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Abstract

We develop a unifying framework for optimal income taxation in multi-sector econo-
mies with general patterns of externalities. Agents in this model are characterized
by an N-dimensional skill vector corresponding to intrinsic abilities in N potentially
externality-causing activities. The private return to each activity depends on individ-
ual skill and the aggregate return, which is a fully general function of the economy-
wide distribution of activity-specific efforts. We show that the N-dimensional het-
erogeneity can be collapsed to a one-dimensional, endogenous statistic sufficient for
screening. The optimal tax schedule features a multiplicative income-specific correc-
tion to an otherwise standard tax formula. Because externalities change the relative
returns to different activities, corrective taxes induce changes in the across-activity
allocation of effort. These relative return effects cause the optimal correction to di-
verge, in general, from the Pigouvian tax that would align private and social returns.
We characterize this divergence and its implications for the shape of the tax schedule
both generally and in a number of applications, including externality-free economies,
increasing and decreasing returns to scale, zero-sum activities such as bargaining or
rent extraction, and positive or negative spillovers.
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1 Introduction

How to design redistributive income tax systems is not only a classic question in eco-
nomics, but also a recurrent topic in public policy debates, as exemplified by the recent
“Occupy” and “Tea Party” movements. While the standard equity-efficiency tradeoff,
i.e. the tension between redistributional goals and tax distortions, which has long been
emphasized by the formal optimal taxation literature,1 has played some role, the recent
debate has pointed to two central issues that have not been captured by this canonical
framework. First, the trend towards greater income inequality in the past decades (as
documented e.g. by Atkinson et al., 2011) has gone hand in hand with shifts in the sec-
toral structure of the economy, for instance a flow towards finance at the top of the in-
come distribution. Second, supporters of the recent calls for higher taxes on high earners
have questioned whether wages in some occupations actually fully reflect the true social
marginal product of these activities.

Motivated by these observations, this paper provides a general framework for the
analysis of optimal income taxation in multi-sector economies with endogenous wages
and arbitrary patterns of externalities. In particular, individuals can pursue N different
activities, the returns to each of which may depend on the aggregate efforts in this and
all other activities, and in a way not necessarily aligned with marginal products. We
allow for an extremely rich structure of heterogeneity, where individuals can differ along
N continuous dimensions of private information, namely a skill type for each of the N
activities. Tax policies in this setting reflect two key novel effects: First, sectoral shifts
of effort in response to changes in the relative returns to different activities induced by
changes in the income tax; and second, Pigouvian motives for taxation, correcting the
wedge between wages and social returns to effort in different sectors and hence different
parts of the income distribution.

Our unifying theory encompasses many applications as special cases, some of which
have appeared earlier in our work. In Rothschild and Scheuer (2013b), we have consid-
ered the simplest framework for illustrating the first of the two effects above: A two-sector
economy with a constant returns to scale aggregate production function and private re-
turns equal to marginal products. With complementary sectors, the income tax schedule
can be used to manipulate the relative returns to the two sectors and thereby achieve
redistribution indirectly through general equilibrium effects. In Rothschild and Scheuer
(2013a), we have added the second effect, again in the most parsimonious way: One of
the two activities is rent-seeking and imposes negative externalities, so its private returns

1See Mirrlees (1971), Diamond (1998), Saez (2001).
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exceed its social marginal product, and the second, traditional activity generates no ex-
ternalities. We use this to demonstrate how the optimal correction can deviate from the
partial equilibrium, Pigouvian correction due to the general equilibrium effects from sec-
toral shifts of effort between productive and unproductive work.

Even though instructive as a first step, these settings remain restrictive in capturing
many real-world examples. For instance, imagine a team production setting where indi-
viduals spend effort both to actually produce output and to claim credit (and get paid)
for the output they or others have produced. Since claiming credit is a zero sum activity
from a social perspective, its private returns will typically exceed its social returns. On the
other hand, the productive activity cannot capture its entire social returns, because some
output will be claimed by the other activity. Hence, this is a setting where both activities
generate externalities, one negative and the other positive ones.

Situations with similar implications have received attention in some recent contribu-
tions to the taxation literature. For instance, Piketty et al. (2013) have emphasized that
some top incomes may come at the expense of lower incomes, e.g. because executive offi-
cers may set their compensation through bargaining, so when they claim a larger share of
the resources in the company, they leave less for workers. Besley and Ghatak (2013) argue
that some sectors may capture resources from other sectors, e.g. in the form of bailouts
from productive workers to the financial sector. Lockwood et al. (2013) consider a model
with multiple occupations, some over- and some underpaid, with different relative repre-
sentations in different parts of the income distribution, justifying a purely Pigouvian role
for the income tax. However, all these papers assume a very simple pattern of external-
ities, in the sense that whenever some activity is overpaid, this comes at the expense of
everyone else uniformly, rather than at the expense of some more than others.

In contrast, the unifying framework we develop in this paper allows us to consider
an arbitrarily large number of activities, which can be linked through arbitrarily rich ex-
ternality structures: some activities may have positive, others negative externalities, and
these externalities may also be borne differently by different activities. For instance, an
increase in aggregate effort in the claiming credit activity in the above example clearly
reduces the returns to the productive activity. But it may also reduce the returns to claim-
ing credit itself, e.g. when this activity is subject to crowding. Depending on which of
the two effects is stronger, the relative returns to the unproductive activity may rise or fall.
This in turn determines whether an increase in the marginal income tax at incomes where
the unproductive activity is overproportionally represented will lead to a beneficial flow
of effort to the productive activity, or a perverse sectoral shift towards the unproductive
activity.
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These sectoral shift effects in response to relative return changes turn out to play an
important role for optimal tax policy. We derive a useful formula for our general frame-
work that offers insight into the size and direction of the divergence between the optimal
correction and the partial equilibrium Pigouvian correction that ignores these relative re-
turn effects. We also show that this divergence vanishes precisely when a variation in
the marginal income tax rate at a given income level induces no relative return changes.
We use these general results in various specific applications to characterize both the op-
timal level and progressivity of the income tax schedule for any redistributive objectives,
captured by arbitrary Pareto weights.

