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1. Introduction

Dynamic asset pricing models link the prices of future state-contingent payoffs with sources of risk,

the payoff horizon, and the preferences of economic agents. The stochastic discount factor (SDF,

or pricing kernel) within a dynamic asset pricing model assigns values to future state-contingent

payoffs. Recent work in macroeconomics and asset pricing has shown how to extract information

about the long-run pricing implications of a model by analyzing the permanent component of

the SDF (see, for example, Alvarez and Jermann (2005); Hansen and Scheinkman (2009); Hansen

(2012); Backus, Chernov, and Zin (2013)). As this work has highlighted, long-run implications

provide a powerful and robust means with which to analyze dynamic asset pricing models. Different

assumptions about the preferences of economic agents may, in some cases, result in different short-

run implications but the same long-run implications. Consequently, the long-run implications of

classes of asset pricing models may, in some cases, be inferred by studying just one model.

This paper introduces an econometric framework for extracting information about the permanent

component of the SDF, and the pricing of long-horizon assets, from a dynamic asset pricing model.

The permanent component of the SDF and the long-run implications of the model are jointly deter-

mined by both the functional form of the SDF and the short-run dynamics, or law of motion, of the

variables in the model. The framework introduced in this paper treats the dynamics as an unknown

nuisance parameter. Economic theory is often vague regarding the precise form that the dynamics

should take. In practice, dynamics are usually specified parametrically in a way that makes ana-

lytical solution of the model feasible. Changing the dynamics can change the long-run implications

of a model. One might, therefore, be concerned that the long-run implications of a model may be

sensitive to the specification of the dynamics. Generalized method of moments (GMM) is a popular

technique for estimating asset pricing models because it uses moment restrictions, typically based

on an Euler equation or asset-pricing equation, which are derived from economic theory and places

only weak assumptions on the dynamics of the data. The estimators proposed in this paper are

based on the same Euler equation or asset-pricing equation one would use to estimate a model

with GMM. Rather than placing parametric restrictions on the dynamics, the estimators proposed

in this paper nonparametrically infer, from a time series of data, attributes of the dynamics from

which the long-run implications of the model are obtained.

As shown by Hansen and Scheinkman (2009) and Hansen (2012), information about the permanent

component of the SDF and the pricing of long-horizon assets can be extracted by studying a

positive eigenfunction problem related to an appropriately chosen operator. Their analysis applies

to economies in which there exists a Markov state process whose value at each point in time contains

all the relevant information for valuation. The operator is determined jointly by the SDF and the

dynamics of the state process. The positive eigenfunction characterizes the state dependence of the

prices of long-horizon assets, and its eigenvalue is related to the yield on long-term zero-coupon

bonds and the entropy of the permanent component of the SDF. The entropy of the permanent

component of the SDF is a joint measure of the dispersion of the SDF and persistence of the SDF

process. This metric can be used to place an upper bound on average excess returns on risky assets

relative to long-term bonds (see Alvarez and Jermann (2005)). Whether or not the bound is satisfied
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by historical average returns on equity relative to long-term bonds provides a measure with which

the predictions of the model may be evaluated.

The central focus of this paper is the nonparametric estimation of the positive eigenfunction and

its eigenvalue, the long-term yield, and the entropy of the permanent component. The operator is

unknown when the dynamics are unknown. Extracting the long-run implications of the model given

a time series of data on the state process therefore requires estimating a positive eigenfunction of

an unknown operator. A feasible nonparametric sieve estimator is proposed, inspired by earlier

work of Chen, Hansen, and Scheinkman (2000). Sieve estimation methods are appealing in this

context as they reduce an intractable infinite-dimensional eigenfunction problem to a simple matrix

eigenvector problem. The matrix eigenvector problem is formed by instrumenting the Euler equation

or asset-pricing equation in the model by a growing collection of basis functions. The estimators are

particularly easy to implement: no simulation, optimization or numerical integration is required. By

contrast, the use of kernel-based methods in this context would involve nonparametric estimation of

a conditional density, numerical computation of an integral, and solution of an infinite-dimensional

eigenfunction problem. The sieve estimators may also be used to numerically compute the long-run

implications of fully specified asset pricing models for which analytical solutions are unavailable.

Large sample properties of the estimators are established. The eigenfunction estimators are consis-

tent and converge at reasonable nonparametric rates under appropriate regularity conditions. The

asymptotic distribution and semiparametric efficiency bounds of the eigenvalue, long-term yield

and entropy of the permanent component are derived, and the estimators of these quantities are

shown to be efficient. An approach to performing asymptotic inference is provided. The derivation

of the large sample properties is nonstandard, as the eigenfunction and eigenvalue being estimated

are defined implicitly by an unknown nonselfadjoint operator. Favorable small-sample performance

of the estimators is illustrated in a Monte Carlo study. The large sample theory is first presented

for the case in which the long-run implications of a given SDF are to be investigated. The large

sample theory is then extended to the case in which the researcher first estimates a SDF, either

parametrically or semi/nonparametrically, from a time series of data on returns and the state

process, then estimates the long-run implications of the estimated SDF. Other extensions of the

large sample theory are explored, including nonparametric sieve estimation of marginal utilities in

representative agent models.

To simplify the econometric analysis, the scope of this paper is confined to discrete-time economies

with finite-dimensional stationary state processes. Primitive nonparametric identification condi-

tions for the positive eigenfunction in stationary discrete-time environments are provided. The

conditions are formulated in terms of positivity and integrability conditions on the SDF and the

stationary and transition densities of the state process. The existence and identification conditions

complement those that Hansen and Scheinkman (2009) provide for general continuous-time envi-

ronments. Existence of the positive eigenfunction is guaranteed under the identification conditions.

A version of the long-run pricing result of Hansen and Scheinkman (2009) also obtains under the

identification conditions.
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The estimators are used to study the long-run implications of the consumption capital asset pricing

model (CAPM). High levels of risk aversion are required to generate an estimated entropy of the

permanent component of the SDF that is consistent with historical average returns on equities

relative to long-term bonds. Moreover, when risk aversion is set high enough to rationalize this

excess return the implied long-term yield is much larger than historical long-term yields. The

long-run implications of the consumption CAPM are the same as a wider class of consumption-

based representative agent models, including some habit formation models and limiting versions

of recursive preference models. These empirical findings therefore have broader import beyond the

standard consumption CAPM.

The estimators introduced in this paper cannot, in their present form, be used to study models with

latent state variables. Latent variables are a useful modeling tool for incorporating features such

as stochastic growth and stochastic volatility in an analytically tractable way. For example, the

popular long-run risks model of Bansal and Yaron (2004) specifies that (log) consumption growth

is the sum of a latent predictable component and a stochastic component, in which both the

latent predictable component and stochastic volatility evolve as first-order Gaussian processes. The

estimators introduced in this paper may be used to analyze models whose state processes exhibit

time-variation in growth, conditional volatility, and other nonlinearities provided these features are

state-dependent (instead of latent). Allowing for nonlinear, state-dependent dynamics goes some

way to incorporate features that might otherwise be modeled by latent processes. So although

the scope of the estimators is confined to models with observable variables, the restrictions this

imposes on the dynamics the observable variables is less severe than it may first appear. Moreover,

the version of the long-run pricing result presented in this paper applies equally to models with

latent state variables, and the sieve approach may be used to numerically calculate the long-run

implications of fully specified models with latent state variables.

The remainder of the paper is structured as follows. Section 2 discusses three other nonparametric

eigenfunction problems in economics that the research developed in this paper could be used to

analyze. Section 3 reviews the decomposition of the SDF into its permanent and transitory com-

ponents using the positive eigenfunction and its eigenvalue, and introduces other quantities to be

studied. Identification and a version of the long-term pricing result are presented in Section 4. The

nonparametric sieve estimators are introduced in Section 5, and their large sample properties are

derived. Section 6 discusses extension of the large sample theory to cover estimated SDFs, more

general SDFs, and nonparametric sieve estimation of marginal utilities. Section 7 examines the

performance of the estimators in a Monte Carlo exercise. Section 8 studies the consumption CAPM

using the estimators introduced in this paper, and Section 9 concludes. An appendix contains

supplementary results and all proofs.

2. Nonparametric eigenfunction problems in economics

The identification conditions, estimators, and large sample theory developed in this paper have

broader application to nonparametric identification and estimation of economic models. Three
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other applications, namely nonparametric Euler equations, household consumption models, and

transitory misspecification of asset pricing models, are now briefly outlined.

2.1. Nonparametric Euler equations. The Euler equation within consumption-based asset pric-

ing models places restrictions on the comovement of asset returns and the marginal utility of

consumption of economic agents. Such restrictions have been the basis for a vast literature on

estimating consumption-based asset pricing models from time series of asset returns and consump-

tion data. Recent work has shown that marginal utility of consumption may be represented as a

positive eigenfunction of an appropriately chosen operator. This eigenfunction representation pro-

vides an alternative framework in which to study nonparametric identification and estimation of

semi/nonparametric consumption-based asset pricing models.

Let MUht denote the marginal utility of consumption of agent h at time t. Consider an economy in

which the gross return on asset i from time t to t + 1, denoted Ri,t+1, is determined by the Euler

equation

(1) MUht = E[βMUht+1Ri,t+1|Iht ]

where β > 0 is a time-preference parameter, and Iht is the information set of the agent at time t.

Assume MUht is a function (known to the agent/s but unknown to the econometrician) of a vector

of explanatory variables Xh
t

MUht = MU(Xh
t )

and that the explanatory variables belong to the agent’s information set, i.e. σ(Xh
t ) ⊆ Iht . By

iterated expectations, the Euler equation (1) can be rewritten as

(2) E[MU(Xh
t+1)Ri,t+1|Xh

t ] = β−1MU(Xh
t ) .

Expression (2) defines (MU,β) as the solution to nonparametric eigenfunction problem

(3) TiMU = β−1MU

where Tif(Xh
t ) = E[f(Xh

t+1)Ri,t+1|Xh
t ]. Marginal utility of consumption is typically assumed to be

positive, in which case MU is a positive eigenfunction of Ti.

Linton, Lewbel, and Srisuma (2011) and Escanciano and Hoderlein (2012) use this positive eigen-

function representation of marginal utility to analyze identification in representative agent models.1

Chen, Chernozhukov, Lee, and Newey (2013a) use a similar eigenfunction representation to provide

nonparametric identification conditions in a representative agent model with external habit forma-

tion. The eigenfunction representation of marginal utility of consumption does not appear to have

been used to study heterogeneous-agent models to date.

The sieve estimators introduced in this paper extend to the nonparametric estimation of the mar-

ginal utility function MU and time-preference parameter β of a representative agent, given a time

series of data on {(Xt, Ri,t+1)} (see Section 6.3 for further details). This sieve-based approach is

an alternative to the kernel-based procedure introduced in Linton, Lewbel, and Srisuma (2011).

1This approach also has some similarities with Ross (2013), who nonparametrically recovers the pricing kernel from
panels of option prices by solving a positive eigenvector problem.



6 CHRISTENSEN

That the same pair (MU,β) are the solution to (3) for each asset i for which the Euler equation

holds provides a source of over-identifying restrictions with which to test the model in both the

representative- and heterogeneous-agent cases.

2.2. Household consumption models. Eigenfunction techniques may also be used to study

semiparametric Euler equations. Consider a semiparametric variant of the preceding model, in

which MUht is of the form

(4) MUht = [Cht ]−γv(Zht )

where Cht is the consumption of household h at time t, Zht is a vector of explanatory variables, and

v is a positive function. Attanasio and Weber (1993, 1995) use a model of this form to estimate

preference parameters from household-level panel data. In their treatment, the function v is used

to correct for the effect that a household’s demographic structure may have on the marginal utility

of a given level of consumption expenditure. A common approach for estimating these models from

household-level panel data is to (i) assume a parametric form for v, (ii) log linearize the Euler

equation, and (iii) estimate the log-linearized model by a panel instrumental variables regression.

Marginal utility of the form (4) could equally be a heterogeneous-agent variant of the semipara-

metric consumption CAPM with external habit formation studied by Chen and Ludvigson (2009)

and Chen, Chernozhukov, Lee, and Newey (2013a). The function v would represent an external

habit formation component in this interpretation of (4). The identification conditions, estimators

and large sample theory developed in this paper may be extended to provide an alternative means

with which to study nonparametric identification and estimation of these models.

The function v may be represented as the positive eigenfunction of an operator related to the Euler

equation. Substituting MUht of the form (4) into the Euler equation (1) yields

(5) [Cht ]−γv(Zht ) = E[β[Cht+1]−γv(Zht+1)Ri,t+1|Iht ] .

Let Ght+1 = Cht+1/C
h
t denote the growth in consumption of household h from time t to time t+ 1.

When σ((Cht , Z
h
t )) ⊆ Iht , the Euler equation (5) can be rewritten as

E[(Ght+1)−γRi,t+1v(Zht+1)|Zht ] = β−1v(Zht ) .

Therefore, (v, β−1) are the solution to the eigenfunction problem:

(6) Ti,hv = β−1v

where Ti,hf(Zht ) = E[(Ght+1)−γRi,t+1f(Zht+1)|Zht ]. The same (v, β−1) must solve the eigenfunction

relation (6) for each household h and asset i, providing a source of overidentifying restrictions.

2.3. Diagnosing transitory misspecifications in asset pricing models. The recent literature

on extracting the long-run implications of asset pricing models has highlighted the fact that classes

of asset pricing model may yield the same long-run implications but different short-run implications

(see, e.g., Bansal and Lehmann (1997); Hansen (2012); Hansen and Scheinkman (2013); Backus,

Chernov, and Zin (2013)). This line of research may also be used to study transitory misspecifica-

tions of SDFs in asset pricing models.
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Let the economy be characterized by discrete-time Markov state process {Xt} and consider SDF

misspecification of the form

(7) m(Xt, Xt+1) = αmmis(Xt, Xt+1)
h(Xt+1)

h(Xt)

where m is the true SDF and mmis is the misspecified SDF used by the econometrician. The

constant α > 0 in expression (7) plays the role of a discount rate distortion, and the function h > 0

captures transitory misspecification of the SDF. Hansen (2012) shows that both m and mmis will

have the same permanent component, but different transitory components. If α = 1 then m and

mmis will imply the same long-run rate of return. If h = 1 then both m and mmis will share the

same positive eigenfunction.

Hansen and Scheinkman (2013) show that the true SDF m may be recovered from the misspecified

SDF mmis by solving a positive eigenfunction problem. Assume assets are priced using the true

SDF m, i.e.

(8) E [m(Xt, Xt+1)Ri,t+1|Xt] = 1 .

Substitution of (7) into (8) yields

E [mmis(Xt, Xt+1)Ri,t+1h(Xt+1)|Xt] = α−1h(Xt) .

The transitory adjustment h and multiplicative constant α are therefore the solution to the positive

eigenfunction problem

(9) Tih = α−1h

where Tif(Xt) = E[mmis(Xt, Xt+1)Ri,t+1f(Xt+1)|Xt]. The techniques developed in this paper may

be applied to study nonparametric identification and estimation of (h, α) from a time-series of

data on (Xt, Ri,t+1), thereby providing a means with which to diagnose transitory misspecifica-

tions of SDFs. Over-identifying restrictions are again implicit since the same (h, α) must solve the

eigenfunction relation (9) for each asset i for which (8) holds.

3. Review of the long-run implications of dynamic asset pricing models

This section briefly reviews the positive eigenfunction problem and its relation to the long-run

implications of asset pricing models, as exposited by Hansen and Scheinkman (2009) and Hansen

(2012). The connection between these quantities and other metrics developed by Alvarez and Jer-

mann (2005) and Backus, Chernov, and Zin (2013) is also discussed.

3.1. Model. Consider a class of economy characterized by a discrete-time (first-order) Markov

state process {Xt} defined on a complete probability space (Ω,F , {Ft},P), where time is indexed

by t ∈ Z and where Ft = σ(Xt, Xt−1, . . .) denotes the completion of the σ-algebra generated by

{Xt, Xt−1, . . .}. Let {Xt} have support X ⊆ Rd. Assume further that in this economy the date-t
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price of a claim to the date-(t+ τ) state-dependent payoff Zt+τ is given by

(10) E

[(
t+τ−1∏
s=t

m(Xs, Xs+1)

)
Zt+τ

∣∣∣∣∣Xt

]
for some positive measurable function m : X × X → R+, for all t ∈ Z and τ ≥ 1. The function m

will be referred to generically as the SDF. The sequence {. . . ,m(Xt−1, Xt),m(Xt, Xt+1), . . .} forms

a stochastic process called the SDF process, which is denoted {m(Xt, Xt+1)}.

3.1.1. Example: Consumption CAPM. Consider the consumption CAPM with complete, friction-

less markets and a representative agent who maximizes, subject to a budget constraint, expected

utility given by ∑
s≥0

βsE[u(Ct+s)|It]

where It is the information set at time t, Ct+s is consumption of a representative good at date t+s,

and β is a time preference parameter. The SDF is given by

m(Xt, Xt+1) = β
u′(Ct+1)

u′(Ct)
.

When u(c) = (1− γ)−1(c1−γ − 1) the SDF takes the familiar form

m(Xt, Xt+1) = βG−γt+1

where Gt+1 = Ct+1/Ct is aggregate consumption growth and γ is the coefficient of relative risk

aversion. Let {Xt} be a strictly stationary and ergodic Markov state process and let It = σ(Xt).

The consumption CAPM falls within the scope of the analysis of this paper when Gt = g(Xt−1, Xt)

for some known function g : X × X → R. For instance, one might take Xt = (Gt, Y
′
t )′.

3.1.2. Example: External habit formation. Following Abel (1990, 1999) and Gaĺı (1994), consider

an environment with complete, frictionless markets and a representative agent who maximizes,

subject to a budget constraint, expected utility given by∑
s≥0

βsE[u(Ct+s, vt+s)|It]

where vt+s is a benchmark level of consumption which the agent takes as exogenous. When

u(ct, vt) =
(ct/vt)

1−γ − 1

1− γ
, vt = Cγ0t C

γ1
t−1

the SDF is of the form

m(Xt, Xt+1) = βGλt+1G
α
t

where λ and α are functions of risk aversion γ and the consumption externality parameters γ0 and

γ1. This model falls within the scope of the analysis in this paper when {Xt} is a strictly stationary

and ergodic Markov state process, It = σ(Xt) and Gt = g(Xt) for some known g : X → R.

3.2. The principal eigenpair. As described in Hansen and Scheinkman (2009), the restriction

of equation (10) to payoffs of the form Zt+τ = ψ(Xt+τ ) for suitable ψ : X → R defines a collection
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of linear operators {Mτ : τ ≥ 1}.2 For each τ ≥ 1, the operator Mτ is defined as

(11) Mτψ(x) = E

[(
t+τ−1∏
s=t

m(Xs, Xs+1)

)
ψ(Xt+τ )

∣∣∣∣∣Xt = x

]
.

Given a payoff function ψ, the operator Mτ assigns a date-t price to a claim to the date-(t + τ)

state-dependent payoff ψ(Xt+τ ). For example, if ι(x) = 1 for all x ∈ X then Mτ ι(Xt) is the date-t

price of a τ -period zero-coupon bond.

As {Xt} is a Markov process, the pricing operators factorize as Mτ = Mτ
1 for each τ ≥ 1. Let

M := M1 denote the 1-period pricing operator, i.e.

Mψ(Xt) = E[m(Xt, Xt+1)ψ(Xt+1)|Xt] .

A function φ is an eigenfunction of the collection {Mτ : τ ≥ 1} with eigenvalue ρ if

(12) Mτφ = ρτφ

for all τ ≥ 1. If, in addition, φ is positive then φ is referred to as the principal eigenfunction, ρ is

the principal eigenvalue, and (ρ, φ) are the principal eigenpair.

Hansen and Scheinkman (2009) and Hansen (2012) show that principal eigenpairs may be used to

decompose the SDF into its permanent and transitory components. That is,

m(Xt, Xt+1) = MP
t,t+1M

T
t,t+1

where the permanent component of the SDF is

MP
t,t+1 = ρ−1φ(Xt+1)

φ(Xt)
m(Xt, Xt+1)

and the transitory component is

MT
t,t+1 = ρ

φ(Xt)

φ(Xt+1)

(cf. Equation (20) in Hansen (2012)).3 The notion of permanent and transitory components em-

ployed here is different from that used in the study of nonstationary time series. For example,

Beveridge and Nelson (1981) additively decompose a nonstationary time series into the sum of a

random walk (martingale) permanent component and a stationary transitory component. In con-

trast, here the SDF process is multiplicatively decomposed into the product of MP
t,t+1 and MT

t,t+1

where the permanent component MP
t,t+1 is a multiplicative martingale: E[MP

t,t+1|Ft] = 1 almost

surely. By the definition of MP
t,t+1, equation (11) may be rewritten as

ρ−τMτψ(x) = E

[(
t+τ−1∏
s=t

MP
s,s+1

)
ψ(Xt+τ )

φ(Xt+τ )

∣∣∣∣∣Xt = x

]
φ(x)

2The set of “suitable” functions ψ : X → R will be defined subsequently.
3The definitions of the permanent and transitory components used here are the same as the definitions in Backus,
Chernov, and Zin (2013), and correspond with what Alvarez and Jermann (2005) define as the growth in the permanent
and transitory components of the pricing kernel process.
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where ρ−τMτ may be interpreted as an horizon-normalized price. Therefore, any differences be-

tween the horizon-normalized prices of claims to distinct future payoffs ψ(Xt+τ ) are due to dif-

ferences between the covariation of the permanent component of the SDF and the scaled payoff

ψ(Xt+τ )/φ(Xt+τ ).

Under stochastic stability and integrability conditions, Hansen and Scheinkman (2009) and Hansen

(2012) obtain a single-factor representation of the prices of long-horizon assets, namely

(13) lim
τ→∞

ρ−τMτψ(Xt) = Ẽ[ψ(X)/φ(X)]φ(Xt)

where Ẽ[·] denotes expectation under a “twisted” probability measure associated with the perma-

nent component. Equation (13) shows that when τ is large, the yield implied by the date-t price of

a claim to ψ(Xt+τ ) is approximately − log ρ, the long-term yield. Moreover, after discounting by ρ,

state-dependence of the price is captured solely through φ(Xt). A restatement of (13) is provided

in Theorem 4.2 below. This theorem shows how to calculate Ẽ[·] in stationary discrete-time en-

vironments, and makes precise the sense in which the limit in (13) holds under the identification

conditions presented in this paper.

3.3. Entropies. The entropy of the permanent component of the SDF is defined as

L(MP
t,t+1) = logE[MP

t,t+1]− E[logMP
t,t+1] .

Backus, Chernov, and Zin (2013) refer to L(MP
t,t+1) as the “long-horizon entropy”. Alvarez and

Jermann (2005) show that

(14) L(MP
t,t+1) ≥ E[logRt+1]− E[logR∞,t+1]

where Rt+1 is the gross return on a risky asset from time t to t+1 and R∞,t+1 is the gross return on a

risk-free bond with infinite maturity from time t to t+1. For an asset pricing model to be consistent

with observed returns on risky assets relative to long-term bonds, its permanent component must

be large enough to satisfy the bound (14). In the stationary discrete-time environment considered

in this paper, the entropy of the permanent component takes the convenient form

(15) L(MP
t,t+1) = log ρ− E[logm(Xt, Xt+1)]

whenever E[log φ(Xt)] and E[logm(Xt, Xt+1)] are finite. Given ρ and m, the premium on risky

assets in excess of long-term bonds may be bounded by

log ρ− E[logm(Xt, Xt+1)] ≥ E[logRt+1]− E[logR∞,t+1]

as a consequence of (14) and (15). By contrast, the entropy of the SDF is defined as

(16) L(m(Xt, Xt+1)) = logE[m(Xt, Xt+1)]− E[logm(Xt, Xt+1)]

and may be used to bound returns relative to short-term risk-free bonds:

(17) L(m(Xt, Xt+1)) ≥ E[logRt+1]− E[logR1,t+1]

where R1,t+1 is the gross return on a one-period risk-free bond from time t to t + 1 (Cochrane,

1992; Bansal and Lehmann, 1997; Backus, Chernov, and Martin, 2011).
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The entropy of the SDF measures the “roughness” or “dispersion” of the SDF, whereas the entropy

of the permanent component measures both the roughness of the SDF and the persistence of the

SDF process {m(Xt, Xt+1)}. This latter point is reflected by the bound (15), which shows that the

entropy of the permanent component may be used to bound the return on risky assets relative to

short-term bonds minus the term premium E[logR∞,t+1]−E[logR1,t+1]. The return on risky assets

relative to short-term bonds depends on the dispersion of the SDF (cf. expression (17)) whereas the

term premium depends on the dynamics of the SDF process. If the SDF is i.i.d. (independent and

identically distributed) each period, then the entropy of the SDF and the entropy of the permanent

component of the SDF are equal and the term premium is zero.

3.4. Robustness. An attractive reason for focusing on the long-run implications of an asset pricing

model is that different models can have the same long-run implications but different short-run

implications. This property was first noted by Bansal and Lehmann (1997), and is explored further

by Hansen (2012), Hansen and Scheinkman (2013) and Backus, Chernov, and Zin (2013). This

robustness property makes the long-run implications of a model a powerful means with which to

analyze dynamic asset pricing models.

