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1 Introduction

Practically all credit risk models to date owe an intellectual debt to the options based approach

to firm default by Merton (1974).1 It took more than a decade for the development of solutions

to portfolio loss distributions (Vasicek 1987, 1991), and those solutions were obtained under strict

homogeneity assumptions regarding the probability distribution of firms asset values and default

thresholds. Yet clearly heterogeneity is important and has received considerable attention of late.

Two notable examples are Gordy (2003) using a factor-based approach,2 and Duffie, Saita and

Wang (2005) using a default intensity approach.

To take full account of firm heterogeneity in credit risk places great demands on the data.

When firms are public and have traded securities such as stocks, bonds, or even credit default

swaps (CDS), as well as third party assessments such as credit ratings, there is great scope for

allowing and accounting for heterogeneity. But this scenario is limited to a small minority of firms;

indeed most loans in banks’ portfolios are to privately held firms about which we (and the banks)

know rather little. In that case one may be forced to settle for the credit portfolio solutions obtained

under homogeneity. What then are the consequences of neglecting heterogeneity for the analysis of

the loss distribution? What is the impact on expected loss (EL), on risk, whether measured by loss

volatility, which we call unexpected loss (UL), or tail quantiles (value at risk, VaR), or the shape

of the entire loss distribution? Moreover, which sources of heterogeneity are especially important?

This is the focus of our paper, and to our knowledge we are the first to examine the impact

of neglected heterogeneity on credit risk. We consider both observed and unobserved types of

heterogeneity. The former is relatively easy to deal with and does not pose any particular tech-

nical difficulties.3 The latter (unobserved heterogeneity) is more difficult and will be the focus

of our analysis. Note that parameter heterogeneity refers to differences in population values of

the parameters across different firms and prevails even in the absence of estimation uncertainty.4

We build on the work of Vasicek and Gordy and examine the consequences of incorrectly neglect-

ing the heterogeneity of return correlations and default thresholds across firms for the analysis of

loss distributions. The default threshold captures a variety of firm characteristics such as balance

sheet structure, including leverage, as well as intangibles like the quality of management. This

heterogeneity can be random — firms, say, have on average the same factor loadings — and/or

the differences could be systematic — mean factor loadings could differ across industries but are

randomly distributed around the industry mean, across firms within an industry.

1For a summary of models see Saunders and Allen (2002), and for detailed comparisons, see Koyluoglu and

Hickman (1998) and Gordy (2000).
2Gordy’s (2003) result shaped regulatory policy in the specific form of the regulatory capital formula in the New

Basel Accord (BCBS 2005, §272).
3 In our set up an important example of observed heterogeneity is given by credit ratings across firms.
4 In this paper we do not allow for parameter estimation uncertainty.
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Our theoretical set-up is quite general and imposes few distributional and parametric restric-

tions. The theoretical results show a complex interaction between the sources of heterogeneity

and the resulting loss distribution. We find that incorrectly neglecting heterogeneity results in

underestimation of expected losses, and its effect on portfolio risk is ambiguous. This is a new

result and arises due to the nonlinear nature of the relationships that prevail between the return

process, the default threshold and the resultant default (and hence loss) process. Differences in

asset values and default thresholds across firms do not disappear by cross-section averaging even if

the differences across firms are random and the underlying portfolio is sufficiently large.

In comparing heterogeneous loss portfolios it is therefore important that appropriate adjust-

ments are made so that the different portfolios all have the same EL’s. This is only possible by

allowing for systematic heterogeneity across firms, e.g. by grouping firm into industries, regions,

distances to default (e.g. credit rating), or a combination of those. In that case we prove that

neglected heterogeneity results in overestimated risk, so that falsely imposing homogeneity can be

quite costly.

Along the way we derive analytic solutions to loss distributions under parameter heterogeneity,

assuming that the cross-section means and variance/covariances of the firm parameters are known;

under homogeneity these variances and covariances are set to zero. Such derivations are important

since they allow us to calibrate loss distributions for cases where there is little or no data to estimate

the extent of parameter heterogeneity (which is practically the case for most of bank lending), using

available estimates based on publicly traded securities. The latter estimates are not perfect and will

be subject to errors, but are likely to be more appropriate than setting the variance and covariances

to zero. This result marks our second contribution to the literature.

The importance of these theoretical insights are illustrated using a portfolio of about 600 publicly

traded U.S. firms. Return regressions subject to different degrees of parameter heterogeneity are

estimated recursively using six ten-year rolling estimation windows, and for each estimation window

the loss distribution is then simulated out-of-sample over a one-year period. The predictions made

by theory are confirmed in this application and are found to be robust across the six years. We show

that heterogeneity in the default threshold or probability of default (PD), measured for instance by

a credit rating, is of first order importance in affecting the shape of the loss distribution: allowing

for ratings heterogeneity alone results in a 20% drop in loss volatility (keeping EL’s constant) and

40% drop in 99.9% VaR, the level to which the risk weights in the New Basel Accord are calibrated.

Allowing for additional heterogeneity results in a further 10% drop in 99.9% VaR. This result has

important policy implications as a PD estimate through a credit rating, whether generated by a

bank internally or provided by a rating agency externally, is the one parameter (of those considered

here) that is allowed to vary in the New Basel Accord.

To analyze the impact of neglected heterogeneity on credit risk, we use a simple multifactor

approach which is easily adapted to this task. Multifactor models have been used extensively in
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finance following Ross (1976) and Chamberlain and Rothschild (1983).5 Their application to credit

risk has been more recent. A notable example is its use in the CreditMetrics model as set out in

Gupton, Finger and Bhatia (1997). Gordy (2000) and Schönbucher (2003, ch. 10) provide useful

reviews.

A separate line of research has focused on correlated default intensities as in Lando (1998),

Schönbucher (1998), Duffie and Singleton (1999), Duffie and Gârleanu (2001), Collin-Dufresne,

Goldstein and Hugonnier (2004), and Duffie, Saita and Wang (2005); with a review by Duffie

(2005). There are also a host of other approaches, including correlated (but non-systematic) jumps-

at-default (Driessen 2005, Jarrow, Lando, and Yu 2005), the contagion model of Davis and Lo (2001)

as well as Giesecke and Weber’s (2004) indirect dependence approach, where default correlation is

introduced through local interaction of firms with their business partners as well as via global de-

pendence on economic risk factors. The idea of generalizing default dependence beyond correlation

using copulas is discussed in Li (2000), Embrechts, McNeil, and Straumann (2001), Schönbucher

(2002), Frey and McNeil (2003), and Hull and White (2006).

In short, the literature on modeling default dependence is growing rapidly along different paths,

and there is as yet no consensus which approach is best. Our paper does not address that issue,

but it does highlight, using a factor approach, the impact of neglected heterogeneity. This issue of

neglected heterogeneity clearly also arises in the case of other approaches that focus on correlated

default intensities or copulas; we leave that for others to explore. The factor structure considered

here does allow us to explore two distinct channels of heterogeneity: one that is shared, namely

factor sensitivities, and one which is specific to firms within a given grouping (e.g. credit rating),

namely the default threshold or the distance to default.

Our results have bearing on risk and capital management as well as the pricing of credit assets.

For example, in the case of a commercial bank, ignoring heterogeneity may result in underpro-

visioning for loan losses since EL is underestimated, and may result in overcapitalization against

(bank) default since risk is overestimated. The risk assessment and pricing of complex credit asset

such as collateralized debt obligations (CDOs) may be adversely affected since they are driven by

the shape of the loss distribution which is then segmented into tranches.

The plan for the remainder of the paper is as follows: Section 2 introduces the basic model

of firm value and default and considers the problem of correlated defaults. Section 3 derives the

portfolio loss distribution under different heterogeneity assumptions, starting with the simple case

of a homogeneous portfolio as introduced by Vasicek. These results are illustrated in Section 4

where we explore the impact of heterogeneity using returns for a large sample of publicly traded

firms in the U.S. across seven sectors, and we analyze the resulting loss distributions obtained by

stochastic simulations. Section 5 provides some concluding remarks. A technical Appendix presents

generalizations of some material in Sections 2 and 3.

5Connor and Korajczyk (1995) provide an excellent survey.
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2 Firm Value, Default and Default Dependence

Much of the research on credit risk modeling, including our own, is based on the option theoretic

default model of Merton (1974). Merton recognized that a lender is effectively writing a put option

on the assets of the borrowing firm; owners and owner-managers (i.e. shareholders) hold the call

option. If the value of the firm falls below a certain threshold, the owners will put the firm to the

debt-holders. Thus a firm is expected to default when the value of its assets falls below a threshold

value determined by its liabilities.6

2.1 Firm Value and Default

Consider a firm i having asset value Vit at time t, and an outstanding stock of debt, Dit. Under

the Merton model default occurs at the maturity date of the debt, t+h, if the firm’s assets, Vi,t+h,

are less than the face value of the debt at that time, Di,t+h. The value of the firm at time t is the

sum of debt and equity, namely

Vit = Dit +Eit, with Dit > 0. (1)

Conditional on time t information, default will take place at time t + h if Vi,t+h ≤ Di,t+h. In

the Merton model debt is assumed to be fixed over the horizon h. For simplicity we set h =

1; extensions to multiple periods can be found in Pesaran, Schuermann, Treutler, and Weiner

(2005), hereafter PSTW. Because default is costly and violations to the absolute priority rule in

bankruptcy proceedings are common, in practice debtholders have an incentive to put the firm

into receivership even before the equity value of the firm hits the zero value.7 Similarly, the bank

might also have an incentive of forcing the firm to default once the firm’s equity falls below a non-

zero threshold.8 Importantly, default in a credit relationship is typically a weaker condition than

outright bankruptcy. An obligor may meet the technical default condition, e.g. a missed coupon

payment, without subsequently going into bankruptcy. As a result we shall assume that default

takes place if

0 < Ei,t+1 < Ci,t+1, (2)

where Ci,t+1 is a positive default threshold which could vary over time and with the firm’s char-

acteristics (such as region or industry sector). Natural candidates that affect the default threshold

6An alternative to Merton’s end of period approach are the first-passage models where default would occur the

first time that firm value falls below a default boundary (or threshold) over the period, as in Zhou (2001).
7See, for instance, Leland and Toft (1996) who develop a model where default is determined endogenously, rather

than by the imposition of a positive net worth condition. More recently, Broadie, Chernov, and Sundaresan (2005)

show that in the presence of APR default can be optimal when Eit > 0 even in the case of a single debt class.
8For a treatment of this scenario, see Garbade (2001).
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include observable factors such as leverage, profitability, and firm age (most of which appear in

models of firm default), as well as non-observable ones such as management quality.9

We are now in a position to consider the evolution of firm equity value which we assume follows

a standard geometric random walk model:

ln(Ei,t+1) = ln(Eit) + μi + ξi,t+1, ξi,t+1 ∼ iidN(0, σ2ξi), (3)

with a non-zero drift, μi, and idiosyncratic Gaussian innovations with a zero mean and firm-specific

volatility, σξi . Consequently, default occurs if

ln(Ei,t+1) = ln(Ei,t) + μi + ξi,t+1 < ln (Ci,t+1) , (4)

or if the one-period change in equity value or return falls below some threshold defined by

ln

µ
Ei,t+1

Eit

¶
< ln

µ
Ci,t+1

Eit

¶
= λi,t+1. (5)

Equation (5) tells us that the relative (rather than absolute) decline in firm value must be large

enough over the period to result in default. Note that firm-specific information such as leverage

and management quality, embedded in the default threshold Ci, carry over to λi. Thus for highly

levered firms with poor management, the threshold is lower (in the sense of being more negative)

than for well capitalized and well managed firms. The important issue of measuring λi empirically

is taken up in Section 4.1.

Under the assumption of Gaussian innovations in (3), the probability that firm i defaults at the

end of the period is given by

πi,t+1 = Φ

µ
λi,t+1 − μi

σξi

¶
, (6)

where Φ(·) is the standard normal cumulative distribution function. In the theoretical discussions
that follows we shall assume that the firm-specific default thresholds are given.

