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Abstract

This paper investigates social influences on attitudes to risk and offers an evolu-
tionary explanation of risk-taking by young low-ranked males. Becker, Murphy and
Werning (2005) found that individuals about to participate in a status tournament may
take fair gambles even though they are risk averse in both wealth and status. Here
their model is generalised by use of the insight of Hopkins and Kornienko (2010) that
in a tournament or status competition one can consider equality in terms of the status
or rewards available as well as in initial endowments. While Becker et al. found that
risk-taking is increasing in the equality of initial endowments, it is found here that it is
increasing in the inequality of rewards in the tournament. Further, it is shown that the
poorest will be risk loving if the lowest level of status awarded is sufficiently low. Thus,
the disadvantaged in society rationally engage in risky behavior when social rewards
are sufficiently unequal. Finally, as greater inequality in terms of social status induces
gambling, it can cause greater inequality of wealth.
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1 Introduction

Many people undertake highly risky activities. They engage in crime, go to war, participate
in extreme sports, take drugs or start fights. To an evolutionary psychologist, the fact
that young men are disproportionately represented in such activities is not a coincidence.
Young men take risks in order to achieve social reputation or status which may improve
mating success (Wilson and Daly, 1985). Such competition is more intense amongst men
than women, as men face a greater variance in reproductive outcomes. To an economist,
such behaviour is difficult to integrate into a tradition where decision makers are typically
taken to be risk averse. Further, to my knowledge, economics has little to say about why
risk attitudes should depend on either gender or age. If anything, the lower wealth of the
young compared to older adults would be expected to make them relatively risk averse.1

A second question is the relation between risk-taking behaviour and inequality. Clearly,
the traditional economic view of risk preferences being subjective and idiosyncratic says little
of how such behaviour should vary with the wealth of others. Yet, there is evidence that
such risk-taking behaviour is more common in more unequal societies. Crime has been found
to be increasing in inequality by Kelly (2000) and Fajnzylber et al. (2002), among others.
Wilkinson and Pickett (2009) find a positive relationship between inequality and a wider
range of risky behaviours. To explain their empirical findings, they argue that violence and
other forms of risk taking are provoked by unfavourable social comparisons, and inequality
increases such “evaluation anxiety”.

The problem is that existing formal models of social rivalry find results that seem to
run in the opposite direction. Hopkins and Kornienko (2004) find in a model of status that
competition decreases not increases with inequality. Becker, Murphy and Werning (2005)
analyse a similar model but concentrate on the implications for risk taking. They find
that such behaviour will only take place when the initial distribution of wealth is sufficiently
equal. That is, there is more risk-taking behaviour in more equal societies. Further, gambling
will be done at intermediate levels of wealth, so that the middle class should be the most
risk-taking.

In this paper, I show how a simple change of perspective can provide very different results.
A large population of individuals choose how much of their initial endowments to allocate
to competition in a tournament. Performance in the tournament determines how a range of
ranked rewards or status positions are allocated. The great insight of Becker et al. (2005) is
that the anticipation of taking part in such a competition for status may induce individuals
to take fair gambles, even though their underlying preferences over consumption and status
are concave. This is integrated into the framework of Hopkins and Kornienko (2010) which

1The young are rich in physical health. However, this does not explain greater risk taking by men, nor
why risk-taking should vary with social conditions, the subject of this paper. Finally, young men also adopt
more risky investment strategies (Barber and Odean, 2001) and thus are apparently less risk averse in terms
of financial as well as physical risk.
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permits consideration of equality in terms of the status or rewards available as well as in
terms of initial endowments. For example, the difference in return to occupying high versus
low social position can and does vary across societies. Here, I find that risk-taking behaviour
is increasing in inequality of final rewards, even if it is decreasing in the inequality of initial
endowments.

Specifically, I find that if the value of the minimum status or reward approaches zero, the
lowest-ranked in society will be risk-loving. This result holds even if the lowest rank have
substantial wealth. Thus, in this model, it is the prospect of low status, independent of the
affluence of society, that determines risk taking. Further, an increase in inequality of rewards
will make low-ranked agents more risk loving. All agents after the tournament, in “old age”,
will be risk averse. Thus, this model implies, when combined with the observation from
evolutionary psychology that men face more dispersed rewards than women, that risk-taking
behaviour will be most common amongst young, low-ranked men, and that this behaviour
will be more common in more socially unequal societies.

The basic intuition for these results is that social exclusion leads to desperation. More
specifically, an individual who has an endowment that is low relatively to his rivals can
expect only a low reward from participating in the tournament, even if his wealth is high in
absolute terms. Further, if this reward is sufficiently low, the marginal value of doing better
in the tournament can be arbitrarily high. For example, if low status means that marriage
and children are unlikely to be attainable, then evolutionary considerations suggest that
an individual in that situation should be desperate to change this outcome. This gives an
incentive to gamble. In contrast, in a society that guarantees a relatively high minimum
level of status, there would be less appetite for risky behaviour among the low-ranked.

Robson (1992) was the first to integrate relative concerns into risk preferences (see also
Robson, 1996; Harbaugh and Kornienko, 2000; Hvide, 2002; Ray and Robson, 2012; Robson
and Samuelson, 2010). The important difference in Robson (1992) is that there individual
utility is directly assumed to be convex in relative wealth. This could be plausible in that
it means that the difference between being first and second is more important than the
difference between tenth and eleventh. However, here I explore an alternative idea. It is not
the underlying preferences for high position that cause fierce competition for status. Rather it
is the large objective difference in rewards to high and low position that is what is important.
For example, a top tennis tournament typically has prize money that is highly convex in the
ranking achieved, which will induce highly competitive behaviour by tennis professionals
even though they may have utility that is concave in wealth. A further difference is that in
Robson (1992), Ray and Robson (2012) and Becker et al. (2005) more gambling happens
in more equal societies and it is more likely that those who gamble will have intermediate
levels of wealth rather than being poor.

The previous study closest to the current work is Robson (1996). He considers a model
where men care about relative wealth because of the possibility of polygyny: high relative
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wealth means that a man can attract multiple partners. This gives men an incentive to
gamble. The effective difference here is that by varying the reward schedule, the rate at
which relative wealth can be converted into marriage opportunities is altered. Thus, the
incentive to gamble can itself be varied.

Becker et al. (2005) and Ray and Robson (2012) draw an important further conclusion
from their analysis: there is an upper bound on the level of equality that can be supported
in society. If the level of equality exceeds it, then some agents would have an incentive to
gamble leading to a wider distribution of wealth.2 In this paper, I find that the maximum
level of equality in wealth is increasing in the equality of status. In fact, an arbitrarily equal
distribution of wealth can be supported without gambling, if status is sufficiently equally
distributed. Equally, an increase in the inequality of status can induce gambling. So, status
inequality can create inequality in wealth.

Thus, this model provides an explicit theoretical mechanism which would support the
apparent empirical relationship between inequality and risk-taking behaviour. But the cau-
sation flows in a different way than is normally assumed. If a society is relatively egalitarian
in its treatment of its citizens, so that advantages of being rich beyond higher consump-
tion are relatively minor, then individuals have little incentive to gamble and the wealth
distribution will remain undispersed. However, where social advantage leads to highly dif-
ferential mating opportunities, such as in polygamous societies, or where there is significant
differences in treatment between the social classes, then this provides a strong incentive for
the low ranked to take on risks. This in turn leads to a relatively dispersed distribution of
wealth. Thus, unequal social arrangements can cause economic inequality.

2 A Status Tournament

The model is similar to that found in Frank (1985), Hopkins and Kornienko (2004, 2010)
and Becker, Murphy and Werning (BMW) (2005). A large population of agents compete in
a tournament with a range of ranked rewards that could represent either material outcomes,
such as cash prizes, or non-material awards of status. Agents make a strategic decision
over how to allocate their endowment between performance in the tournament and private
consumption. As BMW first discovered, this situation can lead to individuals being willing
to take fair gambles if they are offered before the tournament. This is because the utility
function implied by equilibrium behaviour in the tournament can be convex in initial en-
dowments, even though an individual has preferences that are concave in both consumption
and rewards. The model is solved backwards. This section analyses the tournament stage
of the game. The next section looks at the implied incentives to take gambles prior to the

2Importantly, Ray and Robson (2012) extend the analysis of concern for relative wealth to a dynamic
setting and thereby endogenise the distribution of wealth. They find that in steady state there is persistent
gambling.
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tournament. Stable wealth distributions that give no incentive to gamble are characterised in
Section 4. Section 5 shows how the tournament model can be extended to consider marriage
matching under an uneven gender ratio and the effect on risk attitudes.

I assume a continuum of agents. Each has a different endowment of wealth z with
endowments being allocated according to the publicly known distribution G(z) on [z, z̄] with
z > 0. The distribution G(z) is twice differentiable with strictly positive density g(z). The
level of each contestant’s endowment is her private information.

