17, which displays matriculation shares for minority students in
the top decile of their high school class.

48



of their high school class perform relatively well. Under Texas Top Ten, these students achieved
a GPA of 2.75 at UT Austin, which is higher than that of other minority students.62 Top-decile
minority students are much less likely to apply, however, under race-based a�rmative action than
under Texas Top Ten.63

Unlike Texas Top Ten, however, race-based a�rmative action has small e�ects on non-minority
students' admissions chances. For this reason, majority students at a�uent high schools might
favor race-based a�rmative action over Texas Top Ten. Table 9 displays the cuto�s that colleges
would choose under this a�rmative action policy. Non-minority students' cuto�s under a�rmative
action are very close to those under the absence of Texas Top Ten. Matriculation, admissions, and
applications �gures for students from a�uent high schools, and for non-minority students generally,
are very close to those in the absence of any a�rmative action program. The overall e�ects on
grade point averages are also very similar. Table 20 shows that grade point averages at UT Austin
and Texas A&M among non-minority students are nearly identical in the absence of Texas Top
Ten with or without race-based a�rmative action.

6.4 Undermatching

We now turn to the consequences of policies designed to increase access to �agship universities
and reduce undermatching. There is a large literature documenting the e�ects of informational
interventions and of assistance in applying for aid. Because of the expense, however, there is less
evidence on the e�ects of changes in �nancial aid policy.

In 2002, the Longhorn Opportunity Scholarship was present at high schools that enrolled 2.5%
of surveyed students. The average student at a Longhorn-eligible school attended a school in
which 74.7% of students had at one time quali�ed for reduced price or free lunch, which I take as
a measure of poverty. If the University of Texas at Austin were to extend the program to cover
all schools with greater than 60% poverty, it would cover 14.7 percent of surveyed students (by
population weight), resulting in a 4.8x expansion in the share of students covered.

An expansion in the availability of aid, however, would not necessarily a�ect all students'
incentives, as students may be unaware of the program or otherwise fail to complete an application
for �nancial aid. In addition to evaluating this expansion of �nancial aid holding awareness �xed, I
consider a combined intervention in which all students at high schools with above 60% poverty rates
have all aid applications completed automatically, in addition to the expansion of the Longhorn
Opportunity Scholarship. That is, all students at these high schools are made aware of �nancial
aid at all colleges. This policy experiment represents the e�ects of an expansion in aid together
with the best-case scenario for �nancial aid informational interventions.

62Non-top-decile minority students had an average GPA of 2.57 under the benchmark at UT Austin.
63Returning to the bottom panel of 17, we see that applications to UT Austin from such students would fall by

22 percent under race-based a�rmative action, from a base of 34 applications per 100 students.
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An expansion of the Longhorn opportunity scholarship would have large e�ects on the distri-
bution of students at �agship universities. Table 11 shows the e�ects on minority students. The
column labeled �LOS� shows the e�ects of the expansion of the scholarship program. The next
column, labeled �LOS+�, shows the e�ects of scholarship expansion together with automatic com-
pletion of �nancial aid applications. The number of minority students at UT Austin would increase
by 4% under an expansion in the scholarship program, and by 5.5% when combined with the �-
nancial aid intervention. The number of students from poor (>60% free/reduced-price lunch) high
schools would increase by 12.7%, relative to the benchmark, under the expansion of the scholarship
program, and by 16.5% under the combined intervention, as shown in table 12.

Because of the increased demand for seats at UT Austin, UT Austin's admission standard
would increase.64 As a result, the number of students at UT Austin from a�uent high schools
would decrease by 5% from a base of 6 per 100 under an expansion of the Longhorn scholarship
program and aid application completion.65

These distributional e�ects at �agship universities are similar to those of an upper bound on the
e�ects of information provision. The column labeled �Info� shows the results of an experiment in
which all students at all high schools automatically learn their caliber qi and are aware of �nancial
aid at all colleges. This policy would increase demand for seats at the University of Texas, at Texas
A&M, and at Baylor University, leading those colleges to increase their admissions standards, but
would lead to lower admissions standards at Texas Tech, as shown in table 8. At UT Austin, the
increase in the cuto� for a given applicant is the equivalent of a .7 standard deviation decrease in
that applicant's SAT total score. The number of minority students attending UT Austin would
increase by 5.3 percent, while the number of students from a�uent high schools would decrease by
7.1%. The increase in �rst-generation college enrollment that would follow from the informational
intervention is larger than the e�ect that would follow from the Longhorn scholarship expansion,
but unsurprisingly the targeted scholarship expansion has a larger e�ect on enrollment of students
from poor high schools.66

The informational intervention has the largest e�ects, in percentage terms, on matriculation
at highly selective colleges. In the benchmark, the number of students attending such colleges is
small, but the information intervention would increase the number of matriculating students by
61% at highly selective colleges, and increases o�ers of admissions by 46%. Table 10 shows that
there would be large e�ects on attendance at private and religious colleges. It is consistent with
Hoxby and Turner that there are large e�ects on the margin of applications to highly competitive
colleges. I do not �nd large e�ects in absolute terms, as few students in my data would attend highly
selective private universities under any of the interventions that I consider. A crucial di�erence is

64See table 8. UT Austin's cuto� would increase from .60 to .73, the equivalent of a quarter standard deviation
increase in SAT scores.

65See table 13 for the e�ects on a�uent students.
66See tables 14 and 12.
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that Hoxby and Turner consider a population of students with high exam scores, whereas I use a
representative sample of Texas high school students who have taken a college entrance exam.

The estimates imply that, unlike an expansion in aid at UT Austin, the informational interven-
tion has large e�ects on overall four-year college enrollment. Information provision and �nancial
aid application completion would increase overall college attendance by 1.8%, or by about one
matriculation per hundred high school students, as shown in table 10. Most of this increase occurs
at private, religious and out-of-state public university campuses. By assumption, enrollment at
the �agship campuses cannot increase, although increased admissions standards can lead students
to substitute to non-�agship universities.

These e�ects are smaller than they would have been had admissions standards not responded
to changes in demand. That is, universities undo a large fraction of the immediate e�ects of
�nancial aid expansion by increasing their admissions standards. In table 24 I show the e�ects
of aid expansion and informational interventions on the number of students matriculating at each
college, holding admissions cuto�s �xed. Table 25 shows the e�ects on minority students, and
table 26 shows the e�ects on students from poor high schools. In the interventions in which the
Longhorn Scholarship program expands, the UT Austin admissions o�ce undoes a large share of
the gains in underrepresented minority enrollment, as shown in columns (3) through (6) of table 25.
Holding admissions chances �xed, expanding the Longhorn scholarship and providing �nancial aid
awareness would make underrepresented minority students 9.1 percent more likely to attend UT
Austin on average. Because the intervention increases demand for seats at UT Austin, however,
the admissions cuto� would increase in equilibrium. After cuto�s adjust, the gain in minority
enrollment falls to 5.5 percent. The e�ects are similar but larger for students from poor high
schools. In contrast, under the best-case informational intervention, admissions o�ces' responses
augment the e�ects on matriculation at highly selective private universities. Table 24 shows that
matriculation at private colleges and religious colleges is higher after cuto�s adjust. This result is
perhaps unsurprising given that the model holds cuto�s at out-of-state private colleges �xed, as
Texans are a relatively small share of these colleges' entering classes.

I �nd that the informational intervention has greater cost-e�ectiveness than an expansion in
�nancial aid in promoting �agship attendance by students from poor high schools. It is limited,
however, in the number of students it can induce to attend �agship colleges. Importantly, in
these counterfactuals I hold �nancial aid formulas �xed, and do not distinguish forms of aid.67

Table 21 shows total per-capita expenditures at each university. Taking the estimate from Hoxby
and Turner of $6 per student reached by an informational intervention, I �nd that my best-case
informational intervention would cost $600 per 100 students and deliver .65 additional minority
students at �agship universities per 100 minority students, and 1.36 additional students per 100
from schools with poverty above 60%. Ignoring the e�ects on �nancial aid expenditures, this

67 If aid formulas adjusted we would presumably see smaller e�ects on both expenditure and the number of
students induced to move.
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amounts to $2986 per additional matriculation by a student from a poor high school. Including
the resulting decrease in �nancial aid expenditure of $419 per 100 students,68the cost decreases to
$901 per additional student from a poor high school.

The informational intervention, however, is not precisely targeted. Indeed it reaches every
student. It would presumably be more cost-e�ective with better targeting. Note, however, that
even holding admissions cuto�s �xed the intervention would have a smaller e�ect on �agship
attendance by students from poor high schools than would the scholarship expansion. In contrast,
expanding the Longhorn scholarship would increase �nancial aid expenditures at UT Austin by
$545 per 100 Texas high school students.69 Under an expansion of the Longhorn scholarship,
enrollment at UT Austin by students from poor high schools increases by 1.16 students per 100
such students, who represent 14.7% of the total population of SAT-taking high school seniors. As
a result, the �nancial aid expansion costs $2998 per additional student from a poor high school,
despite the more precise focus of the intervention.

7 Conclusions

I �nd that Texas Top Ten has large e�ects on the distribution of attendance at state �agship
universities and in particular at the University of Texas at Austin. It increases racial diversity
at the �agship universities and draws more students from relatively poor high schools. At the
same time, I do not �nd evidence that Texas Top Ten leads to mismatch of students and colleges.
Rather, Texas Top Ten results in a student body that achieves high grade point averages at �agship
universities. In its absence, GPAs at the �agship universities would decrease.

In contrast to Texas Top Ten, a race-based a�rmative action policy that awards admissions
�points� to minority applicants would attract relatively weak students. The policy would admit
more students from a�uent high schools and fewer with top high-school grades. These students
would achieve lower grades in the state �agship universities than those students admitted under
Texas Top Ten. My �ndings suggest that Texas Top Ten dominates a race-based a�rmative
action policy if the policymaker wants to increase diversity but avoid �undermatching� or admitting
students who will achieve low grades.

It is important to understand why Texas Top Ten enrolls better students at �agship univer-
sities while race-based a�rmative action would underperform. How can Texas Top Ten improve
outcomes if it acts as a constraint on colleges? I �nd two reasons. First, my estimates imply
admissions o�ces are not optimizing the academic quality of cohort as measured by early college

68Average aid expenditures are $50 dollars lower at UT Austin after the informational intervention. According
to my estimates, UT Austin enrolls 8.4 out of every 100 exam-taking Texas high school seniors.

69Average aid expenditures are $64 dollars higher at UT Austin after the aid expansion. UT Austin enrolls 9.4
out of every 100 exam-taking Texas high school seniors.
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grades. They overweight unobservables in admissions and underweight class rank relative to these
factors' respective importance for college GPA. Texas Top Ten forces colleges to admit students
with high class rank, who then achieve high college GPAs.

Additionally, the Texas Top Ten law is a credible promise. It may be valuable generally for
universities or university systems to commit to admissions policies that are not optimal conditional
on applications if these policies a�ect application decisions. I �nd that guaranteed admission leads
to large increases in applications to selective colleges among top-decile students, many of whom
have noisy information about their admissions chances. Because Texas Top Ten allows colleges
to commit to an admissions policy and publicizes this fact, it induces strong students with poor
information to apply to the state �agship universities.

With Texas Top Ten in place, I �nd that expanding the Longhorn scholarship has large e�ects
on enrollment at a cost of $60 per student at UT, or $3000 per additional student from a poor
high school. We would see larger e�ects on enrollment, but strategic response of colleges leads to
tougher admissions standards. That is, because capacity is limited at the �agship universities, their
admissions o�ces undo part of the e�ect of scholarship expansion. As a result, we may overestimate
the e�ects of large-scale interventions if we simply extrapolate from the e�ects of interventions on
small groups. My counterfactual explicitly assumes, however that selective colleges cannot increase
their capacity. In practice, UT Austin expanded rapidly after the introduction of Texas Top Ten
in 1998, but stopped expanding in the early 2000s. It would be an interesting extension to consider
universities' choice to expand when demand increases.

I �nd that an expansion of the Longhorn scholarship program to cover all schools with above
60% free/subsidized lunch status70 would enroll more more students from these poor high schools
than would a best-case informational intervention. A back-of-the-envelope cost comparison shows
that the best-case informational intervention achieves a lower cost per additional student from a
poor high school enrolled in a state �agship university than that of an expansion of the Longhorn
scholarship program. While providing information is roughly one third as expensive as per student
induced to enroll, however, the informational intervention is limited in its e�ects on the distribution
of state �agship university matriculation, while further scholarship expansions are possible. One
limitation of this comparison, however, is that it holds colleges' �nancial aid rules �xed for students
not targeted by the scholarship.

We have seen that expanding the Longhorn scholarship has a large e�ect on minority and �rst-
generation college enrollment when combined with a �nancial aid awareness intervention. The
e�ects on minority enrollment are similar in size to those of introducing Texas Top Ten. The
counterfactuals that I consider, however, hold the universities' �nancial aid rules �xed for students
not covered by the additional Longhorn scholarships. This assumption is reasonable if the funding
for the additional scholarships comes from an outside source, such as the state. Because the model
holds �nancial aid rules �xed, however, it does not allow the econometrician to talk about the

70That is, schools at which at least 60% of students have ever quali�ed for free or reduced-price lunch.
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design of �nancial aid packages. It is important to know the extent to which institutions respond
to an increase in one form of aid with reductions in other subsidies.

An important limitation of this paper is that I estimate colleges' preferences o� of applicants
who are not guaranteed admissions via Texas Top Ten. In practice, the University of Texas at
Austin uses a combination of predicted �rst-year grades and a personal score to evaluate applicants
who are not automatically admitted. In the absence of Texas Top Ten, the universities could place
greater weight on academic characteristics and less weight on personal characteristics. Indeed,
there is evidence that the University of California changed the relative weights on academic char-
acteristics after the end of a�rmative action.71 The model here rules out the kind of concern for
class composition that would lead admissions o�ces to change these weights.72 The a�rmative
policy that I consider is a minimal modi�cation of colleges' admissions rules to satisfy a racial
diversity constraint, taking colleges' preferences as given. I do not evaluate an a�rmative action
policy that seeks to maximize college GPAs subject to a diversity constraint.

Relatedly, I do not take a stand on what it is that admissions o�ces maximize. It would be
valuable to know whether colleges do a good job of admitting students who bene�t from their
educations, or go on to high achievement, but do not achieve high college grades.