2.2 Cross Firm Default Dependence: Some Preliminaries

In the context of the Merton model, cross firm default dependence can be introduced by assuming

that shocks to the value of a firm’s equity, ξi,t+1, defined by (3), have the following multifactor

structure:10

ξi,t+1 = γ0ift+1 + σiεi,t+1, εi,t+1 ∼ iid(0, 1) (7)

where ft+1 is an m× 1 vector of common factors, γi is the associated vector of factor loadings, and
εi,t+1 is the firm-specific idiosyncratic shock, assumed to be distributed independently across i; in

9For models of bankruptcy and default at the firm level, see, for instance, Altman (1968), Lennox (1999), Shumway

(2001), and Hillegeist, Keating, Cram and Lundstedt (2004).
10We consider a simple linear model, though nonlinear factor models with the possibility of jumps are also possible.
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this way the model in (7) is said to be conditionally independent.11 The common factors could be

treated as either unobserved or observed through macroeconomic variables such as output growth,

inflation, interest rates and exchange rates.12

In what follows we suppose the factors are unobserved, distributed independently of εi,t+1, and

have constant variances.13 Thus, without loss of generality we assume that ft+1 ∼ (0, Im), where
Im is an identity matrix of order m.

Using (7) in (3) we now have

ln(Ei,t+1)− ln(Eit) = ri,t+1 = μi + γ0ift+1 + σiεi,t+1. (8)

Under the above assumptions

σ2ξi = γ0iγi + σ2i , (9)

which decomposes the return variance into the part due the systematic risk factors, γ0iγi, and the

residual or idiosyncratic variance, σ2i . The presence of the common factors also introduces a varying

degree of asset return correlations across firms, which in turn leads to variation in cross firm default

correlations for a given set of default thresholds, λi,t+1. The extent of default correlation depends

on the size of the factor loadings, γi, the importance of the idiosyncratic shocks, σi, the values of

the default thresholds, λi,t+1, and the shape of the distribution assumed for εi,t+1, particularly its

left tail properties. The correlation coefficient of returns of firms i and j is given by

ρij =
δ0iδj¡

1 + δ0iδi
¢1/2 ¡

1 + δ0jδj
¢1/2 , (10)

where δi = γi/σi is the standardized m× 1 vector of factor loadings (systematic risk exposures) of
firm i.

To derive the cross correlation of firm defaults, which we denote by ρ∗ij,t+1, let zi,t+1 be the

default outcome for firm i over a single period such that

zi,t+1 = I (λi,t+1 − ri,t+1) , (11)

where I(A) is an indicator function that takes the value of unity if A ≥ 0, and zero otherwise. Then
(see also Zhou 2001)

ρ∗ij,t+1 =
E (zi,t+1zj,t+1)− πi,t+1πj,t+1p

πi,t+1(1− πi,t+1)
p
πj,t+1(1− πj,t+1)

, (12)

11Note that conditional independence may not necessarily be attained in an empirical setting (see, for instance,

Das, Duffie, Kapadia and Saita 2005), a point we discuss in more detail in Section 4.
12For instance, PSTW provide an empirical implementation of this model by linking the (observable) factors, ft+1,

to the variables in a global vector autoregressive model comprising around 80% of world output.
13The more general case where the factors may exhibit time varying volatility can be readily dealt with by allowing

the factor loadings to vary over time, in line with market volatilities. But in this paper we shall not pursue this line

of research, primarily because the focus of our empirical analysis is on quarterly and annual default risks, and over

such horizons asset return volatility dynamics tend to be rather weak and of second order importance.
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where πi,t+1 = E (zi,t+1) is firm i0s default probability over the period t to t+ 1. For given values

of the thresholds, λi,t+1, a relatively simple expression for ρ∗ij,t+1 can be obtained if conditional on

ft+1, εi,t+1 and εj,t+1 are cross sectionally independent, and ft+1 and εi,t+1 have a joint Gaussian

distribution. In this case, known as conditionally independent double-Gaussian model, we have

πi,t+1 = Φ

⎛⎝ λi,t+1 − μiq
σ2i + γ0iγi

⎞⎠ . (13)

The argument of Φ(·) in (13) is commonly referred to as “distance to default” (DD) such that

DDi,t+1 = Φ
−1(πi,t+1) =

λi,t+1 − μiq
σ2i + γ0iγi

. (14)

For future reference note that under the double-Gaussian assumption E (zi,t+1zj,t+1) is given by

E (zi,t+1zj,t+1) = E [I (λi,t+1 − ri,t+1) I (λi,t+1 − ri,t+1)]

= Pr [ri,t+1 < λi,t+1 & rj,t+1 < λj,t+1] (15)

= Φ2
£
Φ−1 (πi,t+1) ,Φ

−1 (πj,t+1) , ρij
¤
,

where Φ2[·] is the bivariate standard normal cumulative distribution function, so that the corre-
sponding default correlation ((15) in (12)) is

ρ∗ (π, ρ) =
Φ2
£
Φ−1 (π) ,Φ−1 (π) , ρ

¤
− π2

π(1− π)
.

3 Losses in a Credit Portfolio

Consider now a credit portfolio composed of N different credit assets such as loans, each with

exposures or weights wit, at time t, for i = 1, 2, .., N , such that14

NX
i=1

wit = 1,
NX
i=1

w2it = O
¡
N−1¢ , wit ≥ 0. (16)

A sufficient condition for (16) to hold is given by wit = O
¡
N−1¢, which is the standard granularity

condition where no single exposure dominates the portfolio.15 Without loss of generality, we impose

both here and later in the empirical section, that a defaulted asset has no recovery value.16 Under
14The assumption that N is time-invariant is made for simplicity and can be relaxed.
15Conditions (16) on the portfolio weights was in fact embodied in the initial proposal of the New Basel Accord

in the form of the Granularity Adjustments which was designed to mitigate the effects of significant single-borrower

concentrations on the credit loss distribution (BCBS, 2001, Ch.8). See also the discussion in Lucas, Klaassen, Sprei,

and Straetmans (2001) and Gordy (2004).
16The case where default and recovery are correlated through common business cycle effects presents new

technical difficulties and is addressed briefly in Appendix A of an earlier version of this paper, available at

http://fic.wharton.upenn.edu/fic/papers/05/p0505.html.
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this set-up the portfolio loss over the period t to t+ 1 is given by

N,t+1 =
NX
i=1

witzi,t+1. (17)

The probability distribution function of N,t+1 can now be derived both conditional on an

information set available at time t, It, or unconditionally. The two types of distributions coincide
when the factors, ft+1, are assumed to be serially independent, a case often maintained in the

literature. However, this assumption precludes the use of any business cycle models in the analysis

of credit risk. For the theoretical results we therefore consider the more general case of a dynamic

factor model and allow the factors to be serially correlated. In particular, we shall assume that ft+1

follows a covariance stationary process, and It contains at least ft and its lagged values, or their
determinants when they are unobserved. This structure corresponds to the empirical application in

PSTW which makes use of a global macroeconometric model, though later in this paper (Section

4) we impose serial independence on the factor process for expositional simplicity.

A simple example of a dynamic factor model is the Gaussian vector autoregressive specification

ft+1 = Λf t + ηt+1, ηt+1 | It ∼ iidN(0,Ωηη), (18)

where It is the public information known at time t, and Λ is an m×m matrix of fixed coefficients

with all its eigenvalues inside the unit circle such that

V ar (ft+1 | It) =
∞X
s=0

ΛsΩηηΛ
0s = Im. (19)

The focus of our analysis will be on the limit distribution of N,t+1 | It, as N → ∞. Not
surprisingly, this limit distribution depends on the nature of the return process {ri,t+1} and the
extent to which the returns are cross-sectionally correlated. Our theoretical discussion shall be in

terms of the variance of the loss distribution, though occasionally we refer to the standard deviation

or loss volatility, known as unexpected loss (UL) in the credit risk literature. In practice, one may

also be interested in quantiles of the loss distributions, or VaR, and those can be easily obtained

through stochastic simulations.

3.1 Credit Risk under Firm Homogeneity

Vasicek (1987) was one the first to consider the limit distribution of N,t+1 using asset return

equations with a factor structure. However, he focused on the perfectly homogeneous case with

the same factor loadings, γi = γ, the same default thresholds, λi,t+1 = λ, the same firm-specific

volatilities, σi = σ, and zero unconditional returns, μi = 0, for all i and t. Note that a multifactor

model with homogeneous factor loadings is equivalent to a single factor model. In this model the
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pair-wise asset return correlations, ρij , is identical for all obligor pairs in the portfolio, so that

ri,t+1 =
√
ρft+1 +

p
1− ρ εi,t+1,

Ã
εi,t+1

ft+1

!
| It ∼ iidN (0, I2) . (20)

The remaining parameter, λ, is then calibrated to a pre-specified default probability, π, so that the

distance to default and default thresholds are the same for all firms and can be easily estimated

from historical default frequency of the portfolio using

λ = DD = Φ−1 (π) . (21)

When default thresholds are allowed to vary across firms, identification issues arise which are

discussed in Section 4.1.

Under the Vasicek model portfolio loss variance depends on π and ρ∗:

V ar ( N,t+1 | It) = π(1− π)

⎧⎨⎩ρ∗ + (1− ρ∗)
NX
j=1

w2jt

⎫⎬⎭ . (22)

Under the granularity condition, (16), for N sufficiently large the second term in brackets becomes

negligible. Hence, in the limit

lim
N→∞

V ar ( N,t+1 | It) = π(1− π)ρ∗ = Φ2
£
Φ−1 (π) ,Φ−1 (π) , ρ

¤
− π2. (23)

Vasicek’s credit loss limit distribution is fully determined by two parameters, namely the average

default probability, π, and the pair-wise return correlation coefficient, ρ (see Appendix A.2 for

further detail). The former fixes the expected loss of the portfolio, while the latter controls the

shape of the loss distribution. In effect one parameter, ρ, controls all aspects relating to the shape

of the loss distribution: its volatility, skewness and kurtosis.

3.2 Credit Risk with Firm Heterogeneity

Building on Vasicek’s work we now consider models that allow for firm heterogeneity across a

number of relevant parameters. In this section we provide some analytical derivations and show

how the theoretical work of Vasicek can be generalized. An empirical evaluation of the importance

of allowing for firm heterogeneity in credit risk analysis is discussed in Section 4.

Under the heterogeneous multifactor return process (8), the portfolio loss, N,t+1, can be written

as

N,t+1 =
NX
i=1

witI
¡
ai,t+1 − δ0ift+1 − εi,t+1

¢
, (24)

where

ai,t+1 =
λi,t+1 − μi

σi
, δi =

γi
σi
. (25)
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In addition to allowing for parameter heterogeneity, we also relax the assumption that conditional

on It the common factors, ft+1, and the idiosyncratic shocks, εi,t+1, are normally distributed with
zero means. Accordingly we assume that

εi,t+1 | It ∼ iid (0, 1), for all i and t,

ft+1 | It ∼ iid (μft, Im), for all t,

where under the dynamic factor model (18), μft = Λft. Allowing μft to be time-varying enables

us to explicitly consider the possible effects of business cycle variations on the loss distribution. In

the credit risk literature μft is usually set to zero. For future use we shall denote the It-conditional
probability density and the cumulative distribution functions of εi,t+1 and ft+1, by fε(·) and Fε(·),
and ff (·) and Ff (·), respectively.

To deal with parameter heterogeneity across firms we abstract from time variations in the

default thresholds (namely set ai,t+1 = ai) and adopt the following random coefficient model:

θi = θ + vi, vi v iid (0,Ωvv), for i = 1, 2, ..., N, (26)

where

θi =
¡
ai, δ

0
i

¢0
, θ =

¡
a, δ0

¢0
, vi =

¡
via,v

0
iδ

¢0
, (27)

and

Ωvv =

Ã
ωaa ωaδ

ωδa Ωδδ

!
, (28)

is a positive semi-definite symmetric matrix, and vi’s are distributed independently of (εj,t+1, ft+1)

for all i, j and t.