Since our model naturally involves N dimensions of private information, we begin
with demonstrating how the resulting multidimensional screening problem can be col-
lapsed into a tractable, one-dimensional problem, extending our previous work in Roth-
schild and Scheuer (2013a,b) and Choné and Laroque (2010). Although settings with mul-
tidimensional heterogeneity are frequently challenging to solve (Rochet and Choné, 1998),
there exists a one-dimensional, even though endogenous, summary statistic for hetero-
geneity in our framework. The reason is that taxes can only condition on an individual’s
income, not on its composition into the income shares earned through different activi-
ties. Then, for any vector of activity-specific returns, an individual always earns a given
amount of income through a cost-minimizing combination of efforts in the N activities,
which results in a well-defined wage that determines her preferences over consumption-
income bundles. We can therefore reduce the screening problem to an almost standard
Mirrleesian problem in terms of these wages, with the only complication that they depend
on sectoral returns and therefore the vector of aggregate efforts in all activities. The re-
sulting fixed point conditions for these sectoral efforts show up as additional constraints
in the Pareto problem, which we call consistency constraints.

We first solve this screening problem for any given combination of sectoral efforts
(the “inner” problem), which allows us to obtain a formula for the optimal marginal in-
come tax rate in any Pareto optimum (Proposition 1). It closely mirrors the formula for
a standard Mirrlees model, but features an additional adjustment factor that captures
the optimal correction for both externalities and relative return effects. The remainder of
the paper is then focused on characterizing precisely this adjustment factor. Since this
is closely related to finding the optimal combination of aggregate efforts in each activity
for a given set of Pareto weights (the “outer” problem), we describe the welfare effects
of marginal variations in these efforts in some detail, which prominently feature the sec-
toral shift effects that we emphasize, as well as various related effects induced by relative
return changes (Lemma 4).
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We then use the resulting optimality condition to characterize the adjustment factor
in the marginal tax rate formula and, more importantly, compare it to the partial equilib-
rium, Pigouvian correction, which is simply the income share weighted average, at each
income level, of the wedges between the private returns and social marginal products of
the activities, as e.g. in Lockwood et al. (2013). Proposition 2 shows that the two coin-
cide precisely at income levels where a variation in the marginal tax rate has no relative
return effects. Based on this, Proposition 3 provides conditions under which the dimen-
sionality of the Pareto problem can be reduced: If there are K directions in the space RN

of aggregate sectoral effort vectors in which there are both no relative return effects and
no externalities, then the outer problem effectively collapses to an N − K-dimensional
problem with N − K consistency constraints. We identify both special cases considered
in our previous work in Rothschild and Scheuer (2013a,b) as applications of this general
principle, where two-sector models can be solved with a single sufficient statistic for the
wage distribution.

While these results can all be obtained for general N-sector models, particularly trans-
parent characterizations are available when N = 2. In this case, we obtain an explicit
formula for the optimal corrections as a function of relative return effects and externali-
ties from the two activities (Lemma 6). We then proceed to illustrate our results and their
implications for the shape of optimal tax schedules in a number of important applica-
tions, two of which draw on our earlier work and the rest of which are novel. All of these
example applications are particular cases of our general model.

The first is the externality-free case in Rothschild and Scheuer (2013b) (Proposition 4)
with N = 2. When aggregate output has constant returns to scale and returns coincide
with marginal products, the optimal adjustment factor, under general conditions, scales
up marginal tax rates at the bottom of the income distribution and scales them down at
the top, thus leading to a less progressive income tax schedule than in a standard Mirrlees
model. This distortion encourages effort in the high wage and discourages effort in the
low wage activity, thereby increasing the relative returns to the low wage activity under
complementarity. However, this is partly counteracted by the resulting sectoral shift ef-
fects induced by this relative return change, which imply a flow of effort from the high
to the low wage activity. Since this undoes some of the original increase in high-wage
effort, the tax schedule is more progressive than in an economy without such sectoral re-
allocations, such as Stiglitz (1982).

The second application adds aggregate externalities in the form of increasing or de-
creasing returns to scale. In this case, the adjustment factor can be transparently decom-
posed into a local and global component (Proposition 5). The first, which depends on the
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relative income shares of the two activities at any given income level, is exactly the same
as in the no externalities case, capturing relative return effects. The second, which is uni-
form across income levels, accounts for the externalities and simply scales all marginal
tax rates up (down) under decreasing (increasing) returns to scale.

We then consider the case where aggregate technology exhibits constant returns to
scale, but the sectoral income shares are decoupled from marginal products, as motivated
by the examples discussed at the beginning (see Proposition 6 and its Corollaries). In this
case, both the Pigouvian and relative return components of the optimal adjustment to the
marginal tax rate vary across income levels. For instance, suppose the relatively high-
wage activity is also the overpaid activity, in the sense that its aggregate income share
exceeds what would correspond to its marginal product. Then the Pigouvian correction
implies a more progressive income tax schedule than in a standard Mirrlees model, be-
cause the Pigouvian tax on the high-wage activity gets weighted by an increasing income
share of this activity as we move up along the income distribution. However, the optimal
correction may exceed or fall short of this Pigouvian correction at any given income level
depending on the relative return effects of this tax. The former case occurs if an increase in
the marginal tax rate reduces the relative return to the overpaid activity and thus induces
a beneficial shift of effort out of it, and vice versa.

Finally, we turn to two applications that we can fully characterize for general N. The
first is a generalization of Rothschild and Scheuer (2013b), where all the returns depend
only on the aggregate effort in one activity (Proposition 7). For instance, imagine an econ-
omy with N − 1 traditional sectors where private and social returns are aligned, and one
activity that imposes externalities on itself and all other activities. Most generally, we
could allow here for positive or negative externalities, or externalities of mixed signs,
imposed by this activity on all other sectors and itself, such as positive spillovers from
research or entrepreneurial activities onto other sectors, but within-sector crowding ef-
fects. The last example (Proposition 8) considers the opposite case, where the returns to
all activities are fixed, except for one, which depends on the aggregate efforts in all activ-
ities. In each case, we use the tools developed here to show how the optimal correction
deviates from the Pigouvian correction as a function of the relative return effects.

The paper is organized as follows. Section 2 introduces the model, provides some sim-
ple illustrations of its flexibility, and shows how the multidimensional screening problem
can be collapsed. Section 3 provides the general N-sector results, including the marginal
tax rate formula and the key optimality conditions for the outer problem. Section 4 pro-
vides a further characterization for N = 2 and Section 5 collects the discussion of the
applications. Some proofs are relegated to an appendix.
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2 The Model

2.1 Setup

We consider an economy in which individuals can pursue N different activities, indexed
by i. Each agent is characterized by an N-dimensional unobservable skill vector θ ∈ Θ ≡
ΠN

i=1Θi, where the ith element θi ∈ Θi = [θi, θi] captures her skill in activity i. We assume
θi > 0 for all i. Skills are distributed with a continuous N-dimensional cdf F : Θ → [0, 1]
and associated pdf f (θ).