An additional limitation of this paper is that it begins with SAT-taking high school seniors
and ends after the �rst years of college. The model ignores the e�ects of Texas Top Ten on the
environment within high schools and on which high school each student attends. The e�ects of
Texas Top Ten on students' incentives to achieve high grades may be especially important. In
this paper, I �nd that Texas Top Ten increases diversity in college and early college grades. To
fully assess the policy, however, it is important to understand how universities' admissions rules
a�ect the distribution of human capital, wages and employment. In related work, I am using the
administrative records of high school students and college students in Texas, together with wage
and unemployment data from the Texas Workforce Commission to measure the e�ects of Texas
Top Ten on the distribution of student achievement in high school and to trace the e�ects of these
changes in achievement through college and into the labor market.
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Table 3: Parameter Estimates: cuto�s, school-speci�c aid and utility terms

College Cuto� (π) (se) Utility (δ) (se) (αfinaid
j ) (se) Pr. Finaid (γfinaidB

j ) (se)

TX Public −2.418 (0.733) −0.279 (0.201) −0.35 (0.915) −0.322 (0.635)
Private Nonrelig. −0.401 (0.733) 0.431 (0.229) 1.813 (0.93) −0.574 (0.791)
Religious −1.161 (0.729) 0.278 (0.185) 1.086 (0.65) −0.984 (1.174)
Non-TX Public −1.359 (0.738) 0.655 (0.186) 2.025 (0.812) −0.661 (0.86)
Highly Selective 3.075 (0.765) 2.086 (0.228) 0.642 (0.723) 0.61 (1.083)
Baylor U. −1.007 (0.786) −0.368 (0.221) 0.022 (0.674) −1.009 (1.208)
U. Houston −2.113 (0.734) −0.663 (0.207) 0.706 (0.995) 0.077 (0.645)
U. North Texas −1.791 (0.744) −0.535 (0.206) 0.412 (0.637) 0.361 (0.856)
S.F. Austin State U. −2.405 (0.744) −0.728 (0.224) 2.378 (0.86) −1.208 (1.421)
SW Texas State U. −1.7 (0.755) −0.353 (0.226) 1.186 (0.761) −0.113 (0.607)
Texas A & M 0.045 (0.729) 0.234 (0.187) −0.26 (0.92) −0.072 (0.596)
U. Texas 0.598 (0.732) 1.221 (0.171) −0.396 (1.12) 0.169 (0.695)
Texas Tech U. −1.549 (0.747) 0.344 (0.192) 1.946 (0.921) −0.218 (0.601)

A Results tables

A.1 Parameter Estimates
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Table 4: Parameter Estimates: information and application costs

parameter estimate SE comment
σq (constant) −0.083 (0.18) variance of caliber
σq (HS poverty) 2.12 (0.293)
ρcorr.caliberandsignal (constant) 1.433 (0.439)
ρcorr.caliberandsignal (HS poverty) −0.918 (0.825)
γ (SAT ) 4.019 (0.424) admissions parameters
γ (classrank) −4.193 (0.281)
γ (SAT s) −0.49 (1.108)
c0 (constant) 0.154 (0.022) application �xed costs
c0 (HS poverty) −0.007 (0.032)
c1 (constant) 0.39 (0.007) application costs: per app
c1 (HS poverty) −0.03 (0.008)

Table 5: Parameter Estimates: �nancial aid

parameter estimate SE comment
γfinaidA (constant) 0.041 (0.229) �naid app. probability
γfinaidA (HS poverty) 0.606 (0.126)
γfinaidA (SAT ) 1.345 (0.305)
γscholA (constant) −1.2 (0.25) �naid app. probability if EFCi > pj
γscholA (HS poverty) 2.937 (0.184)
γscholA (SAT ) 1.067 (0.329)
γfinaidB (y) −1.52 (1.099) pr. receive �naid
γscholB (constant) −0.208 (0.593)
γscholB (SAT ) −1.473 (0.116)
γscholB (j) −0.979 (1.172)
σ (aware) 0.834 (0.032) covariance in �nancial-aid awareness indices
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Table 6: Parameter Estimates: preferences

parameter estimate SE comment
cm 0.279 (0.193) additional matriculation cost

β (τSAT ) 0.264 (0.157) mean utility terms

β (distance) −0.795 (0.055)

β
const

(price) 0.296 (0.075)

β
y

(price) 0.844 (0.235)

β (TAMU X White) 0.673 (0.1)

β (UTA X White) −0.239 (0.074)

β (distance X income) 0.029 (0.003)
σrc (τSAT ) 0.312 (0.265) random coe�cient variances
σrc (distance) 0.319 (0.025)
σrc (SAT ) 2.666 (0.232)
σrc (S/F ) 1.256 (0.221)
σ (ε0) 0.16 (0.027) sd of application-stage shocks
λ 0.363 (0.009) matric. stage correlation parameter
log(σ)UTATAMU −2.315 (1.295) RC: +1 for TAMU, -1 for UTA

Note: λ ≈ .363 implies that there is correlation in matriculation-time preference shocks to the �inside� colleges. (As λ → 0 the inside

options' shocks become perfectly correlated.)

Table 7: Parameter Estimates: college GPA and persistence

parameter estimate SE comment
βg (constant) 1.885 (1.987) college GPA parameters
βg (SAT ) 0.304 (2.313)
βg (classrank) −0.058 (1.914)
βg (y) 0.192 (0.12)
βg (q) −0.052 (0.539)
βg (UTA) −0.348 (1.816) GPA: UT Austin dummy
βg (SATxUTA) 0.832 (2.323) GPA: UT Austin x SAT
βg (LOSxUTA) 0.078 (0.294) GPA: UT Austin x LOS
log(σ) (GPA) 0.292 (0.641) GPA: standard deviation of shock
βpersist (cons) −0.649 (0.782) Persistence: constant
βpersist (gpa) 0.711 (0.496) Persistence: college GPA
βpersist (y) 0.281 (0.321) Persistence: income
βpersist (UTA) −0.057 (0.214) Persistence: UTA dummy
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Table 8: Admissions cuto�s π under benchmark and counterfactuals

College π (baseline) (no TTT) (LOS) (LOS+) (Info)
TX Public −2.418
Private Nonrelig. −0.401
Religious −1.161
Non-TX Public −1.359
Highly Selective 3.075
Baylor U. −1.007 −1.017 −1.003 −0.989 −0.725
U. Houston −2.113 −2.133 −2.117 −2.122 −2.275
U. North Texas −1.791
S.F. Austin State U. −2.405
SW Texas State U. −1.7
Texas A & M 0.045 −0.3 0.045 0.048 0.312
U. Texas 0.598 −0.054 0.701 0.733 0.938
Texas Tech U. −1.549 −1.621 −1.547 −1.547 −1.645

A.2 Counterfactuals

A.2.1 Admissions cuto�s
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Table 9: Admissions cuto�s π under benchmark and a�rmative action

college π (baseline) AA (majority) (Black) (Hispanic/Other)
TX Public −2.418
Private Nonrelig. −0.401
Religious −1.161
Non-TX Public −1.359
Highly Selective 3.075
Baylor U. −1.007 −1.011
U. Houston −2.113 −2.133
U. North Texas −1.791
S.F. Austin State U. −2.405
SW Texas State U. −1.7
Texas A & M 0.045 −0.274 −0.304 −0.481
U. Texas 0.598 0.043 −0.047 −0.343
Texas Tech U. −1.549 −1.618

A.2.2 Applications, admissions, matriculation
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Table 10: Main Results: Enrollment, Admissions, Applications

Matriculating students per 100 test-taking Texas high school seniors
College Benchmark AA NoTTT LOS LOS+ Info

TX Public 13.182 -0.7% -0.4% -0.2% -0.1% -3.1%
Private Nonrelig. 1.839 -0.1% -0.3% +0.0% +0.2% +14.2%
Religious 6.806 -1.4% -1.6% +0.5% +0.9% +11.0%
Non-TX Public 4.826 -0.2% -0.5% +0.3% +0.4% +5.3%
Highly Selective 0.507 -0.4% -0.4% -0.5% -0.5% +61.1%
Baylor U. 1.051
U. Houston 1.693
U. North Texas 1.499 -0.8% -1.0% +0.2% +0.1% -4.0%
S.F. Austin State U. 1.41 +1.3% +1.1% +0.1% +0.0% -9.0%
SW Texas State U. 2.171 -3.6% -3.4% +0.5% +0.4% -1.7%
Texas A & M 6.512
U. Texas 8.418
Texas Tech U. 2.851
Total 52.763 -0.5% -0.5% +0.1% +0.1% +1.8%

Population: all Texas public high school students

O�ers of admission per 100 test-taking Texas high school seniors
College Benchmark AA NoTTT LOS LOS+ Info

TX Public 28.486 +0.5% +0.7% -0.2% -0.1% -4.0%
Private Nonrelig. 5.659 +0.4% +0.3% -0.0% +0.1% +8.8%
Religious 16.008 -0.2% -0.3% +0.3% +0.6% +7.8%
Non-TX Public 12.017 +0.8% +0.5% +0.2% +0.2% +2.9%
Highly Selective 1.194 -0.3% -0.3% -0.3% -0.3% +46.2%
Baylor U. 4.855 +1.4% +1.5% -0.1% -0.2% -1.9%
U. Houston 6.469 +2.0% +1.9% -0.0% +0.1% -1.7%
U. North Texas 6.115 +0.8% +0.7% +0.0% +0.0% -3.2%
S.F. Austin State U. 6.213 +2.4% +2.3% +0.0% -0.0% -6.9%
SW Texas State U. 7.223 -0.3% -0.2% +0.1% +0.1% -2.4%
Texas A & M 12.246 +1.7% +1.6% -0.1% -0.0% -0.9%
U. Texas 14.191 +3.0% +3.2% -0.7% -1.0% -1.0%
Texas Tech U. 7.707 +1.3% +1.3% -0.0% -0.1% -0.6%
Total 128.382 +1.0% +1.1% -0.1% -0.0% +0.2%

Population: all Texas public high school students

Applications for admission per 100 test-taking Texas high school seniors
College Benchmark AA NoTTT LOS LOS+ Info

TX Public 30.556 +0.9% +1.1% -0.1% -0.1% -3.8%
Private Nonrelig. 6.627 +0.3% +0.2% -0.0% +0.1% +6.0%
Religious 17.393 -0.1% -0.2% +0.3% +0.6% +5.9%
Non-TX Public 13.097 +0.8% +0.6% +0.1% +0.2% +1.1%
Highly Selective 3.899 -0.8% -0.8% -0.1% -0.1% +14.2%
Baylor U. 5.444 +1.4% +1.4% -0.1% -0.1% -1.6%
U. Houston 6.875 +2.3% +2.3% -0.0% +0.1% -2.5%
U. North Texas 6.539 +1.3% +1.2% +0.0% +0.0% -4.0%
S.F. Austin State U. 6.605 +2.6% +2.5% +0.0% -0.0% -7.0%
SW Texas State U. 7.759 +0.3% +0.5% +0.1% +0.1% -3.6%
Texas A & M 13.854 +2.5% +2.4% -0.0% +0.0% -1.8%
U. Texas 16.303 +5.1% +5.1% -0.3% -0.4% -2.5%
Texas Tech U. 8.28 +1.8% +1.9% -0.0% -0.1% -2.1%
Total 143.229 +1.5% +1.5% -0.0% +0.0% -0.8%

Population: all Texas public high school students
Benchmark model-simulated outcomes vs. counterfactuals:
TTT: remove Texas Top Ten.
LOS: expand Longhorn Scholarship to cover all schools with >60% poverty.
LOS+: expand LOS and automatic �nancial aid apps, all schools with >60% poverty.
Info: automatic �nancial aid application and perfect signal of q, all students.
AA: race-based points system at �agship universities.
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Table 11: Black and Hispanic Students: Enrollment, Admissions, Applications

Matriculating students per 100 test-taking Texas high school seniors
College Benchmark AA NoTTT LOS LOS+ Info

TX Public 16.171 -1.3% +1.4% -1.0% -1.2% -4.7%
Private Nonrelig. 1.073 -1.0% +1.0% -1.3% -0.7% +17.7%
Religious 4.901 -3.9% +0.1% +0.3% +1.0% +15.2%
Non-TX Public 3.992 +0.1% +1.9% -0.3% -0.1% +10.5%
Highly Selective 0.318 -1.3% -0.9% -2.8% -2.7% +87.9%
Baylor U. 0.783 -1.0% +2.9% -0.9% -0.4% -0.1%
U. Houston 1.732 +0.1% +2.8% -1.1% -1.5% +0.2%
U. North Texas 1.036 -1.5% +0.9% -0.2% -0.8% -6.2%
S.F. Austin State U. 1.246 +2.6% +4.5% -0.2% -0.7% -12.6%
SW Texas State U. 2.24 -6.4% -1.5% -0.2% -1.0% -1.7%
Texas A & M 2.01 -2.7% -3.3% -3.6% +3.8%
U. Texas 10.716 -10.0% +4.1% +5.5% +5.3%
Texas Tech U. 2.073 -1.8% +1.3% -0.8% -1.4% +1.1%
Total 48.289 -1.2% -1.4% +0.3% +0.5% +2.7%

Population: underrepresented minority students only

O�ers of admission per 100 test-taking Texas high school seniors
College Benchmark AA NoTTT LOS LOS+ Info

TX Public 34.019 +0.3% +2.4% -0.8% -0.9% -5.4%
Private Nonrelig. 4.106 -0.1% +0.8% -0.6% -0.2% +11.1%
Religious 12.423 -1.4% +1.5% +0.1% +0.7% +11.0%
Non-TX Public 10.17 +1.3% +2.5% -0.2% -0.1% +7.0%
Highly Selective 0.924 -0.9% -0.9% -1.2% -1.1% +55.2%
Baylor U. 4.09 +1.4% +3.0% -0.4% -0.2% -1.4%
U. Houston 6.482 +2.5% +3.7% -0.5% -0.5% -1.5%
U. North Texas 5.093 +0.6% +1.5% -0.2% -0.3% -3.7%
S.F. Austin State U. 5.861 +3.8% +4.4% -0.1% -0.3% -9.0%
SW Texas State U. 7.279 -1.7% +0.8% -0.2% -0.6% -2.2%
Texas A & M 5.794 +2.4% -1.1% -1.7% -1.8% +1.7%
U. Texas 16.77 +2.8% -6.7% +2.8% +3.8% +4.1%
Texas Tech U. 6.473 +0.4% +2.0% -0.5% -0.8% +0.2%
Total 119.485 +0.9% +0.8% -0.0% +0.1% +0.8%

Population: underrepresented minority students only

Applications for admission per 100 test-taking Texas high school seniors
College Benchmark AA NoTTT LOS LOS+ Info

TX Public 37.9 +1.2% +3.1% -0.7% -0.7% -5.4%
Private Nonrelig. 5.252 -0.2% +0.6% -0.5% -0.2% +5.7%
Religious 14.206 -1.1% +1.7% +0.1% +0.7% +6.8%
Non-TX Public 11.669 +1.4% +2.6% -0.2% -0.1% +2.6%
Highly Selective 3.486 -1.6% -1.7% -0.6% -0.4% +14.1%
Baylor U. 4.914 +1.4% +2.8% -0.3% -0.0% -2.6%
U. Houston 7.173 +3.4% +4.5% -0.4% -0.5% -3.2%
U. North Texas 5.719 +1.9% +2.7% -0.1% -0.3% -5.5%
S.F. Austin State U. 6.53 +4.4% +4.9% -0.1% -0.3% -9.4%
SW Texas State U. 8.135 -0.2% +2.1% -0.2% -0.5% -4.7%
Texas A & M 7.139 +3.7% +1.6% -1.4% -1.4% -0.4%
U. Texas 19.43 +6.4% -1.3% +2.9% +4.0% +0.7%
Texas Tech U. 7.286 +1.8% +3.3% -0.4% -0.7% -2.7%
Total 138.839 +2.0% +2.1% +0.0% +0.2% -1.3%

Population: underrepresented minority students only
Benchmark model-simulated outcomes vs. counterfactuals:
TTT: remove Texas Top Ten.
LOS: expand Longhorn Scholarship to cover all schools with >60% poverty.
LOS+: expand LOS and automatic �nancial aid apps, all schools with >60% poverty.
Info: automatic �nancial aid application and perfect signal of q, all students.
AA: race-based points system at �agship universities.
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Table 12: Poor (>60% Free/Reduced Lunch) High Schools: Enrollment, Admissions, Applications

Matriculating students per 100 test-taking Texas high school seniors
College Benchmark AA NoTTT LOS LOS+ Info