Allowing for such parameter heterogeneity may be desirable when firms have different sensitiv-

ities to the systematic risk factors ft+1, and those sensitivities or factor loadings are known only

up to their distributional properties described in (26). A practical example might be assessing the

credit risk for a portfolio of borrowers which are privately held, i.e. not publicly traded. This is

typically the case for much of middle market and most of small business lending. For such firms

it would be very difficult or even impossible to obtain individual estimates of θi, and an average

estimate based on θ and Ωvv may need to be used. See also Section 4.6.

The heterogeneity described in (26) to (28) states that firm differences are purely random.

However, firms could in addition exhibit systematic parameter differences, say by industry and/or

region, so that parameter means and covariances are also industry and/or region specific. This

generalization is taken up in Section 3.4.2.

3.3 Limits to Unexpected Loss under Parameter Heterogeneity

The extent to which credit losses are diversifiable can be investigated using a number of different

measures. Before exploring the entire loss distribution, for reasons of analytical tractability we

10



focus here on loss variance, V ar ( N,t+1 | It), or its square root, unexpected loss, and note that in
general

V ar ( N,t+1 | It) = Ef [V ar ( N,t+1 | ft+1, It)] + V arf [E ( N,t+1 | ft+1, It)] . (29)

Because of the dependence of the default indicators, zi,t+1, across i, through the common fac-

tors ft+1, unexpected loss remains even for a portfolio of infinitely many exposures. The prob-

lem of correlated defaults can be dealt with by first conditioning the analysis on the source

of cross-dependence (namely ft+1) and noting that conditional on ft+1 the default indicators,

zi,t+1 = I
¡
ai − δ0ift+1 − εi,t+1

¢
, i = 1, 2, ..., N , are independently distributed. Since the zi,t+1

are conditionally independent, under granularity condition (16), E [V ar ( N,t+1 | ft+1, It)] → 0,

as N → ∞, and in the limit the loss variance, V ar ( N,t+1 | It) , is dominated by the second term
in (29). Namely, we have

lim
N→∞

V ar ( N,t+1 | It) = lim
N→∞

{V ar [E ( N,t+1 | ft+1, It)]} , (30)

which follows from Proposition 2 in Gordy (2003). This result clearly shows that when the portfolio

weights satisfy the granularity condition (16), the limit behavior of the unexpected loss does not

depend on the portfolio weights wit. Furthermore, this result holds irrespective of whether ai and

δi are homogeneous or vary randomly across i.

Under the random coefficient model (26), asymptotic loss variance, given by (30), can be

obtained by integrating out the heterogeneous effects of ai and δi. First note that N,t+1 =PN
i=1witI

¡
ai − δ0ift+1 − εi,t+1

¢
, which under (26) can be written as

N,t+1 =
NX
i=1

witI
¡
a− δ0ft+1 − ζi,t+1

¢
, (31)

where

ζi,t+1 = εi,t+1 − v0igt+1 (32)

captures all innovations, and gt+1 = (1,−f 0t+1)0. Conditional on ft+1, ζi,t+1 is distributed indepen-
dently across i with zero mean and variance

ω2t+1 = 1 + g
0
t+1Ωvvgt+1, (33)

where g0t+1Ωvvgt+1 is the variance contribution arising from the random coefficients model (i.e. ex-

plicitly due to parameter heterogeneity). The expected loss conditional on ft+1 is given by

E ( N,t+1 | ft+1, It) =
NX
i=1

wit Pr
¡
ζi,t+1 ≤ a− δ0ft+1 | ft+1,It

¢
=

NX
i=1

witFκ

µ
θ0gt+1
ωt+1

¶
,

11



and since
PN

i=1wit = 1, then

E ( N,t+1 | ft+1, It) = Fκ

µ
θ0gt+1
ωt+1

¶
, (34)

where Fκ (·) is the cumulative distribution function of the standardized composite innovations

κi,t+1 =
ζi,t+1
ωt+1

| ft+1,It ∼ iid(0, 1). (35)

The loss distribution (34) describes the general case of parameter heterogeneity, and evaluation

such as computing EL and VaR, may be done using stochastic simulation by taking independent

draws from any given distribution of κi,t+1. In some cases we are able to make predictions analyti-
cally, e.g. when heterogeneity is limited to mean returns and/or default thresholds, or to the factor

loadings. Those cases are taken up in Section 3.4.

In the limit, therefore, using (30) we have

lim
N→∞

V ar ( N,t+1 | It) = V ar

∙
Fκ

µ
θ0gt+1
ωt+1

¶
| It
¸
, (36)

which does not depend on the exposure weights, wit. This result represents a generalization of the

limit variance obtained for the homogeneous case, given above by (23).

The implication for credit risk management is clear: changing the exposure weights that satisfy

the granularity condition (16) will have no risk diversification impact so long as all firms in the

portfolio have the same risk factor loading distribution. To achieve systematic diversification one

needs different firm types, e.g. along industry lines, and we treat this case below in Section 3.4.1.

3.4 Impact of Neglected Heterogeneity

Parameter heterogeneity can significantly affect the shape of the loss distribution as well as expected

and unexpected losses. This is most easily illustrated with a single factor model. Multifactor

generalizations are given in Appendix A. As before, portfolio losses are given by (replacing wit

with wi to simplify the notation)

N,t+1 =
NX
i=1

wiI
¡
a− δft+1 − ζi,t+1

¢
,

where a = (λ− μ)/σ, δ = γ/σ, and ζi,t+1 = εi,t+1 − via + viδft+1, is the composite innovation. In

the absence of heterogeneity, δ and a can be written in terms of the return correlation, ρ, and the

default probability, π :

δ =

r
ρ

1− ρ
, for ρ > 0, (37)

and

a =
Φ−1(π)√
1− ρ

< 0 for π < 1/2, (38)

12



which yields the following useful relationship between a, δ and π :

a =
p
1 + δ2 Φ−1 (π) . (39)

Therefore, for a given value of π < 1/2, a and δ are negatively related and can not vary freely of

one another.

Under the conditionally independent normal assumption,⎛⎜⎜⎝
εi,t+1

via

viδ

⎞⎟⎟⎠ |ft v iidN

⎛⎜⎜⎝0,
⎛⎜⎜⎝
1 0 0

0 ωaa ωaδ

0 ωaδ ωδδ

⎞⎟⎟⎠
⎞⎟⎟⎠ ,

then ζi,t+1 |ft v iidN(0, 1 + ωaa + ωδδf
2
t − 2ωaδft), and hence as N →∞ the loss distribution can

be simulated using17

x(f) = Φ

Ã
a− δfp

1 + ωaa + ωδδf2 − 2ωaδf

!
, (40)

for random draws of f v N(0, 1). Note that the asymptotic loss distribution is given by the

distribution of x (the fraction of the portfolio lost) over (0, 1]. Equation (40) is a key expression

which we use below to analyze the impact of heterogeneity (or its neglect), manifested through

non-zero values of ωaa, ωδδ, and ωaδ, on the loss distribution, especially its tail.

3.4.1 Heterogeneity of the Mean Returns and/or Default Thresholds

Consider first the case where the standardized factor loading is the same for all firms, namely

δi = δ, ∀i, but allow for differences in ai. This also imposes σ2i = σ2, ∀i, and implies the same
pair-wise return correlation, ρ, across all firms. As a result, any variation in ai is due to cross firm

variation in λi−μi, the difference between the default threshold and the mean return. It is unlikely
that one would see differences in firm thresholds, perhaps due to management quality, but not in

expected returns, so that variation in λi will likely be accompanied by variation in μi.

With that in mind, portfolio losses are

x = Φ
³
ã− δ̃f

´
,

where

ã =
a√

1 + ωaa
, δ̃ =

δ√
1 + ωaa

. (41)

17Here to simplify the exposition we have denoted the limit of N,t+1 by x, and have abstracted from the subscript

t since ft is serially uncorrelated.
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In this case the CDF of x would have the same form as Vasicek’s loss distribution, namely18

F (x) = Φ

µ
Φ−1(x)− ã

δ̃

¶
, (42)

= Φ

Ãp
(1 + ωaa) (1− ρ)Φ−1(x)− Φ−1(π)

√
ρ

!
,

where the second expression makes use of (38), (37) and (41). This clearly reduces to the CDF of

the Vasicek’s model for ωaa = 0; see equation (A.4) in Appendix A.2.

It is also easily seen that in this case EL for the heterogeneous portfolio, denoted π̃, is given by

π̃ = E(x) = Φ

⎛⎝ ãq
1 + δ̃

2

⎞⎠ = Φ

Ã
ap

1 + ωaa + δ2

!
= Φ

Ã
Φ−1(π)p

1 + (1− ρ)ωaa

!
, (43)

which differs from the EL of the homogeneous portfolio. Since we are interested in losses for values

of π < 1/2, for which Φ−1(π) < 0, we have

∂π̃

∂ωaa
= φ

Ã
Φ−1(π)p

1 + (1− ρ)ωaa

!
−Φ−1(π)(1− ρ)

2 (1 + (1− ρ)ωaa)
3/2
≥ 0, for π < 1/2,

and it readily follows that π̃ ≥ π, meaning EL is underestimated when ωaa > 0 and this source of

heterogeneity is neglected.

To derive the impact of ωaa on unexpected loss, first without holding EL fixed, note that the

pair-wise correlation of asset returns in this case is given by

ρ̃ =
δ2

1 + δ2 + ωaa
=

ρ

1 + ωaa(1− ρ)
,

and using the results in Section 3.1 for N sufficiently large we have

V ar(x) = π̃ (1− π̃) ρ∗ (π̃, ρ̃) ,

where

ρ∗ (π̃, ρ̃) =
Φ2
£
Φ−1 (π̃) ,Φ−1 (π̃) , ρ̃

¤
− π̃2

π̃(1− π̃)
, (44)

and, as before in (15), Φ2[·] is the bivariate standard normal cumulative distribution function.
Thus, if we allow EL to vary, the effect ωaa on loss variance is

∂V ar(x)

∂ωaa
=

∂V ar(x)

∂π̃
× ∂π̃

∂ωaa
+

∂V ar(x)

∂ρ̃
× ∂ρ̃

∂ωaa

=

∙
(1− 2π̃) ρ∗ (π̃, ρ̃) + π̃ (1− π̃)

µ
∂ρ∗ (π̃, ρ̃)

∂π̃

¶¸
∂π̃

∂ωaa
+ π̃ (1− π̃)

µ
∂ρ∗ (π̃, ρ̃)

∂ρ̃

¶
∂ρ̃

∂ωaa
.

The first term of this derivative is positive so long as 0 ≤ π̃ < 1/2 and ρ > 0 (and hence ρ∗ (π̃, ρ̃) >

0).19 However, the second term is negative since ∂ρ̃/∂ωaa < 0. Thus the net effect of heterogeneity

in mean returns and/or default thresholds on portfolio loss variance is ambiguous.
18See Appendix A.2.
19Note that ∂ρ̃∗/∂π̃ > 0.
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3.4.2 Within and Between Type Heterogeneity

The paramter heterogeniety considered so far is relatively simple and can be viewed as within type

heterogeniety, in the sense that differences across firms are random draws from the same common

distribution. Under this set up, asymptotically as N → ∞, the expected loss is invariant to the
portfolio weights and it would not be possible to control the EL while experimenting with different

degrees of heterogeniety as measured, for example, by different values of ωaa. To control the EL we

need to introduce an additional systematic source of heterogeneity. One possible approach would

be to introduce firm types where for each type ai’s are draws from different distributions or from

the same distribution but with different parameters. As an illustration, suppose the loan portfolio

contains two types of firms, H and L, with portfolio weights wiH, i = 1, 2, ..., NH, and wiL, for

i = 1, 2, ..., NL, (such that N = NH+NL), and default probabilities, πH and πL, respectively, with

0 < πL < πH < 1/2. The differences in the default probabilities across the two types of firms

could be due to differences in leverage or management quality, summarized, for instance, in a credit

rating.

