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Estimation and Inference by the Method of Projection Minimum

Distance∗

Abstract

A covariance-stationary vector of variables has a Wold representation whose coefficients can be
semiparametrically estimated by local projections (Jordà, 2005). The parameters of a model can
then be estimated from the restrictions the model imposes on the Wold coefficients by the method
of minimum distance. We call this estimator projection minimum distance (PMD) and show
that its parameter estimates are consistent and asymptotically normal. In many cases, PMD is
asymptotically equivalent to maximum likelihood estimation (MLE) and nests GMM as a special
case. In fact, models whose ML estimation would require numerical routines (such as VARMA
models) can often be estimated by simple least-squares routines and almost as efficiently by PMD.
Because PMD imposes no constraints on the dynamics of the system, it is often consistent in many
situations where unknown model misspecification renders GMM instruments invalid. We provide
several Monte Carlo experiments and an empirical application in support of the new techniques
introduced.
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1 Introduction

Projection Minimum Distance (PMD) is a two-step, efficient, limited-information method

of estimation based on the minimum chi-square principle (see Ferguson, 1958). In the first

step, we estimate the coefficients of the Wold representation of the complete, available vec-

tor of variables semiparametrically. We will show that these estimates are consistent and

asymptotically normal and can be obtained with straight-forward least-squares techniques.

We then think of the equations provided by a candidate model as a multidimensional, pos-

sibly nonlinear, multiple-index function of, perhaps, only a subset of the observed and state

variables in the Wold representation of the first step. This function can usually be cast to

have a unique minimum where the observed and state variables can be substituted by their

spectral representation (obtained in the first stage), to obtain a well-defined and unique

mapping with the parameters of interest.

The second step is therefore based on minimizing the weighted quadratic distance of

this function, where the optimal weights are determined by the inverse of the covariance

matrix from the first step. We then prove consistency and asymptotic normality of the

second step estimator. Under general conditions, this two-step estimator often provides

consistent parameter estimates even when the model is misspecified with respect to the

data generating process (DGP). More generally, it provides estimates that are more efficient

than alternative limited information, non-likelihood based methods. The weighted quadratic

objective function evaluated at the optimum has an asymptotic distribution that converges

to a chi-squared and provides a test of model misspecification much along the lines of the
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test for overidentifying restrictions common in minimum distance methods. We provide more

details and illustrations from the time series and macroeconomic literatures below.

A simple example best demonstrates why PMD will often be preferable to other limited-

information methods, such as GMM. Suppose the relation between the T × 1 variable y, the

T×r1 vector of endogenous variables Y, and the T×r2 vector of exogenous or predetermined

variables X is generated by the expression,

y = Y β +Xγ + u

for which the T ×G vector Z is a vector of instruments such that E (Zu) = 0 and G ≥ r2.

Instead suppose the theory proposes the model

y = Y β + v

which clearly omits the X. These omitted variables could include omitted dynamics and/or

other variables not directly explained by the theoretical model. The instruments Z remain

natural instruments for Y, however, if E (ZX) 6= 0, then Z are no longer valid instruments

even if E(Y X) = 0. To see this notice that in the model specified by the researcher,

v = u+Xγ and hence E (Zv) = E (Zu) + γE (ZX) 6= 0 unless, of course, γ = 0. A natural

solution is to realize that E (Zv|X) = 0 and hence, if ey = E (y|X) ; eY = E (Y |X) ; and
eZ = E (Z|X) , then β can be estimated from the model

ey = eY β + ev (1)
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with eZ as instruments. PMD provides an unsupervised method of instrument conditioning by
semiparametrically estimating the Wold representation of the augmented vector of variables

directly in the first step. Thus, the second step in PMD corresponds, in most cases (but not

always), to a conditional version of the GMM step.

Full information techniques, such as maximum-likelihood or recent Bayesian Markov

Chain-Monte Carlo approaches (see, e.g., Lubik and Schorfheide, 2004) achieve the lower

efficiency information matrix bound when the model is correctly specified. Under Gaussian-

ity, the Wold representation completely characterizes the likelihood so that, as the sample

size grows to infinity, PMD approaches this lower efficiency bound as well. In fact, be-

cause covariance-stationarity results in the exponential decay of the Wold coefficients, PMD

estimates are nearly fully efficient in finite samples. In contrast, many models whose full

information estimates require numerical or simulation techniques for their calculation, only

require two simple least-squares steps under PMD (such as estimation of vector autoregres-

sive, moving average models, VARMA, for example).

PMD is in the same class of limited-information estimators as GMM, M-estimators, sim-

ulated method of moments and indirect inference, to cite a few. In addition, a number of

informal minimum distance estimators have been proposed to estimate dynamic macroeco-

nomic models. We review some if these papers briefly to set our paper in context although

we stress that PMD is not limited to applications in macroeconomics but rather is a general

method of estimation. Smith (1993) uses indirect inference1 methods and simulates data

1 See Gourieroux and Monfort’s (1997) monograph for a more detailed discussion of indirect inference
and other related simulation based estimators.
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from a dynamic stochastic model for different parameter values and then chooses the para-

meter values whose pseudo-likelihood minimizes the distance with the likelihood of a VAR

estimated from the data. Naturally, the computational burden of this method is quite sub-

stantial and hence applicable to models with relatively few parameters. Diebold, Ohanian,

and Berkowitz (1998) instead minimize the distance between the spectrum implied by the

model and that from the data but provide no asymptotic results and resort to the bootstrap

to provide inference. Along the same lines, Sbordone (2002) extends work by Campbell and

Shiller (1987, 1988) and estimates the parameters of the model by minimizing a distance

function based on forecasts from a VAR. Her approach can be applied to higher dimensional

problems, alas, no results are provided on the formal statistical properties of this estimator.

The Wold representation is sometimes referred to as the impulse response representation

and the principle of minimizing the distance between the data’s and the model’s impulse

responses has appeared in a number of recent papers, most recently in Schorfheide (2000)

and Christiano et al. (2005), for example (for an earlier application see Rotemberg and

Woodford, 1997). Briefly, the approach followed in this literature consists in simulating

impulse responses from the economic model and then minimizing the distance between these

and the impulse responses from an identified structural vector autoregression (V AR). These

techniques are unsatisfactory for two main reasons. First, the success of this estimation

strategy depends crucially on the ability to obtain structural impulse responses to the same

fundamental shocks described by the economic model so that the minimum distance step

effectively compares the same type of object. However, as Fernández-Villaverde, Rubio-
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Ramírez and Sargent (2005) discuss, the ability to recover the structural impulse responses of

a model from a V AR is limited to very specific classes of models and depends on the ability

to determine the correct method of identification of the reduced-form residual covariance

matrix. Second, because it is difficult to calculate the covariance matrix of the stacked

vector of impulse responses from a V AR (and to our knowledge almost never done), a

suboptimal weighting matrix and simulation methods are required to estimate and report

standard errors for the parameter estimates that do not have an asymptotic justification and

whose statistical properties are not derived.

In this regard, we would like to stress that PMD is not based on identification of struc-

tural impulse responses nor does it generally consist of minimizing the distance between

responses generated by the data and the model. Instead, PMD minimizes a quadratic func-

tion of uniquely determined reduced-form, semiparametrically estimated impulse response

coefficients and parameters that reflect underlying restrictions of the proposed model rather

than its impulse responses. We now present our method and begin with a brief overview

and examples.

2 Overview

2.1 Motivating Examples

In this section we provide the basic intuition behind PMD by stripping off the technical

assumptions and derivations presented in subsequent sections. Suppose we want to estimate

an ARMA(1,1) model on a sample of T observations of the variable yt
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yt = π1yt−1 + εt + θ1εt−1. (2)

Assuming yt is covariance-stationary it has a Wold representation given by

yt =
∞X
j=0

bjεt−j (3)

where we have omitted the deterministic terms for simplicity. Substituting (3) into (2) and

matching coefficients in terms of the εt−j, we obtain the following set of conditions:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

...

bh

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
b(1,h)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

b1

...

bh−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
b(0,h−1)

π1 +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
e

θ1

or more compactly

b(1, h) = b(0, h− 1)π1 + eθ1. (4)

In section 3 we will show that an estimate of b ≡ b(0, h) can be obtained from a least-squares

first-stage

bbT = (Y 0MzX) (X
0MzX)

−1

where Y is a (T − k− h)× (h+ 1) matrix that collects the elements Yt = (yt+h ... yt+1) ;

X is a (T − k − h)× 1 matrix collecting the elements Xt = yt; Mz = I − Z(Z 0Z)−1Z 0 with

7



Z a (T − k− h)× (k+ 1) matrix with elements Zt = (1 yt ... yt−k+1). Section 3 further

shows that

p
(T − k − h)

³bbT − b´ d→ N (0,Ωb)

where

bΩb = bΣv (X 0MzX)
−1
,

that is, the familiar least-squares result with the only wrinkle being that bΣv is an estimate
of the residual variance whose specific form is also described in section 3.

Given the estimates bbT , an estimate of φ = (π1 θ1)
0 can be obtained from the second

step minimum distance problem

min
φ

bQT (φ) = f ³bbT ;φ´0cW f ³bbT ;φ´ (5)

where f
³bbT ;φ´ = nbb(1, h)−bb(0, h− 1)π1 + eθ1o and cW is a weighting matrix to be de-

scribed shortly. The first order conditions of this problem yield the simple least-squares

result

bφT = − h bF 0φcW bFφi−1 h bF 0φcWbb(1, h)i
where

8



bFφ =
³bb (0, h− 1) e

´
cW =

³ bFbbΩb bF 0b´−1
bFb = (0h,1 Ih)−

³bπ1 + bθ1´ (Ih 0h,1)

Given this particular choice of weighting matrix, we show in section 4 that

p
(T − k − h)

³bφT − φ
´

d→ N (0,Ωφ)

where a convenient estimate of the covariance matrix of the parameter estimates is

bΩφ =
h bF 0φcW bFφi−1 .

These two least-squares steps are the essence of PMD. Several results deserve comment.

First, it is easy to see that under the assumption that the εt are i.i.d. Gaussian then PMD

attains the maximum likelihood efficiency lower bound by allowing h → ∞ as the sample

size grows to infinity sufficiently rapidly. However, because in most covariance-stationary

processes the bj decay exponentially to zero quite rapidly, only a rather small value of h

is necessary to quickly approach the asymptotic efficiency bound. Second, we remark that

our two-step PMD estimator only requires two straight-forward least-squares steps for a

model whose likelihood would require numerical techniques for its maximization. Because

the method is directly scalable to vector time series, estimates for V ARMA models can be

obtained in a computationally convenient manner. Third, in practice the optimal weighting
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matrix cW requires estimates of the parameters φ. These can be obtained consistently by

initially setting cW = Ih (the equal-weights estimator, see Cameron and Trivedi, 2005) and

then iterating the estimation with the optimal weights if desired (asymptotic arguments and

Monte Carlo evidence suggests that one iteration is usually sufficient).

The second example that we discuss in this section is based on the hybrid New Keynesian

Phillips curve presented in Galí and Gertler (1999) and which has been extensively cited in

the literature (see Galí, Gertler and López-Salido, 2005 for a rebuttal of several criticisms

and for additional references and citations). The basic specification in Galí and Gertler

(1999) and Galí et al. (2005) is found in expression (1) of the latter paper and reproduced

here with slight change of notation:

πt = λmct + γfEtπt+1 + γbπt−1 + επt (7)

with

λ = (1− ω) (1− θ) (1− βθ) δ−1 (8)

γf = βθδ−1

γb = ωδ−1

δ = θ + ω [1− θ (1− β)]

where πt denotes inflation and mct log real marginal costs, both in deviations from steady-

state; 1−ω is the proportion of firms that optimally reset their prices, 1−θ is the proportion
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of firms that adjust prices in a given period, and β is the discount factor. Assuming rational

expectations and that επt is i.i.d., Galí and Gertler (1999) estimate expression (7) by GMM

using variables dated t− 1 and earlier as instruments. For the purposes of the illustration,

we take no position on the economic justification of the model nor on the adequacy of the

estimation method given the data. Furthermore, we will only concentrate on the task of

estimating the parameters λ, γf , and γb since the structural parameters ω, θ, β can then be

estimated directly by classical minimum distance.2

Define y1t = (πt mct)
0 , y2t = xrt, and hence yt = (y1t y2t)

0 ; and εt = (επt εmt εxt)
0 .