Individual preferences are characterized by a continuously differentiable and con-
cave utility function over consumption c and the vector of efforts in each activity, e =

(e1, ..., eN), given by U(c, e) = u(c, m(e)) ≡ u(c, l). We assume uc > 0, ul < 0, and that
the effort aggregator m(e) is increasing in both arguments, continuously differentiable,
strictly quasiconvex and linear homogeneous.2 We denote the consumption and vector
of activity-specific efforts of an individual of type θ by c(θ) and e(θ) = (e1(θ), ..., eN(θ)),
and the total individual effort and utility by l(θ) ≡ m(e(θ)) and V(θ) ≡ u(c(θ), l(θ)).

Aggregate output (and hence income) Y(E) consists of the aggregate incomes gener-
ated in each activity Yi(E), so Y(E) = ∑N

i=1 Yi(E), where

Ei ≡
∫

Θ
θiei(θ)dF(θ) (1)

is the aggregate effective (i.e., skill-weighted) effort in activity i, and each Yi can depend
on the entire vector of aggregate efforts E ≡ (E1, ..., EN). The income of an individual of
type θ in activity i is yi(θ), and her total income from all activities is y(θ) ≡ ∑N

i=1 yi(θ).
Accordingly, aggregate total and sectoral incomes are Y(E) =

∫
Θ y(θ)dF(θ) and Yi(E) =∫

Θ yi(θ)dF(θ) for all i.
At this point, we remain fully general about the form of technology linking the N

sectors, with the only assumption that each unit of effective effort in a given sector has
the same private return. Formally, for each activity i, there exists some return ri(E) such
that yi(θ) = ri(E)θiei(θ) for all θ ∈ Θ. As a result, using (1), Yi(E) = ri(E)Ei and we
can write Y(E) = ∑N

i=1 ri(E)Ei. Note that the returns ri may deviate from the marginal

2Note that this allows for preferences ũ(c, m̃(e)) where m̃ is homothetic even if not linear homogeneous:
then there exists some increasing h(.) and linear homogeneous m(e) such that we can write m̃(e) = h(m(e)),
and we can define u(c, l) ≡ ũ(c, h(l)). Hence, ũ(c, m̃(e)) = u(c, m(e)) for all (c, e) with linear homogeneous
m. An example is û(c)− ∑N

i=1 hi(ei) when all hi(.) are homogeneous of the same degree. A limiting case
would obtain for m(e) = ∑N

i=1 ei, so that m is weakly but not strictly quasiconvex. Then individuals would
always specialize in the activity that yields them the highest returns, as in the Roy models considered in
Rothschild and Scheuer (2011, 2013).
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product of effort in activity i, given by Yi(E) ≡ ∂Y(E)/∂Ei, thus allowing for arbitrary
patterns of externalities as illustrated next.

2.2 Examples

A particularly simple special case would be a linear production function Y(E) = ∑N
i=1 riEi,

so individuals perform different tasks, for which they have different skills and each of
which has a fixed return. A more interesting example would involve a concave con-
stant returns to scale production function Y(E) with ri(E) = Yi(E) for all E, so returns
are endogenous and respond to tax policy. For instance, in the limiting case where m(e)
becomes linear and individuals always specialize in one of the N activities, we could in-
terpret Y(E) as an aggregate production function for an economy with N complementary
sectors or occupations i, and characterize an optimal income tax in such a multi-sector
Roy (1951) model, as in Rothschild and Scheuer (2013b) for the special case N = 2.

Both examples above have in common that there are no externalities, i.e. private re-
turns to all activities correspond to social marginal products. Both the recent public de-
bate about tax policy and academic work (e.g. Rothschild and Scheuer, 2011, Piketty et al.,
2013, Besley and Ghatak, 2013, Lockwood et al., 2013) have questioned this typical Mir-
rleesian assumption. For instance, incomes in some activities may come at the expense
of others, through bargaining, rent-seeking or negative externalities. Consider e.g. the
team production setting from the introduction where individuals spend time and effort
both to produce output and to get credit (and compensated) for this output. If activity 1
corresponds to claiming credit and activity 2 to actual production, this could be captured
in our general framework by Y(E) = E2 and Y1(E) = a(E1)E2, Y2(E) = (1 − a(E1))E2,
where a(E1) is some increasing function. Here, activity 2 generates positive externalities
as it increases the returns r1 = a(E1)E2/E1 to the rent-seeking activity 1, and activity 1
imposes negative externalities on activity 2.

Another example for a pure zero sum activity would be a setting where activity 1 just
takes away output produced through activity 2 one-for-one, so that Y(E) = Y(E2) and
Y1(E1) = E1, Y2(E) = Y(E2)− E1. Here, both activities again generate externalities, but
only on the returns r2(E) = (Y(E2)− E1)/E2 to the productive activity 2 (the returns to
activity 1 are fixed at 1, so it bears no externalities). The opposite special case is consid-
ered in Rothschild and Scheuer (2013a) (again for N = 2), where only one (rent-seeking)
activity imposes (negative) externalities on itself and all other activities, so ri(E1) for all
i and all returns are only a (decreasing) function of effort in activity 1, whereas no other
activity i &= 1 imposes externalities.
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Of course, our general framework here allows for much richer patterns of externalities,
including positive externalities or externalities coming from or targeted in different ways
at multiple other activities. Another important example would be externalities coming
from increasing or decreasing returns at the aggregate level Y(E), in which case effort
in each activity would have positive or negative externalities, respectively, on all other
activities. We will revisit all these and other applications after having developed our
general theory in the next two sections.

2.3 Income Tax Implementation

We first describe the set of feasible allocations using a direct mechanism and then link this
to the implementation through a nonlinear income tax schedule. Individuals announce
their type θ and then get assigned consumption c(θ), total income y(θ), and the fraction of
income earned through each activity i, given by qi(θ) ≡ yi(θ)/y(θ) = ri(E)θiei(θ)/y(θ).
Let q(θ) ≡ (q1(θ), ..., qN(θ)) ∈ ∆N−1 be the vector of these income shares, where ∆N−1 =

{q ∈ RN |∑N
i=1 qi = 1, qi ≥ 0} is the N − 1 dimensional unit simplex.