Let m and m∗ be two SDFs that differ by the ratio of two transitory terms, i.e.

m∗(Xt, Xt+1) = m(Xt, Xt+1)
f(Xt+1)

f(Xt)

for some positive function f . For instance, m could be the SDF in the consumption CAPM and f

might be an external habit formation term or a term that represents a limiting version of recursive

preferences (Hansen, 2012; Hansen and Scheinkman, 2013). Although the short-run implications

of m and m∗ may differ, the permanent components of m and m∗ will be the same (and so the

entropy of the permanent components of m and m∗ will be the same), and m and m∗ will imply

the same long-term yield. This robustness property means that the long-run implications of classes

of asset pricing models can be inferred from the analysis of one model.

4. Nonparametric identification

Nonparametric identification of the positive eigenfunction φ is a consequence of the law of motion

of the state variables, the form of the SDF, and the space of functions to which the eigenfunction is

assumed to belong. Hansen and Scheinkman (2009) study identification of the positive eigenfunction

in continuous-time economies. They use Markov process theory to derive sufficient conditions for

identification of the positive eigenfunction. This section presents nonparametric identification con-

ditions for the positive eigenfunction in stationary discrete-time economies. The conditions are also

sufficient for existence of the positive eigenfunction. A function-analytic approach is used to estab-

lish identification and existence: existence follows by application of the Perron-Frobenius theorem

for positive integral operators, and identification is established by a version of the Krĕın-Rutman

theorem. A version of the long-term pricing result of Hansen and Scheinkman (2009) holds under

the identification conditions.



12 CHRISTENSEN

Function-analytic methods have been used recently to study identification of positive eigenfunctions

related to other operators in economics. Chen, Chernozhukov, Lee, and Newey (2013a) study non-

parametric identification of a habit formation component in a semiparametric consumption CAPM

using these methods. In ongoing work, Linton, Lewbel, and Srisuma (2011) and Escanciano and

Hoderlein (2012) use related techniques to analyze nonparametric identification of marginal utilities

of consumption in representative agent models. However, in each of these studies the model and

operator analyzed is different from the operator studied here.

4.1. Identification and existence. The conditions presented below are sufficient for nonpara-

metric identification and existence of the positive eigenfunction φ. The conditions are stronger

than required for identification, but are convenient for establishing both identification and the

large sample properties of the estimators. Weaker nonparametric identification and existence con-

ditions are presented in Appendix A. Alternative identification conditions for stationary discrete-

and continuous-time environments are explored in Christensen (2013).

Assumption 4.1. {Xt} and m satisfy the following conditions:

(i) {Xt} is a strictly stationary and ergodic (first-order) Markov process with support X ⊆ Rd

(ii) the stationary distribution Q of {Xt} has density q (wrt Lebesgue measure) s.t. q(x) > 0

almost everywhere

(iii) (X0, X1) has joint density f (wrt Lebesgue measure) s.t. f(x0, x1) > 0 almost everywhere and

f(x0, x1)/(q(x0)q(x1)) is uniformly bounded away from infinity

(iv) m : X × X → R has m(x0, x1) > 0 almost everywhere and E[m(X0, X1)2] <∞ .

Stationarity and ergodicity (Assumption 4.1(i)) is a stronger assumption than the irreducibility

condition of Hansen and Scheinkman (2009). However, the requirement of stationarity is not nec-

essarily restrictive. For example, consumption-based asset pricing models are typically written in

terms of consumption growth to avoid potential nonstationarity in aggregate consumption (Hansen

and Singleton, 1982; Gallant and Tauchen, 1989). Stationarity of the state process is also convenient

for the derivation of the large sample properties of the estimators. Positivity of the joint density and

boundedness of the ratio of joint to marginal densities (Assumptions 4.1(ii) and (iii)) is used both

for identification and to develop the large sample theory. In particular, Assumption 4.1(iii) implies

that {Xt} is geometrically beta-mixing and geometrically rho-mixing. Boundedness of the ratio of

the joint to marginal densities in Assumption 4.1(iii) is violated if {Xt} is constructed by stacking

a higher-order Markov process into a first-order process as the joint distribution of (X0, X1) will be

degenerate. Positivity of the SDF in Assumption 4.1(iv) is in line with the strict positivity of the

SDF process assumed for identification in Hansen and Scheinkman (2009). Positivity of the SDF is

satisfied in representative agent consumption-based asset pricing models for which

m(Xt, Xt+1) = β
u′(Ct+1)

u′(Ct)

provided the representative agent’s marginal utility of consumption u′(·) is positive almost every-

where. Square integrability of the SDF is a standard assumption in asset pricing by no arbitrage

(Hansen and Richard, 1987; Hansen and Renault, 2010).
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Let X denote the Borel σ-algebra on X and let L2(Q) := L2(X ,X , Q) denote the space of all

measurable functions ψ : X → R for which ‖ψ‖ := E[ψ(X)2]1/2 <∞. The inner product 〈ψ1, ψ2〉 :=

E[ψ1(X)ψ2(X)] makes L2(Q) a Hilbert space. Under Assumption 4.1, the pricing operator M :

L2(Q)→ L2(Q) may be rewritten as

(18) Mψ(x0) =

∫
X
m(x0, x1)

f(x0, x1)

q(x0)q(x1)
ψ(x1) dQ(x1) .

Therefore M is an integral operator on L2(Q) of the form

Mψ(x0) =

∫
X
K(x0, x1)ψ(x1) dQ(x1)

where the integral kernel K : X × X → R is given by

(19) K(x0, x1) = m(x0, x1)
f(x0, x1)

q(x0)q(x1)
.

Assumption 4.1(ii)–(iv) implies that the kernel K is positive almost everywhere and∫
X

∫
X
K2(x0, x1) dQ(x0) dQ(x1) <∞ .

Square-integrability of K implies M is Hilbert-Schmidt and therefore compact. The following iden-

tification and existence result is immediate by Theorems A.1 and A.2 in Appendix A.

Theorem 4.1. Under Assumption 4.1,

(i) M has a unique (to scale) eigenfunction φ ∈ L2(Q) such that φ > 0 (almost everywhere)

(ii) ρ is positive, has multiplicity one, and is the largest element of the spectrum of M.

There are a number of important implications of Theorem 4.1 beyond identification. First, that ρ

has multiplicity one means that both ρ and φ are continuous with respect to small perturbations

of M. This continuity property is exploited in the derivation of the large sample properties of the

estimators. Moreover, the fact that ρ is the largest eigenvalue of M is useful for estimation: if

an estimator can be constructed that is close to M in an appropriate sense, then its maximum

eigenvalue should be close to ρ.

4.2. Time reversal. Under Assumption 4.1 the time-reversed pricing operator M∗ : L2(Q) →
L2(Q) is defined formally as the adjoint of M and is given by

(20) M∗ψ∗(x) = E[m(X0, X1)ψ∗(X0)|X1 = x] .

The reversed pricing operator might be interpreted as a pricing operator in the economy with time

run backwards, but with the same SDF as if time were being run forwards.4 Under Assumption

4.1, M∗ has a unique (to scale) positive eigenfunction φ∗ ∈ L2(Q) such that

(21) M∗φ∗ = ρφ∗

4See Rosenblatt (1971) for a discussion of time reversal for Markov processes.
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(see Theorem A.2 in the appendix). The adjoint eigenfunction φ∗ is an important component of

the asymptotic variance of the estimators, and also appears in the restatement of the long-term

pricing result of Hansen and Scheinkman (2009) below.

Remark 4.1. It is convenient to impose the normalizations E[φ(X)2] = 1 and E[φ(X)φ∗(X)] = 1,

which define φ and φ∗ uniquely. These normalizations will be maintained hereafter.

4.3. Asymptotic single-factor pricing. Hansen and Scheinkman (2009) and Hansen (2012)

show that the positive eigenfunction φ captures state-dependence of the prices of long-horizon

assets via the asymptotic single-factor pricing formula

lim
τ→∞

ρ−τMτψ(Xt) = Ẽ[ψ(X)/φ(X)]φ(Xt)

(see Section 7 of Hansen and Scheinkman (2009) and Section 6 of Hansen (2012) for precise state-

ments of this result). Although Hansen and Scheinkman (2009) and Hansen (2012) define Ẽ[·] as

an expectation under a “twisted” probability measure associated with the permanent component,

they do not show how to calculate the “twisted” probability measure.

The following theorem shows that an asymptotic pricing result holds for stationary discrete-time

environments under Assumption 4.1. This theorem also shows how to calculate the twisted expec-

tation Ẽ[·] in stationary discrete-time environments.

Theorem 4.2. Under Assumption 4.1, there exists a c > 0 such that

sup
ψ∈L2(Q):E[ψ(X)2]≤1

∫
X

(
ρ−τMτψ(x)− E[ψ(X)φ∗(X)]ψ(x)

)2
dQ(x) = O(e−cτ )

as τ →∞.

Theorem 4.2 shows that the scaled price ρ−τMτψ(x) converges in mean square, uniformly over

all payoff functions with unit norm, to E[ψ(X)φ∗(X)]φ(x). Moreover, the approximation error

vanishes exponentially quickly in the horizon τ . Let Q̃ denote the twisted probability measure used

to define the expectation Ẽ[·]. It follows by equating E[ψ(X)φ∗(X)] and Ẽ[ψ(X)/φ(X)] that the

Radon-Nikodym derivative of Q̃ with respect to Q is

dQ̃(x)

dQ(x)
= φ(x)φ∗(x)

under Assumption 4.1. Theorem 4.2 is generalized to other Lp(Q) spaces in Appendix A.

5. Estimation

This section introduces estimators of the positive eigenfunction, its eigenvalue, the long-term yield

and the entropy of the permanent component of the SDF and presents the large sample properties

of the estimators. It is assumed in this section that the SDF m is known and the researcher has

available a time series {X0, X1, . . . , Xn} of data on the state process. Thus this section applies when

the researcher is interested in investigating the long-run implications of a given SDF m. Extension

to the case in which the SDF is first estimated from data is discussed in Section 6.1.
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Sieve methods are used here to reduce the infinite-dimensional eigenfunction problem to a finite-

dimensional matrix eigenvector problem. Implementation of the estimators is as simple as comput-

ing the eigenvectors and eigenvalues of two appropriately chosen matrices. The estimators intro-

duced below may also be used to numerically compute the long-run implications of fully specified

models for which analytical solutions are unavailable.

Chen, Hansen, and Scheinkman (2000) and Gobet, Hoffmann, and Reiß (2004) use sieve techniques

to nonparametrically estimate an eigenfunction of the (selfadjoint) conditional expectation operator

of a scalar diffusion process. In the present paper the operator M will typically be nonselfadjoint

which introduces some additional technicalities.5 For example, if M is selfadjoint then φ = φ∗.

Moreover, if M is selfadjoint the pair (ρ, φ) are equivalently defined as the solution to an infinite-

dimensional maximization problem. However, this equivalence does not hold in the nonselfadjoint

case. The consistency and convergence rate calculations for the estimators of ρ and φ follow by

simple modification of the arguments in Gobet, Hoffmann, and Reiß (2004). Estimation of the

adjoint eigenfunction φ∗, derivation of the asymptotic distribution of the eigenvalue estimator

and related estimators via a perturbation expansion, and the semiparametric efficiency bound

calculations are all new.

5.1. Operator approximation. Let the sieve spaces {BK : K ≥ 1} ⊂ L2(Q) be a sequence of

subspaces of L2(Q) of dimension K. For each K, let bK1, . . . , bKK denote the sieve basis functions

that span BK . Common examples of sieve basis functions include polynomial splines, wavelets,

Fourier series and orthogonal polynomials (see Chen (2007) for an overview). Any function ψ ∈ BK
may be written as

ψ(x) = bK(x)′cK(ψ)

where bK(x) = (bK1(x), . . . , bKK(x))′ is a vector of basis functions and cK(ψ) ∈ RK is a vector of

coefficients. Define the Gram matrix

GK = E[bK(X)bK(X)′] .

The relation ψ 7→ cK(ψ) makes the space BK isomorphic to RK under the inner product induced

by the Gram matrix because

E[ψ1(X)ψ2(X)] = cK(ψ1)′GKcK(ψ2)

for ψ1, ψ2 ∈ BK .

The infinite-dimensional eigenfunction problem Mφ = ρφ in L2(Q) is approximated by a K-

dimensional eigenfunction problem in BK . Let Πb
K : L2(Q)→ BK denote the orthogonal projection

onto BK . Consider the eigenfunction problem

(22) Πb
KMφK = ρKφK

where ρK is the largest eigenvalue of Πb
KM. Under the regularity conditions stated below, for all K

sufficiently large the approximate eigenfunction φK will be unique (to scale) and ρK will be real-

valued and positive. The approximate eigenfunction φK must belong to the space BK . Consequently,

5The operators in the other applications discussed in Section 2 will also typically be nonselfadjoint.
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φK can be written as

φK(x) = bK(x)′cK

where cK = c(φK) to simplify notation. Whenever GK is invertible (this is guaranteed under the

regularity conditions below) the approximate eigenvalue problem (22) may be rewritten as

(23) G−1
K MKcK = ρKcK

where

(24) MK = E[bK(X0)m(X0, X1)bK(X1)′]

and ρK is the largest eigenvalue of G−1
K MK .

Approximation of the adjoint positive eigenfunction φ∗ is more subtle. When a solution to (22)

exists with ρK real-valued, the adjoint of Πb
KM has an eigenfunction φ∗K with eigenvalue ρK . That

is, there exists a φ∗K such that

E[φ∗K(X)Πb
KMψ(X)] = ρKE[φ∗K(X)ψ(X)]

for all ψ ∈ L2(Q). Let Πb
KM|BK denote the restriction of Πb

KM to the sieve space BK . This

restriction defines a linear operator Πb
KM|BK : BK → BK . When a solution to (22) exists with ρK

real-valued, the adjoint of Πb
KM|BK has an eigenfunction φ?K with eigenvalue ρK . That is,

E[φ?K(X)Πb
KMψK(X)] = ρKE[φ?K(X)ψK(X)]

for all ψK ∈ BK . The notation ? in place of ∗ is used to denote that φ?K is the eigenfunction of the

adjoint of Πb
KM|BK and that φ∗K is the eigenfunction of the adjoint of Πb

KM. Although Πb
Kφ
∗
K = φ?K ,

it is not generally the case that φ?K = φ∗K . The approximate adjoint eigenfunction φ?K belongs to

the sieve space BK . Therefore, φ?K may be written as

φ?K(x) = bK(x)′c?K

where c?K = cK(φ?K) to simplify notation. When ρK is real-valued and GK is invertible, the vector

c?K solves

(25) G−1
K M′

Kc
?
K = ρKc

?
K .

where ρK is the largest eigenvalue of G−1
K M′

K .

In summary, the infinite-dimensional eigenfunctions φ and φ∗ are approximated by φK and φ?K ,

where

φK(x) = bK(x)′cK

φ?K(x) = bK(x)′c?K

and cK and c?K solve

G−1
K MKcK = ρKcK

G−1
K M′

Kc
?
K = ρKc

?
K
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where ρK is the largest eigenvalue of both G−1
K MK and G−1

K M′
K . Under the regularity condi-

tions below, unique solutions to these eigenvector problems exist for all K sufficiently large. As,

φK , φ∗K and φ?K are only defined up to scale, it is convenient to impose the sign normalizations

E[φK(X)φ(X)] ≥ 0, E[φ∗K(X)φ(X)∗] ≥ 0 and E[φ?K(X)φ(X)∗] ≥ 0 and the scale normalizations

E[φK(X)2] = 1, E[φK(X)φ∗K(X)] = 1 and E[φK(X)φ?K(X)] = 1. These sign- and scale normaliza-

tions will be maintained hereafter, and define φK , φ∗K and φ?K uniquely.

5.2. Estimators. The matrices GK and MK can be estimated from data {X0, X1, . . . , Xn} by

replacing the population expectations with their sample analogues, namely

ĜK =
1

n

n−1∑
t=0

bK(Xt)b
K(Xt)

′

and

M̂K =
1

n

n−1∑
t=0

bK(Xt)m(Xt, Xt+1)bK(Xt+1)′ .

The estimator ρ̂ of ρ is the largest eigenvalue of Ĝ−1
K M̂K , i.e.

ρ̂ = λmax(Ĝ−1
K M̂K) .

When ρ̂ is real valued (which it is with probability approaching one under the regularity conditions

below) let ĉ and ĉ? solve the matrix eigenvalue problems

Ĝ−1
K M̂K ĉ = ρ̂ ĉ(26)

Ĝ−1
K M̂′

K ĉ
? = ρ̂ ĉ? .(27)

The estimators of φ and φ∗ are

φ̂(x) = bK(x)′ĉ(28)

φ̂?(x) = bK(x)′ĉ? .(29)

As φ̂ and φ̂? are only defined up to sign and scale, impose the sign normalizations E[φ̂(X)φK(X)] ≥
0 and E[φ̂?(X)φ?K(X)] ≥ 0 and the scale normalizations E[φ̂(X)2] = 1 and E[φ̂(X)φ̂?(X)] = 1.

The estimators φ̂ and φ̂? are defined uniquely under these normalizations.

Recall that the long-term yield is y = − log ρ and the entropy of the permanent component of the

SDF is L = log ρ− E[logm(X0, X1)]. In light of these definitions,

(30) ŷ = − log ρ̂

and

(31) L̂ = log ρ̂− 1

n

n−1∑
t=0

logm(Xt, Xt+1)

are natural estimators of y and L.

5.3. Regularity conditions and convergence rates. The following regularity conditions, in

conjunction with Assumption 4.1, are sufficient to establish consistency and convergence rates of
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the estimators. Estimation of the positive eigenfunctions of a collection of operators under higher-

level conditions is discussed in Appendix C.

As in Newey (1997), define the sequence of constants ζ0(K) = ‖
√
bK(x)′bK(x)‖∞. For example,

ζ0(K) = O(
√
K) for polynomial spline, Fourier series and wavelet bases and ζ0(K) = O(K) for poly-

nomial bases on appropriate domains (see, e.g., Newey (1997)). Let b̃K(x) = E[bK(X)bK(X)′]−1bK(x)

denote a vector of orthonormalized sieve basis functions. Define the orthonormalized estimators

̂̃
GK =

1

n

n−1∑
t=0

b̃K(Xt)̃b
K(Xt)

′

̂̃
MK =

1

n

n−1∑
t=0

b̃K(Xt)m(Xt, Xt+1)̃bK(Xt+1)′

and their orthonormalized population counterparts

G̃K = E [̃bK(X )̃bK(X)′]

M̃K = E [̃bK(X0)m(X0, X1)̃bK(X1)′]

where G̃K = IK (the K×K identity matrix) by virtue of orthonormalization. The orthonormalized

estimators are infeasible in practice because Q is typically unknown; however it is convenient to

define the regularity conditions in terms of these quantities.

Let ‖ · ‖2 denote the matrix spectral norm when applied to matrices and the Euclidean norm when

applied to vectors. That is, if AK is a K ×K matrix and c = (c1, . . . , cK)′ ∈ RK then

‖AK‖2 = sup{‖AKc‖2 : c ∈ RK , ‖c‖2 = 1}

‖c‖2 =

(
K∑
k=1

c2
k

)−1/2

.

Recall that ‖ · ‖ denotes the L2(Q) norm when applied to functions in L2(Q). Let ‖ · ‖ also denote

the operator norm when applied to linear operators on L2(Q). That is, if A : L2(Q)→ L2(Q) is a

linear operator then ‖A‖ = sup{‖Af‖ : f ∈ L2(Q), ‖f‖ ≤ 1}.

Define the K-vectors c̃K and c̃?K such that φK(x) = b̃K(x)′c̃K and φ?K(x) = b̃K(x)′c̃?K . Let

{η̄n,K , ηn,K : n,K ≥ 1} be sequences of positive real numbers such that

max

{
‖ ̂̃GK − IK‖2, ‖

̂̃
MK − M̃K‖2

}
= Op(η̄n,K)

and

max

{
‖( ̂̃GK − G̃K)c̃K‖2, ‖(

̂̃
GK − G̃K)c̃?K/‖c̃?K‖2‖2,

‖(̂̃MK − M̃K)c̃K‖2, ‖(
̂̃
MK − M̃K)c̃?K/‖c̃?K‖2‖2

}
= Op(ηn,K) .

The inequality ‖AKc‖2 ≤ ‖‖AK‖2‖c‖2 holds by definition of ‖·‖2 and implies ηn,K = O(η̄n,K). Dif-

ferent values of η̄n,K and ηn,K will be obtained depending on the number of moments ofm(Xt, Xt+1).
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Remark 5.1. Appendix C provides further details as to how to calculate η̄n,K and ηn,K . If As-

sumption 4.1 holds, then η̄n,K = ζ0(K)2/
√
n and ηn,K = ζ0(K)2/

√
n. If, in addition, m is bounded

and ζ0(K)(log n)/
√
n = o(1), then η̄n,K = ζ0(K)(log n)

√
n and ηn,K = ζ0(K)/

√
n.

Assumption 5.1. The following regularity conditions are satisfied:

(i) ‖Πb
KM−M‖ = O(δK) where δK = o(1) as K →∞

(ii) η̄n,K = o(1) as n,K →∞
(iii) λmin(GK) ≥ λ > 0 for each K ≥ 1

(iv) there exists a sequence {h∗K : K ≥ 1} with h∗K ∈ BK such that ‖φ∗ − h∗K‖ = O(δ∗K).

Assumption 5.1(i) requires that the range of M can be uniformly well approximated over the sieve

space BK , with the approximation error vanishing as the dimension of the sieve space increases.

Assumption 5.1(i) also implies that ‖Πb
Kφ−φ‖ = O(δK). The weaker condition ‖Πb

KM−M‖ = o(1)

and ‖Πb
Kφ−φ‖ = O(δK) suffices to calculate the following convergence rates for ρ̂ and φ̂, however the

stronger form presented in Assumption 5.1(i) is useful for derivation of the limit theory. Assumption

5.1(ii) is a condition on the maximum rate at which K can increase with n while maintaining

consistency of the matrix estimators. Assumption 5.1(iii) is a standard condition for nonparametric

estimation with a linear sieve space (see, e.g., Newey (1997); Chen and Pouzo (2012)). Assumption

5.1(iii) can be relaxed to allow λmin(GK) ↘ 0 as K increases, but this may slow the convergence

rates. Assumption 5.1(iv) requires that φ∗ can be approximated by a sequence of elements of

the sieve space, with the approximation error vanishing as K increases. The condition on φ∗ in

Assumption 5.1(iv) can be dropped if M is selfadjoint (since φ = φ∗ in that case). When M is

nonselfadjoint the separate treatment of φ and φ∗ is required because Assumption 5.1(i) does

not guarantee that M∗, and therefore φ∗, can be approximated well over BK . Assumptions 5.1(i)

and (iv) can be motivated by imposing smoothness conditions on the kernel K and choosing an

appropriate sieve, as in the example below.

The following theorem establishes consistency of ρ̂, and mean square convergence rates of φ̂ and φ̂?

as n→∞.

Theorem 5.1. Under Assumptions 4.1 and 5.1, there is a set whose probability approaches one on

which ρ̂ is real and positive and has multiplicity one, and

(i) |ρ̂− ρ| = Op(δK + ηn,K)

(ii) ‖φ̂− φ‖ = Op(δK + ηn,K)

(iii) ‖φ̂?/‖φ̂∗‖ − φ∗/‖φ∗‖‖ = Op(δ
∗
K + ηn,K).

The rates of convergence in Theorem 5.1 exhibit the standard bias-variance tradeoff in nonparamet-

ric estimation. The “bias term” is O(δK) (or O(δ∗K) for φ∗) which measures error in approximating

φ and φ∗ by their K-dimensional counterparts φK and φ?K . The “variance term” is Op(ηn,K) which

measures the difference between the estimators φ̂ and φ̂? and their sample counterparts φK and

φ?K .
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Consistency and preliminary rates of convergence for ŷ and L̂ are established in the following

Corollary. These estimators will be shown to be
√
n-consistent under stronger assumptions in

Section 5.4.

Corollary 5.1. Under the assumptions of Theorem 5.1, |ŷ − y| = Op(δK + ηn,K). If, in addition,

E[(logm(X0, X1))2] <∞, then |L̂− L| = Op(δK + ηn,K + n−1/2).

Let ‖ · ‖∞ denote the sup norm. That is, if f : X → R then ‖f‖∞ = supx{|f(x)| : x ∈ X}.
Sup-norm rates of convergence of φ̂ and φ̂? follow from the L2(Q) rates by standard arguments for

sieve estimation under a slight strengthening of Assumptions 5.1(i) and 5.1(iv). The sup-norm rates

obtained in Corollary 5.2 below are useful for constructing estimators of the asymptotic variance

of ρ̂, ŷ, and L̂.

Assumption 5.2. There exist sequences of functions {gK : K ≥ 1} and {g∗K : K ≥ 1} such that

gK ∈ BK and g∗K ∈ BK for each K ≥ 1 and:

(i) ‖φ− gK‖∞ = O(δK)

(ii) ‖φ∗ − g∗K‖∞ = O(δ∗K).

A sufficient condition for Assumption 5.1(i) and 5.2(i) is that M maps the L2(Q) unit ball to a

subspace S ⊂ L2(Q) over which the sieve has uniformly good approximation properties in sup-

norm, i.e. {Mψ : ‖ψ‖ ≤ 1} ⊆ S, and supf∈S infb(f)∈BK ‖f − b(f)‖∞ = O(δK). This condition can

be motivated by imposing smoothness conditions on the integral kernel K and using an appropriate

sieve, as in the example below. Assumption 5.2(ii) is a sufficient condition for Assumption 5.1(iv)

by virtue of the relation ‖φ∗ − g∗K‖ ≤ ‖φ∗ − g∗K‖∞.