Here xrt stands for the exchange rate, a natural predictor of inflation which appears in some

formulations of the Phillips curve in open economy models (see, e.g. Battini and Haldane,

1999) but not in the current Galí and Gertler (1999) formulation. We use xrt to illustrate

the principle that variables omitted by the candidate model can be easily incorporated into

the formulation of the PMD estimator. If yt is covariance-stationary so that

yt =
∞X
j=0

B0jεt−j

with

2 That is, since expressions (8) can be collapsed into φ =
¡
λ γf γb

¢0
= g (ω,β, θ) and Ωφ

is available, then an estimate of ω, β, and θ can be obtained from the solution to the problem
minω,β,θ (φ− g (ω,β, θ))0Ω−1φ (φ− g(ω,β, θ)) .
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Bj =

⎡⎢⎢⎢⎢⎢⎢⎣
bj11 bj12 bj13

bj21 bj22 bj32

bj31 bj32 bj33

⎤⎥⎥⎥⎥⎥⎥⎦
then it is easy to see that

πt =
∞X
j=0

bj11επt +
∞X
j=0

bj12εmt +
∞X
j=0

bj13εxt (9)

mct =
∞X
j=0

bj21επt +
∞X
j=0

bj22εmt +
∞X
j=0

bj23εxt

Substituting expression (9) into the expression for the Phillips curve in (7), we obtain the

following sets of conditions:

bj11 = λbj21 + γfb
j+1
11 + γbb

j−1
11 j ≥ 1 (10)

bj12 = λbj22 + γfb
j+1
12 + γbb

j−1
12 j > 1

bj13 = λbj23 + γfb
j+1
13 + γbb

j−1
13 j > 1

In order to cast the problem in terms of the minimum distance function f(b,φ) of expression

(5), we find it useful to define R1 =
µ
1 0 0

¶
, R2 =

µ
0 1 0

¶
and hence, the

following selector matrices:
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S0 =

µ
0h−1,3 (Ih−1 ⊗R1) 0h−1,3

¶
S1 =

µ
0h−1,3 (Ih−1 ⊗R2) 0h−1,3

¶
S2 =

µ
0h−1,3 0h−1,3 (Ih−1 ⊗R1)

¶
S3 =

µ
(Ih−1 ⊗R1) 0h−1,3 0h−1,3

¶
so that

f (b,φ) = vec(S0B− (S1B S2B S3B) φ)

with φ = (λ γf γb)
0 reflects the distance function associated with the conditions in

expression (9). Given a first stage estimator for b such that
√
T
³bbT − b0´ → N (0,Ωb) ,

then,

bφT = −
³ bF 0φcW bFφ´−1 ³ bF 0φcWvec³S0bB´´ (11)

cW =
³ bFbbΩb bF 0b´−1

bΩφ =
³ bF 0φcW bFφ´−1

where

bFb = vec
³
S0 − bλS1 − bγfS2 − bγbS3´

bFφ = −
µ
I ⊗

µ
S1bB S2bB S3bB ¶¶
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This example serves to highlight an important feature of PMD: by recognizing that xrt can

be of predictive value for πt, not only can one use xrt as an instrument to estimate the

parameters of interest through the impulse response coefficients of the endogenous variables

y1t with respect to the omitted variables in y2t (as is done in the third line of expression (10)),

but also the impulse response coefficients of the endogenous variables y1t are themselves

calculated so as to be orthogonal to y2t and its lags, thus ensuring their consistency against

xrt (which is omitted from the formulation of the Phillips curve) along the lines of the

example discussed in the introduction. This is a main avenue of departure of PMD with

respect to GMM that we now discuss in more detail below.

2.2 PMD vs. GMM

This section highlights the mechanics of how PMD recovers instruments that may become

invalid in a traditional GMM setting. For expositional purposes, we rely on the simplest

univariate example we could think of — the lessons from this example are easily generalized to

more comprehensive, multivariate settings. While we recognize there are methods to detect

problematic instruments in a GMM setting, our objective is different: we want to show

that PMD provides a rather general and unsupervised method of instrument management.

Accordingly, suppose the DGP is characterized by the univariate backward/forward model:

yt = φ1Etyt+1 + φ2yt−1 + εt. (12)

Instead, a candidate rational expectations model has an Euler condition given by
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yt = ρEtyt+1 + ut, (13)

which is misspecified with respect to the DGP. Based on the economic model in (13), any

yt−j; j > 1 would be considered a valid instrument for GMM estimation and hence, an

estimate of ρ would be found with the set of conditions

bρGMM =
Ã
1

T

TX
yt−jyt+1

!−1Ã
1

T

TX
yt−jyt

!
. (14)

It is easy to see that the probability limit of these conditions is

bρGMM p→ φ1 + φ2
γj−1
γj+1

; j ≥ 1

where γj = COV (ytyt−j). Notice that the bias, φ2
γj−1
γj+1

, does not disappear by selecting

longer lags of yt−j as instruments: although γj → 0 as j →∞, γj−1
γj+1

becomes indeterminate

as both the numerator and the denominator are simultaneously going to zero. Additionally,

as j →∞ the correlation of the instrument with the regressor is exponentially decaying to

zero — not only are these instruments invalid, they are increasingly weak. The validity of

the instruments obviously depends on the specification of the DGP, not on the specification

of the proposed economic model.

As long as yt is covariance-stationary the only requirement for PMD is that the MA(∞)

representation of (12) given by
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yt =
∞X
j=0

bjεyt−j

be invertible. PMD would then first estimate the bj by local projections

bbj = Ã 1
T

TX
y0t−jMt−jyt−j

!−1Ã
1

T

TX
y0t−jMt−jyt

!
(15)

where Mt = 1− zt (z0tzt)−1 zt and zt = (1 yt−1 ... yt−k+1) . In the second stage, notice that

the mapping of the coefficients bj and the coefficient ρ implied by the candidate model is

bj = ρbj+1

for j ≥ 1 so that an estimate of ρ can be obtained directly from the local projections by

substituting expression (15) into the previous expression and noticing that the common term³
1
T

PT y0t−jMt−jyt−j
´−1

cancels out on both sides to obtain

bρPMD =
Ã
1

T

TX
y0t−jMt−jyt+1

!−1Ã
1

T

TX
y0t−jMt−jyt

!
(16)

which is the PMD counterpart to expression (14), repeated here for convenience

bρGMM =
Ã
1

T

TX
yt−jyt+1

!−1Ã
1

T

TX
yt−jyt

!
.

The probability limit of bρPMD is readily seen to be φ1, that is, PMD provides an unbiased
estimator for the forward-looking term despite model misspecification. The explanation for

this result is that PMD turns out to be equivalent to pre-treating the candidate instruments
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and the endogenous variables by conditioning on the predetermined (and/or on omitted)

variables, so that the pre-treated instruments become valid with respect to the conditional

misspecified model. Expression (16) is equivalent to the GMM expression in (14) if one were

to first regress yt, yt+1, and yt−j on a constant and yt−j−1, ..., yt−j−h and hence replace yt,

yt+1, and yt−j in (14) with the residuals corresponding to the pre-treatment regressions of

yt, yt+1, and yt−j just described.

Not every situation will be resolved as satisfactorily with PMD. Obviously, there is no

hope of addressing omitted variable bias and invalid/weak instrument problems when the

omitted information is unavailable or unknown. In such situations, it is difficult to spec-

ulate whether PMD would dominate GMM. However, in general GMM relies on finding

valid instruments in raw format whereas PMD can, in some cases, recover instruments that

would otherwise be invalid while still providing the necessary asymptotic results. In addi-

tion, by carefully modelling the dynamic structure of the problem, we will see that PMD can

be significantly more efficient than GMM. In the following sections we develop the neces-

sary asymptotic results for PMD, beginning with the semiparametric estimator of the Wold

coefficients. Then we establish the conditions under which the minimum-distance step is con-

sistent and asymptotically normal. Monte Carlo experiments and an empirical application

conclude the paper.
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3 First-Step: Local Projections

In this section we show that a semiparametric estimate of the Wold coefficients collected

in b = vec(B) based on local projections (Jordà, 2005) is consistent and asymptotically

normal under rather general assumptions. There are several reasons why we rely on local

projections rather than the more traditional inversion of a finite order VAR. First, as we

will show momentarily, estimates based on local projections are consistent even for data

generated by infinite order processes. This is advantageous since many macroeconomic

models often have implicit reduced forms that are VARMA(p,q) representations. Second,

Jordà (2005) shows that local projections are more robust (relative to VARs) to several types

of misspecification. Third, the results derived here are based on linear local projections and

hence are a natural stepping stone for extensions based on alternative nonlinear and/or

nonparametric specifications, specifications that we will investigate in a different paper and

which are, for the most part, infeasible or impractical in VARs.

Local projections have the advantage of providing a simple, closed-form, analytic ex-

pression for the covariance matrix of impulse response coefficients across time and across

variables. The ability to arrive at such an expression simplifies considerably the derivation

of a closed-form, analytic expression for the covariance matrix of the model’s parameter

estimates with good efficiency properties. Expressions derived by inverting a VAR require

delta method approximations and are analytically far too complex to be useful.

We begin by deriving conditions that ensure consistency of the local projection estimator

and then follow with the derivation of asymptotic normality.
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3.1 Consistency

Suppose

yt =
∞X
j=0

Bjεt−j (17)

where for simplicity, but without loss of generality, we omit deterministic components (such

as a constant and/or a deterministic time trend) then from the Wold decomposition theorem

(see e.g. Anderson, 1994):

(i) E(εt) = 0 and εt are i.i.d.

(ii) E(εtε0t) = Σε
r×r

(iii)
P∞

j=0 kBjk <∞ where kBjk2 = tr(B0jBj) and B0 = Ir

(iv) det {B(z)} 6= 0 for |z| ≤ 1 where B(z) =P∞
j=0Bjz

j

then the process in (17) can also be written as:

yt =
∞X
j=1

Ajyt−j + εt (18)

such that,

(v)
P∞

j=1 kAjk <∞

(vi) A(z) = Ir −
P∞

j=1Ajz
j = B(z)−1

(vii) det{A(z)} 6= 0 for |z| ≤ 1.
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Jordà’s (2005) local projection method of estimating the impulse response function is

based on the expression that results from simple recursive substitution in this V AR(∞)

representation, that is

yt+h = A
h
1yt +A

h
2yt−1 + ...+ εt+h +B1εt+h−1 + ...+Bh−1εt+1 (19)

where:

(i) Ah1 = Bh for h ≥ 1

(ii) Ahj = Bh−1Aj +A
h−1
j+1 where h ≥ 1; A0j+1 = 0; B0 = Ir; and j ≥ 1.

Now consider truncating the infinite lag expression (19) at lag k

yt+h = A
h
1yt +A

h
2yt−1 + ...+A

h
kyt−k+1 + vk,t+h (20)

vk,t+h =
∞X

j=k+1

Ahjyt−j + εt+h +
h−1X
j=1

Bjεt+h−j.