Assuming that only income y and consumption c are observable but neither an indi-
vidual’s skill type θ nor their sectoral efforts ei (nor the income shares qi), the incentive
constraints that guarantee truth-telling of the agents are:

u
(

c(θ), m
(

q1(θ)y(θ)
θ1r1(E)

, ... ,
qN(θ)y(θ)
θNrN(E)

))

≥ max
p∈∆N−1

{
u
(

c(θ′), m
(

p1y(θ′)
θ1r1(E)

, ... ,
pNy(θ′)
θNrN(E)

))}
∀θ, θ′ ∈ Θ, (2)

since each type θ can imitate another type θ′ by earning the income of type θ′ using a
continuum of combinations of efforts and hence income shares p = (p1, ..., pN) in the N
activities.

The following two results show how the N-dimensional incentive constraints (2) can
be collapsed into a one-dimensional screening problem in terms of an endogenous sum-
mary statistic of heterogeneity. First, incentive compatibility implies that each type θ has
a well-defined wage w ≡ y/l and vector of sectoral income shares q, which both depend
on E but are otherwise independent of the allocation.

Lemma 1. Suppose that only income y and consumption c are observable, whereas an individual’s
skill type θ and vector of efforts e and income shares q are private information. Then, in any
incentive compatible allocation {c(θ), y(θ), q(θ), E},
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w(θ) ≡ y(θ)
l(θ)

= max
p∈∆N−1

m
(

p1
θ1r1(E)

, ... ,
pN

θNrN(E)

)−1
(3)

and q(θ) is the corresponding arg max.

Proof. Using (2) for θ = θ′ and homogeneity of degree one of m, we have

q(θ) ∈ arg min
p∈∆N−1

m
(

p1y(θ)
θ1r1(E)

, ... ,
pNy(θ)

θNrN(E)

)
= arg min

p∈∆N−1
m
(

p1
θ1r1(E)

, ... ,
pN

θNrN(E)

)
.

The result in (3) follows from w(θ) ≡ y(θ)/l(θ) and l(θ) ≡ m(e(θ)) = y(θ)m
(

q1(θ)
θ1r1(E) , ... , qN(θ)

θNrN(E)

)
.

Lemma 1, which generalizes the result for N = 2 in Rothschild and Scheuer (2013a),
establishes that, in any incentive compatible allocation, each type’s wage w(θ) is fully
pinned down by the vector E. To make this explicit, we write wE(θ) in the following.
Moreover, the vector of income shares q(θ) is chosen so as to minimize the overall effort
m(e) subject to achieving a given amount of income: By (3) and linear homogeneity of m,

wE(θ) = max
p∈∆N−1

ym
(

p1y
θ1r1(E)

, ... ,
pNy

θNrN(E)

)−1
= max

e

y
m(e)

s.t.
N

∑
i=1

θiri(E)ei = y (4)

for any y. Again by linear homogeneity of m, the vector q(θ) only depends on the vector
of skill ratios φ ≡ (θ1/θN, ..., θN−1/θN) in addition to E, which is why we write qE(φ)

henceforth, with φ ∈ Φ ≡ (0, ∞)N−1. Since m is strictly quasiconvex, qE(φ) is uniquely
determined by E for each φ.

All individuals with the same wage w have the same preferences over (c, y)-bundles
given by u(c, y/w). As is standard, we assume the single crossing property, i.e., that the
marginal rate of substitution between y and c, −ul(c, y/w)/ (wuc(c, y/w)), is decreasing
in w. Under this condition, any incentive compatible allocation can be implemented with
a non-linear income tax T(y).

Lemma 2. Consider the observability assumptions from Lemma 1 and suppose that the allocation
{c(θ), y(θ), q(θ), E} is incentive compatible. Then
(i) wE(θ) = wE(θ′) = w implies u(c(θ), y(θ)/w) = u(c(θ′), y(θ′)/w), and
(ii) {c(θ), y(θ), q(θ), E} can be implemented by offering the single non-linear income tax schedule
T∗(y) corresponding to the retention function R∗(y) = y − T∗(y) defined by

R∗(y) ≡ max
c

{
c
∣∣∣∣u

(
c(θ),

y(θ)
wE(θ)

)
≥ u

(
c,

y
wE(θ)

)
∀θ ∈ Θ

}
(5)

and letting all agents choose one of their most preferred (c, y)-bundles from the resulting budget
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set B∗ = {(c, y)|c ≤ y − T∗(y)}.

The proof of Lemma 2, omitted here, is analogous to that of Lemma 1 in Rothschild
and Scheuer (2013b) for N = 2. Lemma 2 does not rule out the possibility that two indi-
viduals with the same w (but different q’s) choose different (c, y)-bundles, even though,
by property (i), these bundles must be located on the same indifference curve in the (c, y)-
space. To trace out the Pareto frontier, we can nevertheless restrict attention to allocations
{c(w), y(w), E} that pool all same-wage individuals at the same (c, y)-bundle by the argu-
ments in Rothschild and Scheuer (2013b). We focus on such allocations in the following.

3 N Sectors

3.1 Definitions

We use general cumulative Pareto weights Ψ(θ) defined over the N-dimensional Θ-space
with the corresponding density ψ(θ) to trace out the set of Pareto efficient allocations. The
social planner maximizes

∫
Θ V(θ)dΨ(θ) subject to resource and self-selection constraints.

The observation that makes this problem tractable is that, by Lemma 1, fixing the vector
E determines the wage wE(θ) and the vector of income shares qE(φ) for each type θ. For
any given E, the cdf over (w, φ)-vectors, given by

GE(w, φ) ≡
∫

{θ|wE(θ)≤w, θi/θN≤φi ∀i=1,...,N−1}
dF(θ)

with the corresponding density gE(w, φ) will be useful in the following. We denote the
support of the wage distribution for any E by [wE, wE], where wE = wE(θ1, ..., θN) and
wE = wE(θ1, ..., θN). This allows us to obtain the wage distribution for any given E simply
as the marginal distribution

FE(w) ≡
∫

{θ|wE(θ)≤w}
dF(θ) =

∫ w

wE

∫

Φ
dGE(z, φ)

with the corresponding density fE(w) =
∫

Φ dGE(w, φ) as well as the sectoral densities
f i
E(w) ≡

∫
Φ qi

E(φ)dGE(w, φ). Hence, the sectoral densities can be interpreted as an aver-
age value of qi for all individuals at wage w, and fE(w) = ∑N

i=1 f i
E(w) for all w ∈ [wE, wE].3

Finally, for any given E, we can derive Pareto weights over wages ΨE(w), as well as their

3In the limiting case with m(e) = ∑N
i=1 ei, (3) immediately implies qi

E(φ) ∈ {0, 1} and wE(θ) =
max{θ1r1(E), ..., θNrN(E)}. Then f i

E(w)/ fE(w) can be interpreted as the share of i-sector workers at w,
whereas here it is the i-sector income share at wage w.
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density and sectoral decomposition ψE(w) = ∑N
i=1 ψi

E(w), completely analogously from
Ψ(θ). We are particularly interested in the regular case in which the planner assigns
greater weight to low-wage individuals, i.e., where ψE(w)/ fE(w) is non-increasing in w
for any E.