Corollary 5.2. Under Assumptions 4.1, 5.1, and 5.2,

(i) ‖φ̂− φ‖∞ = Op(ζ0(K)(δK + ηn,K))

(ii) ‖φ̂?/‖φ̂?‖ − φ∗/‖φ∗‖‖∞ = Op(ζ0(K)(δ∗K + ηn,K)).

5.3.1. Example: Smooth kernel. This example shows how to calculate δK and η̄n,K under primitive

smoothness conditions on the integral kernel K defined in expression (19). For any p > 0 let

[p] denote the maximum integer less than or equal to p. Let C [p](X ) denote the space of [p]-

times continuously differentiable functions with support X . Given a d-tuple α = (α1, . . . , αd) of

nonnegative integers, set |α| = α1 + . . .+ αd and let Dα denote the differential operator

Dα =
∂|α|

∂xα1
1 . . . ∂xαdd

.

Define the Hölder norm ‖ · ‖∞,p on C [p](X ) by

‖f‖∞,p = max
|α|≤[p]

sup
x∈X
|Dαf(x)|+ max

|α|=[p]
sup

x,x′∈X ,x 6=x′

|Dαf(x)−Dαf(x′)|
‖x− x′‖p−[p]

.

Let Λp(X ) = {f ∈ C [p](X ) such that ‖f‖∞,p <∞} denote the Hölder space of p-smooth functions

and let Λpc(X ) = {f ∈ Λp(X ) such that ‖f‖∞,p ≤ c} denote the Hölder ball of smoothness p and

radius c.
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Let Assumptions 4.1 and 5.1(iii) hold and assume additionally that (i) X ⊂ Rd is compact, rect-

angular and has nonempty interior, (ii) q is continuous and uniformly bounded away from zero on

X , (iii) there is a p > 0 and finite constant C such that∫
X

(DαK(x0, x1))2 dQ(x1) ≤ C2

for each |α| ≤ [p] and∫
X

(DαK(x, x1)−DαK(x′, x1))2 dQ(x1) ≤ C2‖x− x′‖2(p−[p])

for each |α| = [p], and (iv) BK is a spanned by a (tensor product) of polynomial splines of degree

v > p with uniformly bounded mesh ratio (see Schumaker (2007)).

Conditions (ii) and (iii) imply that {Mf : ‖f‖ ≤ 1} ⊂ Λpc(X ) for some finite c and, in particular,

that φ ∈ Λpc(X ). Assumptions 5.1(i) and 5.2(i) are satisfied with δK = O(K−p/d) for a polynomial

spline sieve under conditions (i) and (iv) (Schumaker, 2007, Chapter 12). Condition (iv) implies

that ζ0(K) = O(
√
K) (see, for example, Newey (1997)), so ηn,K = O(K/

√
n) if m is unbounded

and ηn,K = O(
√
K/
√
n) if m is bounded. The following mean-square and sup-norm convergence

rates obtain:

(a) If m is unbounded, choosing K � nd/(2p+2d) yields ‖φ̂ − φ‖ = Op(n
−p/(2p+2d)). If p > 1

2d this

choice of K yields a sup-norm rate of convergence of ‖φ̂− φ‖∞ = Op(n
(d/2−p)/(2p+2d)).

(b) If m is bounded, choosing K � nd/(2p+d) yields ‖φ̂− φ‖ = Op(n
−p/(2p+d)). This is the same as

the minimax optimal mean-square convergence rate for a nonparametric regression estimator of

a p-smooth function of d variables (Stone, 1982). If p > 1
2d this choice of K yields a sup-norm

rate of convergence of ‖φ̂− φ‖∞ = Op(n
(d/2−p)/(2p+d)).

This example shows that reasonable mean-square convergence rates for φ̂ can be obtained when

K(x0, x1) is smooth in x0. The kernel K does not necessarily need to be smooth in x1 to attain

these rates. For example, if m(x0, x1) = m(x1) then K may satisfy the above smoothness conditions

provided f(x1|x0) is sufficiently smooth in x0 even if m(x1) is kinked or discontinuous in x1.

However, such kinks or discontinuities may affect how well φ∗ can be approximated, because M∗ is

an integral operator with kernel K∗ given by K∗(x0, x1) = K(x1, x0).

5.4. Asymptotic inference. A feasible means of conducting asymptotic inference for the eigen-

value ρ, the long-term yield y, and the entropy of the permanent component of the SDF L is now

provided. The asymptotic distribution of the estimators is derived via a perturbations expansion.

This approach is distinct from the usual Taylor-series arguments used in the derivation of the limit

distribution of extremum estimators.

Under the regularity conditions below, the estimator ρ̂ is asymptotically linear and its influence

function is formed from m, φ, φ∗, and ρ, i.e.

(32)
√
n(ρ̂− ρ) =

1√
n

n−1∑
t=0

{φ∗(Xt)m(Xt, Xt+1)φ(Xt+1)− ρφ∗(Xt)φ(Xt)}+ op(1) .
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Conveniently, the summands in expression (32) form a martingale difference sequence with respect

to Ft = σ(Xt, Xt−1, . . .). The asymptotic distribution for ρ̂ then follows by applying a central limit

theorem for martingales with stationary and ergodic differences. The asymptotic distributions of ŷ

and L̂ also follow straightforwardly from the expansion (32). An additional assumption is needed

to ensure the representation (32) is valid and that the asymptotic variances of the estimators are

well defined.

Assumption 5.3. The following moment and rate conditions are satisfied:

(i) Either (a) or (b) holds:

(a) m is bounded, E[φ(X)4] <∞ and E[φ∗(X)4] <∞
(b) E[m(X0, X1)6] <∞, E[φ(X)6] <∞ and E[φ∗(X)6] <∞

(ii) η̄n,K = o(n−1/4), δK = o(n−1/2), and ζ0(K) max{δ∗K , δK , η̄n,K} = o(1)

(iii) E[| logm(X0, X1)|2] <∞.

Assumption 5.3(i)(iii) guarantees that the asymptotic variance of the estimators are well defined.

Assumption 5.3(ii) ensures the estimation and approximation errors vanish sufficiently quickly

that the expansion (32) is valid. The condition η̄n,K = o(n−1/4) is analogous to the requirement

in semiparametric extremum estimation that the estimator of the nonparametric part converges

at least as fast as n−1/4 to obtain
√
n-consistency of the estimator of the parametric part. The

condition δK = o(n−1/2) ensures the bias term ρK − ρ vanishes sufficiently quickly that it does

not affect the asymptotic distribution for ρ̂. The condition ζ0(K) max{δ∗K , δK , η̄n,K} = o(1) is used,

inter alia, to establish consistency of the asymptotic variance estimators introduced below.

If {Zt} is a real-valued stationary stochastic process, define the long-run variance of {Zt} as

lrvar(Zt) =
∞∑

t=−∞
E[Z0Zt] .

Let

Vρ = E
[
{φ∗(X0)m(X0, X1)φ(X1)− ρφ∗(X0)φ(X0)}2

]
(33)

VL = lrvar(ρ−1φ∗(Xt)m(Xt, Xt+1)φ(Xt+1)− φ∗(Xt)φ(Xt)

− logm(Xt, Xt+1) + E[logm(X0, X1)]) .(34)

Assumptions 4.1 and 5.1 provide that Vρ and VL are well defined.

Theorem 5.2. Under Assumptions 4.1, 5.1, 5.2, and 5.3, if Vρ > 0 and VL > 0, then

(i)
√
n(ρ̂− ρ)→d N(0, Vρ)

(ii)
√
n(ŷ − y)→d N(0, ρ−2Vρ)

(iii)
√
n(L̂− L)→d N(0, VL).

The conditions Vρ > 0 and VL > 0 exclude cases in which the limit distributions of the estimators

are degenerate. For example, if m(x0, x1) = c for some positive constant c then φ(x) = 1, φ∗(x) = 1,

and ρ = c irrespective of the law of motion of the state variables, in which case Vρ = 0 and VL = 0.
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With Theorem 5.2 in hand it remains to provide consistent variance estimators. The rates of

convergence in Theorem 5.1 and 5.2 are for estimators whose scale has been normalized under the

true distribution Q. Let φ̂f and φ̂?f denote versions of φ̂ and φ̂? normalized under the empirical

measure, so that

1

n

n−1∑
t=0

φ̂f (Xt)
2 = 1,

1

n

n−1∑
t=0

φ̂f (Xt)φ̂
?f (Xt) = 1 .

Corollary 5.3. Under Assumptions 4.1 and 5.1,

(i) ‖φ̂f − φ‖ = Op(δK + η̄n,K)

(ii) ‖φ̂?f − φ∗‖ = Op(δK + δ∗K + η̄n,K) .

If, in addition, Assumption 5.2 holds, then

(iii) ‖φ̂f − φ‖∞ = Op(ζ0(K)(δK + η̄n,K))

(iv) ‖φ̂?f − φ∗‖∞ = Op(ζ0(K)(δK + δ∗K + η̄n,K)).

The asymptotic variance estimators for ρ̂ and ŷ are constructed by replacing the population quan-

tities in Vρ and ρ−2Vρ by feasible sample analogues. To simplify notation, for any f : X → R let

ft = f(Xt), and let mt,t+1 = m(Xt, Xt+1). The estimator of Vρ is

(35) V̂ρ =
1

n

n−1∑
t=0

(
φ̂?ft mt,t+1φ̂

f
t+1 − ρ̂φ̂

?f
t φ̂

f
t

)2
.

No sample mean correction is required because
∑n−1

t=0 (φ̂?ft mt,t+1φ̂
f
t+1 − ρ̂φ̂

?f
t φ̂

f
t ) = 0 by definition

of φ̂ and φ̂?. The estimator of the asymptotic variance of ŷ is ρ̂−2V̂ρ.

Estimating VL requires estimating a long-run variance. The following approach for conducting

inference on L uses an orthogonal series long-run variance (OSLRV) estimator of Phillips (2005) in

conjunction with fixed-bandwidth asymptotics as in Chen, Liao, and Sun (2012).6 The estimator

will be asymptotically χ2-distributed and therefore inconsistent. However, asymptotic inference

for L can still be performed using this OSLRV estimator and the asymptotic distribution for L̂

developed in Theorem 5.2: the only difference is that Gaussian critical values are replaced by t

critical values.

Let {hj : j ≥ 0} be a continuously differentiable orthonormal basis for L2([0, 1],B([0, 1]), Leb)

(where B([0, 1]) denotes the Borel σ-algebra on [0, 1] and Leb is Lebesgue measure), such as a

cosine basis or a Legendre polynomial basis. Let h0 = 1, whence
∫ 1

0 hj(u) du = 0 for each j ≥ 1 by

6There is a large literature on consistent long-run variance estimation using kernel-based truncated lag estimators
following Parzen (1957) (standard econometric references include Newey and West (1987) and Andrews (1991)). To
ensure consistency of these estimators, the truncation lag is required to increase at an appropriate rate with the
sample size. Recent research has shown that, in some circumstances, asymptotic inference using consistent kernel-
based truncated-lag estimators can suffer considerable size and power distortions in finite samples. To this end, a
literature has developed that explores inference under alternative bandwidth asymptotics (see, e.g., Kiefer, Vogelsang,
and Bunzel (2000); Jansson (2004); Müller (2007); Sun, Phillips, and Jin (2008)). Preliminary Monte Carlo simulations
(not reported) revealed that the coverage probabilities of asymptotic confidence intervals for L constructed using a
consistent kernel-based truncated lag estimator were sensitive to both the choice of kernel and bandwidth.
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orthogonality. For each j = 1, . . . , J , define

Λ̂j =
1√
n

n−1∑
t=0

hj

(
t+ 1

n

)
∆̂t,t+1 .

where

∆̂t,t+1 = ρ̂−1
(
φ̂?ft mt,t+1φ̂

f
t+1 − ρ̂φ̂

?f
t φ̂

f
t

)
−
(
logmt,t+1 − logmn

)
logmn = n−1

n−1∑
t=0

logmt,t+1 .

The OSLRV estimator V̂ os
L,J for VL using J basis functions is defined as

(36) V̂ os
L,J =

1

J

J∑
j=1

Λ̂2
j .

The estimator V̂ os
L,J is, by definition, guaranteed to be non-negative.

An additional regularity condition is required for the derivation of the limit theory for the OSLRV

estimator. To introduce this condition, define the shrinking neighborhood NK = {(f, f∗) ∈ BK ×
BK : ‖f − φ‖ ≤ (δK + η̄n,K) log(log n) and f∗ ∈ BK : ‖f∗ − φ∗‖ ≤ (δK + δ∗K + η̄n,K) log(logn)}.

Assumption 5.4. The following equicontinuity conditions are satisfied:

(i) sup(f,f∗)∈NK
∑n−1

t=0 hj(
t+1
n ){φ∗tφt − f∗t ft − E[φ∗tφt − f∗t ft]} = op(n

1/2)

(ii) sup(f,f∗)∈NK
∑n−1

t=0 hj(
t+1
n ){mt,t+1(φ∗tφt+1−f∗t ft+1)−E[mt,t+1(φ∗tφt+1−f∗t ft+1)]} = op(n

1/2).

Assumption 5.4 is essentially Assumption 5.2(i) of Chen, Liao, and Sun (2012) applied in this

context. The definition of NK and the convergence rates of φ̂f and φ̂f? established in Corollary 5.3

ensure that (φ̂f , φ̂f?) ∈ NK with probability approaching one.

Consistency of the asymptotic variance estimators for ρ̂ and ŷ are now established, together with

a means of performing asymptotic inference for L̂ based on the t distribution using the OSLRV

estimator V̂ os
L,J . Let χ2

J and tJ denote the χ2 and t distributions with J degrees of freedom.

Theorem 5.3. Under Assumptions 4.1, 5.1 5.2, and 5.3

(i) V̂ρ →p Vρ

(ii) (ρ̂−2)V̂ρ →p ρ
−2Vρ.

If, in addition, Assumption 5.4 holds, Vρ > 0 and VL > 0, then

(iii) V̂ os
L,J →d J

−1VLχ
2
J

(iv)
√
n(V̂ os

L,J)−1/2(L̂− L)→d tJ .

Theorems 5.2 and 5.3 together provide a means with which to perform feasible asymptotic inference

on ρ, y, and L.
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5.4.1. Example: Smooth kernel (continued). Here δK = O(K−p/d). Assume that φ∗ belongs to a

Hölder ball of smoothness s, so that δ∗K = O(K−s/d).

(a) If m is unbounded then η̄n,K = O(K/
√
n) and K may be chosen so that the conditions η̄n,K =

o(n−1/4) and δK = o(n−1/2) are satisfied provided p > 2d.

(b) If m is bounded then η̄n,K = O(ζ0(K)(log n)/n) and K may be chosen so that the conditions

η̄n,K = o(n−1/4) and δK = o(n−1/2) are satisfied provided p > d.

In either case the remaining condition ζ0(K) max{δ∗K , δK} = o(1) is satisfied if s > 1
2d. If, for

arguments sake, M is selfadjoint, then φ∗ = φ and the condition δK = o(n−1/2) can be relaxed to

δK = o(n−1/4) (Gobet, Hoffmann, and Reiß, 2004, Remark 4.7), in which case it suffices that p > d

if m is unbounded and p > 1
2d if m is bounded.

5.5. Semiparametric efficiency. The semiparametric efficiency bounds for ρ̂, ŷ and L̂ are now

derived, and it is shown that the estimators attain their efficiency bounds.7 The efficiency bound

derivations follow the arguments of Greenwood and Wefelmeyer (1995) and Wefelmeyer (1999)

(see also Bickel and Kwon (2001)). A tangent space of admissible perturbations to the unknown

transition distribution of the state process is first constructed. A nonparametric version of local

asymptotic normality holds for the perturbed models. The parameters ρ, y and L are shown to

be differentiable with respect to the perturbation of the transition density and their gradients are

characterized. The efficient influence function of the estimators are determined by projecting their

gradients onto the (closure of the) tangent space. The asymptotic variances of ρ̂, ŷ and L̂ are shown

to coincide with the second moment of their efficient influence functions, whence efficiency obtains.

Theorem 5.4. Under Assumptions 4.1, 5.1, 5.2 and 5.3, the semiparametric efficiency bounds for

ρ, y and L are Vρ, ρ
−2Vρ and VL, and are achieved by ρ̂, ŷ and L̂.

Now consider the somewhat artificial case in which the stationary distribution Q is known but the

dynamics of {Xt} are still unknown. In this setting the Gram matrix GK is known but MK is

unknown. An alternative estimator for ρ is

ρ̌ = λmax(G−1
K M̂K) .

One might expect the asymptotic variance of ρ̌ to be smaller than that of ρ̂ because ρ̌ appears to

make use of the fact that Q is known. The following theorem shows otherwise.

Theorem 5.5. Under Assumptions 4.1, 5.1, 5.2 and 5.3(i)(ii), if Vρ > 0 then

√
n(ρ̌− ρ)→d N(0, Vρ +Wρ)

where Wρ = 2ρ2E[(φ∗(X0)φ(X0)− 1)2] + ρ2lrvar((φ∗(Xt)φ(Xt)− 1)).

7In practice the true SDF is unknown, so the term “limited information bound” may be more appropriate than
“semiparametric efficiency bound”.
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Clearly Wρ ≥ 0, and the inequality is strict if φ(x)φ∗(x) is non-constant on a set of positive

probability. Therefore, the estimator ρ̂ is relatively more efficient than ρ̌, even though ρ̌ appears to

incorporate the fact that the density is known.8

6. Extensions

The estimators and large-sample theory presented in Section 5 is now extended to study (i) the

long-term implications of estimated SDFs, (ii) the long-term implications of SDFs with additional

roughness, and (iii) nonparametric sieve estimation of the marginal utility of consumption of a

representative agent.

6.1. Plugging-in an estimated SDF. Consider the two-stage problem of first estimating a

SDF from data, then extracting its long-term implications. Let the data consist of a time se-

ries {(X0, R0), . . . , (Xn, Rn)} where Rt = (Ri,t, . . . , RdR,t)
′ is a vector of returns on dR assets for

each t. Assume that the researcher has estimated a SDF, say m̂, from the data. The SDF estimator

m̂ could be parametric or semi/nonparametric. An example of a parametric SDF estimator m̂ is

the consumption CAPM SDF m(Xt, X1;β, γ) = βG−γt+1 evaluated at (β̂, γ̂) where (β̂, γ̂) are esti-

mated from {(X0, R0), . . . , (Xn, Rn)}. Semi/nonparametric estimators include the semiparametric

consumption CAPMs studied in Gallant and Tauchen (1989) and Fleissig, Gallant, and Seater

(2000), nonparametric nonlinear factor models (Bansal and Viswanathan, 1993), models with non-

parametric habit formation (Chen and Ludvigson, 2009), and models with recursive preferences

and unknown dynamics (Chen, Favilukis, and Ludvigson, 2013b).

In this case the matrix MK is estimated using

M̂K =
1

n

n−1∑
t=0

bK(Xt)m̂(Xt, Xt+1)bK(Xt+1)′ .(37)

The eigenvalue ρ and eigenfunctions φ and φ∗ are estimated by solving the matrix eigenvalue

problems (26) and (27) with M̂K given by (37). The estimators of the long-term yield and entropy

of the permanent component of the SDF are

ŷ = − log ρ̂

L̂ = log ρ̂− 1

n

n−1∑
t=0

log m̂(Xt, Xt+1)

by analogy with (30) and (31). Consistency and convergence rates of the estimators follow under

similar conditions to those described in Section 5.

Theorem 6.1. Let Assumption 4.1 hold, and let Assumption 5.1 hold with M̂K as in expression

(37). Then there is a set whose probability approaches one on which ρ̂ is real and positive and has

multiplicity one, and

(i) |ρ̂− ρ| = Op(δK + ηn,K)

8If Q is known the semiparametric efficiency bound for ρ may be different from Vρ. Consequently, ρ̂ may not be
semiparametrically efficient when Q is known.
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(ii) ‖φ̂− φ‖ = Op(δK + ηn,K)

(iii) ‖φ̂?/‖φ̂∗‖ − φ∗/‖φ∗‖‖ = Op(δ
∗
K + ηn,K).

The requirement that Assumption 5.1 hold with M̂K as in expression (37) is an implicit condition

on convergence of m̂ to m.

The asymptotic distribution for ρ̂, ŷ and L̂ will be distorted (relative to the case in which m

is known) by the error introduced by replacing m with a first-stage estimator m̂. The form of

the asymptotic distribution for ρ̂, ŷ and L̂ will therefore differ depending on the method used

to construct m̂. The following high-level assumption is made to establish the asymptotic linear

expansion for ρ̂ in this setting.

Assumption 6.1.
∑n−1

t=0 |m̂(Xt, Xt+1)−m(Xt, Xt+1)|(1 + φ(Xt+1) + φ∗(Xt)) = Op(n
1/2).

The following Theorem establishes the distortion to the limit distribution of ρ̂ that arises due to

the first-stage estimator m̂. The limit distribution of ρ̂, ŷ and L̂ can then be derived from this

expansion on a case-by-case basis.

Theorem 6.2. Let Assumption 4.1, 5.1, 5.2, and 5.3 hold with M̂K as in expression (37), and let

Assumption 6.1 hold. Then

√
n(ρ̂− ρ) =

1√
n

n−1∑
t=0

{φ∗(Xt)m(Xt, Xt+1)φ(Xt+1)− ρφ∗(Xt)φ(Xt)}

+
1√
n

n−1∑
t=0

φ∗(Xt)(m̂(Xt, Xt+1)−m(Xt, Xt+1))φ(Xt+1) + op(1) .

Comparing Theorem 6.2 with the expansion for ρ̂ when m is known shows that the limit distribution

of ρ̂ will be distorted (relative to the known SDF case) by an additional functional of (m̂−m). The

following remark deals with the case in which m̂ is estimated parametrically.

Remark 6.1. Let m be known up to a finite-dimensional parameter θ0 ∈ Θ ⊆ Rdθ and let m be

estimated by plugging in a first-stage estimator θ̂ of θ0, i.e.

m(Xt, Xt+1) = m(Xt, Xt+1; θ0)

m̂(Xt, Xt+1) = m(Xt, Xt+1; θ̂) .

If (a)
√
n(θ̂ − θ0) = Op(1), (b) θ0 ∈ int(Θ), (c) for all (x0, x1) ∈ X 2, m(x0, x1; θ) is twice continu-

ously differentiable in θ on a neighborhood Θ0 ⊂ int(Θ) containing θ0, (d)

E

[∥∥∥∥∂m(X0, X1; θ0)

∂θ

∥∥∥∥2

2

]
<∞ and E

[∣∣∣∣∂m(X0, X1; θ0)

∂θi

∣∣∣∣φ∗(X0)φ(X1)

]
<∞

for i = 1, . . . , dθ, (e) there exists a g : X × X → R such that

sup
θ∈Θ0

∥∥∥∥∂2m(x0, x1; θ)

∂θ∂θ′

∥∥∥∥
2

≤ g(x0, x1)
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with E[g(X0, X1)2] < ∞ and E[g(X0, X1)φ∗(X0)φ(X1)] < ∞. Then, Assumption 6.1 is satisfied

and, under the remaining conditions of Theorem 6.2,

√
n(ρ̂− ρ) =

1√
n

n−1∑
t=0

{φ∗(Xt)m(Xt, Xt+1)φ(Xt+1)− ρφ∗(Xt)φ(Xt)}

+E

[
φ∗(X0)φ(X1)

∂m(X0, X1; θ0)

∂θ

]√
n(θ̂ − θ0) + op(1) .

The limit distribution for ρ̂ when m is estimated semi/nonparametrically may be similarly derived

using Theorem 6.2.

6.2. Roughing-up the SDF. Following Hansen and Scheinkman (2012, 2013), consider a class

of economy characterized by a discrete-time (first-order) Markov state process {(Xt, Yt)} defined

on a complete probability space (Ω,F , {Ft},P) where time is again indexed by t ∈ Z and where

Ft = σ(Xt, Yt, Xt−1, Yt−1, . . .). Assume that the distribution of (Xt+1, Yt+1) conditioned on (Xt, Yt)

is the same as the joint distribution of (Xt+1, Yt+1) conditioned on Xt. More compactly,

(38) (Xt+1, Yt+1)|(Xt, Yt) =d (Xt+1, Yt+1)|Xt

for all t, where =d denotes equality in distribution. The “non-causality” condition (38) is convenient

for dimension reduction: it allows for the SDF to be a function of (Xt, Xt+1, Yt+1) whilst restricting

the class of eigenfunctions to be functions of X only (not functions of (X,Y )).

Let {Xt} have support X ⊆ Rd and let {Yt} have support Y ⊆ Rdy . Assume further that the date-t

1-period SDF is now m(Xt, Xt+1, Yt+1) for some m : X × X × Y → R. Define M : L2(Q)→ L2(Q)

as the 1-period pricing operator given by

Mψ(x) = E[m(Xt, Xt+1, Yt+1)ψ(Xt+1)|Xt = x] .

The adjoint operator M∗ is defined as

M∗ψ(x) = E[m(Xt, Xt+1, Yt+1)ψ(Xt)|Xt+1 = x] .