In what follows, we show that least squares estimates of (20) produce consistent estimates

for Ahj for j = 1, ..., k, in particular A
h
1 , which is a direct estimate of the impulse response

coefficient Bh. We obtain many of the derivations that follow by building on the results

in Lewis and Reinsel (1985), who show that the coefficients of a truncated V AR(∞) are

consistent and asymptotically normal as long as the truncation lag grows with the sample

size at an appropriate rate.
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More general assumptions that allow for possible heteroskedasticity in the εt or on their

mixing properties are possible. The key elements required are for the yt to have a, possibly

infinite-order, VAR representation (18) whose coefficients die-off sufficiently quickly; and for

the εt to be sufficiently well-behaved (i.e., a white noise or a martingale difference sequence

assumption) so that least-squares estimates from the truncated expression in (20) are as-

ymptotically normal based on an appropriate law of large numbers (for a related application

see, e.g. Gonçalves and Kilian, 2006). Under these more general conditions however, the

ability to map the infinite VAR representation (18) into the infinite VMA representation (17)

is not guaranteed. This is not a major impediment since impulse responses (understood as

linear forecasts rather than conditional expectations) can still be calculated from estimates

of Ah1 . On the other hand, when one assumes the εt are Gaussian, we will show below that

PMD is asymptotically equivalent to maximum likelihood. Because we feel it is instructive

to retain this point of reference (which we illustrate in the Monte Carlo exercises) and to

preserve the duality between the VAR and VMA representations, we present our results in

a more traditional setting by maintaining the slightly stricter assumptions (i)-(vii) in this

paper and leave more general assumptions for later research.

Let Γ(j) ≡ E(yty0t+j) with Γ(−j) = Γ(j)0. Further define:

(i) Xt,k =
¡
y0t,y

0
t−1, ...,y

0
t−k+1

¢0
that is, the regressors in (20).

(ii) bΓ1,k,h
kr×r

= (T − k − h)−1PT−h
t=k Xt,ky

0
t+h

(iii) bΓk = (T − k − h)−1PT−h
t=k Xt,kX

0
t,k
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Then, the mean-square error linear predictor of yt+h based on yt, ...,yt−k+1 is given by

the least-squares formula

bA
r×kr

(k, h) = ( bAh1 , ..., bAhk) = bΓ01,k,hbΓ−1k (21)

The following theorem provides conditions under which the least-squares estimates forA(k, h) =¡
Ah1 , ..., A

h
k

¢
are consistent.

Theorem 1 Consistency. Let {yt} satisfy (17) and assume that:

(i) E|εitεjtεktεlt| <∞ for 1≤ i, j, k, l ≤ r
(ii) k is chosen as a function of T such that

k2

T
→ 0 as T, k →∞

(iii) k is chosen as a function of T such that

k1/2
∞X

j=k+1

kAjk→ 0 as T, k →∞

Then: °°° bA(k, h)−A(k, h)°°° p→ 0

The proof of this theorem is in the appendix. A natural consequence of the theorem

provides the essential result we need, namely bAh1 p→ Bh.

3.2 Asymptotic Normality

We now show that least-squares estimates from the truncated projections in (20) are as-

ymptotically normal, although for the purposes of the PMD estimator, proving that bAh1 is
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asymptotically normally distributed would suffice. Notice that we can write

bA(k, h)−A(k, h) = ((T − k − h)−1 T−hX
t=k

vk,t+hX
0
t,k

)bΓ−1k
= (T − k − h)−1

"
T−hX
t=k

(Ã ∞X
j=k+1

Ahjyt−j

!
+ εt+h +

h−1X
j=1

Bjεt+h−j

)
X 0
t,k

# bΓ−1k
= (T − k − h)−1

(
T−hX
t=k

Ã ∞X
j=k+1

Ahjyt−j

!
X 0
t,k

)n
Γ−1k +

³bΓ−1k − Γ−1k
´o
+

(T − k − h)−1
(
T−hX
t=k

Ã
εt+h +

h−1X
j=1

Bjεt+h−j

!
X 0
t,k

)n
Γ−1k +

³bΓ−1k − Γ−1k
´o

Hence, the strategy of the proof will consist in showing that the first term in the sum above

vanishes in probability and that the second term converges in probability as follows,

(T − k − h)1/2 vec
h bA(k, h)−A(k, h)i p→

(T − k − h)1/2 vec
"
(T − k − h)−1

(
T−hX
t=k

Ã
εt+h +

h−1X
j=1

Bjεt+h−j

!
X 0
t,k

)
Γ−1k

#
so that by showing that this last term is asymptotically normal, we complete the proof.

Define,

U1T =

(
(T − k − h)−1

T−hX
t=k

Ã ∞X
j=k+1

Ahjyt−j

!
X 0
t,k

)

U∗2T =

(
(T − k − h)−1

T−hX
t=k

Ã
εt+h +

h−1X
j=1

Bjεt+h−j

!
X 0
t,k

)
then

(T − k − h)1/2 vec
h bA(k, h)−A(k, h)i =

(T − k − h)1/2
⎧⎪⎪⎨⎪⎪⎩

vec
£
U1TΓ

−1
k

¤
+ vec

h
U1T

³bΓ−1k − Γ−1k
´i

+vec
£
U∗2TΓ

−1
k

¤
+ vec

h
U∗2T

³bΓ−1k − Γ−1k
´i
⎫⎪⎪⎬⎪⎪⎭
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hence

(T − k − h)1/2 vec
h bA(k, h)−A(k, h)i− (T − k − h)1/2 vec £U∗2TΓ−1k ¤ =

(T − k − h)1/2
⎧⎪⎪⎨⎪⎪⎩
vec

£
U1TΓ

−1
k

¤
+ vec

h
U1T

³bΓ−1k − Γ−1k
´i

+vec
h
U∗2T

³bΓ−1k − Γ−1k
´i

⎫⎪⎪⎬⎪⎪⎭ =

¡
Γ−1k ⊗ Ir

¢
vec

h
(T − k − h)1/2 U1T

i
+n³bΓ−1k − Γ−1k

´
⊗ Ir

o
vec

h
(T − k − h)1/2 U1T

i
+n³bΓ−1k − Γ−1k

´
⊗ Ir

o
vec

h
(T − k − h)1/2 U∗2T

i
Define, with a slight change in the order of the summands,

W1T =
n³bΓ−1k − Γ−1k

´
⊗ Ir

o
vec

h
(T − k − h)1/2 U1T

i
W2T =

n³bΓ−1k − Γ−1k
´
⊗ Ir

o
vec

h
(T − k − h)1/2 U∗2T

i
W3T =

¡
Γ−1k ⊗ Ir

¢
vec

h
(T − k − h)1/2 U1T

i
then, in the next theorem we show that W1T

p→ 0, W2T
p→ 0, W3T

p→ 0.

Theorem 2 Let {yt} satisfy (17) and assume that

(i) E |εitεjtεktεlt| <∞; 1 ≤ i, j, k, l ≤ r
(ii) k is chosen as a function of T such that k

3

T
→ 0, k, T →∞

(iii) k is chosen as a function of T such that

(T − k − h)1/2
∞X

j=k+1

kAjk→ 0; k,T→∞
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Then

(T − k − h)1/2 vec
h bA(k, h)−A(k, h)i p→

(T − k − h)1/2 vec
"(
(T − k − h)−1

T−hX
t=k

Ã
εt+h +

h−1X
j=1

Bjεt+h−j

!
X 0
t,k

)
Γ−1k

#

The proof is provided in the appendix. Now that we have shown that W1T , W2T , and

W3T vanish in probability, all that remains is to show that

AT ≡ (T − k − h)1/2 vec
"
(T − k − h)−1

(
T−hX
t=k

Ã
εt+h +

h−1X
j=1

Bjεt+h−j

!
X

0
t,k

)
Γ−1k

#
d→

N(0,ΩA) with ΩA =
¡
Γ−1k ⊗ Σh

¢
; Σh =

Ã
Σε +

h−1X
j=1

BjΣεB
0
j

!

Since, vec
h bA(k, h)−A(k, h)i p→ AT , andAT

d→ N(0,ΩA), then we will have vec
h bA(k, h)−A(k, h)i d→

N(0,ΩA). We establish this result in the next theorem.

Theorem 3 Let {yt} satisfy (17) and assume

(i) E|εitεjtεktεlt| <∞; 1≤ i, j, k, l ≤ r
(ii) k is chosen as a function of T such that

k3

T
→ 0, k, T →∞

Then
AT

d→ N(0,ΩA)

The proof is provided in the appendix.

In practice, we find it convenient to estimate responses for horizons 1, ..., h jointly as

follows. Define,

(i) Xt−1,k
r(k−1)×1

≡ ¡10,y0t−1, ...,y0t−k+1¢0 where 1 is a vector of ones for the constant term.
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(ii) Yt,h
rh×1
≡ ¡y0t+1, ...,y0t+h¢0

(iii) Mt−1,k
1×1

≡ 1−PT−h
t=k X

0
t−1,k

³PT−h
t=k Xt−1,kX

0
t−1,k

´−1
Xt−1,k

(iv) bΓ1|k
r×r
≡ (T − k − h)−1PT−h

t=k ytMt−1,ky0t

(v) bΓ1,h|k
r×rh

≡ (T − k − h)−1PT−h
t=k ytMt−1,kY 0t,h

Hence, the impulse response coefficient matrices for horizons 1 through h can be jointly

estimated in a single step with

bΓ01,h|kbΓ−11|k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bA11
bA21
...

bAh1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bB1
bB2
...

bBh

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= bB(1, h) (22)

Using the usual least-squares formulas, notice that

bB(1, h) = B(1, h) +((T − k − h)−1 T−hX
t=k

ytMt−1,kV 0t,h

)0 bΓ−11|k + op(1) (23)

where Vt,h ≡
¡
v0t+1, ...,v

0
t+h

¢0
;vt+j = εt+j +B1εt+j−1+ ...+Bj−1εt+1 for j = 1, ..., h and the

terms vanishing in probability in (23) involve the terms U1T , U2T , and U3T defined in the

proof of theorem one, which makes use of the condition k1/2
P∞

j=k+1 ||Aj||→ 0 as T, k →∞.

Under the conditions of theorem 2, we can write
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(T − k − h)1/2vec
³ bB(1, h)−B(1, h)´ p→ (24)

(T − k − h)1/2 vec
"(
(T − k − h)−1

T−hX
t=k

Vt,hMt−1,ky0t

)bΓ−11|k
#

from which we can derive the asymptotic distribution under theorems 2 and 3.

Next notice that

(T − k − h)−1
T−hX
t=k

Vt,hV
0
t,h

p→ Σv
rh×rh

(25)

The specific form of the variance-covariance matrix Σv can be derived as follows. Let 0j =

0
j×j
; 0m,n = 0

m×n
;and recall that Vt,h ≡

¡
v0t+1, ...,v

0
t+h

¢0
, specifically,

Vt,h =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

εt+1

εt+2 +B1εt+1

...

εt+h +B1εt+h−1 + ...+Bh−1εt+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= ΨBεt,h,

where

ΨB
rh×rh

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ir 0 ... 0

B1 Ir ... 0

...
... ...

...

Bh−1 Bh−2 ... Ir

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; εt,h
rh×1

=

⎡⎢⎢⎢⎢⎢⎢⎣
εt+1

...

εt+h

⎤⎥⎥⎥⎥⎥⎥⎦ (26)

Then E
£
Vt,hV

0
t,h

¤
= E

£
ΨBεt,hε

0
t,hΨ

0
B

¤
= ΨBE

£
εt,hε

0
t,h

¤
Ψ0
B with E

£
εt,hε

0
t,h

¤
= (Ih ⊗ Σε) and

hence
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E
£
Vt,hV

0
t,h

¤
= Σv = ΨB (Ih ⊗ Σε)Ψ

0
B (27)

and therefore

(T − k − h)1/2 vec
³ bB(1, h)−B(1, h)´ d→ N (0,Ωb)

Ωb
r2h×r2h

=

Ã
Γ−11|k
r×r
⊗ Σv
rh×rh

!

In practice, one requires sample estimates bΓ−11|k and bΣv. With respect to the latter, notice
that the parametric form of expression (27) allows us to construct a sample estimate of Ωb

by plugging-in the estimates bB(1, h) and bΣε.