The portfolio loss in this case is given by

N,t+1 =

NHX
i=1

wiHI (aiH − δft+1 − εiH,t+1) +
NLX
i=1

wiLI (aiL − δft+1 − εiL,t+1) , (45)

where I (·) is the indicator function as in (11),

aiH = aH + viHa, aiL = aL + viLa, (46)

with f v N(0, 1), εik,t+1 v N(0, 1) and vika v N(0, ωaa), for k = H,L. It is also assumed that
εik,t+1 and vika are independently distributed across all i and k.20

Let wk,Nk
=
PNk

i=1wik, and wk = limNk→∞wk,Nk
, k = L,H, where wk,Nk

> 0 for both finite Nk

and as Nk →∞, so that wH, wL > 0, wH,NH+wL,NL = 1. Assuming that the granularity condition

(16) holds for each firm type, then as NH,NL → ∞ (the within-type portfolio must be large and

granular to eliminate within type idiosyncratic risk), we have

x |f = wHΦ
³
ãH − δ̃f

´
+ wLΦ

³
ãL − δ̃f

´
, (47)

where ãk = ak(1 + ωaa)
−1/2, for k = H,L, wH + wL = 1, and as before δ̃ = δ(1 + ωaa)

−1/2. Since

f v N(0, 1), it is now easily seen that

E(x) = π̃ = wHπH + wLπL,

where

πk = Φ

Ã
akp

1 + ωaa + δ2

!
= Φ

Ã
ak
√
1− ρp

1 + (1− ρ)ωaa

!
, for k = H,L,

20One could also allow for differences in the variances of vika across the types, k = H,L. But to keep the exposition
simple here we are assuming that V ar(vika) = ωaa.
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and hence

ak =

p
1 + (1− ρ)ωaa Φ

−1(πk)√
1− ρ

, for k = H,L.

To ensure the same expected losses under the homogeneous and heterogeneous cases we must have

π = wHπH +wLπL, (48)

and this can be achieved, for given values of πH and πL, by an appropriate choice of the portfolio

weights on the types L andH (note that the granularity condition implies that changing the weights
within type has no effect), so long as πH 6= πL, and 0 < πk < 1, for k = H,L.21 Indeed both

wH and wL must be positive, so long as πH 6= πL, to make the expected loss of the heterogeneous

portfolio the same as for the homogeneous portfolio.

Using (45), and recalling the result in (15), we now have

V (x) = w2H
£
F (πH, πH, ρ̃)− π2H

¤
+ w2L

£
F (πL, πL, ρ̃)− π2L

¤
+ 2wHwL [F (πH, πL, ρ̃)− πHπL] ,

where

F (πi, πj , ρ̃) = Φ2
£
Φ−1(πi),Φ

−1(πj), ρ̃
¤
.

Hence, under (48) the variance of the heterogeneous portfolio reduces to

Vhet(x) = w2HF (πH, πH, ρ̃) + w2LF (πL, πL, ρ̃) + 2wHwLF (πH, πL, ρ̃)− π2. (49)

Furthermore, the variance of the associated homogeneous portfolio is given by

Vhom(x) = F (π, π, ρ)− π2. (50)

It is now easily established that so long as wH (or wL) is set such that π̃ = π, then for ρ > 0,

ωaa > 0, and aH 6= aL, we have

Vhom(x) > Vhet(x), (51)

namely, the risk will be overestimated once the EL’s of the two portfolios are equalized.

To prove this claim, note that since ρ > ρ̃, and ∂F (π, π, ρ)/∂ρ > 0 (Vasicek 1998),

F (π, π, ρ) ≥ F (π, π, ρ̃).

Therefore, to establish (51) it is sufficient to show that under π = wHπH + wLπL,

F (π, π, ρ̃) > w2HF (πH, πH, ρ̃) + w2LF (πL, πL, ρ̃) + 2wHwLF (πH, πL, ρ̃). (52)

Consider now F (x, y, ρ̃) and note that ∂2F (x, y, ρ̃)/∂x2 < 0,22 and hence for given values of y and

ρ̃, F (x, y, ρ̃) is concave in x and we have

F (π, π, ρ̃) = F (wHπH + wLπL, π, ρ̃) > wHF (πH, π, ρ̃) +wLF (πL, π, ρ̃). (53)
21Note that the possibility of πH = πL is ruled out only if aH 6= aL, which requires aiH and aiL to be draws from

distributions with different means.
22A proof is provided in Appendix B.
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Similarly, ∂2F (x, y, ρ̃)/∂y2 < 0, and

F (πH, π, ρ̃) > wHF (πH, πH, ρ̃) + wLF (πH, πL, ρ̃),

F (πL, π, ρ̃) > wHF (πL, πH, ρ̃) + wLF (πL, πL, ρ̃).

Using these results in (53), and noting that by symmetry F (πH, πL, ρ̃) = F (πL, πH, ρ̃), then (52)

is readily established as required.

The above result is easily extended to portfolios containing more than two types of firms.

Moreover, as the distance between πL and πH widens, the difference between the risks of the two

portfolio types increases, suggesting that efficient credit portfolios should follow a “barbell” strategy

combining exposures to very high quality credit with very low quality credits, so long as πk < 1/2

for k = H,L. As a result ignoring this type of heterogeneity would result in overestimation of risk
when holding EL fixed.

3.4.3 Full Parameter Heterogeneity

The impact of allowing for full parameter heterogeneity in the multifactor case is discussed in

Appendix A.3. For the single factor case, the analysis of allowing for non-zero values of ωaa, ωδδ, and

ωaδ is easily carried out using (40) through random draws f (r) v iidN(0, 1) for r = 1, 2, ..., R. Given

these simulated values one can readily compute UL, VaR, and other distributional characteristics

as desired.

4 Illustrative Application: The Impact of Neglected Heterogene-

ity

In this section we consider different types of heterogeneity across firms and illustrate their effects on

the resulting loss distribution by simulating losses for credit portfolios comprised of publicly traded

U.S. firms. We also confirm that the predictions based on the random coefficient model, as set out

in Section 3.4, match those obtained from more conventional simulation techniques. Finally, we are

also interested in understanding which source of heterogeneity is the most important in affecting

the shape of the loss distribution: the firm return process and associated factor loadings or the

default threshold through information on distance to default or a credit rating.

4.1 Heterogeneity in Default Thresholds: Specification and Identification

We begin with a brief discussion of the specification and identification of the default thresholds.

The probability of default for the ith firm is given by (6), which we reproduce here for convenience:

πi,t+1 = Φ

µ
λi,t+1 − μi

σξi

¶
.

17



This provides a functional relationship between a firm’s equity returns (as characterized by μi and

σξi), its default threshold, λi,t+1, and the default probability, πi,t+1. In the case of publicly traded

companies, μi and σξi can be consistently estimated from market returns based on historical data

using either rolling or expanding observation windows. In general, however, λi,t+1 and πi,t+1 can

not be directly observed. One possibility would be to use balance sheet and other accounting data

to estimate λi,t+1. This approach is taken up by Vassalou and Xing (2004) to cite an academic

example, and KMV as an industry example, both of which use just the book value of debt (typically

all short plus 1/2 of long term debt). But as argued in PSTW, such accounting information is likely

to be noisy and might not be all that reliable due to information asymmetries and agency problems

between managers, share-, and debtholders.23 In addition to accounting data, other firm character-

istics, such as firm age and perhaps size, as well as management quality could also be important in

the determination of default thresholds, and most if not all of those characteristics typically go into

a credit rating. In view of these measurement problems, PSTW propose an alternative estimation

approach where firm-specific default thresholds are obtained using firm-specific credit ratings and

historical default frequencies. These credit ratings could be either external, e.g. supplied by a rating

agency, or internal from a bank’s rating unit.

To be sure, neither our approach nor the results are predicated on the use of credit ratings

per se, but rather on some summary measure of firm-specific default risk. PD point estimates,

however derived, are very noisy, suggesting an averaging or grouping approach. This is effectively

what a credit rating does, whether provided by an external rating agency or a bank-internal model.

Moreover, since the bulk of a bank’s lending portfolio is to privately held firms, typically only

relatively coarse groupings are possible. See Hanson and Schuermann (2005) for a discussion on

external ratings, and Trück and Ratchev (2005) on bank-internal ratings.

Broadly two identification schemes are possible, and they imply in turn assumptions about the

distance to default, DD. One approach would be to impose the same default threshold for all firms

of a given rating. Alternatively one could impose the same DD for all firms of a given rating,

meaning

DDi,t+1 =
λi,t+1 − μ̄i

σ̄ξi
= DDR,t+1, (54)

for all firms i with rating R, where μ̄i and σ̄ξi are the unconditional estimates of μi and σξi

obtained using observations on firm-specific returns up to the end of period t. In this case the

default threshold is different for every firm and can be computed using

λ̂i,t+1 = dDDR,t+1 σ̄ξi + μ̄i, for i ∈ Rt, (55)

23With this in mind, Duffie and Lando (2001) allow for the possibility of imperfect information about the firm’s

assets and default threshold in the context of a first-passage model. Their model is confirmed empirically in Yu

(2005).
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where dDDR,t+1 = Φ
−1 (π̂R,t+1) , (56)

Φ−1 (·) is the inverse of the cumulative distribution function of the standard normal, and π̂R,t+1 is

the observed default frequency of R-rated firms.24 This approach is analogous to the systematic
heterogeneity by types discussed in the theory Section 3.4.2. Once again the estimated default

thresholds, λ̂i,t+1, will be finite so long as π̂R,t+1 6= {0, 1}.
The identification conditions can be summed up as follows: condition (54) imposes the same

probability of default for each R−rated firm, whereas the alternative strategy simply imposes that
this needs to hold on average across R−rated firms in the portfolio. Of the two, the assumption
of the same distance-to-default seems more in line with the way credit ratings are established

by the main rating agencies. First, the idea that firms with similar distances-to-default have

similar probabilities of default is central to structural models of default. For instance, KMV makes

use of a one-to-one mapping from DDs to EDFs (expected default frequencies). Second, rating

agencies attempt to group firms according to their probability of default (subject possibly to some

adjustments for differences in their expected loss given defaults), and in a structural model this is

equivalent to grouping firms according to distance-to-default. In our empirical analysis we shall

focus on the threshold estimates given by (55).25

The default threshold as specified in (55) incorporates equity market and credit rating informa-

tion. Empirically, the right-hand-side of (55) is estimated on a rolling-window basis allowing for

time variation in λ̂i,t+1.

4.2 Data and Portfolio Construction

We form credit portfolios of publicly traded U.S. firms at the end of each year from 1997 to 2002

and then simulate portfolio losses for the following year. Parameters are estimated recursively

using 10-year (40-quarter) rolling windows. The simulations are out-of-sample in that the models,

fitted over a ten-year sample, are used to simulate losses for the subsequent 11th year. This

recursive procedure allows us to explore the robustness of the results to possible time variation

in the underlying parameters.

The loss simulations require an estimate of the probability of default for each firm. These are

obtained at the level of the credit rating, R, assigned to the firm by the two largest credit rating

agencies: Moody’s and S&P. In keeping with our overall empirical strategy, we estimate probabilities

of default recursively for each grade using 10-year rolling windows of all firm rating histories from

S&P. These probabilities are estimated using the time-homogeneous Markov or parametric duration

24Note that Φ−1 (πi,t+1) < 0 for πi,t+1 < 1
2 . In practice πi,t+1 tends to be quite small.

25More detail as well as results using the same-threshold (λ) identifying assumption are given in Pesaran, Schuer-

mann and Treutler (2005).
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estimator discussed in Lando and Skødeberg (2002) and Jafry and Schuermann (2004). We impose

a minimum annual probability of default (PD) of 0.001% or 0.1 basis points. Our estimated PDs

for both AAA and AA fall below this minimum for all years.