Next, and before the tournament, individuals may have an incentive to gamble with
their wealth. It is assumed that a range of fair gambles are offered each in the form of
a continuous density over a bounded interval. As Ray and Robson (2012) suggest, these
gambles could be lotteries in the common meaning of the term or, more generally, entry into
risky occupations or making risky investments. Then, one would expect that gambles are
taken until the market clears in the sense that the distribution of wealth is such that no-one
wishes to gamble further. It is shown in Section 4 that such stable wealth distributions exist.

For now, I consider the tournament taking place with the initial wealth distribution G(z).
If G(z) is not itself stable, we would expect, by the time the tournament actually takes place,
that gambling will have changed the wealth distribution to a stable distribution. However,
the point is that it is the anticipation of taking part in a tournament when the distribution
of wealth is not stable which gives the incentive to take risks. It is thus necessary to model
the hypothetical possibility, of playing the tournament under the initial non-stable wealth
distribution in order to understand risk attitudes.

In the tournament itself, agents make a simultaneous decision on how to divide their
wealth z between performance x and consumption c, with x + c = z. Performance has no
intrinsic utility, but rewards s are awarded on the basis of performance, with the best per-
former receiving the highest reward, and in general, one’s rank in performance determining
the rank of one’s reward. A specific interpretation in BMW and Hopkins and Kornienko
(2004) is that x represents expenditure on conspicuous consumption, and s is the resulting
status. An alternative, first due to Cole, Mailath and Postlewaite (1992), is that s represents
the quality of a marriage partner achieved. This scenario is considered explicitly in Section 5
below. Relating this to evolutionary considerations, the range of rewards in a society which
permits a high degree of polygyny would be wider than in a society in which strict monogamy
is enforced. What is important here is that there is a schedule of rewards or status positions
available, which are assigned by performance, but are otherwise exogenous with respect to
wealth.

In any case, it is assumed that all individuals have the same preferences over consumption
c and status or rewards s,

U(c, s) (1)

where U is a strictly increasing, strictly concave, three times differentiable function with
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Uc, Us > 0, and Ucc, Uss < 0. So, agents are risk averse with respect to both consumption
and status. I also assume that Ucs ≥ 0, so that the case of additive separability Ucs = 0 and
status and consumption being positive complements Ucs > 0 are both included. As BMW
stress, it is when Ucs > 0, strict complementarity between rewards and consumption, that
the results on risk taking are strongest. Note that x does not appear in the utility function
and thus represents a pure cost to the individual. The amount spent on x could represent
conspicuous consumption, labour effort or resources devoted to fighting or lobbying.

The order of moves is, therefore, the following:

1. Agents receive their endowments z.

2. Agents are offered fair gambles which they are free to accept or to reject.

3. Agents commit a part x of their after gambling wealth z to performance in the tour-
nament.

4. Each agent receives a reward s, the value of which is determined by performance in
the tournament.

5. Agents consume their remaining endowment c = z − x and their reward s, receiving
utility U(c, s).

To this point, the model is identical to that of BMW (and very similar to that of Hopkins
and Kornienko, 2004). However, here I follow Hopkins and Kornienko (2010) in assuming
that the rewards or status positions of value s whose publicly known distribution has an
arbitrary twice differentiable distribution function H(s) on [s, s̄], with s > 0, and strictly
positive density h(s). BMW assume that H(s) is fixed as a uniform distribution on [0,1].
As they point out, for the existence of equilibrium, this represents a harmless normalisation.
However, this clearly prevents the major exercise here: identifying the change of behaviour
arising from changes in the distribution of rewards.

Rewards or status are assigned assortatively according to rank in performance, with the
highest performer receiving the highest reward and the lowest performer the lowest reward.
Let F (x) be the distribution of choices of performance. One’s position in this distribution
will determine the award achieved. Precisely, an individual who chooses a performance level
x will receive a reward

S(x, F (·)) = H−1
(
θF (x) + (1− θ)F−(x)

)
(2)

where and F−(x) = limξ↑x F (ξ) and for some θ ∈ (0, 1). The role of the parameter θ is to
break potential ties that would occur if a mass of agents were to choose the same level of
performance. For example, if a mass of agents chose the same performance, this rule would
be consistent the corresponding range of rewards being equally distributed amongst those
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agents.3 However, if all contestants choose according to a continuous strictly increasing
strategy x(z), then, first, F (x) = F−(x) for all x, and, second, F (x(z)) = G(z).4 Together,
this implies, H(s) = F (x) = G(z), one holds the same rank in wealth, performance and in
reward achieved, or

S(x, F (x)) = H−1(F (x)) = H−1(G(z)) = S(z). (3)

We can call S(z) the reward or status function, as in a monotone equilibrium, it represents
the relationship between initial endowment and the reward or status achieved.

Importantly, the reduced form equilibrium utility given a monotone equilibrium perfor-
mance function x(z) will then be

U(z) = U(z − x(z), S(z)). (4)

We will see that this function U(z) can be convex, even given our concavity assumptions
on U(c, s). Therefore, agents would accept a fair gamble over their endowment, if such a
gamble was offered before the tournament.

If all agents follow a monotone strategy x(z), then an individual with endowment z should
choose x(z). If she considers deviating to a different level of performance x(ẑ), she will have
no incentive to do so if

−x′(ẑ)Uc(z − x(ẑ), S(ẑ)) + S ′(ẑ)Us(z − x(ẑ), S(ẑ)) = 0. (5)

Setting x(ẑ) = x(z) and rearranging, we have

x′(z) =
Us(z − x(z), S(z))S ′(z)

Uc(z − x(z), S(z))
. (6)

The solution to the above differential equation with boundary condition,

x(z) = 0 (7)

will be our equilibrium strategy. This is shown in the next result, which is similar to results
in Hopkins and Kornienko (2004, 2010) and BMW (2005).5 Note that in the proof (in the

3Note that F (x) and F−(x) are only distinct when a positive mass of agents choose the same performance
x̂. Denote r̄ = F (x̂) and r = F−(x̂) then the average value of rewards ranked between r and r̄ is v =∫ r̄

r
H−1(r) dr/(H(r̄) −H(r)) and by the mean value theorem there is a θ ∈ (0, 1) such that H−1(θF (x) +

(1− θ)F−(x)) = v.
4The probability that an individual i is placed higher than a randomly selected individual j is F (xi(zi)) =

Pr[xi(zi) > xj(zj)] = Pr[x−1
j (xi(zi)) > zj ] = G(x−1

j (xi(zi))) = G(zi).
5In Hopkins and Kornienko (2004) and BMW (2005) individuals have an intrinsic desire for rank in

performance (considered to be conspicuous consumption), information is complete and the equilibrium is
unique. In Hopkins and Kornienko (2010) in contrast there is incomplete information, contestants signal
their type by choice of performance. There is only one separating equilibrium, but other equilibria such as
pooling equilibria may exist.
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Appendix) it is shown that despite the possibility of the equilibrium utility function U(z)
being convex, individual utility is pseudoconcave in performance x so that the first order
condition (5) above does represent a maximum.

Proposition 1. There exists a unique solution x(z) to differential equation (6) with boundary
condition (7). This is the unique symmetric equilibrium to the tournament.

Having established the framework of the tournament, the next step is to proceed in
solving backwards. The next section considers the risk attitudes of agents who are about to
participate in the tournament.

3 Implied Risk Attitudes

The main focus of this paper is to examine the risk attitudes implied by participation in the
status tournament. As described in the previous section, an individual with wealth z will
anticipate equilibrium utility U(z) = U(z− x(z), S(z)), where x(z) is the equilibrium choice
of performance and S(z) = H−1(G(z)) is the reward function. If this function is convex for
some range of wealth, then individuals with wealth on that range would take fair bets if such
bets were offered to them prior to the tournament. The analysis in this section focuses on
the question as to when in fact this function will be convex.

We have by the envelope theorem U ′(z) = Uc(z − x(z), S(z)) and

U ′′(z) = Ucc(z − x(z), S(z))(1− x′(z)) + Ucs(z − x(z), S(z))S ′(z), (8)

on (z, z̄). One can also look at the implied level of absolute risk aversion,

AR(z) = −U
′′(z)

U ′(z)
=
−Ucc(z − x(z), S(z))(1− x′(z))− Ucs(z − x(z), S(z))S ′(z)

Uc(z − x(z), S(z))
. (9)

Perhaps more usefully, to clarify the different potential effects on risk attitudes, one can
decompose the expression (8) into (suppressing arguments)

U ′′(z) = Ucc + ( UcsS
′(z)− x′(z)Ucc )

which separates the negative and positive elements but also the traditional and non-traditional
parts. The first part Ucc is negative and reflects risk aversion towards regular consumption.
The second, in brackets, gives the competitive part which is positive. By inspection one can
immediately see that U ′′(z) will be positive, even though Ucc < 0, if either x′(z) or S ′(z)
is sufficiently large. Note that S ′(z) = g(z)/h(S(z)). Thus, BMW’s result that equality in
endowments would lead agents to be willing to accept lotteries follows quite directly. If the
distribution of endowments G(z) is strongly unimodal, then its density g(z) will have a very
high value at and around its mode.
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If one wishes to consider the possibility of gambles that can give wealth outcomes outside
the current wealth distribution, then it is necessary to extend the definition of S(z). Thus,
assume S(z) = s for any z below z and S(z) = s̄ for z above z̄. Let us further assumes that
performance at these hypothetical wealth levels is zero for z < z and is x(z̄) for z > z̄. Then
U(z) = U(z, s) for z less than z and U(z) = U(z − x(z̄), s̄) for z > z̄, which implies that
utility is strictly concave for z outside [z, z̄].6

The problem in obtaining unambiguous results on risk attitudes is that both status
and wealth affect them but in differing directions. With low wealth (and hence low c)
traditionally one would be risk averse. Nonetheless, one can find a sufficient condition for
low status individuals to be risk loving. It is a condition on the marginal value of status
such that low status leads to desperation.