3.3 Practical Summary of Results in Matrix Algebra

Define yj for j = h, ..., 1, 0, —1, ..., —k as the (T − k− h)× r matrix of stacked observations

of the 1 × r vector y0t+j. Additionally, define the (T − k − h) × r(h + 1) matrix Y ≡

(y0, ...,yh) ; the (T − k − h) × r matrix X ≡ y0; the (T − k − h) × r(k − 1) + 1 matrix

Z ≡ ¡1(T−k−h)×1,y−1, ...,y−k+1¢ and the (T − k − h)× (T − k − h) matrix Mz = IT−k−h −

Z (Z 0Z)−1 Z 0. Notice that the inclusion of y0 in Y is a computational trick that has no other

effect but to ensure that the first block of coefficients is Ir, as is required for the minimum

chi-square step. Using standard properties of least-squares
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bBT = cBT (0, h) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ir

bB1
...

bBh

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= [Y 0MzX] [X

0MzX]
−1 (28)

with an asymptotic variance-covariance matrix for bbT = vec(bBT ), that can be estimated with
bΩB = n[X 0MzX]

−1 ⊗ bΣvo. Properly speaking, the equations associated with B0 = Ir have
zero variance, however, we find it notationally more compact and mathematically equivalent

to calculate the residual variance-covariance matrix as bΣv = bΨB

³
Ih+1 ⊗ bΣ²´ bΨ0

B, and by

extending bΨB in (26) as

bΨB
r(h+1)×r(h+1)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0r 0r 0r ... 0r

0r Ir 0r ... 0r

0r bB1 Ir ... 0r

...
...

... ...
...

0r bBh−1 bBh−2 ... Ir

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(29)

with bBj replacing Bj, bΣ² = cv10cv1
T−k−h ; and bv1 =Mzy1 −Mzy0 bB1.

Thus, it is readily seen that as h, T → ∞, this local projection estimator is equivalent

to the maximum likelihood estimator of the Wold representation of the process yt against

which one could test any candidate VARMA model with a quasi-likelihood ratio test or a

quasi Lagrange multiplier test. We set these issues aside since they can be recast in terms

of the second step of our estimator, which we now discuss.
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4 The Second Step: Minimum Chi-Square

This section begins by deriving consistency and asymptotic normality of bφT obtained from
the second minimum chi-square step in expression (5), and then derives an overall test of

model misspecification based on overidentifying restrictions. The section concludes with a

summary of the main results for practitioners.

4.1 Consistency

Given an estimate of B (and hence b) from the first-stage described in section 3, our objective

here is to estimate φ by minimizing

min
φ

bQT (φ) = f ³bbT ;φ´0cW f ³bbT ;φ´
Let Q0(φ) denote the objective function at b0. The following theorem establishes regularity

conditions under which bφT , the solution of the minimization problem, is consistent for φ0.
Theorem 4 Given that bbT p→ b0, assume that

(i) cW p→W, a positive semidefinite matrix

(ii) Q0(φ) is uniquely maximized at (b0,φ0) = θ0

(iii) The parameter space Θ is compact

(iv) f(b0,φ) is continuous in a neighborhood of φ0 ∈ Θ.

(v) f
³bbT ;φ´ is stochastically equicontinuous.

(vi) Instrument relevance condition: rank [WFφ] = dim (φ) .

(vii) Identification condition: dim(f
³bbT ;φ´) ≥ dim (φ)
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Then

bφT p→ φ0

The proof is provided in the appendix. We remark that one way to derive the consistency

of our estimator is to assume that h is finite (while still meeting the identification condition

(vi)) even as the sample size grows to infinity. In that case, b is finite-dimensional and the

proof of consistency can be done under rather standard regularity conditions. However, it

is more general to assume h, T → ∞ at a certain rate for h/T (an example of such a rate

is given below in the proof of asymptotic normality) that will ensure that the maximum-

likelihood lower efficiency bound is achieved asymptotically. In such situations the proof of

consistency requires bQT (φ) p→ Q0 (φ) uniformly. Andrews (1994, 1995) provides results from

the theory of empirical processes that allow one to verify uniform convergence when bQT (φ)
is stochastically equicontinuous. The conditions under which stochastic equicontinuity will

hold will depend on the specific form of f (.) and other features of each specific application.

Therefore, we prefer to state assumption (v) directly rather than stating primitive conditions

that would allow one to verify stochastic equicontinuity and hence derive the proof more

generically.

4.2 Asymptotic Normality

The proof of asymptotic normality relies on applying the mean value theorem to the first

order conditions of the minimization of the quadratic distance function bQT (φ) . For this
purpose, all that is required is that the weighting matrix cW converge in probability to any

positive semidefinite matrix (for example, cW = I). However, by choosing cW optimally, we
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can find the estimator with the smallest variance. This optimal choice of cW happens to be

the covariance matrix of f
³bbT ;φ´ , which results in bQT (φ) having a chi-squared distribution,

the essential element to derive the test of over-identifying restrictions described in the next

subsection (and the basis for the minimum chi-square method of Ferguson, 1958). For these

reasons, the next theorem is derived for the optimal weighting matrix instead of a generic

cW.
Additionally, we provide conditions that permit h → ∞ with the sample size. The

choice of relative rate at which h → ∞ is chosen conservatively based on the literature

of weak/many instruments (see Stock, Wright and Yogo, 2002, for a survey). The rate is

derived such that the concentration parameter for bbT essentially grows at the same rate as h.
For this reason we need stochastic equicontinuity to hold here as well so that we can apply

a central limit theorem.

Theorem 5 Given the following conditions:

(i) cW p→W, where W = (FbΩbF
0
b)
−1 , a positive semidefinite matrix with Fb as defined in

assumption (vi) below..

(ii) bbT p→ b0 and bφT p→ φ0 from theorems 1 and 4.

(iii) b0 and φ0 are in the interior of their parameter spaces.

(iv) f(bbT ;φ) is continuously differentiable in a neighborhood N of θ0, θ = (b0 φ0)0

(v) There is a Fb and Fφ that are continuous at b0 and φ0 respectively and

sup
b,φ∈N

k∇bf(b;φ)− Fbk p→ 0

sup
b,φ∈N

k∇φf(b;φ)− Fφk p→ 0

(vi) For Fφ = Fφ(φ0), then F
0
φWFφ is invertible.
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(vii) Let λ2 (h) = bb0T (h) (R⊗ I) [(R⊗ I)Ωb (R0 ⊗ I)]−1 (R0 ⊗ I)bbT (h) , such that λ2(h)
hr1r2
−1→

α > 0 for h, T → ∞ and R a selector matrix of the appropriate columns of B given
yt = (y

0
1t y02t)

0

(viii) f
³bbT ;φ´ is stochastically equicontinuous.

(ix) rank[WFφ] = dim (φ).

(x) dim
³
f
³bbT ;φ´´ ≥ dim (φ)

Then:

√
T
³bφT − φ0

´
d→ N (0,Ωφ)

where

Ωφ =
¡
F 0φWFφ

¢−1
(30)

The proof is provided in the appendix. This result follows derivations similar to those for

GMM and general minimum distance problems (see Newey and McFadden, 1994). The

complication here is that we allow bbT to become infinite dimensional as the sample size
grows. This has two consequences: (1) to ensure asymptotic normality we have to appeal

once more to empirical process theory and general stochastic equicontinuity results (see

Andrews, 1994a, b); (2) the condition λ2/ (hr1r2) − 1 → α > 0 is a condition on the

concentration parameter of the bbT that ensures there is sufficient explanatory power in the
bbT as T → ∞ to avoid distortions in the asymptotic distribution due to weak instrument

problems (see Bekker, 1994 and Staiger and Stock, 1997). In practice we advocate for a

more conservative approach — a sequential joint significance test on Bj by determining h to

be the j − 1 horizon for which the null H0 : Bj = 0 is not rejected. It should be clear that
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when the model has no dynamics and there are no exogenous variables y2t, the sequential

test we propose boils down to a type of pre-test of instrument relevance. We also note that

in finite samples, all asymptotic expressions (such as Fφ, Fb and Ωb) can be substituted by

their plug-in small sample counterparts.

We note that Fb is a function of nuisance parameters, φ, and therefore construction

of cW = (FbΩbF
0
b)
−1 in practice requires a consistently estimated bφT to plug-in into the

expression for cW . One option is to realize that setting cW = I delivers consistent estimates

of φ under the conditions of Theorem 4. The covariance matrix of bφT with this choice of
weighting matrix is not that given in expression (30) but rather:

Ωφ =
¡
F 0φFφ

¢−1 ¡
F 0φFbΩbF

0
bFφ
¢ ¡
F 0φFφ

¢−1
The estimator based on the identity matrix is sometimes called the equally-weighted (EW)

minimum distance estimator and sometimes it has been found to have better finite-sample

properties than, for example, optimally weighted GMMestimators (see Cameron and Trivedi,

2005).

Poor small sample properties of optimally weighted minimum distance estimators are

usually caused because the estimate of the optimal weighting matrix is correlated with the

minimum distance function: in the case of GMM, the optimal weighting matrix is estimated

as the average of the squares of the minimum distance function. In the optimally-weighted

PMD estimator, consistency of the nuisance parameter bφT is not required for consistency
of bbT nor bΩb. For this reason, any finite-sample bias will be generated by any correlation
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between the bφT plugged into the expression for Fb and the bφT in the minimum distance

function f
³bbT ; bφT´ . This, of course, is very specific to each application so a general statement

is hard to make although we have found in our Monte Carlo experiments little reason to

be concerned about the optimally weighted PMD versus the equal-weights version. Hence,

optimal-weights PMD can be obtained with a preliminary estimate of φ with equal-weights

PMD which can then be used to construct bFb and to redo the estimation with optimal-
weights. In principle this procedure can be iterated upon although asymptotically there is

no justification to do so, and our own experiments do not suggest more than one iteration

is needed.

4.3 Test of Overidentifying Restrictions

The second stage in PMD consists of minimizing a weighted quadratic distance to obtain

estimates of the parameter vector φ, which contains 2r21 elements. The identification and

rank conditions require that the impulse response horizon h be chosen to guarantee that there

are at least as many relevant conditions as elements in φ. When the number of conditions

coincides with the dimension of φ, the quadratic function bQT (φ) obtains its lower bound of 0.
However, when the number of conditions is larger than the dimension of φ, the lower bound

0 is only achieved if the model is correctly specified, as the sample size grows to infinity. This

observation forms the basis of the test for overidentifying restrictions (or J-test) in GMM

and is a feature that can be exploited to construct a similar test for PMD.

From the proof of asymptotic normality just derived, the appendix shows that a mean-

value expansion delivers the condition
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√
T
³
f
³bbT ;φ´− f (b0;φ)´ = √TFb ³bbT − b0´+ op (1)

from which

√
T
³
f
³bbT ;φ´− f (b0;φ)´ d→ N (0;FbΩbF

0
b)

and hence, when cW is chosen optimally to be cW = (FbΩbF
0
b)
−1 , then the minimum distance

function bQT ³bφT´ = f ³bbT ; bφT´0cW f ³bbT ; bφT´evaluated at the optimum is a quadratic form

of standardized normally distributed random variables and therefore, distributed χ2 with

degrees of freedom dim
³
f
³bbT ;φ´´− dim (φ) .

4.4 PMD: A Summary for Practitioners

Consider a dynamic system characterized by an r × 1 vector of variables yt = (y01t y02t)
0

where y1t and y2t are sub-vectors of dimensions r1 and r2 respectively, with r = r1 + r2.

A researcher specifies a model for the variables in y1t whose evolution can be generally

summarized by a minimum distance function

f (y1t,y1t−1, ..., Ety1t+1, ..., Et+sy1t+s+q;φ) = f (b,φ)

where b = vec (B) , B =
µ
I B1 ... Bh

¶0
and the Bj are the Wold coefficients from the

representation

yt =
∞X
j=0

Bjεt−j.
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We find it helps clarify the method if we further assume that f (b,φ) is of the form

f (b,φ) = g (b)− h (b)φ

for g(b) and h(b) two generic functions, so that we can express all the steps in straight-

forward matrix algebra although this assumption is entirely made for expositional purposes

only.