The positive eigenfunction problems are again

Mφ = ρφ

M∗φ∗ = ρφ∗

with φ and φ∗ positive (almost everywhere). The following regularity conditions are a straightfor-

ward extension of Assumption 4.1.

Assumption 6.2. {(Xt, Yt)} and m satisfy the following conditions:

(i) {(Xt, Yt)} is a strictly stationary and ergodic (first-order) Markov process which satisfies the

non-causality condition (38), and which has support X × Y ⊆ Rd × Rdy

(ii) the stationary distributions Q of {Xt} and Qy of {Yt} have densities q and qy (wrt Lebesgue

measure) s.t. q(x) > 0 and qy(y) > 0 almost everywhere
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(iii) (X0, X1, Y1) has joint density f (wrt Lebesgue measure) s.t. f(x0, x1, y1) > 0 almost every-

where and f(x0, x1, y1)/(q(x0)q(x1)qy(y1)) is uniformly bounded away from infinity.

(iv) m : X × X × Y → R has m(x0, x1, y1) > 0 almost everywhere and E[m(X0, X1, Y1)2] <∞.

Nonparametric identification of φ and φ∗ in this environment follows similarly.

Theorem 6.3. Under Assumption 6.2,

(i) M and M∗ have unique (to scale) eigenfunctions φ ∈ L2(Q) and φ∗ ∈ L2(Q) such that φ > 0

and φ∗ > 0 (almost everywhere)

(ii) ρ is positive, has multiplicity one, and is the largest element of the spectrum of M.

Given a candidate SDF m and a time series of data {X0, (X1, Y1), . . . , (Xn, Yn)}, the positive

eigenfunctions φ and φ∗ and the eigenvalue ρ can be estimated by solving the matrix eigenvalue

problems (26) and (27) as before, but with MK and M̂K given by

MK = E[bK(X0)m(X0, X1, Y1)bK(X1)′](39)

M̂K =
1

n

n−1∑
t=0

bK(Xt)m(Xt, Xt+1, Yt+1)bK(Xt+1)′ .(40)

The long-run yield and entropy of the permanent component of the SDF are estimated with

ŷ = − log ρ̂

L̂ = log ρ̂− 1

n

n−1∑
t=0

logm(Xt, Xt+1, Yt+1)

by analogy with expressions (30) and (31).

Consistency, convergence rates, and the asymptotic distribution of the estimators follow by argu-

ments identical to the case dealt with in Section 5. However, Assumption 6.2 does not characterize

the joint weak-dependence properties of {(Xt, Yt)} so an extra assumption is required to establish

the limit distribution of L̂. For the remainder of this subsection, let Vρ and VL be defined as in

expressions (33) and (34), but with m(Xt, Xt+1, Yt+1) in place of m(Xt, Xt+1). Let

ψL(Xt, Xt+1, Yt+1) = ρ−1φ∗(Xt)m(Xt, Xt+1Yt+1)φ(Xt+1)− φ∗(Xt)φ(Xt)

− logm(Xt, Xt+1, Yt+1) + E[logm(X0, X1, Y1)]

VL = lrvar(ψL(Xt, Xt+1, Yt+1))

The following high-level assumption is sufficient to establish the limit distribution of L̂.

Assumption 6.3. The following regularity conditions hold:

(i) VL <∞
(ii) n−1/2

∑n−1
t=0 ψL(Xt, Xt+1, Yt+1)→d N(0, VL).

Mean-square convergence rates of the eigenfunction estimators and
√
n-asymptotic normality of ρ̂,

ŷ and L̂ are now established.
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Theorem 6.4. Let Assumption 6.2 hold, and let Assumption 5.1 hold with MK and M̂K as in

expressions (39) and (40). Then there is a set whose probability approaches one on which ρ̂ is real

and positive and has multiplicity one, and

(i) |ρ̂− ρ| = Op(δK + ηn,K)

(ii) ‖φ̂− φ‖ = Op(δK + ηn,K)

(iii) ‖φ̂?/‖φ̂∗‖ − φ∗/‖φ∗‖‖ = Op(δ
∗
K + ηn,K).

If, in addition, Assumptions 5.2 and 5.3 hold with m(X0, X1, Y1) in place of m(X0, X1) and Vρ > 0,

then

(iv)
√
n(ρ̂− ρ)→d N(0, Vρ)

(v)
√
n(ŷ − y)→d N(0, ρ−2Vρ).

If, in addition, Assumption 6.3 holds and VL > 0, then

(vi)
√
n(L̂− L)→d N(0, VL) .

The asymptotic variances Vρ, ρ
−2Vρ and VL of ρ̂, ŷ and L̂ may be estimated analogously to the

case dealt with in Section 5. That is, V̂ρ and V̂ os
L,J are defined as in expression (35) and (36),

respectively, but with m(Xt, Xt+1, Yt+1) in place of m(Xt, Xt+1). The estimators V̂ρ and ρ̂−2V̂ρ are

consistent under the conditions of Theorem 6.4(iv)(v). Asymptotic inference based on V̂ os
L,J follows

under additional regularity.

6.3. Application: nonparametric Euler equation estimation. The results of Section 6.2 may

be used to establish the large sample properties of nonparametric sieve estimators of the marginal

utility of consumption of a representative agent, as outlined in Section 2.1. The sieve approach

outlined below is an alternative to the kernel-based procedure analyzed by Linton, Lewbel, and

Srisuma (2011). As in Linton, Lewbel, and Srisuma (2011), the process {(Xt, Ri,t+1)} is required

to be stationary and ergodic. This requirement restricts the forms of utility compatible with this

analysis. Consider, for example, MU of the form

(41) MUt = MU(Ct, Ct−1, Zt)

where Ct is aggregate consumption at date t and Xt = (Ct, Ct−1, Zt). A conventional assumption is

that aggregate consumption {Ct} is nonstationary but growth in aggregate consumption {Ct/Ct−1}
is stationary (see, e.g., Hansen and Singleton (1982); Gallant and Tauchen (1989)). Under this

assumption, MU of the form (41) is incompatible with the stationarity requirement. If MU in

expression (41) is homogeneous of degree zero in its first two arguments, MUt may be rewritten as

(42) MUt = MU(Ct/Ct−1, Zt) .

Marginal utility of the form (42) may then be estimated as described below, provided the process

{(Ct/Ct−1, Zt, Ri,t+1)} is strictly stationary and ergodic.9

9Chen and Ludvigson (2009) use a similar homogeneity assumption to rewrite a semiparametric habit formation
model in terms of consumption growth (rather than levels of consumption).
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Assume MUt = MU(Xt) where {(Xt, Ri,t)} is strictly stationary and ergodic (here {(Xt, Ri,t)}
does not need to be a Markov process). Given data {X0, (X1, Ri,1), . . . , (Xn, Ri,n)}, β and MU can

be estimated by solving

Ĝ−1
K T̂i,K ĉ = β̂−1ĉ

and setting M̂U(x) = bK(x)′ĉ, where β̂−1 is the largest eigenvalue of Ĝ−1
K T̂i,K and

T̂i,K =
1

n

n−1∑
t=0

bK(Xt)Ri,t+1b
K(Xt+1)′ .

Let MU∗ solve E[Ri,t+1MU∗(Xt)|Xt+1] = β−1MU∗(Xt+1). Then MU∗ may be estimated by solv-

ing Ĝ−1
K T̂′i,K ĉ

? = β̂−1ĉ? and setting M̂U
?
(x) = bK(x)′ĉ?.

The large sample properties of β̂−1, M̂U and M̂U? follow from Theorem 6.4. Normalize MU

and MU∗ so that E[MU(X)2] = 1, E[MU(X)MU∗(X)] = 1. Without confusion, let Q denote

the stationary distribution of {Xt}. Replace Assumption 6.2 with (a) Ti : L2(Q) → L2(Q) is

Hilbert-Schmidt, and (b) TiMU = β−1MU where MU ∈ L2(Q) and β−1 > 0 is the largest

eigenvalue of Ti and has multiplicity one. Also let Assumptions 5.1, 5.2 and 5.3 hold with Ti, T̂i,K ,

Ti,K = E[bK(Xt)Ri,t+1b
K(Xt)

′],MU , andMU∗ in place of M, M̂K , MK , φ and φ∗. Theorem 6.4(i)–

(iii) establishes consistency and convergence rates of β̂−1, M̂U and M̂U
?
. The limit distribution

for β̂ is more subtle. Let Gt = σ(Xt, Ri,t, Xt−1, Ri,t−1, . . .). If (Xt+1, Ri,t+1)|Xt =d (Xt+1, Ri,t+1)|Gt
for all t, then

√
n(β̂ − β)→d N(0, β4E[{MU(Xt+1)Ri,t+1MU∗(Xt)− β−1MU(Xt)MU∗(Xt)}2])

by Theorem 6.4(iv) and the delta method. Otherwise, simple modification of the proof of Theorem

5.2 yields, under regularity, √
n(β̂ − β)→d N(0, β4Wβ)

where Wβ = lrvar({MU(Xt+1)Ri,t+1MU∗(Xt)− β−1MU(Xt)MU∗(Xt)}).

7. Monte Carlo simulation

The following Monte Carlo (MC) exercise explores the performance of the estimators when applied

to a stylized consumption CAPM. The SDF is

m(Xt, Xt+1) = β exp(−γgt+1)

where β is the time preference parameter, γ is the risk aversion parameter, and gt+1 is log consump-

tion growth from time t to t+ 1. The state variable is simply Xt = gt. The data are constructed to

be somewhat representative of U.S. real monthly aggregate consumption growth. Log consumption

growth evolves as the Gaussian AR(1)

gt+1 − µ = κ(gt+1 − µ) + σet+1

where the et are i.i.d. N(0, 1) random variables. Gaussianity of the disturbances ensures that the

process {gt}∞t=−∞ is time reversible (see, e.g., Weiss (1975)), which is used to obtain a closed-form
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Figure 1. MC plots for φ̂f with γ = 25. Each panel shows the true φ (solid red
line), pointwise MC median (solid blue line), and pointwise MC 90% confidence
bands (dashed lines). Results are presented for Hermite polynomial (left) and B-
spline (right) sieves of dimension 6 (top), 10 (middle) and 14 (bottom).

solution for φ∗. The positive eigenfunction and adjoint positive eigenfunction are

φ(g) = exp

(
− γκ

1− κ
g +

µγκ

1− κ
− γ2κ2σ2

(1− κ2)(1− κ)2

)
φ∗(g) = exp

(
− γ

1− κ
g +

µγ

1− κ
+

γ2σ2

(1− κ2)(1− κ)2

{
κ2 − 1

2
(1 + κ)2

})
where both φ and φ∗ have been normalized so that E[φ2(g)] = 1 and E[φ(g)φ∗(g)] = 1. Their

eigenvalue ρ is

ρ = β exp

(
−γµ+

1

2

γ2

(1− κ)2
σ2

)
.

The parameters for the simulation are µ = 0.002, κ = 0.3, and σ = 0.01/
√

1− κ2, which are similar

in magnitude to the parameters of the U.S. real per capita consumption growth series investigated

in the next section. The sample length is set to 500, and 10000 simulations are performed. The

time preference parameter β is set to 0.998, and γ is varied from 0 to 30. Two choices of sieve are

used, namely Hermite polynomials and cubic B-splines, with dimension K = 6, 10 and 14. For each

simulation, the Hermite polynomial sieve was centered and scaled by the sample mean and sample

standard deviation of g, and the knots of the cubic B-spline sieve were placed at the empirical

quantiles. Cosine bases of dimension J = 10 and 15 were used to compute the OSLRV estimator.

MC results φ̂f and φ̂?f for γ = 25 are presented in Figures 1 and 2, respectively. Each panel

shows the true φ (or φ∗) for g ∈ [µ − 2σ, µ + 2σ] (solid red lines) together with the pointwise

MC median φ̂ (or φ̂?) (solid blue lines) and pointwise MC 90% confidence bands (the pointwise
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Figure 2. MC plots for φ̂?f with γ = 25. Each panel shows the true φ (solid
red line), pointwise MC median (solid blue line), and pointwise MC 90% confidence
bands (dashed lines). Results are presented for Hermite polynomial (left) and B-
spline (right) sieves of dimension 6 (top), 10 (middle) and 14 (bottom).

.05 and .95 quantiles of the estimator approximated by simulation; dashed lines). Both φ̂ and φ̂?

are normalized feasibly as in Corollary 5.3. The estimators have negligible bias. The width of the

confidence bands increases with the sieve dimension K, which illustrates that the “variance term”

η̄n,K is increasing in K. Other simulations (not reported) show that increasing/decreasing γ also

increases/decreases the width of the MC confidence bands.

Table 1 shows the MC coverage probabilities for 90% and 95% confidence intervals (CIs) for ρ

and y, and Table 2 shows the MC coverage probabilities for 90% and 95% CIs for L. To construct

the MC coverage probabilities, for each simulation ρ, y, and L were estimated and their 90% and

95% confidence intervals estimated using the variance estimators V̂ρ, ρ̂
−2V̂ρ, and V̂ os

L,J . Gaussian

critical values were used for the CIs for ρ and y, and tJ critical values were used for the CIs for

L. The MC coverage probabilities are the proportion of simulations for which the estimated CIs

contained the true parameter values. Table 1 shows that the 90% and 95% CIs for ρ and y have

MC coverage probabilities that are very close to their nominal coverage probabilities, for all sieve

choices and all levels of γ. The MC coverage probabilities for L presented in Table 2 show that the

CIs corresponding to a B-spline sieve are too narrow, especially at high values of γ. The coverage

probabilities for the CIs corresponding to a Hermite polynomial sieve are close to their nominal

values with both J = 10 and J = 15. The MC coverage probabilities for ρ, y and L appear generally

robust to the dimension K of the sieve space, especially when a Hermite polynomial sieve is used.
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90% CI for ρ 95% CI for ρ
K = 6 K = 10 K = 14 K = 6 K = 10 K = 14

γ = 5 89.60 89.64 89.75 94.82 94.78 94.79
H-Pol γ = 15 89.86 89.91 90.04 94.52 94.54 94.60

γ = 25 89.43 89.53 89.39 93.63 93.59 93.61
γ = 5 89.63 89.60 89.54 94.82 94.75 94.74

B-Spl γ = 15 89.80 89.63 89.57 94.50 94.51 94.39
γ = 25 89.28 88.64 88.41 93.51 93.27 92.95

90% CI for y 95% CI for y
K = 6 K = 10 K = 14 K = 6 K = 10 K = 14

γ = 5 89.70 89.66 89.74 94.81 94.80 94.77
H-Pol γ = 15 89.91 89.90 90.02 94.62 94.60 94.61

γ = 25 89.44 89.58 89.50 93.78 93.76 93.79
γ = 5 89.68 89.58 89.39 94.80 94.68 94.53

B-Spl γ = 15 89.78 89.53 89.42 94.53 94.50 94.18
γ = 25 89.33 88.68 88.24 93.67 93.35 92.91

Table 1. Monte Carlo coverage probabilities for 90% and 95% asymptotic confi-
dence intervals for ρ and y based on the asymptotic distribution in Theorem 5.2 and

the consistent variance estimators V̂ρ and ρ̂−2V̂ρ. Results are presented for Hermite
polynomial (H-Pol) and B-spline (B-Spl) sieves of varying dimension K.

90% CI for L 95% CI for L
K = 6 K = 10 K = 14 K = 6 K = 10 K = 14

γ = 5 91.66 91.70 91.80 95.92 95.96 95.90
H-Pol, J = 10 γ = 15 90.35 90.34 90.30 94.91 94.96 94.98

γ = 25 88.69 88.47 88.28 93.67 93.53 93.18
γ = 5 92.95 93.06 93.03 96.74 96.80 96.84

H-Pol, J = 15 γ = 15 91.11 91.20 91.08 95.47 95.52 95.53
γ = 25 89.41 89.11 88.94 94.27 93.98 93.86
γ = 5 88.26 88.20 87.84 92.98 92.71 92.62

B-Spl, J = 10 γ = 15 86.69 86.12 85.87 91.55 91.16 90.80
γ = 25 84.47 83.63 83.09 89.36 88.96 88.51
γ = 5 89.72 89.67 89.51 93.99 93.83 93.70

B-Spl, J = 15 γ = 15 87.49 86.98 86.75 92.29 91.83 91.66
γ = 25 85.29 84.58 84.10 89.93 89.48 88.97

Table 2. Monte Carlo coverage probabilities for 90% and 95% asymptotic con-
fidence intervals for L based on the asymptotic distribution in Theorem 5.3 and

the OSLRV estimator V̂ os
L,J , which was computed with a cosine basis of dimension

J = 10 and J = 15. Results are presented for Hermite polynomial (H-pol) and
B-spline (B-Spl) sieves for of varying dimension K.

8. Empirical illustration

The long-run implications of the consumption CAPM are now investigated using the tools intro-

duced in this paper. The consumption CAPM has been the basis for a vast amount of research,

from the seminal works of Hansen and Singleton (1982) and Mehra and Prescott (1985) though to
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recent rare disasters-based investigations of Backus, Chernov, and Martin (2011) and Julliard and

Ghosh (2012). The SDF to be investigated is

(43) m(Xt, Xt+1;β, γ) = β exp(−γgt+1)

where β is the time preference parameter, γ is the risk aversion parameter, and gt+1 is log con-

sumption growth from time t to t+1. As shown in Bansal and Lehmann (1997), Hansen (2012) and

Backus, Chernov, and Zin (2013), the SDF (43) has the same permanent component (and therefore

entropy of the permanent component) and implies the same long-term yield as SDFs of the form

(44) m(Xt, Xt+1;β, γ) = β exp(−γgt+1)
h(Xt+1)

h(Xt)

where h is a positive function. For example, h(Xt) may capture a limiting version of recursive

preferences as in Hansen (2012). Alternatively, h(Xt) may be an external habit formation component

as in Chen and Ludvigson (2009). The following analysis therefore applies to a wider class of

consumption-based asset pricing models than simply the consumption CAPM.

Three specifications of the state process are investigated, namely Xt = gt, Xt = (gt, ge,t)
′ where

ge,t denotes the growth in corporate earnings from time t − 1 to time t, and Xt = (gt, rf,t)
′ where

rf,t = logR1,t+1 denotes the short-term risk-free rate at date t. Corporate earnings growth is

included as a state variable in line with Hansen, Heaton, and Li (2008) who, in a different but

related application, model log consumption and log corporate earnings jointly using a Gaussian

vector autoregression.10 The risk-free rate is included in the state process for comparison with Case

I of Bansal and Yaron (2004), in which log consumption growth is modeled as

(45)
gt+1 = µ+ xt + σget+1

xt+1 = ρxt + σxηt+1

where xt is a latent predictable component of consumption growth and et+1 and ηt+1 are mutually

independent and i.i.d. N(0, 1). When ρ ∈ (−1, 1) the state vector Xt = (gt, xt)
′ is a strictly sta-

tionary and ergodic first-order Markov process. The risk-free rate in Case I of Bansal and Yaron

(2004) is an affine function of xt. Therefore, in Case I of Bansal and Yaron (2004) the observable

vector (gt, rf,t)
′ and the partially latent vector (gt, xt)

′ contain the same information: one can simply

rewrite xt as an affine function of rf,t. Both Hansen, Heaton, and Li (2008) and Bansal and Yaron

(2004) assume a representative agent with Epstein-Zin-Weil recursive preferences. The SDF (43)

is a restricted parameterization of the recursive preferences SDF used in these models (obtained

by setting the elasticity of intertemporal substitution equal to γ−1). As is common practice, it is

assumed that the household decision interval coincides with the sampling interval.

8.1. Data. The data span 1947:Q2 to 2012:Q4 (263 observations). Data on aggregate consump-

tion, corporate earnings, and population size were sourced from the National Income and Product

Accounts (NIPA) tables. The consumption growth series is formed by taking seasonally adjusted

consumption of nondurables and services data (NIPA Table 2.3.5), deflating by the implicit price

10Hansen, Heaton, and Li (2008) model log consumption and log corporate earnings as a cointegrated, fifth-order
Gaussian vector autoregression. By contrast, here log consumption growth and log earnings growth are modeled
jointly as a first-order (possibly nonlinear) Markov process.
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g rf ge
Mean 0.0053 0.0030 0.0115
Std Dev 0.0055 0.0069 0.0733
Skewness -0.4631 -0.4747 -0.1722
Kurtosis 4.2770 5.3039 8.2600
AR(1) 0.2859 0.7446 0.0016

Table 3. Summary statistics for quarterly U.S. per capita (log) growth in con-
sumption of nondurables and services g, risk-free rate rf , and quarterly growth in
corporate earnings ge. AR(1) denotes the first order autocorrelation coefficient. The
data span 1947:Q2–2012:Q4.

deflator for personal consumption expenditures (PCE; NIPA Table 2.3.4), and then calculating per

capita growth rates using the deflated series and population data (NIPA Table 2.1). After-tax cor-

porate earnings data (NIPA Table 1.12) were used because dividends are paid out to stockholders

on an after-tax basis (Longstaff and Piazzesi, 2004). The risk-free rate was taken as the three-month

Treasury bill rate (from CRSP). The earnings growth and risk-free series were both converted to

real rates using the PCE deflator data.

Summary statistics of the consumption growth, risk-free rate and corporate earnings growth series

are presented in Table 3. All series exhibit negative skewness and excess kurtosis. The consump-

tion growth and risk-free rate series are positively autocorrelated. Earnings growth exhibits little

persistence, but is much more volatile than consumption growth.

8.2. Implementation. The time preference parameter was set at β = 0.9983. The risk aversion

parameter was varied between γ = 0 (risk neutrality) and γ = 30. Hermite polynomial bases were

formed for each series (centering and scaling by the sample mean and standard deviation of each

series). A sieve spaces of dimension K = 8 is used for Xt = gt, and sieve spaces of dimension

K = 16 are used for Xt = (gt, rf,t)
′ and Xt = (gt, ge,t)

′. The sieve spaces for bivariate state vectors

are formed by taking the tensor product of two univariate bases of dimension four. The OSLRV

estimator V̂ os
L,J was implemented with a cosine basis of dimension J = 10. The estimates were

insensitive to both the dimension of the sieve space and the dimension of the basis used to compute

the OSLRV estimators.

8.3. Results. Figure 3 displays the estimates φ̂ and φ̂? with γ = 5, γ = 15, and γ = 25 for the

case Xt = gt. The estimates φ̂ and φ̂? are more acutely sloped for higher levels of γ. The estimated

positive eigenfunctions are decreasing in g, which implies that the price of long-horizon assets is a

decreasing function of aggregate consumption growth.

The estimated long-run yield ŷ and entropy of the permanent component L̂ are plotted in Figure

4 for Xt = gt and in Figure 5 for Xt = (gt, ge,t)
′. The entropy of the permanent component of

the SDF is independent of β. The long-run yield depends on both β and γ. The solid blue lines

present the pointwise estimates, and the dashed blue lines are 90% pointwise confidence bands.

Comparison of Figures 4 and 5 show that very similar estimated long-run yields and permanent



ESTIMATING THE LONG-RUN IMPLICATIONS OF DYNAMIC ASSET PRICING MODELS 37

−5 0 5 10 15

x 10
−3

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

g

φ̂
(g

)

 

 

−5 0 5 10 15

x 10
−3

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

g

φ̂
?
(g

)

γ = 5

γ = 15

γ = 25

Figure 3. Estimated φ and φ∗ for the consumption CAPM at different levels of
risk aversion γ. The state variable is Xt = gt, where gt is quarterly real U.S. per
capita (log) growth in consumption of nondurables and services.
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ŷ

0 5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

γ

L̂

Figure 4. Estimated long-run yield ŷ and entropy of the permanent component

of the SDF L̂ for the consumption CAPM at different levels of risk aversion γ, for
β = 0.9983 (solid blue lines). The state variable is Xt = gt, where gt is quarterly
real U.S. per capita (log) consumption growth. Dashed blue lines are pointwise
asymptotic 90% confidence bands. The dashed black line represents the estimated
average quarterly excess return on equities relative to long-term bonds.

component entropies are obtained for Xt = gt or Xt = (gt, ge,t)
′. Similar results are also obtained

for the specification Xt = (gt, rf,t) (not presented).



38 CHRISTENSEN

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

γ

ŷ
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Figure 5. Estimated long-run yield ŷ and entropy of the permanent component

of the SDF L̂ for the consumption CAPM at different levels of risk aversion γ,
for β = 0.9983 (solid blue lines). The state variable is Xt = (gt, ge,t)

′, where gt is
quarterly real U.S. per capita (log) consumption growth and ge,t is quarterly real
U.S. corporate earnings growth. Dashed blue lines are pointwise asymptotic 90%
confidence bands. The dashed black line represents the estimated average quarterly
excess return on equities relative to long-term bonds.

The entropy of the permanent component of the SDF is an upper bound for the average return on

risky assets relative to long-term bonds (see equation (14)). An average excess return of 1.17% per

quarter was estimated from the quarterly return on the NYSE/AMEX/NASDAQ combined index,

including dividends, relative to the quarterly return on 30-year bonds over the sample period (both

return series were sourced from CRSP).11 The estimates presented in Figures 4 and 5 show that

one requires γ ≥ 15 for the estimated entropy of the permanent component of the consumption

CAPM SDF to exceed 1.17%. As the bound (14) applies to all risky assets (not just the aggregate

market), the lower bound for the entropy of the permanent component of the SDF would be at least

as large as 1.17% if information on other assets was taken into account. A larger γ would then be

required to generate and estimated entropy that was compatible with a higher bound. This analysis

suggests that the level of risk aversion required for the entropy of the permanent component of the

consumption CAPM SDF to be compatible with historical average returns on equity to relative to

long-term bonds is substantially higher than the threshold of 10 imposed by Mehra and Prescott

(1985).