Definition 1. Devil Take the Hindmost7 (DTTH) condition: lims→0 Us(c, s) = ∞ for any
c > 0 and Uc(c, s) is bounded above for c > 0.

For example, suppose U = log c + log s, then Us = 1/s so that as s tends to 0 then Us
tends to infinity. In general, since Uss < 0 by assumption, as the lowest reward or level of
status s decreases, it pushes its marginal value Us higher. The DTTH assumption is simply
that Us is not bounded above. Thus, when the consequences of being last are sufficiently
unattractive (for example, being seized by the devil), the value to the last-placed individual
of moving up the field is arbitrarily high.

In other words, rewards s are in some way an essential good. Some have argued that
social status only concerns the upper class, that in effect it is a luxury good. The examples
from Wilson and Daly (1985) concern the willingness to use lethal violence in response to
social slights. To the young men involved, social standing seems to be a matter of life and
death.

I now show that given the DTTH condition, the poorest individuals in any society must
be risk loving if their status is sufficiently low. Note the relative nature of this result: it holds
whatever the minimum level of wealth z in society. That is, even in rich societies, the lowest
ranked people can be risk loving. In the developed world, the poor may have consumption
levels that are high by historic standards, but what this result shows is that if relative status
is low, they still may be risk-taking.

The result is stated for the individual with the lowest possible status s, but by continuity
of the utility function, if the lowest ranked individual is risk loving, so will be an interval of
others with higher wealth (see also Example 1 below).

6Thus S(z) and hence U ′(z) may fail to be differentiable at z. This causes some difficulties but is largely
resolvable by looking at right derivatives at z.

7On the origin of this phrase: “It is said when a class of students have made a certain progress in their
mystic studies, they are obliged to run through a subterranean hall, and the last man is seized by the devil”
(Brewer (2001)).
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Proposition 2. Assume the DTTH condition, fix the distribution of wealth with z > 0, and
consider a distribution of rewards such that S ′(s) > 0 and s > 0. Then, there is an s∗ > 0
such that if the minimum reward level s is less than s∗ then the poorest individuals will be
risk loving. That is, there will be a ẑ ∈ (z, z̄] such that U ′′(z) > 0 on (z, ẑ).

Note that neither the DTTH assumption or the above result preclude consumption from
also being essential. An individual who becomes risk loving as rewards fall to zero could be-
come risk averse if his reward level was fixed, but his wealth approached zero. For simplicity,
suppose there is additive separability so that Ucs = 0. Then, if Uc becomes large as z goes
to zero, x′ will go to zero, and U ′′ will be negative. So low wealth leads to risk aversion. It
is low status that leads to risk taking.

3.1 Effects of an Increase in the Dispersion of Rewards

Let us now move to a principal question in this paper, the relationship between risk attitudes
and inequality in rewards. Specifically, it is possible to show that making rewards more
unequal leads to more risk taking behaviour. To do this, I will compare two distributions of
rewards Ha(s) and Hp(s), a for ex ante and p for ex post. I suppose that the distribution of
rewards changes from Ha(s) to Hp(s) for exogenous reasons. I then see how this affects risk
attitudes.

To carry out this analysis, some notion of a distribution being more dispersed than
another is needed. I use a strong version of the dispersive order. Specifically, I say that a
distribution Hp is strictly larger in the dispersive order than a distribution Ha, or Hp >d Ha

if
hp(H

−1
p (r)) < ha(H

−1
a (r)) for all r ∈ [0, 1]. (10)

The original definition of this stochastic order (Shaked and Shanthikumar, 2007, pp148-
9) has the same condition but with a weak inequality, and on (0,1). A simple example of
distributions satisfying this stronger condition would be any two uniform distributions where
one distribution has support on a strictly longer interval than the other (see Hopkins and
Kornienko (2010) for further examples and discussion).

Lemma 1. Suppose that the distribution of rewards becomes strictly more dispersed in terms
of the dispersive order Hp >d Ha and that the lowest reward s is unchanged then the poor
become more risk loving. That is, there will be a ẑ ∈ (z, z̄] such that U ′′p (z) > U ′′a (z) and
ARp(z) < ARa(z) for all z ∈ (z, ẑ).

While one might think that a general increase in the dispersion of rewards would lead
to a general increase in risk-taking, this may not be the case. This is because an increase
in the dispersion of rewards makes the tournament more competitive, which will tend to
raise performance and lower consumption. For example, Hopkins and Kornienko (2010) find
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simple sufficient conditions for all agents to increase performance and reduce consumption
in response to more dispersed rewards. This matters as, other factors being equal, lower
consumption typically increases risk aversion. The poor will nonetheless become more risk
loving, as the consumption of the poorest is tied down by the boundary condition (7) which
is unchanged.

A further result is that reducing the minimum reward level will increase risk-taking by
the poorest in society.

Lemma 2. Consider two distributions of rewards Ha(s) and Hp(s) which differ in terms
of minimum status such that sa > sp, but hp(sp) = ha(sa). Either (a) assume additive
separability so that Ucs = 0; or (b) assume the DTTH condition and that Ucss, Uccs ≤ 0 and
that U ′′a (z) ≤ 0 on (z, z + ε) for some ε > 0. Then, there will be a ẑ ∈ (z, z̄] such that
U ′′p (z) > U ′′a (z) and ARp(z) < ARa(z) for all z ∈ (z, ẑ).

Putting these two results together, it is possible to obtain the following result: greater
inequality of rewards causes the poor to be more risk-taking. This case would include a form
of mean preserving spread on rewards. For example, two uniform distributions having the
same mean but with one Hp having a wider support would be suitable.

Proposition 3. Suppose that the distribution of rewards becomes strictly more dispersed in
terms of the dispersive order Hp >d Ha, and the minimum reward decreases sp ≤ sa. Either
(a) assume additive separability so that Ucs = 0; or (b) assume the DTTH condition and that
Ucss, Uccs ≤ 0 and that U ′′a (z) ≤ 0 on (z, z + ε) for some ε > 0. Then the poor become more
risk loving. That is, there will be a ẑ ∈ (z, z̄] such that U ′′p (z) > U ′′a (z) and ARp(z) < ARa(z)
for all z ∈ (z, ẑ).

See Figure 1 for an illustration of this result. It also gives typical results on how per-
formance and the level of utility responds to the greater level of competition implied by
greater inequality of rewards. While there are no such results in this paper, Hopkins and
Kornienko (2010) already have shown that greater dispersion of rewards lead to an increase
in performance and a decrease in utility for most, and sometimes for all, individuals. See
also Example 1 below.

3.2 Effects of an Increase in the Dispersion of Wealth

BMW argue that increase in the dispersion of wealth, such as produced by gambling over
wealth, should reduce the desire to gamble. The basic thrust of their claims are supported in
new results given below. However, the relationship between inequality of wealth and lower
risk taking is not straightforward. For example, it is possible to show that certain mean
preserving spreads in wealth will make the poorest less, not more, risk averse.
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Figure 1: Illustration of Proposition 3: ex post status Sp is more dispersed than ex ante
Sa leading to the slope of the equilibrium utility function becoming convex at low levels of
wealth. Typically, ex post utility Up is lower and ex post performance xp is higher.

For this, I use second order stochastic dominance. Specifically, let us say a distribution
F is more dispersed than a distribution G in terms of second order stochastic dominance
with single crossing, and we write F >sc G if they have the same mean and∫ z

z

F (t)−G(t) dt > 0 (11)

for z ∈ (z, z̄) and are single crossing.8 That is, F (z) > G(z) on (z, ẑ) and F (z) < G(z) on
(ẑ, z̄) for some ẑ ∈ (z, z̄). This represents a refinement of the standard definition of second
order stochastic dominance (see, for example, Wolfstetter, 1999, pp. 140-4), in which the
inequality (11) hold weakly and there is no single crossing condition.

I now consider changes in the distribution of wealth, assuming that the distribution
changes from some distribution Ga(z) ex ante, to another distribution Gp(z) ex post. One
can think about this change occurring for two different reasons. First, there could be some
exogenous change. Second, the distribution of wealth could become more dispersed due to
the gambling activity by individuals. But whatever the reason for the change, we will see
how this affects individual risk attitudes.