In order to be selected for inclusion in one of our portfolios, a firm needs a) 10 years of consecutive

quarterly equity returns in the CRSP database that match the rolling estimation window, and b)

an active credit rating from either Moody’s or S&P at the end of the window. In case both ratings

are available the S&P rating is chosen.26 For the first sample or cohort (which ends in 1997) we

have 628 firms. At the end of the following year the portfolio is rebalanced, retaining surviving

firms and augmenting the portfolio with new firms that have a rating at the end of that year,

i.e. 1998, and also have 40 consecutive quarters of returns in the CRSP database.

The portfolio composition is adjusted annually, starting with 1998, to reflect defaults, upgrades

and downgrades which may have occurred during the year. We also reallocate exposure annually to

reflect changes in the distribution of ratings within the universe of rated U.S. firms. For example,

at the end of 1997 CCC-rated firms made up only 2.31% of all rated U.S. firms, but by year-end 2002
this proportion had risen to 5.89%. In Table 1 we show the average ratings distribution for 1997 and

2002. It becomes clear that there has been a systematic deterioration in average credit quality of

rated U.S. firms over this period. In addition, estimated probabilities of default for non-investment

grade ratings, and for CCC in particular, have risen noticeably over this period. As a result, the
weighted average annual probability of default, π̂, has increased from 1.60% for the year-end 1997

portfolio to 4.12% for the year-end 2002 portfolio. However, since firms choose whether or not to

obtain a rating, this sample suffers from self-selection as does any sample which makes use of credit

ratings. As a result it is unclear whether these patterns are reflective of the broader population of

U.S. firms.

Using two-digit SIC codes we group firms into seven broad sectors to ensure a sufficient number

of firms per sector. The sectors and percentage of firms by sector at year-end 1997 and 2002 are

summarized in Table 2.

4.3 Model Specifications

Let rij,t+1 to be the return of firm i in sector j over the quarter t to t+1. Following the multi-factor

return model given by (8), we employ the following return regressions adapted to our empirical

applications:

rij,t+1 = αij + β0ijft+1 + uij,t+1, (57)

where ft+1 ∼
¡
μf ,Σf

¢
, μf is an m× 1 vector of constants, and Σf is the covariance matrix of the

common factors, also assumed fixed. In terms of the return parameters of (3) and (8), the expected

26Our decision rule is driven by the use of S&P ratings histories to compute the default probabilities πR.
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return can be written as

μ
ij,t+1

= αij + β0ijμf , (58)

and the unexpected component as

ξ
ij,t+1

= β0ij(ft+1 − μf ) + uij,t+1. (59)

The total return variance is given by

σ2ξ
ij

= β0ijΣfβij + σ2
ij
, (60)

where σ2
ij
is the variance of the idiosyncratic component, uij,t+1. Note that (57) is not a forecast-

ing equation. Moreover, since the factors are assumed to be serially uncorrelated here, there is no

meaningful distinctions between conditional and unconditional returns and hence loss distributions.

This is in contrast to the observable factor model presented in PSTW where the (global) factor

structure is modeled as a vector autoregressive error correcting mechanism, thereby explicitly in-

troducing serial correlation in the returns, making multi-period forecasts possible, conditional on

the factor values at the end of the sample period.

Following a standard approach in the finance literature, we model firm returns using an unob-

served components or factor approach, either single or multiple, with increasing degrees of hetero-

geneity. The empirical exercise involves a number of variations on the basic firm return equation

given by (57) using market-cap weighted market returns r̄t+1 as proxies for two of the possible

m common factors. Sector returns, r̄j,t+1, are computed in a similar fashion, namely using the

market-cap weighted average of firm returns in that sector.27

The simplest model is the fully homogeneous return specification analogous to the one assumed

by Vasicek:

rij,t+1 = α+ βr̄t+1 + uij,t+1, (61)

with uij,t+1 ∼ iidN(0, σ2).

The second model tests the predictions made by theory in Section 3.4 by introducing hetero-

geneity in default thresholds by rating (Model II). The third model specification allows for full

parameter heterogeneity where firm alphas, factor loadings and error variances are allowed to vary

across firms. In the fourth specification we add an industry or sector factor so that each firm’s

return is regressed on r̄t+1 as well as on r̄j,t+1.

In the loss simulations we must impose conditional independence, but if we have failed to capture

this dependence in the return model specifications, we will subsequently underestimate risk. With

that in mind, the fifth and final model specification is the principal components (PC) model. We

selected m̂, the number of factors, using the IC1 and IC2 selection criteria proposed in Bai and

Ng (2002), with the maximum number of factors set to 5. Both criteria yielded the same result of

27The weights for period t+ 1 are based on the average of the market capitalization at end of periods t and t+ 1.
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two factors. The procedure was conducted for the 1997 cohort of firms, using the prior ten years of

quarterly data. For tractability the number of factors was kept fixed for the subsequent cohort of

firms, though the actual factors were, of course, re-estimated. Table 3 summarizes the five model

specifications that we consider.

4.4 Return Regressions: Recursive Estimates

The return regression parameters, estimated recursively using a 10-year rolling window, are sum-

marized in Table 4. We focus our discussion on the average pair-wise correlation of returns and the

average pair-wise correlation of residuals as they map naturally into our loss modeling framework.

The average pair-wise correlation of residuals is of particular interest since it gives an indication of

how close a particular model is to conditional independence.

Starting with the results in Panel A of Table 4, we note that the in-sample average pair-wise

correlation of quarterly returns for the first ten years (1988-1997) is 0.1933. The factor models

generally do a good job of accounting for the cross-section correlation of returns, at least in-sample.

The average pair-wise correlation of residuals for the whole portfolio is around 0.037 for the Vasicek

and the single factor CAPM models. Adding an industry factor reduces that residual correlation

to 0.022, and the PCA model by construction leaves almost no cross-section residual correlation.

To be sure, there is no guarantee that this will hold out-of-sample. In-sample goodness of fit across

models as measured by R̄2 (not reported in the table) range from 0.112 for the Vasicek to 0.208 for

the sector CAPM to 0.220 for the PCA model.

Panels B through F in Table 4 show the recursive results using a 10-year rolling window for

the next five ten-year periods. We note that average pair-wise cross-sectional correlations of firm

returns remain at around 20% through 1999, but starting with the cohort of 1991-2000 (Panel

D), the average correlation for the portfolio drops to 0.169. The sudden and substantial market

reversals in the U.S. in March 2000 and the subsequent market declines probably play a strong role

in explaining these results.28 Similar patterns are also observed across the different models over

the successive periods.

A further source of systematic heterogeneity across firms is the default probability or distance

to default, captured for instance by the differences in their credit rating. It is reasonable to expect

that the return processes of firms with a relatively high credit rating should on average exhibit a

28Throughout the analysis we have been assuming time invariant volatilities. While it is well known that high

frequency (daily, weekly) firm returns exhibit volatility clustering, this effect tends to vanish as the data frequency

declines due to temporal aggregation effects. Nonetheless, we conducted standard diagnostic tests for ARCH effects

on all firm return regressions in the case of Model III and calculated the percentage of firm-specific return regressions

in which the ARCH effects are significant at the 5% level. For most periods the percentage of firms with significant

ARCH effects fell between 5 and 10%; the detailed results are available upon request from the authors. Overall the

evidence is not sufficiently overwhelming to motivate ARCH modeling across all firms.
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relatively low error variances and vice versa. This is indeed the case when we compare the average

estimates of σ2ij = V ar(uij,t+1) across ratings. Table 5 shows averages of σ̂ij for Models I (Vasicek)

and II (Vasicek + Rating) where the estimates do not vary across firms, and for the CAPM where

they do, based on the final 10-year cohort, 1993 − 2002. Similar results are obtained for other
sample periods. The firm beta, β̄, for Models I & II (recall this is a pooled estimate) is 0.867,

and the firm error volatility, σ̄, is 0.194. The next three rows show the average estimates by credit

rating for Model III. Taking the last row first, σ̄R increases monotonically as we descend the credit

spectrum, from 0.110 for AAA and AA firms, to 0.287 for B-rated and 0.301 for CCC-rated firms.
No such clear pattern can be seen for firm betas, β̄R. Thus credit ratings seem to sort firms by

firm-specific risk but not by firm beta or factor loading, and in this way it might be reasonable to

consider credit rating as being able to distinguish systematic differences in distance to default.

4.5 Impact of Heterogeneity on Credit Losses

We are now ready to generate loss distributions using the return and distance to default parameter

estimates from Section 4.4. We begin by calibrating the analytical (asymptotic with N → ∞)
results presented in Section 3.4 assuming the parameter estimates are random draws from Gaussian

processes. We then simulate the corresponding loss distributions using firm-specific estimates in the

context of our finite-sized portfolio. In what follows we shall refer to the former as the “asymptotic

approach,” and the latter as the “finite sample approach.” In both approaches we maintain the

double-Gaussian assumption applied to the common factors, ft, and the idiosyncratic shocks, εij,t+1.

This allows us to compare these two approaches, and should help shed light on the validity of the

Gaussian random coefficient model for the analysis of loss distributions. Moreover, as argued in

Section 4.6, the asymptotic approach has important practical merit for portfolios where reliable

firm-specific estimates of β and σ can not be obtained because of inadequate return histories, or

because some of the firms in the portfolio might not be publicly traded companies.

4.5.1 Simulating Asymptotic Losses: Random Parameters Approach

For the homogeneous case the asymptotic results are given in Appendix A.1. In what follows we

focus on unexpected losses given by the square root of (22), and various quantiles or VaRs.

The return process, using the notations introduced in Section 3.4, is defined by

ri,t+1 = μi + γift+1 + σiεi,t+1, εi,t+1 ∼ iidN (0, 1) , ft+1 ∼ N(0, 1).

Given the idiosyncratic nature of the firm-specific shocks, εi,t+1, the common factor can be con-

sistently estimated using the market return, denoted by r̄t+1 (see Pesaran 2006). This yields the

familiar CAPM specification:

ri,t+1 = αi + βir̄t+1 + σiεi,t+1, εi,t+1 ∼ iidN (0, 1) , r̄t+1 ∼ N(r̄, σ2r̄),
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with the following relationships between the parameters of the two specifications

μi = αi + βir̄, and γi = βiσr̄.

Thus firm i’s default probability is

πi,t+1 = Pr (ri,t+1 ≤ λi,t+1) = Φ

µ
λi,t+1 − μi

σξi

¶
,

where σ2ξi = β2iσ
2
r̄ + σ2i .

Using the identification strategy of same distance-to-default by rating R implies the following

rating-specific default thresholds:

λiR = σξiΦ
−1(πR) + μi. (62)

A firm of type R defaults if μiR + γiRft+1 + σiRεi,t+1 ≤ λiR, or if δiRft+1 + εi,t+1 ≤ aiR, where

δiR =
γiR
σiR

=
βiRσr̄
σiR

, (63)

and

aiR =
q
1 + δ2iR Φ

−1(πR). (64)

The reduced form parameters δiR and aiR can now be estimated using the estimates of βi and σi

from the CAPM regressions (categorized by credit rating at the end of the sample), the default

probability estimates by rating, π̂R, given for 2002 in the last column of Table 1, and the uncondi-

tional mean and variance of the market return, r̄ and σ̂2r̄. The parameters that enter the random

parameters loss distribution can then be computed as sample moments by rating which we denote

by âR,δ̂R, ω̂aRaR , ω̂δRδR and ω̂aRδR , for R = 1, 2, ...,K, where K is the number of credit rating

categories (in our application 7), δ̂iR = β̂iRσ̂r̄/σ̂iR, âiR =
q
1 + δ̂

2
iR Φ

−1(π̂R), NR is the number

of firms in the rating category R at the end of the sample (where the loss distribution is to be

simulated). Note also that
PK
R=1NR = N .

Using the above parameter estimates losses can be simulated as

x(r) =
KX
R=1

wRΦ

⎛⎝ âR − δ̂Rf (r)q
1 + ω̂aRaR + ω̂δRδRf

(r)2 − 2ω̂aRδRf (r)

⎞⎠ , (65)

where wR is the weight of R-rated firms in the portfolio (
PK
R=1wR = 1), and f (r), r = 1, 2, ..., R

are random draws from N(0, 1).29 This formulation automatically sets the expected loss to be equal

when introducing credit rating information since portfolio loss is just the weighted average of loss

by rating.

