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1 Introduction

In both theoretical and empirical work, economists often require that the action chosen by an

agent will increase with another variable, so that the two may be regarded as complements. The

theory of monotone comparative statics provides conditions on preferences that guarantee this

behavior. To put this more formally, suppose an agent i chooses an action from a set S which

is a subset of R. The agent’s preference over different actions in S depends on some exogenous

variable ξi, which is drawn from a partially ordered set. It is known that the agent’s optimal

action increases with ξi if the agent’s preference obeys single crossing differences (Milgrom and

Shannon, 1994); loosely speaking, this property requires that, whenever x2i ą x1i and the agent

prefers x2i to x1i at some value of the exogenous variable, then an increase in the exogenous

variable will preserve the agent’s preference for x2i over x1i.
1 When S is an interval of R then a

property weaker than single crossing differences called the interval dominance order (Quah and

Strulovici, 2009) is sufficient to guarantee the monotonicity of the optimal action; this property

says that whenever x2i is preferred to all actions in the interval rx1i, x
2
i s, then this preference is

preserved when the exogenous variable increases.

Given the central role played by single crossing differences and the interval dominance order

in monotone comparative statics, it is important that we develop a nonparametric procedure for

testing whether observed data is in fact consistent with one or both of these properties. The first

and most basic objective of this paper is to develop such a test.

1.1 Testing for single crossing differences

Suppose an observer has a finite data set, where at observation t, the exogenous variable is ξti

and the agent i chooses xti from the feasible action set Ati, which we assume is a compact interval

of R. We show that if agent i has a preference that respects the interval dominance order, then

the data set Oi “ tpx
t
i, ξ

t
i , A

t
iqu

T
t“1 must obey an intuitive and easy-to-check property we call the

axiom of revealed complementarity (ARC). Conversely, if Oi obeys this property, then the agent’s

choices can be rationalized by a preference obeying the interval dominance order; indeed, it can

1Milgrom and Shannon (1994) refers to this as the ‘single crossing property.’ The term ‘single crossing
differences,’ which is more descriptive and also analogous to ‘increasing differences,’ follows Milgrom (2004).
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be rationalized by a preference obeying the stronger property of single crossing differences.2

Loosely speaking, ARC says the following: suppose that at some value of the exogenous

variable, agent i reveals a preference for x2i over x1i with x2i ą x1i (this can be a direct revela-

tion in the sense that x2i was chosen when x1i was feasible at some observation, or it could be

revealed indirectly via transitive closure); then the agent cannot reveal a preference for x1i over

x2i at a higher exogenous variable. Our result is reminiscent of canonical results such as Afriat’s

or Richter’s Theorem, which say that so long as the preference pairs revealed by the data con-

tains no cycles, then these (typically incomplete) revealed preferences admit a completion. The

distinctive issue in our context is that, in a sense, there is not a single preference over actions

but many preferences corresponding to different values of the exogenous variable; therefore, our

proof involves first characterizing all the preference information conveyed by the data, and then

completing these preferences simultaneously in a way that obeys single crossing differences.

In games with strategic complementarity (see Milgrom and Roberts (1990) and Vives (1990))

players’ strategies are complements in the sense that an agent’s best response increases with

the action of other players in the game. These games are known to be very well-behaved; for

example, they always have pure strategy Nash equilibria and, in fact, there is always a largest

and a smallest pure strategy Nash equilibrium.

In this context, suppose that for each player i (i “ 1, 2, ..., n), we observe the feasible action set

Ati, the action chosen by the player, xti P A
t
i, and an exogenous variable yti (drawn from a poset)

that affects player i’s action. An observation t may be succinctly written as pxt, yt, Atq (where

xt “ pxtiq
n
i“1, etc.) such that xt is the observed action profile in the treatment pyt, Atq. Then

we can ask whether the data set O “ tpxt, yt, AtquTt“1 is consistent with the hypothesis that the

observations constitute pure strategy Nash equilibria in games with strategic complementarity;

note that this hypothesis is internally consistent since we know that such equilibria must exist in

this class of games. The answer to our question is straightforward given the single-agent results:

all we need to do is to check that each player’s choices obey ARC, in the sense that, for all i,

2Readers familiar with Afriat’s Theorem may notice a parallel in the following sense: the generalized axiom of
revealed preference (GARP) is necessary whenever the consumer is maximizing a locally nonsatiated preference
and it is sufficient to guarantee the stronger conclusion that there is a continuous, strictly increasing, and concave
function rationalizing the data. In our case, ARC is necessary for strict interval dominance and sufficient for
strict single crossing differences (which is a stronger property).
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Oi “ tpx
t
i, ξ

t
i , A

t
iqu

T
t“1 (with ξti “ px

t
´i, y

t
iq) obeys ARC. (From player i’s perspective, the variables

affecting his preference are the realized value of yi and the actions of other players.)

When the data set O obeys ARC (in the sense that every player obeys ARC), it would be

natural to exploit this data to make predictions of the outcome in a new game, with different

feasible action sets A0 “ pA0
i q
n
i“1 and different exogenous variables y0 “ py0

i q
n
i“1, assuming that

the players’ preferences obey single crossing differences and remain unchanged. We provide a

procedure for working out the set of all possible Nash equilibria in this new game. We also show

that this set has properties that echo those of a set of Nash equilibria in a game with strategic

complementarity: while the set itself may not have a largest or smallest element, its closure does

have a largest and a smallest element and these extremal elements increase with y0.

1.2 Tests on cross sectional data

So far we have considered an observer who records the behavior of an agent or a group of agents

across a sequence of different treatments. It is not always possible to obtain data of this type in

empirical settings. Suppose instead that, at each treatment, we observe the joint actions taken

by a large population of n-player groups, so the data set is O “ tpµt, yt, AtquTt“1, where µt is a

distribution on At. Then the natural generalization of our notion of rationalization is to require

that the population be decomposable into segments such that (i) all groups within a segment

have the same equilibrium play at any one treatment and (ii) the equilibrium play is consistent

with strategic complementarity. This rationalization concept captures the idea that treatments

have been randomly assigned across the whole population of groups, so that the distribution of

‘group types’ is the same across treatments; note, however, that it places no restrictions on that

distribution, nor on how groups select among pure strategy Nash equilibria.

We show that it is possible to check whether O “ tpµt, yt, AtquTt“1 is consistent with strategic

complementarity in this sense by solving a certain system of linear equations. When a data

set passes this test, we provide (following Manski (2007)), a procedure to partially identify the

distribution of equilibrium responses in the population under a new treatment.

Lastly, to illustrate the use of our techniques, we apply them to model the influence of spouses

and workplace smoking regulations on smoking behavior. The US census provides information on

4



tobacco use in married couples and smoking policies at their workplaces (whether it is permitted

or not).3 From this we obtain the (sample) joint distribution of smoking behavior among couples

and smoking policies at their workplaces. We then test the hypothesis that someone is more

likely to smoke if his/her spouse is smoking and his/her workplace permits smoking, with the

distribution of smoking patterns arising as a Nash equilibrium between spouses. We show that the

census data are not exactly rationalizable in this way; however, using an econometric procedure

developed recently by Kitamura and Stoye (2016), we find that this failure is not statistically

significant, so the hypothesis of strategic complementarity cannot be rejected.

1.3 Related literature

Topkis (1998, Theorem 2.8.9) considers a correspondence ϕ : T Ñ R` mapping elements of a

totally ordered set T (interpreted as the set of parameters) to compact sublattices of Rl. He shows

that this correspondence is increasing in the strong set order if and only if there is f : R`ˆT Ñ R

such that ϕptq “ arg maxxPR` fpx, tq, where f is supermodular in x and has increasing differences

in px, tq. The rationalizability concept used by Topkis is more stringent than the one we employ

since the optimal choices must coincide with (rather than simply contain) ϕptq. In the case where

ϕ is a choice function, it is not hard to see that such a rationalization is possible even when T

is a partially (rather than totally) ordered set; this has been noted by Carvajal (2004) who also

applies it to a game setting (where T , being the profile of actions of other players in the game,

will generally not be totally ordered).

In this paper, we also permit the set of parameters to be partially rather than totally ordered.

However, we confine ourselves to the case where actions are totally ordered (in essence, elements

of R rather than R`), while allowing for observations of the choices made from different subsets of

the set of all possible actions. Consequently, at a given parameter value, the observer may have

partial information on the agent’s ranking over different actions rather than simply the globally

optimal action. In this respect, the problem is more complicated than the one posed by Topkis,

because the rationalizing preference we construct has to agree with this wider range of preference

information (in addition to obeying single crossing differences).

The extension of our revealed preference tests to cross-sectional data sets with unobserved

3The data were collected in the early 90s, when significant numbers of workplaces still permitted smoking.
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heterogeneity follows an approach that has been taken by other authors (see, for example, Mc-

Fadden and Richter (1991) and Manski (2007)). Manski (2007) also discusses making predictions

in unobserved treatments and our approach to this issue is, in its essentials, the same as his.

Echenique and Komunjer (2009) develop a structural model that could be used to test for

strategic complementarity in certain special classes of games, including two person games. Their

test relies on a stochastic equilibrium selection rule that places strictly positive probability on

the extremal elements of the set of Nash equilibria and checks certain observable properties

implied by strategic complementarity; the sufficiency of those properties (for rationalizability) is

not addressed. Our rationalizability tests do not require assumptions on equilibrium selection.

Aradillas-Lopez (2011) provides nonparametric probability bounds for Nash equilibrium actions

for a class of games with characteristics that are similar to, but distinct from, games with strategic

complementarity. There are also papers where actions are assumed to be strategic complements

or substitutes in order to sharpen inference or predictions; for example, Kline and Tamer (2012),

Molinari and Rosen (2008), Uetake and Watanabe (2013), and Lazzati (2015). By and large,

the emphasis in these papers is not to test for strategic complementarity but to exploit it as an

assumption; indeed the model may not include the type of exogenous treatment variation that

makes the assumption refutable.4

1.4 Organization of the paper

Section 2 gives a quick review of standard results in monotone comparative statics and supermod-

ular games. Sections 3 and 4 discuss the revealed preference theory motivated by the standard

results discussed in Section 2, in the context of (respectively) individual and group decisions.

The extension to cross-sectional data sets is explained in Section 5, while Section 6 applies the

results to study smoking decisions among couples.

4There is also an econometric literature on testing for complementarities in firm activity (see, for example,
Athey and Stern (1998)). The data environments in those contexts lead to econometric approaches that are quite
different from the method used in Sections 5 and 6 of this paper.
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2 Basic concepts and theory

Our objective in this section is to give a quick review of some basic concepts and results in

monotone comparative statics and of their application to games with strategic complementarities.

This will motivate the revealed preference theory developed later in the paper.

2.1 Monotone choice on intervals

Let Xi Ă R be the set of all conceivable actions of an agent i. A feasible action set of agent i

is a subset Ai of Xi. We assume that Ai is compact in R and that it is an interval of Xi. We

say that a set Ai Ď Xi is an interval of Xi if, whenever x2i , x
1
i P Ai, with x2i ą x1i, then, for any

element x̃i P Xi such that x2i ą x̃i ą x1i, x̃i P Ai. Given that Ai is both compact and an interval,

we can refer to it as a compact interval. It is clear that there must be ai and āi in Ai such that

Ai “ txi P Xi : ai ď xi ď āiu and it is sometimes convenient to denote Ai by rai, āis. We denote

by Ai the collection of all compact intervals of Xi. We assume that agent i’s choice over different

actions in a feasible action set Ai is affected by a parameter ξi, where ξi is drawn from a partially

ordered set (or poset, for short) pΞi,ěq; ξi may include certain exogenous variables and/or the

actions of other agents (when we extend the analysis to a game). For the sake of notational

simplicity, we are using the same notation for the orders on Xi and Ξi and for any other ordered

sets; we do not anticipate any danger of confusion.

We call a binary relation Ái on XiˆΞi a preference of agent i if, for every fixed ξi P Ξi, Ái is

a complete, reflexive and transitive relation on Xi. A preference Ái is regular if, for all Ai P Ai

and ξi, the set BRipξi, Aiq defined by

BRipξi, Aiq “ tx
1
i P Ai : px1i, ξiq Ái pxi, ξiq for all xi P Aiu, (1)

is nonempty and compact in R. Regularity obviously holds in the important case where every

bounded set of Xi is finite (for example, if Xi Ď N) and, more generally, it holds if Ái is continuous

at every ξi P Ξi. We refer to BRipξi, Aiq as agent i’s best response or optimal choice at pξi, Aiq

and it is monotone or increasing in ξi if, for every ξ2i ą ξ1i,

x2i P BRipξ
2
i , Aiq and x1i P BRipξ

1
i, Aiq ùñ x2i ě x1i. (2)
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The preference Ái is said to obey strict interval dominance (SID) if, for every x2i ą x1i and ξ2i ą ξ1i,

px2i , ξ
1
iq Ái pxi, ξ

1
iq for all xi P rx

1
i, x

2
i s ùñ px2i , ξ

2
i q ąi px

1
i, ξ

2
i q, (3)

where ąi is the asymmetric part of Ái, i.e., pxi, ξiq ąi pyi, ξiq if pxi, ξiq Ái pyi, ξiq and pyi, ξiq Ãi

pxi, ξiq. We denote the symmetric part of Ái by „i, i.e., pxi, ξiq „i pyi, ξiq if pxi, ξiq Ái pyi, ξiq and

pyi, ξiq Ái pxi, ξiq. The following result is a straightforward adaptation of Theorem 1 in Quah

and Strulovici (2009). We shall re-prove it here because of its central role in this paper.

Theorem A. Suppose Ái is a regular preference on Xi ˆΞi. Then agent i has a monotone best

response correspondence if and only if Ái obeys strict interval dominance.

Proof. To show that Ái obeys SID, suppose that, for some x2i ą x1i and ξ2i ą ξ1i, the left

side of (3) holds. Letting Ai “ rx
1
i, x

2
i s, we obtain x2i P BRipξ

1
i, Aiq. Hence, by (2), it also holds

that x2i P BRipξ
2
i , Aiq. If px2i , ξ

2
i q „i px

1
i, ξ

2
i q were to hold, then x1i P BRipξ

2
i , Aiq. However, then

we have that x2i P BRipξ
1
i, Aiq, x

1
i P BRipξ

2
i , Aiq, and x1i ă x2i , which contradicts (2). Therefore,

px2i , ξ
2
i q ąi px

1
i, ξ

2
i q. Conversely, suppose ξ2i ą ξ1i, x

2
i P BRipξ

2
i , Aiq and x1i P BRipξ

1
i, Aiq. If x2i ă x1i,

then px1i, ξ
1
iq Ái pxi, ξ

1
iq for every xi P rx

2
i , x

1
is Ď Ai. SID guarantees that px1i, ξ

2
i q ąi px

2
i , ξ

2
i q, which

contradicts the assumption that x2i P BRipξ
2
i , Aiq. l

Readers familiar with the theory of monotone comparative statics will notice that our defini-

tion of monotonicity in (2) is stronger than the standard notion, which merely requires that

BRipξ
2
i , Aiq dominates BRipξ

1
i, Aiq in the strong set order, which means that, for any x2i P

BRipξ
2
i , Aiq and x1i P BRipξ

1
i, Aiq, maxtx2i , x

1
iu P BRipξ

2
i , Aiq and mintx2i , x

1
iu P BRipξ

1
i, Aiq. This

weaker notion of monotonicity can be characterized by preferences obeying interval dominance

(rather than strict interval dominance), which is defined as follows: for every x2i ą x1i and ξ2i ą ξ1i,

px2i , ξ
1
iq Ái pąiq pxi, ξ

1
iq for every xi P rx

1
i, x

2
i s ùñ px2i , ξ

2
i q Ái pąiq px

1
i, ξ

2
i q. (4)

(The reader can verify this claim by a straightforward modification of the proof of Theorem A or

by consulting Theorem 1 in Quah and Strulovici (2009).) Throughout this paper we have chosen

to work with a stronger notion of monotonicity; the weaker notion does not permit meaningful

revealed preference analysis because it does not exclude the possibility that an agent is simply
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indifferent to all actions at every ξi. In this sense, our stronger assumption here is analogous to

the assumption of local non-satiation made in Afriat’s Theorem.5

Note that interval dominance coincides with strict interval dominance if, instead of regularity,

we require Ái to have the stronger property that BRipξi, Aiq is nonempty and unique for every

ξi and compact interval Ai. Throughout this paper, we have chosen neither to require nor to

guarantee the uniqueness of the best response since it is unnecessarily restrictive: on continuous

domains it effectively implies that the payoff function over actions is quasiconcave.