TX Public 16.368 +3.1% +5.2% -2.9% -3.4% -6.8%
Private Nonrelig. 0.901 +4.0% +5.6% -4.7% -3.5% +22.1%
Religious 2.999 +7.6% +11.0% -2.4% -0.7% +16.1%
Non-TX Public 4.231 +5.7% +6.7% -1.4% -1.5% +16.3%
Highly Selective 0.369 -1.3% -0.9% -5.8% -5.8% +111.4%
Baylor U. 0.655 +8.9% +11.6% -4.9% -2.2% -1.2%
U. Houston 1.599 +6.0% +8.0% -4.2% -5.9% -3.3%
U. North Texas 0.776 +5.0% +6.8% -2.1% -4.1% -10.4%
S.F. Austin State U. 0.903 +12.3% +13.9% -1.4% -3.1% -18.4%
SW Texas State U. 1.697 +2.7% +6.3% -3.1% -6.2% -5.6%
Texas A & M 2.374 -11.5% -13.5% -11.2% -11.7% +6.9%
U. Texas 11.817 -20.4% -26.5% +12.7% +16.5% +10.2%
Texas Tech U. 1.467 +0.2% +2.7% -3.8% -6.6% -3.2%
Total 46.157 -2.9% -3.1% +0.7% +1.3% +3.5%

Population: students from poor (>60% poverty) high schools only

O�ers of admission per 100 test-taking Texas high school seniors
College Benchmark AA NoTTT LOS LOS+ Info

TX Public 34.867 +4.1% +5.8% -2.2% -2.4% -7.0%
Private Nonrelig. 3.95 +1.7% +2.3% -1.8% -1.1% +13.6%
Religious 9.131 +6.3% +8.4% -1.4% -0.1% +11.9%
Non-TX Public 10.557 +5.5% +6.2% -0.9% -0.9% +12.0%
Highly Selective 1.169 -1.2% -1.2% -2.3% -2.2% +65.1%
Baylor U. 3.832 +4.8% +5.9% -1.4% -0.3% -0.3%
U. Houston 6.243 +5.4% +6.2% -1.5% -2.1% -3.4%
U. North Texas 4.669 +2.1% +2.7% -0.6% -1.1% -4.6%
S.F. Austin State U. 5.228 +8.1% +8.5% -0.4% -0.9% -11.1%
SW Texas State U. 6.502 +1.9% +3.5% -1.4% -2.5% -3.5%
Texas A & M 6.513 -8.3% -10.7% -5.8% -5.9% +4.3%
U. Texas 18.649 -16.4% -22.4% +9.9% +12.8% +8.6%
Texas Tech U. 5.759 +0.3% +1.4% -1.5% -2.5% -1.8%
Total 117.067 +0.2% +0.1% +0.0% +0.4% +1.5%

Population: students from poor (>60% poverty) high schools only

Applications for admission per 100 test-taking Texas high school seniors
College Benchmark AA NoTTT LOS LOS+ Info

TX Public 39.031 +5.6% +7.2% -1.9% -2.1% -7.3%
Private Nonrelig. 5.17 +1.3% +1.9% -1.5% -0.8% +5.9%
Religious 10.818 +6.3% +8.3% -1.2% +0.1% +5.1%
Non-TX Public 12.368 +5.6% +6.2% -0.8% -0.8% +4.7%
Highly Selective 3.817 -2.6% -2.6% -1.2% -1.1% +18.0%
Baylor U. 4.736 +4.5% +5.4% -1.2% +0.1% -3.3%
U. Houston 6.991 +7.2% +7.9% -1.3% -1.8% -6.0%
U. North Texas 5.308 +4.9% +5.4% -0.6% -0.9% -7.5%
S.F. Austin State U. 5.909 +9.4% +9.8% -0.3% -0.7% -11.9%
SW Texas State U. 7.358 +4.6% +6.1% -1.2% -2.2% -7.3%
Texas A & M 7.793 -2.2% -3.8% -4.9% -4.8% +0.4%
U. Texas 21.068 -8.5% -13.6% +9.9% +13.0% +4.0%
Texas Tech U. 6.564 +3.5% +4.6% -1.3% -2.3% -5.8%
Total 136.931 +2.7% +2.7% +0.2% +0.6% -1.8%

Population: students from poor (>60% poverty) high schools only
Benchmark model-simulated outcomes vs. counterfactuals:
TTT: remove Texas Top Ten.
LOS: expand Longhorn Scholarship to cover all schools with >60% poverty.
LOS+: expand LOS and automatic �nancial aid apps, all schools with >60% poverty.
Info: automatic �nancial aid application and perfect signal of q, all students.
AA: race-based points system at �agship universities.

65



Table 13: A�uent High Schools: Enrollment, Admissions, Applications

Matriculating students per 100 test-taking Texas high school seniors
College Benchmark AA NoTTT LOS LOS+ Info

TX Public 13.165 -3.1% -3.6% +0.3% +0.5% -0.5%
Private Nonrelig. 1.8 -1.7% -2.3% +0.4% +0.6% +15.3%
Religious 9.205 -3.0% -3.6% +0.5% +0.7% +9.1%
Non-TX Public 5.476 -4.1% -5.0% +0.6% +0.9% +3.7%
Highly Selective 0.67 -0.1% -0.2% +0.1% +0.1% +44.1%
Baylor U. 1.263 -2.1% -2.5% +0.3% -0.1% +0.6%
U. Houston 1.709 -3.0% -3.5% +0.6% +0.9% +1.5%
U. North Texas 2.399 -2.5% -3.0% +0.3% +0.5% -2.3%
S.F. Austin State U. 1.504 -2.2% -2.7% +0.2% +0.3% -6.6%
SW Texas State U. 1.739 -4.0% -4.7% +0.5% +0.6% -1.9%
Texas A & M 7.897 +6.2% +6.6% +0.5% +0.5% -2.5%
U. Texas 6.02 +12.7% +16.6% -3.9% -5.0% -7.1%
Texas Tech U. 2.823 -1.2% -1.9% +0.5% +0.7% +0.1%
Total 55.668 +0.1% +0.1% -0.0% -0.0% +1.4%

Population: students from a�uent (<15% poverty) high schools only

O�ers of admission per 100 test-taking Texas high school seniors
College Benchmark AA NoTTT LOS LOS+ Info

TX Public 27.806 -1.9% -2.3% +0.2% +0.3% -1.5%
Private Nonrelig. 5.677 -0.5% -0.8% +0.2% +0.3% +8.4%
Religious 19.899 -1.9% -2.4% +0.4% +0.5% +6.5%
Non-TX Public 13.475 -2.2% -2.8% +0.4% +0.5% +1.8%
Highly Selective 1.348 -0.0% -0.1% +0.0% +0.0% +38.0%
Baylor U. 5.268 -0.1% -0.2% +0.0% -0.3% -2.0%
U. Houston 6.374 -0.2% -0.5% +0.2% +0.4% -0.5%
U. North Texas 7.733 -0.6% -0.9% +0.1% +0.2% -2.2%
S.F. Austin State U. 6.349 -0.2% -0.4% +0.1% +0.1% -4.8%
SW Texas State U. 6.403 -0.9% -1.3% +0.2% +0.2% -2.1%
Texas A & M 13.996 +7.2% +7.6% +0.4% +0.3% -3.3%
U. Texas 10.942 +14.7% +18.3% -3.8% -4.9% -7.2%
Texas Tech U. 7.42 +0.6% +0.2% +0.2% +0.3% -0.4%
Total 132.69 +1.0% +1.0% -0.1% -0.1% +0.1%

Population: students from a�uent (<15% poverty) high schools only

Applications for admission per 100 test-taking Texas high school seniors
College Benchmark AA NoTTT LOS LOS+ Info

TX Public 29.322 -1.9% -2.2% +0.2% +0.3% -1.3%
Private Nonrelig. 6.465 -0.5% -0.8% +0.2% +0.3% +6.9%
Religious 21.171 -1.9% -2.4% +0.3% +0.5% +5.7%
Non-TX Public 14.371 -2.2% -2.8% +0.4% +0.5% +1.1%
Highly Selective 4.193 -0.2% -0.2% +0.0% +0.0% +13.0%
Baylor U. 5.752 -0.1% -0.3% +0.1% -0.1% -0.8%
U. Houston 6.68 -0.2% -0.4% +0.2% +0.4% -0.9%
U. North Texas 8.137 -0.6% -0.9% +0.1% +0.2% -2.6%
S.F. Austin State U. 6.652 -0.2% -0.4% +0.1% +0.1% -4.8%
SW Texas State U. 6.782 -0.9% -1.2% +0.2% +0.2% -2.5%
Texas A & M 15.766 +6.2% +6.5% +0.4% +0.4% -3.3%
U. Texas 12.789 +12.5% +15.3% -3.1% -4.0% -6.5%
Texas Tech U. 7.872 +0.4% +0.1% +0.2% +0.3% -1.1%
Total 145.953 +0.8% +0.8% -0.0% -0.1% -0.2%

Population: students from a�uent (<15% poverty) high schools only
Benchmark model-simulated outcomes vs. counterfactuals:
TTT: remove Texas Top Ten.
LOS: expand Longhorn Scholarship to cover all schools with >60% poverty.
LOS+: expand LOS and automatic �nancial aid apps, all schools with >60% poverty.
Info: automatic �nancial aid application and perfect signal of q, all students.
AA: race-based points system at �agship universities.
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Table 14: Parents Without College Degrees: Enrollment, Admissions, Applications

Matriculating students per 100 test-taking Texas high school seniors
College Benchmark AA NoTTT LOS LOS+ Info

TX Public 14.493 -1.2% -0.4% -0.4% -0.4% -3.7%
Private Nonrelig. 1.394 -1.2% -1.1% -0.2% +0.1% +15.3%
Religious 5.612 -2.9% -2.5% +0.5% +1.0% +12.2%
Non-TX Public 4.064 -0.5% -0.5% +0.1% +0.3% +7.3%
Highly Selective 0.313 -0.8% -0.7% -1.2% -1.3% +75.9%
Baylor U. 0.934 -1.0% -0.4% -0.3% -0.2% -0.4%
U. Houston 1.787 -0.6% -0.3% -0.3% -0.3% +0.9%
U. North Texas 1.303 -1.3% -1.1% +0.1% -0.1% -4.4%
S.F. Austin State U. 1.362 +0.9% +1.0% +0.0% -0.2% -10.1%
SW Texas State U. 2.187 -4.9% -3.9% +0.3% -0.0% -1.5%
Texas A & M 4.98 +1.3% +1.1% -0.5% -0.5% +1.9%
U. Texas 8.225 +1.2% -1.2% +1.5% +2.0% +3.3%
Texas Tech U. 2.404 -1.0% -0.5% -0.1% -0.4% +0.9%
Total 49.06 -0.7% -0.8% +0.1% +0.3% +2.2%

Population: students without a parent w/ college degree

O�ers of admission per 100 test-taking Texas high school seniors
College Benchmark AA NoTTT LOS LOS+ Info

TX Public 31.002 +0.2% +0.7% -0.3% -0.3% -4.5%
Private Nonrelig. 4.821 -0.3% -0.3% -0.1% +0.1% +9.4%
Religious 13.89 -1.1% -0.7% +0.3% +0.7% +8.6%
Non-TX Public 10.56 +0.6% +0.6% +0.1% +0.2% +4.4%
Highly Selective 0.879 -0.5% -0.6% -0.6% -0.5% +49.1%
Baylor U. 4.518 +1.0% +1.4% -0.2% -0.2% -2.1%
U. Houston 6.625 +1.7% +1.8% -0.1% -0.1% -1.2%
U. North Texas 5.698 +0.5% +0.5% -0.0% -0.1% -3.2%
S.F. Austin State U. 6.115 +2.3% +2.3% -0.0% -0.1% -7.4%
SW Texas State U. 7.233 -1.1% -0.6% +0.0% -0.1% -2.3%
Texas A & M 10.0 +2.6% +2.1% -0.4% -0.4% +0.5%
U. Texas 13.722 +4.1% +2.1% +0.4% +0.6% +1.8%
Texas Tech U. 7.026 +0.7% +1.0% -0.1% -0.3% -0.0%
Total 122.088 +0.9% +0.9% -0.1% +0.0% +0.4%

Population: students without a parent w/ college degree

Applications for admission per 100 test-taking Texas high school seniors
College Benchmark AA NoTTT LOS LOS+ Info

TX Public 33.726 +0.8% +1.3% -0.3% -0.3% -4.4%
Private Nonrelig. 5.873 -0.3% -0.3% -0.1% +0.1% +5.7%
Religious 15.46 -0.9% -0.5% +0.3% +0.6% +5.8%
Non-TX Public 11.786 +0.7% +0.8% +0.0% +0.2% +1.5%
Highly Selective 3.425 -1.0% -1.1% -0.2% -0.2% +12.6%
Baylor U. 5.227 +1.0% +1.3% -0.1% -0.1% -2.3%
U. Houston 7.148 +2.2% +2.4% -0.1% -0.0% -2.5%
U. North Texas 6.216 +1.3% +1.3% -0.0% -0.0% -4.4%
S.F. Austin State U. 6.608 +2.7% +2.8% -0.0% -0.1% -7.7%
SW Texas State U. 7.903 -0.1% +0.4% +0.1% -0.1% -4.0%
Texas A & M 11.707 +3.4% +3.0% -0.3% -0.2% -1.0%
U. Texas 16.131 +6.5% +4.9% +0.7% +1.1% -0.9%
Texas Tech U. 7.701 +1.5% +1.8% -0.1% -0.2% -2.1%
Total 138.913 +1.6% +1.6% +0.0% +0.1% -1.0%

Population: students without a parent w/ college degree
Benchmark model-simulated outcomes vs. counterfactuals:
TTT: remove Texas Top Ten.
LOS: expand Longhorn Scholarship to cover all schools with >60% poverty.
LOS+: expand LOS and automatic �nancial aid apps, all schools with >60% poverty.
Info: automatic �nancial aid application and perfect signal of q, all students.
AA: race-based points system at �agship universities.
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Table 15: Top-Decile Students: Enrollment, Admissions, Applications

Matriculating students per 100 test-taking Texas high school seniors
College Benchmark AA NoTTT LOS LOS+ Info

TX Public 8.254 +25.2% +25.9% -2.3% -2.7% -2.2%
Private Nonrelig. 2.166 +9.8% +9.7% -0.7% -0.6% +8.7%
Religious 5.85 +22.0% +21.9% -0.5% -0.5% +5.9%
Non-TX Public 4.287 +18.7% +18.5% -0.5% -0.5% +4.6%
Highly Selective 1.112 +0.1% +0.1% -0.6% -0.6% +53.4%
Baylor U. 0.896 +24.9% +24.9% -1.2% -1.3% +4.9%
U. Houston 0.977 +30.8% +31.0% -2.7% -3.4% -3.7%
U. North Texas 1.065 +17.6% +17.4% -0.7% -1.1% -3.3%
S.F. Austin State U. 0.757 +33.9% +33.9% -0.9% -1.3% -4.0%
SW Texas State U. 1.372 +30.1% +30.8% -1.6% -2.5% -3.3%
Texas A & M 10.191 -17.8% -18.0% -1.0% -1.1% -1.1%
U. Texas 17.401 -32.3% -32.6% +3.2% +4.0% -1.8%
Texas Tech U. 2.495 +9.2% +9.2% -0.9% -1.3% -5.3%
Total 56.821 -2.6% -2.6% +0.2% +0.3% +0.9%

Population: students in top decile of HS class

O�ers of admission per 100 test-taking Texas high school seniors
College Benchmark AA NoTTT LOS LOS+ Info

TX Public 19.639 +21.0% +21.5% -1.6% -1.9% -1.8%
Private Nonrelig. 6.622 +6.8% +6.7% -0.4% -0.3% +5.0%
Religious 14.634 +17.4% +17.4% -0.4% -0.4% +4.5%
Non-TX Public 11.177 +14.8% +14.6% -0.4% -0.3% +3.1%
Highly Selective 2.498 -0.4% -0.4% -0.3% -0.3% +41.9%
Baylor U. 4.824 +12.5% +12.6% -0.4% -0.4% +1.5%
U. Houston 5.089 +15.6% +15.6% -0.9% -1.1% -1.8%
U. North Texas 5.354 +9.6% +9.5% -0.3% -0.5% -1.7%
S.F. Austin State U. 4.728 +16.4% +16.4% -0.3% -0.4% -1.9%
SW Texas State U. 5.96 +15.0% +15.2% -0.7% -1.1% -1.8%
Texas A & M 18.511 -14.8% -15.0% -0.8% -0.9% -1.0%
U. Texas 27.79 -27.9% -28.1% +2.5% +3.2% -1.6%
Texas Tech U. 7.333 +6.8% +6.9% -0.5% -0.7% -3.4%
Total 134.158 +1.8% +1.8% -0.1% -0.0% +0.6%