29Clearly, draws from other distributions can also be considered.
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Table 6 shows the relevant parameter estimates needed to generate losses in (65), by rating, for

the last 10-year sample window, 1993− 2002. The estimate âR is just distance to default scaled byq
1 + δ̂

2
iR. Since the average standardized factor loading, δ̂R, varies little across rating, the increase

in âR as we descend the rating spectrum is driven by the increase in probability of default, π̂R.

A similar effect is driving the declining within-rating parameter variance, ω̂aRaR . When π̂R is

high (e.g. for low ratings such as B and CCC), Φ−1(π̂R) is close to zero and the within-type variance
of âiR, ω̂aRaR , shrinks. Note that this within-type variation is assumed to be purely random. We

do not expect any systematic pattern with regard to factor loadings δ̂R nor their within-rating

dispersion, ω̂δRδR . Finally, the correlation coefficient between the two sets of parameter estimates,

denoted by ρ̂aRδR , is always negative, as expected from (64).

In Table 7 we present descriptive statistics of the loss distributions. We draw the reader’s

attention to the first set of columns labeled “Random Parameters/Asymptotic” which summarize

the loss distributions using (65) with R = 1, 000, 000 for the three single-factor specifications,

namely homogeneous Vasicek (Model I), Vasicek plus rating (Model II), and CAPM (Model III).

To allow for easy comparison we hold EL fixed across models. For each model and each year, we

show UL and two commonly reported quantiles (VaR), 99.0% and 99.9%.

We see clearly that allowing for parameter heterogeneity reduces risk, whether measured by

UL or VaR. Taking for instance the first simulation year, 1998, we see that allowing for only

heterogeneity in the a-parameter through rating-specific distance to default, UL drops by nearly

40%, from 1.54% to 0.94%, and 99.9% VaR drops by nearly a half from 12.19% to 6.88%, as expected

from the theoretical results in Section 3.4.1. Allowing in addition for factor loading heterogeneity

results in a further reduction of about one-third in UL to 0.65%, and of a tenth in 99.9% VaR to

6.21%. This basic pattern is repeated for subsequent years.

4.5.2 Simulating Finite Sample Losses

In this section we simulate the loss distribution for our finite sample portfolio using firm-specific

parameter estimates. This exercise allows us to assess the performance of the simulated asymptotic

loss distribution in predicting tail properties as compared to the finite sample results.

We simulate firm returns out-of-sample using (57), assuming that the systematic and idiosyn-

cratic components are serially uncorrelated and independently distributed, meaning we impose

conditional independence. The loss distributions for the different model specifications are then

simulated using appropriate default thresholds, and assuming for simplicity no recovery in the

event of default. All simulations are based on 500,000 replications, and the results are reported in

the last set of columns labeled “Firm-Specific Parameters/Finite Sample” in Table 7. In addition

to VaR we also calculated expected shortfall; the results are qualitatively no different, and so we

report here only the VaR results. Broadly speaking, risk, measured either by UL or VaR, declines
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Figure 1: Simulated finite-sample loss densities using the firm-specific parameters approach (same

EL, for 2003)

as model heterogeneity increases, and thus ignoring it would result in overestimation of risk.

Before embarking on a detailed model-by-model, year-by-year discussion of the loss simulations,

it is helpful to consider Figure 1 to gain an overview of the results. In Figure 1 we show the loss

densities for 2003 across the five different specifications. It is immediately apparent that the models

are grouped into two sets. While the models differ in several ways, the main distinction between

the two groups is the use of credit ratings. The more skewed density with the mode closer to the

vertical axis is generated by the fully homogeneous Model I which does not make use of credit rating

information while the others do. Indeed Model II adds only this source of information. Whatever

other sources of heterogeneity may be important, an estimate of the probability of, or distance to,

default, as provided by a credit rating, clearly has a significant influence on the overall shape of

the loss density. Note that the rating serves as a group summary statistic of default risk and need

not come from a rating agency. In a banking context it will likely be based on internal models.

We turn now to Table 7 where we report the finite sample loss simulations results for each of the

six rolling windows. First, comparing the asymptotic and finite-sample results for Vasicek (Model

I), we see that our finite portfolio is relatively close to an asymptotically diversified portfolio.

For example, the portfolio in Panel A has 628 firms, or an effective number of 465 equal-sized
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exposures.30 For this portfolio the simulated UL for the Vasicek model is 1.64%, only 10bps above

the asymptotic result, and similarly for the two quantiles 99.0% (within 33bps) and 99.9% VaR

(within 49bp).31

Comparing the first three models within Panel A, we note that the finite sample simulations

confirm rather precisely the predictions made by the asymptotic theory, and Table 7 allows for

easy side-by-side comparison. The fully homogeneous model of Vasicek (Model I) generates the

most extreme losses and has the highest unexpected losses. Adding ratings information (Model

II) results in a significant reduction in risk (while controlling for expected losses). If we start in

Panel A, UL drops by 20% from 1.64% to 1.31% while 99.9% VaR is reduced by nearly 40% from

12.68% to 7.79%. Credit ratings seem to capture relevant firm-specific information, and this is

useful even though the information is grouped together into just a few (seven) rating categories.

Models III and IV allow for heterogeneous slopes (factor loadings) and firm-specific error variances,

with Model IV also adding an industry return factor. UL falls another 30% from 1.31% in Model

II to 1.14% in Model III, while 99.9% VaR declines another 10% from 7.79% to 7.09%. Thus, the

ranking across these three models in the finite sample simulations are exactly as predicted using

the random parameter approach in Section 4.5.1.

Adding an industry factor in Model IV results in a very small increase in risk from Model III.

However, the distributions are extremely similar: UL is nearly the same, 1.14% vs. 1.16%. Finally,

the principal components Model V generates UL results that are similar to Model II, which is Model

I with ratings information, namely 1.40% vs. 1.31%. VaR, however, is higher. For instance, 99.9%

VaR is 9.61%, compared to 7.09% for Model II. In this way Model V also generates tail losses which

are higher than Models III and IV.

This upturn in risk may appear counter-intuitive — adding heterogeneity results not in risk

reduction but in an increase. However, it is important to keep in mind that the out-of-sample loss

simulations are performed under the maintained assumption of conditional independence. Recall

from Table 4 that only Model V has an (in-sample) average pair-wise cross-sectional correlation of

residuals which is effectively zero. All other models have some remaining correlation. Put differ-

ently, while Model V is conditionally independent on an in-sample basis, it seems that the others

are not. So long as on an out-of-sample basis Model V is still closer to conditional independence

than the others, and there is currently no way of verifying this, the other models will generate

risk forecasts which are biased downward, meaning that risk would be underestimated since return

correlations are underestimated. Measuring and evaluating out-of-sample conditional dependence

30 If N is the number of obligors in our portfolio, each with exposure weight wi which is randomly assigned, then

N∗ = N
i=1 w

2
i

−1
is the equivalent number of equally weighted exposures.

31This comparison gives a clear indication of the granularity of our finite-sample portfolio since for Vasicek (Model

I) ω̂aRaR = ω̂δRδR = ω̂aRδR = 0 for all R. Thus, the differences between the two approaches for Model I reflect only

the finite size of the portfolio in question.
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is an important topic which requires further investigation.32

Returning to Figure 1, the loss densities are clearly very different. The Vasicek model has

only three parameters (α, β, σ), and once credit rating information is included in Model II, the

distributional shape changes dramatically. Indeed Model II yields a loss distribution which is

remarkably similar to those generated by the fully heterogeneous model specification. Credit ratings

seem indeed to be a useful and informative summary statistic for firm-level default risk.

Moving down the panels in Table 7 we notice that the portfolio is getting riskier over time;

expected loss rises every year. If we compare value-at-risk, say at the 99.9%, for a model, say the

one-factor CAPM model (Model III), we see that VaR increases from 7.09% in 1998 to 9.58% in

2000 to 11.68% in 2003.

4.6 Heterogeneity and the New Basel Capital Accord

Both sets of results indicate that neglecting firm heterogeneity can have significant impact on

risk, and that a dominant source of heterogeneity is the difference in the probability of default

across firms as summarized, for instance, in a credit rating. Credit ratings can be provided by an

external rating agency or can be generated by the bank itself using internal rating models and tools.

Indeed the New Basel Capital Accord allows banks, under Pillar 1 (prescribed minimum capital),

to assign ratings to their obligors but does not allow them to compute their own factor loadings or

return correlations. Those are fixed by the policy makers in the form of the risk weight function

which assigns capital to credit exposures. It thus appears that the Basel Committee has, perhaps

unwittingly, allowed banks to model the most important source of heterogeneity.

Nonetheless, full-blown economic capital models, which are limited only by available data, will

play an important role in the New Basel Accord under Pillar 2 (supervisory discretion). For obligors

that are publicly traded, the firm-specific parameters approach discussed in Section 4.5.2 would be

such an example. However, the bulk of a bank’s lending portfolio is to firms which are privately held,

and so parameters such as factor loadings cannot be estimated at the firm level. It is still possible

to estimate credit ratings using firm financials (these are reported to banks as part of the lending

relationship). In this case the theoretical results based on the random parameters approach could

be very helpful as the parameter means and their covariances could be estimated using data from

publicly traded firms. Moreover, additional (systematic) heterogeneity with respect to country or

industry sector could be accommodated in this way. Simply put, our theoretical results provide

an easy way of incorporating fairly rich parameter heterogeneity for a portfolio of credit exposures

when only limited data is available for parameter estimation.

32The absence of conditional indendence empirically, especially on an out-of-sample basis, we think has been

neglected in the literature. Das, Duffie, Kapadia, and Saita (2005) also find significant remaining correlation, or

default clustering, even after accounting for observable factors. They propose an unobserved factor approach they

call “frailty” to absorb the remaining dependence, though this approach makes out-of-sample forecasting challenging.
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Figure 2: Calibrated (asymptotic) loss densities under random parameter framework (same EL, for

2003)

As an illustration, in Figure 2 we show the loss densities based on the random parameters ap-

proach as in Section 4.5.1 above using the estimates based on the last 10-year window (ending in

2002, thus simulating the loss distribution for 2003). The chart shows the densities for the three

models (I: Vasicek; II: Vasicek plus rating; III: CAPM) while keeping EL fixed, and therefore the

chart is comparable to the densities in Figure 1 which make use of the firm-specific parameter es-

timates rather than just their moments. Even with this limited information and the assumption of

multivariate normality of the parameters made by the random coefficient framework, the densities

in Figure 2 are remarkably close to those in Figure 1. The simple homogeneous Vasicek specification

generates the most skewed and fat-tailed distribution. Allowing for ratings (Model II) has a sig-

nificant effect on the shape of the loss density, as does adding factor loading heterogeneity (Model

III). Returning now to Table 7, we note that the difference in VaR between the random parameters

and firm-specific parameters approaches is quite small. For the simulation year used in Figures 1

and 2 (2003), the difference in 99.9% VaR is 3% for Model I, 7% for Model II and 8% for Model III.

Similar differences are obtained for the other five years (not reported). However, the results for the

homogenous Vasicek model show that the differences between the the finite sample and asymptotic

outcomes are partly due to portfolio granularity. Thus, the results in Table 7 suggest that for

large portfolios the differences between simulations based on the random parameters framework

and those that make use of firm-specific parameter estimates are likely to be even smaller.
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5 Concluding Remarks

In this paper we have considered a simple model of credit risk and derived the limit distribution

of losses under different distributional assumptions regarding the structure of systematic and idio-

syncratic risks and the nature of firm heterogeneity. The analytical and simulation results point

to some interesting conclusions. Theory indicates that under the maintained assumption of con-

ditional independence, meaning that all cross-firm dependence is captured by the systematic risk

factors, if the firm parameters are heterogeneous but come from a common distribution, asymp-

totically (when the number of exposures, N , is sufficiently large) there is no scope for further risk

reduction through active credit portfolio management. However, if firms are systematically dif-

ferent in that their parameters come from different distributions, as could be the case for firms

from different sectors or countries, then further risk reduction is possible, even asymptotically, by

changing the portfolio weights across types. In either case, neglecting parameter heterogeneity can

lead to underestimation of expected losses. Then once expected losses are controlled for, neglecting

parameter heterogeneity can lead to overestimation of risk, whether measured by unexpected loss

or value-at-risk. Effectively the loss distribution is more skewed and fat-tailed when heterogeneity

is ignored.