11The effect of coupon payments is ignored. Ignoring coupon payments is unlikely to have any substantial effect on
the qualitative implications of these findings, however. The estimated quarterly premium for the combined index in
excess of the three-month T-bill rate was 1.46% over the sample period. Historical data show that the term premium
is small. For example, Backus, Chernov, and Zin (2013) suggest that the absolute value of the average yield spread
is unlikely to exceed 0.1% monthly (see also Alvarez and Jermann (2005)).
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Figure 6. Estimated entropy of the SDF and entropy of the permanent compo-
nent of the SDF for the consumption CAPM at different levels of risk aversion γ,
for β = 0.9983 (solid red and blue lines). The state variable is Xt = gt, where gt is
quarterly real U.S. per capita (log) consumption growth. Dashed lines are pointwise
asymptotic 90% confidence bands. The dashed black lines represent historical av-
erage quarterly excess returns on equities relative to short-term bonds (left panel)
and relative to long-term bonds (right panel).

As Figures 4 and 5 show, the estimated long-term yield is much larger than historical average

long-term yields when γ is set sufficiently high to rationalize the average return on equities relative

to long-term bonds. For γ ≥ 15 the estimated long-term quarterly yield is at least 6% per quarter.

By contrast, the average real yield on the longest maturity Treasury bond over the period February

1959 to December 2012 was 0.76% per quarter.12 Decreasing the time preference parameter β

further increases the estimated long-term yields. Under the restriction γ ≥ 15, estimates of the

long-term yield in line with historical average yields on long-term bonds were only obtainable with

β > 1. Again, very similar results are obtained with Xt = (gt, rf,t)
′ (not presented)

These findings provide evidence of a long-term version of the equity premium and risk-free rate

puzzles under the restrictions β ∈ (0, 1) and γ ∈ [0, 10] imposed by Mehra and Prescott (1985),

at least to the extent that U.S. aggregate consumption growth can be described as a stationary

Markov process with low-dimensional state vector. Similar qualitative results are obtained with

monthly data.13

12This yield is estimated by taking the maximum treasury constant maturity yield available each month (either 20
or 30 years) from the Federal Reserve H-15 release, adjusting to a quarterly yield, and deflating using the implicit
price deflator for personal consumption expenditures in the NIPA tables.
13Bakshi and Chabi-Yo (2012) estimate a monthly return premium in excess of long-term bonds of 0.41% per month,
from U.S. market data spanning January 1932 to December 2010. With monthly data (spanning February 1959–
December 2012), the level of γ required to generate an estimated entropy compatible with this bound was in excess
of 20 for Xt = gt and Xt = (gt, rf,t)

′ (corporate earnings are not available at the monthly frequency). Moreover, the
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How does the entropy of the SDF in the consumption CAPM compare with the entropy of its

permanent component? Figure 6 presents estimates of the entropy of the consumption CAPM SDF

(left panel) and the entropy of its permanent component (right panel), together with their 90%

pointwise confidence bands.14 The dashed horizontal lines are the estimated average returns on

equities relative to short-term bonds (left panel) and relative to long-term bonds (right panel)

over the sample period.15 The entropy of the SDF is an upper bound for the average return on

risky assets relative to short-term bonds (see expression (17)). Figure 6 shows that the level of risk

aversion required to generate an entropy of the SDF that rationalizes the historical average return

on equities relative to short-term bonds is considerably larger than the level required to generate

an entropy of the permanent component that rationalizes the historical average return on equities

relative to long-term bonds. It may be possible to augment the consumption CAPM SDF by a term

of the form h(Xt+1)/h(Xt) as in expression (44) so as to rationalize the premium relative to short

term bonds at lower levels of risk aversion. However, such transitory distortions will not alter the

permanent component of the SDF.

9. Conclusion

The long-run implications of a dynamic asset pricing model are jointly determined by both the

functional form of the SDF and the short-run dynamics, or law of motion, of the variables in

the model. The econometric framework introduced in this paper treats the dynamics as an un-

known nuisance parameter. This paper introduces nonparametric sieve estimators of the positive

eigenfunction and its eigenvalue (which are used to decompose the SDF into its permanent and

transitory components), the long-term yield, and the entropy of the permanent component of the

SDF. The sieve estimators are particularly easy to implement, and may also be used to numeri-

cally compute the long-run implications of fully specified models for which analytical solutions are

unavailable. Consistency and convergence rates of the estimators are established, together with a

means of performing asymptotic inference on the eigenvalue, long-run yield and entropy of the per-

manent component of the SDF. The estimators of the eigenvalue, long-run yield and entropy of the

permanent component are shown to be semiparametrically efficient. Nonparametric identification

conditions are presented for the positive eigenfunction in stationary discrete-time environments,

and a version of the long-run pricing result of Hansen and Scheinkman (2009) is shown to obtain

under the identification conditions.

There are several ways in which the research reported in this paper may be extended. One such

extension is to study nonparametric identification and estimation in environments in which the

state variable contains latent components or is measured with error. Data-driven methods for

choosing the sieve space dimension would provide a more objective means for choosing the sieve

estimated long-run yields were at least 3% per month for values of γ larger than 20. By contrast, the average real
yield on the longest maturity Treasury bond over the sample period is around 0.25% per month.
14The entropy of the SDF is estimated by replacing the expected values in expression (16) by their sample averages.
Confidence bands for the estimated entropy of the SDF are computed using the OSLRV estimator with a cosine basis
of dimension J = 10.
15The return relative to short-term bonds is estimated from the quarterly return on the NYSE/AMEX/NASDAQ
combined index, including dividends, relative to the three-month T-bill rate.
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space dimension than the ad hoc approach used in this paper. Confidence bands for the estimated

eigenfunction and the asymptotic distribution of functionals of the estimated eigenfunction would

be useful for performing inference on the estimated eigenfunction. These extensions are currently

being investigated by the author.
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Appendix

This appendix contains supplementary results and proofs. Appendix A presents high-level sufficient

conditions for nonparametric identification of the positive eigenfunction. Versions of the long-term

pricing result of Hansen and Scheinkman (2009) are also shown to obtain under the identification

conditions. Appendix B briefly reviews some relevant concepts from spectral theory. Appendix C

establishes consistency and convergence rates for nonparametric sieve estimators of the positive

eigenfunctions of a collection of operators and their adjoints. Useful results on the convergence of

random matrices are also presented in Appendix C. All proofs are in Appendix D.

Notation: Let (A,A , µ) be a measure space and let p ∈ [1,∞]. The space Lp(A,A , µ) is abbreviated

as Lp(µ). Let ‖ · ‖Lp(µ) denote the Lp(µ) norm when applied to functions and the operator norm

when applied to linear operators on the space Lp(µ). Let a.e.-[µ] denote almost everywhere with

respect to the measure µ and a.e.-[µ ⊗ µ] denote almost everywhere with respect to the product

measure µ⊗ µ. Let Γ(δ, λ) denote the positively oriented circle (in the complex plane) centered at

λ with radius δ. Let B(δ, λ) denote the open ball (in the complex plane) centered at λ with radius

δ. Finally, let d(z,A) = infζ∈A |z − ζ| for z ∈ C and A ⊂ C.

Appendix A. Identification and long-term pricing

This appendix provides primitive sufficient conditions for the identification of the positive eigen-

function and adjoint eigenfunction in stationary discrete-time environments for which M may be

represented as an integral operator with positive kernel. Existence is achieved by application of

the Perron-Frobenius theorem for positive integral operators. Identification is then established by

a type of Krĕın-Rutman theorem. A restatement of the long-term pricing result of Hansen and

Scheinkman (2009) is shown to obtain under these conditions.

Basic regularity conditions are first introduced. Let X be the Borel σ-algebra on X . The following

conditions are sufficient for existence and nonparametric identification of φ.

Assumption A.1. {Xt} is a strictly stationary and ergodic (first-order) Markov process supported

on a Borel set X ⊆ Rd, and its stationary distribution Q has density q with respect to Lebesgue

measure, with q(x) > 0 for almost every x ∈ X .

Assumption A.2. M : Lp(Q)→ Lp(Q) is bounded and Mτ is compact for some τ ≥ 1.

Assumption A.3. M may be written as in (18) with integral kernel K as in (19) such that:

(i) K(x, y) ≥ 0 a.e.-[Q⊗Q]

(ii)
∫
Ac

∫
Am(x, y)f(x, y) dx dy > 0 for every A ∈X with 0 < Q(A) < 1.

Assumption A.1 is the same as Assumption 4.1(i). Assumptions A.2 and A.3 are higher-level con-

ditions in place of Assumptions 4.1(ii)–(iv). Assumption A.2 only requires some power of M to be
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compact and is weaker than requiring M itself to be compact.16 Assumption A.3 is trivially satisfied

if K(x, y) > 0 a.e.-[Q⊗Q]. Assumption 4.1 is sufficient for Assumptions A.1, A.2, and A.3 for p = 2.

Let spr(M) denote the spectral radius of M (see Appendix B). Existence of φ follows by Theorem

V.6.6 of Schaefer (1974).

Theorem A.1 (Schaefer (1974)). If Assumptions A.1, A.2 and A.3 hold for some p ∈ [1,∞], then

there exists a φ ∈ Lp(Q) with φ(x) > 0 a.e.-[Q] such that Mφ = ρφ with ρ = spr(M) > 0, and φ is

the unique (to scale) eigenfunction of M corresponding to the eigenvalue ρ.

If, in addition, K > 0 a.e.-[Q⊗Q] then any other eigenvalue λ of M has modulus |λ| < ρ.

If 1 ≤ p <∞ let the dual index p′ for Lp(Q) be defined as p−1 +p′−1 = 1 with p′ =∞ if p = 1. The

dual space of Lp(Q) can be identified with the space Lp
′
(Q) under the evaluation E[ψ(X)ψ∗(X)]

for ψ ∈ Lp(Q), ψ∗ ∈ Lp′(Q). The adjoint operator M∗ : Lp
′
(Q)→ Lp

′
(Q) is defined such that

E[ψ(X)M∗ψ∗(X)] = E[ψ∗(X)Mψ(X)]

for ψ ∈ Lp(Q) and ψ∗ ∈ Lp′(Q). Let (X ,X1, Q1) denote the completion of (X ,X , Q) as described

on p. 296 of Dunford and Schwartz (1958). The dual space of L∞(Q) can be identified with the

space ba(X ,X1, Q1) of signed measures on (X ,X1) which are absolutely continuous with respect

to Q1, under the evaluation ψ∗(ψ) =
∫
X ψ dνψ∗ for ψ ∈ L∞(Q) and νψ∗ ∈ ba(X ,X1, Q1) (Dunford

and Schwartz, 1958, p. 296).

It follows from Theorem A.1 by a version of the Krĕın-Rutman theorem due to Schaefer (1960)

that φ is the unique non-negative eigenfunction of M.

Theorem A.2. If Assumptions A.1, A.2 and A.3 hold for some p ∈ [1,∞], then ρ is an eigenvalue

of M of multiplicity one, φ is the unique (to scale) eigenfunction of M with φ(x) ≥ 0 a.e.-[Q] and:

(i) If p ∈ [1,∞) there exists a φ∗ ∈ Lp′(Q) with φ∗(x) > 0 a.e.-[Q] such that M∗φ∗ = ρφ∗, and

φ∗ is the unique (to scale) eigenfunction of M∗ with φ∗(x) ≥ 0 a.e.-[Q]

(ii) If p = ∞ there exists a unique (to scale) nonzero Φ∗1 ∈ ba(X ,X1, Q1) such that Φ∗1(A) ≥ 0

for all A ∈X with Q(A) > 0 and∫
X
Mψ(x) dΦ∗1(x) = ρ

∫
ψ(x) dΦ∗1(x)

for all ψ ∈ L∞(Q).

Versions of the long-run pricing result

lim
τ→∞

ρ−τMτψ(Xt) = Ẽ[ψ(X)/φ(X)]φ(Xt)

of Hansen and Scheinkman (2009) hold under the identification conditions just presented. First con-

sider the case 1 ≤ p <∞. The positive eigenfunction and adjoint positive eigenfunction exist under

16There are several sufficient conditions for this compactness condition. For 1 < p < ∞ this is satisfied if there is a
τ ≥ 1 such that Mτ maps Lp(Q) into L∞(Q), for p = 1 if there is a τ ≥ 1 such that Mτ maps L1(Q) into Lr(Q) for
some r > 1, and for p =∞ if there is a τ ≥ 1 such that Mτ has a continuous extension that maps Lr(Q) into L∞(Q)
for some r <∞ (Schaefer, 1974, p. 337).
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Assumptions A.1, A.2 and A.3. Impose the normalizations E[φ(X)p] = 1 and E[φ(X)φ∗(X)] = 1,

and let P : Lp(Q)→ Lp(Q) be defined as

Pψ(x) = E[ψ(X)φ∗(X)]φ(x) .

Theorem A.3. If Assumptions A.1, A.2 and A.3 hold for some p ∈ [1,∞) with K(x, y) > 0

a.e.-[Q⊗Q], then there exists c > 0 such that ‖ρ−τMτ − P‖Lp(Q) = O(e−cτ ) as τ →∞.

Now consider the space L∞(Q). Under Assumptions A.1, A.2 and A.3 the positive eigenfunction

exists, together with a nonzero measure Φ∗1 ∈ ba(X ,X1, Q1) such that Φ∗1(A) ≥ 0 for all A ∈ X

with Q(A) > 0. Normalize φ and Φ∗1 so that Φ∗1(X ) = 1 (making Φ∗1 a probability measure) and∫
X φ dΦ∗1 = 1. Let P : L∞(Q)→ L∞(Q) be defined as

Pψ(x) =

(∫
X
ψ dΦ∗1

)
φ(x) .

Theorem A.4. If Assumptions A.1, A.2 and A.3 hold for p = ∞ with K(x, y) > 0 a.e.-[Q ⊗ Q],

then there exists c > 0 such that ‖ρ−τMτ − P‖L∞(Q) = O(e−cτ ).

Both Theorem A.3 and Theorem A.4 show that versions of the long-run pricing result hold in

operator norm with the approximation error vanishing exponentially with τ . The theorems also show

how to calculate the twisted probability measure Q̃ used to calculate the unconditional expectation

Ẽ when 1 ≤ p < ∞. Specifically, the Radon-Nikodym derivative of the twisted measure Q̃ with

respect to Q is

(46)
dQ̃(x)

dQ(x)
= φ(x)φ∗(x) .

Therefore, the twisted expectation Ẽ may be recovered by solving the eigenfunction problems

Mφ = ρφ and M∗φ∗ = ρφ∗.

Appendix B. Brief review of spectral theory

Relevant concepts from spectral theory are briefly reviewed. Definitions are as in Kato (1980), unless

stated otherwise. Let E be a Banach space and T : E → E be a bounded linear operator. The

definitions are presented in the case that E is a Banach space over C. When E is a Banach space

over R, the definitions are applied to the complex extension of T , given by T (x+ iy) = T (x)+ iT (y)

for x, y ∈ E, on the complexification of E, namely E + iE of E.

The resolvent set res(T ) ⊆ C of T is the set of all z ∈ C for which the resolvent operator R(T, z) :=

(T − zI)−1 is a bounded linear operator on E (where I : E → E is the identity). The spectrum

σ(T ) is defined as the complement in C of res(T ), i.e. σ(T ) := (C \ res(T )). If S : E → E is another

bounded linear operator and z ∈ res(T ) ∪ res(S) then the so-called second resolvent equation

obtains:

(47) R(S, z)−R(T, z) = R(S, z)(T − S)R(T, z) .
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The spectral radius spr(T ) of T is spr(T ) = sup{|λ| : λ ∈ σ(T )}. The Gelfand formula shows that

spr(T ) = limn→∞ ‖Tn‖1/n. The point spectrum π(T ) ⊆ σ(T ) of T is the set of all z ∈ C for which

the null space of (T − zI) is not 0. When π(T ) is nonempty, each λ ∈ π(T ) is an eigenvalue of T

and any nonzero ψ in the null space of (T − λI) is an eigenvector of T corresponding to λ. The

dimension of the null space of (T − λI) is the geometric multiplicity of the eigenvalue λ.

An eigenvalue λ ∈ π(T ) is said to be isolated if infz∈σ(T ):z 6=λ |z − λ| ≥ 2ε for some ε > 0, in which

case the spectral projection of T corresponding to λ can be written as

(48) P =
−1

2πi

∫
Γ(ε,λ)

R(T, z) dz .

The dimension of PE is the algebraic multiplicity of λ. The algebraic multiplicity is the order of

the pole of R(T, z) at z = λ and is at least as large as the geometric multiplicity of λ (Chatelin,

1983). The term multiplicity is used for eigenvalues whose algebraic and geometric multiplicity are

equal. Suppose that λ is an isolated real eigenvalue of T . Then λ is an isolated real eigenvalue of

the adjoint T ∗ of T , and the algebraic and geometric multiplicities of λ are the same for T and T ∗.

If, in addition, λ has multiplicity one, then P = x⊗ x∗ with where (x⊗ x∗)ψ = x∗(ψ)x and where

x and x∗ are eigenvectors of T and T ∗ corresponding to λ, and x∗(x) = 1 (Chatelin, 1983, p. 113).

If, in addition, E is a Hilbert space then P = (x ⊗ x∗) is given by (x ⊗ x∗)ψ = 〈ψ, x∗〉x where x∗

is an eigenvector of T ∗ corresponding to λ, ‖x‖ = 1 and 〈x, x∗〉 = 1. In this case ‖P‖ = ‖x∗‖ ≥ 1,

with x∗ = x and ‖P‖ = 1 if P is an orthogonal projection (which is the case when T is selfadjoint).

Appendix C. Additional results for estimation

C.1. Estimation of eigenvalues and eigenfunctions. Let {Xt} be a strictly stationary (not

necessarily Markov) process with stationary distributionQ and whose support is a Borel set X ⊆ Rd.
Consider a set of operators {Mα : α ∈ A} indexed by an arbitrary parameter α ∈ A, where each

Mα : L2(Q)→ L2(Q) is given by

Mαψ(x) = E[m(Xt, Xt+1;α)ψ(Xt+1)|Xt = x]

for some m(·, ·;α) : X × X → R. This setup trivially nests the case dealt with in the body of

the paper in which A is a singleton. Suppose each Mα has a isolated eigenvalue ρα = spr(Mα) and

unique positive eigenfunction φα corresponding to ρα (so each M∗α has a unique adjoint eigenfunction

φ∗α). Uniform (in α) convergence rates of nonparametric sieve estimators of (ρα, φα, φ
∗
α) are now

established.

The following analysis is conducted in L2(Q) as in the body of the paper. Let BK be the sieve

space spanned by the basis functions {bK1, . . . , bKK} and let Πb
K be the orthogonal projection onto

BK . Under regularity conditions, for K sufficiently large the largest eigenvalue ρα,K of Πb
KMα will

be real and positive and have multiplicity one for all α ∈ A. Let φα,K ∈ BK be an eigenfunction

of Πb
KMα corresponding to ρα,K . Similarly, the adjoint in L2(Q) of Πb

KMα will have a unique

eigenfunction φ∗α,K corresponding to ρα,K , and the adjoint in BK of Πb
KMα|BK : BK → BK will

have an eigenfunction φ?α,K ∈ BK corresponding to ρα,K . As all quantities are defined up to sign
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and scale, impose the sign normalizations E[φα,K(X)φα(X)] ≥ 0, E[φ∗α,K(X)φ∗α(X)] ≥ 0 and

E[φ?α,K(X)φ∗α(X)] ≥ 0 and the scale normalizations E[φα,K(X)2] = 1, E[φα,K(X)φ∗α,K(X)] = 1

and E[φα,K(X)φ?α,K(X)] = 1.

Let the Gram matrix GK and its estimator ĜK be as in the body of the paper. For each α ∈ A let

Mα,K be as defined as in (24) with m(·, ·;α) in place of m(·, ·) and let M̂α,K be a K ×K matrix

estimator of Mα,K (i.e. a measurable function of the sample data). Under regularity conditions,

with probability approaching one ĜK is invertible and for each α ∈ A the eigenvector problems

Ĝ−1
K M̂α,K ĉα = ρ̂αĉα

Ĝ−1
K M̂′

α,K ĉ
?
α = ρ̂αĉ

?
α

are solvable, where ρ̂α = λmax(Ĝ−1
K M̂α,K) is real and positive. Then for each α ∈ A, ρ̂α is the

estimator of ρα, φ̂α = bK(x)′ĉα is the estimator of φα, and φ̂?α = bK(x)′ĉ?α is the estimator of

φ∗α. As these eigenfunction estimators are only defined up to scale, impose the sign normalizations

E[φ̂α(X)φα,K(X)] ≥ 0 and E[φ̂?α(X)φ?α,K(X)] ≥ 0 and the scale normalizations ‖φ̂α‖ = 1 and

E[φ̂α(X)φ̂?α(X)] = 1.

Some definitions are required before introducing the regularity conditions. As in Section 5.2, let b̃K

denote the vector of orthonormalized basis functions and let

̂̃
GK =

1

n

n−1∑
t=0

b̃K(Xt)̃b
K(Xt)

′ .

For each α ∈ A define ̂̃
Mα,K = G

−1/2
K M̂α,KG

−1/2
K .

The orthonormalized estimators
̂̃
GK and

̂̃
Mα,K are infeasible and do not actually need to be

constructed, but it makes the asymptotic arguments easier to work with them in place of ĜK and

M̂α,K . Note that any ψ ∈ BK can be written as ψK(x) = c̃K(ψ)′b̃K(x) for some c̃K(ψ) ∈ RK . The

space BK is therefore isomorphic to RK endowed with the Euclidean inner (dot) product, since

E[ψ1(X)ψ2(X)] = c̃K(ψ1)′E [̃bK(x)̃bK(x)′]c̃K(ψ2) = c̃K(ψ1)′c̃K(ψ2) .

Therefore the matrix spectral norm ‖ · ‖2 when applied to the orthonormalized matrices in RK×K

is isomorphic to the operator norm for linear operators on BK .

The spectrum σ(·) and resolvent R(·, z) are defined in Appendix B. Let c̃α,K , c̃
?
α,K ∈ RK be such that

b̃K(x)′c̃α,K = φα,K and b̃K(x)′c̃?α,K = φ?α,K . Let {δK , δ∗K , η̄1,n,K , η̄2,n,K , η1,n,K , η2,n,K : n,K ≥ 1}
be sequences of positive real values to be defined in the following assumptions. In the event of

measurability issues, outer probabilities are used below implicitly in place of probabilities.

Assumption C.1. The set of operators {Mα : α ∈ A} satisfies:

(i) for each α ∈ A, Mα : L2(Q) → L2(Q) is a bounded linear operator and ρα = spr(Mα) is an

isolated eigenvalue of Mα of multiplicity one

(ii) supα∈A ‖Mα‖ <∞ and ε̄ := infα∈A d(ρα, σ(Mα) \ {ρα}) > 0.

Assumption C.2. The sieve approximation error satisfies:
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(i) supα∈A ‖Πb
KMα −Mα‖ = O(δ̄K) where δ̄K = o(1) as K →∞

(ii) supα∈A ‖(Πb
KMα −Mα)φα‖ = O(δK), supα∈A ‖(M∗αΠb

K −M∗α)φ∗α/‖φ∗α‖‖ = O(δ∗K).

Assumption C.3. There exists a continuous decreasing function r : (0,∞)→ (0,∞) such that for

each α ∈ A:

(i) ‖R(Mα, z)‖ ≤ r(d(z, σ(Mα))) for all z ∈ (B(ε̄, ρα) \ σ(Mα))

(ii) ‖R(Πb
KMα|BK , z)‖ ≤ r(d(z, σ(Πb

KMα|BK ))) for all z ∈ (B(ε̄, ρα) \ σ(Πb
KMα|BK )).

Assumption C.4. The matrix estimators and their population counterparts are such that:

(i) λmin(GK) > 0 for every K ≥ 1

(ii)

‖ ̂̃GK − IK‖2 = Op(η̄1,n,K)

sup
α∈A
‖̂̃Mα,K − M̃α,K‖2 = Op(η̄2,n,K)

where η̄n,K = max{η̄1,n,K , η̄2,n,K} = o(1) as n,K →∞.

(iii)

sup
α∈A
‖( ̂̃GK − G̃K)c̃α,K‖2 = Op(η1,n,K)

sup
α∈A
‖( ̂̃GK − G̃K)c̃?α,K/‖c̃?α,K‖2‖‖2 = Op(η1,n,K)

sup
α∈A
‖(̂̃Mα,K − M̃α,K)c̃α,K‖2 = Op(η2,n,K)

sup
α∈A
‖(̂̃M′

α,K − M̃′
α,K)c̃?α,K/‖c̃?α,K‖2‖2 = Op(η2,n,K) .

Assumption C.1(i) ensures the positive eigenfunction of Mα exists and is identified for each α ∈ A.