Population: students in top decile of HS class

Applications for admission per 100 test-taking Texas high school seniors
College Benchmark AA NoTTT LOS LOS+ Info

TX Public 19.655 +23.7% +24.2% -1.6% -1.9% -1.8%
Private Nonrelig. 7.07 +7.0% +6.8% -0.4% -0.3% +3.8%
Religious 14.998 +18.3% +18.3% -0.4% -0.4% +3.7%
Non-TX Public 11.5 +15.5% +15.4% -0.4% -0.3% +2.0%
Highly Selective 5.571 -1.7% -1.8% -0.2% -0.2% +17.8%
Baylor U. 5.018 +13.0% +13.0% -0.4% -0.4% +1.8%
U. Houston 5.091 +17.8% +17.9% -0.9% -1.1% -1.8%
U. North Texas 5.356 +12.0% +11.9% -0.3% -0.5% -1.8%
S.F. Austin State U. 4.73 +18.3% +18.3% -0.3% -0.4% -1.9%
SW Texas State U. 5.964 +18.1% +18.4% -0.7% -1.1% -1.8%
Texas A & M 18.536 -9.8% -10.0% -0.8% -0.9% -1.0%
U. Texas 27.823 -22.0% -22.2% +2.5% +3.2% -1.6%
Texas Tech U. 7.338 +9.6% +9.7% -0.5% -0.7% -3.4%
Total 138.651 +4.7% +4.7% -0.1% -0.0% +0.4%

Population: students in top decile of HS class
Benchmark model-simulated outcomes vs. counterfactuals:
TTT: remove Texas Top Ten.
LOS: expand Longhorn Scholarship to cover all schools with >60% poverty.
LOS+: expand LOS and automatic �nancial aid apps, all schools with >60% poverty.
Info: automatic �nancial aid application and perfect signal of q, all students.
AA: race-based points system at �agship universities.
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Table 16: Minorities from A�uent High Schools: Enrollment, Admissions, Applications

Matriculating students per 100 test-taking Texas high school seniors
College Benchmark AA NoTTT LOS LOS+ Info

TX Public 15.751 -6.6% -4.7% +0.5% +0.7% -0.2%
Private Nonrelig. 1.24 -7.6% -5.2% +0.9% +1.2% +18.7%
Religious 9.06 -8.9% -6.2% +1.0% +1.3% +12.2%
Non-TX Public 5.346 -11.0% -7.8% +1.2% +1.6% +3.7%
Highly Selective 0.488 -1.0% -0.8% +0.3% +0.4% +48.7%
Baylor U. 1.2 -8.1% -5.1% +0.7% +0.4% -0.1%
U. Houston 2.379 -6.8% -4.2% +0.9% +1.3% +4.9%
U. North Texas 2.164 -6.8% -4.9% +0.7% +0.9% -3.0%
S.F. Austin State U. 1.783 -5.0% -3.5% +0.4% +0.5% -8.0%
SW Texas State U. 1.951 -9.1% -6.3% +0.8% +1.1% -1.1%
Texas A & M 2.751 +13.2% +9.2% +1.2% +1.4% -2.7%
U. Texas 7.24 +44.2% +30.3% -5.4% -7.0% -10.0%
Texas Tech U. 2.729 -6.2% -3.2% +0.9% +1.2% +2.1%
Total 54.082 +0.4% +0.2% -0.0% -0.0% +1.6%

Population: underrepresented minority students from a�uent high schools

O�ers of admission per 100 test-taking Texas high school seniors
College Benchmark AA NoTTT LOS LOS+ Info

TX Public 31.892 -4.8% -3.3% +0.4% +0.5% -1.5%
Private Nonrelig. 4.46 -3.3% -2.0% +0.4% +0.5% +9.0%
Religious 19.15 -6.5% -4.3% +0.7% +0.9% +8.8%
Non-TX Public 12.885 -7.0% -4.8% +0.7% +0.9% +1.7%
Highly Selective 0.929 -0.4% -0.4% +0.1% +0.2% +43.9%
Baylor U. 4.833 -2.9% -1.3% +0.1% -0.2% -3.0%
U. Houston 7.412 -2.5% -1.1% +0.4% +0.6% +1.9%
U. North Texas 6.986 -2.8% -1.8% +0.2% +0.3% -2.5%
S.F. Austin State U. 6.803 -1.7% -0.9% +0.1% +0.1% -5.9%
SW Texas State U. 6.554 -3.7% -2.2% +0.3% +0.4% -1.8%
Texas A & M 6.616 +14.1% +10.4% +0.7% +0.8% -4.2%
U. Texas 11.871 +42.4% +30.2% -5.2% -6.8% -10.0%
Texas Tech U. 6.965 -2.1% -0.3% +0.4% +0.5% +0.9%
Total 127.355 +0.9% +0.9% -0.1% -0.1% +0.1%

Population: underrepresented minority students from a�uent high schools

Applications for admission per 100 test-taking Texas high school seniors
College Benchmark AA NoTTT LOS LOS+ Info

TX Public 36.02 -4.3% -3.0% +0.3% +0.4% -1.5%
Private Nonrelig. 5.388 -3.1% -1.9% +0.3% +0.5% +7.1%
Religious 20.867 -6.2% -4.2% +0.6% +0.8% +7.6%
Non-TX Public 14.173 -6.7% -4.5% +0.7% +0.9% +0.8%
Highly Selective 3.703 -0.3% -0.4% +0.1% +0.1% +12.3%
Baylor U. 5.53 -2.6% -1.3% +0.2% -0.1% -2.0%
U. Houston 8.1 -2.2% -0.9% +0.4% +0.6% +1.4%
U. North Texas 7.717 -2.6% -1.6% +0.2% +0.3% -3.1%
S.F. Austin State U. 7.593 -1.6% -0.9% +0.1% +0.1% -6.1%
SW Texas State U. 7.254 -3.4% -2.0% +0.3% +0.4% -2.5%
Texas A & M 8.093 +9.6% +7.3% +0.6% +0.7% -3.3%
U. Texas 14.47 +33.6% +24.4% -4.1% -5.4% -9.4%
Texas Tech U. 7.711 -1.9% -0.3% +0.3% +0.5% -0.2%
Total 146.619 +0.4% +0.6% -0.1% -0.1% -0.3%

Population: underrepresented minority students from a�uent high schools
Benchmark model-simulated outcomes vs. counterfactuals:
TTT: remove Texas Top Ten.
LOS: expand Longhorn Scholarship to cover all schools with >60% poverty.
LOS+: expand LOS and automatic �nancial aid apps, all schools with >60% poverty.
Info: automatic �nancial aid application and perfect signal of q, all students.
AA: race-based points system at �agship universities.
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Table 17: Top-Decile Minority Students: Enrollment, Admissions, Applications

Matriculating students per 100 test-taking Texas high school seniors
College Benchmark AA NoTTT LOS LOS+ Info

TX Public 10.641 +29.9% +34.3% -5.9% -7.2% -4.2%
Private Nonrelig. 1.221 +14.3% +16.6% -3.9% -3.3% +13.4%
Religious 3.754 +35.4% +41.6% -2.4% -2.7% +11.9%
Non-TX Public 3.917 +20.6% +22.7% -1.9% -1.6% +12.9%
Highly Selective 0.669 -0.0% +0.3% -3.1% -3.0% +75.7%
Baylor U. 0.616 +38.7% +44.6% -5.0% -4.9% +7.5%
U. Houston 1.031 +36.3% +41.3% -8.0% -10.0% -4.0%
U. North Texas 0.701 +27.3% +31.2% -3.1% -5.6% -6.5%
S.F. Austin State U. 0.561 +59.5% +64.2% -3.9% -5.6% -5.7%
SW Texas State U. 1.495 +34.2% +42.0% -5.0% -7.5% -3.9%
Texas A & M 3.157 -21.5% -22.9% -7.7% -8.9% -1.7%
U. Texas 25.038 -37.9% -42.8% +6.9% +8.8% -1.6%
Texas Tech U. 1.815 +9.3% +13.2% -3.8% -5.4% -6.5%
Total 54.619 -5.2% -5.5% +0.6% +1.0% +0.9%

Population: underrepresented minority students in top decile of HS class

O�ers of admission per 100 test-taking Texas high school seniors
College Benchmark AA NoTTT LOS LOS+ Info

TX Public 24.448 +25.9% +29.2% -4.4% -5.3% -3.5%
Private Nonrelig. 4.921 +6.8% +7.9% -1.7% -1.4% +7.4%
Religious 10.932 +25.1% +29.1% -1.6% -1.7% +8.5%
Non-TX Public 10.321 +16.8% +18.3% -1.2% -1.0% +9.0%
Highly Selective 1.849 -1.2% -1.2% -1.4% -1.2% +48.6%
Baylor U. 4.19 +15.2% +17.3% -1.4% -1.3% +2.1%
U. Houston 5.334 +18.2% +20.0% -2.7% -3.3% -2.2%
U. North Texas 4.752 +9.6% +10.9% -1.0% -1.7% -2.9%
S.F. Austin State U. 4.436 +23.4% +24.6% -1.1% -1.5% -2.6%
SW Texas State U. 6.441 +15.5% +18.8% -2.2% -3.2% -2.4%
Texas A & M 9.113 -18.6% -20.2% -4.1% -4.6% -1.6%
U. Texas 37.553 -34.7% -39.4% +5.8% +7.4% -1.6%
Texas Tech U. 6.571 +4.5% +6.5% -1.8% -2.5% -4.6%
Total 130.86 +0.6% +0.8% -0.2% -0.1% +0.6%

Population: underrepresented minority students in top decile of HS class

Applications for admission per 100 test-taking Texas high school seniors
College Benchmark AA NoTTT LOS LOS+ Info

TX Public 24.497 +31.9% +35.3% -4.4% -5.3% -3.5%
Private Nonrelig. 5.572 +6.7% +7.8% -1.6% -1.3% +4.7%
Religious 11.562 +26.8% +30.8% -1.6% -1.8% +6.3%
Non-TX Public 11.002 +18.0% +19.5% -1.2% -1.0% +6.0%
Highly Selective 4.708 -3.8% -3.9% -0.8% -0.7% +18.3%
Baylor U. 4.563 +15.7% +17.7% -1.4% -1.1% +1.9%
U. Houston 5.34 +23.5% +25.4% -2.7% -3.3% -2.2%
U. North Texas 4.759 +15.8% +17.1% -1.0% -1.7% -2.9%
S.F. Austin State U. 4.441 +28.6% +29.8% -1.1% -1.5% -2.6%
SW Texas State U. 6.45 +22.2% +25.7% -2.2% -3.2% -2.5%
Texas A & M 9.134 -8.8% -9.6% -4.1% -4.6% -1.6%
U. Texas 37.6 -27.5% -31.6% +5.8% +7.4% -1.7%
Texas Tech U. 6.583 +10.7% +12.7% -1.8% -2.5% -4.6%
Total 136.21 +5.9% +6.3% -0.2% -0.1% +0.1%

Population: underrepresented minority students in top decile of HS class
Benchmark model-simulated outcomes vs. counterfactuals:
TTT: remove Texas Top Ten.
LOS: expand Longhorn Scholarship to cover all schools with >60% poverty.
LOS+: expand LOS and automatic �nancial aid apps, all schools with >60% poverty.
Info: automatic �nancial aid application and perfect signal of q, all students.
AA: race-based points system at �agship universities.
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Table 18: Minority Students from Poor High Schools: Enrollment, Admissions, Applications

Matriculating students per 100 test-taking Texas high school seniors
College Benchmark AA NoTTT LOS LOS+ Info

TX Public 16.898 +2.0% +4.7% -2.8% -3.4% -6.7%
Private Nonrelig. 0.8 +3.1% +5.6% -5.0% -3.7% +22.9%
Religious 2.982 +4.6% +9.2% -2.2% -0.5% +16.6%
Non-TX Public 4.159 +4.9% +6.3% -1.4% -1.4% +16.9%
Highly Selective 0.337 -1.6% -1.0% -6.1% -6.0% +113.3%
Baylor U. 0.579 +8.9% +13.1% -4.3% -1.8% -0.8%
U. Houston 1.546 +5.0% +7.8% -4.2% -5.9% -3.3%
U. North Texas 0.756 +4.3% +6.9% -1.9% -4.0% -10.7%
S.F. Austin State U. 0.885 +11.5% +13.7% -1.4% -3.1% -18.5%
SW Texas State U. 1.678 +0.6% +5.3% -3.1% -6.3% -5.6%
Texas A & M 1.732 -9.4% -12.8% -10.5% -11.7% +6.3%
U. Texas 11.645 -17.8% -26.0% +12.0% +16.0% +11.5%
Texas Tech U. 1.431 -0.5% +2.9% -3.7% -6.4% -2.9%
Total 45.428 -2.8% -3.0% +0.7% +1.3% +3.6%

Population: minority students from poor (>60% poverty) high schools

O�ers of admission per 100 test-taking Texas high school seniors
College Benchmark AA NoTTT LOS LOS+ Info

TX Public 35.772 +3.2% +5.3% -2.2% -2.5% -6.9%
Private Nonrelig. 3.748 +1.2% +2.2% -1.8% -1.1% +13.7%
Religious 9.046 +4.4% +7.3% -1.3% +0.0% +12.4%
Non-TX Public 10.373 +4.8% +5.8% -0.9% -0.8% +12.5%
Highly Selective 1.101 -1.3% -1.3% -2.4% -2.2% +64.6%
Baylor U. 3.655 +4.5% +5.9% -1.1% -0.1% +0.0%
U. Houston 6.123 +4.9% +6.0% -1.5% -2.0% -3.2%
U. North Texas 4.589 +1.8% +2.6% -0.6% -1.1% -4.5%
S.F. Austin State U. 5.168 +7.8% +8.3% -0.4% -0.9% -11.1%
SW Texas State U. 6.437 +0.9% +3.0% -1.4% -2.6% -3.3%
Texas A & M 5.527 -6.4% -10.0% -5.0% -5.2% +4.1%
U. Texas 18.333 -13.9% -21.9% +9.3% +12.4% +9.7%
Texas Tech U. 5.646 -0.0% +1.5% -1.5% -2.4% -1.4%
Total 115.518 +0.1% +0.0% +0.0% +0.4% +1.6%

Population: minority students from poor (>60% poverty) high schools

Applications for admission per 100 test-taking Texas high school seniors
College Benchmark AA NoTTT LOS LOS+ Info

TX Public 40.233 +4.7% +6.7% -1.9% -2.1% -7.3%
Private Nonrelig. 4.97 +0.9% +1.7% -1.5% -0.8% +5.6%
Religious 10.797 +4.6% +7.3% -1.1% +0.2% +5.3%
Non-TX Public 12.222 +4.9% +5.8% -0.8% -0.7% +4.9%
Highly Selective 3.724 -2.5% -2.6% -1.2% -1.0% +17.3%
Baylor U. 4.566 +4.2% +5.5% -0.9% +0.2% -3.2%
U. Houston 6.898 +6.6% +7.6% -1.3% -1.7% -6.0%
U. North Texas 5.253 +4.5% +5.3% -0.5% -0.9% -7.5%
S.F. Austin State U. 5.882 +9.0% +9.5% -0.3% -0.7% -11.9%
SW Texas State U. 7.337 +3.6% +5.6% -1.2% -2.3% -7.4%
Texas A & M 6.765 -0.7% -2.8% -4.1% -4.1% +0.1%
U. Texas 20.858 -6.3% -13.0% +9.3% +12.6% +4.7%
Texas Tech U. 6.48 +3.2% +4.6% -1.3% -2.2% -5.7%
Total 135.987 +2.5% +2.6% +0.2% +0.6% -1.8%