The interval dominance order is Quah and Strulovici’s (2009) generalization of single crossing

differences, due to Milgrom and Shannon (1994). Just as there is strict interval dominance, so

there is a strict version of single crossing differences. We say that a preference relation Ái has

strict single crossing differences (SSCD) if, for every x2i ą x1i and ξ2i ą ξ1i,

px2i , ξ
1
iq Ái px

1
i, ξ

1
iq ùñ px2i , ξ

2
i q ąi px

1
i, ξ

2
i q. (5)

It is clear that every preference that obeys SSCD will also satisfy SID. Hence, it is obvious from

Theorem A that if Ái is a regular preference on Xi ˆ Ξi that obeys SSCD, then agent i has a

monotone best response correspondence BRipξi, Aiq for every interval Ai P Ai.
6

2.2 Strategic complementarity

Let N “ t1, 2, ...., nu be the set of agents in a game, and let Xi Ă R be the set of all conceivable

actions of agent i. We assume that i has a feasible action set Ai that is a compact interval of Xi;

we denote the family of compact intervals of Xi by Ai. Agent i’s choice over different feasible

actions is affected by the actions of other players and also by an exogenous variable yi, which is

drawn from a poset pYi,ěq. Let Ξi “ X´i ˆ Yi, where X´i “ ˆj‰iXj. A typical element of Ξi

is denoted by ξi “ px´i, yiq and Ξi is a poset if we endow it with the product order. We assume

that agent i has a preference Ái on Xi ˆ Ξi, in the sense defined in Section 2.1.

5It is clear that without such an assumption, any type of consumption data is rationalizable since one could
simply suppose that the consumer is indifferent across all consumption bundles. For a statement and proof of
Afriat’s Theorem see Varian (1982).

6In fact, SSCD of a preference ensures more than that: it is necessary and sufficient for the monotonicity of a
best response correspondence on arbitrary feasible action sets and not only interval feasible action sets. On the
relationship between single crossing differences and the interval dominance order, see Quah and Strulovici (2009).
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Given a profile of regular preferences pÁiqiPN , a joint feasible action set A P A “ ˆiPNAi,

and a profile of exogenous variables y P Y “ ˆiPNYi, we can define a game

Gpy, Aq “ rpyiqiPN , pAiqiPN , pÁiqiPN s .

We say that the family of games G “ tGpy, Aqupy,AqPYˆA exhibits strategic complementarity if,

for every A P A, the best response of each agent i (as given by (1)) is monotone in ξi “ px´i, yiq.

It is clear from Theorem A that the family of games G “ tGpy, Aqupy,AqPYˆA exhibits strategic

complementarity if and only if Ái is an SID preference for every agent i.

Example 1. Consider a Bertrand oligopoly with n firms, with each firm producing a single

differentiated product. Firm i has constant marginal cost ci ą 0, faces the demand function

Dippi, p´iq : R`` ˆ Rn´1
`` Ñ R`, and chooses its price pi ą 0 to maximize profit Πippi, p´i, ciq “

ppi ´ ciqDippi, p´iq. Suppose that its own-price elasticity of demand,

´
pi

Dippi, p´iq

BDi

Bpi
ppi, p´iq

is strictly falling with respect to p´i (the prices charged by other firms); this captures the idea

that the other firms’ products are substitutes for firm i’s product. Then Πi obeys SSCD in

ppi; p´i, ciq and, hence, on any compact interval of prices, firm i’s profit-maximizing prices are

monotone in pp´i, ciq.
7 If this property holds for every firm in the industry, then the collection

of Bertrand games generated by different feasible price sets to each firm and different exogenous

variables, c “ pciqiPN , constitutes a collection of games exhibiting strategic complementarity.

The following result summarizes some of the properties of Nash equilibria in a game with

strategic complementarity. For our purposes, the most important feature of these games is that

they have pure strategy Nash equilibria, so it is not a priori unreasonable to hypothesize that

players are playing a pure strategy Nash equilibrium in such a game.

Theorem B. Suppose G “ tGpy, Aqupy,AqPYˆA exhibits strategic complementarity. Then, for

every game Gpy, Aq P G, the set of pure strategy Nash equilibria Epy, Aq is nonempty and there

7Specifically, they guarantee that for any p2i ą p1i, ln Πpp2i , p´i, ciq ´ ln Πpp1i, p´i, ciq is strictly increasing in
pp´i, ciq, which implies SSCD (see, Milgrom and Shannon (1994)).
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is a largest and a smallest Nash equilibrium, both of which are increasing in y.

The set of Nash equilibria of Gpy, Aq coincides with the fixed points of the joint best response

correspondence BRp¨, y, Aq : A Ñ A, where, denoting px´i, yiq by ξi,

BRpx, y, Aq “ pBR1pξ1, A1q,BR2pξ2, A2q, ...,BRnpξn, Anqq .

Both the non-emptiness and structure of Epy, Aq flow from the fact that this is a very well-

behaved correspondence. Indeed, under strategic complementarity, BRipξi, Aiq is increasing in ξi

(in the sense of (2), for all i) and so BRpx, y, Aq is increasing in px, yq.8

3 Revealed monotone choice

Consider an observer who collects a finite data set from agent i, where each observation consists

of the action chosen by the agent, the set of feasible actions, and the value of the parameter.

Formally, the data set is Oi “ tpxti, ξ
t
i , A

t
iqutPT , where T “ t1, 2, ..., T u. This means that, at

observation t, the agent is subjected to the treatment pξti , A
t
iq P Ξt

i ˆAi and chooses the action

xti P A
t
i.

9 We say that Oi (or simply, agent i) is consistent with monotonicity or monotone-

rationalizable if there is a regular and SID preference Ái on Xi ˆ Ξi such that for every t P T ,

pxti, ξ
t
iq Ái pxi, ξ

t
iq for every xi P A

t
i. The motivation for this definition is clear given Theorem A: if

Oi is monotone-rationalizable then we have found a preference that (i) accounts for the observed

behavior of the agent and (ii) guarantees that the agent’s optimal choice based on this preference

is increasing in ξi, on any feasible action set that is an interval. Our principal objective in this

section is to characterize those data sets that are monotone-rationalizable.

3.1 The axiom of revealed complementarity

We first define the revealed preference relations induced by Oi. The direct revealed preference

relation ÁR
i is defined as follows: px2i , ξiq ÁR

i px
1
i, ξiq if px2i , ξiq “ px

t
i, ξ

t
iq and x1i P A

t
i for some t P T .

The indirect revealed preference relation ÁRT
i is the transitive closure of ÁR

i , i.e., px2i , ξiq ÁRT
i

8For a proof of Theorem B see Milgrom and Roberts (1990) or Topkis (1998).
9In Manski (2007) different treatments correspond to different feasible sets. It is clear, given our focus on

monotonicity, that we should consider treatments that also involve changes in the parameter affecting preference.
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px1i, ξiq if there exists a finite sequence z1
i , z

2
i , ..., z

k
i in Xi such that

px2i , ξiq ÁR
i pz

1
i , ξiq ÁR

i pz
2
i , ξiq ÁR

i ... ÁR
i pz

k
i , ξiq ÁR

i px
1
i, ξiq. (6)

The motivation for this terminology is clear. If agent i has preference Ái and, at some treatment

pξi, Aiq, the agent chooses x2i when x1i P Ai, then it must be the case that px2i , ξiq Ái px
1
i, ξiq.

Furthermore, given that Ái is transitive, if px2i , ξiq ÁRT
i px1i, ξiq then px2i , ξiq Ái px

1
i, ξiq.

10 We are

now ready to introduce the axiom that characterizes monotone-rationalizability.

Definition 1. The data set Oi “ tpx
t
i, ξ

t
i , A

t
iqu

T
t“1 obeys the Axiom of Revealed Complementarity

(ARC) if, for every s, t P T ,

ξti ą ξsi , x
t
i ă xsi , and pxsi , ξ

s
i q ÁRT

i pxti, ξ
s
i q ùñ pxti, ξ

t
iq ÃRT

i pxsi , ξ
t
iq. (7)

It is clear that ARC is a non-vacuous restriction on data. So long as the number of observa-

tions Oi is finite, checking whether pxsi , ξ
s
i q and pxti, ξ

s
i q are related by ÁRT

i is a finite procedure

and, consequently, so is checking for ARC. It is also clear that there are no computational

difficulties, whether theoretical or practical, associated with the implementation of this test.

We first show that ARC is necessary for monotone-rationalizability. This in turn requires a

result showing that ÁRT
i has what we call the interval property. A relation R on XiˆΞi has this

property if, whenever pxi, ξiqR px̃i, ξiq, for xi, x̃i in Xi, then pxi, ξiqR pzi, ξiq for any zi between

xi and x̃i, i.e., xi ă zi ă x̃i or x̃i ă zi ă xi. (In fact, this property also plays an important role

in proving the sufficiency of ARC.)

Lemma 1. The relation ÁRT
i in XiˆΞi induced by Oi “ tpx

t
i, ξ

t
i , A

t
iqu

T
t“1 has the interval property.

Proof. If px2i , ξiq ÁR
i px

1
i, ξiq, then there is Ati such that x2i “ xti and x1i P Ati. Since Ati

is an interval, it is clear that px2i , ξiq ÁR
i pxi, ξiq for any xi between x2i and x1i. Now suppose

px2i , ξiq ÁRT
i px1i, ξiq, but px2i , ξiq ÃR

i px
1
i, ξiq. Then, we have a sequence like (6). Suppose also that

x2i ą x1i and consider xi such that x2i ą xi ą x1i. (The case where x2i ă x1i can be handled in a

similar way.) Letting z0
i “ x2i and zk`1

i “ x1i, we know that there exists at least one 0 ď m ď k

10Note, however, that ÁR
i and ÁRT

i are not generally complete on Xi for every fixed ξi; as such, these relations
are not preferences as we have defined them.
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such that zmi ě xi ě zm`1. Since pzmi , ξiq ÁR
i pz

m`1
i , ξiq, it must hold that pzmi , ξiq ÁR

i pxi, ξiq.

This in turn implies that px2i , ξiq “ pz
0
i , ξiq ÁRT

i pxi, ξiq, since pz0
i , ξiq ÁRT

i pzmi , ξiq. l

Proof of the necessity of ARC. Indeed, suppose there are observations s and t such that

ξti ą ξsi , x
t
i ă xsi , and pxsi , ξ

s
i q ÁRT

i pxti, ξ
s
i q. By Lemma 1, ÁRT

i has the interval property, and so

pxsi , ξ
s
i q ÁRT

i pxi, ξ
s
i q for all xi P rx

t
i, x

s
i s. Since Oi is SID-rationalizable, there is an SID preference

Ái on XiˆΞi such that pxsi , ξ
s
i q Ái pxi, ξ

s
i q for all xi P rx

t
i, x

s
i s. The SID property on Ái guarantees

that pxsi , ξ
t
iq ąi px

t
i, ξ

t
iq, which means pxti, ξ

t
iq ÃRT

i pxsi , ξ
t
iq. l

Our more substantial claim is that ARC is also sufficient for monotone-rationalizability. In

fact, an even stronger property is true: whenever a data set obeys ARC, it is rationalizable by

an SSCD (and not just SID) preference.11 The next result summarizes our main findings.

Theorem 1. The following statements on the data set Oi “ tpx
t
i, ξ

t
i , A

t
iqutPT are equivalent:

(a) Oi is monotone-rationalizable.

(b) Oi obeys ARC.

(c) Oi is rationalizable by a regular and SSCD preference relation on Xi ˆ Ξi.

Remark: It is known that SSCD is sufficient (and, in fact, also necessary) for an agent’s optimal

action to be increasing with the parameter ξi on any arbitrary constraint set drawn from Xi (see

Edlin and Shannon (1998)). It follows that when Oi is monotone-rationalizable, we can find a

preference that both explains the data and guarantees that the optimal choices based on this

preference will be increasing with the parameter, on any (not necessarily interval) constraint set.

Since every SSCD preference is also an SID preference, pcq implies paq, and we have just

shown that (a) implies (b). It remains for us to show that (b) implies (c). Our proof involves

first working out the (incomplete) revealed preference relations on XiˆΞi that must be satisfied

by any SID preference that rationalizes the data and then explicitly constructing a rationalizing

preference on Xi ˆ Ξi that completes that incomplete relation and obeys SSCD.

11This phenomenon, which may seem surprising, is not unknown to revealed preference analysis; for example,
it is present in Afriat’s Theorem. In that context, the data consist of observations of consumer’s consumption
bundles at different linear budget sets. If the agent is maximizing a locally non-satiated preference, then the data
set must obey a property called the generalized axiom of revealed preference (GARP, for short); conversely, if a
data set obeys GARP then it can be rationalized by a preference that is not just locally non-satiated but also
obeys continuity, strong monotonicity, and convexity.
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Given Oi, the single crossing extension of the indirect revealed preference relation ÁRT
i is

another binary relation ąRTS
i defined in the following way: (i) for x2i ą x1i, px

2
i , ξiq ąRTS

i px1i, ξiq

if there is ξ1i ă ξi such that px2i , ξ
1
iq ÁRT

i px1i, ξ
1
iq and (ii) for x2i ă x1i, px

2
i , ξiq ąRTS

i px1i, ξiq, if there

is ξ2i ą ξi such that px2i , ξ
2
i q ÁRT

i px1i, ξ
2
i q.

Let ÁRTS
i be the relation given by ÁRTS

i “ÁRT
i Y ąRTS

i .12 It follows immediately from its

definition that ÁRTS
i has strict single crossing differences, in the following sense: if x2i ą x1i and

ξ2i ą ξ1i or x2i ă x1i and ξ2i ă ξ1i, then

px2i , ξ
1
iq ÁRTS

i px1i, ξ
1
iq ùñ px2i , ξ

2
i q ąRTS

i px1i, ξ
2
i q. (8)

In addition, let ÁRTST
i be the transitive closure of ÁRTS

i , i.e., px2i , ξiq ÁRTST
i px1i, ξiq if there exists

a sequence z1
i , z

2
i , ..., z

k
i such that

px2i , ξiq ÁRTS
i pz1

i , ξiq ÁRTS
i pz2

i , ξiq ÁRTS
i ... ÁRTS

i pzki , ξiq ÁRTS
i px1i, ξiq. (9)

If we can find at least one strict relation ąRTS
i in the sequence (9), then, we let px2i , ξiq ąRTST

i

px1i, ξiq.
13 The relevance of the binary relations ÁRTST

i and ąRTST
i flows from the following result,

which says that any rationalizing preference for agent i must respect the ranking implied by them.

Proposition 1. Suppose that the preference Ái obeys SID and rationalizes Oi “ tpx
t
i, ξ

t
i , A

t
iqutPT .