In light of these observations a natural question is: which sources of heterogeneity are most

important from the perspective of portfolio losses? Here the answer seems clear: allowing for dif-

ferences in the default threshold or probability of default (PD), measured for instance by a credit

rating, is of first order importance in affecting the shape of the loss distribution. Including ratings

heterogeneity alone results in a drop in loss volatility of 20%, and a drop of nearly 40% in 99.9%

VaR, the VaR-level to which the New Basel Accord is calibrated. For policy makers and risk man-

agers alike, this is good news. After all, an obligor PD, in the form of a rating, whether generated

by a bank internally or provided by a rating agency externally, is one of the key parameters in the

New Basel Accord which is allowed to vary. Indeed, early U.S. supervisory guidance indicates that

banks must group their obligors into at least seven (non-default) grades, each with a unique PD

(FRB 2003, p.201). Our results suggest that possibly finer differentiation or grouping along these

lines may be fruitful, so long as it is properly done.33

When considering the return specification, flexible factor sensitivities also appear to be impor-

tant, especially for capturing cross-firm dependence. If the maintained assumption of conditional

independence is violated, i.e. if there remains cross-sectional dependence in the residuals from the

return regressions, then risk will be underestimated. Thus proper specification of the return model

is key by allowing for heterogenous factor loadings and the possible addition of industry return

factors.
33See, for instance, Hanson and Schuermann (2005) for a discussion on PD estimation and their grouping into

ratings.
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A Appendix A: Limit Behavior of Credit Loss Distribution

A.1 Loss Densities under Homogeneous Parameters

In order to show how our approach relates to that of Vasicek, here we consider the homogeneous parameter

case but do not require ft+1 and εi,t+1 to have Gaussian distributions. Since in the homogeneous case the

multifactor model is equivalent to a single factor model, we consider scalar values for δi and ft+1 and denote

them by δ and ft+1, respectively. In this case we note that conditional on ft+1, the random variables zi,t+1

are identically and independently distributed as well as being integrable. (Recall that |wizi,t+1| ≤ 1 for all
i and t.) Hence, conditional on ft+1 and as N →∞, we have

N,t+1 | ft+1, It a.s.→ Fε (a− δft+1) .

In the limit the probability density function of N,t+1 | It can be obtained from the probability density

functions of ft+1 and εi,t+1, which we denote here by ff (·) and fε(·), respectively. It will be helpful

to write the loss density f (·) in terms of the systematic risk factor density ff (·) and the standardized
idiosyncratic shock density fε(·).

Therefore, conditional on It and denoting the limit of N,t+1 as N → ∞, by t+1 we have (with

probability 1)

t+1 = Fε (a− δft+1) . (A.1)

Now making use of standard results on transformation of probability densities, for δ 6= 0 we have

f ( t+1 | It) =
¯̄̄̄
∂Fε (a− δft+1)

∂ft+1

¯̄̄̄−1
ff (ft+1 | It) ,

where ft+1 is given in terms of t+1, via (A.1), namely

ft+1 =
a− F−1ε ( t+1)

δ
,

and |∂Fε (a− δft+1) /∂ft+1| is the Jacobian of the transformation which is given by

∂Fε (a− δft+1)

∂ft+1
= −δfε (a− δft+1) = −δfε

£
F−1ε ( t+1)

¤
.

Hence

f ( t+1 | It) =
ff

³
a−F−1ε ( ,t+1)

δ | It
´

|δ| fε
£
F−1ε ( t+1)

¤ , for 0 < t+1 ≤ 1. (A.2)

A.2 Relation to Vasicek’s Loss Distribution

The above results provide a simple generalization of Vasicek’s one-factor loss density distribution, derived in

Vasicek (1991, 2002) and Gordy (2000), given by

f (x | It) =
r
1− ρ

ρ

⎧⎨⎩φ
h√

1−ρΦ−1(x)−Φ−1(π)√
ρ

i
φ [Φ−1(x)]

⎫⎬⎭ , for 0 < x ≤ 1, ρ 6= 0, (A.3)
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where x denotes the fraction of the portfolio lost to defaults. The corresponding loss distribution is

F (x | It) = Φ
∙√
1− ρΦ−1(x)− Φ−1(π)

√
ρ

¸
. (A.4)

The density (A.2) reduces to (A.3) when μft = 0, and assuming that the innovations, ft+1 and εi,t+1

are both Gaussian. In this case

ff (ft+1 | It) = φ (ft+1) ,

fε (εi,t+1 | It) = φ (εi,t+1) , Fε (·) = Φ (·) ,

and

f (x | It) =
1

|δ|

⎧⎨⎩φ
h
a−Φ−1(x)

δ

i
φ [Φ−1(x)]

⎫⎬⎭ , for 0 < x ≤ 1, |δ| 6= 0 (A.5)

where we have used x for t+1. Furthermore, in the homogeneous case

δ =

r
ρ

1− ρ
, for ρ > 0, (A.6)

and

π = Φ

Ã
ap
1 + δ2

!
. (A.7)

Hence

a =
Φ−1(π)√
1− ρ

. (A.8)

Using (A.6) and (A.8) in (A.5) now yields Vasicek’s loss density given by (A.3) (note that φ(x) = φ(−x)).
Under the double-Gaussian assumption, the distribution of δft+1 + εt+1 (conditional on It ) is also

Gaussian with mean δμft and variance 1 + δ2. Therefore,

E ( N,t+1 | It) = Φ
Ã
a− δμftp
1 + δ2

!
.

Using (A.8) and (A.6) the conditional mean loss can therefore be written as

E ( N,t+1 | It) = Φ
£
Φ−1 (π)−√ρμft

¤
, (A.9)

and reduces to π only when μft = 0. It is also interesting to note that under μft 6= 0, Vasicek’s loss density
and distributions become

f (x | It) =
r
1− ρ

ρ

⎧⎪⎨⎪⎩
φ
hq

1−ρ
ρ Φ

−1(x)−
q

1
ρΦ

−1(π) + μft

i
φ [Φ−1(x)]

⎫⎪⎬⎪⎭ , for 0 < x ≤ 1, ρ > 0. (A.10)

For ρ > 0, the cumulative distribution function associated with this density is given by

F (x | It) = Φ
µr

1− ρ

ρ
Φ−1(x)−

r
1

ρ
Φ−1 (π) + μft

¶
. (A.11)
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Also
∂F (x | It)

∂μft
= φ

µr
1− ρ

ρ
Φ−1(x)−

r
1

ρ
Φ−1 (π) + μft

¶
> 0,

which shows that good news (a rise in μft) reduces the probability of losses above a given thresholds, i.e.

reduces value-at-risk, as to be expected.

A.3 Loss Densities under Full Parameter Heterogeneity

The impact on the loss distribution is considerably more complicated when we consider heterogeneity across

the full set of parameters, including for instance the factor loadings. In this case, N,t+1, is given by

(31): N,t+1 =
PN

i=1wiI
¡
a− δ0ft+1 − ζi,t+1

¢
. Since conditional on ft+1, the composite errors, ζi,t+1 =

εi,t+1 − via + v0iδft+1, are independently distributed across i, then

N,t+1 | ft+1, It a.s.→ Fκ

µ
θ0gt+1
ωt+1

¶
,

where a.s. denotes almost sure convergence, and as before Fκ (·) denotes the cumulative distribution function
of the standardized composite errors, κi,t+1, defined by (35), gt+1 =

¡
1,−f 0t+1

¢0
and ωt+1 is given by (33).

Once again the limiting distribution of credit loss depends on the conditional densities of ζi,t+1 and ft+1.

For example, if (εi,t+1, via,v0iδ) follows a multivariate Gaussian distribution, then κi,t+1 | ft+1, It ∼
iidN(0, 1).

The probability density of the fraction of the portfolio lost, x, over the range (0,1), can be derived from

the (conditional) joint probability density function assumed for the factors, f , by application of standard

change-of-variable techniques to the non-linear transformation

x = Fκ

Ã
a− δ0fp

1 + ωaa − 2ω0aδf + f 0Ωδδf

!
. (A.12)

For a general m factor set up analytical derivations are quite complicated and will not be attempted here.

Instead, we consider the relatively simple case of a single factor model, where f is a scalar, f . Suppose

f = ψ(x) satisfies the transformation, (A.12), and note that

f (x | It) =
¯̄
ψ0(x)

¯̄
ff
£
ψ(x)− μft

¤
, for 0 < x ≤ 1,

where
¯̄
ψ0(x)

¯̄
= |x0(f)|−1. In other words, ψ(x) is that value of the systematic factor f which generated

loss of x. In the double-Gaussian case, for example, we have

x0(f) =

Ã
f (δωaδ − aωδδ) + aωaδ − δ (1 + ωaa)

(1 + ωaa − 2ωaδf + ωδδf2)
3/2

!

×φ
Ã

a− δfp
1 + ωaa − 2ωaδf + ωδδf2

!
.

Hence ¯̄
ψ0(x)

¯̄
=

µ
1

φ [Φ−1(x)]

¶ ¯̄̄̄
¯
£
1 + ωaa − 2ωaδψ(x) + ωδδψ

2(x)
¤3/2

ψ(x) (δωaδ − aωδδ) + aωaδ − δ (1 + ωaa)

¯̄̄̄
¯ .
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and for 0 < x ≤ 1 we have

f (x | It) =
¯̄̄̄
¯
£
1 + ωaa − 2ωaδψ(x) + ωδδψ

2(x)
¤3/2

ψ(x) (δωaδ − aωδδ) + aωaδ − δ (1 + ωaa)

¯̄̄̄
¯
(
φ
£
ψ(x)− μft

¤
φ [Φ−1(x)]

)
, (A.13)

This limiting loss distribution does not depend on the individual values of the portfolio weights, wi,

i = 1, 2, ..., N , so long as the granularity conditions in (16) are satisfied.

B Appendix B

Proposition 1 Let F (x1, y1, ρ) = Φ2(Φ−1(x1),Φ−1(y1), ρ). Then for ρ > 0, ∂2F (x1, y1, ρ)/∂2x1 < 0

and ∂2F (x1, y1, ρ)/∂2y1 < 0.

Proof: By the symmetry of F (x1, y1, ρ) = Φ2(Φ−1(x1),Φ−1(y1), ρ) in x1 and y1, it suffices to show

that ∂2F (x1, y1, ρ)/∂x21 < 0. Let G(x) = Φ
−1(x) and note that

G0(x) = Φ−10(x) =
1

φ(Φ−1(x))
and G00(x) = Φ−100(x) =

Φ−1(x)

φ(Φ−1(x))2
.

We have

F (x1, y1, ρ) = Φ2(G(x1), G(y1), ρ),

=

Z G(x1)

−∞

Z G(y1)

−∞

1

2π

1p
1− ρ2

exp

µ
−x

2 − 2ρxp+ y2

2(1− ρ2)

¶
dydx,

=

Z G(x1)

−∞

Z G(y1)

−∞

1p
1− ρ2

φ

Ã
y − ρxp
1− ρ2

!
φ(x)dydx.

Hence

∂F (x1, y1, ρ)

∂x1
=

Z G(y1)

−∞

G0(x1)p
1− ρ2

φ

Ã
y − ρG(x1)p

1− ρ2

!
φ(G(x1))dy,

=
1p
1− ρ2

Z G(y1)

−∞
φ

Ã
y − ρG(x1)p

1− ρ2

!
dy > 0,

where the second line follows from noting that

G0(x1)φ(G(x1)) = φ(Φ−1(x1))/φ(Φ
−1(x1)) = 1.