Population: minority students from poor (>60% poverty) high schools
Benchmark model-simulated outcomes vs. counterfactuals:
TTT: remove Texas Top Ten.
LOS: expand Longhorn Scholarship to cover all schools with >60% poverty.
LOS+: expand LOS and automatic �nancial aid apps, all schools with >60% poverty.
Info: automatic �nancial aid application and perfect signal of q, all students.
AA: race-based points system at �agship universities.
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Table 19: Non-URM students: Enrollment, Admissions, Applications

Matriculating students per 100 test-taking Texas high school seniors
College Benchmark AA NoTTT LOS LOS+ Info

TX Public 12.051 -0.3% -1.3% +0.3% +0.4% -2.3%
Private Nonrelig. 2.129 +0.1% -0.6% +0.3% +0.4% +13.5%
Religious 7.527 -0.8% -2.1% +0.6% +0.8% +10.0%
Non-TX Public 5.142 -0.2% -1.3% +0.4% +0.6% +3.8%
Highly Selective 0.578 -0.2% -0.3% -0.1% -0.1% +55.5%
Baylor U. 1.152 +0.3% -0.7% +0.2% -0.0% +0.3%
U. Houston 1.678 -0.0% -1.2% +0.4% +0.7% -0.0%
U. North Texas 1.674 -0.6% -1.5% +0.3% +0.4% -3.5%
S.F. Austin State U. 1.471 +0.9% +0.1% +0.2% +0.3% -7.9%
SW Texas State U. 2.144 -2.5% -4.1% +0.7% +0.9% -1.7%
Texas A & M 8.214 -0.0% +0.3% +0.3% +0.3% -0.3%
U. Texas 7.549 -0.0% +5.3% -2.2% -3.0% -2.9%
Texas Tech U. 3.146 +0.5% -0.4% +0.3% +0.4% -0.3%
Total 54.455 -0.3% -0.2% -0.0% +0.0% +1.5%

Population: all non-URM students

O�ers of admission per 100 test-taking Texas high school seniors
College Benchmark AA NoTTT LOS LOS+ Info

TX Public 26.394 +0.6% -0.1% +0.2% +0.3% -3.3%
Private Nonrelig. 6.246 +0.6% +0.1% +0.1% +0.2% +8.3%
Religious 17.364 +0.1% -0.8% +0.4% +0.6% +6.9%
Non-TX Public 12.716 +0.6% -0.1% +0.2% +0.3% +1.7%
Highly Selective 1.296 -0.2% -0.2% -0.1% -0.1% +43.7%
Baylor U. 5.145 +1.4% +1.1% +0.0% -0.2% -2.0%
U. Houston 6.464 +1.8% +1.3% +0.2% +0.3% -1.8%
U. North Texas 6.501 +0.8% +0.4% +0.1% +0.1% -3.0%
S.F. Austin State U. 6.346 +1.9% +1.6% +0.1% +0.1% -6.1%
SW Texas State U. 7.202 +0.2% -0.6% +0.3% +0.3% -2.5%
Texas A & M 14.686 +1.6% +2.0% +0.2% +0.2% -1.3%
U. Texas 13.216 +3.2% +8.0% -2.4% -3.2% -3.4%
Texas Tech U. 8.173 +1.6% +1.1% +0.1% +0.1% -0.9%
Total 131.747 +1.1% +1.1% -0.1% -0.1% -0.0%

Population: all non-URM students

Applications for admission per 100 test-taking Texas high school seniors
College Benchmark AA NoTTT LOS LOS+ Info

TX Public 27.779 +0.8% +0.1% +0.2% +0.2% -2.9%
Private Nonrelig. 7.147 +0.5% +0.1% +0.1% +0.2% +6.2%
Religious 18.598 +0.1% -0.8% +0.4% +0.5% +5.6%
Non-TX Public 13.637 +0.7% -0.0% +0.2% +0.3% +0.6%
Highly Selective 4.055 -0.5% -0.5% -0.0% -0.0% +14.2%
Baylor U. 5.644 +1.4% +1.0% +0.0% -0.1% -1.3%
U. Houston 6.762 +1.9% +1.4% +0.2% +0.3% -2.3%
U. North Texas 6.848 +1.1% +0.7% +0.1% +0.1% -3.5%
S.F. Austin State U. 6.634 +2.0% +1.7% +0.1% +0.1% -6.1%
SW Texas State U. 7.617 +0.6% -0.2% +0.2% +0.3% -3.2%
Texas A & M 16.393 +2.3% +2.5% +0.2% +0.3% -2.0%
U. Texas 15.12 +4.4% +8.3% -1.9% -2.6% -4.0%
Texas Tech U. 8.655 +1.8% +1.4% +0.1% +0.1% -1.8%
Total 144.889 +1.4% +1.3% -0.0% -0.0% -0.6%

Population: all non-URM students
Benchmark model-simulated outcomes vs. counterfactuals:
TTT: remove Texas Top Ten.
LOS: expand Longhorn Scholarship to cover all schools with >60% poverty.
LOS+: expand LOS and automatic �nancial aid apps, all schools with >60% poverty.
Info: automatic �nancial aid application and perfect signal of q, all students.
AA: race-based points system at �agship universities.
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A.2.3 Grades and persistence
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Table 20: Predicted College GPA at Flagship Universities

Mean GPA at �agship universities: all matriculating students
College GPA (benchmark) NoTTT LOS LOS+ Info AA
Texas A & M 3.064 3.059 3.065 3.065 3.047 3.058
U. Texas 2.812 2.792 2.806 2.802 2.783 2.781

underrepresented minority students
College GPA (benchmark) NoTTT LOS LOS+ Info AA
Texas A & M 2.916 2.903 2.921 2.922 2.895 2.9
U. Texas 2.693 2.647 2.686 2.677 2.658 2.638

Population: all non-URM students
College GPA (benchmark) NoTTT LOS LOS+ Info AA
Texas A & M 3.078 3.073 3.078 3.078 3.061 3.072
U. Texas 2.876 2.858 2.875 2.874 2.856 2.858

students from a�uent (<15% poverty) high schools only
College GPA (benchmark) NoTTT LOS LOS+ Info AA
Texas A & M 3.148 3.142 3.148 3.148 3.132 3.142
U. Texas 2.989 2.974 2.991 2.992 2.974 2.973

Population: students from poor (>60% poverty) high schools only
College GPA (benchmark) NoTTT LOS LOS+ Info AA
Texas A & M 2.866 2.829 2.874 2.873 2.843 2.828
U. Texas 2.626 2.553 2.618 2.606 2.59 2.546

students in top decile of HS class
College GPA (benchmark) NoTTT LOS LOS+ Info AA
Texas A & M 3.102 3.094 3.104 3.104 3.092 3.094
U. Texas 2.854 2.846 2.846 2.843 2.84 2.84

Population: underrepresented minority students outside of top decile of HS class
College GPA (benchmark) NoTTT LOS LOS+ Info AA
Texas A & M 2.851 2.859 2.854 2.853 2.826 2.856
U. Texas 2.571 2.589 2.557 2.54 2.52 2.58

underrepresented minority students in top decile of HS class
College GPA (benchmark) NoTTT LOS LOS+ Info AA
Texas A & M 2.993 2.98 3.007 3.013 2.985 2.979
U. Texas 2.75 2.722 2.741 2.735 2.738 2.718

Benchmark model-simulated outcomes vs. counterfactuals:

TTT: remove Texas Top Ten.

LOS: expand Longhorn Scholarship to cover all schools with >60% poverty.

LOS+: expand LOS and automatic �nancial aid apps, all schools with >60% poverty.

Info: automatic �nancial aid application and perfect signal of q, all students.

AA: race-based points system at �agship universities.
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Table 21: Per-capita �nancial aid amounts, benchmark and counterfactuals

College avg. aid (no TTT) (LOS) (LOS+) (Info) (AA)

TX Public 8341.826 8343.309 8344.416 8345.053 8313.355 8347.501
Private Nonrelig. 22429.479 22457.069 22442.959 22445.235 22519.586 22459.081
Religious 14766.001 14791.953 14763.623 14766.691 14863.74 14805.045
Non-TX Public 10766.889 10748.352 10770.288 10777.2 10786.218 10757.09
Highly Selective 28162.47 28160.024 28179.588 28187.677 28166.382 28161.275
Baylor U. 17329.87 17332.692 17336.024 17330.501 17319.186 17341.343
U. Houston 7604.748 7623.699 7611.932 7615.183 7573.803 7628.911
U. North Texas 8711.911 8710.908 8712.345 8713.943 8650.08 8714.605
S.F. Austin State U. 4612.895 4614.643 4612.438 4615.932 4598.378 4617.96
SW Texas State U. 6886.117 6906.127 6885.156 6891.906 6854.994 6922.7
Texas A & M 10976.281 10974.904 10978.665 10979.624 10929.192 10972.609
U. Texas 10785.325 10765.197 10850.123 10848.891 10735.545 10749.462
Texas Tech U. 7344.602 7344.985 7348.081 7352.813 7293.465 7355.098

Aid expenditure per matriculating student in 2002 dollars.

Benchmark model-simulated outcomes vs. counterfactuals:

TTT: remove Texas Top Ten.

LOS: expand Longhorn Scholarship to cover all schools with >60% poverty.

LOS+: LOS and automatic �nancial aid apps, all schools with >60% poverty.

Info: automatic �nancial aid application and perfect signal of q.

AA: race-based points system at �agship universities.

A.2.4 Financial Aid
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Table 22: SAT score quantiles, benchmark vs. no Texas Top Ten

college 10th (-TTT) 25th (-TTT) 75th (-TTT) 90th (-TTT)

TX Public 0.519 0.519 0.569 0.569 0.719 0.719 0.781 0.788
Private Nonrelig. 0.569 0.569 0.631 0.638 0.775 0.775 0.825 0.825
Religious 0.569 0.569 0.625 0.625 0.769 0.769 0.825 0.825
Non-TX Public 0.55 0.55 0.619 0.619 0.75 0.756 0.813 0.813
Highly Selective 0.625 0.625 0.694 0.694 0.85 0.85 0.913 0.913
Baylor U. 0.55 0.556 0.619 0.619 0.763 0.763 0.819 0.819
U. Houston 0.531 0.531 0.588 0.594 0.725 0.731 0.788 0.794
U. North Texas 0.544 0.544 0.619 0.619 0.756 0.756 0.813 0.819
S.F. Austin State U. 0.519 0.519 0.575 0.581 0.719 0.725 0.788 0.788
SW Texas State U. 0.544 0.544 0.6 0.606 0.738 0.738 0.8 0.8
Texas A & M 0.594 0.594 0.656 0.65 0.788 0.788 0.844 0.844
U. Texas 0.569 0.569 0.644 0.638 0.788 0.781 0.838 0.838
Texas Tech U. 0.544 0.544 0.619 0.619 0.75 0.75 0.806 0.806

A.2.5 SAT scores
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Table 23: SAT score quantiles, benchmark vs. no LOS

college 10th (LOS) 25th (LOS) 75th (LOS) 90th (LOS)

TX Public 0.519 0.519 0.569 0.569 0.719 0.719 0.781 0.781
Private Nonrelig. 0.569 0.569 0.631 0.631 0.775 0.775 0.825 0.825
Religious 0.569 0.569 0.625 0.625 0.769 0.769 0.825 0.825
Non-TX Public 0.55 0.55 0.619 0.619 0.75 0.75 0.813 0.813
Highly Selective 0.625 0.625 0.694 0.694 0.85 0.85 0.913 0.913
Baylor U. 0.55 0.55 0.619 0.619 0.763 0.763 0.819 0.819
U. Houston 0.531 0.531 0.588 0.588 0.725 0.725 0.788 0.788
U. North Texas 0.544 0.544 0.619 0.619 0.756 0.756 0.813 0.813
S.F. Austin State U. 0.519 0.519 0.575 0.575 0.719 0.725 0.788 0.788
SW Texas State U. 0.544 0.544 0.6 0.6 0.738 0.738 0.8 0.8
Texas A & M 0.594 0.594 0.656 0.656 0.788 0.788 0.844 0.844
U. Texas 0.569 0.569 0.644 0.644 0.788 0.788 0.838 0.838
Texas Tech U. 0.544 0.544 0.619 0.619 0.75 0.75 0.806 0.806

A.2.6 Short-run e�ects
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Table 24: E�ects of policy experiments, cuto�s �xed

Matriculation per 100 students holding admissions rules �xed

college benchmark (1) (2) (3) (4) (5) (6)

TX Public 13.182 -0.6% -0.2% -0.8% -0.1% -5.2% -3.1%

Private Nonrelig. 1.839 -0.4% +0.0% -0.3% +0.2% +11.5% +14.2%

Religious 6.806 -0.2% +0.5% -0.2% +0.9% +6.2% +11.0%

Non-TX Public 4.826 -0.2% +0.3% -0.3% +0.4% +2.4% +5.3%

Highly Selective 0.507 -0.6% -0.5% -0.7% -0.5% +60.7% +61.1%

Baylor U. 1.051 -0.5% -0.0% -0.2% -0.1% +7.1% +0.2%

U. Houston 1.693 -0.7% -0.0% -1.0% +0.0% -9.1% +0.1%

U. North Texas 1.499 -0.2% +0.2% -0.4% +0.1% -6.3% -4.0%

S.F. Austin State U. 1.41 -0.2% +0.1% -0.3% +0.0% -10.4% -9.0%

SW Texas State U. 2.171 -0.5% +0.5% -0.9% +0.4% -6.4% -1.7%

Texas A & M 6.512 -0.6% -0.0% -0.7% +0.0% +7.4% +0.0%

U. Texas 8.418 +3.0% -0.0% +4.0% -0.0% +9.6% +0.0%

Texas Tech U. 2.851 -0.3% +0.1% -0.6% +0.0% -5.6% -0.0%

Total 52.763 +0.1% +0.1% +0.2% +0.1% +2.0% +1.8%

Population: all matriculating students

Percentage change in matricualtion relative to benchmark:

(1): Expand Longhorn Opportunity Scholarship, cuto�s �xed.

(2): LOS, cuto�s adjust.

(3): Expand LOS and complete �nancial aid applications, cuto�s �xed.

(4): Expand LOS and complete �nancial aid applications, cuto�s adjust.

(5): automatic �nancial aid application and perfect signal of q, cuto�s �xed.

(6): automatic �nancial aid application and perfect signal of q, cuto�s adjust.