Then Ái extends ÁRTST
i and ąRTST

i in the following sense:

px2i , ξiq ÁRTST
i pąRTST

i q px1i, ξiq ùñ px2i , ξiq Ái pąiq px
1
i, ξiq (10)

Proof. Without loss of generality, we may let x2i ą x1i. Since Ái is transitive, it is clear

that we need only show that px2i , ξiq Ái pąiq px
1
i, ξiq whenever px2i , ξiq ÁRTS

i pąRTS
i q px1i, ξiq. If

px2i , ξiq ÁRTS
i pąRTS

i q px1i, ξiq then there exists some ξ1i ď păq ξi such that px2i , ξ
1
iq ÁRT

i px1i, ξ
1
iq.

By the interval property of ÁRT
i , we obtain px2i , ξ

1
iq ÁRT

i pxi, ξ
1
iq for all xi P rx

1
i, x

2
i s. Since Ái

rationalizes Oi, we also have px2i , ξ
1
iq Ái pxi, ξ

1
iq for all xi P rx

1
i, x

2
i s. By SID of Ái, we obtain

px2i , ξiq Ái pąiq px
1
i, ξiq for ξ1i ď păq ξi. l

12Note that ąRTS
i is not the asymmetric part of ÁRTS

i .
13Once again, note that ąRTST

i is not the asymmetric part of ÁRTST
i .
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At this point, it is reasonable to ask if we could go beyond the revealed preference relations

we have constructed and consider the single crossing extension of ÁRTST
i , the transitive closure

of that extension, and so on. The answer to that is ‘no’ because, as we shall show in Lemma

2, ÁRTST
i obeys SSCD when Oi obeys ARC, so it does not admit a nontrivial single crossing

extension. By Proposition 1, it is clear that, in order for Oi to be monotone rationalizable, the

binary relation ÁRTST
i must have the following property: for any px1i, ξiq and px2i , ξiq in Xi ˆ Ξi,

px1i, ξiq ÁRTST
i px2i , ξiq ùñ px2i , ξiq čRTST

i px1i, ξiq. (11)

If not, we obtain simultaneously, px1i, ξiq Ái px
2
i , ξiq and px2i , ξiq ąi px

1
i, ξiq, which is impossible.

The following lemma says that these two properties of ÁRTST
i hold whenever Oi obeys ARC.

Lemma 2. Suppose that Oi obeys ARC. Then ÁRTST
i obeys SSCD and property (11).

Since ÁR
i ĎÁRTST

i , it is clear that Proposition 1 has a converse: if there is a regular and SID

preference Ái on XiˆΞi that obeys (10), then this preference rationalizes Oi. This observation,

together with Lemma 2, suggest that a reasonable way of constructing a rationalizing preference

is to begin with ÁRTST
i and ąRTST

i and then complete these incomplete relations in a way that

gives a preference with the required properties, which is precisely the approach we take. Define

the binary relation Á˚
i on Xi ˆ Ξi in the following manner:

px2i , ξiq Á˚
i px

1
i, ξiq if px2i , ξiq ÁRTST

i px1i, ξiq

or px2i , ξiq ‖RTSTi px1i, ξiq and x1i ě x2i , (12)

where px2i , ξiq ‖RTSTi px1i, ξiq means neither px2i , ξiq ÁRTST
i px1i, ξiq nor px1i, ξiq ÁRTST

i px2i , ξiq. The

following result (which we prove in the Appendix with the help of Lemma 2) completes our

argument that (b) implies (c) in Theorem 1.

Lemma 3. Suppose that Oi obeys ARC. The binary relation Á˚
i is an SSCD preference that

rationalizes Oi. On every set K Ă Xi that is compact in R and for every ξi P Ξi, BRipξi, K,Á
˚
i q

is nonempty and finite; in particular, Á˚
i is a regular preference.

In the case where Xi is a finite set it is obvious that Á˚
i has a utility representation, in the
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sense that there is a real-valued function uip¨, ξiq (defined on Xi and parameterized by ξi) such

that uipx
2
i , ξiq ě uipx

1
i, ξiq if and only if px2i , ξiq Á˚

i px
1
i, ξiq. Though somewhat less obvious, it

turns out that this is also true in the case where Xi is a closed interval of R.

Proposition 2. Suppose that Oi obeys ARC and Xi is a closed interval of R. Then the prefer-

ence Á˚
i admits a utility representation.

3.2 ARC, interval constraint sets, and SSCD

ARC is an easy-to-understand property and it is reminiscent of other conditions in revealed

preference theory such as the generalized axiom of revealed preference (GARP), which features

in Afriat’s Theorem, or the congruence axiom in Richter’s Theorem. The proof of Theorem 1 we

outlined also seems broadly familiar, in the sense that the basic revealed preference relations are

extended in a very natural way and then it is completed in a way that satisfies SSCD. So familiar

indeed, that someone with intuition developed from the knowledge of those classic results could

be forgiven for thinking that Theorem 1 is obvious. But there is more than what meets the eye in

Theorem 1 and intuition can be misleading; indeed, any correct intuition will have to distinguish

between arbitrary constraint sets and interval constraint sets because the result is not true in

the former case, as the following example shows.

Example 2. Let Xi “ tui, vi, wiu with ui ă vi ă wi, and let A1
i “ tui, wiu, A

2
i “ tui, viu, and

A3
i “ tvi, wiu. Note that A1

i is not an interval of Xi. Suppose that ξ1
i ă ξ2

i ă ξ3
i , and that x1

i “ wi,

x2
i “ ui, and x3

i “ vi. Then pwi, ξ
1
i q ÁR

i pui, ξ
1
i q, pui, ξ

2
i q ÁR

i pvi, ξ
2
i q, and pvi, ξ

3
i q ÁR

i pwi, ξ
3
i q. The

indirect revealed preference relation ÁRT
i is equal to the direct revealed preference relation ÁR

i

in this example and, clearly, this set of three observations obeys ARC. However, it cannot be

rationalized by an SSCD preference. Suppose, instead, that an SSCD preference Ái rationalizes

the data. Then, it must hold that pwi, ξ
1
i q Ái pui, ξ

1
i q and, by SSCD, pwi, ξ

2
i q ąi pui, ξ

2
i q. In

addition, we have pui, ξ
2
i q Ái pvi, ξ

2
i q and so pwi, ξ

2
i q ąi pvi, ξ

2
i q. Since Ái obeys SSCD, we obtain

pwi, ξ
3
i q ąi pvi, ξ

3
i q, which contradicts the direct revealed preference pvi, ξ

3
i q Ái pwi, ξ

3
i q. Notice

that even though ARC holds in this data set, (11) is violated; indeed, we have pwi, ξ
1
i q ąRTS

i

pui, ξ
1
i q, pui, ξ

2
i q ÁRTS

i pvi, ξ
2
i q, and pvi, ξ

3
i q ąRTS

i pwi, ξ
3
i q.

The proof of Theorem 1 relies on Lemma 2 and the proof of that lemma (which says that
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ÁRTS
i admits no cycles, which is (11), and that ÁRTST

i obeys SSCD) relies on the assumption

that the constraint sets are intervals. In Example 2, even though ARC holds, the property (11) is

violated; indeed, we have pwi, ξ
1
i q ąRTS

i pui, ξ
1
i q, pui, ξ

2
i q ÁRTS

i pvi, ξ
2
i q, and pvi, ξ

3
i q ąRTS

i pwi, ξ
3
i q.

At this point, a well-developed intuition may give a further suggestion: that a data set could

be rationalized by an SSCD preference so long as none of the extended revealed preferences admit

cycles. In other words, if we successively construct the relations ąRTSTST
i and ÁRTSTST

i , and

so forth, the process must terminate, i.e., there is a finite n such that ą
RT pST qnS
i “ą

RT pST qn

i and

Á
RT pST qnS
i “Á

RT pST qn

i . Since a necessary condition for Oi “ tpxti, ξ
t
i , B

t
iqutPT (where Bt

i are not

necessarily intervals) to be rationalizable by an SSCD preference is that (11) holds for Á
RT pST qn

i

and ą
RT pST qn

i (taking the place of ÁRTST
i and ąRTST

i ), one may expect that this property is also

sufficient for rationalizability. However, a counterexample of Kukushkin, Quah and Shirai (2016)

shows that this conjecture is also false. In other words, it is not inevitable that the absence

of cycles guarantees the existence of a completion obeying SSCD; the fact that that holds in

Theorem 1 relies on the constraint sets being intervals.

3.3 Out-of-sample predictions of best responses

Suppose an observer collects a data set Oi “ tpxti, ξ
t
i , A

t
iqutPT that is monotone rationalizable,

and then, maintaining that hypothesis, asks the following question: what do the observations

in Oi say about the set of possible choices of agent i in some treatment pξ0
i , A

0
i q P Ξi ˆAi?

14 If

Oi obeys ARC, then we know that the set of all SID preferences that rationalize Oi, call it P‹i ,

is nonempty. For each ÁiP P‹i , the set of best responses at pξ0
i , A

0
i q is BRipξ

0
i , A

0
i ,Áiq, and hence

the set of possible best responses at pξ0
i , A

0
i q is given by

PRipξ
0
i , A

0
i q “

ď

ÁiPP‹i

BRi

`

ξ0
i , A

0
i ,Ái

˘

. (13)

It follows from Theorem 1 that,

PRipξ
0
i , A

0
i q “

 

x̃i P A
0
i : Oi “ Oi Y t

`

x̃i, ξ
0
i , A

0
i

˘

u obeys ARC
(

, (14)

14The environment pξ0i , A
0
i q may – or may not – be distinct from the ones already observed in the data set; the

latter can still be an interesting question since optimal choices are not unique.
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where Oi is Oi augmented by the (fictitious) observation tpx̃i, ξ
0
i , A

0
i qu. The following proposition

shows that PRipξ
0
i , A

0
i q coincides with the undominated elements with respect to ÁRTST

i .

Proposition 3. Suppose that Oi obeys ARC. For any ξ0 P Ξi, it holds that

PRipξ
0
i , A

0
i q “ txi P A

0
i : E x̂i P A

0
i such that px̂i, ξ

0
i q ąRTST

i pxi, ξ
0
i qu. (15)

Proof. It follows from (14) that (15) holds provided we can show the following: Oi “ Oi Y

tpx̃i, ξ
0
i , A

0
i qu violates ARC if and only if there is x̂i P A

0
i such that px̂i, ξ

0
i q ąRTST

i px̃i, ξ
0
i q. Let ÁR

i ,

ÁRT
i , ÁRTS

i , and ÁRTST
i be the revealed preference relations derived from Oi “ OiYtpx̃i, ξ

0
i , A

0
i qu;

by definition, these must contain the analogous revealed preference relations of Oi, i.e., ÁR
i ,

ÁRT
i , ÁRTS

i , and ÁRTST
i . Suppose there is x̂i P A0

i such that px̂i, ξ
0
i q ąRTST

i px̃i, ξ
0
i q and so

px̂i, ξ
0
i q ąRTST

i px̃i, ξ
0
i q. On the other hand, since x̂i P A

0
i , we have px̃i, ξ

0
i q ÁR

i px̂i, ξ
0
i q. This is

a violation of the property (11) and, by Lemma 2, Oi violates ARC. Conversely, suppose that

Oi “ Oi Y tpx̃i, ξ
0
i , A

0
i qu violates ARC. Since Oi obeys ARC, this violation can only occur in

two ways: there is x̂i P Xi such that px̃i, ξ
0
i q ÁRT

i px̂i, ξ
0
i q and px̂i, ξ̄iq ÁRT

i px̃i, ξ̄iq with either (1)

x̂i ă x̃i and ξ̄i ą ξ0
i or (2) x̂i ą x̃i and ξ̄i ă ξ0

i . We need to show that x̃i is dominated (with respect

to ąRTST
i ) by some element in A0

i . In either cases (1) or (2), since px̂i, ξ̄iq ÁRT
i px̃i, ξ̄iq, we obtain

px̂i, ξ
0
i q ąRTS

i px̃i, ξ
0
i q. If x̂i P A

0
i , we are done. If x̂i R A

0
i then, given that px̃i, ξ

0
i q ÁRT

i px̂i, ξ
0
i q,

there exists x̄i P A
0
i such that px̄i, ξ

0
i q ÁRT

i px̂i, ξ
0
i q. Thus px̄i, ξ

0
i q ąRTST

i px̃i, ξ
0
i q. l

It is very convenient to have Proposition 3 because computing ÁRTST
i is straightforward and

thus it is also straightforward to obtain the set of possible responses at a given treatment.

Example 3. Consider two observations as depicted in Figure 1, where A1
i and A2

i are the

feasible sets of agent i at observations 1 and 2 respectively, while ξ1
i and ξ2

i are the parameter

values at each observation. Let A0
i be the blue segment in the figure. It is easy to check that

observations 1 and 2 obey ARC, and that the set of possible best responses, PRipξ
0
i , A

0
i q, is the

set indicated in the figure. Notice that this set is not closed since x˚i R PRipξ
0
i , A

0
i q. Indeed,

px2
i , ξ

1
i q ąRTS

i px˚i , ξ
1
i q since px2

i , ξ
2
i q ÁR

i px
˚
i , ξ

2
i q. Furthermore, px1

i , ξ
1
i q ÁR

i px
2
i , ξ

1
i q and so we

obtain px1
i , ξ

1
i q ąRTST

i px˚i , ξ
1
i q.
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Figure 1: EpA0q in Example 3

4 Revealed strategic complementarity

Let G “ tGpy, Aqupy,AqPYˆA be a collection of games, as defined in the Section 2.2. We consider

an observer who has a set of observations drawn from this collection. Each observation consists

of a triple pxt, yt, Atq, where xt is the action profile observed at the treatment pyt, Atq P Y ˆA.

The set of observations is finite and is denoted by O “ tpxt, yt, AtqutPT , where T “ t1, 2, ..., T u.

Definition 2. A data set O “ tpxt, yt, AtqutPT is consistent with strategic complementarity

(or SC-rationalizable) if there exists a profile of regular and SID preferences pÁiqiPN such that

each observation constitutes a Nash equilibrium, i.e., for every t P T and i P N , we have

pxti, x
t
´i, y

t
iq Ái pxi, x

t
´i, y

tq for all xi P A
t
i.

The motivation for this definition is clear. If O is SC-rationalizable then we have found a

profile of preferences pÁiqiPN such that (i) xt is a Nash equilibrium of Gpyt, Atq and (ii) the family

of games G “ tGpy, Aqupy,AqPYˆA, where Gpy, Aq “ rpyiqiPN , pAiqiPN , pÁiqiPN s exhibits strategic

complementarity (in the sense defined in Section 2.2).15

For each agent i, we can define the agent data set Oi “ tpx
t
i, ξ

t
i , A

t
iqu

T
t“1 induced by O, where

ξti “ px
t
´i, y

t
iq. We say that O “ tpxt, At, ytqutPT obeys ARC if Oi obeys ARC, for every agent

15As we pointed out in Section 2.2, all games with strategic complementarity have pure strategy Nash equilibria,
so the hypothesis that we observe these equilibria is internally consistent.
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i. It is clear that O is SC-rationalizable if and only if Oi is monotone-rationalizable for every

agent i. This leads to the following result, which is an immediate consequence of Theorem 1 and

provides us with an easy-to-implement test of SC-rationalizability.

Theorem 2. The data set O “ tpxt, yt, AtqutPT is SC-rationalizable if and only if it obeys ARC.