The following steps summarize the application of PMD to this problem:

First Stage: Local Projections

1. Construct Y = (y0, ...,yh)
0 ;X = y0; Z =

¡
1(T−k−h)×r,y−1, ...,y−k+1

¢
;Mz = I(T−k−h)−

Z (Z 0Z)−1 Z, where yj is the (T −k−h)×r matrix of observations for the vector yt+j.

2. Compute by least squares bbT = vec(bB), where
bB = [Y 0MzX] [X

0MzX]
−1

3. Calculate the covariance matrix of b as bΩb = n
(X 0MzX)

−1 ⊗ bΣvo , where bΣv =
bΨB ³Ih ⊗ bΣε

´ bΨ0
B , bΨB is given by expression (29), and bΣε = (bv01bv1) / (T − k − h) ;

with bv1 =Mzy1 −Mzy0 bB1.
4. Instrument relevance and identification conditions: Given bΩb, construct the Wald sta-
tistic

W (j) = vec
³ bBj´0 ³S0jbΩbSj´−1 vec³ bBj´ d→ χ2r2

where Sj is a selector matrix so that S0jbΩbSj represents the covariance matrix of
vec (Bj) . If the null hypothesis H0 : vec (Bj) = 0 cannot be rejected, set h = j − 1,
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otherwise check j + 1. Given this choice of h, if rank [WFφ] < dim (φ) then a higher

value of h is required but then estimation may suffer from a weak instrument problems

that affect consistency and asymptotic normality of the parameter estimates.

Second Stage: Minimum Chi-Square

5. The minimum distance function of the problem is

bQT (φ) = f ³bbT ;φ´0cW f ³bbT ;φ´
The equal-weights estimator consists on settingcWEW = I, which can be used to obtain

a preliminary estimate of φ

bφEWT =

µ
h
³bbT´0 h³bbT´¶−1µh³bbT´0 g ³bbT´¶

6. Now set cW =
³ bFbbΩb bF 0b´−1 where bΩb has been calculated as in bullet point 3 and

bFb = bGb − bHbbφEWT where

∂g
³bbT´
∂bbT = bGb; ∂h

³bbT´
∂bbT = bHb

Then, the optimal-weights estimate of φ is

bφT = µh³bbT´0cWh³bbT´¶−1µh³bbT´0cWg³bbT´¶
which can be seen as a weighted least-squares estimator, and in the more general case

of a generic f (b;φ) , a non-linear least-squares estimator.

7. The covariance matrix of bφT can be estimated as
bΩφ =

³ bF 0φcW bFφ´−1
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where bFφ = −h
³bbT´

8. and a test of model misspecification can be constructed as

bQT ³bφT´ d→ χ2
dim(f(bbT ;φ))−dim(φ)

when dim(f(bbT ;φ)) > dim (φ) .
5 Monte Carlo Experiments

This section contains two types of experiments. We begin by examining how PMD compares

to maximum likelihood in the estimation of a traditional ARMA(1,1) model. We do this to

highlight the efficiency properties of our estimator and to showcase the fact that the PMD

estimator for this model only requires least-squares algebra even when the maximization of

the likelihood requires numerical techniques. The second experiment compares the PMD

estimator to GMM in the context of the estimation of a traditional Euler equation. The

objective is to examine the way both approaches handle biases generated by possibly omitted

information and to compare the efficiency properties of both estimators.

5.1 PMD vs. ML Estimation of ARMA Models

Although we will be experimenting with univariate ARMA(1, 1) specifications, we find there

is pedagogical value in discussing the more general V ARMA(1, 1) model first so that the

reader can readily generalize the method to V ARMA(p, q) specifications. Accordingly, let

yt be an r × 1 vector that follows the following covariance-stationary process
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yt = Π01
r×r
yt−1 + εt + Θ0

1
r×r
εt−1 (31)

with Wold decomposition,

yt =
∞X
j=0

B0jεt−j (32)

with B0 = Ir. Substituting (32) into (31) and equating terms in εt−j the same way we did

in section 2, we obtain the following conditions:

B01 = IrΠ
0
1 +Θ0

1 (33)

B0j = B0j−1Π
0
1 for j > 1

Consider now stacking the first h of these conditions. To that end, modify the definition of

the selector matrices introduced in section 2 as follows (the star serves to distinguish the

definitions from those in previous sections):

S∗0 = [0rh,r (Ih ⊗ Ir)] ; (34)

S∗1 = [(Ih ⊗ Ir) 0rh,r] ;

S∗2 =

⎡⎢⎢⎣ Ir 0r,rh

0r(h−1),r(h+1)

⎤⎥⎥⎦ .
Defining B =B(0, h), then it should be clear that the conditions in (33) can be expressed as
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S∗0B =S
∗
1BΠ1 + S

∗
2BΘ1

so that the associated minimum-distance function is,

(Ir ⊗ S∗0)bbT − ³Ir ⊗ ³S∗1 bBT S∗2 bBT´´φ = (35)

S∗bbT − g∗(bbT ;φ)
where φ = vec (Π1 Θ1) and estimation consists in finding the solution to the problem

min
λ

cQ∗T (φ) = hS∗bbT − g∗ ³bbT ;φ´i0dW ∗
h
S∗bbT − g∗ ³bbT ;φ´i

with

dW ∗ =
³ bFbbΩb bF 0b´−1

bFb = (Ir ⊗ S∗0)−
³bφ0 ⊗ Irn´

⎛⎜⎜⎝ Ir ⊗ S∗1
Ir ⊗ S∗2

⎞⎟⎟⎠
It should be immediately obvious that once one defines the new selector matrices (34),

estimation of the parameters of the model and calculation of the standard errors can be

done exactly as described in section 4.

The set-up of the Monte Carlo experiments is as follows. We investigate four different

parameter pairs (π1, θ1) for the univariate ARMA(1,1) specification
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yt = π1yt−1 + εt + θ1εt−1.

Specifically: cases (i) and (ii) are two ARMA(1,1) models with parameters (0.25, 0.5) and

(0.5, 0.25) respectively, and cases (iii) and (iv) are a pure MA(1) model with parameters (0,

0.5) and a pure AR(1) model with parameters (0.5, 0), both estimated as general ARMA(1,1)

models. In addition, we generated data from the model

yt = 0.5yt−1 + εt + θεt−1 εt ∼ N (0, 1)

where θ is allowed to vary between 0 and 0.5. Then, to investigate the power of the misspec-

ification test based on the overidentifying restrictions of the second stage, minimum distance

step, we estimated the misspecified model

yt = ρyt−1 + ut

by PMD.

Each simulation run has the following features. We use a burn-in of 500 observations that

we then disregard to avoid initialization problems. We experiment with practical sample sizes

T = 50, 100, and 400 observations (for the misspecification test example, we also use T = 200,

and 300). The lag-length of the first-stage PMD estimator is determined automatically by

AICc.3 For the second stage, we experimented with impulse response horizons h = 2, 5,

3 AICc refers to the correction to AIC introduced in Hurvich and Tsai (1989), which is specifically
designed for autoregressive models. There were no significant differences when using SIC or the traditional
AIC.
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and 10 (although we fix h = 5 for the misspecification example). When h = 2, we have

exact identification, otherwise, the model is overidentified. Although the impulse responses

for the models we simulate generally decay within two to three periods, we experimented

with h = 10 to examine the effects of including many additional conditions, that would seem

not to include any useful information for parameter estimation.

The models in each of cases (i)-(iv) are estimated by both maximum likelihood (MLE) and

PMD and we report Monte Carlo averages and standard errors of the parameter estimates,

as well as Monte Carlo averages of standard error estimates based on the MLE and PMD

formulas. The objective is to ensure that the coverage implied by the analytical formulas

corresponds to the Monte Carlo coverage. 1,000 Monte Carlo replications are used for each

experiment.

Tables 1-4 contain the results for each of cases (i)-(iv). Several results deserve comment.

First, PMD estimates converge to the true parameter values at roughly the same speed

(sometimes faster) as MLE estimates, with estimates being close to the true values even in

samples of 50 observations. However, with 50 observations, we remark some deterioration

of PMD parameter estimates when h = 10, as would be expected by the loss of degrees

of freedom. Second, PMD has analytic standard errors that in samples bigger than 50

observations, virtually coincide with the MLE results and the Monte Carlo averages. Hence,

although technically PMD achieves the MLE lower bound only asymptotically (when h→∞

as T → ∞), these experiments suggest this convergence is quite rapid in practice. Third,

we remark that MLE estimates of the ARMA(1,1) specification for some cases in tables
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3 and 4 failed to converge due to numerical instability — the likelihood is nonlinear in the

parameters and has to be optimized numerically. Rather than redoing these draws somehow,

we preferred to retain the entries blank to highlight that even draws were MLE failed, could

still be estimated by PMD.

Figure 1 contains our misspecification test experiment. Because there is an extensive

literature concerned with the power of the GMM test of overidentifying restrictions, we

felt that similar attention should be devoted to this test and hence leave a more thorough

investigation for further research. Regardless, figure 1 suggests the misspecification test has

good properties. Although the misspecified model is rather close to the true model, the test

has the correct size and its power increases rapidly with the sample size and as the parameter

θ is allowed to grow.

Summarizing, even for relatively small samples, PMD performs comparably to MLE

(with perhaps some caution when selecting large values of h in small samples). We found

that the optimal weighting matrix does a good job at appropriately bringing in information

from impulse responses at long horizons that may be contaminated with significant sample

variation. In our experiments, parameter estimates are very stable to the choice of horizon

h, the only consequence being an expected reduction in standard errors. Finally, our exper-

iments indicate that the test of overidentifying restrictions is well behaved and can provide

a suitable metric of misspecification.

5.2 PMD vs. GMM estimation of Misspecified Models

Suppose a researcher wants to estimate the following Euler equation
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zt = (1− µ)zt−1 + µEtzt+1 + γxt + εt. (36)

An example of such an expression in the New Keynesian hybrid Phillips curve in Galí and

Gertler (1999) and is similar to the expressions we estimate in the next section based on

previous work by Fuhrer and Olivei (2005). By assuming that xt in expression (36) follows

an AR(1) process, we can easily characterize the reduced-form solution as the first order

VAR

⎛⎜⎜⎝ zt

xt

⎞⎟⎟⎠ =

⎛⎜⎜⎝ a11 a12

0 a22

⎞⎟⎟⎠
⎛⎜⎜⎝ zt−1

xt−1

⎞⎟⎟⎠+Rεt. (37)

For example, when a11 = a12 = a22 = 0.5, then µ = 2/3 and γ = 1/3.

Figures 2 and 3 display GMM and PMD estimates based on this model for sample sizes

T = 100 and 400 respectively. 1,000 samples are generated with 500 burn-in observations.

Each sample is then estimated by both GMM and PMD by increasing the number of in-

struments/horizons from two to ten. The top two panels of each figure display estimates of

the parameters µ and γ respectively along with the Monte Carlo averages of the parameter

estimates for each method and the average two standard error bands. The bottom panels

display the joint significance test of the hth horizon impulse responses (used as a gauge of

instrument significance) and the p-value of the misspecification test.

Several results deserve comment. The model is correctly specified with respect to the

DGP and hence both methods provide consistent estimates of the parameters of interest.

There is some slight drift in the parameter µ as the number of included instruments grows
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but this bias is generally rather small. We note that the joint significance test on the

impulse response horizon suggests setting h to the smallest value possible (in this case

2) but even though the p-value is above 0.05 for the smaller sample, we do not observe

significant distortions in the distribution. Further, higher values of h generate considerably

more efficient estimates of µ and γ based on PMD relative to GMM. The p-values of the

misspecification test are approximately in line with the nominal 5% value, with a slight

deviation when more instruments are included. However, the size distortion is kept within

10% in any case.