78



Table 25: E�ects of policy experiments on Black and Hispanic students, cuto�s �xed

Matriculation per 100 students holding admissions rules �xed

college benchmark (1) (2) (3) (4) (5) (6)

TX Public 16.171 -1.6% -1.0% -2.0% -1.2% -6.3% -4.7%

Private Nonrelig. 1.073 -1.9% -1.3% -1.5% -0.7% +14.5% +17.7%

Religious 4.901 -0.9% +0.3% -0.6% +1.0% +9.7% +15.2%

Non-TX Public 3.992 -0.8% -0.3% -0.8% -0.1% +8.5% +10.5%

Highly Selective 0.318 -3.0% -2.8% -3.0% -2.7% +87.3% +87.9%

Baylor U. 0.783 -1.6% -0.9% -0.7% -0.4% +8.5% -0.1%

U. Houston 1.732 -1.9% -1.1% -2.8% -1.5% -9.6% +0.2%

U. North Texas 1.036 -0.8% -0.2% -1.5% -0.8% -8.4% -6.2%

S.F. Austin State U. 1.246 -0.5% -0.2% -1.1% -0.7% -13.4% -12.6%

SW Texas State U. 2.24 -1.4% -0.2% -2.6% -1.0% -6.1% -1.7%

Texas A & M 2.01 -4.3% -3.3% -4.9% -3.6% +10.3% +3.8%

U. Texas 10.716 +6.8% +4.1% +9.1% +5.5% +14.4% +5.3%

Texas Tech U. 2.073 -1.3% -0.8% -2.2% -1.4% -5.4% +1.1%

Total 48.289 +0.3% +0.3% +0.6% +0.5% +2.9% +2.7%

Population: underrepresented minority students

Percentage change in matricualtion relative to benchmark:

(1): Expand Longhorn Opportunity Scholarship, cuto�s �xed.

(2): LOS, cuto�s adjust.

(3): Expand LOS and complete �nancial aid applications, cuto�s �xed.

(4): Expand LOS and complete �nancial aid applications, cuto�s adjust.

(5): automatic �nancial aid application and perfect signal of q, cuto�s �xed.

(6): automatic �nancial aid application and perfect signal of q, cuto�s adjust.
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Table 26: E�ects of policy experiments on students from poor high schools, cuto�s �xed

Matriculation per 100 students holding admissions rules �xed

college benchmark (1) (2) (3) (4) (5) (6)

TX Public 16.368 -3.4% -2.9% -4.1% -3.4% -8.0% -6.8%

Private Nonrelig. 0.901 -5.3% -4.7% -4.3% -3.5% +18.4% +22.1%

Religious 2.999 -3.5% -2.4% -2.3% -0.7% +11.0% +16.1%

Non-TX Public 4.231 -1.7% -1.4% -2.0% -1.5% +15.1% +16.3%

Highly Selective 0.369 -6.0% -5.8% -6.2% -5.8% +111.0% +111.4%

Baylor U. 0.655 -5.7% -4.9% -2.7% -2.2% +6.4% -1.2%

U. Houston 1.599 -4.9% -4.2% -7.0% -5.9% -11.3% -3.3%

U. North Texas 0.776 -2.7% -2.1% -4.9% -4.1% -12.7% -10.4%

S.F. Austin State U. 0.903 -1.7% -1.4% -3.5% -3.1% -19.2% -18.4%

SW Texas State U. 1.697 -4.1% -3.1% -7.5% -6.2% -8.9% -5.6%

Texas A & M 2.374 -11.9% -11.2% -12.6% -11.7% +10.3% +6.9%

U. Texas 11.817 +14.6% +12.7% +19.1% +16.5% +16.0% +10.2%

Texas Tech U. 1.467 -4.4% -3.8% -7.4% -6.6% -9.1% -3.2%

Total 46.157 +0.8% +0.7% +1.4% +1.3% +3.6% +3.5%

Population: Population: students from poor (>60% poverty) high schools only

Percentage change in matricualtion relative to benchmark:

(1): Expand Longhorn Opportunity Scholarship, cuto�s �xed.

(2): LOS, cuto�s adjust.

(3): Expand LOS and complete �nancial aid applications, cuto�s �xed.

(4): Expand LOS and complete �nancial aid applications, cuto�s adjust.

(5): automatic �nancial aid application and perfect signal of q, cuto�s �xed.

(6): automatic �nancial aid application and perfect signal of q, cuto�s adjust.
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B Data Appendix

In order to construct the �nal dataset, I constructed aggregate colleges. I keep each student in the
THEOP survey who took a college entrance exam.

B.1 Aggregate colleges

In this section I provide lists of the colleges and universities that make up each aggregate college.
The data use agreement requires me to aggregate each college that has fewer than ten applicants
in the data.

Institution Sum
apply admit

ANGELO STATE UNIVERSITY 148 119
Institutions with ten or fewer apps 10 9
LAMAR UNIVERSITY-BEAUMONT 80 61
MIDWESTERN STATE UNIVERSITY 30 24
PRAIRIE VIEW A & M UNIVERSITY 95 49
SAM HOUSTON STATE UNIVERSITY 187 143
SUL ROSS STATE UNIVERSITY 27 15
TARLETON STATE UNIVERSITY 71 49
TEXAS A & M INTERNATIONAL UNIVERSITY 56 37
TEXAS A & M UNIVERSITY-CORPUS CHRISTI 55 43
TEXAS A & M UNIVERSITY-GALVESTON 26 21
TEXAS A & M UNIVERSITY-KINGSVILLE 77 61
TEXAS A&M UNIVERSITY-COMMERCE 47 30
TEXAS SOUTHERN UNIVERSITY 125 79
TEXAS WOMAN'S UNIVERSITY 38 27
THE UNIVERSITY OF TEXAS AT ARLINGTON 170 120
THE UNIVERSITY OF TEXAS AT BROWNSVILLE 62 40
THE UNIVERSITY OF TEXAS AT DALLAS 86 61
THE UNIVERSITY OF TEXAS AT EL PASO 275 183
THE UNIVERSITY OF TEXAS AT SAN ANTONIO 166 121
THE UNIVERSITY OF TEXAS AT TYLER 27 17
THE UNIVERSITY OF TEXAS OF THE PERMIAN BASIN 30 22
THE UNIVERSITY OF TEXAS-PAN AMERICAN 194 165
UNIVERSITY OF HOUSTON-DOWNTOWN 37 18
WEST TEXAS A & M UNIVERSITY 42 37
Total 2,161 1,551

Colleges comprising OTHER TX PUBLIC 4-YEAR

Institution Sum
apply admit

EMBRY-RIDDLE AERONAUTICAL UNIVERSITY 12 10
Institutions with ten or fewer apps 235 190
NEW YORK UNIVERSITY 29 21
NORTHWOOD UNIVERSITY 21 17
TULANE UNIVERSITY OF LOUISIANA 17 16
UNIVERSITY OF SOUTHERN CALIFORNIA 23 22
VANDERBILT UNIVERSITY 12 11
Total 349 287

Colleges comprising PRIVATE NONRELIGIOUS
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Institution Sum
apply admit

ABILENE CHRISTIAN UNIVERSITY 60 53
AUSTIN COLLEGE 16 15
BRIGHAM YOUNG UNIVERSITY 28 24
DILLARD UNIVERSITY 18 14
EAST TEXAS BAPTIST UNIVERSITY 29 21
HARDIN-SIMMONS UNIVERSITY 21 19
HOUSTON BAPTIST UNIVERSITY 41 29
HOWARD PAYNE UNIVERSITY 27 19
Institutions with 15 or fewer apps 383 310
LUBBOCK CHRISTIAN UNIVERSITY 17 14
MCMURRY UNIVERSITY 19 17
OUR LADY OF THE LAKE UNIVERSITY-SAN ANTONIO 53 42
SAINT EDWARDS UNIVERSITY 35 29
SOUTHERN METHODIST UNIVERSITY 58 50
SOUTHWESTERN UNIVERSITY 33 32
ST MARYS UNIVERSITY 59 47
TEXAS CHRISTIAN UNIVERSITY 126 106
TRINITY UNIVERSITY 40 39
UNIVERSITY OF MARY HARDIN BAYLOR 19 13
UNIVERSITY OF SAINT THOMAS 28 23
UNIVERSITY OF THE INCARNATE WORD 25 23
XAVIER UNIVERSITY OF LOUISIANA 20 16
Total 1,155 955

Colleges comprising RELIGIOUS

Institution Sum
apply admit

ARIZONA STATE UNIVERSITY-MAIN CAMPUS 30 27
COLORADO STATE UNIVERSITY 14 12
FLORIDA AGRICULTURAL AND MECHANICAL UNIVERSITY 11 10
FLORIDA STATE UNIVERSITY 14 12
GRAMBLING STATE UNIVERSITY 11 6
Institutions with ten or fewer apps 421 346
KANSAS STATE UNIVERSITY OF AGRICULTURE AND APP SCI 11 9
LOUISIANA ST UNIV & AGRL & MECH & HEBERT LAWS CTR 64 51
NEW MEXICO STATE UNIVERSITY-MAIN CAMPUS 102 76
OKLAHOMA STATE UNIVERSITY-MAIN CAMPUS 45 42
PURDUE UNIVERSITY-MAIN CAMPUS 12 12
SOUTHERN UNIVERSITY-NEW ORLEANS 10 3
THE UNIVERSITY OF ALABAMA 13 12
UNITED STATES AIR FORCE ACADEMY 13 12
UNITED STATES NAVAL ACADEMY 11 8
UNIVERSITY OF CALIFORNIA-BERKELEY 16 14
UNIVERSITY OF COLORADO AT BOULDER 15 15
UNIVERSITY OF GEORGIA 12 10
UNIVERSITY OF MISSISSIPPI MAIN CAMPUS 11 10
UNIVERSITY OF NEW MEXICO-MAIN CAMPUS 17 9
UNIVERSITY OF OKLAHOMA NORMAN CAMPUS 36 32
Total 889 728

Colleges comprising NON-TX PUBLIC

Institution Sum
apply admit

HARVARD UNIVERSITY 16 12
Institutions with ten or fewer apps 55 41
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 12 11
NORTHWESTERN UNIVERSITY 13 12
PRINCETON UNIVERSITY 14 10
RICE UNIVERSITY 52 44
STANFORD UNIVERSITY 19 17
WASHINGTON UNIVERSITY 19 17
YALE UNIVERSITY 11 7
Total 211 171

Colleges comprising SELECTIVE PRIVATE
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B.2 Calculating EFC

Matching THEOP and CPS datasets In order to draw incomes from the CPS, I recode
parents' education in the THEOP survey to match the CPS dataset. I then draw incomes for each
student in THEOP from the distribution of income given parents' occupation and the education
of the most-educated parent.

1. THEOP senior survey

• Mother's education: q71

• Father's education: q67

• label list q71

q71:

1 No Schooling

2 Elementary School

3 Some High School

4 High School Graduate

5 Some College

6 Two-Year College

7 Four-Year College

8 Master's Degree

9 Professional Degree

2. 2002 March CPS

• Education of household head

• label list EDUC_HEAD

EDUC_HEAD:

0 NIU or no schooling

1 niu

2 None or preschool

10 Grades 1, 2, 3, or 4

11 Grade 1

12 Grade 2

13 Grade 3

14 Grade 4

20 Grades 5 or 6

21 Grade 5

22 Grade 6
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30 Grades 7 or 8

31 Grade 7

32 Grade 8

40 Grade 9

50 Grade 10

60 Grade 11

70 Grade 12

71 12th grade, no diploma

72 12th grade, diploma unclear

73 High school diploma or equivalent

80 1 year of college

81 Some college but no degree

90 2 years of college

91 Associate's degree, occupational/vocational program

92 Associate's degree, academic program

100 3 years of college

110 4 years of college

111 Bachelor's degree

120 5+ years of college

121 5 years of college

122 6+ years of college

123 Master's degree

124 Professional school degree

125 Doctorate degree

999 Missing/Unknown

3. Matching procedure:

• EDUC_HEAD ∈ {0, 1}: Ed = 1

• EDUC_HEAD ∈ {10, ..., 32}: Ed = 2

• EDUC_HEAD ∈ {40, ..., 71} 7→ Ed = 3.

� Note that in the 2002 March CPS, TX subsample there are no household heads
with unclear graduation status EDUC_HEAD=72.

EDUC_HEAD ∈ {73} 7→ Ed = 4.

• EDUC_HEAD ∈ {81} 7→ Ed = 5.

• EDUC_HEAD ∈ {91, 92} 7→ Ed = 6.
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• EDUC_HEAD ∈ {111} 7→ Ed = 7.

• EDUC_HEAD ∈ {123} 7→ Ed = 8.

• EDUC_HEAD ∈ {124} 7→ Ed = 9.

4. Administrative data: UT Austin codes parents' education similarly to the THEOP survey.

C Estimation Appendix

C.1 Calculating the objective

Consider the optimization problem

max
θ

1

N

N∑
i=1

log liki(θ) + [gaid(θ), goutcome(θ)] ∗Waid,outcome ∗ [gaid(θ), goutcome(θ)]
T , (1)

where

gaid(θ) =
1

N

∑
i

gaid,i(θ)

and

goutcome(θ) =
1

N

∑
i

goutcome,i(θ).

Suppose that the objective in 1 is maximized at θ0. Then the FOC of objective 1 is given by

1

N

∑
i

∇θ log liki(θ0) + 2 ∗ [gaid(θ0), goutcome(θ0)] ∗Waid,outcome ∗ [∇θgaid(θ0),∇θgoutcome(θ0)]T = 0.

(FOC1)
De�ne the matrix W by

W =

(
1
2

[
1
N

∑
i

(
(∇θ log liki(θ0))T ∗ (∇θ log liki(θ0))

)]−1
0

0 Waid,outcome

)
=

(
1
2
· I−1

θ0
0

0 Waid,outcome

)
=

(
−1

2

[
1
N

∑
i

∂2

∂θ∂θ′
logliki(θ0)

]−1

0

0 Waid,outcome

)
,
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where Iθ0 is the Fisher information matrix evaluated at θ0. De�ne loglik(θ) =
∑

i log liki(θ). Then
FOC1 is also the �rst-order condition of the following GMM objective function:

min
θ

[
1

N
∇θ log lik(θ), gaid(θ), goutcome(θ)] ∗W ∗ [

1

N
∇θ log lik(θ), gaid(θ), goutcome(θ)]

T , (2)

Hence the solution to 1 will also satisfy 2. The advantage of 1 for my purposes is that it is
possible to use gradient-based methods without needing to calculate second derivatives of log lik(θ).
Therefore, 1 is a relatively computationally inexpensive way to optimize the GMM objective 2.

The weight matrix is not known in advance; however it is a �xed function of the parameters θ0

that optimize the penalized-likelihood objective.

C.2 Standard errors

De�ne

G =
1

N

∑
i

 I(i)
θ0

∇θg
(i)
aid(θ0)

∇θg
(i)
outcome(θ0)


and

Ω =
1

N

∑
i

[∇θ log liki(θ), gaid(θ), goutcome(θ)][∇θ log liki(θ), gaid(θ), goutcome(θ)]
T

Then

WG =

(
1
2
Id

Waid,outc ∗ ∇θgaid,outcome(θ0)

)
And √

n (θ0 − θtrue) ∼ N (0, (GWG)−1(WG)′Ω(WG)(GWG)−1).

This variance-covariance matrix ignores the fact that the �observed� outcome distribution is
estimated using administrative data. The administrative datasets are much larger than the survey,
containing the universe of students matriculating at each of the �agship universities. One can
extend the variance-covariance formula to account for the error from this second dataset, however,
using the methods of Ichimura and Martinez-Sanchis (2008).

D Computational Details

D.1 Computing the value of application sets via the inclusion-exclusion

principle

Computing the value of an application set A ⊂ A requires integrating over all possible outcomes
B ⊆ A, as the value depends on the probabilities and utilities of each admissions set B that is
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possible given application to A.
In principle, and dropping i subscripts, computing V (A) for all A requires computing |A|

utility terms {U(B)}B∈A, and O(|A|2) multivariate normal CDF evaluations {P (B|A)}B⊆A,A∈A.
With over 800 portfolios, it would be expensive to compute all of these probabilities directly for
each draw for each individual at each trial parameter value. In what follows, I show that one needs
only evaluate |A| multivariate normal CDFs and perform some matrix multiplication.