We turn now to the issue of out-of-sample equilibrium predictions. Given an SC-rationalizable

data set O “ tpxt, At, ytqutPT , the agent data set Oi obeys ARC and so the set of regular and

SID preferences that rationalize Oi, i.e., P‹i , is nonempty. Each observed strategy profile xt in O

is supported as a Nash equilibrium by any preference profile pÁiqiPN in P‹ “ ˆiPNP‹i . For each

pÁiqiPN P P‹, we know from Theorem B that the set of pure strategy Nash equilibria at another

game Gpy0, A0q, which we shall denote by Epy0, A0, pÁiqiPNq, is nonempty and hence

Epy0, A0q “
Ť

pÁiqiPNPP‹ E py
0, A0, pÁiqiPNq

is also nonempty. Epy0, A0q is the set of possible Nash equilibria of the game Gpy0, A0q. This

gives rise to two related questions that we shall answer in this section: [1] how can we compute

Epy0, A0q from the data? and [2] what can we say about the structure of Epy0, A0q?

4.1 Computable characterization of Epy0, A0q

PRipξi, A
0
i q denotes the possible best responses of player i in A0

i to ξi “ px´i, y
0
i q (see (13)); given

this, we define the joint possible response correspondence PRp¨, y0, A0q : A0 Ñ A0 by

PRpx, y0, A0
q “ PR1px´1, y

0
1, A

0
1q ˆ PR2px´2, y

0
2, A

0
2q ... ˆ PRnpx´n, y

0
n, A

0
nq. (16)

The crucial observation to make in computing Epy0, A0q is that just as the set of Nash equilibria

in a game coincides with the fixed points of its joint best response correspondence, so the set of

possible Nash equilibria, Epy0, A0q, coincides with the fixed points of PRp¨, y0, A0q. Equivalently,

one could think of Epy0, A0q as the intersection of the graphs of each player’s possible response

correspondence, i.e., Epy0, A0q “
Ş

iPN Γipy
0, A0q, where

Γipy
0, A0

q “ tpxi, x´iq P A
0 : xi P PRipx´i, y

0
i , A

0
i qu. (17)
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Therefore, the computation of EpA0, y0q hinges on the computation of PRip¨, y
0
i , A

0
i q : A0

´i Ñ A0
i .

Two features of this correspondence together make it possible for us to compute it explicitly.

First, we know from Proposition 3 that, for any x´i, the set PRipx´i, y
0
i , A

0
i q coincides exactly

with those elements in A0
i that are not dominated (with respect to ąRTST

i ) by another element

in A0
i . Since the data set is finite, PRipx´i, y

0
i , A

0
i q can be constructed after a finite number of

steps and, in fact, one could also show that it consists of a finite number of intervals.

Second, the domain of the correspondence PRip¨, y
0
i , A

0
i q, which is ˆj‰iA

0
j , can be partitioned

into a finite number of regions such that the correspondence is constant within each region.

Specifically, for j ‰ i, let AT
j “ txj P Xj : pxj, x´jq “ xt for some x´j and t P T u. We denote by

Ij the collection consisting of subsets of A0
j of the following two types: the singleton sets tx̃u,

where x̃ is in the set A0
j “

`

AT
j X A

0
j

˘
Ť

maxA0
j

Ť

minA0
j and the interval sets txj P A

0
j : ã ă

xj ă b̃u, where ã P A0
j and b̃ is the element in A0

j immediately above ã; thus Ij constitutes a finite

partition of A0
j . This in turn means that Hi is a finite partition of ˆj‰iA

0
j , where Hi consists of

hyper-rectangles

I1 ˆ I2 ˆ ...ˆ Ii´1 ˆ Ii`1 ˆ ...ˆ IN

where Ij P Ij, for j ‰ i. One could show that for any Hi P Hi, the following property holds:

x1´i, x
2
´i P Hi ùñ PRipx

1
´i, y

0
i , A

0
i q “ PRipx

2
´i, y

0
i , A

0
i q. (18)

Therefore, to compute the correspondence PRip¨, y
0
i , A

0
i q we need only find its value via (15) for

a typical element within each hyper-rectangle Hi in the finite collection Hi.

It follows from these two observations that the graph of player i’s possible response corre-

spondence (as defined by (17)) is also given by

Γipy
0, A0

q “ tpxi, x´iq P A
0 : E x̂i P A

0
i such that px̂i, x´i, y

0
i q ąRTST

i pxi, x´i, y
0
i qu (19)

and can be explicitly constructed. Furthermore, because PRipx´i, y
0
i , A

0
i q consists of a finite

union of intervals of A0
i , Γipy

0, A0q is a finite union of hyper-rectangles in A0. The following

theorem, which we prove in the Appendix, summarizes these observations.
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Theorem 3. Suppose a data set O “ tpxt, yt, AtquTt“1 obeys ARC and let py0, A0q P Y ˆA.

(i) PRip¨, y
0
i , A

0
i q obeys (15) and (18) and, for any x´i P ˆj‰iA

0
j , PRipx´i, y

0
i , A

0
i q consists of

a finite union of intervals of A0
i .

(ii) The graph of PRip¨, y
0
i , A

0
i q, Γipy

0, A0q, is a finite union of hyper-rectangles in A0. Con-

sequently, the set of possible Nash equilibria, Epy0, A0q “
Ş

iPN Γipy
0, A0q, is also a finite

union of hyper-rectangles in A0.

Example 4. Figure 2(a) depicts two observations, tpx1, A1q and px2, A2qu, drawn from two games

involving the same two players. This data set obeys ARC and we would like to compute EpA0q,

where A0
i “ A1

i YA
2
i (for i “ 1, 2). First, we claim that the unshaded area in Figure 2(b) cannot

be contained in Γ1pA
0q. Indeed, consider the point x1 “ px11, x

1
2q in the unshaded area, at which

x11 ă x1
1, x12 ą x1

2, and x11 P A
1
1. Therefore, px1

1, x
1
2q ÁR

1 px11, x
1
2q and so px1

1, x
1
2q ÁRT

1 px11, x
1
2q.

Since x12 ą x1
2, px1

1, x
1
2q ąRTS

1 px11, x
1
2q, which means that px11, x

1
2q R Γ1pA

0q. Using (19), it is

easy to check that Γ1pA
0q corresponds precisely to the shaded area in Figure 2(b). Similarly,

Γ2pA
0q consists of the shaded area in Figure 2(c). The common shaded area, as depicted with

the darker shade in Figure 2(d), represents EpA0q “ Γ1pA
0qXΓ2pA

0q. Note that the dashed lines

are excluded from EpA0q, so this set is not closed.

4.2 The structure of Epy0, A0q

As we have pointed out in Section 2.2, the set of pure strategy Nash equilibria in a game with

strategic complementarity admits a largest and smallest Nash equilibrium, both of which exhibit

monotone comparative statics with respect to exogenous parameters. In this subsection, we show

that these properties are largely inherited by the set of predicted pure strategy Nash equilibria

Epy0, A0q. The next result (which we prove in the Appendix) lists the main structural properties

of Epy0, A0q; we have consciously presented them in a way that is analogous to Theorem B.

Theorem 4. Suppose a data set O “ tpxt, yt, AtqutPT obeys ARC and let py0, A0q P Y ˆA. Then

Epy0, A0q, the set of possible pure strategy Nash equilibria of the game Gpy0, A0q, is nonempty.

Its closure admits a largest and a smallest element, both of which are increasing in y0 P Y .

Since A0 is a subcomplete sublattice of pRn,ěq, any set in A0 will have a supremum and an

infimum in A0. Therefore, the principal claim in Theorem 4 is that the supremum and infimum
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Figure 2: EpA0q in Example 4

of the closure of Epy0, A0q are contained in that set (and thus arbitrarily close to elements of

Epy0, A0q): to all intents and purposes, we could speak of a largest and a smallest possible Nash

equilibrium. Note that the analogous statement in Theorem B is stronger since it says that the

set of pure strategy Nash equilibria contains a largest and a smallest element.

Theorem 4 applies also to single agent choice data as a special case. In that context, it

says that the supremum and infimum of the set of possible responses both increase with the

parameter. Note also that Example 3 in Section 3.3 gives a case where the possible response set

does not contain its supremum, so the conclusion in Theorem 4 cannot be made as strong as

the conclusion in Theorem B. Standard proofs of Theorem B rely on the monotone and closed-

valued properties of the best response correspondence. The proof of Theorem 4 makes use of the

monotone property of the possible response correspondence, but the proof is more involved than

that of Theorem B because this correspondence is not closed-valued.

In the special but important case where A0 is finite, every subset of A0 is closed and so it

follows immediately from Theorem 4 that Epy0, A0q is a closed set with a largest and smallest
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element. The conclusion of Theorem 4 may also be strengthened in the case where the feasible

action set of every agent is unchanged throughout the observations, i.e., At “ A0 P A for all t P T .

By (14), a necessary and sufficient condition for x̃i P A
0
i to be contained in PRipx´i, y

0
i , A

0
i q is

that ĎOi “ OiYtpx̃i, px´i, y
0
i q, A

0
i qu obeys ARC. If A0 “ At for all t P T , then it is straightforward

to check that this is equivalent to x̃i having the following property:

for all t P T , x̃i ě xti if px´i, y
0
i q ą ξti and x̃i ď xti if px´i, y

0
i q ă ξti . (20)

It follows that PRipx´i, y
0
i , A

0
i q must be a closed interval in A0

i and (by Theorem 3) its graph

Γipy
0, A0q is a finite union of closed hyper-rectangles. Therefore, Epy0, A0q “

Ş

iPN Γipy
0, A0q is

also closed and, by Theorem 4, it must contain its largest and smallest element.

5 Testing for complementarity with cross sectional data

So far in this paper we have assumed that the observer has access to panel data that gives the

actions of the same agent (or, in the case of a game, the same group of agents) across different

treatments. Oftentimes, data of this type is not available; instead, we only observe the actions

of different agents, with presumably heterogeneous preferences, subject to different treatments.

It is possible to extend our revealed preference analysis to this setting, provided we assume that

the distribution of preferences is the same in populations subject to different treatments or, put

another way, the assignment of agents or groups to treatments is random.

5.1 Stochastic monotone rationalizability

Suppose we observe a population of agents, whom we shall call population i, choosing actions

from a subset of a chain Xi. Throughout this section (and unlike previous sections), we require

Xi to be a finite chain. Agents choose from feasible sets that are intervals of Xi, according

to preferences that are affected by a set of parameters Ξi. At each observation t, all agents

in population i are subject to the same treatment pξti , A
t
iq P Ξi ˆ Ai, though they may choose

different actions because they have different preferences. We assume that the true distribution

of actions is observable and given by µti, where µtipxiq denotes the fraction of agents who choose

action xi; we require µtipxiq “ 0 for all xi R A
t
i. The (cross sectional) data set for population
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i is a collection of triples pµti, ξ
t
i , A

t
iq, i.e., Oi “ tpµ

t
i, ξ

t
i , A

t
iqutPT , where T “ t1, 2, ..., T u. Given

Oi, we denote the set of observed treatments by Mi, i.e., Mi “ tpξ
t
i , A

t
iqutPT . We allow for the

same treatment to occur at different observations; it is possible that µt ‰ µs even though the

treatments at observations t and s are identical since we do not require agents to have unique

optimal actions.16 We adopt the convention of allowing the same treatment to be repeated in

the set Mi if it occurs at more than one observation.

We call xi “ px1
i , x

2
i , ..., x

T
i q P ˆtPTA

t
i a monotone rationalizable path on Mi if the induced

‘panel’ data set tpxti, ξ
t
i , A

t
iqutPT is monotone-rationalizable (in the sense defined in Section 3)

and denote the set of monotone rationalizable paths by Ai. Since we allow for non-unique

optimal choices, two distinct monotone rationalizable paths may be rationalized by the same

SID preference.

Definition 3. A data set Oi “ tpµ
t
i, ξ

t
i , A

t
iqutPT is stochastically monotone rationalizable if there

exists a probability distribution Qi on Ai, the set of monotone rationalizable paths on Mi, such

that µtipxiq “
ř

xiPAi
Qipxiq1px

t
i “ xiq for all t P T and xi P Xi.

When there is no danger of confusion, we shall simply refer to a data set as monotone rational-

izable when it is stochastically monotone rationalizable. The definition says that the population i

can be decomposed into types corresponding to different monotone rationalizable paths, so that

the observed behavior of each type (across treatments) is consistent with maximizing an SID

preference; it captures the idea that treatments have been randomly assigned across the entire

population by requiring that the distribution of types be the same across treatments.17 This

assumption is similar to the exogeneity restriction in the literature on treatment effects and it

can be relaxed using similar approaches; for instance, we could assume instead that assignment

to the treatment is random only after we conditioning on some pre-treatment covariates.

16If it helps, one could think of the index t itself to be part of the treatment, which may influence an agent’s se-
lection rule amongst optimal choices, though it has no impact on the agent’s preference or the feasible alternatives,
which depend only on the ‘real’ treatment.

17While our definition of monotone rationalizable paths excludes the possibility that some group in the popu-
lation may decide among non-unique optimal actions stochastically, the large population assumption means that
this is without loss of generality. If, say, 10% of the population is indifferent between two optimal actions x1 and
x2 at some observation t, and decides between them by flipping a fair coin, then it simply means that 5% will
belong to a type that chooses x1 at t and another 5% to a type that choose x2 at t. A data set drawn from a
large population of agents with heterogenous SID preferences who use stochastic selection rules (when there are
multiple optimal actions) will still be stochastically monotone rationalizable in the sense defined here.
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Theorem 1 tell us that a path xi on Mi is monotone rationalizable if and only if it is ARC-

consistent in the sense that tpxti, ξ
t
i , A

t
iqutPT obeys ARC. This leads immediately to the following

result.

Theorem 5. A data set Oi “ tpµti, ξ
t
i , A

t
iqutPT is monotone rationalizable if and only if there

exists a probability distribution Qi on A˚
i , the set of ARC-consistent paths on Mi, such that

µtipxiq “
ÿ

xiPA
˚
i

Qipxiq1px
t
i “ xiq for all t P T and xi P Xi. (21)

This theorem sets out a procedure that could, in principle, allow us to determine the monotone-

rationalizability of a stochastic data set: first, we need to list all the ARC-consistent paths, and

then we solve the linear equations given by (21).18 Of course, the implementability of this pro-

cedure in practice will depend crucially on the number of observations, treatments, and possible

actions, which determines the size of the set of ARC-consistent paths. When (21) has a solution,

we also recover a distribution on monotone rationalizable paths that is consistent with the data;

the set of such distributions is convex and typically non-unique (so we have partial identification).

Consider now the special case where the feasible action sets are fixed across all treatments.

Then a path xi “ px
1
i , x

2
i , ..., x

T
i q is ARC-consistent if and only if xti ě xsi whenever ξti ą ξsi . If

Oi “ tpµ
t
i, ξ

t
i , A

t
iqutPT is monotone rationalizable, the population can be decomposed into ARC-

consistent subpopulations; clearly, this implies that whenever ξti ą ξsi , the distribution µti must

first order stochastically dominate µsi (which we shall denote by µti ěFOSD µsi ). Less obviously,

the converse is also true, so that monotonicity with respect to first order stochastic dominance

characterizes monotone rationalizability when the feasible action set is fixed.

Theorem 6. Suppose that Ati “ Xi for all t P T . Then Oi “ tpµti, ξ
t
i , A

t
iqutPT is monotone

rationalizable if and only if µti ěFOSD µsi whenever ξti ą ξsi , for t, s P T .

5.2 Stochastic strategic complementarity

The results on stochastic monotone rationalizability have an analog in a game-theoretic frame-

work. In this case, we assume that the population consists of groups of n players, with each

18In Manski’s (2007) terminology, our model is an example of a linear behavioral model.