By the discussion following Lemma 2, we can focus on incentive compatible alloca-
tions {c(w), y(w), E} that only condition on an individual’s wage w, which then imply
total effort and utility l(w) ≡ y(w)/w and V(w) ≡ u(c(w), l(w)) as well as the activity-
specific efforts ei(θ) = qi

E(φ)y(wE(θ))/(θiri(E)).

3.2 Inner and Outer Problems for Pareto Efficiency

As in Rothschild and Scheuer (2013a,b), we decompose the problem of finding Pareto
optimal allocations into two steps. The first step involves finding the optimal vector of
aggregate efforts E. We call this the “outer” problem. The second (which we call the “in-
ner” problem) involves finding the optimal resource-feasible and incentive-compatible
allocation for a given E. This inner problem is an almost standard Mirrlees problem; the
only difference is that the induced vector of aggregate effective efforts has to be consistent
with the E that we are fixing for the inner problem. For some given Pareto weights Ψ(θ)

(and hence induced weights ΨE(w)), we therefore define the inner problem as follows
(where c(V, l) is the inverse function of u(c, l) w.r.t. c):

W(E) ≡ max
V(w),l(w)

∫ wE

wE

V(w)dΨE(w) (6)

subject to

V′(w) = ul(c(V(w), l(w)), l(w))
l(w)

w
∀w ∈ [wE, wE] (7)

Ei =
1

ri(E)

∫ wE

wE

wl(w) f i
E(w)dw ∀i = 1, ..., N (8)

∫ wE

wE

wl(w) fE(w)dw ≥
∫ wE

wE

c(V(w), l(w)) fE(w)dw. (9)

We employ the standard Mirrleesian approach of optimizing directly over allocations,
i.e., over effort e(w) and consumption or, equivalently, utility V(w) profiles. The social
planner maximizes a weighted average of individual utilities V(w) subject to three sets
of constraints. (9) is a standard resource constraint. The N constraints in (8) ensure that
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aggregate effective effort in each sector i indeed sums up to Ei, as the right-hand-side is

1
r(Ei)

∫ wE

wE

y(w) f i
E(w)dw =

∫ wE

wE

∫

Φ

y(w)qi
E(φ)

ri(E)
gE(w, φ)dφdw =

∫

Θ
θiei(θ)dF(θ). (10)

Finally, the allocation V(w), l(w) needs to be incentive compatible, i.e.,

V(w) ≡ u(c(w), l(w)) = max
w′

u
(

c(w′),
l(w′)w′

w

)
. (11)

It is a well-known result that under single-crossing, the global incentive constraints (11)
are equivalent to the local incentive constraints (7) and the monotonicity constraint that
income y(w) must be non-decreasing in w.4 We follow the standard approach of dropping
the monotonicity constraint, which could easily be checked ex post. If the solution to
problem (6) to (9) does not satisfy it, bunching would need to be considered.

Once a solution V(w), l(w) to the inner problem has been found, the resulting welfare
is given by W(E). The outer problem is then simply maxE W(E).

Solving the inner problem (6) to (9) for a given E yields the following optimal marginal
tax rate formula:

Proposition 1. The marginal tax rate in any Pareto optimum without bunching is such that

1 − T′(y(w)) =

(
1 −

N

∑
i=1

ξi
ri(E)

f i
E(w)

fE(w)

)(
1 +

η(w)
w fE(w)

1 + εu(w)
εc(w)

)−1
with (12)

η(w) =
∫ wE

w

(
1 − ψE(s)

fE(s)
uc(s)

λ

)
exp

(∫ s

w

(
1 − εu(t)

εc(t)

)
dy(t)
y(t)

)
fE(s)ds (13)

for all w ∈ [wE, wE], where λ is the multiplier on the resource constraint (9), λξi are the multi-
pliers on the N consistency constraints (8), λη̂(w) = λη(w)/uc(w) the multipliers on the local
incentive constraints (7), and the uncompensated and compensated wage elasticities of total effort
l as a function of the wage are εu(w) and εc(w), respectively.

Proof. See Appendix A.1.

These formulas closely mirror the formulas in a standard Mirrlees model (see e.g.
equations (15) to (17) in Saez, 2001). The term η(w) captures the redistributive motives
of the government and income effects from the terms in the exponential function. This
simplifies with quasilinear preferences u(c, l) = c − h(l), where income effects disappear,
as in Diamond (1998). Then uc(w) = λ = 1 and εu(w) = εc(w) ∀w, so that η(w) =

4See, for instance, Fudenberg and Tirole (1991), Theorems 7.2 and 7.3.
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ΨE(w)− FE(w). Hence the marginal tax rate is increasing in the degree to which ΨE(w)

shifts weight to low-wage individuals compared to FE(w).
The only difference from standard formulas is that, at each wage, the marginal keep

shares 1 − T′(y(w)) are adjusted by a correction factor 1− ∑N
i=1( f i

E(w)/ fE(w))(ξi/ri(E)).
As we discuss further below, this factor is a local correction for the general equilibrium ef-
fects and/or externalities caused by income earned by wage w individuals. In particular,
the multiplier ξi on the ith constraint (8) is the general equilibrium Pigouvian corrective tax
on effective effort in sector i—i.e., the optimal corrective tax taking general equilibrium
effects into account. The term ∑N

i=1( f i
E(w)/ fE(w))(ξi/ri(E)) is therefore an income-share

weighted average of the general equilibrium Pigouvian corrective taxes ξi/ri on the in-
comes earned in the various activities.

The next subsections use the conditions for an optimal vector E from outer problem in
order to explore the relationship between the general equilibrium Pigouvian taxes ξi/ri

and the partial equilibrium Pigouvian taxes τi
p that would align the social and private

marginal products of effort in sector i, defined by ri(E)(1 − τi
p(E)) ≡ Yi(E).