Part (ii) of Assumption C.1 ensures the operators are uniformly bounded and the eigenvalues {ρα :

α ∈ A} are uniformly well separated from the rest of the spectrum of {Mα : α ∈ A}. Assumption

C.1(ii) is implicitly satisfied by Assumption C.1(i) if A has finite cardinality. Assumption C.2

ensures the ranges of the operators Mα are uniformly well approximated over the sieve space as K

increases. Assumption C.3 is required to ensure the spectrum of each Πb
KMα remains sufficiently

continuous as the dimension of the sieve space increases, and is trivially satisfied with r(x) = x−1 if

Mα and Πb
KMα|BK are normal or selfadjoint operators. Bounds are also available for common classes

of compact operators, such as Hilbert-Schmidt and other Schatten-class operators (see Bandtlow

(2004)). If T is a linear operator on a Hilbert space the lower bound ‖R(T, z)‖ ≥ d(z, σ(T ))−1 for

all z ∈ res(T ) obtains generically. Assumption C.4(i) is a standard condition for nonparametric

estimation with a linear sieve space and is made to ensure that GK is invertible uniformly in K.

Assumption C.4(ii) defines the rate of convergence of the matrix estimators. Assumption C.4(ii) is

sufficient for Assumption C.4(iii) with η1,n,K = η̄1,n,K and η2,n,K = η̄2,n,K (by the relation between

the spectral and Euclidean norms) but may lead to improved rates of convergence for φ̂α and φ̂∗α
in certain circumstances.
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The following two Theorems calculate the “bias” and “variance” components of the rates of conver-

gence separately. These are proved by extending arguments in Gobet, Hoffmann, and Reiß (2004)

to estimate the eigenfunction and adjoint eigenfunctions of nonselfadjoint operators.

Theorem C.1. Under Assumptions C.1, C.2, and C.3(i), there exists K̄ sufficiently large such

that for each K ≥ K̄, ρα,K is real and positive and has multiplicity one and φα,K and φ∗α,K are

unique for each α ∈ A, and

(i) supα∈A |ρα − ρα,K | = O(δK)

(ii) supα∈A ‖φα − φα,K‖ = O(δK)

(iii) supα∈A ‖φ∗α/‖φ∗α‖ − φ∗α,K/‖φ∗α,K‖‖ = O(δ∗K)

(iv) supα∈A ‖φ∗α − φ∗α,K‖ = O(δ̄K).

Theorem C.2. Under Assumptions C.1, C.2, C.3 and C.4, there is a set whose probability ap-

proaches one on which ρ̂α is real and positive and φ̂α and φ̂∗α are unique for each α ∈ A, and

(i) supα∈A |ρ̂α − ρα,K | = Op(ηn,K)

(ii) supα∈A ‖φ̂α − φα,K‖ = Op(ηn,K)

(iii) supα∈A ‖φ̂?α/‖φ̂?α‖ − φ?α,K/‖φ?α,K‖‖ = Op(ηn,K)

(iv) supα∈A ‖φ̂?α − φ?α,K‖ = Op(η̄n,K).

The assumptions of Theorem C.2 are sufficient to establish a uniform asymptotic expansion of the

eigenvalue estimators ρ̂α.

Theorem C.3. Under Assumptions C.1, C.2, C.3 and C.4,

sup
α∈A

∣∣∣∣ρ̂α − ρα,K − c̃?′α,K(
̂̃
G
−1

K
̂̃
Mα,K − M̃α,K)c̃α,K

∣∣∣∣ = Op(η̄
2
n,K) .

C.2. Additional results on convergence of the matrix estimators. The following Lemmas

are useful to verify Assumption C.4. Let

̂̃
MK =

1

n

n−1∑
t=0

b̃K(Xt)m(Xt, Xt+1)̃bK(Xt+1)′ .

The results are presented under different weak-dependence conditions and different assumptions on

the number of moments of m(X0, X1).

Assumption C.5. λmin(GK) ≥ λ > 0 for all K ≥ 1.

Assumption C.6. {Xt}t∈Z is strictly stationary and geometrically beta-mixing.

Assumption C.7. {Xt}t∈Z is strictly stationary and geometrically rho-mixing.

Assumption C.5 is a standard assumption in nonparametric estimation with a linear sieve. As-

sumptions C.6 and C.7 are standard weak dependence conditions. Lemma D.1 provides primitive

sufficient conditions under which both of these assumptions are satisfied.
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As in the body of the text, let ζ0(K) =
√
‖bK(x)′bK(x)‖∞ denote a measure of roughness of the

sieve basis functions. The results for beta-mixing data use an exponential inequality for sums of

weakly-dependent random matrix random matrices developed in Chen and Christensen (2013). The

results for rho-mixing data follow arguments similar to Gobet, Hoffmann, and Reiß (2004) with the

necessary modifications.

Lemma C.1. Under Assumptions C.5 and C.6, if m is bounded, then

‖̂̃MK − M̃K‖2 = Op

(
ζ0(K) log n√

n

)
provided ζ0(K) log n/

√
n = o(1).

Lemma C.2. Under Assumptions C.5 and C.7, if E[m(X0, X1)2] <∞, then

‖̂̃MK − M̃K‖2 = Op

(
ζ0(K)2

√
n

)
.

If, in addition, m is bounded, then

‖̂̃MK − M̃K‖2 = Op

(
ζ0(K)

√
K√

n

)
.

Lemma C.3. Under Assumptions C.5 and C.7, if E[m(X0, X1)2] < ∞ and {vK : K ≥ 1} is a

sequence of deterministic constants with vK ∈ RK and supK ‖vK‖2 <∞, then

‖(̂̃MK − M̃K)vK‖2 = Op

(
ζ0(K)2

√
n

)
.

If, in addition, m is bounded, then

‖(̂̃MK − M̃K)vK‖2 = Op

(
ζ0(K)√

n

)
.

Moreover, the same rates obtain for ‖(̂̃M′

K − M̃′
K)vK‖2.

Rates for the estimator of the Gram matrix are also available. These are proved using arguments

similar to Lemmas C.1 and C.2 so their proofs are omitted.

Lemma C.4. Under Assumptions C.5 and C.6,

‖ ̂̃GK − IK‖2 = Op

(
ζ0(K) log n√

n

)
provided ζ0(K) log n/

√
n = o(1).

Lemma C.5. Under Assumptions C.5 and C.7, if {vK : K ≥ 1} is a sequence of deterministic

constants with vK ∈ RK and supK ‖vK‖2 <∞, then

‖( ̂̃GK − IK)vK‖2 = Op

(
ζ0(K)√

n

)
.
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Appendix D. Proofs

D.1. Proofs for Section 5.3. Weak-dependence properties of {Xt} are first established under

Assumption 4.1.

Lemma D.1. Under Assumption 4.1(i)–(iii), {Xt} is geometrically phi-mixing.

Proof of Lemma D.1. Let E denote the conditional expectation operator associated with {Xt}, i.e.

Eψ(x) = E[ψ(X1)|X0 = x]. A sufficient condition for {Xt} to be geometrically phi-mixing is

sup
ψ∈L∞(Q):ψ 6=0,E[ψ(X)]=0

‖Eτψ‖L∞(Q)

‖ψ‖L∞(Q)
→ 0

as τ →∞ (Doukhan, 1994, pp. 88–89). The inequality

(49) sup
ψ∈L∞(Q):ψ 6=0,E[ψ(X)]=0

‖Eτψ‖L∞(Q)

‖ψ‖L∞(Q)
≤ sup

ψ∈L∞(Q):ψ 6=0

‖Eτψ − E[ψ(X)]‖L∞(Q)

‖ψ‖L∞(Q)

is immediate. It is therefore sufficient to establish that the right-hand side of (49) is O(e−cτ ) for

some c > 0.

Theorem A.4 will be applied to E (by setting m(x0, x1) ≡ 1). It is enough to show that E is compact.

First observe that E : L∞(Q)→ L∞(Q) may be continuously extended to have domain L1(Q). For

ψ ∈ L1(Q),

‖Eψ‖L∞(Q) ≤ sup
x0,x1

∣∣∣∣ f(x0, x1)

q(x0)q(x1)

∣∣∣∣ ∫
X
|ψ(x1)| dQ(x1)

≤ C‖ψ‖L1(Q)

for some finite positive constant C, under Assumption 4.1(i)–(iii). Therefore E : L1(Q) → L∞(Q)

is continuous, and so E : L∞(Q)→ L∞(Q) is compact (Schaefer, 1974, p. 337).

Let f(x) = 1 for all x ∈ X . The function f ∈ L∞(Q) and is an eigenfunction of E with eigenvalue

1 because Ef = f . The functional e∗ : L∞(Q) → R defined by e∗(ψ) = E[ψ(X)] =
∫
X ψ(x) dQ(x)

is clearly bounded and linear. Let x∗ : L∞(Q)→ R be a bounded linear functional. The adjoint E∗

of E is defined by

(E∗x∗)(ψ) = x∗(Eψ)

for all ψ ∈ L∞(Q) and all x∗ in the dual space of L∞(Q). By iterated expectations

(E∗e∗)(ψ) = e∗(Eψ) =

∫
X
Eψ(x) dQ(x) = E[ψ(X)] = e∗(ψ)

for all ψ ∈ L∞(Q). Therefore e∗ is an eigenfunction of E∗ with eigenvalue 1. Define P : L∞(Q)→
L∞(Q) by Pψ(x) = E[ψ(X)] for all x ∈ X . Theorem A.4 applied to E : L∞(Q) → L∞(Q) yields

the desired result. �

Remark D.1. Phi-mixing implies other notions of weak dependence. Let ατ , %τ , βτ and ϕτ denote

the alpha-, rho-, beta-, and phi-mixing coefficients of {Xt}. Lemma D.1 and the relations

2ατ ≤ βτ ≤ ϕτ

4ατ ≤ ρτ ≤ 2
√
ϕτ
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imply that {Xt} is geometrically alpha-, rho- and beta-mixing under Assumption 4.1(i)–(iii).

Lemma D.2. Under Assumption 4.1, there exists a δ > 0 such that for any f : X × X → R and

g : X×X → R with E[f(X0, X1)] = E[g(X0, X1)] = 0, E[f(X0, X1)2] <∞ and E[g(X0, X1)2] <∞,

and any t ≥ 1,

|E[f(X0, X1)g(Xt, Xt+1)]| ≤ e−δ(t−1)E[f(X0, X1)2]1/2E[g(X0, X1)2]1/2 .

Proof of Lemma D.2. {Xt} is geometrically rho-mixing under Assumption 4.1 (see Remark D.1),

so there exists a δ > 0 such that |Cov(f1(Xt), g1(Xt+τ ))| ≤ exp−δτ E[f1(X0)2]1/2E[g1(X0)2]1/2 for

each τ ≥ 1 and each f1 : X → R and g1 : X → R with E[f1(X0)2] < ∞ and E[g1(X0)2] < ∞ by

the covariance inequality for rho-mixing random variables (Doukhan, 1994, p. 9)

By the Markov property,

E[f(X0, X1)g(Xt, Xt+1)] = E[f(X0, X1)E[g(Xt, Xt+1)|Ft]]

= E[g(X0, X1)E[g(Xt, Xt+1)|Xt]]

= E[E[f(X0, X1)|G1]E[g(Xt, Xt+1)|Xt]]

= E[E[f(X0, X1)|X1]E[g(Xt, Xt+1)|Xt]]

Therefore, by the covariance inequality,

|E[f(X0, X1)g(Xt, Xt+1)]| = e−δ(t−1)E[E[f(X0, X1)|X1]2]1/2E[E[g(X0, X1)|X0]2]1/2

and the result follows by Jensen’s inequality. �

Proof of Theorem 5.1. First verify the conditions of Theorems C.1 and C.2 for M.

Assumption C.1 is satisfied for M under Assumption 4.1 by Theorem 4.1.

Assumption C.2(i) and the part of Assumption C.2(ii) pertaining to φ is trivially satisfied by

Assumptions 5.1(i). The remaining condition in Assumption C.2(ii) is satisfied by Assumption

5.1(iv) because

‖(M∗Πb
K −M∗)φ∗‖ ≤ ‖M∗‖‖Πb

Kφ
∗ − φ∗‖ = ‖M‖‖Πb

Kφ
∗ −Πb

Kh
∗
K + h∗K − φ∗‖ ≤ 2‖M‖‖φ∗ − h∗K‖

which is O(δ∗K).

Let ‖ · ‖HS denote the Hilbert-Schmidt norm and recall ‖M‖HS < ∞ under Assumption 4.1. The

bound

‖R(z,M)‖ ≤ 1

d(z, σ(M))
exp

(
1

2
+ 2

‖M‖2HS
d(z, σ(M))2

)
obtains for any z ∈ C \ σ(M) (see, e.g. Bandtlow (2004)). Let {ek : k ≥ 1} be an orthonormal basis

for L2(Q) such that {ek : 1 ≤ k ≤ K} are an orthonormal basis for BK . As Hilbert-Schmidt norms

are invariant to the choice of basis,

‖Πb
KM|BK‖

2
HS =

K∑
k=1

‖Πb
KMek‖2 ≤

∞∑
k=1

‖Πb
KMek‖2 ≤

∞∑
k=1

‖Mek‖2 = ‖M‖2HS .
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Therefore, Πb
KM|BK is Hilbert-Schmidt and the bound

‖R(z,Πb
KM|BK )‖ ≤ 1

d(z, σ(Πb
KM|BK ))

exp

(
1

2
+ 2

‖M‖2HS
d(z, σ(Πb

KM|BK ))2

)
obtains for any z ∈ C \ σ(Πb

KM|BK ). The function r : (0,∞)→ (0,∞) given by

r(x) =
1

x
exp

(
1

2
+ 2
‖M‖HS
x2

)
is continuous and strictly decreasing, verifying Assumption C.3.

Assumption C.4(i) is trivially satisfied by Assumption 5.1(iii). Assumption C.4(ii) and (iii) are

satisfied by Assumption 5.1(ii) and definition of η̄n,K and ηn,K .

Parts (i) and (ii) are straightforward applications of Theorems C.1 and C.2. For part (iii) it is enough

to show that ‖φ∗K/‖φ∗K‖ − φ?K/‖φ?K‖‖ = O(δ∗K), which follows from Assumptions 5.1(iv). �

Proof of Corollary 5.1. The rate of convergence of ŷ follows immediately from Theorem 5.1 by

continuity of log on a neighborhood of ρ. For L̂, first write

|L̂− L| ≤ |ŷ − y|+

∣∣∣∣∣ 1n
n−1∑
t=0

logm(Xt, Xt+1)− E[logm(X0, X1)]

∣∣∣∣∣ .
It is enough to show that the second term on the right-hand side is Op(n

−1/2). This follows by

Chebychev’s inequality, using the condition E[logm(X0, X1)2] <∞ and Lemma D.2. �

Proof of Corollary 5.2. For any fK ∈ BK , the sup and L2(Q) norms are related by

‖fK‖2∞ ≤ λ−1ζ0(K)2‖fK‖2 .

By Assumption 5.2(i) and the triangle inequality

‖φ− φ̂‖∞ ≤ ‖φ− gK‖∞ + ‖gK − φ̂‖∞
≤ O(δK) + ζ0(K)λ−1/2‖gK − φ̂‖

≤ O(δK) + ζ0(K)λ−1/2(‖gK − φ‖+ ‖φ− φ̂‖)

= Op(ζ0(K)(δK + ηn,K))

where the final line is by Theorem 5.1 and the fact that the sup norm dominates the L2(Q) norm.

This proves part (i); the proof of part (ii) is similar. �

D.2. Proofs for Section 5.4. Several lemmas are first required before proving Theorem 5.2.

Define the remainder term

τn,K =
1

n

n−1∑
t=0

ξK,t − ξt(50)

ξK,t = φ?K(Xt)φK(Xt+1)m(Xt, Xt+1)− ρKφ?K(Xt)φK(Xt)

ξt = φ∗(Xt)φ(Xt+1)m(Xt, Xt+1)− ρφ∗(Xt)φ(Xt) .

Lemma D.3. Under Assumptions 4.1, 5.1, 5.2, and 5.3(i)(ii), τn,K = Op(ζ0(K)(δ∗K + δK)/
√
n).
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Proof of Lemma D.3. First write

τn,K =
1√
n
Sn,K

where Sn,K =
√
nτn,K . Note that the summands in Sn,K have mean zero and finite second moment.

By Lemma D.2 and the inequality (a + b)2 ≤ 2a2 + 2b2, there exists a finite positive constant C

such that

E[S2
n,K ] ≤ CE[(ξK,0 − ξ0)2]

≤ 2CE
[
(φ?K(X0)φK(X1)− φ∗(X0)φ(X1))2m(X0, X1)2

]
+2CE[(ρKφ

?
K(X0)φK(X0)− ρφ∗(X0)φ(X0))2]

≤ 4C
(
E[{(φ?K(X0)− φ∗(X0))2φK(X1)2 + (φK(X1)− φ(X1))2φ∗(X0)2}m(X0, X1)2]

+2ρ2
KE[(φ?K(X0)− φ∗(X0))2φK(X1)2] + 2ρ2

KE[φ∗(X0)2(φK(X1)− φ(X1))2](51)

+2(ρK − ρ)2E[φ∗(X0)2φ(X1)2]
)
.

Assumptions 4.1 and 5.1 are sufficient to apply Theorem C.1 to M (see the proof of Theorem 5.1).

This yields ρK−ρ = O(δK), ‖φK−φ‖ = O(δK) and ‖φ∗K−φ∗‖ = O(δK). Under Assumption 5.2(ii),

‖φ?K − φ∗K‖ = ‖Πb
K(φ∗K − g∗K) + g∗K − φ∗K‖ ≤ 2‖φ∗K − g∗K‖ ≤ 2‖φ∗K − φ∗‖+ 2‖φ∗ − g∗K‖

which is O(δK + δ∗K) by Assumption 5.2(ii) and Theorem C.1. It follows by Assumption 5.2 using

similar arguments to the proof of Corollary 5.2 that ‖φ?K − φ∗‖∞ = O(ζ0(K)(δ∗K + δK)) and

‖φK − φ‖∞ = O(ζ0(K)δK). Plugging these rates into (51) and using the Hölder inequality yields

E[S2
n,K ] = O(ζ0(K)2(δ∗K + δK)2) .

The result follows by Chebychev’s inequality. �

Lemma D.4. Under Assumptions 4.1, 5.1, 5.2, and 5.3(i)(ii),

√
n(ρ̂− ρ) =

1√
n

n−1∑
t=0

{φ∗(Xt)m(Xt, Xt+1)φ(Xt+1)− ρφ∗(Xt)φ(Xt)}+ op(1) .

Proof of Lemma D.4. Assumptions 4.1 and 5.1 are sufficient for the assumptions of Theorem C.3.

Application of Theorem C.3 yields

(52) ρ̂− ρK = (G
1/2
K c?K)′(

̂̃
G
−1

K
̂̃
MK − M̃K)(G

1/2
K cK) +Op(η̄

2
n,K) .

First, using the fact that
̂̃
G
−1

K = IK −
̂̃
G
−1

K (
̂̃
GK − IK) giveŝ̃

G
−1

K
̂̃
MK − M̃K

=
̂̃
MK − M̃K −

̂̃
G
−1

K (
̂̃
GK − IK)M̃K −

̂̃
G
−1

K (
̂̃
GK − IK)(

̂̃
MK − M̃K)

=
̂̃
MK − M̃K − (IK −

̂̃
G
−1

K (
̂̃
GK − IK))(

̂̃
GK − IK)M̃K −

̂̃
G
−1

K (
̂̃
GK − IK)(

̂̃
MK − M̃K)

=
̂̃
MK −

̂̃
GKM̃K +

̂̃
G
−1

K (
̂̃
GK − IK)2M̃K −

̂̃
G
−1

K (
̂̃
GK − IK)(

̂̃
MK − M̃K) .
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The leading term in (52) is then

(G
1/2
K c?K)′(

̂̃
MK −

̂̃
GKM̃K)(G

1/2
K cK) = c?′KM̂KcK − c?′KĜKG−1

K MKcK

= c?′KM̂KcK − ρKc?′KĜKcK

where the second line is by equation (23). It remains to show that the remaining part of expression

(52) is Op(η̄
2
n,K). By the Cauchy-Schwarz inequality,

|(G1/2
K c?K)′(

̂̃
G
−1

K (
̂̃
GK − IK)2M̃K −

̂̃
G
−1

K (
̂̃
GK − IK)(

̂̃
MK − M̃K))(G

1/2
K cK)|

≤ ‖φ?K‖‖φK‖
∥∥∥∥ ̂̃G−1

K (
̂̃
GK − IK)2M̃K −

̂̃
G
−1

K (
̂̃
GK − IK)(

̂̃
MK − M̃K)

∥∥∥∥
2

= (‖φ∗‖+ o(1))(‖φ‖+ o(1))×Op(η̄2
n,K)

where the final line is because ‖φK−φ‖ = o(1) and ‖φK? −φ∗K‖ = o(1) (see the proof of Lemma D.3),

and the Op(η̄
2
n,K) term follows by the same arguments as the proof of Lemma D.8. The expansion

(52) may therefore be reexpressed as

ρ̂− ρK =
1

n

n−1∑
t=0

{φ?K(Xt)m(Xt, Xt+1)φK(Xt+1)− ρKφ?K(Xt)φK(Xt)}+Op(η̄
2
n,K) .

Rearranging yields

ρ̂− ρ = ρK − ρ+
1

n

n−1∑
t=0

{φ∗(Xt)m(Xt, Xt+1)φ(Xt+1)− ρφ∗(Xt)φ(Xt)}+ τn,K +Op(η̄
2
n,K) .

where τn,K is defined in expression (50). Lemma D.3 and Assumption 5.3(ii) together imply that
√
n(τn,K + Op(η̄

2
n,K)) = op(1). Finally, |ρK − ρ| = O(δK) = o(n−1/2) by the proof of Lemma D.3

and the condition δK = o(n−1/2). �

Proof of Theorem 5.2. Part (i): Lemma D.4 shows that the representation (32) is valid. Assumption

5.3(i) and the Hölder inequality imply Vρ is finite. The central limit theorem for martingales with

stationary and ergodic differences (Billingsley, 1961) then yields

√
n(ρ̂− ρ)→d N(0, Vρ)

whenever Vρ > 0.

Part(ii): The asymptotic distribution for ŷ then follows by the delta method.

Part (iii): Let ¯̀
n = n−1

∑n
t=1 `(Xt, Xt+1) where

`(Xt, Xt+1) = logm(Xt, Xt+1)− E[logm(Xt, Xt+1)] .

By definition of L̂ and the asymptotic linear expansion for ρ̂,

√
n(L̂− L) =

√
n(log ρ̂− log ρ− ¯̀

n)

=
1√
n

n−1∑
t=0

{
ρ−1φ∗(Xt)m(Xt, Xt+1)φ(Xt+1)− φ∗(Xt)φ(Xt)− `(Xt, Xt+1)

}
+ op(1) .
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The summands are strictly stationary geometrically phi-mixing random variables by Assumption

4.1 and Lemma D.1, have mean zero, and have and finite second moment by Assumptions 5.3.

Application of Lemma D.2 provides that

VL = lim
n→∞

1

n
E

(n−1∑
t=0

{
ρ−1φ∗(Xt)m(Xt, Xt+1)φ(Xt+1)− φ∗(Xt)φ(Xt)− `(Xt, Xt+1)

})2
 <∞ .

The result follows by a CLT for strictly stationary phi-mixing sequences (Peligrad, 1985, Corollary

2.2). �

Proof of Corollary 5.3. Part (i): Write ‖φ̂f − φ‖ ≤ ‖φ̂f − φ̂‖ + ‖φ̂ − φ‖ where ‖φ̂‖ = 1. Theorem

5.1 gives ‖φ̂ − φ‖ = Op(δK + ηn,K) so it remains to control ‖φ̂f − φ̂‖. Note that φ̂ = ĉ′bK where

ĉ′GK ĉ = 1 and φ̂f = ĉf ′bK where ĉf = ĉ/(ĉ′ĜK ĉ)
1/2. Therefore,

‖φ̂f − φ̂‖ =

∣∣∣∣∣ 1

(ĉ′ĜK ĉ)1/2
− 1

∣∣∣∣∣
=

∣∣∣∣∣∣ 1

(ĉ′G
1/2
K
̂̃
GKG

1/2
K ĉ)1/2

− 1

∣∣∣∣∣∣ .
The minimax characterization of eigenvalues of symmetric matrices (Kato, 1980, Section I.6.10)

implies that

λmin(
̂̃
GK) ≤ (ĉ′G

1/2
K
̂̃
GKG

1/2
K ĉ)1/2 ≤ λmax(

̂̃
GK) .

Moreover,

max{|λmax(
̂̃
GK)− 1|, |λmin(

̂̃
GK)− 1|} = max{|λmax(

̂̃
GK − IK)|, |λmin(

̂̃
GK − IK)|}

= ‖ ̂̃GK − IK‖2
= Op(η̄n,K)

by definition of η̄n,K . This proves ‖φ̂f − φ̂‖ = Op(η̄n,K).

Part (iii): By the relation between the L2(Q) norm and sup norm on BK and Assumption 5.2(i),

‖φ̂f − φ‖∞ ≤ λ−1/2ζ0(K)‖φ̂f − φ̂‖+ ‖φ̂− φ‖∞
≤ λ−1/2ζ0(K)‖φ̂f − φ̂‖+ ‖φ̂− gK‖∞ + ‖gK − φ‖∞
≤ λ−1/2ζ0(K)‖φ̂f − φ̂‖+ λ−1/2ζ0(K)‖φ̂− gK‖+ ‖gK − φ‖∞
≤ λ−1/2ζ0(K)‖φ̂f − φ̂‖+ λ−1/2ζ0(K)‖φ̂− φ‖+ λ−1/2ζ0(K)‖φ− gK‖+ ‖gK − φ‖∞ .