To investigate the effect of neglected dynamics on the consistency properties of GMM

and PMD, we experiment with a slight variation of expression (37),

⎛⎜⎜⎝ zt

xt

⎞⎟⎟⎠ =

⎛⎜⎜⎝ a11 a12

0 a22

⎞⎟⎟⎠
⎛⎜⎜⎝ zt−1

xt−1

⎞⎟⎟⎠+
⎛⎜⎜⎝ b11 0

0 b22

⎞⎟⎟⎠
⎛⎜⎜⎝ zt−2

xt−2

⎞⎟⎟⎠+Rεt.
Figures 4 and 5 examine what happens to the estimates of µ and γ now that expression (36)

is misspecified with respect to this DGP whenever b11 6= 0 (figure 4) or b22 6= 0 (figure 5).

In figure 4 we allow b11 to take values in the range [−0.5, 0.5] , which affect the persistence

of zt and which clearly should affect estimation of the parameter µ primarily. Since the

process for xt remains an AR(1) and exogenous with respect to the process for zt, it is

tempting to conclude that the parameter γ will be unaffected. We experiment with samples

of size T = 100, and 300 for 1,000 replications and with models estimated with h = 2 both

by GMM and PMD. The top panel displays biases in the estimates of µ as a function of b11

whereas the bottom panel displays the biases for γ instead. The most striking feature is that
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PMD provides virtually unbiased estimates of the coefficients µ and γ even for cases where

the bias for GMM is quite substantial (such as when b11 approaches 0.5 and then the system

has a unit root). It is interesting to note that GMM can also provide biased estimates of

the parameter γ in this instance as well, although for values of b11 close to 0.5, PMD also

presents some significant biases.

Figure 5 repeats this exercise but instead lets b22 vary between [−0.5, 0.5] . Here one

would expect the reverse: very little (if any) bias in estimating µ. In fact this is what

we find. Even for the extreme value of b22 = −0.5, the GMM bias is about 0.12 (PMD

is essentially unbiased for any value of b22). However, biases in estimating γ can be quite

substantial in GMM and practically non-existent in PMD.

These results are broadly consistent with our discussion in section 2: PMD takes on an

agnostic view on the underlying model that generates the data and is fully general with

respect to the directions in which the proposed model is silent (in our case, the assumption

that xt is generated by an AR(1)). These Monte Carlo experiments show how omitted dy-

namics can easily derail traditional GMM estimates whereas PMD provides a natural and

unsupervised method of adjusting previously invalid instruments for neglected serial corre-

lation. Even when the model is correctly specified, PMD provides more efficient estimates,

the reason being that underlying the estimator is a parametric correction for serial correla-

tion that is more effective than a traditional semiparametric Newey-West correction of the

covariance matrix.
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6 Application: Fuhrer and Olivei (2005) revisited

The popular New-Keynesian framework for monetary policy analysis combines mixed, backward-

forward-looking, micro-founded, output (IS curve) and inflation (Phillips curve) Euler equa-

tions with a policy reaction function. This elementary three equation model is the corner-

stone of an extensive literature that investigates optimal monetary policy (see Taylor’s 1999

edited volume and Walsh’s 2003 textbook, chapter 11, and references therein). The stability

of alternative policy designs depends crucially on the relative weight of the backward and

forward-looking elements and is an issue that has to be determined empirically for central

banking is foremost, a practical matter.

However, estimating these relationships empirically is complicated by the poor sample

properties of popular estimators. Fuhrer and Olivei (2005) discuss the weak instrument

problem that characterizes GMM in this type of application and then propose a GMMvariant

where the dynamic constraints of the economic model are imposed on the instruments. They

dub this procedure “optimal instruments” GMM (OI−GMM) and explore its properties

relative to conventional GMM and MLE estimators.

We find it is useful to apply PMD to the same examples Fuhrer and Olivei (2005) analyze

to provide the reader a context of comparison for our method. We did not explore Bayesian

estimates on account that they are not reported in the Fuhrer and Olivei (2005) paper and

felt that, in a large sample sense, they are covered by MLE.4 The basic specification is

4 However, we encourage the reader to check the comprehensive summary in Smets and Wouters (2003)
for more details on applications of Bayesian techniques to estimation of rational expectations models.
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(using the same notation as in Fuhrer and Olivei, 2005):

zt = (1− µ) zt−1 + µEtzt+1 + γEtxt + εt (38)

In the output Euler equation, zt is a measure of the output gap, xt is a measure of the real

interest rate, and hence, γ < 0. In the inflation Euler version of (38), zt is a measure of

inflation, xt is a measure of the output gap, and γ > 0 signifying that a positive output gap

exerts “demand pressure” on inflation.

Fuhrer and Olivei (2005) experiment with a quarterly sample from 1966:Q1 to 2001:Q4

and use the following measures for zt and xt. The output gap is measured, either by the

log deviation of real GDP from its Hodrick-Prescott (HP) trend or, from a segmented time

trend (ST) with breaks in 1974 and 1995. Real interest rates are measured by the difference

of the federal funds rate and next period’s inflation. Inflation is measured by the log change

in the GDP, chain-weighted price index. In addition, Fuhrer and Olivei (2005) experiment

with real unit labor costs (RULC) instead of the output gap for the inflation Euler equation.

Further details can be found in their paper.

Table 5 and figure 6 summarize the empirical estimates of the output Euler equation

and correspond to the results in table 4 in Fuhrer and Olivei (2005), where as table 6 and

figure 7 summarize the estimates of the inflation Euler equation and correspond to the

results in Table 5 instead. For each Euler equation, we report the original GMM, MLE, and

OI−GMM estimates and below these, we include the PMD results based on choosing h as

the first horizon where the joint test of significance for h+1 has a p-value higher than 0.05.
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The top panels of figures 6 and 7 display the estimates of µ and γ in (38) as a function of

h and the associated two-standard error bands. The bottom left panel displays the p-value

of the joint significance test for each horizon and the bottom right panel the p-value of the

misspecification test.

Since the true model is unknowable, there is no definitive metric by which one method

can be judged to offer closer estimates to the true parameter values. Rather, we wish

to investigate in which ways PMD coincides or departs from results that have been well

studied in the literature. We begin by reviewing the estimates for the output Euler equation

reported in table 5 and figure 6. The misspecification test is highly suggestive that the model

is misspecified independent of how output is detrended. Nevertheless, PMD estimates of µ

are very close to the MLE and OI-GMM estimates and with similar standard errors. On the

other hand, PMD estimates for γ are slightly larger in magnitude, of the correct sign and

statistically significant. However, while the estimates of µ appear to be rather stable to the

choice of h, we note that estimates of γ vary quite a bit as displayed in figure 6. Together

with the low p-values of the misspecification test, these two pieces of evidence suggest it is

best not too make strong claims on these results.

Estimates of the inflation Euler equation differ more significantly from the results in

Fuhrer and Olivei (2005). Here too we find that the misspecification test mostly rejects the

model except when real unit labor costs are used instead. Interestingly, we find our estimates

depart most significantly when the HP filtered and Segmented Trend adjusted output version

are used — the same instances when the model is largely rejected. In these cases, γ is of

50



the wrong sign even if it is not statistically significant. Here too, while the estimates on µ

are rather stable, estimates of γ vary quite a bit as a function of h, although they tend to

be almost always negative. Estimates based on real unit labor costs, for which the model

is not rejected by our test, suggest µ attains a slightly higher value than MLE or OI-GMM

instruments (0.67 for the former versus 0.47 and 0.45 for the latter two) but the coefficient of

γ is very similar (0.033 versus 0.050 and 0.054). Since this estimate is borderline significant

and does exhibit some variation as a function of h, some caution in staking hard claims is

warranted.

Several conclusions can be made from this exercise. First, these hybrid Euler specifica-

tions are mostly rejected by the data. This complicates any comparison between methods

but we are heartened by the similarities we find when the misspecification test is not rejected

and also in regard to the estimates of µ and its standard errors. Second, PMD provides use-

ful information to assess the dimensions in which the model may be failing. In addition to

the overall misspecification test, we find that the variability of the parameter estimates with

h is helpful in uncovering which parameter estimates are likely to be problematic. Third,

we feel that reporting the p-value of the joint test of significance for h provides information

that lets the end user assess the quality of the instruments used in an intuitive way.

7 Conclusions

This paper introduces a disarmingly simple and novel, limited-information method of es-

timation. Several features make it appealing: (1) for many models, including some whose

51



likelihood would require numerical optimization routines, PMD only requires simple least-

squares algebra; (2) for many models, PMD approximates maximum likelihood as the sample

grows to infinity; (3) however, PMD is approximately as efficient in small samples because it

accounts for serial correlation parametrically; (4) as a consequence, PMD is generally more

efficient than GMM; (5) PMD provides an unsupervised method of conditioning for unknown

omitted dynamics that in many cases solves invalid instrument problems; (6) PMD provides

many natural statistics with which to evaluate estimates of a model including, an overall

misspecification test, tests on the significance of the instruments, and a way to assess which

parameter estimates are most sensitive to misspecification.

The paper provides basic but generally applicable asymptotic results and ample Monte

Carlo evidence in support of out claims. In addition, the empirical application provides a

natural example of how PMD may be applied in practice. However, there are many research

questions that space considerations prevented us from exploring. Throughout the paper, we

have mentioned some of them, such as the need for a more detailed investigation of the power

properties of the misspecification test in light of the GMM literature; and generalizations of

our mixing and heteroskedasticity assumptions in the main theorems.

Other natural extensions include nonlinear generalizations of the local projection step to

extend beyond the Wold assumption. Such generalizations are likely to be very approach-

able because local projections lend themselves well to more complex specifications. Similarly,

we have excluded processes that are not covariance-stationary, mainly because they require

slightly different assumptions on their infinite representation and the non-standard nature
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of the asymptotics are beyond the scope of this paper. In the end, we hope that the main

contribution of the paper is to provide applied researchers with a new method of estima-

tion that is simpler than many others available, while at the same time more robust and

informative.

8 Appendix

Proof. Theorem 1

Notice that

bA(k, h)−A(k, h) = bΓ01,k,hbΓ−1k −A(k, h)bΓkbΓ−1k =(
(T − k − h)−1

∞X
j=k

vk,t+hX
0
t,k

)bΓ−1k
where

vk,t+h =
∞X

j=k+1

Ahjyt−j + εt+h +
h−1X
j=1

Bjεt+h−j

Hence,

bA(k, h)−A(k, h) =

(
(T − k − h−1)

T−hX
t=k

Ã ∞X
j=k+1

Ahjyt−j

!
X 0
t,k

)bΓ−1k +(
(T − k − h−1)

T−hX
t=k

εt+hX
0
t,k

)bΓ−1k +(
(T − k − h−1)

T−hX
t=k

Ã
hX
j=1

Bjεt+h−j

!
X 0
t,k

)bΓ−1k
Define the matrix norm kCk21 = supl 6=0 l

0C0C0
l0l , that is, the largest eigenvalue of C

0C. When

C is symmetric, this is the square of the largest eigenvalue of C. Then

kABk2 ≤ kAk21 kBk2 and kABk2 ≤ kAk2 kBk21
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Hence °°° bA(k, h)−A(k, h)°°° ≤ kU1Tk°°°bΓ−1k °°°
1
+ kU2Tk

°°°bΓ−1k °°°
1
+ kU3Tk

°°°bΓ−1k °°°
1

where

U1T =

(
(T − k − h−1)

T−hX
t=k

Ã ∞X
j=k+1

Ahjyt−j

!
X 0
t,k

)

U2T =

(
(T − k − h−1)

T−hX
t=k

εt+hX
0
t,k

)

U3T =

(
(T − k − h−1)

T−hX
t=k

Ã
hX
j=1

Bjεt+h−j

!
X 0
t,k

)

Lewis and Reinsel (1985) show that
°°°bΓ−1k °°°

1
is bounded, therefore, the next objective is to

show kU1Tk p→ 0, kU2Tk p→ 0, and kU3Tk p→ 0. We begin by showing kU2Tk p→ 0, which is

easiest to see since εt+h and X 0
t,k are independent, so that their covariance is zero. Formally

and following similar derivations in Lewis and Reinsel (1985)

E
¡kU2Tk2¢ = (T − k − h)−2 T−hX

t=k

E
¡
εt+hε

0
t+h

¢
E(X 0

t,kX
0
t,k)

by independence. Hence

E
¡kU2Tk2¢ = (T − k − h)−1tr(Σ)k {tr [Γ(0)]}

Since k
T−k−h → 0 by assumption (ii), then E

¡kU2Tk2¢ p→ 0, and hence kU2Tk p→ 0.