3.3 Outer Problem

At the optimal E from the outer problem, there must be zero net welfare effects from a
marginal change in any Ei. We can divide the marginal welfare effects of such a change
into four classes: the direct effect (i) on the left-hand side of the ith consistency constraint
(8) and three other effects, (ii)-(iv), which are best understood by considering the effect
of a marginal change in Ei on any given type θ. The change in Ei changes the wage of
individual i. We designate by (ii) the direct effects that this wage change has on (6) to
(9), holding fixed the type’s effort and utility. We designate by (iii) the indirect effects
that this wage change has on θ’s effort-utility allocation as she moves along the fixed
schedules l(w), V(w) when her wage changes. Finally, the change in Ei also changes the
returns ri(E) to effort in the various sectors; in turn, this changes θ’s optimal allocation
of efforts ei(θ) across the various sectors for any given total effort l(w). We designate
by (iv) the welfare effects of this effort-composition change on the right-hand side of the
consistency constraints (8).

One approach would be to compute these effects (in terms of the multipliers on the
constraints) using the envelope theorem and holding the schedules l(w), V(w) fixed. A
more useful alternative, pursued in the following, is to simultaneously vary the schedules
l(w), V(w) in way that undoes the change in average effort and utility at each w coming

13



from (iii). In particular, note that (4) can equivalently be written as

wE(θ) = max
e

∑N
i=1 θiri(E)ei

m(e)
s.t. m(e) = l. (14)

Using the envelope theorem and denoting the semi-elasticities of the returns rj(E) in ac-
tivity j w.r.t. Ei by

β
j
i(E) ≡

∂rj(E)
∂Ei

1
rj(E)

,

the semi-elasticity of wages w.r.t. Ei is

∂wE(θ)
∂Ei

1
wE(θ)

=
∑N

j=1 θjej(θ)rj(E)β
j
i(E)

wE(θ)l
=

N

∑
j=1

qj
E(φ)β

j
i(E), (15)

i.e., the income-share weighted average of the return semi-elasticities. The change in
effort for individuals with original wage w and income share vector q due to the wage
change resulting from a marginal increase in Ei is therefore l′(w)w ∑N

j=1 qj
Eβ

j
i(E) and the

average effort change at w is simply

l′(w)w
N

∑
j=1

E
[

qj
E(φ)

∣∣∣ w
]

β
j
i(E) = l′(w)w

N

∑
j=1

f j
E(w)

fE(w)
β

j
i(E), (16)

where E[qj
E(φ)|w] =

∫
Φ qj

E(φ)gE(φ|w)dφ is the average of qj over the set {θ|wE(θ) = w}
of all wage-w individuals. Defining

δi
E(w) ≡

N

∑
j=1

f j
E(w)

fE(w)
β

j
i(E), (17)

this motivates the variation in the l-schedule l̃(w) = l(w)− l′(w)wδi
E(w). Analogously,

we can vary the V-schedule by Ṽ(w) = V(w)− V′(w)wδi
E(w). Performing this variation

in schedules simultaneously with the increase in Ei greatly simplifies the outer problem
effects (iii) by making sure that both average effort and utility for the set of types at each
wage w remain unchanged when Ei increases marginally. In fact, this variation also en-
sures that average consumption is unchanged at each w when Ei increases.5

We refer below to subshift 1 as the change in l(w) and V(w) due to the change in

5To wit, dropping the common argument w and using (7) and (52) yields
c̃ − c = c(Ṽ, l̃)− c(V, l) = 1

uc
(Ṽ −V)− ul

uc
(l̃ − l) =

(
1
uc

V′ − ul
uc

l′
)

wδi
E =

(
− ul l

wuc
+ ucc′+ul l/w

uc

)
wδi

E = c′wδi
E.
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wages coming from the marginal increase in Ei, holding the l- and V-schedules fixed
(i.e., effect (iii) from above). In the additional subshift 2, we move the schedules from
l(w), V(w) to l̃(w), Ṽ(w). This additional subshift does not alter the welfare effect of a
marginal change in Ei, since the variation in schedules has a zero total welfare effect by
the envelope theorem if l(w) and V(w) are a solution to the inner problem.

3.3.1 Redistributive Effects

The only effects on the objective come from (iii). The effect from subshift 1 at each w is
(by analogy to (16)) V′(w)w ∑N

j=1 ψ
j
E(w)β

j
i(E). The effect of the variation in the V-schedule

from subshift 2 is simply −V′(w)wδi
E(w). Taking these together, the total effect is

N

∑
j=1

β
j
i(E)

∫ wE

wE

V′(w)w

(
ψ

j
E(w)

ψE(w)
−

f j
E(w)

fE(w)

)
ψE(w)dw ≡ −λ

N

∑
j=1

β
j
i(E)Rj(E) (18)

with

Rj(E) ≡
∫ wE

wE

V′(w)w
λ

(
f j
E(w)

fE(w)
−

ψ
j
E(w)

ψE(w)

)
ψE(w)dw. (19)

Note that ∑N
j=1 Rj(E) = 0; this is because the effect captures a re-allocation of utility

across workers with different sectoral intensities q at each w. For the same reason, each
Rj disappears if we put the same welfare weight on all types θ who earn the same wage w
(so that ψ

j
E(w)/ψE(w) = f j

E(w)/ fE(w) for all j, w, as would be the case with the relative
weights Ψ(θ) = Ψ̃(F(θ))). Otherwise, if a marginal increase in Ei increases the returns to
activities in which workers with a high relative welfare weight earn much of their income,
then the resulting re-allocation in utilities is welfare enhancing.

3.3.2 Incentive Constraint Effects

Again, the only effects here are from (iii). There are no effects from subshift 1, since
individuals just move along incentive compatible schedules. For subshift 2, note that

Ṽ′(w) = V′(w)− d(V′(w)w)
dw

δi
E(w)− V′(w)wδi

E
′
(w),

so the change in the local incentive constraints (7) is

Ṽ′(w)− V′(w) + ul(c̃(w), l̃(w))
l̃(w)

w
− ul(c(w), l(w))

l(w)
w

= −d(V′(w)w)
dw

δi
E(w)− V′(w)wδi

E
′
(w)− d(ul(c(w), l(w))l(w))

dw
δi

E(w) = −V′(w)wδi
E
′
(w)
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since (7) requires wV′(w) + ul(w)l(w) for all w. Using (17), the incentive effects from (iii)
are therefore

−
N

∑
j=1

β
j
i(E)λ

∫ wE

wE

η(w)w
V′(w)
uc(w)

d
dw

(
f j
E(w)

fE(w)

)
dw ≡ −λ

N

∑
j=1

β
j
i(E)Ij(E), (20)

where λη̂(w) = λη(w)/uc(w) is the multiplier on (7) and

Ij(E) ≡
∫ wE

wE

η(w)w
V′(w)
uc(w)

d
dw

(
f j
E(w)

fE(w)

)
dw. (21)

As before, we have ∑N
j=1 Ij(E) = 0. To interpret this, suppose η(w) > 0, so the incentive

constraints bind downwards. Then a marginal increase in Ei is welfare reducing if it
increases the returns to activities with d

(
f j
E(w)/ fE(w)

)
/dw > 0, i.e. activities j that are

locally associated with high wages in the first place, and vice versa. This is because an
increase in Ei makes the wage distribution more (less) unequal in this case, which tightens
(eases) the local incentive constraints. The effect is therefore a generalized version of the
one pointed out by Stiglitz (1982) for a two-type model with two sectors.