The result follows by Part (i), Assumption 5.2(i), and Theorem 5.1.

Part (ii): Write ‖φ̂?f − φ∗‖ ≤ ‖φ̂?f − φ̂?‖+ ‖φ̂?− φ∗‖ where E[φ̂(X)φ̂?(X)] = 1. Theorems C.1 and

C.2 show that ‖φ̂? − φ∗‖ = Op(δK + η̄n,K). It remains to control ‖φ̂?f − φ̂?‖ = Op(η̄n,K). Note that

φ̂? = ĉ?′bK where ĉ?′GK ĉ = 1 and φ̂f = ĉ?f ′bK where ĉ?f = ĉ?(ĉ′ĜK ĉ)
1/2/(ĉ?′ĜK ĉ). Therefore,

‖φ̂?f − φ̂?‖ =

∣∣∣∣∣(ĉ′ĜK ĉ)
1/2

ĉ?′ĜK ĉ
− 1

∣∣∣∣∣ ‖φ̂?‖
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where ‖φ̂?‖ = Op(1) by Theorem 5.1(ii), and the proof of Part (i) shows (ĉ′ĜK ĉ)
1/2 = 1+Op(η̄n,K).

Moreover,

ĉ?′ĜK ĉ = ĉ?′GK ĉ+ ĉ?′(ĜK −GK)ĉ

= 1 + ĉ?′G
1/2
K (

̂̃
GK − IK)G

1/2
K ĉ

≤ 1 + ‖φ̂?‖‖ ̂̃GK − IK‖2
= 1 +Op(1)×Op(η̄n,K)

by Theorem 5.1(iii), definition of η̄n,K , and the normalization ‖φ̂‖ = 1. Thus ‖φ̂?f−φ̂?‖ = Op(η̄n,K).

Part (iv): Arguing as in the proof of Part (iii) yields

‖φ̂?f −φ∗‖∞ ≤ λ−1/2ζ0(K)‖φ̂f?− φ̂?‖+λ−1/2ζ0(K)‖φ̂?−φ∗‖+λ−1/2ζ0(K)‖φ∗−g∗K‖+‖g∗K−φ∗‖∞ .

The result follows by Part (ii), Assumption 5.2(ii), and ‖φ̂? − φ∗‖ = Op(δK + η̄n,K). �

Proof of Theorem 5.3. Part (i): By addition and subtraction of terms,

V̂ρ − Vρ =
1

n

n−1∑
t=0

(
φ̂?f2
t m2

t,t+1φ̂
f2
t+1 − φ

∗2
t m

2
t,t+1φ

2
t+1

)

+
1

n

n−1∑
t=0

φ∗2t m
2
t,t+1φ

2
t+1 − E[φ∗(X0)2m(X0, X1)2φ(X1)2](53)

+
1

n

n−1∑
t=0

(
ρ̂2φ̂?f2

t φ̂f2
t − ρ2φ∗2t φ

2
t

)
(54)

+
1

n

n−1∑
t=0

ρ2φ∗2t φ
2
t − ρ2E[φ∗(X0)φ(X0)](55)

− 2

n

n−1∑
t=0

(
ρ̂φ̂?f2

t mt,t+1φ̂
f
t φ̂

f
t+1 − ρφ

∗2
t mt,t+1φtφt+1

)
(56)

− 2

n

n−1∑
t=0

ρφ∗2t mt,t+1φtφt+1 + 2ρE[φ∗(X0)2m(X0, X1)φ(X0)φ(X1)](57)

Terms (53), (55) and (57) are all oa.s(1) by the ergodic theorem (the expectations exist by Assump-

tion 5.3(i)). For term (53),

(53) =
1

n

n−1∑
t=0

φ∗2t m
2
t,t+1[φ̂f2

t+1 − φ
2
t+1] +

1

n

n−1∑
t=0

[φ̂?f2
t − φ∗2t ]m2

t,t+1[φ̂f2
t+1 − φ

2
t+1]

+
1

n

n−1∑
t=0

[φ̂?f2
t − φ∗2t ]m2

t,t+1φ
2
t+1 .
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Using the relation (a2− b2) = (a+ b)(a− b), the triangle inequality, and the sup-norm convergence

rates established in Corollary 5.3,

|(53)| ≤ Op(ζ0(K)(δ∗K + δK + η̄n,K))
( 1

n

n−1∑
t=0

φ∗2t m
2
t,t+1|φ̂

f
t+1 + φt+1|

+
1

n

n−1∑
t=0

|φ̂?ft + φ∗t |m2
t,t+1|φ̂

f
t+1 + φt+1|+

1

n

n−1∑
t=0

|φ̂?ft + φ∗t |m2
t,t+1φ

2
t+1

)
.

Writing

|φ̂ft+1 + φt+1| ≤ 2φt+1 + ‖φ̂f − φ‖∞
and similarly for φ̂?f , the condition ζ0(K)(δ∗K + δK + η̄n,K) = o(1) (by Assumption 5.3(ii)) and

sup-norm convergence rates in Corollary 5.2 yield

|(53)| ≤ op(1)
(

2
1

n

n−1∑
t=0

φ∗2t m
2
t,t+1φt+1 + op(1)

1

n

n−1∑
t=0

φ∗2t m
2
t,t+1 + 4

1

n

n−1∑
t=0

φ∗tm
2
t,t+1φt+1

+op(1)
1

n

n−1∑
t=0

m2
t,t+1 + op(1)

1

n

n−1∑
t=0

φ∗tm
2
t,t+1 + op(1)

1

n

n−1∑
t=0

m2
t,t+1φt+1

+2
1

n

n−1∑
t=0

φ∗tm
2
t,t+1φ

2
t+1 + op(1)

1

n

n−1∑
t=0

m2
t,t+1φ

2
t+1

)
.

All sample averages in this display are of the form

1

n

n−1∑
t=0

φ∗(Xt)
km(Xt, Xt+1)2φ(Xt+1)l

with 0 ≤ k, l ≤ 2, and are therefore all Oa.s.(1) by the ergodic theorem (all moments exist by

Assumption 5.3(i)). Therefore term (53) is op(1). Similar arguments show that terms (54) and (56)

are both op(1).

Part (ii): Immediate from Part (i) and consistency of ρ̂.

Parts (iii) and (iv): For each j = 1, . . . , J , write

Λ̂j =
1√
n

n−1∑
t=0

hj

(
t+ 1

n

)
∆t,t+1 +

1√
n

n−1∑
t=0

hj

(
t+ 1

n

)
(∆̂t,t+1 −∆t,t+1)

=: Λj +
1√
n

n−1∑
t=0

hj

(
t+ 1

n

)
(∆̂t,t+1 −∆t,t+1)

where

∆t,t+1 = ρ−1
(
φ?ft mt,t+1φ

f
t+1 − ρφ

?f
t φ

f
t

)
− (logmt,t+1 − E[logm(X0, X1)])
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Writing out term-by-term gives

Λ̂j − Λj =

(
1

n

n−1∑
t=0

hj

(
t+ 1

n

))√
n(logmn − E[logm(X0, X1)])(58)

+
1√
n

n−1∑
t=0

hj

(
t+ 1

n

)
(φ∗tφt − φ̂?t φ̂t)(59)

+ρ̂−1 1√
n

n−1∑
t=0

hj

(
t+ 1

n

)
(φ̂?t φ̂t+1 − φ∗tφt+1)mt,t+1(60)

+
√
n(ρ̂−1 − ρ−1)× 1

n

n−1∑
t=0

hj

(
t+ 1

n

)
φ∗tφt+1mt,t+1 .(61)

Term (58) is op(1) because 1
n

∑n−1
t=0 hj

(
t+1
n

)
= O(n−1/2) (by numerical integration, using

∫ 1
0 h(u) du =

0) and
√
n(logmn − E[logm(X0, X1)]) = Op(1) (by Markov’s inequality, using the fact that {Xt}

is geometrically rho-mixing under Assumption 4.1, and that enough moments exist by Assumption

5.3(iii)).

For term (59), write

(59) =
1√
n

n−1∑
t=0

hj

(
t+ 1

n

)
{φ∗tφt− φ̂

?f
t φ̂

f
t −E[φ∗tφt− φ̂

?f
t φ̂

f
t ]}+E[φ∗tφt− φ̂

?f
t φ̂

f
t ]

1√
n

n−1∑
t=0

hj

(
t+ 1

n

)
The first term in this display is op(1) by Assumption 5.4(i). The second term in this display is op(1)

because 1
n

∑n−1
t=0 hj

(
t+1
n

)
= O(n−1/2) and

|E[φ∗tφt − φ̂
?f
t φ̂

f
t ]| ≤ ‖φ∗‖‖φ− φ̂f‖+ ‖φ̂f‖‖φ∗ − φ̂?f‖

= Op(δK + δ∗K + η̄n,K)

with the first line by the triangle and Cauchy-Schwarz inequalities, and the second line by Corollary

5.3(i)(ii).

A similar argument shows term (60) is op(1), using Assumption 5.4(ii) and Corollary 5.3(i)(ii).

For term (61),
√
n(ρ̂−1 − ρ−1) = Op(1) by Theorem 5.2 and the delta method. For the remaining

term, write

1

n

n−1∑
t=0

hj

(
t+ 1

n

)
φ∗tφt+1mt,t+1 =

1

n

n−1∑
t=0

hj

(
t+ 1

n

)
{φ∗tφt+1mt,t+1 − ρE[φ∗(X0)φ(X0)]}(62)

+ρE[φ∗(X0)φ(X0)]× 1

n

n−1∑
t=0

hj

(
t+ 1

n

)
.(63)

Term (63) is O(n−1/2). Consider the process {φ∗tφt+1mt,t+1 − ρE[φ∗(X0)φ(X0)]} and let Vφ denote

its long-run variance. Vφ is finite by geometric rho-mixing of {Xt} and the moment assumptions in

Assumption 5.3(i). Moreover, straightforward calculation shows

Vφ = Vρ + 2ρ2E[(φ∗(X0)φ(X0)− 1)2] + ρ2
∑∞

t=−∞E[(φ∗(X0)φ(X0)− 1)(φ∗(Xt)φ(Xt)− 1)]
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whence Vφ ≥ Vρ > 0. Therefore, the process {φ∗tφt+1mt,t+1 − ρE[φ∗(X0)φ(X0)]} satisfies an invari-

ance principle under Assumption 4.1 (which implies the process is phi-mixing); see Corollary 2.2 of

Peligrad (1985). Functional limit and Wiener integration arguments yield

1√
n

n−1∑
t=0

hj

(
t+ 1

n

)
{φ∗tφt+1mt,t+1 − ρE[φ∗(X0)φ(X0)]} →d N(0, Vφ)

since
∫ 1

0 h(u)2 du = 1. Therefore, term (62) is Op(n
−1/2), and so term (61) is op(1).

Finally, the process {∆t,t+1} satisfies an invariance principle under Assumption 4.1 (which implies

the process is geometrically phi-mixing) and Assumption 5.3 (which guarantees enough moments);

see Corollary 2.2 of Peligrad (1985). Therefore, by the functional limit and Wiener integration

arguments in Phillips (2005),( √
n(L̂− L) Λ̂1 · · · Λ̂J

)′
=

(
1√
n

∑n−1
t=0 ∆t,t+1 Λ1 · · · ΛJ

)′
+ op(1)

→d N(0, VL × IJ+1)

and the result follows by definition of the χ2
J and tJ distributions. �

D.3. Proofs for Section 5.5.

Proof of Theorem 5.4. Efficiency bound for ρ: The tangent space is first characterized as in Green-

wood and Wefelmeyer (1995) (see also Wefelmeyer (1999); Greenwood, Schick, and Wefelmeyer

(2001)). Let BM(X × X ) denote the space of all real-valued bounded measurable functions on

X × X ,17 and define

T = {h ∈ BM(X × X ) : E[h(X0, X1)|X0 = x] = 0 for all x ∈ X} .

Let f(x1|x0) denote the true transition density of X1 = x1 given X0 = x0 (this exists by Assumption

4.1). For any h ∈ T there is Nh ∈ N such that for all n ≥ Nh the function

fn,h(x1|x0) = f(x1|x0){1 + n−1/2h(x0, x1)}

is non-negative and integrates to 1 for every x0, and is therefore a legitimate transition density.

Let Pn,h denote the distribution of the sample {X0, X1, . . . , Xn} under the perturbed transition

density fn,h and Pn,0 denote the distribution of the sample {X0, X1, . . . , Xn} under the true transi-

tion density f . A version of local asymptotic normality is known to obtain for this set of perturbed

transition densities, i.e.

log
dPn,h
dPn,0

=
1√
n

n−1∑
i=0

h(Xi, Xi+1)− 1

2
E[h(X0, X1)2] + oPn,0(1)

17It suffices to consider bounded measurable functions as the are dense in the space {f : X × X → R s.t. f is
measurable and E[f(X0, X1)2] <∞} (Wefelmeyer, 1999).
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(see Greenwood and Wefelmeyer (1995); Wefelmeyer (1999); Greenwood, Schick, and Wefelmeyer

(2001)) where

1√
n

n−1∑
i=0

h(Xi, Xi+1)→d N(0, E[h(X0, X1)2])

by a central limit theorem for martingales with stationary and ergodic differences (Billingsley,

1961).

The gradient of ρ is now characterized in terms of the transition density. For any h ∈ T define the

perturbed pricing operator Mn,h : L2(Q)→ L2(Q) by

Mn,hψ(x) =

∫
X
m(x, y)

fn,h(y|x)

q(y)
ψ(y) dQ(y)

and let its kernel be defined as

Kn,h(y, x) = m(x, y)
fn,h(y|x)

q(y)
.

Whenever h ∈ T∫
X

∫
X

(K(y, x)−Kn,h(y, x))2 dQ(x)dQ(y) ≤ Cn−1E[m(X0, X1)2h(X0, X1)2]

for some finite positive constant C under Assumption 4.1. This implies that ‖M−Mn,h‖ = O(n−1/2)

since the Hilbert-Schmidt norm dominates the operator norm. Application of Lemma D.6 shows

that for n sufficiently large, the maximum eigenvalue ρn,h of Mn,h is real and positive and

ρn,h = ρ+ E[φ∗(X0)(Mn,h −M)φ(X0)] + o(n−1/2) .

By this and the law of iterated expectations,

√
n(ρn,h − ρ) = E[φ∗(X0)m(X0, X1)φ(X1)h(X0, X1)] + o(1)

where the expectation is finite for all h ∈ T under Assumption 5.3(i). The gradient of ρ is

φ∗(x0)m(x0, x1)φ(x1) and its projection onto (the closure of) T is

ψ̃ρ(x0, x1) = φ∗(x0)m(x0, x1)φ(x1)− E[φ∗(X0)m(X0, X1)φ(X1)|X0 = x0]

= φ∗(x0)m(x0, x1)φ(x1)− φ∗(x0)Mφ(x0)

= φ∗(x0)m(x0, x1)φ(x1)− ρφ∗(x0)φ(x0) .

Therefore ψ̃ρ(x0, x1) is the efficient influence function and E[ψ̃ρ(X0, X1)2] = Vρ is the efficiency

bound for ρ. Theorem 5.2 shows ρ̂ attains this bound. Efficiency bound for y: follows (by continuity)

from the efficiency bound for ρ.
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Efficiency bound for L: As shown in Greenwood and Wefelmeyer (1995) and Wefelmeyer (1999),18

the efficient influence function for estimating E[logm(X0, X1)] is

ψ̃m(x0, x1) = logm(x0, x1)− E[logm(X0, X1)|X0 = x0]

+
∞∑
t=1

(E[logm(Xt, Xt+1)|X1 = x1]− E[logm(Xt, Xt+1)|X0 = x0]) .

The efficient influence function for L is therefore, by linearity and continuity of log,

ψ̃L(x0, x1) = ρ−1ψ̃ρ(x0, x1)− ψ̃m(x0, x1) .

Note that

VL = ρ−2Vρ − 2ρ−1Cρm + V ′m

where

Vm =
∑∞

t=−∞E[(logm(X0, X1)− E[logm(X0, X1)])(logm(Xt, Xt+1)− E[logm(X0, X1)])]

Cρm = E[(φ∗(X0)m(X0, X1)φ(X1)− ρφ∗(X0)φ(X0)) logm(X0, X1)] .

The efficiency bound for L is then

E[ψ̃L(X0, X1)2] = ρ−2Vρ + E[ψ̃m(X0, X1)2]− 2ρ−1E[ψ̃ρ(X0, X1)ψ̃m(X0, X1)]

= ρ−2Vρ + Vm − 2ρ−1E[ψ̃ρ(X0, X1)ψ̃m(X0, X1)]

since E[ψ̃m(X0, X1)2] = Vm (Wefelmeyer, 1999). Using the fact that E[ψ̃ρ(X0, X1)|X0] = 0,

E[ψ̃ρ(X0, X1)ψ̃m(X0, X1)]

= E[logm(X0, X1)ψ̃ρ(X0, X1)]

+
∞∑
t=1

E[E[logm(Xt, Xt+1)|X1]E[ψ̃ρ(X0, X1)|X1]]

= E[logm(X0, X1){φ∗(X0)m(X0, X1)φ(X1)− ρφ∗(X0)φ(X0)}]

+
∞∑
t=1

ρE[E[logm(Xt, Xt+1)|X1](φ∗(X1)φ(X1)− E[φ∗(X0)φ(X0)|X1])]

= E[logm(X0, X1)φ∗(X0)m(X0, X1)φ(X1)]− ρ lim
t→∞

E[logm(Xt, Xt+1)φ∗(X0)φ(X0)]

= Cρm

where the second equality is by definition of φ∗, the fourth is by telescoping series, and the fifth is

by Lemma D.2. Therefore, E[ψ̃m(X0, X1)2] = VL. Theorem 5.2 shows L̂ attains this bound. �

Proof of Theorem 5.5. Application of Theorem C.3 with G̃K in place of
̂̃
GK yields

ρ̌− ρK = (G
1/2
K c?K)′(G̃−1

K
̂̃
MK − M̃K)(G

1/2
K cK) +Op(η̄

2
n,K) .

18Greenwood and Wefelmeyer (1995) prove efficiency of sample averages for estimating the expectation of bounded
measurable functions of (X0, X1). Wefelmeyer (1999) extends this to the class of functions of (X0, X1) with finite
second moment.
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Using the fact that G̃−1
K = IK and G−1

K MKcK = ρKcK yields

ρ̌− ρK =
1

n

n−1∑
t=0

φ?K(Xt)m(Xt, Xt+1)φK(Xt+1)− ρK +Op(η̄
2
n,K) .

Applying the same arguments as in the proof of Theorem 5.2 yields

√
n(ρ̌− ρ) =

1√
n

n−1∑
t=0

{φ∗tmt,t+1φt+1 − ρ}+ op(1) .

The summands are strictly stationary phi-mixing random variables by Assumption 4.1 and Lemma

D.1, have mean zero, and have and finite second moment by Assumption 5.3. It follows by Corollary

2.2 of Peligrad (1985) that

√
n(ρ̌− ρ)→d N(0, lrvar(φ∗tmt,t+1φt+1 − ρ)) .

By definition,

(64)
lrvar(φ∗tmt,t+1φt+1 − ρ) = E[(φ∗0m0,1φ1 − ρ)2]

+2
∑∞

t=1E[(φ∗0m0,1φ1 − ρ)(φ∗tmt,t+1φt+1 − ρ)]

where

E[(φ∗0m0,1φ1 − ρ)2] = Vρ + ρ2E[(φ∗(X0)φ(X0)− 1)2]

and, for each t ≥ 1,

E[(φ∗0m0,1φ1 − ρ)(φ∗tmt,t+1φt+1 − ρ)] = ρ2E[(φ∗1φ1 − 1)(φ∗tφt − 1)]

= ρ2E[(φ∗0φ0 − 1)(φ∗t−1φt−1 − 1)] .

Substituting into (64) yields

lrvar(φ∗tmt,t+1φt+1 − ρ) = Vρ + 2ρ2E[(φ∗0φ0 − 1)2] + ρ2lrvar((φ∗tφt − 1))

as required. �

D.4. Proofs for Section 6.1.

Proof of Theorem 6.1. Follows identical arguments to the proofs of Theorem 5.1. �

Proof of Theorem 6.2. Repeating the arguments in Lemma D.4 shows

ρ̂− ρK =
1

n

n−1∑
t=0

{φ?K(Xt)m̂(Xt, Xt+1)φK(Xt+1)− ρKφ?K(Xt)φK(Xt)}+Op(η̄
2
n,K) .

Therefore,

ρ̂− ρ = ρK − ρ+
1

n

n−1∑
t=0

{φ?K(Xt)m(Xt, Xt+1)φK(Xt+1)− ρKφ?K(Xt)φK(Xt)}+Op(η̄
2
n,K)(65)

+
1

n

n−1∑
t=0

φ?K(Xt)(m̂(Xt, Xt+1)−m(Xt, Xt+1))φK(Xt+1) .(66)
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Expression (65) is controlled as in the proof of Lemma D.4. It follows from the uniform convergence

rates established in Corollary 5.2 and Assumption 6.1 that

(66) =
1

n

n−1∑
t=0

φ∗(Xt)(m̂(Xt, Xt+1)−m(Xt, Xt+1))φ(Xt+1) + op(1) .

The result follows. �

D.5. Proofs for Section 6.2.

Proof of Theorem 6.3. The proof is analogous to the proof of Theorem 4.1. Note that M : L2(Q)→
L2(Q) can be represented as an integral operator with integral kernel K(x0, x1) given by

K(x0, x1) =

{∫
Y
m(x0, x1, y1)f(x1, y1|x0) dy1

}
1

q(x1)

=

{∫
Y
m(x0, x1, y1)

f(x0, x1, y1)

q(x0)q(x1)qy(y1)
dQy(y1)

}
.

The positivity conditions in Assumption 6.2 imply that K(x0, x1) > 0 a.e.-[Q⊗Q].

To check square-integrability of K, observe that∫
X

∫
X
K2(x0, x1) dQ(x0) dQ(x1)

=

∫
X

∫
X

{∫
Y
m(x0, x1, y1)

f(x0, x1, y1)

q(x0)q(x1)qy(y1)
dQy(y1)

}2

dQ(x0) dQ(x1)

≤
∫
X

∫
X

∫
Y
m(x0, x1, y1)2 f(x0, x1, y1)2

q(x0)q(x1)qy(y1)
dy1 dx0 dx1

≤ C

∫
X

∫
X

∫
Y
m(x0, x1, y1)2f(x0, x1, y1) dy1 dx0 dx1

= CE[m(X0, X1, Y1)2] < ∞

for some finite positive C, by virtue of boundedness of f(x0, x1, y1)/(q(x0)q(x1)qy(y1)), and As-

sumption 6.2(iv). The result follows by Theorem A.1. �

Proof of Theorem 6.4. Follows identical arguments to the proofs of Theorems 5.1 and 5.2, noting

that in this case M may be rewritten as

Mψ(x) = E[E[m(X0, X1, Y1)|X0, X1]ψ(X1)|X0 = x]

where clearly E[m(X0, X1, Y1)|X0, X1] is a function of (X0, X1). �

D.6. Proofs for Appendix A. All of the following definitions are as in Schaefer (1999). Let

E denote the Banach lattice Lp(Q) for 1 ≤ p ≤ ∞, and let E∗ denote its dual space. For f ∈
E, f∗ ∈ E∗, define the evaluation 〈f, f∗〉 := f∗(f). Let E+ denote the positive cone of E, i.e.

E+ = {f ∈ E : f ≥ 0 a.e.-[Q]}. An element f ∈ E+ belongs to the quasi-interior E++ of E+ if

{g ∈ E : 0 ≤ g ≤ f} is a total subset of E. If E = Lp(Q) with 1 ≤ p < ∞ and f ∈ E is such that

f > 0 a.e.-[Q] then f ∈ E++. If E = L∞(Q) and f ∈ E is such that ess inf f > 0 then f ∈ E++. The
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dual cone E∗+ := {f∗ ∈ E∗ : 〈f, f∗〉 ≥ 0 whenever f ∈ E+} is the set of positive linear functionals

on E. An element f∗ ∈ E∗+ is strictly positive if f ∈ E+ and f 6= 0 implies 〈f, f∗〉 > 0. The set of

all strictly positive elements of E∗+ is denoted E∗++. Recall that the adjoint M∗ : E∗ → E∗ of M is

defined as M∗(f∗) = f∗ ◦M, i.e. f∗ ◦M : E → R is a bounded linear functional for each f∗ ∈ E∗.
The operator M is irreducible if MR(M, z) : (E+ \ {0}) → E++ for each z ∈ (spr(M),∞) where

R(M, z) is the resolvent of T . In what follows, unique means unique up to scale.

Proof of Theorem A.2. Theorem A.1 shows that M has an eigenfunction φ ∈ E corresponding to

the eigenvalue ρ = spr(M). Moreover spr(M) an isolated eigenvalue because Mτ is compact for

some τ ≥ 1 under Assumption A.2 (Dunford and Schwartz, 1958, Theorem 6, p. 579).