De�ne

PB =

ˆ
q

∏
j∈B

Φ(qi + z′ijγj − πj)dF (q|s)

as the probability of admission to every school in B given application set B and a realization of
the applicant's information qs. Let XB be the event that i is admitted to all schools in B. Let
XA;B denote the event that i is admitted to all schools in B and rejected from all schools in A\B,
and PA;B the probability of this event. If B 6⊆ A then let XA;B be empty and PA;B = 0. Let P be
the probability measure associated with i's characteristics and signal s, so that PA;B = P(XA;B).

Proposition. (inclusion-exclusion formula) Given the above de�nitions, the following result holds:

PA;B =
∑

B′:B⊆B′⊆A

PB′ · (−1)|A|−|B
′| for all sets A,B ∈ A with B ⊆ A.

Proof.

PA;B = P
(
XB\

(
∪j∈A\B

(
XB∪{j}

)))
= P(XB)− P

(
∪j∈A\B

(
XB∪{j}

))
= PB −

∑
j∈B\A

P(XB∪{j}) +
∑

j1,j2∈B\A

P(XB∪{j1} ∩XB∪{j2})− . . .+ P(∩j∈A\BXB∪{j})

= PB −
∑

B′:B⊆B′⊆A

PB′ · (−1)|A|−|B
′|+1.

The second line follows because XB∪{j} ⊆ XB and the third line is the standard inclusion-exclusion
formula.

List all the portfolios A0, A1, . . . , A|A| in some order, and de�ne the matrix T by

Tkl = 1Ak⊆Al

∏
j∈Ak

(
Alj
Akj

)
,

where Alj is the number of applications to j in portfolio Al. Similarly, de�ne the matrix S by

Skl = (−1)|Al|−|Ak|.

It follows that PAk;Al
=
∑

Ak⊆Ar⊆Al
TkrPr
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Corollary. Let P be the diagonal matrix with kth entry PAk
. The vector V = {VA}A∈A is given

by
V = T ∗Diag(P ) ∗ S ∗ U.

Computing only the admissions probabilities PB rather than all PA;B vastly simpli�es compu-
tation. As an example, if A = {{1}, {2}, {1, 2}} we have the following calculation:

 V{1}
V{2}
V{1,2}

 =

 1 0 0
0 1 0
1 1 1

 ∗
 P{1} 0 0

0 P{2} 0
0 0 P{1,2}

 ∗
 1 0 0

0 1 0
−1 −1 1

 ∗
 U{1}

U{2}
U{1,2}

 .

By using the inclusion-exclusion principle, we avoid having to compute P{1,2};{1} or P{1,2};{2} by
integrating over multivariate normal densities.

D.2 Discretization

To make computation possible, we use discrete approximations for q and s. We discretize the
signal distribution,

s ∈ S

where S is a discrete grid with nS = 6 points of support. Moreover, we �x

q ∈ Q = {−10, ..., 10}

with nQ = 128 points of support. Hence

ˆ̀
i(θ) =

∑
s∈S

Φ(s)ˆ̀
i(θ, s).

We drawM simulation draws ωi,m for each individual i, which contain random coe�cients, income
yim and EFC efcim. Our objective then becomes

ˆ̀
i(θ) = log

∑
qs∈QS

M∑
m=1

(
ˆ̀Ap
i (θ, ωi, q

s)ˆ̀Ad|Ap
i (θ, qs)`

F |Ap,Ad
i (θ,m)`

C|Ad
i (θ,m)`

Outcome|C
i (θ,m)

)
Φ(qs)

D.3 Simulation of �nancial-aid awareness

We observe �nancial-aid application or failure to apply for aid only at schools to which i submits
an application. In order to compute the likelihood that i chooses his observed application portfolio,
however, we need to calculate the value of all application portfolios he could have chosen. Therefore
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calculating the likelihood requires integrating over �nancial-aid awareness at colleges to which i
did not apply.

In order to obtain an estimator that is smooth in θ, we draw �nancial-aid awareness for student i
using an importance sampling procedure. Before searching over parameter values, we draw a vector
of outcomes awareijm ∈ {0, 1} once for each simulation draw, for all colleges j to which i did not
submit an application. We estimate weights on each vector for each parameter vector θ. These
weights are then smooth functions of θ.

Initially, for each individual i and simulation draw m, we draw a vector of �nancial-aid aware-
ness outcomes for the schools to which i did not apply, using starting values for the �nancial-aid
parameters:

Awareijm = 1(hijm > Pr0ij), for j /∈ Ai
Awareobsijm for j ∈ Ai,

where hijm is an independent uniform random draw, and

Pr0ijm = Pr0(i aware of aid at j|ym) = (Xaware
im )′ βaware0

where Xaware
im = (dfj , X

S, yi) is the vector of observables that shift awareness of �nancial aid.
Let P aware

0i denote the probability of the vector of �nancial aid awareness draws under {Pr0ijm}j∈J :

P aware
0im =

∏
j∈J\Ai

[
(Pr0ijm)awareijm (1− Pr0ijm)1−awareijm] .

Now, for each trial parameter value θ we calculate the probability of �nancial-aid awareness,

P aware
im (θ) =

∏
j∈J

[
(Prij(θ))

awareijm (1− Pr0ij(θ))
1−awareijm] .

Note that the probability of the �nancial aid awareness draw under parameters θ includes the
probability of awareijm for j ∈ Ai.

The likelihood of �nancial aid awareness is then approximated by

ˆ̀Faware|A,B
i (θ,m) ≈ pawareim (θ)

paware0im

,

and the likelihood of �nancial aid awareness and outcomes is

pawareim (θ)

paware0im

·
∏

j∈Bfinaid
i

Pr(Bfinaid
ij ; θ)

∏
j∈Bi\Bfinaid

i

(
1− Pr(Bfinaid

ij ; θ)
)

In estimation, I obtain a starting guess for �nancial-aid awareness parameters via probits
on observed data and draw �nancial-aid awareness according to these parameters. I then run
the estimation procedure and use the estimated values of βaware as new initial parameters for
constructing paware0im .
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D.4 Smoothing application choice probabilities

We use logit smoothing to approximate arg maxA Vi(A) in simulating choice probabilities. We
do so for computational reasons: this smoothing allows the use of derivative-based optimization
methods. Given a draw ωmi of unobservables and values Vi,m(A) for all allowed application sets A,
the probability that i applies to A with draws ωmi is

Pr(Applyi = A|ωmi ) =
exp(ΛVi,m(A))∑
A′ exp(ΛVi,m(A′))

.

In the empirical application we set Λ to a large value (Λ = 10 implies a variance that is very small
relative to the variance of the preference errors εAij which are normalized to 1; as λA → ∞ the
logit-smoothed approximation approaches probability 1 on the application set A that maximizes
Vi,m(A) ).

While I interpret Λ as a smoothing parameter, the procedure is also consistent with the existence
of additive portfolio-level shocks ε̃iA with independent extreme-value distributions. Under this
interpretation, individuals choose the set A that maximizes Vi(A) + ε̃iA. The value of Λ that I
choose makes these shocks small relative to the college-level shocks εAij.

D.5 Implementation

The estimation procedure and counterfactual simulations are coded in the Julia programming
language.73 I use the IPopt interior-point solver to obtain parameter estimates. I provide analytic
�rst derivatives to the solver.

E Additional Results

E.1 Existence of Equilibrium

Suppose there is a continuum of students with type ω ∈ Ω ⊆ RN and measure F (ω) with density
f with respect to Lebesgue measure. (In the model, an individual is de�ned by his observables zi,
his preference terms and random coe�cients, and his caliber and signal (q, s).) Each cuto� vector
π induces a joint distribution of application portfolios A ∈ A and types ω. In particular, for almost
all ω there is a unique portfolio A(π, ω) ∈ A that is optimal.

To prove existence, we need to show that there is a cuto� π such that Ai is a best response to π
for all i, andπ maximizes quality subject to capacity constraints given applications A(π, ω)ω∈Ω.

7475

73http://www.julialang.org
74In this proof I ignore �nancial aid. A similar argument would apply with �nancial aid present.
75The �partial uniqueness� argument in the paper shows that, holding applications �xed, there is a unique market-

clearing π.
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Let Ã(π) denote the joint distribution of (A ∈ A, ω ∈ Ω) induced by students' best responses
to π. Because ω admits a density and the indirect utility U(A; π) is continuous in π, the share of
applicants to each portfolio A ∈ A changes continuously in π. Moreover, the share of students with
admission set B given application set A changes continuously in π, for all A,B ∈ A. Conditional on
admission set B, application set A, and j's information about ω, the probability from of attending
j ∈ B is continuous in π. As a result the best-response cuto� function h(π) ≡ π∗(Ã(π)) : RJ → RJ

is continuous in π.
We now show that h(·) is bounded, i.e. we can restrict attention to the map h(·) on a box

in RJ . For each j, taking the distribution of applications A that has every student apply to {j}
with probability 1 gives an upper bound πhighj ≤ π∗(E(A)). There exists a cuto� πlowj such that j

strictly prefers empty seats to students with caliber less than πlowj .
From Brouwer's �xed point theorem, h has a �xed point π∗. π∗ is a set of market-clearing

cuto�s given applications Ã(π), and applications Ã are optimal given π∗.

E.2 Model Fit

E.2.1 Model �t: shares, SATs, and aid

In this section, I compare model-predicted numbers of applications, o�ers of admissions, and
enrollment at each college to the numbers obtained in the raw survey. The total population of
public high school students is normalized to 100, so that the enrollment columns represent the
percentage of public high school seniors who have taken the SAT or ACT that enroll at each of the
listed colleges. Using the survey's population weights, we compare the weighted actual number
of applications, o�ers and matriculations in the survey to the weighted values obtained from the
model at the estimated parameters.

The model captures the patterns of applications found in the data. In particular, regional Texas
public four-year colleges receive the most applications, followed by religious institutions and then
state �agship schools. Relative to the survey data we match applications, o�ers and enrollment
closely at the state �agship universities. I underestimate enrollment slightly at the regional state
universities. While the model matches the number of applications to Texas Tech, and overpredicts
the number of o�ers, it underestimates enrollment at Texas Tech.

I also provide the same table considering only underrepresented minority (Black and/or His-
panic) students. I did not use race anywhere in the model of preferences or admissions chances;
there is nothing in the estimation strategy that forces the number of applications here to match
the survey. Nonetheless I closely match the actual data. In particular, in the data, 10 out of every
100 black and Hispanic exam-taking seniors matriculates at UT Austin. In the model the �gure
is 10.7 out of 100. I match the key pattern that while minority students are about as likely as the
population average to attend the University of Texas at Austin, they are much more likely than

91



College apps (data) (model) o�ers (data) (model) enroll. (data) (model)
TX Public 29.064 30.556 24.252 28.486 16.787 13.182
Private Nonrelig. 6.959 6.627 5.404 5.659 2.34 1.839
Religious 21.831 17.393 18.504 16.008 9.884 6.806
Non-TX Public 15.818 13.097 12.5 12.017 4.049 4.826
Highly Selective 4.128 3.899 1.211 1.194 0.326 0.507
Baylor U. 4.707 5.444 4.315 4.855 1.984 1.051
U. Houston 3.499 6.875 2.403 6.469 0.038 1.693
U. North Texas 6.056 6.539 4.973 6.115 2.931 1.499
S.F. Austin State U. 3.879 6.605 3.336 6.213 1.43 1.41
SW Texas State U. 7.203 7.759 5.593 7.223 3.251 2.171
Texas A & M 14.658 13.854 11.158 12.246 8.433 6.512
U. Texas 16.451 16.303 13.589 14.191 10.976 8.418
Texas Tech U. 7.845 8.28 6.958 7.707 4.072 2.851

Table 27: Applications, O�ers, Enrollment per 100 students

College apps (data) (model) o�ers (data) (model) enroll. (data) (model)
TX Public 54.675 37.9 44.193 34.019 26.496 16.171
Private Nonrelig. 8.262 5.252 5.231 4.106 2.267 1.073
Religious 23.444 14.206 17.709 12.423 7.501 4.901
Non-TX Public 13.683 11.669 10.517 10.17 2.98 3.992
Highly Selective 5.509 3.486 1.013 0.924 0.57 0.318
Baylor U. 3.875 4.914 3.352 4.09 1.941 0.783
U. Houston 4.813 7.173 2.798 6.482 0.0 1.732
U. North Texas 4.807 5.719 3.441 5.093 1.857 1.036
S.F. Austin State U. 3.207 6.53 2.218 5.861 0.427 1.246
SW Texas State U. 7.453 8.135 5.676 7.279 1.379 2.24
Texas A & M 7.59 7.139 6.078 5.794 1.771 2.01
U. Texas 15.06 19.43 12.168 16.77 10.09 10.716
Texas Tech U. 4.185 7.286 3.354 6.473 2.872 2.073

Table 28: Applications, O�ers, Enrollment per 100 students, Black and Hispanic only

College apps (data) (model) o�ers (data) (model) enroll. (data) (model)
TX Public 37.979 33.726 31.416 31.002 20.729 14.493
Private Nonrelig. 4.278 5.873 2.833 4.821 1.683 1.394
Religious 21.072 15.46 16.956 13.89 8.012 5.612
Non-TX Public 9.083 11.786 6.85 10.56 2.05 4.064
Highly Selective 2.919 3.425 0.531 0.879 0.311 0.313
Baylor U. 3.885 5.227 3.226 4.518 1.441 0.934
U. Houston 4.252 7.148 2.662 6.625 0.044 1.787
U. North Texas 5.57 6.216 4.795 5.698 2.626 1.303
S.F. Austin State U. 3.732 6.608 3.086 6.115 0.783 1.362
SW Texas State U. 8.157 7.903 6.51 7.233 2.319 2.187
Texas A & M 10.737 11.707 7.59 10.0 5.439 4.98
U. Texas 12.274 16.131 9.628 13.722 8.511 8.225
Texas Tech U. 4.862 7.701 4.225 7.026 2.723 2.404

Table 29: Applications, O�ers, Enrollment per 100 students, parents do not have college degree
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College Avg. Aid (IPEDS) Avg. Aid (model)
TX Public 8215.86 8341.83
Private Nonrelig. 19591.83 22429.48
Religious 14625.34 14766.0
Non-TX Public 9321.26 10766.89
Highly Selective 26535.58 28162.47
Baylor U. 17753.8 17329.87
U. Houston 9037.8 7604.75
U. North Texas 8388.0 8711.91
S.F. Austin State U. 4014.0 4612.9
SW Texas State U. 7504.8 6886.12
Texas A & M 10984.4 10976.28
U. Texas 10960.0 10785.33
Texas Tech U. 6979.4 7344.6

Table 30: Average �nancial aid (dollars grant equivalent per enrolled �rst-time freshman), IPEDS
vs. model

white students to enroll at non-�agship public university campuses, and much less likely to apply
to and attend Texas A&M.

Considering students whose parents did not graduate college, I obtain similar results. Such
students are relatively likely to attend non-�agship campuses in both the model and the data. I
match the number of o�ers closely, although I underpredict the enrollment share at these campuses.

I also compare average �nancial aid grants for entering freshmen, in 2003 dollars, as reported in
IPEDS and as predicted by the model. The estimation procedure uses a moment that requires that
IPEDS match the average aid amount among surveyed students who were observed to attend each
college. Because the model does not predict exactly the pattern of matriculation observed in the
data, the numbers do not match perfectly; nonetheless the �t is quite close, to $10 at UT-Austin
and $200 per student at Texas A&M.76

In �gure 31 I show how the model-predicted SAT quantiles match those in the data. The model
�ts the state �agship schools well. The numbers diverge more for selective private schools, but
Texas public high school students who attend these schools may have di�erent characteristics from
the general population of matriculating students, who may come from private schools and from
other regions of the country.