Proposition 4. Suppose that the distribution of wealth becomes more dispersed in terms of
second order stochastic dominance with single crossing Gp >sc Ga, and minimum wealth z

8The use of the order >sc follows the convention in statistics and indicates that the distribution F is
“bigger”, i.e. more dispersed, than G. Note, however, that G second order stochastically dominates F .
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is unchanged. Then the poor become less risk averse.That is, there will be a ẑ ∈ (z, z̄] such
that U ′′p (z) > U ′′a (z) and ARp(z) < ARa(z) for all z ∈ (z, ẑ).

The above result is based on the assumption that the dispersion of wealth rises without
the support of the distribution widening. So, the density of people rises at the top and
bottom ends of the distribution. In general, as found by Hopkins and Kornienko (2004), a
higher density means greater competitiveness, and here the higher density of poor people
leads to a higher willingness to undertake risky behaviour.9

In contrast, to increase risk aversion at low incomes, it is necessary to disperse wealth
over a greater range, and in particular to make the poorest poorer. Even then, to ensure
that risk-taking decreases, one needs to impose strong conditions, such as requiring that the
ratio Ucc/Ucs is increasing in c.10 Nonetheless, the final result in this section establishes,
as BMW supposed, that greater dispersion of wealth can lower individuals’ willingness to
gamble. Note that as the comparison is across wealth distributions with different supports,
risk attitudes are compared at constant ranks. This method is discussed at much greater
length in Hopkins and Kornienko (2010).

Proposition 5. Suppose that the distribution of wealth becomes strictly more dispersed in
terms of the dispersive order Gp >d Ga, and minimum wealth decreases zp ≤ za. Assume
that Uccc ≥ 0 and U ′′a (za) ≤ 0 and assume either (a) that there is additive separability so
that Ucs = 0; or (b) that Uccs ≤ 0 and Ucc/Ucs is increasing in c. Then the poor become
more risk averse. That is, there will be a r̂ ∈ (0, 1] such that U ′′p (G−1p (r)) < U ′′a (G−1a (r)) and
ARp(G

−1
p (r)) > ARa(G

−1
a (r)) for all r ∈ (0, r̂).

3.3 Cobb-Douglas

In this section, for concreteness we look at Cobb-Douglas preferences, for which closed form
solutions for equilibrium behaviour and preferences are possible. Suppose

U(c, s) = cαsβ = (z − x)αsβ (12)

Let γ = β/α. Then,

x′(z) = γ
S ′(z)

S(z)
(z − x) (13)

with again x(z) = 0. This differential equation has the explicit solution

x(z) = z −
sγz +

∫ z
z
Sγ(t)dt

Sγ(z)
, c(z) =

sγz +
∫ z
z
Sγ(t)dt

Sγ(z)
.

9To be fair, similar problems would have arisen in the earlier analysis of the effect of greater inequality
in rewards, if reward inequality had been increased on an unchanging support. The point is that one should
be quite careful about what one means by greater inequality.

10This last condition holds for Cobb-Douglas and CES utility functions.
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Thus

U(z) =

(
sγz +

∫ z

z

Sγ(t)dt

)α
(14)

and

U ′(z) = αSγ(z)(sγz +

∫ z

z

Sγ(t)dt)α−1 = αcα−1(z)Sβ(z)

and
U ′′(z) = α(α− 1)cα−2(z)Sβ(z)(1− x′(z)) + αβcα−1(z)Sβ−1(z)S ′(z).

With Cobb-Douglas preferences, the expression for absolute risk aversion is particularly
neat,

AR(z) = −U
′′(z)

U ′(z)
= −γS

′(z)

S(z)
+

1− α
c(z)

(15)

where again γ = β/α. That is, changes in the ratio S ′(z)/S(z) clearly change risk preferences
(though c(z) will also change). But we could also define a form of relative risk aversion as
AR(z)c(z) which would give us

RR(z) = −c(z)U ′′(z)

U ′(z)
= −γc(z)S ′(z)

S(z)
+ (1− α) = −x′(z) + (1− α) (16)

Example 1. Suppose rewards are uniform on [ε, 1− ε] and wealth is uniform on [1, 5] and
α = β so that γ = 1. We have then

S(z) = ε+
1− 2ε

4
(z − 1)

and

U(z) =

(
ε+

∫ z

1

ε+
1− 2ε

4
(t− 1)dt

)α
=

(
(z − 1)2 + 2ε(−1 + 6z − z2)

8

)α
Take, for example, α = 0.4. With a relatively equal distribution of rewards/status Sa, for
example with ε = 0.25, all agents are risk averse. However, let us make rewards more
unequal, ε = .1, label this new status function Sp. Then, Up(z) is convex on [1,2.44) and
is concave on (2.44, 5]. See Figure 1. That is, take an individual with an endowment of
about 2.5, then that individual will be risk loving with respect to losses and risk averse with
respect to gains. Note that ex post equilibrium utility Up(z) is everywhere lower than ex ante
Ua(z) and ex post equilibrium performance xp(z) is everywhere higher (xa = (z − 1)/2 and
xp = (z2 − 1)/(2z − 1)). We can also verify that more dispersed wealth makes agents more
risk averse. Keeping rewards dispersed with ε = 0.1 but making wealth also more dispersed,
so for example wealth is now uniform on [0.5, 5.5], utility will return to being concave at all
wealth levels.
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4 The Influence of the Distribution of Rewards on Sta-

ble Wealth Distributions

We have seen that anticipated participation in a status tournament can give individuals an
incentive to take gambles. BMW, following Robson (1992), consider distributions of wealth
that in contrast are stable in the sense that given such a distribution, no agent wishes to
gamble and therefore the distribution of wealth does not change. Stable distributions can
also be seen as clearing the market for gambling. If the initial wealth distribution was not
stable, then there would be an incentive to gamble until the redistribution of wealth resulting
from gambling made it stable.

Following Robson (1992) and BMW (2005), the exact process by which the market for
gambling is cleared is not modelled. For example, there is no strategic analysis of the agents’
simultaneous choice of gambles. Rather, simply the existence of stable distributions is shown.
However, even if there are no available lotteries or the process of gambling does not converge
to a stable distribution, this is not a problem for the main focus of the paper, which concerns
the analysis of when is there an incentive to gamble, as covered in Section 3. Somewhat more
problematic would be the possibility of gambling resulting in a discontinuous distribution of
wealth. Fortunately, it is possible to demonstrate that any stable distribution is smooth and
without gaps.

Note that there will potentially be many wealth distributions that are stable. Thus, BMW
focus on the stable wealth distribution (which they call the “∗ allocation”) that induces risk
neutrality at all levels of wealth.11 The idea is that distributions that are less dispersed than
the stable distribution will induce gambling (something that we formalise below). Thus, this
stable distribution represents an upper bound on sustainable equality of wealth. So, let us
call it the most equal stable distribution or MESD.

In this section, there are the following novel results. First, I prove the existence and
uniqueness of the MESD and that it is smooth and without gaps. Second, I show that it
is the most equal distribution consistent with stability in that any distribution that is even
locally more equal is unstable. Third, I show that greater inequality in rewards implies that
the MESD becomes more unequal. Fourth, a result that follows directly from the third, the
maximum level of equality is as high as the degree of equality in status. Societies that offer
a high degree of equality of esteem can support very equal distributions of wealth.

Further, suppose we take the MESD as a prediction of the actual distribution of wealth
in society.12 Then our second result implies that societies that are socially more unequal

11They show that marginal utility having a constant value λ, or U ′(z) = Uc(c(z), S(z)) = λ in current
notation, is also a solution to the problem of a utilitarian social planner.

12One potential reason for focussing on the most equal stable distributions rather than other stable dis-
tributions is given in Ray and Robson (2012) who show that in dynamic model the incentive to gamble
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cause more unequal wealth outcomes. For example, consider two societies that have the
same initial distribution of wealth that is quite equal. The first society is relatively socially
egalitarian with the status assigned to the poorest individual relatively high so that there
is no incentive to gamble and the initial distribution of wealth is unchanged. However, the
second society treats its citizens more unequally with a low minimum status. This we have
seen can induce gambling, which will result in a greater dispersion of wealth. Thus, more
unequal social conditions can produce wealth inequality.

Let us start with formal definitions of stability and the most equal stable distribution.

Definition 2. A stable wealth distribution is a distribution of wealth G(z) such that, for
a given distribution of rewards, equilibrium utility satisfies U ′′(z) ≤ 0 at all positive wealth
levels.

Definition 3. The most equal stable distribution MESD is a stable wealth distribution
G∗(z) such that U ′′(z) = 0 for all z in its support.

The aim in this section is to characterise the MESD. The next step is the following
technical result.

Lemma 3. Any MESD G∗(z) is differentiable and has no gaps on its support.