Next, consider kU3Tk p→ 0. The proof is very similar since εt+h−j, j = 1, ..., h−1 and X 0
t,k

are independent. As long as kBjk2 < ∞ (which is true given that the Wold decomposition

ensures that
P∞

j=0 kBjk <∞, then using the same arguments we used to show kU2Tk
p→ 0,

it is easy to see that kU3Tk p→ 0.
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Finally, we show that kU1Tk p→ 0. The objective here is to show that assumption (iii)

implies that

k1/2
∞X

j=k+1

°°Ahj°°→ 0, k, T → 0

because we will need this condition to hold to complete the proof later. Recall that

Ahj = Bh−1Aj +A
h−1
j+1 ; A

0
j+1 = 0; B0 = Ir; h, j ≥ 1, h finite

Hence

k1/2
∞X

j=k+1

°°Ahj°° = k1/2
( ∞X
j=k+1

kBh−1Aj +Bh−2Aj+1 + ...+B1Aj+h−2 +Aj+h−1k
)

by recursive substitution. Thus

k1/2
∞X

j=k+1

°°Ahj°° ≤ k1/2
( ∞X
j=k+1

kBh−1Ajk+ ...+ kB1Aj+h−2k+ kAj+h−1k
)

Define λ as the max {kBh−1k , ..., kB1k} , then since
P∞

j=0 kBjk <∞ we know λ <∞ so that

k1/2
∞X

j=k+1

°°Ahj°° ≤ k1/2
(
λ

∞X
j=k+1

kAjk+ ...+ λ
∞X

j=k+1

kAj+h−2k+
∞X

j=k+1

kAj+h−1k
)

By assumption (iii) and since λ <∞, then each of the elements in the sum goes to zero as

T, k go to infinity. Finally, to prove kU1Tk p→ 0 all that is required is to follow the same

steps as in Lewis and Reinsel (1985) but using the condition

k1/2
∞X

j=k+1

°°Ahj°°→ 0, k, T → 0

instead.

Proof. Theorem 2
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We begin by showing that W1T
p→ 0. Lewis and Reinsel (1985) show that under assump-

tion (ii), k1/2
°°°bΓ−1k − Γ−1k

°°°
1

p→ 0 andE
³°°°k−1/2 (T − k − h)1/2 U1T°°°´ ≤ s (T − k − h)1/2P∞

j=k+1

°°Ahj°° p→

0; k, T →∞ from assumption (iii) and using similar derivations as in the proof of consistency

with s being a generic constant. Hence W1T
p→ 0.

Next, we show W2T
p→ 0. Notice that

|W2T | ≤ k1/2
°°°bΓ−1k − Γ−1k

°°°
1

°°k−1/2(T − k − h)1/2U∗2T°°
As in the previous step, Lewis and Reinsel (1985) establish that k1/2

°°°bΓ−1k − Γ−1k
°°°
1

p→ 0 and

from the proof of consistency, we know the second term is bounded in probability, which is

all we need to establish the result.

Lastly, we need to show W3T
p→ 0, however, the proof of this result is identical to that

in Lewis and Reinsel once one realizes that assumption (iii) implies that

(T − k − h)1/2
∞X

j=k+1

°°Ahj°° p→ 0

and substituting this result into their proof.

Proof. Theorem 3

Follows directly from Lewis and Reinsel (1985) by redefining

ATm = (T − k − h)1/2 vec
"(
(T − k − h)−1

T−hX
t=k

Ã
εt+h +

h−1X
j=1

Bjεt+h−j

!
X 0
t,k(m)

)
Γ−1k

#

for m = 1, 2, ... and Xt,k(m) as defined in Lewis and Reinsel (1985).

Proof. Theorem 4

Since bbT p→ b0, then
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f
³bbT ;φ´ p→ f (b0;φ)

by the continuous mapping theorem since by assumption (iv), f (.) is continuous. Further-

more and given assumption (i)

bQT (φ) = f ³bbT ;φ´0cW f ³bbT ;φ´ p→ f (b0;φ)
0cW f (b0;φ) ≡ Q0 (φ)

which is a quadratic expression that is maximized at φ0.Assumption (vi) provides a necessary

condition for identification of the parameters (i.e., that there be at least as many matching

conditions as parameters) that must be satisfied to establish uniqueness. As a quadratic

function, Q0(φ) is obviously a continuous function. The last thing to show is that

sup
φ∈Θ

¯̄̄ bQT (φ)−Q0(φ)¯̄̄ p→ 0

uniformly.

For compact Θ and continuous Q0(φ), Lemma 2.8 in Newey and McFadden (1994) pro-

vides that this condition holds if and only if bQT (φ) p→ Q0(φ) for all φ in Θ and bQT (φ) is
stochastically equicontinuous. The former has already been established, so it remains to

show stochastic equicontinuity of bQT (φ).5 Whether bQT (φ) is stochastically equicontinuous
depends on each application and, specifically, on the properties and assumptions made on

the specific nature of f (.) . For this reason, we directly assume here that stochastic conti-

5 Stochastic equicontinuity: For every ², η > 0 there exists a sequence of random variables ∆̂t and a
sample size t0 such that for t ≥ t0, Prob(|∆̂T | > ²) < η and for each φ there is an open set N containing φ

with supφ̃∈N
¯̄̄ bQT (φ̃)− bQT (φ)

¯̄̄
≤ ∆̂T , for t ≥ t0.
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nuity holds and we refer the reader to Andrews (1994a, b) for examples and sets of specific

conditions that apply even when b is infinite dimensional.

Proof. Theorem 5

Under assumption (iii) b0 and φ0 are in the interior of their parameter spaces and by

assumption (ii) bbT p→ b0, bφT p→ φ0. Further, by assumption (iv), f(bbT ;φ) is continuously
differentiable in a neighborhood of b0 and φ0 and hence bφT solves the first order conditions
of the minimum-distance problem

min
φ
f(bbT ;φ)0cW f(bbT ;φ)

which are

Fφ
³bbT ; bφT´0cW f(bbT ; bφT ) = 0

By assumption (iv), these first order conditions can be expanded about φ0 in mean value

expansion

f(bbT ; bφT ) = f(bbT ;φ0) + Fφ ³bbT ;φ´³bφT − φ0

´
where φ ∈ [bφT ,φ0]. Similarly, a mean value expansion of f(bbT ;φ0) around b0 is

f(bbT ;φ0) = f(b0;φ0) + Fb ¡b;φ0¢ ³bbT − b0´
Combining both mean value expansions and multiplying by

√
T, we have

√
T f(bbT ; bφT ) =

√
T f(b0;φ0) + Fφ

³bbT ;φ´√T ³bφT − φ0

´
+

Fb
¡
b;φ0

¢√
T
³bbT − b0´
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Since b ∈ [bbT , b0], φ ∈ [bφT ,φ0] and bbT p→ b0, bφT p→ φ0 then, along with assumption (iv), we

have

Fφ

³bbT ;φ´ p→ Fφ (b0;φ0) = Fφ

Fb
¡
b;φ0

¢ p→ Fb(b0;φ0) = Fb

and hence

√
T f(bbT ; bφT ) = √T f(b0;φ0) + Fφ√T ³bφT − φ0

´
+ Fb
√
T
³bbT − b0´+ op(1)

In addition, by assumption (i) cW p→W and notice that f (b0,φ0) = 0, which combined with

the first order conditions and the mean value expansions described above, allow us to write

−F 0φW
h
Fφ
√
T
³bφT − φ0

´
+ Fb
√
T
³bbT − b0´i = op(1)

Since we know that

√
T
³bbT − b0´ d→ N (0,Ωb)

then

√
T
³bφT − φ0

´
d→− ¡F 0φWFφ¢−1 ¡F 0φWFb¢√T ³bbT − b0´

by assumption (vii) which ensures that F 0φWFφ is invertible and assumption (x) ensures

identification. Therefore, from the previous expression we arrive at

√
T
³bφT − φ0

´
d→ N (0,Ωφ)

Ωφ =
¡
F 0φWFφ

¢−1 ¡
F 0φWFbΩbF

0
bWFφ

¢ ¡
F 0φWFφ

¢−1
Notice that since we are using the optimal weighting matrix, then W = (FbΩbF

0
b)
−1 and

hence, the previous expression simplifies considerably to
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Ωφ =
¡
F 0φWFφ

¢−1
W = (FbΩbF

0
b)
−1
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TABLE 1 – ARMA(1,1) MONTE CARLO EXPERIMENTS: CASE (i) 
 
π1 = 0.25 Θ1 = 0.5      T = 50 
  h = 2 h = 5 h = 10 
  ρ θ ρ θ ρ θ 
PMD Est. 0.23 0.49 0.25 0.44 0.31 0.28 
 SE  0.22 0.20 0.20 0.19 0.20 0.18 
 SE (MC) 0.31 0.27 0.21 0.20 0.22 0.28 
MLE Est. 0.22 0.52 0.23 0.52 0.22 0.53 
 SE 0.21 0.18 0.20 0.18 0.20 0.18 
 SE (MC) 0.27 0.24 0.27 0.23 0.27 0.23 
       T = 100 
  h = 2 h = 5 h = 10 
  ρ θ ρ θ ρ θ 
PMD Est. 0.24 0.50 0.25 0.47 0.27 0.45 
 SE  0.15 0.14 0.15 0.13 0.14 0.13 
 SE (MC) 0.17 0.15 0.15 0.13 0.15 0.15 
MLE Est. 0.25 0.51 0.24 0.51 0.24 0.50 
 SE 0.14 0.13 0.14 0.13 0.14 0.13 
 SE (MC) 0.15 0.13 0.16 0.14 0.14 0.14 
       T = 400 
  h = 2 h = 5 h = 10 
  ρ θ ρ θ ρ θ 
PMD Est. 0.25 0.51 0.25 0.50 0.25 0.50 
 SE  0.07 0.07 0.07 0.06 0.07 0.06 
 SE (MC) 0.08 0.07 0.07 0.07 0.07 0.07 
MLE Est. 0.25 0.50 0.25 0.25 0.24 0.51 
 SE 0.07 0.06 0.07 0.07 0.07 0.06 
 SE (MC) 0.07 0.06 0.07 0.07 0.07 0.06 
 
Notes: 1,000 Monte Carlo replications, 1st-stage regression lag length chosen 
automatically by AICC, SE refers to the standard error calculated with the PMD/MLE 
formula. SE (MC) refers to the Monte Carlo standard error based on the 1,000 estimates 
of the parameter. 500 burn-in observations disregarded when generating the data. 
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TABLE 2 – ARMA(1,1) MONTE CARLO EXPERIMENTS: CASE (ii) 
 