3.3.3 Resource Constraint Effects

Because of the subshift 2 variation in schedules that undoes the average change in c and
l from the marginal increase in Ei at each w, there are no net effects from (iii) here. We
are therefore only left with the direct wage shift effect (ii). At each w, the average wage
change (using (17)) is wδi

E(w), so the effect on the resource constraint is

λ
∫ wE

wE

δi
E(w)wl(w) fE(w)dw = λ

N

∑
j=1

β
j
i(E)

∫ wE

wE

y(w) f j
E(w)dw. (22)

It is useful to write this in terms of the Pigouvian taxes ti
p(E), i = 1, ..., N, defined

by ri(E) − ti
p(E) ≡ ∂Y(E)/∂Ei, i.e. as the tax on equivalent effort in sector i that fills

the wedge between the private and social returns to i-sector effort (the corresponding tax
on income in sector i is τi

p(E) = ti
p(E)/ri(E)). Then ti

p(E) can be expressed as an output
weighted sum of the corrections for the externalities from Ei:

ti
p(E) = −

N

∑
j=1

β
j
i(E)Yj(E). (23)
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In particular, if effort in activity i raises the returns to this and other activities, it gener-
ates positive externalities, so the Pigouvian tax is negative, and vice versa. Using this
in (22) yields a resource constraint effect of simply −λti

p(E). Hence, a marginal increase
in Ei increases (decreases) welfare through this effect if it generates positive (negative)
externalities.

3.3.4 Consistency Constraint Effects

Consider the effects of a marginal increase in Ei on consistency constraint j. First, there
is the direct effect (i), which is simply λξ jδij, where δij is the Kronecker δ. Second, there
are various effects on the right-hand side. For these, it is useful to rewrite consistency
constraint j following (10) as Ej =

∫
Θ θjej(θ)dF(θ) and to note that

θjej(θ) = l(wE(θ))
θjej(θ)

m(e(θ))
= l(wE(θ))

θj
ej(θ)
eN(θ)

m
(

e1(θ)
eN(θ) , ..., eN−1(θ)

eN(θ) , 1
)

by linear homogeneity of m and the fact that l = m(e). For the same reason and by (4),
the effort ratios ζ j ≡ ej/eN only depend on the vector of relative returns

xE(φ) ≡
(

φ1
r1(E)
rN(E)

, ... , φN−1
rN−1(E)

rN(E)
, 1
)

,

so that we can write ζ j(xE(φ)) and define ζ ≡ (ζ1, .., ζN−1, 1). Using this, the effective
effort integrated over on the right-hand side of consistency constraint j is

θjej(θ) = l(w)θjΩj(ζ(xE(φ))) with Ωj(xE(φ)) ≡
ζ j(xE(φ))

m (ζ(xE(φ)))
. (24)

This reveals that there are two distinct effects here: first, the change in the overall level
of effort l(w) for each individual (which is part of effect (iii)), holding constant the cross-
sectoral allocation of efforts, and second, the re-allocation of effort across sectors due to
the change in the relative returns xE caused by the increase in Ei (effect (iv)).

Overall effort re-allocation effect. As for the former, the change in l(w) for individ-
uals of wage w and type φ from subshift 1 is wl′(w)∑N

k=1 qk
E(φ)βk

i (E), and using θjΩj =

θjej/l = wqj/rj, the effect on (24) is

wqj
E(φ)

rj(E)
l′(w)w

N

∑
k=1

qk
E(φ)βk

i (E).
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Averaging over the set {θ|wE(θ) = w} of all wage w individuals gives

1
rj(E)

N

∑
k=1

βk
i (E)w2l′(w)E

[
qj

E(φ)q
k
E(φ)

∣∣∣ w
]

.

The average change in l(w) at w induced by the change in the l-schedule in subshift 2 is
−wl′(w)∑N

k=1 E
[

qk
E(φ)

∣∣ w
]

βk
i (E), and so the average change in sector j equivalent effort

in (24) is

− 1
rj(E)

N

∑
k=1

βk
i (E)w2l′(w)E

[
qj

E(φ)
∣∣∣ w

]
E
[

qk
E(φ)

∣∣∣ w
]

.

Integrating over all wages gives a total effect on consistency constraint j of

−λξ j

N

∑
k=1

βk
i (E)Ckj(E), (25)

where
Ckj(E) ≡ 1

rj(E)

∫ wE

wE

w2l′(w)Cov
(

qj
E, qk

E

∣∣∣ w
)

fE(w)dw (26)

with Cov
(
qj, qk) = E

[
qjqk] − E

[
qj]E

[
qk]. The intuition is tightly linked to our varia-

tion: The schedule change in l(w) is constructed to zero out the average change in effort
at any given w, across all activities. If the j-sector income share qj were uncorrelated with
this effort change at any given w, then j-sector effort would also remain unchanged. If it
were positively correlated, however, then it would increase, and vice versa. In particular,
if a marginal increase in Ei increases the returns to activities k in which individuals have a
high income share who also earn a lot of their income in activity j, then individuals with a
high qj see their wage increase more than proportionally and therefore move up along the
l(w)-schedule relative to others. Hence, if l′(w) > 0, this variation effectively re-allocates
effort towards activity j, thus increasing the right-hand side of consistency constraint j.