Now, if one sets the expression for U ′′(z) in (8) to zero, this leads to the following
differential equation (suppressing arguments)

S ′(z) =
UcUcc

UsUcc − UcUcs
(17)

with boundary condition
S(z) = s (18)

(we know that S(z) = H−1(G(z)) is differentiable because H(s) is by assumption and G(z) is
shown to be by Lemma 3). Using this differential equation (17) and the differential equation
(6) for equilibrium performance, one can write a new differential equation for equilibrium
consumption,

c′(z) =
UcUcs

UcUcs − UsUcc
. (19)

Given the boundary condition (7) for equilibrium performance, the boundary condition for
the above equation will be c(z) = z. A solution of the two equations simultaneously will
provide the MESD. Specifically, the MESD G∗(z) is defined as G∗(z) = H(S∗(z)), where
S∗(z) is the solution to the equation (17).

provided by relative concerns prevents convergence to total equality. However, there is a tendency for wealth
to converge over time as in standard growth models. Combining these insights, they find that steady-state
wealth will be close to the most equal stable distribution.
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Further, it is possible to prove the MESD is unique, for a given distribution of rewards
and for a given mean wealth.

Proposition 6. For a given distribution of rewards H(s), there is a unique solution (c∗(z), S∗(z))
to the simultaneous differential equation system (17) and (19) with boundary conditions
c(z) = z and S(z) = s, such that U(z) = U(c∗(z), S∗(z)) is linear in z for all z ∈ [z, z̄].
Thus, U ′′(z) = 0 at for all wealth levels in (z, z̄). Further, assume that Uccc ≥ 0, Uccs ≤ 0
and Ucc/Ucs is increasing in c, then for fixed mean wealth m there is a unique distribution of
wealth G∗(z) such that H−1(G∗(z)) = S∗(z).

Furthermore, this distribution G∗(z) is the maximally equal stable distribution (MESD)
in the following important sense. Any distribution that is even locally more equal than
G∗(z) is unstable. In contrast, any distribution such that U ′′(z) is strictly negative could be
subject to an increase to equality without becoming unstable.

Lemma 4. Any distribution of wealth Gp(z) that is locally less dispersed than the MESD
G∗(z) is not stable. That is, if gp(z) > g∗(z) on an interval [z1, z2) but gp(z) = g∗(z) on
[z, z1) then U ′′p (z) > 0 on (z1, z1 + ε) for some ε > 0.

Further, one can draw the following comparative statics result. The MESD moves with
the distribution of rewards. If rewards become more (less) equal, the minimum level of
wealth inequality falls (rises) in the sense of second order stochastic dominance with single
crossing, a concept introduced in the previous section.

In what follows, it is assumed that there are ex ante and ex post distributions of rewards,
Ha(s) and Hp(s) respectively. Under each distribution of rewards, we calculate S∗i (z) for
i = a, p, the associated reward function that induces risk neutrality at all wealth levels.
Further, by Proposition 6, this will also define G∗a(z) and G∗p(z) the ex ante and ex post most
equal stable distributions of wealth. I find that a greater dispersion in rewards necessitates
a greater dispersion in wealth in order to maintain risk neutrality. An example of this is
illustrated in Figure 2.

Proposition 7. Assume the ex post distribution of rewards Hp is more dispersed than the ex
ante distribution Ha in terms of the dispersive order, Hp >d Ha, that the minimum reward
falls or sp < sa, that the maximum reward rises s̄p > s̄a and the mean reward is unchanged.
Assume further that Ucss, Uccs ≤ 0, Uccc ≥ 0 and Ucc/Ucs is increasing in c. Then, the ex post
MESD wealth distribution is more dispersed in terms of second order stochastic dominance
with single crossing than ex ante. That is, G∗p >sc G

∗
a.

This has an important corollary. If we consider a sequence of distributions of rewards
each progressively more equal than the previous, then the corresponding distributions of
wealth would also become progressively more equal.
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Figure 2: Illustration of Proposition 7: ex post rewards Sp are more dispersed than ex ante
Sa. To maintain risk neutrality, ex post wealth Gp must be more dispersed than ex ante Ga,
with ex post minimum wealth zp being lower and maximum wealth z̄p being higher than ex
ante.

Corollary 1. As the distribution of rewards approaches perfect equality, so does the Most
Equal Stable Distribution of wealth.

Despite the earlier results of BMW and Ray and Robson (2012), it is thus possible to
sustain an equal society, even in the presence of status competition, provided there is an
equality in terms of esteem.

4.1 Cobb-Douglas

Assume Cobb-Douglas preferences U(c, s) = cαsβ, then the differential equation (17) becomes

S ′(z) =
α(1− α)S(z)

βc(z)

and (19) becomes
c′(z) = α.

This implies that performance and consumption are linear in wealth, specifically x(z) =
(1− α)(z − z) and c(z) = αz + (1− α)z. This in turn can be used to solve for S∗(z):

S∗(z) = A[c(z)](1−α)/β = A(αz + (1− α)z)(1−α)/β,
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where A is a constant of integration. One can check that this implies U(z) = Aβc(z) which
is linear as required. Of course, for strict concavity of the Cobb-Douglas utility function,
one needs α + β < 1, so that S∗(z) is therefore convex. Thus, as G∗(z), the MESD, is
equal to H(S∗(z)), this minimum inequality wealth distribution will be more convex than
the distribution of rewards.

Example 2. Assume that rewards are distributed uniformly on [ε, 1 − ε]. Assume further
that α = β = 1/2 (of course, this means that the utility function is not strictly concave, but
as we will see it makes everything conveniently linear). Then, given mean wealth of 1/2, the
unique distribution G∗(z) that solves for S∗ is

G∗(z) =
(1− ε)z − ε/2

1− 2ε
.

That is, it is uniform on [ε/(2(1− ε)), (2− 3ε)/(2(1− ε))]. We have

S∗(z) = (1− ε)z + ε/2, U∗(z) =
ε/2 + (1− ε)z√

2(1− ε)
.

Clearly, a decrease in ε makes the distribution of rewards more dispersed. It will also
make the equilibrium distribution of wealth G∗(z) more dispersed. Equally, a more equal
distribution of rewards, implies a more equal stable distribution of wealth. Indeed, as ε
approaches 1/2, then both the distribution of rewards and the distribution of wealth become
entirely concentrated at 1/2.

5 A Tournament of Particular Interest: Marriage Match-

ing

In Section 2, a tournament model was introduced with a continuum of rewards that were
specified in relatively abstract terms. In this section, the underlying institution is made more
specific, drawing on the interpretation used in Cole et al. (1992), Peters and Siow (2002),
Hoppe et al. (2009) and Bhaskar and Hopkins (2011). The important insight from this
literature is that participation in a marriage market can provide an incentive for increased
investment or signalling. Here I similarly analyse a tournament for marriage partners but
focus on the implications for risk taking.

This is done in the particular context of where there is potentially an excess number of
suitors on one side of the market. Wei and Zhang (2011a, b) have recently investigated the
economic impact of the highly uneven sex ratio in China, finding evidence for this gender im-
balance driving both investment and risk-taking behaviour. The implications for investment
and signalling behaviour have been analysed theoretically by Bhaskar and Hopkins (2011)
and Hoppe et al. (2009) respectively. However, the distinctive focus here is on risk-taking
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behaviour and in particular of those with low wealth who thus risk failing to find a marriage
partner.

The crucial assumption will be that a measure µ ≥ 1 of men seek to match with a
measure one of women - men are on the long side of the market.13 It will be shown that
an increase in µ will lead to an increase in risk taking by those men immediately above and
below the margin of achieving marriage. As will be seen, it has a similar effect to an increase
in inequality of the rewards faced by men.

As in the main model, a continuum of contestants (men) have utility (1), have wealth
distributed according to G(z) and must make a choice of performance x. However, s now
denotes the quality of marriage partner achieved. In particular, there is a continuum of
women that have quality distributed according toH(s) and this is fully observable.14 Suppose
further that women’s utility in a match is strictly increasing in the performance x of the man
she is matched with. There are several reasons why this might be the case. As in Section 2,
one can identify performance with a range of lobbying or fighting activities to displace other
males. Alternatively it could be a signal of a man’s underlying quality, his wealth z.15

In any case, given these preferences, the aim is to find a matching scheme that is stable
in the classic sense of Gale-Shapley, and which is measure-preserving.16 It is well-known
that when each side of a matching problem have common and monotone preferences then
typically there is a unique stable matching and this will be positive assortative. That is, the
woman with the highest apparent quality will match with the highest performing man and
so on down. However, since there are more men than women, a proportion of men are excess
and will not marry. I assume that this is equivalent in match quality to achieving the lowest
possible match s. Let r = θF (x) + (1− θ)F−(x). As in (2) the parameter θ ∈ (0, 1) breaks
any potential ties in performance. Let r̃ = (µ− 1)/µ. The proposed matching is then,

S(x, F (·);µ) = H−1 (µr + 1− µ) (20)

for r ≥ r̃; men with rank r < r̃ are unmatched and receive s. While matching is positive
assortative, the different sizes of population of men and women means that the men’s rank is
rescaled to give the appropriate match. In the event of ties, θ can be chosen so that, first, the

13While the primary interpretation of the parameter µ is demographic, there are simply more men than
women, another possibility is that µ represents the degree of polygamy in society in the following sense. In
strict monogamy, only unmarried men enter the marriage market. Under polygamy, some married men will
also participate and thus the total proportion of men entering the market, that is µ, will be higher.

14Here for simplicity only men compete. See Peters and Siow (2003), Bhaskar and Hopkins (2011) and
Hoppe et al. (2009) for models with two sided investment or signalling.