π1 = 0.5 Θ1 = 0.25      T = 50 
  h = 2 h = 5 h = 10 
  ρ Θ ρ θ ρ θ 
PMD Est. 0.46 0.23 0.47 0.17 0.49 0.15 
 SE  0.19 0.20 0.18 0.19 0.18 0.18 
 SE (MC) 0.23 0.23 0.21 0.22 0.20 0.28 
MLE Est. 0.45 0.29 0.44 0.27 0.45 0.29 
 SE 0.20 0.20 0.20 0.21 0.20 0.20 
 SE (MC) 0.21 0.23 0.23 0.25 0.19 0.22 
       T = 100 
  h = 2 h = 5 h = 10 
  ρ Θ ρ θ ρ θ 
PMD Est. 0.48 0.23 0.47 0.23 0.50 0.23 
 SE  0.13 0.14 0.13 0.14 0.12 0.13 
 SE (MC) 0.15 0.16 0.14 0.16 0.13 0.18 
MLE Est. 0.48 0.27 0.47 0.25 0.48 0.26 
 SE 0.14 0.14 0.14 0.15 0.13 0.14 
 SE (MC) 0.14 0.15 0.13 0.15 0.13 0.14 
       T = 400 
  h = 2 h = 5 h = 10 
  ρ Θ ρ θ ρ θ 
PMD Est. 0.50 0.5 0.49 0.26 0.49 0.25 
 SE  0.07 0.07 0.06 0.07 0.06 0.07 
 SE (MC) 0.07 0.08 0.07 0.08 0.06 0.07 
MLE Est. 0.50 0.25 0.49 0.26 0.49 0.26 
 SE 0.07 0.07 0.07 0.07 0.07 0.07 
 SE (MC) 0.06 0.07 0.07 0.07 0.06 0.07 
 
Notes: 1,000 Monte Carlo replications, 1st-stage regression lag length chosen 
automatically by AICC, SE refers to the standard error calculated with the PMD/MLE 
formula. SE (MC) refers to the Monte Carlo standard error based on the 1,000 estimates 
of the parameter. 500 burn-in observations disregarded when generating the data. 
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TABLE 3 – ARMA(1,1) MONTE CARLO EXPERIMENTS: CASE (iii) 
 
π1 = 0 Θ1 = 0.5      T = 50 
  h = 2 h = 5 h = 10 
  ρ θ ρ θ ρ θ 
PMD Est. -0.06 0.56 0.06 0.40 0.16 0.28 
 SE  0.36 0.32 0.27 0.25 0.25 0.22 
 SE (MC) 0.61 0.55 0.28 0.29 0.31 0.37 
MLE Est. - - - - - - 
 SE - - - - - - 
 SE (MC) - - - - - - 
       T = 100 
  h = 2 h = 5 h = 10 
  ρ θ ρ θ ρ θ 
PMD Est. -0.03 0.54 0.04 0.45 0.09 0.41 
 SE  0.24 0.21 0.19 0.18 0.19 0.17 
 SE (MC) 0.33 0.30 0.21 0.21 0.22 0.23 
MLE Est. - - - - - - 
 SE - - - - - - 
 SE (MC) - - - - - - 
       T = 400 
  h = 2 h = 5 h = 10 
  ρ θ ρ θ ρ θ 
PMD Est. -0.01 0.51 0.00 0.50 0.02 0.48 
 SE  0.11 0.10 0.10 0.09 0.10 0.09 
 SE (MC) 0.11 0.10 0.10 0.09 0.09 0.09 
MLE Est. 0.04 0.50 0.00 0.50 0.00 0.50 
 SE 0.10 0.09 0.10 0.09 0.10 0.08 
 SE (MC) 0.10 0.09 0.10 0.09 0.09 0.08 
 
Notes: 1,000 Monte Carlo replications, 1st-stage regression lag length chosen 
automatically by AICC, SE refers to the standard error calculated with the PMD/MLE 
formula. SE (MC) refers to the Monte Carlo standard error based on the 1,000 estimates 
of the parameter. 500 burn-in observations disregarded when generating the data. 
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TABLE 4 – ARMA(1,1) MONTE CARLO EXPERIMENTS: CASE (iv) 
 
π1 = 0.5 Θ1 = 0      T = 50 
  h = 2 h = 5 h = 10 
  ρ θ ρ θ ρ θ 
PMD Est. 0.47 0.04 0.43 0.03 0.54 -0.10 
 SE  0.28 0.30 0.24 0.26 0.21 0.23 
 SE (MC) 0.40 0.40 0.24 0.26 0.24 0.30 
MLE Est. - - - - - - 
 SE - - - - - - 
 SE (MC) - - - - - - 
       T = 100 
  h = 2 h = 5 h = 10 
  ρ θ ρ θ ρ θ 
PMD Est. 0.49 0.01 0.45 0.03 0.53 -0.04 
 SE  0.19 0.20 0.17 0.18 -.15 0.17 
 SE (MC) 0.20 0.20 0.19 0.19 0.18 0.21 
MLE Est. 0.49 -0.02 0.47 0.03 0.47 0.03 
 SE 0.17 0.20 0.18 0.20 0.18 0.20 
 SE (MC) 0.18 0.20 0.19 0.20 0.18 0.20 
       T = 400 
  h = 2 h = 5 h = 10 
  ρ θ ρ θ ρ θ 
PMD Est. 0.50 0.01 0.50 0.00 0.50 0.00 
 SE  0.09 0.10 0.08 0.09 0.08 0.09 
 SE (MC) 0.09 0.10 0.10 0.10 0.10 0.11 
MLE Est. 0.49 0.01 0.49 0.01 0.48 0.02 
 SE 0.09 0.10 0.09 0.10 0.09 0.10 
 SE (MC) 0.09 0.10 0.09 0.10 0.09 0.10 
 
Notes: 1,000 Monte Carlo replications, 1st-stage regression lag length chosen 
automatically by AICC, SE refers to the standard error calculated with the PMD/MLE 
formula. SE (MC) refers to the Monte Carlo standard error based on the 1,000 estimates 
of the parameter. 500 burn-in observations disregarded when generating the data. 
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Table 5 – PMD, MLE, GMM and Optimal Instruments GMM: A Comparison 
 

Estimates of Output Euler Equation: 1966:Q1 to 2001:Q4 
 

( ) ttttttt xEzEzz εγµµ +++−= +− 111  
 

Method Specification µ (S.E.) γ (S.E.) 
 

GMM 
 

HP 
 
0.52 (0.053) 

 
0.0024 (0.0094) 

GMM ST 0.51 (0.049) 0.0029 (0.0093) 
 

MLE 
 

HP 
 
0.47 (0.035) 

 
-0.0056 (0.0037) 

MLE ST 0.42 (0.052) -0.0084 (0.0055) 
 

OI-GMM 
 

HP 
 
0.47 (0.062) 

 
-0.0010 (0.023) 

OI-GMM ST 0.41 (0.064) -0.0010 (0.022) 
 

PMD (h = 27) 
 

HP 
 
0.48 (0.017) 

 
-0.0142 (0.0052) 

PMD (h = 11) ST 0.45 (0.034) -0.030 (0.013) 
 
Notes: zt is a measure of the output gap, xt is a measure of the real interest rate, and hence 
economic theory would predict γ < 0. GMM, MLE, and OI-GMM estimates correspond 
to estimates reported in Table 4 in Fuhrer and Olivei (2005). HP refers to Hodrick-
Prescott filtered log of real GDP, and ST refers to log of real GDP detrended by a 
deterministic segmented trend. 
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 Table 6 – PMD, MLE, GMM and Optimal Instruments GMM: A Comparison 
 

Estimates of Inflation Euler Equation: 1966:Q1 to 2001:Q4 
 

( ) ttttttt xEzEzz εγµµ +++−= +− 111  
 
 

Method Specification µ (S.E.) γ (S.E.) 
 

GMM 
 

HP 
 
0.66 (0.13) 

 
-0.055 (0.072) 

GMM ST 0.63 (0.13) -0.030 (0.050) 
GMM RULC 0.60 (0.086) 0.053 (0.038) 

 
MLE 

 
HP 

 
0.17 (0.037) 

 
0.10 (0.042) 

MLE ST 0.18 (0.036) 0.074 (0.034) 
MLE RULC 0.47 (0.024) 0.050 (0.0081) 

 
OI-GMM 

 
HP 

 
0.23 (0.093) 

 
0.12 (0.042) 

OI-GMM ST 0.21 (0.11) 0.097 (0.039) 
OI-GMM RULC 0.45 (0.028) 0.054 (0.0081) 

 
PMD (h = 10) 

 
HP 

 
0.67 (0.06) 

 
-0.036 (0.027) 

PMD (h = 11) ST 0.64 (0.06) -0.029 (0.019) 
PMD (h = 11) RULC 0.67 (0.07) 0.033 (0.020) 

 
Notes: zt is a measure of inflation, xt is a measure of the output gap, and hence economic 
theory would predict γ > 0. GMM, MLE and OI-GMM estimates correspond to estimates 
reported in Table 5 in Fuhrer and Olivei (2005). HP refers to Hodrick-Prescott filtered 
log of real GDP, and ST refers to log of real GDP detrended by a deterministic 
segmented trend. RULC refers to real unit labor costs. 
 
 



 69

Figure 1  - Power of Misspecification Test 
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Notes: We simulate data from the model 
 

( )1,0   5. 11 Nyy ttttt ≈++0= −− εθεε  
 

where θ = 0; 0.1; 0.2; 0.3; 0.4; and 0.5. Sample sizes are T = 50, 100, 200, 300. and 400 
with 500 initial burn-in observations. Given the generated data, we estimate the model 
 

ttt uyy += −1ρ  
 

by projection minimum distance with impulse response horizon 5, and then calculate the 
chi-square test of misspecification. The experiment is repeated for 1,000 Monte Carlo 
replications and the rejection frequency of the chi-square test at a conventional 95% 
confidence level is reported. 
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Figure 2 – PMD and GMM Comparison when the Euler Equation is Correctly 
Specified. Sample Size = 100 
 

 
 
Notes: The top two panels display the Monte Carlo averages of the parameter estimates 
and associated two standard error bands. The bottom left panel reports the average p-
value of the joint significance test on the coefficients of the hth horizon whereas the 
bottom right panel is the power of the misspecification test at a conventional 95% level. 
The line with squares are the PMD estimates and the two standard error bands associated 
with these estimates are given by the short-dashed lines. GMM estimates are reported by 
the solid line with diamonds and the associated two standard error bands are given by the 
long-dashed lines. 1,000 Monte Carlo replications. The true parameter values are 
obtained by choosing : 
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Figure 3 – PMD and GMM Comparison when the Euler Equation is Correctly 
Specified. Sample Size = 400 
 

 
 
Notes: The top two panels display the Monte Carlo averages of the parameter estimates 
and associated two standard error bands. The bottom left panel reports the average p-
value of the joint significance test on the coefficients of the hth horizon whereas the 
bottom right panel is the power of the misspecification test at a conventional 95% level. 
The line with squares are the PMD estimates and the two standard error bands associated 
with these estimates are given by the short-dashed lines. GMM estimates are reported by 
the solid line with diamonds and the associated two standard error bands are given by the 
long-dashed lines. 1,000 Monte Carlo replications. The true parameter values are 
obtained by choosing : 
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Figure 4 – PMD vs. GMM: Biases Generated by Neglected Dynamics in the 
Endogenous Variable 
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Bias of γ as a function of b(1,1)
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Notes: Bias generated by neglecting second order dynamics in the endogenous variable. 
Notice that when b11 = 0.5 or -0.5 the system has a unit root. Both PMD and GMM 
estimated with the first lags of the endogenous and exogenous variables only. 1,000 
Monte Carlo replications.



 73

Figure 5 – PMD vs. GMM: Biases Generated by Neglected Dynamics in the 
Exogenous Variable 
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Bias in γ as a Function of b(2,2)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

b(2,2)

Bias

Bias PMD T = 100
Bias GMM T = 100
Bias PMD T = 300
Bias GMM T = 300

 
Notes: Bias generated by neglecting second order dynamics in the endogenous variable. 
Notice that when b22 = 0.5 or -0.5 the system has a unit root. Both PMD and GMM 
estimated with  the first lags of the endogenous and exogenous variables only. 1,000 
Monte Carlo replications. 
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Figure 6 – Output Euler PMD Parameter Estimates 
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Figure 7 – Estimates of Inflation Euler Equation 
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