Thus, the second partial derivative is given by

∂2F (x1, y1, ρ)

∂x21
= ρ

G0(x1)

1− ρ2
1p
1− ρ2

Z G(y1)

−∞
[y − ρG(x1)]φ

Ã
y − ρG(x1)p

1− ρ2

!
dy
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The integral in this term can be evaluated using standard results on the expectation of truncated normal

variables, noting that y |x1 ∼ N(ρG(x1), 1− ρ2), we have

1p
1− ρ2

Z G(y1)

−∞
yφ

Ã
y − ρG(x1)p

1− ρ2

!
dy = E[y|y ≤ G(y1)] Pr(y ≤ G(y1))

= Φ

Ã
G(y1)− ρG(x1)p

1− ρ2

!⎡⎢⎢⎣ρG(x1)−p1− ρ2
φ

µ
G(y1)−ρG(x1)√

1−ρ2

¶
Φ

µ
G(y1)−ρG(x1)√

1−ρ2

¶
⎤⎥⎥⎦ .

We also have

−ρG(x1)
1p
1− ρ2

Z G(y1)

−∞
φ

Ã
y − ρG(x1)p

1− ρ2

!
dy = −ρG(x1)Φ

Ã
G(y1)− ρG(x1)p

1− ρ2

!
Combining these terms we have

= ρ
G0(x1)

1− ρ2

"
Φ

Ã
G(y1)− ρG(x1)p

1− ρ2

!
ρG(x1)−

p
1− ρ2φ

Ã
G(y1)− ρG(x1)p

1− ρ2

!
− ρG(x1)Φ

Ã
G(y1)− ρG(x1)p

1− ρ2

!#
.

Thus, we conclude that for ρ > 0,

∂2F (x1, y1, ρ)

∂x21
= − ρp

1− ρ2

µ
1

φ(Φ−1(x1))

¶
φ

Ã
Φ−1(y1)− ρΦ−1(x1)p

1− ρ2

!
≤ 0,

as desired.
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Table 1 
Ratings Distributions and Probabilities of Default 

 
 1997 2002 

Credit Rating (%)Rw  (%)Rπ  (%)Rw  (%)Rπ  
AAA 2.86 0.001 2.37 0.001 
AA 10.81 0.001 9.25 0.001 
A 25.61 0.005 21.49 0.006 
BBB 22.33 0.064 25.67 0.106 
BB 16.3 0.481 15.72 0.630 
B 19.79 3.343 19.62 5.429 
CCC 2.31 36.487 5.89 49.776 

Portfolio   1.60  4.12 
 

Note: The table presents the distribution of firms by rating for year-end 1997 and 2002. These distributions are calculated by taking the 
average of the distribution for Moody’s and the distribution for Standard and Poor’s. We construct our portfolios so that the exposure 
weights are consistent with the observed rating distribution. The final column, (%)Rπ , contains the estimated annual probabilities of 
default (PD) that are used in the simulation exercises. These PDs are estimated using the time-homogeneous Markov or parametric 
duration estimator discussed in Lando and Skødeberg (2002) and Jafry and Schuermann (2004). A minimum annual PD of 0.001% or 
0.1 basis points is imposed. 

 
Table 2 

Industry Breakdown 
 

Industry 1997 2002 
Agriculture, Mining & Construction 5.3 5.7 
Communication, Electric & Gas 16.7 12.8 
Durable Manufacturing 22.1 23.3 
Finance, Insurance & Real Estate 23.1 21.7 
Non-durable Manufacturing 18.2 18.7 
Service 4.8 7.2 
Wholesale & Retail Trade 9.9 10.7 
Total 100.0 100.0 

 
Note: The table presents the distribution of firms by industry group as of year-end 1997 and 2002
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Table 3 
Specifications of Return Equations 

 

, 1 1 , 1

, 1 1 , 1

, 1 1 , 1

, 1 1, 1 2, , 1 , 1

, 1

I Vasicek
II Vasicek + Rating
III CAPM
IV CAPM + Sector
V PCA

ij t c t ij t

ij t t ij t

ij t ij ij ct ij t

ij t ij ij t ij j t ij t

ij t

r r u
r r u
r r u
r r r u
r

α β
α β
α β
α β β

+ + +

+ + +

+ + +

+ + + +

+

= + +
= + +
= + +
= + + +

Model Return Specification

1 , 1ij ij t ij tuα ′
+ += + +fβ

 

 
Note: , 1ij tr

+
 denotes the return of firm i in sector j over the quarter t to t+1. In Models I through IV, 1tr+

 

denotes the market-cap weighted over the quarter t to t+1 and , 1j tr
+

 is the market-cap weighted return for 
sector j over the same period. For Model I there is a single default threshold for all firms. For Models II to 
V there is one default threshold per rating. 
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Table 4 
Average Pair-wise Correlation of Returns and  

In-sample Residuals Based on Ten-Year Rolling Windows 
 

  

Avg. Pair-wise 
Correlation of 

Returns Model Specifications

Avg. Pair-wise 
Correlation of 

Residuals 
Panel A 1988-1997 0.1933 I Vasicek 0.0365 

 # of firms 628 III CAPM 0.0374 
    IV CAPM + Sector 0.0221 
    V PCA 0.0005 

Panel B 1989-1998 0.2114 I Vasicek 0.0440 
 # of firms 633 III CAPM 0.0456 
    IV CAPM + Sector 0.0324 
     V PCA 0.0004 

Panel C 1990-1999 0.2237 I Vasicek 0.0731 
 # of firms 613 III CAPM 0.0778 
    IV CAPM + Sector 0.0621 
     V PCA -0.0001 

Panel D 1991-2000 0.1691 I Vasicek 0.0783 
 # of firms 588 III CAPM 0.0821 
    IV CAPM + Sector 0.0615 
    V PCA 0.0008 

Panel E 1992-2001 0.1633 I Vasicek 0.0740 
 # of firms 585 III CAPM 0.0772 
    IV CAPM + Sector 0.0624 
     V PCA -0.0003 

Panel F 1993-2002 0.1999 I Vasicek 0.0772 
 # of firms 600 III CAPM 0.0811 
    IV CAPM + Sector 0.0658 
     V PCA -0.0009 

 
Note: This table presents the results of recursive estimation of return equations using quarterly return data. All estimation results are 
calculated using a 40-quarter rolling window. Portfolio determination and sample construction are discussed in Section 4.2. 
Specification of the return models is discussed in Section 4.3 (see Table 3 for further detail). The data source for returns is CRSP.
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Table 5 

Parameter Estimates by Credit Ratings based on Return Regressions 
1993-2002 

 
Model Parameter AAA /AA A BBB BB B CCC 

Vasicek /  β  0.867 0.867 0.867 0.867 0.867 0.867 
Vasicek + Rating σ  0.194 0.194 0.194 0.194 0.194 0.194 

CAPM βR  0.847 0.821 0.757 0.984 1.161 0.362 

 σR  0.110 0.128 0.149 0.219 0.287 0.301 

Note:  Averages of estimated parameters from Models I and III; see Table 3. Note that the return specification for Model II is the 
same as for Model I.  β  and σ  are the pooled estimates of return factor loading (“beta”) and firm error variance, respectively, 

and are thus invariant across ratings.  In the CAPM model these parameters are estimated separately for each firm, so that β
R

 and 

σ
R

 are averages by rating. 

 

 
Table 6 

Parameter Means Used in Asymptotic Loss Distribution 
1993-2002 

 
Parameter AAA /AA A BBB BB B CCC 

α̂R  -5.451 -4.524 -3.392 -2.738 -1.726 -0.006

δ̂R  0.607 0.489 0.393 0.365 0.317 0.132

a aω
R R

 0.528 0.253 0.078 0.059 0.021 <0.001

δ δω
R R

 0.089 0.076 0.052 0.062 0.056 0.064

a δρ
R R

 -0.983 -0.968 -0.949 -0.952 -0.941 -0.568

Note: Averages (by rating) for reduced form parameters for CAPM model from Table 5.  AAA 
and AA are grouped since their default probabilities are both assigned the minimum of 0.01bp. 
For details on how the parameters are computed, please see Section 4.5.1. 
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Table 7 
Out-of-Sample Simulated Annual Losses Based on 10-Year Rolling Return Regressions 

     
Random Parameters, 

Asymptotic 
Firm-specific Parameters,

Finite Sample 
 Simulation Using   Value-at-Risk Value-at-Risk 
 Year Sample Model UL 99.0% 99.9% UL 99.0% 99.9% 

Panel 1998 1988-1997 I Vasicek 1.54% 7.46% 12.19% 1.64% 7.79% 12.68% 
A  EL= 1.60% II Vasicek + Rating 0.94% 4.79% 6.88% 1.31% 5.55% 7.79% 
    III CAPM 0.65% 4.03% 6.21% 1.14% 4.92% 7.09% 
    IV CAPM + Sector - - - 1.16% 5.01% 7.36% 
     V PCA - - - 1.40% 6.14% 9.61% 

Panel 1999 1989-1998 I Vasicek 2.03% 9.83% 16.00% 2.13% 10.07% 16.35% 
B  EL= 2.04% II Vasicek + Rating 1.21% 6.13% 8.80% 1.52% 6.84% 9.61% 
    III CAPM 0.77% 4.92% 7.42% 1.23% 5.73% 8.27% 
    IV CAPM + Sector - - - 1.29% 6.00% 8.54% 
     V PCA - - - 1.53% 7.19% 10.99% 

Panel 2000 1990-1999 I Vasicek 2.48% 11.96% 18.80% 2.60% 12.33% 19.21% 
C  EL= 2.70% II Vasicek + Rating 1.42% 7.32% 10.13% 1.77% 8.09% 11.04% 
    III CAPM 0.91% 6.01% 8.61% 1.42% 6.90% 9.58% 
    IV CAPM + Sector - - - 1.51% 7.17% 9.87% 
     V PCA - - - 1.78% 8.54% 12.84% 

Panel 2001 1991-2000 I Vasicek 2.05% 10.04% 14.68% 2.20% 10.48% 15.21% 
D  EL= 2.94% II Vasicek + Rating 1.16% 6.46% 8.34% 1.59% 7.35% 9.45% 
    III CAPM 1.11% 6.55% 8.75% 1.55% 7.38% 9.75% 
    IV CAPM + Sector - - - 1.64% 7.64% 10.18% 
     V PCA - - - 1.88% 8.72% 12.29% 

Panel 2002 1992-2001 I Vasicek 2.32% 11.40% 16.38% 2.47% 11.85% 16.93% 
E  EL= 3.48% II Vasicek + Rating 1.26% 7.21% 9.11% 1.73% 8.09% 10.11% 
    III CAPM 0.99% 6.72% 8.79% 1.56% 7.66% 9.77% 
    IV CAPM + Sector - - - 1.61% 7.88% 10.20% 
     V PCA - - - 1.86% 8.98% 12.28% 

Panel 2003 1993-2002 I Vasicek 3.11% 15.04% 22.07% 3.24% 15.43% 22.81% 
F  EL= 4.12% II Vasicek + Rating 1.63% 8.99% 11.54% 1.99% 9.67% 12.34% 
    III CAPM 1.06% 7.92% 10.72% 1.60% 8.77% 11.68% 
    IV CAPM + Sector - - - 1.64% 8.94% 11.85% 
     V PCA - - - 1.90% 10.07% 13.95% 

Note: This table presents results for simulated out-of-sample annual loss distributions. Model specifications, including the return 
regressions and determination of default thresholds, are discussed in Section 4.3 (see Table 3 for more detail on the model 
specifications). Simulations are carried out using 1,000,000 replications for the analytical simulations and 500,000 replications for the 
finite sample replications. For each year all models are calibrated to have the same expect loss given by π̂ . For each simulation, the 
table reports the standard deviation of losses (denoted Unexpected Losses - UL) as well as the 99.0% and 99.9% quantiles of the 
distribution (denoted Value-at-Risk). 