26



group choosing an action profile from their joint feasible set A “ ˆiPNAi, where Ai is an interval

of a finite chain Xi. The player in role i takes an action in Ai; the player’s preference over his/her

actions is affected by the actions of other players in that group and by some exogenous variable

drawn from Yi. We assume that the observer can distinguish amongst players in different roles in

the game and can observe their actions separately; for example, in a population of heterosexual

couples, the observer can distinguish between the ‘husband’ player and the ‘wife’ player and can

observe their actions separately.

At observation t, each group in the population chooses an action profile from the joint feasible

action set At P A, with the exogenous parameter being yt P Y “ ˆiPNYi; thus all groups in the

population are subject to the same treatment pyt, Atq P Y ˆ A, with observed differences in

action profiles stemming from heterogenous preferences amongst players within each group and

possibly different equilibrium selection rules. We observe a probability distribution µt, with

support on At, where µtpxq denotes the fraction of groups in which the action profile x P X is

played. Therefore, the data set can be written as O “ tpµt, yt, AtqutPT . We denote the set of

observed treatments by M , i.e., M “ tpyt, AtqutPT . The possibility of multiple equilibria means

that it is both meaningful and interesting to allow for the same treatment to appear at more than

one observation. We have explained this at length in Section 5.1 and we shall not repeat it here.

We allow identical treatments to appear more than once in M if they correspond to different

observations. We refer to x “ px1, x2, ..., xT q P ˆtPTA
t as an SC-rationalizable path on M if the

induced ‘panel’ data set txt, yt, AtutPT is SC-rationalizable (in the sense defined in Section 4).

The set of SC-rationalizable paths on M is denoted by A.

Definition 4. A data set O “ tpµt, yt, AtqutPT is stochastically SC-rationalizable if there is a

probability distribution on A such that µtpxq “
ř

xPAQpxq1px
t “ xq for all t P T and x P X.

Unless there is danger of confusion, we shall simply refer to a data set as SC-rationalizable

when it is stochastically SC-rationalizable. This definition says that the population can be

decomposed into ‘group types’ corresponding to different SC-rationalizable paths, so that we

could interpret the action profile for each group as a Nash equilibrium, with players having

SID preferences that are the same across observations; it captures the idea that treatments

are randomly assigned across the large population of groups, so that the distribution of types
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is identical across treatments. As in the single agent case, this exogeneity restriction can be

relaxed by controlling for covariates. Note also that our definition allows for groups belonging

to different SC-rationalizable paths to have members with the same preferences, because of the

possibility of multiple equilibria. Lastly, it is worth emphasizing that the definition imposes no

restrictions on what groups can be formed; for example, if a data set consists of a population of

heterosexual couples, then the set of SC-rationalizable paths A allows for all possible matchings

between different types of male and female players.

By Theorem 2, a path on M is SC-rationalizable if and only if it is ARC-consistent in the

sense that tpxt, yt, AtqutPT obeys ARC. This leads immediately to the following result.

Theorem 7. A data set O “ tpµt, yt, AtqutPT is SC-rationalizable if and only if there exists a

probability distribution Q on A˚, the set of ARC-consistent paths on M , such that

µtpxq “
ÿ

xPA˚

Qpxq1pxt “ xq for all t P T and x P X. (22)

5.3 Possible equilibrium distributions

Given an SC-rationalizable data set O “ tpµt, yt, AtqutPT , we may wish to predict behavior at

a given treatment py0, A0q P Y ˆ A. The prediction consists of all distributions on X that are

compatible with the data set O; this can be obtained by identifying those distributions µ0 (which

must have their support on A0) such that the augmented stochastic data set O Y tpµ0, y0, A0qu

is SC-rationalizable. We refer to µ0 as a possible (Nash) equilibrium distribution and denote the

set of these distributions by PEDpy0, A0q.19 It follows immediately from Theorem 7 that µ0 is a

possible equilibrium distribution if and only if there exists a probability distribution rQ on A˚˚,

the set of ARC-consistent paths on the set of environments M Y tpy0, A0qu, such that for every

19We allow for py0, A0q “ pyt
1

, At1

q for some observation t1 and, indeed, it is instructive to consider this case.
Then µt1

is clearly a possible equilibrium distribution but since multiple equilibria are possible, the set of all such
distributions can be strictly larger. In other words, in determining whether or not a distribution is a possible
equilibrium distribution, we allow for the possibility that groups in the population with multiple Nash equilibria
at the treatment pyt

1

, At1

q could switch to an equilibrium different from the one taken at t1.
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t P T Y t0u and x P X,

µtpxq “
ÿ

xPA˚˚

rQpxq1pxt “ xq for all t P T Y t0u and x P X. (23)

All the elements of PEDpy0, A0q can be obtained by solving the equations (23). The unknown

variables in this system are rQpxq for all x P A˚˚ and µ0pxq for all x P A0, and the equations

are linear in these variables, which implies that PEDpy0, A0q is a convex set in the simplex ∆
|X|
` .

It follows that the possible fraction of the population playing a particular strategy profile x̃ at

py0, A0q will take values in an interval, and its limits can obtained by solving the appropriate

linear program.

We can also form set estimates of the fraction of players in a particular role who choose

a given action. Formally, a distribution µ0 on X induces a distribution ν0
i on the equilibrium

actions of player i; for each x̃i P Xi,

ν0
i px̃iq “

ÿ

txPA0:xi“x̃iu

µ0
pxq. (24)

The set of possible distributions on player i’s equilibrium actions, which we shall denote by

PEDipy
0, A0q is a convex set in ∆

|Xi|

` ; this is an immediate consequence of the convexity of

PEDpy0, A0q. Since PEDipξ
0, A0q is a convex set, the predicted fraction of players in role i who

choose a particular action x̃i from A0
i is given precisely by the closed interval

“

mintν0
i px̃iq : ν0

i P PEDipy
0, A0

qu , maxtν0
i px̃iq : ν0

i P PEDipy
0, A0

qu
‰

.

By (24), the value of maxtν0
i px̃iq : ν0

i P PEDipy
0, A0qu can be easily obtained by solving the

following linear program:

maximize
ř

txPA0:xi“x̃iu
µ0pxq subject to t rQpxquxPA˚˚ and tµ0pxquxPX satisfying (23).

In a similar vein, we can calculate mintν0
i px̃iq : ν0

i P PEDipy
0, A0qu.

Lastly, we turn our attention to the comparative statics of equilibrium predictions. We know

from Theorem 4 that, for panel data sets, an increase in the exogenous variable y0 leads to
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higher predictions on the set of possible best responses. The next result extends that theorem

to stochastic data sets: it says that the set PEDpy0, A0q will vary monotonically with y0 with

respect to first order stochastic dominance.

Theorem 8. Suppose O “ tpµt, yt, AtqutPT is an SC-rationalizable data set and let pȳ0, A0q and

py0, A0q be two treatments with ȳ0 ą y0. Then for every µ P PEDpy0, A0q, there exists µ̄ P

PEDpȳ0, A0q such that µ̄ ěFOSD µ, and, for every µ̄ P PEDpȳ0, A0q, there exists µ P PEDpy0, A0q

such that µ̄ ěFOSD µ.20

6 Application: Smoking behavior of married couples

To illustrate how the techniques developed in this paper could be used, we now apply them to

analyse the impact of spousal smoking and workplace smoking policies on smoking behavior.

Beginning from the mid-80’s, restrictions on workplace smoking, principally motivated by the

dangers of secondhand tobacco smoke, became increasingly common in the United States. Along

with these changes, a literature developed investigating whether these policies also have the

effect of reducing smoking rates. Among the influential papers is that of Evans, Farrelly and

Montgomery (1999), which also contains a discussion of the relevant literature to that date.

The single equation results in Evans et al., in which smoking bans are assumed to be exoge-

nous, suggest that workplace smoking restrictions lead to a 5.7% decline in smoking prevalence.

However, it is obvious that if a worker’s unobserved propensity to smoke is correlated with the

presence of workplace smoking restrictions, then the single-estimation equations would be sub-

ject to an omitted variables bias. Thus, Evans et al. also show that the effects of the ban survive

various estimation strategies that address the possibility of smokers selecting into smoke friendly

workplaces; amongst other things, they control for several covariates that might signal the health

of the individual and also use establishment size as an instrument for workplace smoking policy.

They conclude that the omitted variables bias does not substantially alter the estimates obtained

from the single equation model.

20For two distributions ν and θ on a Euclidean space, we say that ν first order stochastically dominates θ if
ş

fpyqdνpyq ě
ş

fpyqdθpyq for all increasing real-valued functions f . It is known that this holds if and only if, for
any set C with the upper comprehensive property (i.e., if y P C then z P C for any z ě y), its probability under
ν is greater than its probability under θ.
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Another paper that is related to ours is Cutler and Glaeser (2010). This paper investigates

whether people are more likely to smoke if their spouse smokes, with workplace smoking bans

serving as an instrument for spousal smoking. Their estimation strategy relies on the assumption

that smoking bans are exogenous (which they justify with the findings of Evans et al.). Using a

parametric instrumental variable model of smoking behavior, they find a statistically significant

spousal effect on smoking choices.

In this section, we test a specific model of spousal interaction and workplace smoking policy

effects. Our hypothesis is the following:

(i) a person’s preference between smoking and not-smoking obeys SID (equivalently, SSCD),

with the parameter being the spouse’s smoking behavior (smoke or not-smoke) and the

person’s workplace smoking policy (allowed or restricted), and

(ii) a couple’s joint smoking behavior emerges as a pure strategy Nash equilibrium.

Unlike Cutler and Glaeser, our approach is non-parametric and it models explicitly the simul-

taneity of partner choices. We use a data set that provides us with the smoking decision and the

workplace smoking policy for each member of a large population of married couples. Differing

workplace smoking policies provide the treatment variation needed for testing the presence of

strategic complementarity, using the results in Section 5.2. As in Cutler and Glaeser, the validity

of our test requires the distribution of smoking preferences among couples to be the same across

workplace smoking policies; we justify this assumption in Section 6.2 and Appendix II using a

test of balance, familiar in the literature on treatment effects.

6.1 Data

We employ the Tobacco Use Supplement of the Current Population Survey (TUS-CPS) to get

information on both smoking decisions and workplace smoking policies. This is an NCI-sponsored

survey of tobacco use that has been administered as part of the US Census Bureau’s Current

Population Survey every 2 to 3 years since 1992.21 We focus on the period 1992-1993 because, in

contrast to more recent years, a significant proportion of workplaces then did not have smoking

21This survey’s data were also used in Evans, Farrelly and Montgomery (1999) and Cutler and Glaeser (2010).
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Figure 3: Conditional smoking rates

restrictions, which guarantees that we have enough treatment variation. While information

on smoking behavior is obtained from everyone in our population of interest, the question on

workplace smoking policy is posed only to indoor workers. Thus, we confine our attention to

married couples where both members work indoors. After eliminating from our sample all couples

where at least one member did not reply to all the questions of interest, we have 5,363 married

couples across the US.

Within this sample, the smoking rate is 23.8% among men and 18.7% among women. Smok-

ing is permitted in 19.7% of husbands’ workplaces and 15% of wives’ workplaces. Figure 3

displays the conditional probabilities of smoking given partner’s smoking behavior (left panel)

and smoking policy at work (right panel). As we can see, irrespective of gender, the probability

of smoking is larger when either the partner smokes or when smoking is permitted in the work-

place. Overall, the fraction of spouses that make the same smoking choice —either both smoke

or do not smoke— is around 80% of the whole sample. These figures are at least suggestive of

the influence of spousal behavior and workplace policy on smoking decisions. To examine this

issue more closely, we now apply the test developed in Section 5.2.

6.2 Findings

This section examines the presence of strategic complementarity in two steps. First, we apply

the test to the whole sample. We use this first result to clarify the practical implementation of

our idea as well as to elaborate on the informativeness of our modelling restrictions. We also

use it to show how to deal with small sample issues. Second, we explain why we think it may

be important to control for education levels in our application, and show that the initial results

remain valid after doing so.

Figure 4 displays the distribution of joint choices regarding smoking decisions for four different

32



�'&��"������ �#"�&!#��"����� �!#��"����� �'&��"������ �#"�&!#��"����� �!#��"�����

�!#��"����� )������������ )��������
���� �!#��"����� )��������

��� )��������
����

�#"�&!#��"����� )������������� )��������

��� �#"�&!#��"����� )����������	� )��������
����

�'&��"������ �#"�&!#��"����� �!#��"����� �'&��"������ �#"�&!#��"����� �!#��"�����

�!#��"����� )������������ )������������ �!#��"����� )����������
� )��������
����

�#"�&!#��"����� )���������
��� )��������

��� �#"�&!#��"����� )����������
� )��������
����

�#%�$ ����&!#��"��$# ��(����	�
� �#%�$ ����&!#��"��$# ��(����
�
�

�#%�$ ����&!#��"��$# ��(����	�	� �#%�$ ����&!#��"��$# ��(����
�	�

Figure 4: Joint distribution of smoking choices across smoking policies

workplace smoking policies, which serve as treatments in our analysis. As before, we use µ to

indicate the probability of each action profile for each workplace smoking policy. The first

argument of µ takes the value of S if the husband smokes and N otherwise; the second argument

indicates the smoking decision of his wife. Similarly, the first argument in Workplace Smoking

Policy takes the value of 1 if smoking is permitted in the husbands’s workplace and 0 if it is

restricted; the second argument indicates the smoking policy at the wife’s workplace. In this

application, the choice set of each person is tN,Su and it remains the same across observations.

A first look at Figure 4 suggests strong differences of joint spousal smoking choices across the

four different joint ban restrictions. (In fact, a simple chi-square test rejects with a p-value of 0

the possibility of equal smoking choices across the four treatments.) We next explore whether

these differences are consistent with our model of strategic complementarities.

Notice that in this smoking model there are 44 “ 256 possible group paths or types, since

for each of the four possible treatment values, there are four joint choices that a married couple

can make. It is quite clear that if we allow for all possible types, then even if we require

the distribution of types to be independent of treatment, we can still explain any observed

distribution of outcomes.22 Our objective is more specific: we wish to test if the data set displayed

in Figure 4 is consistent with couples playing two-by-two games of strategic complementarity

under different treatments; in other words, we would like to use Theorem 7 to test if this data

22Assign to the path pN,N |0, 0q, pS,N |1, 0q, pN,S|0, 1q and pS, S|1, 1q the probability

µpN,N |0, 0q ˆ µpS,N |1, 0q ˆ µpN,S|0, 1q ˆ µpS, S|1, 1q

and proceed in the same way with the other 255 paths. These probabilities will generate the data.
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set is SC-rationalizable.23

One could check that of the 256 possible paths, precisely 64 are SC-rationalizable. (Appendix

III (online) gives a fuller description of the test procedure.) Ignoring issues of sample size for

the moment and treating the observations in Figure 4 as the true distribution of joint actions

across the four treatments, we can test for SC-rationalizability by checking if there is a positive

solution to the linear system (22), where the solution vector, if it exists, gives the proportion

of the population belonging to each of the 64 types. For this test to be valid, we require the

distribution of types across the four treatments to be the same, but no other restrictions are

placed on the distribution. In particular, the test is agnostic about how couples are formed;

whether matches are formed randomly or assortatively (in the sense that couples with similar

smoking tendencies are more likely to match up24) does not affect the validity of the test.25

Performing this test, we find that there is in fact no solution to the linear system, so the data

set is not SC-rationalizable.