15The current model is of complete information. However, the monotone equilibrium here is separating
in the sense that a man’s type can be inferred from his performance. The only substantial difference under
incomplete information is the possibility of the existence of other equilibria such as pooling outcomes. See
Hoppe et al. (2009), Hopkins (2012) and Hopkins and Kornienko (2010) for models with signalling.

16Matching being measure-preserving is the closest equivalent in continuum populations to matching being
one-to-one in finite populations. See Cole et al. (1992) and Hopkins (2012) for further details.
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above matching rule is equivalent to the ties being randomly broken; second, a proportion
of exactly 1 − r̃ men match (and since we have µ men, the measure of men matched is
µ(1− r̃) = 1). We have the following result.

Lemma 5. For a given distribution of performance F (x) and for some µ ≥ 1, the matching
(20) is the only stable measure-preserving matching.

Further, assuming a strictly increasing equilibrium choice of performance (at least for
men who are matched), we can replace S(z) as defined in (3) with

S(z;µ) = H−1(µG(z) + 1− µ); S ′(z;µ) = µg(z)/h(S(z;µ)). (21)

for z ∈ [z̃, z̄]; S(z;µ) = s for z ∈ [z, z̃).

The method of determining equilibrium behaviour will largely be the same as before for
men with wealth such that they expect to marry. Their behaviour is determined by solution
to a suitably modified differential equation,

x′(z) =
Us(z − x(z), S(z;µ))S ′(z;µ)

Uc(z − x(z), S(z;µ))
. (22)

However, men with wealth on [z, z̃] correctly anticipate that they will not marry and so do
not compete.

Proposition 8. When µ ≥ 1, there exists a unique symmetric equilibrium where x(z) = 0 on
[z, z̃) and, for [z̃, z̄], x(z) is the unique solution to the differential equation (22) with initial
condition x(z̃) = 0.

Let us now consider risk attitudes implied by this equilibrium. As before, if one assumes
the DTTH condition, there will be risk-taking at the lower end of the wealth distribution. In
particular, equilibrium utility will convex for those with wealth around the cutoff level z̃. It
is also possible to show that many of those men who in equilibrium will not marry will also
be willing to take risks. This is true even though their utility function is locally concave.
The point is that the convexity of the utility function at higher levels of wealth is sufficient
to make gambling attractive (see Figure 3).

Proposition 9. Assume DTTH, then there exist z1, z2, with 0 < z1 < z̃ < z2, and there
exists an s∗ > 0, such that if s < s∗ then individuals with wealth in (z1, z2) would accept a
fair gamble.

Does an increase in the relative number of men increase the incentive to take risks? I
show that under reasonable conditions an increase in men leads to an increase in the slope of
the matching function similar to that resulting from an increase in inequality in rewards as
analysed in Section 3.1. Specifically, a sufficient condition for this is that the distribution G
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Figure 3: Although individuals with wealth (z1, z̃) have utility that is locally concave, they
would be willing to take gambles that have the possibility of resulting in wealth above the
level z̃ that is critical for marriage.

has an increasing failure or hazard rate, where the hazard/failure rate is λ = g(z)/(1−G(z)).
While a decreasing failure/hazard rate is possible if the density g(z) decreases sufficiently
quickly, most common distributions have a increasing failure rate.17 Then, as for an increase
in reward inequality, an increase in µ, the relative number of men, leads to greater risk
taking.

Proposition 10. Suppose that the relative number of men increases so that µp > µa. Assume
that G(z) has an increasing hazard rate, assume also the DTTH condition, that Ucss, Uccs ≤ 0
and that U ′′a (z) ≤ 0 on (z̃, z̃ + ε) for some ε > 0. Then men with wealth close to the critical
level z̃ become more risk loving. That is, there will be a r̂ ∈ (r̃, 1] such that U ′′p (G−1(r)) >
U ′′a (G−1(r)) and ARp(G

−1(r)) < ARa(G
−1(r)) for all r ∈ (r̃, r̂).

17See Hoppe et al. (2009) for further discussion of the role of failure rates in comparative statics in
matching problems.
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6 Discussion: Risk-Taking, Gender, Age and Empiri-

cal Implications

In this section, some further interpretation of the formal results is given, with some discussion
of their possible empirical implications. For example, it is possible to draw some quite simple
conclusions about risk taking by age and by gender. It follows quite directly that risk taking
can be expected to be greater by young low-ranking males.

First, after the tournament, in “old age”, all agents will be risk averse. Clearly, the
model presented here is not a detailed model of the life-cycle. However, if we take the
tournament to be largely concerned with competition for mating opportunities, then one
would expect activity in the tournament to be concentrated in the early adult years. In
any case, formally, in the final stage, after rewards have been assigned, an agent will have a
reward s and will have her endowment less x, the amount spent on the tournament. She will
have utility U(z − x, s) if she goes ahead and consumes the remaining endowment and the
reward. If offered a fair gamble over either, she will refuse as U is concave in both arguments
by assumption. That is, gambling only occurs when young.

Second, from Proposition 3, one can see that a population facing a greater dispersion
in rewards will have greater risk-taking by those with low endowments. So, if men as a
population have more dispersed rewards than women, low-ranking men will be more risk-
taking than low-ranking women.

It is well-recognised that, in an evolutionary sense, men’s rewards are more variable than
women’s. As Wilson and Daly (1985, p60) write, “male fitness variance exceeds female fitness
variance”. This is because, while female fertility is limited by physiological constraints, male
fertility can be much higher if access to multiple mates is possible. Wilson and Daly argue
that therefore the effective degree of polygyny - the extent to which a single male can have
multiple exclusive partners - determines the level of social competition amongst males and
the “more intense this competition, the more we can expect males to be inclined to risky
tactics” (p. 60).18 That is, the current model provides formal support for Wilson and Daly’s
argument.

This paper does not make any claims with respect to welfare, for example, whether risk-
taking behaviour should be encouraged or discouraged. There are two reasons. First, there
are already results in this direction. Hopkins and Kornienko (2010) show in a more general
model that greater equality in rewards can make most and possibly all individuals better off.
Ray and Robson (2012) similarly show that a completely equal outcome where gambling is
banned is Pareto superior to their equilibrium steady state. Second, the current model is too
abstract to be much use in policy prescription. In particular, it does not distinguish between

18It has been suggested that the greater variability of male reproductive success is also the cause of greater
male variability in a number of traits. That is, randomization by males can also be physiological.
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an incentive to undertake risky activities such as crime, that carry negative externalities,
and those that create wealth, such as entrepreneurship.

The idea that low ranked agents may have an incentive to gamble has an apparent simi-
larity to the idea of “gambling for resurrection”, in which agents who are near to bankruptcy
have an incentive to gamble because any downside losses would be truncated. See, for ex-
ample, Gollier et al. (1997). However, none of the results in this paper depend on any such
mechanism. Here agents will take fair bets, even though they will have to suffer the downside
in full.19 Clearly, if limited liability were a possibility, then the incentive to gamble would
be increased.

An evolutionary approach also suggests how the findings in this paper - risk-taking by
the poor is increasing in inequality of status, but decreasing in the inequality of wealth -
might be distinguished empirically. With existing models, such as Becker et al. (2005), there
appears there is an endogeneity problem. If an equal wealth distribution causes gambling
that causes the wealth distribution, then the effect of inequality on risk attitudes would be
difficult to identify.

There are some grounds for hope, however. The current model specifies a distribution
of rewards or status outcomes that is exogenous and independent of the distribution of
wealth. Marriage arrangements are one example of how rewards could vary in this way.
Some societies explicitly allow polygamy, others condone polygyny while others are strictly
monogamous. Thus, the evolutionary return to high status would be quite different across
these different societies. Further, while the underlying causation for these differing customs
may be economic, such institutions change slowly and most individuals would plausibly take
them as fixed, and thus an analyst can hope to treat them as exogenous. That is, if long
run social arrangements (“culture”) cause risk-taking that results in inequality, then there
is a hope for meaningful empirical testing.

Indeed, broadly consistent with the hypotheses advanced here, existing cross-cultural
studies (Bacon et al., 1963; Barber, 2000) find that polygamy is associated with higher
levels of violent crime. Dreze and Khera (2000) and Edlund et al. (2007) find that crime is
higher in provinces (in India and China respectively) where the male-female gender ratio is
high and thus marriage opportunities for males are more fiercely competed. More recently,
Wei and Zhang (2011) find that economic risk-taking behaviour such as entrepreneurship is
also positively associated with the sex-ratio.

What can be said about the relation between risk-taking and growth, for example,
whether one should expect more risk-taking in poor or rich countries? This is difficult to
predict partly for the same reasons that risk attitudes in standard models are not necessarily
monotone with respect to wealth. But suppose one imposes sufficient “prudence” (that is,

19It is true that the social reward level cannot fall below the minimum s and in that sense there is a form
of limited social liability. However, none of the results depend on this.
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the third derivative of utility with respect to consumption is positive), this would suggest, as
in standard models, a general tendency toward risk neutrality as wealth rises. Nonetheless,
what the main results of this paper suggest is that there could still be risk-taking at the
bottom end of society depending on the form of social arrangements present.