76The average �nancial aid o�er in IPEDS is calculated as the sum of average federal, state and institutional aid
grants plus (.6)*average loans.
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College 25th (model) (data) 75th (model) (data)
TX Public 0.569 0.532 0.719 0.672
Private Nonrelig. 0.631 0.678 0.775 0.808
Religious 0.625 0.614 0.769 0.751
Non-TX Public 0.619 0.636 0.75 0.777
Highly Selective 0.694 0.837 0.85 0.951
Baylor U. 0.619 0.669 0.763 0.8
U. Houston 0.588 0.575 0.725 0.719
U. North Texas 0.619 0.6 0.756 0.75
S.F. Austin State U. 0.575 0.538 0.719 0.675
SW Texas State U. 0.6 0.588 0.738 0.706
Texas A & M 0.656 0.669 0.788 0.806
U. Texas 0.644 0.681 0.788 0.831
Texas Tech U. 0.619 0.625 0.75 0.75

Table 31: SAT quantiles, model vs. IPEDS

E.2.2 Matriculation e�ects of Texas Top Ten eligibility

Niu and Tienda estimate probit regressions of attendance at Texas A&M and/or UT Austin on
control variables, class rank, and a discontinuity at the tenth percentile. They then estimate
marginal e�ects of qualifying for Texas Top Ten, relative to not qualifying in the 2002 college
market.77

Niu and Tienda generally �nd positive point estimates but wide standard errors leading to
insigni�cant results. On the full sample, depending on speci�cation, the point estimate is either a
three percentage point increase in the probability of attending a �agship university for the average
student near the tenth percentile of class rank, or a nine percentage point increase. That is,
they �nd that the marginal e�ect of top-decile rank on Pr(attend �agship) is 0.03 with standard
error 0.034 using a second-order polynomial, and they �nd a marginal e�ect of 0.09 (0.042) using
a fourth-order polynomial in rank. In neither case is the result signi�cant. Niu and Tienda
�nd highly signi�cant, larger positive e�ects for some subcategories, including at predominantly
minority schools, and schools with average poverty rates.

77They estimate models of the form

Flagship Enrollment = α0 + α1 ∗ rank + . . .+ αk ∗ rankk + γ ∗ 1(Top 10%) + βZ + ε

and report marginal e�ects at the average characteristics Z.
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My estimation procedure gives similar numbers. To evaluate the e�ects of threshold crossing,
I �rst estimate the model-predicted probability of matriculation for top-decile students. I then
�turn o�� automatic admissions for these students, but keep the cuto�s π as they are. I estimate
the e�ect at the average observable characteristics for a top-decile student. Under the Texas Top
Ten benchmark, this average student has a 17.4% chance of attending UT Austin and a 10.3%
chance of attending Texas A&M, resulting in a total �agship attendance probability of 27.7%.
After disabling automatic admissions, this student has a 7.4% chance of attending Texas A&M
and a 9.1% chance of attending UT Austin, for a total �agship attendance probability of 16.5%.
The marginal e�ect of Texas Top Ten eligibility on �agship attendance is therefore 11.2 percentage
points. This estimate is above the point estimates that Niu and Tienda �nd for the average student,
but well within their con�dence intervals. Figure 4 suggests one reason why Tienda and Niu did
not �nd signi�cant e�ects among white people at majority-majority schools: crossing the cuto�
may have little e�ect on admissions chances for such students if they are already very likely to be
admitted.

E.3 Peer E�ects

Recall

δjt = β
SAT

SAT jt + β
SFratio

SFratiojt + ξjt

If Cov(ξj + β
SFratio

SFratioj, SAT j) ≥ 0 then the OLS estimates will overstate β
SAT

. At the

same time, we can assume that β
SAT ≥ 0, i.e. that higher-scoring peers are preferred on average,

holding one's rank among peers �xed.78

With instruments, the econometrician could obtain unbiased point estimates; potential instru-
ments must correlate with SAT scores but be excluded from other terms that enter the mean utility
δ. Potential instruments include rival schools' investment decisions or student-faculty ratios.79

78We regress δjt on SAT jt, for now ignoring estimation error in δjt. Under our assumptions, the OLS estimator
ˆ

β
SAT

from the regression of δjt on SAT jt would give an upper bound. With SAT jt rescaled so that a perfect score
is 1.0, we estimate an OLS point estimate of 9.71, with standard error 1.57. (We include a constant term as well).
This value implies that if the SAT score index at UT Austin (currently 0.756, or 1210 out of 1600) fell to the level
of non-�agship public universities (0.602, or 963.6 out of 1600), the gap in mean utilities between UT Austin and
non-�agship colleges would decrease but not disappear; UT Austin's mean utility δ would decrease to -0.023, below
Texas A&M, Texas Tech, private colleges, out-of-state institutions and Christian colleges, but above the aggregate
in-state public university.

79Football records of rival universities would be valid instruments if they a�ect only own-school preferences. If
Texas A&M had a particularly successful season, it might cause students to apply to Texas A&M rather than UT,
without a�ecting the utility that students get from attending UT.
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Figure 3: A �tted beta distribution: UT Austin, 2003, SAT/10.

E.4 Additional Descriptive analysis
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Table 32: Descriptive analysis of �nancial aid

Applications for �nancial aid
Mean income of household head's occupation -0.0306*

(0.0149)
SAT w/ ACT->SAT via nat'l xwalk 3.046***

(0.502)
Fraction of students ever economically disadvantaged 2.890***

(0.299)
Participates in Longhorn Opportunity Scholars Program -0.983***

(0.279)
Participates in Century Scholars Program 0.0217

(0.316)
Number of parents or guardians -0.455***

(0.117)
TX Public 0.0879

(0.161)
Private Nonreligious 0.502*

(0.222)
Religious 0.548***

(0.166)
Non-TX Public -0.134

(0.171)
Highly Selective -0.123

(0.253)
Baylor 0.793***

(0.230)
U. Houston -0.0555

(0.209)
U. North Texas -0.176

(0.221)
S.F. Austin State U. -0.0550

(0.223)
SW Texas State U. -0.146

(0.204)
Texas A&M 0.0753

(0.164)
U. Texas -0.111

(0.165)
o.Texas Tech 0

(.)
lnsig2u 1.100***

(0.120)
σu 1.733***

(0.104)
ρ 0.750***
(N) 4915

Standard errors in parentheses
* p<0.05, ** p<0.01, *** p<0.001
SAT and HS poverty rescaled to [0,1]
College and parental education �xed e�ects included
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Table 33: Descriptive analysis of admissions

Admissions Admissions
classrank -0.0259*** -0.0248***

(0.00225) (0.00226)
SAT w/ ACT->SAT via nat'l xwalk 3.604*** 3.335***

(0.358) (0.376)
HS mean SAT 0.0167*** 0.0169***

(0.00377) (0.00430)
TX Public -1.977*** -2.268***

(0.376) (0.498)
Private Nonreligious -3.187*** -3.773***

(0.420) (0.580)
Religious -2.097*** -2.518***

(0.394) (0.533)
Non-TX Public -2.216*** -2.666***

(0.399) (0.540)
Highly Selective -5.172*** -5.905***

(0.453) (0.632)
Baylor -1.654*** -2.187***

(0.429) (0.576)
U. Houston -2.574*** -2.917***

(0.401) (0.525)
U. North Texas -2.419*** -2.739***

(0.409) (0.531)
S.F. Austin State U. -1.852*** -2.184***

(0.413) (0.533)
SW Texas State U. -2.616*** -3.068***

(0.408) (0.548)
Texas A&M -3.216*** -3.684***

(0.407) (0.549)
U. Texas -2.650*** -3.232***

(0.402) (0.569)
Texas Tech -1.995*** -2.342***

(0.411) (0.533)
mean Barrons 1.111***

(0.315)
Barrons x HS pov. 0.137

(0.317)
lnsig2u 0.163 0.164

(0.122) (0.120)
σu 1.085*** 1.085***

(0.0664) (0.0653)
ρ 0.541*** 0.541***
(N) 5949 5949

Standard errors in parentheses
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Table 34: GPA at state �agship schools
Semester GPA (UTA) Semester GPA (TAMU)

SAT 1.003*** 1.201***
(0.0983) (0.0899)

HS mean SAT 4.221*** 2.703***
(0.246) (0.233)

classrank -2.609*** -1.962***
(0.0789) (0.0690)

HS percent ever economically disadvantaged -0.203*** -0.314***
(0.0570) (0.0534)

HS in LOS Program 0.217*** 0.111
(0.0434) (0.0606)

HS in Century Scholars Program 0.00337 -0.109*
(0.0511) (0.0550)

Male -0.187*** -0.156***
(0.0150) (0.0142)

1st semester 0.167*** -0.134***
(0.0111) (0.00931)

2nd semester 0.0878*** -0.0903***
(0.0111) (0.00938)

3rd semester 0.0100 -0.121***
(0.0112) (0.00956)

4th semester 0.0463*** -0.0500***
(0.0113) (0.00964)

Parents' education: less than HS -0.135*
(0.0618)

some HS -0.0304
(0.0570)

HS graduate -0.125***
(0.0320)

Some college, or two-year degree -0.111***
(0.0227)

Four-year college degree -0.0541**
(0.0167)

Constant -0.0820 0.788***
(0.161) (0.150)

σu 0.472 0.434
σe 0.561 0.594
ρ 0.415 0.348
(N) 27997 40921

Standard errors in parentheses

* p<0.05, ** p<0.01, *** p<0.001
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Table 35: Dropout rates at state �agship schools
Dropout (UTA) Dropout (TAMU)

Semester gpa -0.218*** -0.107*
(0.0304) (0.0451)

Cumulative gpa -0.627*** -0.810***
(0.0427) (0.0579)

SAT 0.649** 0.785***
(0.220) (0.238)

HS mean SAT -0.573 -0.462
(0.574) (0.628)

classrank -0.375* 0.530**
(0.176) (0.167)

HS percent ever economically disadvantaged -0.140 0.0835
(0.125) (0.138)

HS in LOS Program -0.0381 0.186
(0.0897) (0.132)

HS in Century Scholars Program -0.0559 -0.0935
(0.110) (0.127)

1st semester -0.897*** -0.340***
(0.0539) (0.0575)

2nd semester -0.346*** 0.242***
(0.0416) (0.0490)

3rd semester -0.542*** -0.166**
(0.0459) (0.0569)

Parents' education: less than HS 0.145
(0.126)

some HS 0.178
(0.116)

HS graduate 0.101
(0.0672)

Some college, or two-year degree 0.0670
(0.0498)

Four-year college degree -0.0410
(0.0405)

Constant 0.982** 0.269
(0.365) (0.403)

Standard errors in parentheses

* p<0.05, ** p<0.01, *** p<0.001
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Table 36: Fraction of admissions and matriculations from in-state applicants, UT Austin

year admitted (total) enrolled (total) % admitted (in-state) (TX public) % enrolled (in-state) (TX public)
1991 10403 5818 85.0 71.8 90.4 84.1
1992 9726 5613 85.0 71.5 90.9 84.2
1993 10085 5861 86.0 72.3 91.6 84.3
1994 10278 6156 84.0 74.3 89.6 81.7
1995 10506 6346 84.3 74.3 90.9 82.8
1996 11041 6381 81.7 71.7 90.1 81.7
1997 11352 7138 82.2 72.8 89.9 82.2
1998 10693 6833 84.9 75.7 92.0 83.2
1999 10990 7288 89.1 79.4 93.5 84.6
2000 13061 8118 87.5 77.8 93.1 84.7
2001 12564 7243 85.0 76.7 91.1 83.8
2002 14138 7868 86.3 77.7 90.9 83.6
2003 10820 6493 87.1 80.0 92.9 86.9

Figure 4: Admission chances for 12th-percentile student at a�uent high school with average SAT
scores, s=1
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Table 37: Total applications, admissions and enrollment at UT Austin by year

Applications, Admissions and Matriculation at UT Austin by year

apply admit enroll apply (URM) admit (URM) enroll (URM)

1992 9624 7233 4732 2123 1607 962

1993 10048 7608 4946 2308 1791 1087

1994 9936 7660 5029 2284 1669 977

1995 10385 7832 5254 2291 1661 1020

1996 11501 7924 5212 2454 1630 972

1997 10065 8282 5869 1977 1463 991

1998 11332 8100 5685 2341 1489 1009

1999 12420 8735 6165 2884 1764 1199

2000 12711 10169 6876 2701 2090 1336

2001 11818 9642 6070 2647 2046 1168

2002 13422 10990 6583 3054 2397 1296

2003 14922 8658 5641 3592 2005 1281

Population: Texas public high school graduates only

Table 38: Black/Hispanic/Native American applications, admissions, and enrollment at UT Austin

share, app share, admit share, enroll pct di�., app. pct di�., admit pct di�., enroll

1992 22.06 22.22 20.33 -3.05 1.87 3.26

1993 22.97 23.54 21.98 .95 7.93 11.63

1994 22.99 21.79 19.43 1.03 -.1 -1.32

1995 22.06 21.21 19.41 -3.05 -2.76 -1.39

1996 21.34 20.57 18.65 -6.22 -5.69 -5.27

1997 19.64 17.66 16.89 -13.67 -19.01 -14.23

1998 20.66 18.38 17.75 -9.21 -15.72 -9.85

1999 23.22 20.19 19.45 2.05 -7.41 -1.21

2000 21.25 20.55 19.43 -6.61 -5.77 -1.31

2001 22.4 21.22 19.24 -1.56 -2.71 -2.26

2002 22.75 21.81 19.69 0 0 0

2003 24.07 23.16 22.71 5.79 6.18 15.35

underrepresented minority students as share of TX public high school students at UT Austin

columns 4-7: percentage di�erences relative to 2002
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Table 39: Top-decile students' applications, admissions, and enrollment at UT Austin

share, app share, admit share, enroll pct di�., app. pct di�., admit pct di�., enroll

1992 41.58 54.17 45.22 -7.67 -1.41 -21.49

1993 41.25 53.17 44.9 -8.41 -3.23 -22.04

1994 41.16 52.01 43.39 -8.6 -5.33 -24.68

1995 42.11 53.91 44.94 -6.5 -1.88 -21.99

1996 39.31 54.32 42.73 -12.72 -1.14 -25.82

1997 37.92 45.13 37.77 -15.8 -17.85 -34.42

1998 37.81 51.38 42.23 -16.04 -6.48 -26.68

1999 40.63 54.1 46.1 -9.79 -1.52 -19.97

2000 42 52.42 47.09 -6.74 -4.58 -18.25

2001 45.63 55.82 54.37 1.3 1.6 -5.62

2002 45.04 54.94 57.6 0 0 0

2003 45.71 78.34 73.37 1.49 42.6 27.38

topten students as share of TX public high school students at UT Austin

columns 4-7: percentage di�erences relative to 2002

Table 40: Top-decile minority students' applications, admissions, and enrollment at UT Austin

share, app share, admit share, enroll pct di�., app. pct di�., admit pct di�., enroll

1992 9.72 12.54 9.26 -8.75 -3.49 -28.06

1993 9.76 12.62 9.93 -8.3 -2.89 -22.84

1994 8.85 10.78 7.68 -16.91 -17.01 -40.35

1995 8.81 11.02 7.99 -17.24 -15.2 -37.87

1996 8.23 10.95 7.46 -22.66 -15.7 -41.99

1997 7.34 8.63 6.54 -31.04 -33.56 -49.15

1998 7.8 10.43 7.85 -26.73 -19.71 -39.03

1999 10.34 13.02 10.85 -2.9 .18 -15.66

2000 10.01 12.49 10.7 -5.93 -3.88 -16.81

2001 10.31 12.59 11.43 -3.12 -3.1 -11.14

2002 10.65 12.99 12.87 0 0 0

2003 11.45 19.64 18.38 7.51 51.11 42.88

minority students in top 10% of HS class as share of TX public high school students at UT Austin

columns 4-7: percentage di�erences relative to 2002
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