This may come as a surprise, since the number of unknowns (64) far exceeds the number of

linear constraints and it is tempting to think that the conditions are very permissive. In fact,

there is at least one easy-to-understand reason why the data set displayed in Figure 4 is not SC-

rationalizable. Notice from Figure 4 that µ pN,S|1, 0q “ 9.1% ą 8.6% “ µ pN,S|0, 1q. This is

impossible because, to be consistent with strategic complementarity, any couple type that selects

pN,Sq under the smoking policy p1, 0q must select pN,Sq again under the smoking policy p0, 1q.26

23In studies of the household, one modelling approach is to assume that couples achieve a Pareto optimal
outcome, rather than play a Nash equilibrium (see, for example, Chiappori (1988)). However, this solution
concept does not impose any discipline in our application. To see why, let us assume that all husbands and wives,
respectively, have the following preferences irrespective of the treatment: pS,Nq ąh pS, Sq ąh pN,Nq ąh pN,Sq
and pN,Sq ąw pN,Nq ąw pS, Sq ąw pS,Nq. One could check that these two preference relations obey strict
single crossing differences between the agent’s own action and the action of the partner and also (trivially) the
smoking policy at the working place. Moreover, every strategy profile is Pareto optimal with these preferences.
As a consequence, these preferences can generate any data set we may observe.

24In our model, an individual’s type is defined by his/her preference between smoking and non-smoking, condi-
tional on the spouse’s smoking behavior and the workplace smoking policy. For example, a possible type for the
man is the type who always strictly prefers smoking to non-smoking. Our model allows for the possibility that
such a man is more likely to match up with a woman of the same type.

25In a recent paper, Chiappori, Oreffice, and Quintana-Domeque (2016) show that smoking status can affect
matching in the marriage market. Their finding highlights the relevance of our fully agnostic approach to matching
or group formation.

26Let Áh be the husband’s preference and Áw the wife’s preference. Then pN,S|1, 0q Áh pS, S|1, 0q implies
that pN,S|0, 1q ąh pS, S|0, 1q, so pS, S|0, 1q is ruled out as an equilibrium. Furthermore, pN,S|1, 0q Áh pS, S|1, 0q
implies pN,N |0, 1q ąh pS,N |0, 1q, so pS,N |0, 1q is impossible as well. Turning now to the wife, since pN,S|1, 0q Áw

pN,N |1, 0q, we obtain pN,S|0, 1q ąw pN,N |0, 1q, so pN,N |0, 1q cannot be an equilibrium.
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Figure 5: Closest SC-rationalizable distribution of smoking choices

Interestingly, if we solve for the data set that is SC-rationalizable and closest (as measured by

the sum of square deviations) to the one actually observed, the solution, as displayed in Figure

5, sets µ pN,S|1, 0q “ µ pN,S|0, 1q “ 8.8%.

If we compare the entries in Figures 4 and 5, we see immediately that they are quite close,

which makes us wonder whether the observed violation of SC-rationalizability is in fact significant.

To address this issue, we adopt the approach proposed by Kitamura and Stoye (2016); they

develop a method of evaluating the statistical significance of a data set violating a set of linear

constraints that directly applies to our framework.27 Roughly speaking, the test assumes that

the closest compatible distribution displayed in Figure 5 is the true population distribution, and

uses a bootstrap procedure to calculate the likelihood of getting a sample like the one we observe.

By applying their test, we find that the probability of getting our sample (or a more extreme

one), assuming that our modelling restrictions are true, is 0.1605. The latter corresponds to the

p-value for the null hypothesis that our modelling assumptions are true. This means that we

cannot reject SC-rationalizability at a significance level of 5% or 10%. (See Appendix III (online)

for a fuller description of the Kitamura-Stoye procedure and our implementation.28)

As we mentioned earlier, the validity of our test hinges on the assumption that the distribu-

tion of smoking preferences among couples — or types — is the same across workplace smoking

27Kitamura and Stoye (2016) apply their test to the consumer utility-maximization problem.
28The Kitamura-Stoye test relies on a tuning parameter that solves a discontinuity issue arising from the

possibility of boundary solutions. In this section, we present p-values corresponding to the tuning parameter
suggested by the authors. The p-value estimates are sensitive to the tuning parameter and we present results
corresponding to an alternative parameter value in Appendix III (online).
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Figure 6: Joint distribution of smoking choices across smoking policies (HE)

policies. A possible concern is that smokers may choose jobs that are particularly smoke-friendly,

which would cause a negative correlation between workplace bans and smoking preferences. To

address this concern, we first repeat our initial test controlling on education levels. Specifically,

we identify from the entire sample two sub-samples, according to the educational attainment of

the couples: one sample of 2643 couples, where both spouses have high education levels (HE)

measured as having at least some college education and another sample of 1422 couples, where

both spouses have low education levels (LE). Controlling for education levels is potentially impor-

tant because we notice that the distribution of treatments for HE couples is markedly different

from that for LE couples. If, in addition, the propensity to smoke differs significantly across

couples with different educational levels, then we can no longer guarantee that the distribution

of types in the entire population is the same across treatments.

Figures 6 and 7 display the smoking behavior of HE and LE couples conditional on workplace

smoking restrictions. It turns out that the smoking patterns of the HE sample are exactly SC-

rationalizable. The LE sample is not exactly SC-rationalizable; however, implementing again the

Kitamura-Stoye test, we find a p-value of 0.359, so the model cannot be rejected at the 5% or

10% significance level.

Lastly, we need to check that our assumption that the distribution of types is the same across

workplace smoking restrictions is plausible among HE couples and, separately, among LE couples.

To this end, we show that, within each of the two sub-populations, five characteristics of people

that are thought to affect smoking choices are balanced across groups with different workplace
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Figure 7: Joint distribution of smoking choices across smoking policies (LE)

smoking policies. The motivation for such a test of balance is quite simple (see Imbens (2004)

for a more detailed explanation). For instance, Cutler and Glaeser (2010) show that older people

have a higher propensity to smoke. If, in addition, people with stronger preferences for smoking

were indeed selecting jobs that are particularly smoke-friendly, then observing the workplace

smoking policy should help us predict the age of the person. We find no evidence of such

effects in our dataset. Specifically, we use Age, Number of children at home, White, Hispanic

origin, and Northeast as the explained variables, and workplace smoking bans as the binary

explanatory variable.29 (To give more power to our test, we selected, as the explained variables,

all the covariates in our dataset which, according to the tests done by Cutler and Glaeser, have

a significant effect on the propensity to smoke.) The two tables in Appendix II show our results

for husbands and wives in the two sub-populations. Out of the 20 estimated effects, only one is

significantly different from 0 at the 5% and another at the 10% level. Moreover, an F-test across

all characteristics is shown to be non-significant for both the HE couples (p-value = 0.5952) and

the LE couples (p-value = 0.2702). Altogether, beyond statistical noise, there do not appear to

be meaningful differences in the characteristics of couples subjected to different smoking bans at

workplaces. This gives credibility to our exogeneity restriction within the two groups and is in

line with the conclusion reached by Evans, Farrelly, and Montgomery (1999).

29Note that the last three explained variables (indicating whether or not a person is white, Hispanic, and living
in the Northeast of the United States) are binary.
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Appendix I

We have shown in Lemma 1 that ÁRT
i has the interval property. The following extension of that

result is needed for the proofs of Lemmas 2 and 3.

Lemma A1: The relations ÁRTS
i , ąRTS

i , and ÁRTST
i on Xi ˆ Ξi have the interval property.

Proof. Let x2i ą xi ą x1i. (The case where x2i ă xi ă x1i can be proved in a similar way.) If

px2i , ξiq ÁRTS
i pąRTS

i q px1i, ξiq holds, there exists some ξ1i ď păq ξi such that px2i , ξ
1
iq ÁRT

i px1i, ξ
1
iq.

By the interval property of ÁRT
i , we obtain px2i , ξ

1
iq ÁRT

i pxi, ξ
1
iq. Since x2i ą xi and ξ1i ď păq ξi, we

have that px2i , ξiq ÁRTS
i pąRTS

i q pxi, ξiq. So we have shown that ÁRTS
i and ąRTS

i have the interval

property. Lastly, if px2i , ξiq ÁRTST
i px1i, ξiq, there exists a sequence z1

i , z
2
i , ..., z

k
i such that

px2i , ξiq ÁRTS
i pz1

i , ξiq ÁRTS
i pz2

i , ξiq ÁRTS
i ... ÁRTS

i pzki , ξiq ÁRTS
i px1i, ξiq.

Letting z0
i “ x2i and zk`1

i “ x1i, since x2i ą xi ą x1i, we can find some 0 ď m ď k such that

zmi ě xi ě zm`1
i . By the interval property of ÁRTS

i , we obtain pzmi , ξiq ÁRTS
i pxi, ξiq. Thus

px2i , ξiq ÁRTST
i pxi, ξiq since px2i , ξiq ÁRTST

i pzmi , ξiq ÁRTS
i pxi, ξiq. l

Lemma A2: Suppose px2i , ξiq ÁRTST
i px1i, ξiq; then there is zji (for j “ 1, 2, ..., k) such that

px2i , ξiq ÁRTS
i pz1

i , ξiq ÁRTS
i pz2

i , ξiq ÁRTS
i ... ÁRTS

i pzki , ξiq ÁRTS
i px1i, ξiq. (25)

with

x2i ą z1
i ą z2

i ą ... ą zki ą x1i (26)

if x2i ą x1i and the inequality (26) reversed if x2i ă x1i.
30

Proof. By the definition of ÁRTST
i , we know there is zji such that (25) holds, so what we need

to do is to show that zji obeys (26) if x2i ą x1i. (The case where x2i ă x1i has an analogous proof

which we shall skip.) To do this, we choose a chain linking px2i , ξiq and px1i, ξiq with the property

that (writing z0
i “ x2i and zk`1

i “ x1i) pz
m
i , ξiq ÃRTS

i pzm
1

i , ξiq for m1 ą m ` 1; in other words, no

link in the chain can be dropped. We claim that (26) must hold in this case. First we note that

zji ą x1i for all j ă k ` 1. If not, there is ` such that z`i ď x1i ă z`´1
i , with pz`´1

i , ξiq ÁRTS
i pz`i , ξiq;

30We consider (26) to hold vacuously if x2i ÁRTS
i x1i.
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since ÁRTS
i has the interval property, we obtain pz`´1

i , ξiq ÁRTS
i px1i, ξiq and the chain has been

shortened. To show that zji is decreasing, suppose instead that there is m such that zm`1
i ą zmi .

Let zm`ni be the first time after zm`1
i such that zm`ni ď zmi . (This must occur since zmj ą x1i.)

Then we have zm`ni ď zmi ă zm`n´1
i . Since pzm`n´1

i , ξiq ÁRTS
i pzm`ni , ξiq, the interval property of

ÁRTS
i guarantees that pzm`n´1

i , ξiq ÁRTS
i pzmi , ξiq. Thus we obtain a cycle

pzmi , ξiq ÁRTS
i pzm`1

i , ξiq ÁRTS
i ... ÁRTS

i pzm`n´1
i , ξiq ÁRTS

i pzmi , ξiq.

Since ÁRTS
i is cyclically consistent, this chain cannot be related by ąRTS

i and must be related

by ÁRT
i . In particular, pzm`n´1

i , ξiq čRTS
i pzmi , ξiq and thus pzm`n´1

i , ξiq čRTS
i pzm`ni , ξiq (by the

interval property of ąRTS
i ). We conclude that pzmi , ξiq ÁRT

i pzm`ni , ξiq and thus we can shorten

(25) to

px2i , ξiq ÁRTS
i pz1

i , ξiq ÁRTS
i ... ÁRTS

i pzmi , ξiq ÁRTS
i pzm`ni , ξiq ÁRTS

i ... ÁRTS
i pzki , ξiq ÁRTS

i px1i, ξiq

which contradicts our assumption that no link in the chain can be dropped. l

Proof of Lemma 2: We first prove that (11) holds. (11) is equivalent to ÁRTS
i being cyclically

consistent, i.e.,

pz1
i , ξiq ÁRTS

i pz2
i , ξiq ÁRTS

i ... ÁRTS
i pzki , ξiq ùñ pzki , ξiq čRTS

i pz1
i , ξiq. (27)

Cyclical consistency can in turn be equivalently re-formulated as the following:

pz1
i , ξiq ÁRTS

i pz2
i , ξiq ÁRTS

i ... ÁRTS
i pzki , ξiq ÁRTS

i pz1
i , ξiq (28)

ùñ pz1
i , ξiq čRTS

i pz2
i , ξiq čRTS

i ... čRTS
i pzki , ξiq čRTS

i pz1
i , ξiq

Thus, whenever there is a cycle like (28), it must be the case that

pz1
i , ξiq ÁRT

i pz2
i , ξiq ÁRT

i ... ÁRT
i pzki , ξiq ÁRT

i pz1
i , ξiq
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We prove (11) by induction on the length of the chain, k, on the left side of (27). Whenever

(27) holds for chains of length k or less (equivalently, whenever the cycles in (28) have length k

or less), we say that ÁRTS
i is k-consistent. For 2-consistency, we need to show that

pz1
i , ξiq ÁRTS

i pz2
i , ξiq ùñ pz2

i , ξiq čRTS
i pz1

i , ξiq.

Suppose that z1
i ą z2

i ; the case of z1
i ă z2

i can be dealt with in a similar way. By definition,

if pz1
i , ξiq ÁRTS

i pz2
i , ξiq then there is ξ1i ď ξi such that pz1

i , ξ
1
iq ÁRT

i pz2
i , ξ

1
iq. On the other hand,

if pz2
i , ξiq ąRTS

i pz1
i , ξiq, then there is ξ2i ą ξi such that pz2

i , ξ
2
i q ÁRT

i pz1
i , ξ

2
i q and so we obtain a

violation of ARC. Suppose that ÁRTS
i is k-consistent for all k ă k̄. To show that k̄-consistency

holds, suppose the left side of (27) holds for k “ k̄ and z1
i ă zk̄i . Clearly, there must be

m ă k̄ such that zmi ă zk̄i and zm`1
i ě zk̄i . We consider two cases: (A) zmi ě z1

i and (B)

zmi ă z1
i . In case (A), by the interval property of ÁRTS

i , we obtain pzmi , ξiq ÁRTS
i pzk̄i , ξiq. By way

of contradiction, suppose also that pzk̄i , ξiq ąRTS
i pz1

i , ξiq. Then the interval property of ąRTS
i

guarantees that pzk̄i , ξiq ąRTS
i pzmi , ξiq and so we obtain a violation of 2-consistency. For (B),

since pzmi , ξiq ÁRTS
i pzm`1

i , ξiq, the interval property guarantees that pzmi , ξiq ÁRTS
i pz1

i , ξiq. So we

obtain the cycle

pz1
i , ξiq ÁRTS

i pz2
i , ξiq ÁRTS

i ... ÁRTS
i pzmi , ξiq ÁRTS

i pz1
i , ξiq (29)

which has length strictly lower than k̄. By the induction hypothesis, we obtain

pz1
i , ξiq čRTS

i pz2
i , ξiq čRTS

i ... čRTS
i pzmi , ξiq čRTS

i pz1
i , ξiq

and so we can replace each ÁRTS
i in (29) by ÁRT

i . Furthermore, pzmi , ξiq čRTS
i pz1

i , ξiq guarantees

that pzmi , ξiq čRTS
i pzm`1

i , ξiq, by the interval property of ąRTS
i . Therefore, pz1

i , ξiq ÁRT
i pzm`1

i , ξiq

and, by the interval property of ÁRT
i , we obtain pz1

i , ξiq ÁRT
i pzk̄i , ξiq. 2-consistency then ensures

that pzk̄i , ξiq čRTS
i pz1

i , ξiq. This completes the proof that (11) holds.