Thus, the apparent empirical relationship between economic inequality and risk-taking
behaviour might be misleading. Rather, as in the model presented here, it is unequal social
relationships that can cause risk-taking behaviour. Inequality in wealth then follows as a
result, as social inequality provides individuals with an incentive to gamble over wealth. This
is a fascinating possibility which merits further empirical investigation.

Appendix

Proof of Proposition 1: This proof follows that of Proposition 1 of Hopkins and Kornienko
(2004). A sketch is as follows. Given Ucs ≥ 0, best replies are (weakly) increasing in z. Given
the tie breaking rule (2), a symmetric equilibrium strategy must in fact be strictly increasing.
If the equilibrium strategy is strictly increasing then it can be shown to be continuous and,
furthermore, differentiable. Thus, it satisfies the differential equation (6). This has a unique
solution by the fundamental theorem of differential equations.

It is also worth emphasising that the first order condition (5) is a maximum (despite
the equilibrium utility function U(z) potentially being convex), as if all others adopt the
proposed equilibrium strategy, an agent’s utility is pseudoconcave in x for each individual.
That is, U(z − x,H−1(F (x))) is increasing in x for x less than the equilibrium choice x(z)
and is decreasing in x for x greater than x(z). That is, utility U(z − x,H−1(F (x))) is
pseudoconcave in performance x. To show this, if all agents adopt a strictly increasing
strategy x(z) then an individual’s utility can be written as U(z−x,H−1(F (x))) and ∂U/∂x =
−Uc(z−x,H−1(F (x)))+Us(z−x,H−1(F (x)))f(x)/h(·). Then, one has ∂2U/∂x∂z = −Ucc+
Ucsf(x)/h(·) > 0. Take x̆ < x(z) and let z̆ be such that x(z̆) = x̆, so that z̆ < z. Hence,
for any x̆ < x(z), dU(z − x̆, H−1(F (x̆)))/dx ≥ dU(z̆ − x̆, H−1(F (x̆)))/dx = 0. Thus, utility
is increasing in x for x below the equilibrium choice x(z). A similar argument can establish
that it is decreasing in x for x above x(z).

Finally, the boundary condition (7) must hold as the agent with lowest wealth z in a
symmetric equilibrium has status S(z) = s and thus chooses performance x to maximise
U(z − x, s). Clearly, the optimal choice of performance for the agent with wealth z is
zero.

Proof of Proposition 2: One has from (7) that c(z) = z, so that from (8) it follows that

U ′′+(z) = Ucc(z, s)(1− x′+(z)) + Ucs(z, s)S
′
+(z) (23)

where the subscript “+” indicates a right derivative (as described in footnote 6, U ′′(z) may
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fail to exist) and from (6) that

x′+(z) =
Us(z, s)S

′(z)

Uc(z, s)
. (24)

It can be calculated that

∂x′+(z)

∂s
=
UssUc − UcsUs

U2
c

S ′(z) < 0.

But this implies that x′+(z) is monotone in s. Further, applying the DTTH condition, one
obtains lims→0 x

′
+(z) =∞ (note that as Ucs ≥ 0 then Uc(z, s) will not increase as s decreases).

Putting these together, there is clearly an s0 > 0 such that x′+(z) = 1 for s = s0. Therefore,
given the continuity of U ′′+(z) in s, there exists s∗ such that U ′′(z) is strictly positive for
s < s∗ where s∗ ≥ s0 > 0 (with s∗ = s0 only if Ucs = 0). The result then follows from the
continuity of U ′′(z) on (z, z̄).

Proof of Lemma 1: The second derivative (from the right) of the utility function risk
aversion for the poorest agent is U ′′+(z) = Ucc(z, s)(1 − x′+(z)) + Ucs(z, s)S

′
+(z) for i = a, p.

That is, as c(z) = z and S(z) = s both ex ante and ex post, the only way that either U ′′(z) or
AR(z) can change is in terms of S ′+ and x′+. The dispersive order by its definition (10) implies
that hp(H

−1
p (r)) < ha(H

−1
a (r)) for r ∈ [0, 1]. Now, S ′(z) = g(z)/h(S(z)) = g(z)/h(H−1(r)).

Thus, given g(z) is unchanged, the dispersive order implies that S ′p(z) > S ′a(z) for all z ∈
(z, z̄). It is easy to verify that an increase in S ′+(z) will also increase x′+(z) as given in (24).
The result follows.

Proof of Lemma 2: (a) Under additive separability, the second derivative (from the right)
of the utility function for the poorest agent becomes U ′′+(z) = (1 − x′+(z))Ucc(z). It is easy
to verify that a decrease in s will increase x′+(z) as given in (24), but given separability will
not affect Uc or Ucc. The result follows.
(b) When there is not additive separability, one has

∂U ′′+(z)

∂s
= Uccs(1− x′+(z)) + UcssS

′
+(z)−

∂x′+(z)

∂s
Ucc,

which, given our assumptions, is certainly negative where x′+(z) < 1. In the proof of Propo-
sition 2 it was shown that x′+(z) is monotone in s. Thus, as noted, there must be a value
s0 such that if s = s0 then x′+(z) = 1. If, as assumed, sa is such that U ′′+(z) ≤ 0, then
sa > s0. If also sp > s0, then it follows that ex post U ′′+(z) will be greater than ex ante, as
U ′′+(z) is monotone in s on (s0, sa). If sp ≤ s0, then U ′′+(z) is greater ex post. Given that
U ′′+(z) increases as a result of a decrease in s, and the assumption that Ucs > 0, AR+(z)
must decrease.

Proof of Proposition 3: This follows directly from Lemma 1 and Lemma 2.

25



Proof of Proposition 4: As wealth and status of the poorest agent is unchanged, the
only effect on U ′′+(z) as given in (23) (and therefore AR+(z)) is from a change in the den-
sity S ′+(z) = g(z)/h(s). Now, as second order stochastic dominance by definition requires∫ z
z
Gp(t)−Ga(t)dt > 0 on (z, z̄), we have (generically) gp(z) > ga(z) and so U ′′+(z) increases.

One can see that U ′(z) is unchanged, so that AR+(z) must decrease.

Proof of Proposition 5: We again consider U ′′+(z) as given in (23) and show that U ′′+(zp) <
U ′′+(za). From (24) it can be calculated that

∂x′+(z)

∂z
=
UscUc − UccUs

U2
c

S ′+(z) > 0,

and
∂U ′′+(z)

∂z
= Uccc(1− x′+(z)) + UccsS

′
+(z)−

∂x′+(z)

∂z
Ucc. (25)

We return to the sign of the derivative below, but note that the result on AR(z), in both (a)
and (b), given that ∂U ′(z)/∂z = Ucc < 0, and the assumption that U ′′+(za) ≤ 0, is proven if
U ′′+(zp) < U ′′+(za).
(a) Given additive separability, if U ′′+(z) ≤ 0 then x′+(z) ≤ 1. It follows that the derivative
(25) is strictly positive. Thus, the decrease in minimum wealth considered by itself leads
to a decrease in U ′′+(z). Further, by the dispersive order we have gp(zp) = gp(G

−1
p (0)) <

ga(G
−1
a (0)) and so S ′+(zp) = gp(zp)/h(s) < ga(zp)/h(s) = S ′+(za) and thus the greater

dispersion also decreases U ′′+(z).
(b) If U ′′+(z) ≤ 0 then x′+(z) < 1 and S ′+(z) ≤ −(1 − x′+(z))Ucc/Ucs. Thus, the derivative
(25) satisfies

∂U ′′+(z)

∂z
≥ (1− x′+(z))(Uccc − Uccs

Ucc
Ucs

)−
∂x′+(z)

∂z
Ucc.

If Ucc/Ucs is increasing, then Uccc − UccsUcc/Ucs ≥ 0 and the derivative (25) is positive. The
result then follows as in part (a).

Proof of Lemma 3: Suppose G∗(z) is not differentiable at some point ẑ then, without loss
of generality, assume that limz↓ẑ g(z) = g+(ẑ) > g(z) for all z in some interval (z0, ẑ). Then,
S ′+(ẑ) > S ′(z) for z in (z0, ẑ). Thus, because U ′′(z) is increasing in S ′(z) (see (8)), we can
find a z sufficiently close to ẑ such that U ′′(z) > U ′′+(ẑ). Clearly, it is not possible for both
U ′′+(ẑ) = 0 and U ′′(z) = 0 on the interval (z0, ẑ). Thus, the first result is proved. Second,
suppose that g(z) = 0 on some interval [z1, z2] with z1 > z. Then, as S ′(z) = 0 and thus
x′(z) = 0 on this interval, one has U ′′(z) < 0 everywhere on [z1, z2]. Because it has been
shown that G∗(z) is differentiable, S(z) = H−1(G∗(z)) will also be differentiable and thus
U ′′(z) is continuous. Thus, there is a z > z2 sufficiently close to z2 such that U ′′(z) < 0.
Thus, this distribution does not induce U ′′(z) = 0 on its support.