Part (i), 1 ≤ p < ∞: M is irreducible (by the proof of Theorem V.6.6 in Schaefer (1974)) and so

φ ∈ E++ and φ∗ ∈ E∗++ and spr(M) is a pole of R(M, z) of order one, so spr(M) has algebraic and

geometric multiplicity one (Schaefer, 1999, p. 318). Therefore, spr(M) is an eigenvalue of multiplicity

one of M and M∗ (algebraic and geometric multiplicities are preserved by taking adjoints: see Kato

(1980), Remark III.6.23).

Suppose ψ ∈ (E+\{0}) is a nonnegative eigenfunction of M with eigenvalue λ such that ψ and φ are

linearly independent. Note that λ 6= spr(M) because spr(M) is an eigenvalue of M of multiplicity

one. Also note that 〈ψ, φ∗〉 > 0 because φ∗ ∈ E∗++ and ψ ∈ (E+ \ {0}). Then,

λ〈ψ, φ∗〉 = 〈Mψ, φ∗〉 = (φ∗ ◦M)(ψ) = M∗(φ∗)(ψ) = spr(M)φ∗(ψ) = spr(M)〈ψ, φ∗〉

which contradicts λ 6= spr(M). A similar argument shows that φ∗ is the unique eigenfunction of M∗

belonging to E∗+.

Part (ii) p = ∞: the preadjoint of M on L1(Q) is irreducible (by the proof of Theorem V.6.6 in

Schaefer (1974)). The proof for L1(Q) applied to the preadjoint of M provides that φ ∈ E++, φ is

the unique eigenfunction of M belonging to E+, and that ρ is an eigenvalue of M of multiplicity

one. �

Proof of Theorem A.3. The positive eigenfunction and adjoint eigenfunction are unique (by Theo-

rems A.1 and A.2), and ρ is an eigenvalue of M of multiplicity one.

Let M = ρ−1M. The condition K(x, y) > 0 a.e.-[Q⊗Q] implies that any eigenvalue λ of M with λ 6= 1

has |λ| < 1 (by Theorem A.1). By construction, P is the spectral projection of M corresponding to

the eigenvalue 1.

Consider the bounded linear operator M − P . Let ε = infz∈σ(M):z 6=1 |z − 1| and note that ε > 0.

Define g : C → R such that g(z) = 1 for all z ∈ C with |z − 1| ≤ ε/2 and g(z) = 0 for all z ∈ C
with |z − 1| > ε/2. Let f : C→ R be given by f(z) = z − g(z). Then

M− P =
−1

2πi

∫
Γ(1+ε,0)

zR(M, z) dz − −1

2πi

∫
Γ( 1

2
ε,1)

R(M, z) dz

=
−1

2πi

∫
Γ(1+ε,0)

f(z)R(M, z) dz
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(Dunford and Schwartz, 1958, Theorem 10, p. 560) since the only singularity of R(M, z) within

Γ(1
2ε, 1) is at z = 1. By the spectral mapping theorem (Dunford and Schwartz, 1958, Theorem 11,

p. 569) σ(M − P ) = f(σ(M)). Therefore spr(M − P ) < 1 because f(1) = 0 and f(λ) = λ for any

λ ∈ σ(M) with λ 6= 1.

By the Gelfand formula (Dunford and Schwartz, 1958, p. 567),

(67) spr(M− P ) = lim
τ→∞

‖(M− P )τ‖1/τLp(Q) < 1 .

Let {τk : k ≥ 1} ⊆ N be the maximal subset of N for which ‖(M − P )τk‖Lp(Q) > 0 for each τk. If

this subsequence is finite then the proof is complete for suitable choice of c. If this subsequence is

infinite, then by expression (67),

lim sup
τk→∞

log ‖(M− P )τk‖Lp(Q)

τk
< 0 .

Therefore, there exists a finite positive constant C such that for all τk large enough,

log ‖(M− P )τk‖Lp(Q) ≤ −Cτk .

Finally observe that (M − P )τ = Mτ − P = Mτ − P since M and P commute (Kato, 1980, pp.

178–179) and MPψ = E[ψ(X)φ∗(X)]Mφ = Pψ for all ψ ∈ Lp(Q). �

Proof of Theorem A.4. Follows the same arguments as the proof of Theorem A.3. �

D.7. Proofs for Appendix C. Several lemmas are needed first before Theorems C.1, C.2 and

C.3 are proved. Parts (i) and (ii) of the following Lemma are a straightforward modification of

two results in Gobet, Hoffmann, and Reiß (2004); parts (iii) and (iv) deal with estimation of the

adjoint eigenfunction and are new. Lemma D.6 is the key lemma from which the asymptotic linear

expansion is derived.

Lemma D.5. Let {Tα, Tα,ε : α ∈ A} be a collection of linear operators on a real Hilbert space such

that Tα has an isolated real eigenvalue λα of multiplicity one for each α ∈ A. Let fα denote the

eigenfunction corresponding to λα normalized so that ‖fα‖ = 1. Suppose there exists a T̄ <∞ such

that supα∈A ‖Tα‖ ≤ T̄ and there exists a δ > 0 such that infz∈σ(Tα):z 6=λα |z − λα| > δ for all α ∈ A.

Let r̄ = (supα∈A supz∈Γ(δ,λα) ‖R(Tα, z)‖)−1. If r̄ <∞ and supα∈A ‖Tα − Tα,ε‖ < 1
2 r̄, then

(i) The only element of σ(Tα,ε) within Γ(δ, λα) is an real eigenvalue λα,ε of multiplicity one, and

supα∈A |λα − λα,ε| ≤ ((T̄ + 1
2 r̄)
√

8r̄−1 + 1) supα∈A ‖(Tα − Tα,ε)fα‖
(ii) Each Tα,ε has an eigenfunction fα,ε corresponding to λα,ε normalized so that ‖fα,ε‖ = 1, and

supα∈A ‖fα − fα,ε‖ ≤
√

8r̄−1 supα∈A ‖(Tα − Tα,ε)fα‖
(iii) Each T ∗α,ε has an eigenfunction f∗α,ε corresponding to λα,ε normalized so that 〈f∗α,ε, fα,ε〉 = 1,

and supα∈A ‖f∗α/‖f∗α‖ − f∗α,ε/‖f∗α,ε‖‖ ≤
√

8r̄−1 supα∈A ‖(T ∗α − T ∗α,ε)f∗α/‖f∗α‖‖
(iv) Moreover, supα∈A ‖f∗α − f∗α,ε‖ ≤ 2δr̄−1(

√
2r̄−1 + 1) supα∈A ‖Tα − Tα,ε‖.
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Proof of Lemma D.5. Parts (i) and (ii) are a straightforward modification of Proposition 4.2 and

Corollary 4.3 of Gobet, Hoffmann, and Reiß (2004). Note that

sup
α∈A

sup
z∈Γ(δ,λα)

‖R(Tα, z)‖‖Tα − Tα,ε‖ ≤
1

2

holds. This implies that Γ(δ, λα) contains precisely one eigenvalue of Tα,ε by Theorem IV.3.18 of

Kato (1980) and the discussion in Section IV.3.5 of Kato (1980). Therefore each λα,ε must be real-

valued (if it were complex-valued its conjugate would also be in Γ(δ, λα), which would contradict

there being only one eigenvalue of Tα,ε in Γ(δ, λα)).

For part (iii), existence of the f∗α,ε follows from the fact that each λα,ε is an eigenvalue of multiplicity

one. Applying part (ii) with T ∗α in place of Tα (using the fact that an operator and its adjoint have

the same norm, and that R(T ∗α, z) = R(Tα, z̄)) yields part (iii).

For part (iv), let Pα denote the spectral projection of Tα corresponding to λα and let Pα,ε be the

projection of Tα,ε corresponding to λα,ε. Note that both of these may be expressed as a contour

integral over Γ(δ, λα) (cf. equation (48)). Therefore,

sup
α∈A
‖Pα − Pα,ε‖ = sup

α∈A

∥∥∥∥∥−1

2πi

∫
Γ(δ,λα)

R(Tα, z)−R(Tα,ε, z) dz

∥∥∥∥∥
≤ 1

2π
2πδ sup

α∈A
sup

z∈Γ(δ,λα)
‖R(Tα, z)−R(Tα,ε, z)‖

≤ δ sup
α∈A

sup
z∈Γ(δ,λα)

‖R(Tα, z)‖‖Tα − Tα,ε‖‖R(Tα,ε, z)‖

where the second inequality is by expression (47). The condition supα∈A ‖Tα−Tα,ε‖ < 1
2 r̄, together

with expression (47), also implies that

‖R(Tα,ε, z)‖ ≤ 2‖R(Tα, z)‖

and so

(68) sup
α∈A
‖Pα − Pα,ε‖ ≤ 2δr̄−1 sup

α∈A
‖Tα − Tα,ε‖ .

Note that Pα = fα ⊗ f∗α and Pα,ε = fα,ε ⊗ f∗α,ε with ‖Pα‖ = ‖f∗α‖ and ‖Pα,ε‖ = ‖f∗α,ε‖. It follows by

the forward and reverse triangle inequalities and (68) and part (iii) that

‖f∗α − f∗α,ε‖ ≤ ‖f∗α‖
∥∥∥∥ f∗α
‖f∗α‖

−
f∗α,ε
‖f∗α,ε‖

∥∥∥∥+ |‖f∗α‖ − ‖f∗α,ε‖|

≤
(

sup
α∈A
‖f∗α‖

)√
8r̄−1 sup

α∈A
‖(T ∗α − T ∗α,ε)f∗α/‖f∗α‖‖+ 2δr̄−1 sup

α∈A
‖Tα − Tα,ε‖

≤ 2δr̄−1(
√

2r̄−1 + 1) sup
α∈A
‖Tα − Tα,ε‖

where the final line uses the fact that ‖f∗α‖ = ‖Pα‖ ≤ δr̄−1 and the definition of the operator

norm. �

Lemma D.6. Let {Tα, Tα,ε : α ∈ A} be a collection of bounded linear operators on a real Hilbert

space such that Tα has an isolated real eigenvalue λα of multiplicity one for each α ∈ A. Let fα and
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f∗α denote the eigenfunctions of Tα and T ∗α corresponding to λα normalized so that ‖fα‖ = 1 and

〈fα, f∗α〉 = 1. Suppose there exists a δ > 0 such that infz∈σ(Tα):z 6=λα |z−λα| > δ for each α ∈ A. Let

r̄ = infα∈A infz∈Γ(δ,λα)(‖R(Tα, z)‖‖Tα − Tα,ε‖)−1. If r̄ > 1 then the only element of σ(Tα,ε) within

Γ(δ, λα) is a real eigenvalue λα,ε of multiplicity one, and

sup
α∈A
|λα,ε − λα − 〈f∗α, (Tα,ε − Tα)fα〉| ≤

δ

r̄(r̄ − 1)
.

Proof of Lemma D.6. For each x ∈ R and α ∈ A define Tα,ε(x) = Tα+x(Tα,ε−Tα). By the discussion

on p. 379 of Kato (1980), the unique element of σ(Tα,ε(x)) within Γ(δ, λα) is an eigenvalue of

multiplicity one, say λα,ε(x), for each |x| < r̄, for each α ∈ A. Let Pα denote the spectral projection

of Tα corresponding to λα. By the error estimates in Section II.3.1 of Kato (1980),

|λα,ε(x)− λα − xtr{(Tα,ε − Tα)Pα}| ≤
|x|2 supz∈Γ(δ,λα) |z − λα|

r̄(r̄ − |x|)
=

|x|2δ
r̄(r̄ − |x|)

for each |x| < r̄, for each α ∈ A (each Tα and Tα,ε are bounded so the results from finite-dimensional

perturbation theory can be applied, see Section VII.3.2 of Kato (1980)). The result follows by setting

δ = 1 and using the relation tr{(Tα,ε − Tα)Pα} = {(Tα,ε − Tα)(fα ⊗ f∗α)} = 〈f∗α, (Tα,ε − Tα)fα〉. �

Lemma D.7. Under Assumptions C.1, C.2, and C.3(i), there exists K̄ sufficiently large such that

for each K ≥ K̄, infα∈A infz∈σ(ΠbKMα):z 6=ρα,K |z − ρα,K | ≥
1
2 ε̄.

Proof of Lemma D.7. By Theorem C.1 there is K0 sufficiently large that supα∈A |ρα − ρα,K | ≤ 1
4 ε̄

for all K ≥ K0. By Theorem IV.3.18 of Kato (1980) and the discussion in Section IV.3.5 of Kato

(1980), each Γ(3
4 , ρα) encloses precisely one eigenvalue of Πb

KMα provided

sup
α∈A

sup
z∈Γ( 3

4
ε̄,ρα)

‖R(Mα, z)‖‖Πb
KMα −Mα‖ < 1 .

By Assumptions C.1(ii), C.3(i) and C.2

sup
α∈A

sup
z∈Γ( 3

4
ε̄,ρα)

‖R(Mα, z)‖‖Πb
KMα −Mα‖ ≤ r(1

4 ε̄)× o(1) = o(1)

and so supα∈A supz∈Γ( 3
4
ε̄,ρα) ‖R(Mα, z)‖‖Πb

KMα−Mα‖ < 1 for all K ≥ K1 for some K1. The result

follows by setting K̄ = max{K0,K1}. �

Lemma D.8. Under Assumptions C.1(ii) and C.4(ii),

sup
α∈A

∥∥∥∥ ̂̃G−1

K
̂̃
Mα,K − M̃α,K

∥∥∥∥
2

= Op(η̄n,K)

sup
α∈A

∥∥∥∥ ̂̃G−1

K
̂̃
M
′

α,K − M̃′
α,K

∥∥∥∥
2

= Op(η̄n,K) .

Proof of Lemma D.8. First note that since M̃α,K is isomorphic to Πb
KMα|BK ,

‖M̃α,K‖2 = ‖Πb
KMα|BK‖ ≤ ‖Π

b
KMα‖ ≤ ‖Mα‖ .

Therefore, supα∈A ‖M̃α,K‖2 is bounded uniformly in K by Assumption C.1(ii).
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The condition ‖ ̂̃GK − IK‖2 = op(1) implies the eigenvalues of
̂̃
GK are bounded between 1

2 and 2

on a set whose probability is approaching one. Working on this set,̂̃
G
−1

K
̂̃
Mα,K − M̃α,K =

(
IK −

̂̃
G
−1

K (
̂̃
GK − IK)

) ̂̃
Mα,K − M̃α,K

=
̂̃
Mα,K − M̃α,K −

̂̃
G
−1

K (
̂̃
GK − IK)M̃α,K −

̂̃
G
−1

K (
̂̃
GK − IK)(

̂̃
Mα,K − M̃α,K)

for each α ∈ A. The result follows by the triangle inequality and Assumption C.4(ii), noting that

‖ ̂̃G−1

K ‖2 ≤ 2 whenever the eigenvalues of
̂̃
GK are bounded between 1

2 and 2.

The proof for
̂̃
G
−1

K
̂̃
M
′

α,K follows similar arguments, using the fact that an operator and its adjoint

have the same (operator) norm. �

Lemma D.9. Under Assumptions C.1(ii) and C.4(iii), if η̄n,K = o(1) then

sup
α∈A

∥∥∥∥(
̂̃
G
−1

K
̂̃
Mα,K − M̃α,K)c̃α,K

∥∥∥∥
2

= Op(ηn,K)

sup
α∈A

∥∥∥∥(
̂̃
G
−1

K
̂̃
M
′

α,K − M̃′
α,K)c̃?α,K/‖c̃?α,K‖2

∥∥∥∥
2

= Op(ηn,K) .

Proof of Lemma D.9. The same arguments as the proof of Lemma D.8 give

sup
α∈A

∥∥∥∥(
̂̃
G
−1

K
̂̃
Mα,K − M̃α,K)c̃α,K

∥∥∥∥
2

= Op(η2,n,K) +Op(η1,n,K) +Op(η̄1,n,K)×Op(η2,n,K) .

The result follows by definition of ηn,K and η̄n,K and the condition η̄n,K = o(1). The proof witĥ̃
M
′

α,K is the same. �

Proof of Theorem C.1. Apply of Lemma D.5 with Mα = Tα, Πb
KMα = Tα,ε on the Hilbert space

L2(Q). Set Γ(δ, λα) = Γ(1
2 ε̄, ρα). The resolvent bound in Assumption C.3(i) shows that for each

α ∈ A and z ∈ Γ(1
2 ε̄, ρα)

2ε̄−1 =
1

d(z, ρα)
≤ ‖R(Mα, z)‖ ≤ r(d(z, ρα)) ≤ r(1

2 ε̄)

which implies

0 < r(1
2 ε̄)
−1 ≤ r̄ ≤ 1

2 ε̄ <∞ .

Assumption C.2(i) implies that supα∈A ‖Πb
KM−Mα‖ = o(1) thus supα∈A ‖Πb

KM−Mα‖ ≤ 1
2 r̄ holds

for all K sufficiently large. �

Proof of Theorem C.2. Apply Lemma D.5 with M̃α,K = Tα,
̂̃
G
−1

K
̂̃
Mα,K = Tα,ε on the Hilbert space

RK (with the Euclidian inner (dot) product). Set Γ(δ, λα) = Γ(1
4 ε̄, ρα,K). By Lemma D.7 there is

a K̄ sufficiently large that infα∈A infz∈σ(ΠbKMα):z 6=ρα,K |z − ρα,K | ≥
1
2 ε̄ for all K ≥ K̄. Take K ≥ K̄.

The fact that M̃α,K and Πb
KMα|BK are isomorphic and the resolvent bound in Assumption C.3(ii)

shows that for each α ∈ A and z ∈ Γ(1
4 ε̄, ρα,K)

4ε̄−1 =
1

d(z, ρα,K)
≤ ‖R(Πb

KMα|BK , z)‖ ≤ r(d(z, ρα)) ≤ r(1
4 ε̄)
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which implies

0 < r(1
4 ε̄)
−1 ≤ r̄ ≤ 1

4 ε̄ <∞ .

Lemma D.8 provides that supα∈A ‖
̂̃
G
−1

K
̂̃
Mα,K−M̃α,K‖2 = Op(η̄n,K). This and the condition η̄n,K =

o(1) implies the condition

sup
α∈A

∥∥∥∥ ̂̃G−1

K
̂̃
Mα,K − M̃α,K

∥∥∥∥
2

≤ 1

2
r̄

holds on a set whose probability is approaching one. Application of Lemma D.5 on this set proves

parts (i) and (ii), with ηn,K given by Lemma D.9.

Part (iii) follows by repeating this argument with
̂̃
M
′

α,Kand M̃′
α,K in place of

̂̃
Mα,K and M̃α,K .

For part (iv), write

sup
α∈A
‖φ̂?α − φ?α,K‖ ≤ sup

α∈A
‖φ?α,K‖

∥∥∥∥∥ φ̂?α

‖φ̂?α‖
−

φ?α,K
‖φ?α,K‖

∥∥∥∥∥+ sup
α∈A
|‖φ̂?α,K‖ − ‖φ?α,K‖|

≤ sup
α∈A
‖φ?α,K‖ ×Op(ηn,K) + sup

α∈A
|‖φ̂?α,K‖ − ‖φ?α,K‖|

where the second line is by part (iii). Theorem C.1 shows that supα∈A ‖φ?α,K‖ ≤ supα∈A ‖φ∗α‖+o(1)

and it is easy to see that supα∈A ‖φ∗α‖ <∞. The remaining term supα∈A |‖φ̂?α,K‖− ‖φ?α,K‖| can be

shown to be Op(η̄n,K) using a similar argument to the proof of part (iv) of Lemma D.5. �

Proof of Theorem C.3. First apply Lemma D.5 with Tα = M̃α,K and Tα,ε =
̂̃
G
−1

K
̂̃
Mα,K . By Lemma

D.7 there is a K̄ sufficiently large that infα∈A infz∈σ(ΠbKMα):z 6=ρα,K |z − ρα,K | ≥
1
2 ε̄ for all K ≥ K̄.

Take K ≥ K̄. Then ‖R(M̃α,K , z)‖ ≤ r(1
4 ε̄) for all z ∈ Γ(1

4 ε̄, ρα,K) by Assumption C.3(ii). The

condition

r(1
4 ε̄) > ‖

̂̃
G
−1

K
̂̃
Mα,K − M̃α,K‖2

holds on a set whose probability is approaching one, since ‖ ̂̃G−1

K
̂̃
Mα,K−M̃α,K‖2 = op(1) by Lemma

D.8 and the condition η̄n,K = o(1). Therefore, the condition

rn,K := inf
α∈A

inf
z∈Γ( 1

4
ε̄,ρα,K)

(‖R(M̃α,K , z)‖2‖
̂̃
G
−1

K
̂̃
Mα,K − M̃α,K‖2)−1 > 1

holds on a set whose probability is approaching one, on which Lemma D.5 provides that

sup
α∈A

∣∣∣∣ρ̂α,K − ρα − c̃?′α,K(
̂̃
G
−1

K
̂̃
Mα,K − M̃α,K)c̃α,K

∣∣∣∣ ≤ ε̄

4rn,K(rn,K − 1)

uniformly for α ∈ A. The result follows by noticing that

1

rn,K(rn,K − 1)
= Op(η̄

2
n,K)

by definition of rn,K and Lemma D.8. �

D.7.1. Proofs of additional results on convergence of the matrix estimators.
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Proof of Lemma C.1. Let M̄ be a finite positive constant such that m(x0, x1) ≤ M̄ . Let mt,t+1 =

m(Xt, Xt+1). Consider the K ×K random matrix

Ξt,n = n−1
(
b̃K(Xt)mt,t+1b̃

K(Xt+1)− E [̃bK(X0)m0,1b̃
K(X1)]

)
where clearly E[Ξt,n] = 0. Assumption C.5 and definition of ζ0(K) imply that

(69) ‖Ξt,n‖2 ≤
2ζ0(K)2M̄

λn
.

By the triangle and Cauchy-Schwarz inequalities, for any u, v ∈ RK with u′u = 1 and v′v = 1,

n2E[u′Ξt,nΞ′s,nv] ≤ |E[u′b̃K(Xt)mtb̃
K(Xt+1)′b̃K(Xs+1)msb̃

K(Xs)
′v]|

+|E[u′b̃K(X0)m0b̃
K(X1)′]E [̃bK(X1)m0b̃

K(X0)′v]|

≤ M̄2E[|u′b̃K(Xt)||̃bK(Xt+1)′b̃K(Xs+1)||̃bK(Xs)
′v|]

+M̄2λ−1ζ0(K)2E[(u′b̃K(X0))2]1/2E[(̃bK(X0)′v)2]1/2

≤ 2λ−1M̄2ζ0(K)2E[(u′b̃K(X0))2]1/2E[(̃bK(X0)′v)2]1/2

≤ 2λ−1M̄2ζ0(K)2

where the final line is because E[(u′b̃K(X0))2] = u′E [̃bK(X0)̃bK(X0)′]u = u′u = 1 for any u ∈ RK

with u′u = 1. Since ‖A‖2 = supu,v∈RK :u′u=1,v′v=1 u
′Av for any K ×K matrix A,∥∥E [Ξt,nΞ′s,n

]∥∥
2
≤ 2M̄2ζ0(K)2

λn2

and similarly for ‖E[Ξ′t,nΞs,n]‖2.

The result follows by Corollary 5.2 of Chen and Christensen (2013). �

Proof of Lemma C.2. By geometric rho-mixing there exists a finite positive C such that

Var

[
n−1∑
t=0

b(Xt, Xt+1)

]
≤ CnE[b(X0, X1)2]

uniformly for all measurable b : X × X → R such that E[b(X0, X1)2] < ∞ (see Lemma D.2). By

the relation between the spectral and Frobenius norms,

E[‖̂̃MK − M̃K‖22] ≤ 1

n2

K∑
k=1

K∑
l=1

Var

[
n−1∑
t=0

b̃Kk (Xt)̃b
K
l (Xt+1)m(Xt, Xt+1)

]

≤ C

n

K∑
k=1

K∑
l=1

E
[
(̃bKk (X0)̃bKl (X1)m(X0, X1))2

]

≤ Cζ0(K)2

λn

K∑
k=1

E
[
(̃bKk (X0)m(X0, X1))2

]
where

K∑
k=1

E
[
(̃bKk (X0)m(X0, X1))2

]
≤

 λ−1ζ0(K)2E[m(X0, X1)2]

K supx0,x1 |m(x0, x1)|2 if m is bounded.
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The result follows by Markov’s inequality. �

Proof of Lemma C.3. By the arguments in the Proof of Lemma C.2

E[‖(̂̃MK − M̃K)vK‖22] ≤ 1

n2

K∑
k=1

Var

[
n−1∑
t=0

b̃Kk (Xt)(̃b
K(Xt+1)′vK)m(Xt, Xt+1)

]

≤ C

n

K∑
k=1

E
[
(̃bKk (X0)(̃bK(X1)′vK)m(X0, X1))2

]
≤ Cζ0(K)2

λn
E
[
((̃bK(X1)′vK)2m(X0, X1)2

]
for some finite positive constant C, where

E
[
((̃bK(X1)′vK)2m(X0, X1)2

]
≤

 λ−1ζ0(K)2‖vK‖22E[m(X0, X1)2]

‖vK‖22 supx0,x1 |m(x0, x1)|2 if m is bounded.

The result follows by Markov’s inequality. The proof with
̂̃
M
′

K is identical. �
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