By definition, ÁRTST
i obeys SSCD if whenever x2i ą x1i and ξ2i ą ξ1i or x2i ă x1i and ξ2i ă ξ1i,

px2i , ξ
1
iq ÁRTST

i px1i, ξ
1
iq ùñ px2i , ξ

2
i q ąRTST

i px1i, ξ
2
i q.
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We shall concentrate on the case where x2i ą x1i; the other case has a similar proof. If px2i , ξ
1
iq ÁRTST

i

px1i, ξ
1
iq, then, by Lemma A2, there is zji (for j “ 1, 2, ..., k) such that

px2i , ξ
1
iq ÁRTS

i pz1
i , ξ

1
iq ÁRTS

i pz2
i , ξ

1
iq ÁRTS

i ... ÁRTS
i pzki , ξ

1
iq ÁRTS

i px1i, ξ
1
iq.

with x2i ą z1
i ą z2

i ą ... ą zki ą x1i. Since ÁRTS
i obeys SSCD (see (8)), we obtain

px2i , ξ
2
i q ąRTS

i pz1
i , ξ

2
i q ąRTS

i pz2
i , ξ

2
i q ąRTS

i ... ąRTS
i pzki , ξ

2
i q ąRTS

i px1i, ξ
2
i q

and so px2i , ξ
2
i q ąRTST

i px1i, ξ
2
i q. l

Proof of Lemma 3: We first show that Á˚
i is a preference that rationalizes Oi. Clearly, Á˚

i is

complete and reflexive, so to demonstrate that it is a preference we need only show that it is

transitive. Indeed, suppose

pai, ξiq Á˚
i pbi, ξiq Á˚

i pci, ξiq Á˚
i pai, ξiq. (30)

There are essentially four possible cases we need to consider:

Case 1. None of the three elements are related by ÁRTST
i . Given the definition of Á˚

i , this means

that ai ă bi ă ci ă ai, which is impossible.

Case 2. pai, ξiq ‖RTSTi pbi, ξiq, pbi, ξiq ‖RTSTi pci, ξiq, and pci, ξiq ÁRTST
i pai, ξiq. Then (30) can

only occur if ai ă bi ă ci, but if this is the case, the interval property of ÁRTST
i will imply that

pci, ξiq ÁRTST
i pbi, ξiq. So this case is impossible.

Case 3. pai, ξiq ‖RTSTi pbi, ξiq, pbi, ξiq ÁRTST
i pci, ξiq ÁRTST

i pai, ξiq. This is impossible because, by

the transitivity of ÁRTST , we obtain pbi, ξiq ÁRTST
i pai, ξiq.

Case 4. pai, ξiq ÁRTST
i pbi, ξiq ÁRTST

i pci, ξiq ÁRTST
i pai, ξiq. By (11), this is only possible if

pai, ξiq ÁRT
i pbi, ξiq ÁRT

i pci, ξiq ÁRT
i pai, ξiq,

but then we also obtain, by the transitivity of ÁRT
i , pai, ξiq ÁRT

i pci, ξiq and, hence, pai, ξiq Á˚
i

pci, ξiq, which establishes the transitivity of Á˚
i .

Lastly, since ÁRTST
i ĂÁ˚

i by construction, it is clear that Á˚
i rationalizes Oi.
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To show that Á˚
i obeys SSCD, let x2i ą x1i and ξ2i ą ξ1i; then

px2i , ξ
1
iq Á˚

i px
1
i, ξ

1
iq ùñ px2i , ξ

1
iq ÁRTST

i px1i, ξ
1
iq

ùñ px2i , ξ
2
i q ąRTST

i px1i, ξ
2
i q

ùñ px2i , ξ
2
i q ą˚

i px
1
i, ξ

2
i q,

in which the first implication follows from the definition of Á˚
i , the second implication from the

SSCD property of ÁRTST
i , and the third from the fact that ą˚

i contains ąRTST
i (so Á˚

i extends

ÁRTST
i in the sense of (10)). The last claim is true because if px2i , ξiq ąRTST

i px1i, ξiq, then Lemma

2 says that px1i, ξiq ÃRTST
i px2i , ξiq; thus px1i, ξiq Ã˚

i px
2
i , ξiq and we obtain px2i , ξiq ą˚

i px
1
i, ξiq.

It remains for us to show that, for every ξi P Ξi, BRpξi, K,Á
˚q is nonempty and finite, where

K Ă Xi and K is compact in R. If K S xti for every t P T , then it follows from the definition of

Á˚
i that pm, ξiq Á˚

i pzi, ξiq, where m “ minK and zi P K. In this case, m is the only maximiser

of Á˚
i in K. Suppose that K Q xti for some t. Since there are a finite number of observations,

we can find some xsi P K such that pxsi , ξiq Á˚
i px

t
i, ξiq for every xti P K. We claim that either

m or xsi is optimal in K at the parameter value ξi, so that BRpξi, K,Á
˚q is nonempty and

finite. Indeed, suppose there is zi P K such that pzi, ξiq ą˚
i pm, ξiq. Then, since m ă zi, it

must hold that pzi, ξiq ąRTST
i pm, ξiq and there is t P T such that zi “ xti, in which case we

obtain pxsi , ξiq Á˚
i px

t
i, ξiq by the definition of xsi . So for all zi P K, either pm, ξiq Á˚

i pzi, ξiq or

pxsi , ξiq Á˚
i pzi, ξiq. l

Proof of Proposition 2. Let λ by a measure on Xi with the following properties: (i) λpXiq ă

8; (ii) on any nonempty interval I of Xi, λpIq ą 0; (iii) λptxtiuq ą 0 for all t P T . For any

pxi, ξiq P XiˆΞi, we define the set Lpxi, ξiq “ tzi P Xi : pxi, ξiq Á˚
i pzi, ξiqu. This set is measurable

since Oi is finite and Ai consists of compact intervals. Furthermore, λ is a finite measure

(according to (i)), so λpLpxi, ξiqq is well-defined. We claim that uipxi, ξiq “ λpLpxi, ξiqq represents

Á˚
i . It follows immediately from the definition that uipx

2
i , ξiq ě uipx

1
i, ξiq if px2i , ξiq Á˚

i px
1
i, ξiq.

So we need only show that uipx
2
i , ξiq ą uipx

1
i, ξiq if px2i , ξiq ą˚

i px
1
i, ξiq. Suppose there exists an

observed action, xsi , such that xsi P Lpx
2
i , ξiqzLpx

1
i, ξiq; then uipx

2
i , ξiq ą uipx

1
i, ξiq since λptxsiuq ą 0

(by (iii)). If such an xsi does not exist, then, in particular, x2i R tx
t
iutPT . For px2i , ξiq Á˚ px1i, ξiq,

it must be the case that px2i , ξiq ‖RTSTi px1i, ξiq and x2i ă x1i. We claim that there is a sufficiently
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small ε ą 0 such that x2i ` ε ă x1i and for any zi P rx
2
i , x

2
i ` εs, pzi, ξiq ‖RTSTi px1i, ξiq and hence

pzi, ξiq ą˚
i px

1
i, ξiq. If this is true, rx2i , x

2
i ` εs is contained in Lpx2i , ξiqzLpx

1
i, ξiq and has positive

measure (by (ii)), so again uipx
2
i , ξiq ą uipx

1
i, ξiq. It remains for us to show that ε ą 0 exists.

If it does not exist, then there must be a sequence xni ą x2i and tending towards x2i such that

px1i, ξiq ÁRTST
i pxni , ξiq (since, with a finite data set, it is impossible for there to be a sequence

xni tending x2i such that pxni , ξiq ÁRTST
i px1i, ξiq). This leads to px1i, ξiq ÁRTST

i px2i , ξiq, which is a

contradiction.31 l

Proof of Theorem 3. Part (ii) follows straightforwardly from (i), so we shall focus on proving

(i), which consists of three claims. Proposition 3 says that (15) holds. To see that (18) holds,

first note that x̃i R PRipx
1
´i, y

0
i , A

0
i q if and only if O1

i “ Oi Y tpx̃i, px
1
´i, y

0
i q, A

0
i qu violates ARC.

Since Hi is not a singleton, it must be an interval and so there is no x1i such that px1i, x
1
´iq “ xt

for some t P T . Therefore, O1

i violates ARC if and only if there is x̂i P A
0
i and x̄´i such that

px̂i, x̄´i, ȳiq ÁRT
i px̃i, x̄´i, ȳiq with either (1) x̂i ă x̃i and px̄´i, ȳiq ą px1´i, y

0
i q or (2) x̂i ą x̃i

and px̄´i, ȳiq ă px1´i, y
0
i q. Note that there is t P T such that px̂i, x̄´iq “ xt; in particular, this

means that x̄´i P ˆj‰iA
T . It follows from our definition of Hi that for any x2´i in Hi, we

have px̄´i, ȳiq ą px
2
´i, y

0
i q if px̄´i, ȳiq ą px

1
´i, y

0
i q and px̄´i, ȳiq ă px

2
´i, y

0
i q if px̄´i, ȳiq ă px

1
´i, y

0
i q.

Thus O2

i “ Oi Y tpx̃i, px
2
´i, y

0
i q, A

0
i qu violates ARC. We conclude that x̃i R PRipx

2
´i, y

0
i , A

0
i q if

x̃i R PRipx
1
´i, y

0
i , A

0
i q, which establishes (18).

Lastly, we show that PRipx´i, y
0
i , A

0
i q consists of a finite union of intervals of A0

i . This is

equivalent to showing that A0
i zPRipx´i, y

0
i , A

0
i q is a finite union of intervals; an element x̃i is in this

set if and only if there is t P T such that xti P A
0
i and pxti, ξ

0
i q ąRTST

i px̃i, ξ
0
i q, where ξ0

i “ px´i, y
0
i q.

This in turn holds if and only if there is s P T such that either (1) pxti, ξ
0
i q ÁRTST

i pxsi , ξ
0
i q and

pxsi , ξ
0
i q ąRTS

i px̃i, ξ
0
i q or (2) pxti, ξ

0
i q ąRTST

i pxsi , ξ
0
i q and pxsi , ξ

0
i q ÁRT

i px̃i, ξ
0
i q. Notice for a fixed

s P T , the sets txi P A
0
i : pxsi , ξ

0
i q ąRTS

i pxi, ξ
0
i qu and txi P A

0
i : pxsi , ξ

0
i q ÁRT

i pxi, ξ
0
i qu both

consist of intervals, because of the interval property on ąRTS
i and ąRT

i respectively. It follows

that A0
i zPRipx´i, y

0
i , A

0
i q is a finite union of intervals. l

The proof of Theorem 4 uses the following lemma.

31In general, if a sequence xni tends to x2i P Xi, and px1i, ξiq ÁRTST
i pxni , ξiq for all n, then px1i, ξiq ÁRTST

i px2i , ξiq.
Analogous closure properties are true of ÁRT

i and ÁRTS
i . It is straightforward to check that these properties follow

from the finiteness of the data set and the compactness of the sets in Ai.
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Lemma A3: Suppose O “ txt, yt, AtuTt“1 obeys ARC and let A0 P A. Then the map p˚˚i :

A0
´i ˆ Yi Ñ A0

i given by

p˚˚i px´i, yiq “ sup PRipx´i, yi, A
0
i q

has the following properties: (i) it is increasing in px´i, yiq P A
0
´i ˆ Yi; (ii) for x1´i and x2´i in

Hi, p
˚˚
i px

2
´i, yiq “ p˚˚i px

1
´i, yiq; and (iii) if, for some px̄´i, ȳiq, p

˚˚
i px̄´i, ȳiq P PRipx̄´i, ȳi, A

0
i q and

for some px̂´i, ŷiq ą px̄´i, ȳiq, p
˚˚
i px̄´i, ȳiq “ p˚˚i px̂´i, ŷiq, then p˚˚i px̂´i, ŷiq P PRipx̂´i, ŷi, A

0
i q.

Remark: In a similar way, we define p˚i : A0
´iˆYi Ñ A0

i by p˚i px´i, yiq “ inf PRipx´i, yi, A
0
i q. This

function will obey properties (i) and (ii) and, instead of property (iii), it will have the following

property (iii)1: if, for some px̄´i, ȳiq, p
˚
i px̄´i, ȳiq P PRipx̄´i, ȳi, A

0
i q and for some px̂´i, ŷiq ă

px̄´i, ȳiq, p
˚
i px̄´i, ȳiq “ p˚i px̂´i, ŷiq, then p˚i px̂´i, ŷiq P PRipx̂´i, ŷi, A

0
i q.

Proof. Since PRipx´i, yi, A
0
i q is the union of a collection of best response correspondences (see

(13)), each of which is increasing in px´i, yiq, p
˚˚
i must be increasing. Claim (ii) is an immediate

consequence of (18) (which was proved in Theorem 3). Lastly, if p˚˚i px̄´i, ȳiq P PRipx̄´i, ȳi, A
0
i q

then there is ÁiP P˚i such that p˚˚i px̄´i, ȳiq P BRipx̄´i, ȳi, A
0
i ,Áiq. Since the best response corre-

spondence is increasing, there is x1i P BRipx̂´i, ŷi, A
0
i ,Áiq, and thus in PRipx̂´i, ŷi, A

0
i q, such that

x1i ě p˚˚i px̄´i, ȳiq. This establishes (iii). l

Proof of Theorem 4: We have already explained at the beginning of Section 4 why Epy0, A0q is

nonempty. We shall confine our attention to showing that max Epy0, A0q exists, where Epy0, A0q

refers to the closure of Epy0, A0q; the proof for the other case is similar.32 Firstly, note that

the properties of p˚˚i listed in Lemma A3 guarantee that there exists a sequence of functions

tpki p¨, y
0
i , A

0
i qukPN selected from PRip¨, y

0
i , A

0
i q with the following properties: (i) for x1´i and x2´i in

Hi, p
k
i px

2
´i, y

0
i q “ pki px

1
´i, y

0
i q; (ii) pki px´i, y

0
i , A

0
i q is increasing in x´i and in k; (iii) pki px´i, y

0
i , A

0
i q “

p˚˚i px´i, y
0
i , A

0
i q if p˚˚i px´i, y

0
i , A

0
i q P PRipx´i, y

0
i , A

0
i q; and (iv) limkÑ8 p

k
i px´i, y

0
i , A

0
i q “ p˚˚i px´i, y

0
i , A

0
i q.

In other words, there is a sequence of increasing selections from PRip¨, y
0
i , A

0
i q that has p˚˚i px´i, y

0
i , A

0
i q

32It is worth pointing out an obvious first approach that will not work. Given p˚˚i , we can define, for each
x P A0, p˚˚px, y0q “ pp˚˚i px´i, y

0
i qqiPN , and since p˚˚i is increasing in x´i, so p˚˚px, y0q is increasing in x. By

Tarski’s fixed point theorem, p˚˚p¨, y0q will have a fixed point and indeed a largest fixed point x‹; thus the
existence of max Epy0, A0q is ensured if it could be identified with x‹. However, they are not generally the same
points: it is straightforward to construct an increasing (but not compact-valued) correspondence such that its
largest fixed point does not coincide with the largest fixed point of its supremum function. Our proof takes a
different route.
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as its limit, with the sequence being exactly equal to p˚˚i px´i, y
0
i , A

0
i q if the latter is a possible

response of player i.

The function pkpx, y0, A0q “ ppki px´i, y
0
i , A

0
i qqiPN is increasing in x, since pki is increasing in

x´i. By Tarski’s fixed point theorem, pk has a largest fixed point, which we denote by zkpy0, A0q.

Since pki p¨, y
0
i , A

0
i q is a selection from PRip¨, y

0
i , A

0
i q, z

kpy0, A0q P Epy0, A0q. By the monotone fixed

points theorem (see Section 2), the sequence zkpy0, A0q is increasing with k. Since A0 is compact,

this sequence must have a limit. This limit, which we denote by z˚˚py0, A0q, lies in Epy0, A0q.