Proof of Proposition 6: By the definition of the differential equation (17), the solution
(c∗(z), S∗(z)) implies that U ′′(c∗(z), S∗(z)) = 0. Thus, U(z) is linear as U ′(z) = Uc > 0.
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Such a solution must exist by the fundamental theorem of differential equations because
both (17) and (19) are continuously differentiable and bounded. The solution is unique for
a given initial condition, that is, for a given minimum wealth level z. That is, there is a
family of distributions 〈Gi〉 that each satisfy H−1(Gi(z)) = S∗(z), each corresponding to a
different level of minimum wealth zi. Finally, I prove that in this family, average wealth µ
is strictly increasing in z.

The equation system (c′, S ′) as defined by (17) and (19) is autonomous, that is a function
of c and S alone and only a function of z through c and S. It thus follows by fundamental
theory of differential equations, that two solution curves (c(z), S(z)) cannot cross on the (c, S)
plane. So, given two solutions with initial conditions (zi, s) and (zj, s) for some zi < zj, it
follows that cj > ci for any given value of S. Now consider the two associated solutions
for rewards, Si(z) and Sj(z) on the (z, S) plane. I claim there is no value of z such that
Si(z) = Sj(z). Suppose not, then because Si(zi) = Sj(zj) = s and zj > zi, at the first such
crossing Sj must cross Si from below. But as

∂S ′(c, s)

∂c
=
−UcUcsU2

cc + U3
ccUs − U2

c (UcccUcs − UccUccs)
(UsUcc − UcUcs)2

< 0

(this follows from the assumptions on Uccc, Uccs and Ucc/Ucs) and as cj > ci, we have S ′i > S ′j
at such a point of crossing. Thus, such a crossing is not possible and so, given distinct initial
values of endowments zj > zi, it must hold that Si(z) < Sj(z) for all z. Hence, for a fixed
H(s), we have Gj(z) = H−1(Sj(z)) < H−1(Si(z)) = Gi(z). That is, Gj(z) stochastically
dominates Gi(z) and µj > µi. This implies, that for any given level of average wealth µ,
there exists a unique z such that the mean of G∗(z) is µ.

Proof of Lemma 4: Start with a distribution of wealth G∗(z) = Ga(z) such that U ′′(z) = 0
on its support [z, z̄]. Then suppose there is a local decrease in dispersion of wealth so
that gp(z) > ga(z) on an interval (z1, z2) but gp(z) = ga(z) on [z, z1]. Thus because g(z)
is unchanged on [z, z1] we have xa(z1) = xp(z1). However, the increase in gp on (z1, z2)
implies that (generically) G′′p(z1) > G′′a(z1) and thus S ′′p (z1) > S ′′a(z1). This implies that
x′′p(z1) > x′′a(z1) (but x′(z1), S

′(z1), S(z1) and x(z1) are unchanged). Then it is easy to verify
that we have U ′′′p (z1) > U ′′′a (z1) = 0. So U ′′p (z) > 0 on (z1, z1 + ε) for some ε > 0.

Proof of Proposition 7: By the dispersive order we have hp(H
−1
p (r)) < ha(H

−1
a (r)).

Together with our other assumptions on minimum and maximum rewards, it implies that
Hp(s) and Hp(s) are single crossing, with a unique reward ŝ such that Hp(ŝ) = Ha(ŝ).

Let us assume that zp < za, the minimum wealth level is lower under the new distribution
(this later will be shown to hold). Given that solutions (c(z), S(z)) to the differential equation
system cannot cross on the (c, S) plane, given our initial conditions ca(za) = za, Sa(za) = sa
and cp(zp) = zp, Sp(zp) = sp respectively, we have cp < ca for a given level of S. Turning to
solutions Sa(z) and Sp(z) graphed as a function of z alone, points of crossing of Sa(z) and
Sp(z) are possible. However, because ca > cp and ∂S ′(c, s)/∂c < 0 (as shown in the proof to
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the previous proposition), then S ′p(z) > S ′a(z) at any such crossing. Thus, there is at most
one crossing where Sa(z) = Sp(z). There must be a crossing as otherwise clearly the mean
reward could not be the same in both cases. Hence there is a unique crossing at endowment
ẑ where Sa(ẑ) = Sp(ẑ) = ŝ.

I now establish that zp < za, the minimum wealth level is lower under the new dis-
tribution. Suppose not so that zp ≥ za. Then as solutions (c(z), S(z)) to the differ-
ential equation system cannot cross on the (c, S) plane, given our initial conditions that
cp(zp) = zp ≥ za = ca(za) we have cp > ca for a fixed level of S. Thus, given ∂S ′/∂c < 0 as
established above, we would have S ′p(z) < S ′a(z) at any potential point of crossing of Sa(z)
and Sp(z) (graphed alone as a function of z). Since we have Sp(zp) = sp < sa = Sa(za), Sp
would never in fact cross Sa. Thus, the average reward must be higher ex post than ex ante,
which is not possible by assumption. Thus, in summary, Sp(z) has a strictly larger support
than Sa(z), and Sp(z) and Sa(z) are single crossing, with Sp(z) crossing from below.

But this also implies that the inverses of Sp(z) and Sa(z) are also single crossing. That is,
the two functions G−1p (Hp(s)) = S−1p (s) and G−1a (Ha(s)) = S−1a (s) are single crossing, with
G−1p (Hp(ŝ)) = ẑ = G−1a (Ha(ŝ)). But if the inverse of the distribution functions are single-
crossing then so are distribution functions Gp(z) and Ga(z) with clearly Gp(z) > Ga(z) on
(zp, ẑ) and Gp(z) < Ga(z) on (ẑ, z̄p). Single crossing of this form with an equal mean implies
second order stochastic dominance (Wolfstetter, 1999, Proposition 4.6).

Proof of Lemma 5: The matching that assigns a man with performance x to a woman
as specified in (20) is stable as while any man with rank F (x) would prefer a match with
any woman with s > S(F (x);µ), such a woman would prefer her current match whose
performance, say x̂, would be greater than x. Suppose there is another matching S̃, such
that a set of men X with positive measure are matched differently than under the positive
assortive matching S. Then, there must exist x̂ ∈ X, such that S̃(x̂, F (·);µ) > S(x̂, F (·);µ).
In fact, there must be a positive measure of men who are matched strictly higher than under
S. For this matching to be stable, all men with performance higher than x̂ must be matched
with women whose s is greater than S̃(x̂, F (·);µ). If not, then a woman s = S̃(x̂, F ();µ)
could propose a match with a man with performance x̃ where x̃ > x̂ and the man x̃ would
find it acceptable. But the measure of men with x higher than x̂, is strictly larger than
the measure of women with s greater than S̃(x̂, F (·);µ). But this implies that S̃ is not
measure-preserving.

Proof of Proposition 8: The proof of Proposition 1 for the original game on [z, z̄] applies
directly to the one on [z̃, z̄]. Thus, in the proposed equilibrium, an individual of wealth z̃
has no incentive to deviate upwards. It follows that agents with less wealth, that is with
wealth on [z, z̃), have no incentive to deviate upwards either.

Proof of Proposition 9: The result that U(z) is strictly convex on (z̃, z2) follows directly
from Proposition 2. The utility of individuals on the interval [z, z̃) is U(z, s) which is clearly
continuous and also concave in z, the latter simply by the assumption that Ucc < 0. Because
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U(z) is strictly convex on (z̃, z2), we have, for some θ ∈ (0, 1), θU(z̃) + (1 − θ)U(z2) >
U(θz̃ + (1 − θ)(z2)). By the continuity of U(z), there is an z1 such that for z ∈ (z1, z̃), one
has θU(z) + (1− θ)U(z2) > U(θz + (1− θ)(z2)).

Proof of Proposition 10: First, note that as µ rises so does z̃, the lowest level of wealth at
which matching is achieved. Specifically, z̃p = G−1(1−1/µp) > G−1(1−1/µa) = z̃a. Second,
by assumption Sa(z̃a) = Sp(z̃p) = s and, by the initial condition, xa(z̃a) = xp(z̃p) = 0, and
so both are unchanged. Thus from (25) in the proof of Proposition 5, the effect of higher
wealth on U ′′+(z̃) is positive.

Further, we have S ′(z̃) = µg(z̃)/h(s) = µg(G−1(1 − 1/µ))/h(s). Differentiating, this is
increasing in µ if

g(z̃) +
g′(z̃)

µg(z̃)
= g(z̃) +

g′(z̃)(1−G(z̃))

g(z̃)
> 0.

It is easily verified that this inequality holds at z̃ (indeed at any z) if G has an increasing
hazard rate. So we have S ′p(z̃p) > S ′a(z̃a). So the effect on U ′′+(z̃) from the change in the
matching function S(z) is also positive. Thus, it has been shown that U ′′+(z̃p) > U ′′+(z̃a).
By the continuity of U ′′(z) = U ′′(G−1(r)) the main result follows. Finally, U ′(z̃) = Uc(z̃, z)
decreases as Ucc < 0, so the result on AR(z) follows.
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