We claim that z˚˚py0, A0qq ě x̃, for any x̃ P Epy0, A0q. Indeed, since x̃i P PRipx̃´i, y
0
i , A

0
i q

for all i P N , for k sufficiently large, pki px̃´i, y
0
i , A

0
i q ě x̃i. Now consider the map pk confined to

the domain S “ ˆiPNtxi P A
0
i : xi ě x̃iu. Since pk is increasing, the image of pk also falls on

S; in other words, pk can be considered as a map from S to itself. It is also an increasing map

and, by Tarski’s fixed point theorem will have a largest fixed point. The largest fixed point of pk

restricted to S must again be zkpy0, A0q and it follows from our construction that zkpy0, A0q ě x̃.

In turn this implies that z˚˚py0, A0q ě x̃. So z˚˚py0, A0q is an upper bound of Epy0, A0q and

thus also an upper bound of Epy0, A0q. Given that z˚˚py0, A0q P Epy0, A0q, we conclude that

z˚˚py0, A0q “ max Epy0, A0q.

To see that z˚˚py, A0q is increasing with respect to the parameter, consider y2 ą y1. Given

the properties of p˚˚i listed in Lemma A3, we can choose functions tpki p¨, yi, A
0
i qukPN selected from

PRip¨, yi, A
0
i q (for yi “ y1i and y2i ) satisfying properties (i) – (iv) and, in addition, pki px´i, y

2
i , A

0
i q ě

pki px´i, y
1
i, A

0
i q for all x´i. The map pkp¨, y2, A0q is increasing and, by Tarski’s fixed point theorem,

it will have a largest fixed point xkpy2q which also satisfies xkpy2q ě xkpy1q. Taking limits as

k Ñ 8, we obtain z˚˚py2q ě z˚˚py1q. l

Proof of Theorem 6: We may regard µti as an element of ∆ “

!

z P R|Xi|

` :
ř|Xi|

k“1 zk “ 1
)

, and

tµtiutPT as an element of ∆T . We denote the set of ARC-consistent paths by D; each path can

also be regarded as an element of ∆T . Let ∆T
ARC (contained in ∆T ) be the set of all tµtiutPT such

that tpµti, ξ
t
i , A

t
iqutPT is monotone rationalizable. By Theorem 5, this set is the convex hull of D

(the set of ARC-consistent paths). Since Ati “ Xi for all t P T , D consists precisely of those

paths where a higher parameter leads to a weakly higher action; it follows immediately from

this that ∆T
ARC is contained in ∆T

FOSD, the set of tpµti, ξ
t
i , XiqutPT that obey first order stochastic
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dominance in the sense that µt ěFOSD µs whenever ξt ą ξs. Both ∆T
ARC and ∆T

FOSD are convex

and compact sets in ∆T . The Krein-Milman Theorem tells us that ∆T
FOSD is the convex hull of

its extreme points; therefore, to show that ∆T
ARC “ ∆T

FOSD (as the proposition claims), we need

only show that any extreme point of ∆T
FOSD is an element of D. Equivalently, we shall show the

following: if tµtiutPT P ∆T
FOSD is not in D, then it is not an extreme point of ∆T

FOSD.

Suppose tµtiutPT P ∆T
FOSDzD and for each t P T , let mt

i P Xi be the median of µti, i.e.,

mt
i “ inf

 

ai :
ř

aiďxi
µtipxiq ě 0.5

(

. Let αti be a distribution defined in the following manner:

αtipxiq “ 2µtipxiq if xi ă mt
i; α

t
ipxiq “ 1 ´ 2

ř

xiămt
i
µtipxiq if xi “ mt

i; α
t
ipxiq “ 0 if xi ą mt

i. We

also define the distribution βti : βtipxiq “ 0 if xi ă mt
i; β

t
ipxiq “ 1´2

ř

xiąmt
i
µtipxiq if xi “ mt

i; and

βtipxiq “ 2µtipxiq if xi ą mt
i. Clearly, it holds that µti “ 0.5αti ` 0.5βti for all t. Since tµtiutPT R D,

there exists t P T for which this convex combination is non-degenerate; therefore, tµtiutPT is not

an extreme point of ∆T
FOSD if tαtiutPT and tβtiutPT are both in ∆T

FOSD. We only show this for

tαtiutPT since the other case is similar. Suppose ξti ą ξsi for some s, t P T . Since tµtiutPT is in

∆T
FOSD it must hold that ms

i ď mt
i. If ai ă ms

i ď mt
i, it follows from tµtiutPT P ∆T

FOSD that

ÿ

xiďai

αtipxiq “ 2
ÿ

xiďai

µtipxiq ď 2
ÿ

xiďai

µsi pxiq “
ÿ

xiďai

αsi pxiq.

If ai ě ms
i , then

ř

xiďai
αtipxiq ď

ř

xiďai
αsi pxiq “ 1. We conclude that αti ěFOSD αsi . l

Proof of Theorem 8: We only show the first claim, since the proof for the second is similar.

Let A˚˚py0q be the set of all monotone rationalizable paths on tpyt, AtiqutPt0uYT , for y0 “ ȳ0 or

y0. If µ P PEDpy0, A0q then there is a probability distribution Q on A˚˚py0q such that for every

t P T and x P X, µtpxq “
ř

xPA˚˚py0qQpxq1px
t “ xq, and µpxq “

ř

xPA˚˚py0qQpxq1px
0 “ xq.

To each path x in A˚˚py0q we associate another path Bpxq “ pb0, b1, b2, ..., bT q, where bt “ xt

for t P T , and b0 is a predicted Nash equilibrium of the game Gpȳ0, A0q such that b0 ě x0;

Theorem 4 guarantees that b0 exists33 and, by construction, Bpxq is an SC-rationalizable path

on the treatment set tpyt, AtqutPT Y tpȳ
0, A0qu. Clearly, for every t P T and x P X, µtpxq “

ř

xPA˚˚py0qQpxq1pBpxq
t “ xq and therefore µ̄, given by µ̄pxq “

ř

xPA˚˚py0qQpxq1pBpxq
0 “ xq, is

in PEDpȳ0, A0q. It is also clear from our choice of b0 that µ̄ ěFOSD µ. l

33Since we assume all players have finite strategy sets, the existence of x0 is guaranteed by Theorem 4.
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Appendix II

The next tables apply the empirical design to Husband/Wife characteristics as the dependent

variable to test for balance. Each row represents a separate variable. For each education level,

we run a SUR model, allowing the errors to be correlated across partners. An F-test for the joint

significance of all covariates at the level of Husbands and Wives is presented in the penultimate

row. An F-test for the joint significance of all characteristics is presented at the bottom row. No

characteristic is significant at 1%; the symbols * and ** represent significance at 10% and 5%.

Covariate Constant Smoking/Ban p2value Constant Smoking/Ban p2value
!0.372 !0.390

(0.230) (0.245)

0.010 !0.0002

(0.008) (0.001)

!0.011 !0.005

(0.007) (0.008)

0.0002 !0.0002

(0.001) (0.002)

!0.00007 0.0001

(0.001) (0.001)

p2value 0.2863 0.7121

p2value

Northeast

0.5952

0.8890.2250.9360.226

Husband

0.1210.025Hispanic

0.9860.9080.2380.91White

0.5260.025

High/Education

0.11238.0650.10640.076Age

Wife

#@Children 2.025 0.902 2.025 0.917

Figure 8: Test for balance (HE)

Covariate Constant Smoking/Ban p2value Constant Smoking/Ban p2value
!0.485* !0.261

(0.266) (0.282)

0.010 0.010

(0.008) (0.009)

0.016** !0.011

(0.008) (0.009)

0.0001 0.002

(0.003) (0.004)

!0.0001 !0.0009

(0.002) (0.002)

p2value 0.1347 0.5813

p2value 0.2702

0.6160.2200.9490.22

0.2190.0630.0490.055

Northeast

0.6712.0190.9682.02#9Children

Age

WifeHusband

Hispanic

0.2610.9000.2260.896White

Low/Education

0.35339.0100.06841.627

Figure 9: Test for balance (LE)
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Appendix III (online, not part of main paper)

AIII.1 Data and Testing Procedures

We make use of the Tobacco Use Supplement to the Current Population Survey (TUS-CPS) to

get information on both smoking decisions and workplace smoking policies. This is a National

Cancer Institute (NCI) sponsored survey of tobacco use that has been administered as part of

the US Census Bureau’s Current Population Survey every 2 to 3 years from 1992-1993. We focus

on years 1992-1993 because, unlike more recent periods, there was still a significant number

of workplaces that permitted smoking. This guarantees we have enough treatment variation.

We start by merging the data of years 1992 and 1993. In this initial step, we first recover

the information for September 1992 and add the information for January 1993 and July 1993

regarding spouses that do not appear in the previous period(s) of time. In doing so, each couple

appears only once in our pooled sample.

While the question about the smoking choice is asked to everyone in our population of interest,

the question about the smoking policy in the workplace is asked only to indoor workers. Thus,

we restrict attention to married couples where both members work indoors. Finally, we remove

from our sample all couples where at least one member does not reply to the questions of interest.

The final sample has 5,363 married couples across the US. Of that total, 2,643 couples have both

members with high education levels (we explain education levels below), 1,422 couples have both

members with low education levels, and the remaining 1,298 couples have one spouse with high

education level and the other with low education level. (Both the raw data from the TUS-CPS

and the final sample involve large files that are fully available upon request.)

We tabulate responses using the variable definitions contained in the Data Dictionaries of the

Current Population Survey for years 1992-1993, as we detail next.

Married Couples: We consider as married couples all pairs where one member is the reference

person and the other one responds either “3. Husband” or “4. Wife” to question A-RRP (Item

18B - Relationship to reference person).

Smoking Decisions: We assign the value N (does not smoke) to all persons that respond “3.

Not at all” to question A-S34 (Does... now smoke cigarettes every day, some days, or not at
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all?). We assign value S (smokes) to all persons that respond either “1. Every day” or “2. Some

days” to question A-S34 (Does... now smoke cigarettes every day, some days, or not at all?).

Smoking Restrictions at Workplace: We assign the value 0 (there are smoking restrictions

at workplace) to all persons that respond “1. Yes” to question A-S68 (Does your place of work

have an official policy that restricts smoking in anyway?). We assign a value of 1 (no smoking

restrictions at workplace) to all persons that respond “2. No” to question A-S68 (Does your

place of work have an official policy that restricts smoking in anyway?.

Education: We consider as couples with high education level (HE) all those married couples

(defined above) where both members report that they have high education levels; specifically

these are couples where both members respond “40. Some college but not degree” or above

to question A-HGA (Item 18H - Educational attainment). We consider as couples with low

education level (LE) all those married couples where both members respond strictly below “40.

Some college but not degree” to question A-HGA (Item 18H - Educational attainment).

AIII.2 Test and Closest Compatible Distribution

Testing whether a data set is SC-rationalizable involves checking whether a system of linear

equations

Ax “ B (31)

has a positive solution x. We describe next all the components of this system.

Matrix A: This matrix is composed of 0s and 1s. Each column describes the behavior (in terms of

choices) of a specific SC-rationalizable group path. Recall that a group path specifies the profile

of choices that the group makes for each possible vector of parameter values (or treatments).

Each row of A corresponds to one of the 16 possible combinations of (joint) smoking choices

and treatment values. In our model, A is a 16 ˆ 64-matrix. In Sheet “Consistent Paths” of

the file “Matrices, Data, and Results.xlsx” (included with this submission as a separate file) we

describe all possible group paths for our smoking application; the SC-rationalizable group paths

get number 1 in column ARC —ARC 1 and ARC 2 check the ARC axiom for the husband and

the wife, respectively. In Sheet “Matrix A” of ”Matrices, Data, and Results.xlsx” we show how
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to construct matrix A in our application.

Vector B: The size of this column vector is 16. It is composed of 4 conditional probability

distributions. Each conditional distribution specifies the fraction of groups in the data that, for

a given treatment, make each of the four possible joint choices. Sheet “Data” of “Matrices, Data,

and Results.xlsx” describes all the information from the available data on smoking that we use

to construct vector B, and shows how to construct it.

Vector x: This vector represents a probability distribution over the set of SC-rationalizable

group paths —whenever the system has a positive solution. In the smoking application, x has

64 elements.

We implement our test by using Matlab. Specifically, we use the built-in function

x “ linprogplb, rs, rs, A,B, lb, rsq

to check whether system (31) has a positive solution in x. In this specification, inputs A and

B are described as above and lb corresponds to a column vector of 64 zeros. When no solution

exists, Matlab reports that the primal solution appears infeasible.

For those data vectors B that do not pass this test, we use built-in function ”lsqnonneg”

in Matlab to find a positive vector px, with its components adding up to 1, that minimizes

pB ´ Axq
1

pB ´ Axq. We refer to Apx as the closest compatible distribution of choices. Sheet “Re-

sults” of “Matrices, Data, and Results.xlsx” describes the closest compatible vectors in columns

“Closest” for the three groups —All couples, HE couples and LE couples. As HE passes the test

directly, its closest compatible vector is simply B.

AIII.3 Small Sample Inference Procedure

As Kitamura and Stoye (2016) explain, the null hypothesis is equivalent to

(H): minxPRK
`
pB ´ Axq1 pB ´ Axq “ 0
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where K is the number of SC-rationalizable group types. In the smoking application, K “ 64.

A natural sample counterpart of the objective function in H is given by

´

pB ´ Ax
¯1 ´

pB ´ Ax
¯

where pB estimates B by sample choice frequencies. Normalizing the latter by sample size N , we

get

JN “ N minxPRK
`

´

pB ´ Ax
¯1 ´

pB ´ Ax
¯

.

Let x˚˚ be any solution to this problem. If Ax˚˚ “ pB, so that the observed choices are compatible

with our restrictions, then JN “ 0 and the null hypothesis cannot be rejected.

Kitamura and Stoye (2016) propose the following bootstrap algorithm to test H:

(i) Obtain a vector x˚ that solves

JN “ N minrx´τN1K{KsPRK
`

´

pB ´ Ax
¯1 ´

pB ´ Ax
¯

and compute pCτN “ Ax˚. Here, 1K is a vector of 1s of dimension K. Following insights from

Kitamura and Stoye (2016), we use τN “
a

ln pNq {N , where N is the size of the sample. We also

report results for τN “ 0. (The tuning parameter τN plays the role of a similar tuning parameter

in the moment selection approach.)

(ii) Calculate the boostrap estimators under the restriction

pBprqτN “
pBprq ´ pB ` pCτN r “ 1, ..., R

where pCτN derives from step (i) and pBprq is a re-sampled choice probability vector obtained via

standard nonparametric boostrap. In addition, R is the number of boostrap replications. In our

paper, we let R “ 2000.

(iii) Calculate the boostrap test statistic by solving the following problem

J
prq
N pτNq “ N minrx´τN1K{KsPRK

`

´

pBprqτN ´ Ax
¯1 ´

pBprqτN ´ Ax
¯
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for r “ 1, ..., R.

(iv) Use the empirical distribution of J
prq
N pτNq, r “ 1, ..., R, to obtain the critical value of JN .

We repeat this procedure 6 times. That is, for each of the three groups — All couples, HE

couples and LE couples — we implement the test under two specifications of the τN -parameter.

We obtain the following p-values.

All Couples HE LE

τN “
a

ln pNq {N 0.1605 1 0.3590

τN “ 0 0.3705 1 0.5465

In Sheet “Results” of the file “Matrices, Data, and Results.xlsx” we expand on these findings.

In particular, we also provide information regarding the closest compatible distribution for τN “
a

ln pNq {N (in column “Closest τ”) and for τN “ 0 (in column “Closest”).
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