Sectoral shift effect. Second, the effect of Ei through the change in the vector of effort
ratios ζ on (24) is

l(w)θj

N

∑
k=1

N

∑
l=1

∂Ωj(ζ(xE(φ)))

∂ζl

∂ζl(xE(φ))

∂xk
∂xk

E(φ)

∂Ei
, (27)

where xl is the l-th element of the vector x. We can rewrite this using qj = rjθjΩj/w and
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hence qj
E(φ) = Zj(xE(φ))Ωj(ζ(xE(φ))) with

Zj(xE(φ)) ≡
rj(E)θj

w
= xj

E(φ) min
p∈∆N−1

m

(
p1

x1
E(φ)

, ...,
pN−1

xN−1
E (φ)

, pN

)
, (28)

where we used (3) and homogeneity of degree one of m. This makes explicit that the
income share qj is also only a function of the relative returns x, and in fact is a product of
two terms, one of which, Zj, directly depends on x and the other of which, Ωj, depends
on x only through the vector of effort ratios ζ. It is instructive to rewrite (27) by defining

Qj
k(xE(φ)) ≡ Zj(xE(φ))

N

∑
l=1

∂Ωj(ζ(xE(φ)))

∂ζl

∂ζl(xE(φ))

∂xk . (29)

Intuitively, there are two components to the effect of a change in the return to sector
k relative to N (holding all other returns constant relative to sector N) on the sectoral
income share qj: the mechanical effect of changing returns (through Zj), holding constant
all efforts, and the indirect sectoral shift effect (through Ωj) due to the reallocation of effort
across sectors. Qj

k measures only the latter component, i.e. the substitution effect on Qj

that results from the change in the sectoral effort ratios ζ in response to a change in relative
returns xk, but holding x fixed otherwise. Substituting this in (27), the effect becomes

l(w)θj

N

∑
k=1

w
rj(E)θj

Qj
k(xE(φ))

∂xk
E(φ)

∂Ei
=

y(w)
rj(E)

N

∑
k=1

(
βk

i (E)− βN
i (E)

)
Qj

k(xE(φ))xk
E(φ)

since ∂xk/∂Ei = (βk
i − βN

i )xk. Integrating over all wages and all φ gives a total effect on
consistency constraint j of

−λξ j ∑
k

(
βk

i (E)− βN
i (E)

)
Skj(E) (30)

with
Skj(E) ≡ 1

rj(E)

∫ wE

wE

y(w)
∫

Φ
Qj

k(xE(φ))xk
E(φ)dGE(w, φ). (31)

We can set SNj = 0 for all j since qj
E(φ) does not depend on the last element of xE(φ).

As a result, if a marginal increase in Ei increases the relative returns to activities k (i.e.
βk

i (E)− βN
i (E) > 0) for which Qj

k > 0 (so that an increase in xk increases the income share
earned in activity j through a re-allocation of the effort ratios towards ej), then it induces
a shift of effort into sector j and thus increases the right-hand side of the j-th consistency
constraint.
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Adding up. Per the preceding discussion, the Ckj and Skj effects can both be inter-
preted as across sector re-allocations. Formally, as the following lemma shows, the shifts
of incomes across sectors induced by those two effects have to sum to zero across all j .

Lemma 3. ∑N
j=1 rj(E)Ckj(E) = ∑N

j=1 rj(E)Skj(E) = 0 for all k = 1, ..., N.

Proof. See Appendix A.2.

The straightforward intuition for both sums in Lemma 3 hinges on the fact that the
rj(E)-weighted sum of the right-hand sides of the N constraints in (8) is

∫ wE
wE

y(w) fE(w)dw,
and the sectoral composition of income at wage w is irrelevant for this sum. Per (29) and
the subsequent discussion, the changes {Qj

k}j=1,...,N in {Skj}k=1,...,N reflect changes in the
income shares qj, and thus do not affect

∫ wE
wE

y(w) fE(w)dw. Similarly, subshift 2 ensures,
by construction, that l(w) and hence (for effect (iii)) wl(w) = y(w) is unchanged on aver-
age at each w.

It is also easy to see that ∑N
k=1 Ckj(E) = 0 for all j. Intuitively, if a change in Ei does not

effect any relative returns—i.e., if βk
i (E) = βl

i(E) for all k, l—then subshift 1 causes equi-
proportional changes in the wages of all types θ, and hence no cross-sectoral re-allocation
of effort l(w) at any wage. This is useful because it means that we can equivalently write
(25) as

− λξ j

N

∑
k=1

(
βk

i (E)− βN
i (E)

)
Ckj(E). (32)

3.3.5 Putting Them Together

To find the total welfare effect of a marginal change in Ei, we combine (18), (20), (22), with
(25), (30) and the direct effect ξ jδij for all consistency constraints j. Defining ∆β

j
i(E) ≡

β
j
i(E)− βN

i (E) as the semi-elasticity of the returns
(

∂xj
E(φ)/∂Ei

)/
xj

E(φ) establishes the
following Lemma, which summarizes the results from this subsection:

Lemma 4. At any Pareto optimum, the welfare effect of a marginal change in Ei is

∂W(E)
∂Ei

= λ

[
ξi − ti

p(E)− ∑
j

∆β
j
i(E)

(
Ij(E) + Rj(E) + ∑

k
ξk

(
Cjk(E) + Sjk(E)

)
)]

,

where Rj(E), Ij(E), ti
p(E), Cjk(E) and Sjk(E) are given by (19), (21), (23), (26) and (31), respec-

tively.

This makes clear that, if ∆β
j
i = 0 for all j, i.e. an increase in Ei has no effect on the

vector of relative returns x, then ξi = ti
p(E) at the optimum. Any deviation of ξi from

ti
p(E) is due to the relative return effects I, R, C and S.
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3.4 Marginal Tax Rate Results and Outer Problem Dimensionality

Define ∆β, C, and S, respectively, as the matrices with (i, j)th elements ∆β
j
i(E), Cij(E),

and Sij(E). Define !I and !R as the column vectors with elements Ii(E) and Ri(E), respec-
tively. Finally, define !ξ and!tp respectively as the column vectors with elements ξi and
ti

p(E), and use IN to denote the N × N identity matrix. Then the system of optimality
conditions for Ei from Lemma 4 can be written as

(IN − ∆β(C +S))!ξ =!tp + ∆β
(
!I + !R

)
. (33)

Because the returns ri(E) are endogenous, individuals may impose externalities when
they exert effort to earn income in sector i. ti

p(E) is the tax on sector-i effective effort
needed to align an individual’s private and social returns to sector-i effort in the partial-
equilibrium sense—i.e., holding fixed others’ behavior (and, as discussed above, τi

p =

ti
p/ri is the corresponding tax on sector-i income). If there were no general-equilibrium

effects, we would expect the Pigouvian corrective tax on income earned by wage w in-
dividuals to be ∑i

(
f i
E(w)/ fE(w)

)
τi

p(E), i.e., a weighted average of the sector-specific
Pigouvian corrections, with weights reflecting the share of income earned in the various
sectors. Intuitively, an increase in the marginal income tax rate at a given income does
not directly affect any individual’s optimal sectoral income shares qi, so a marginal tax
distorts average sectoral incomes yi(w) earned by individuals at any w in proportion to
the income share f i

E(w)/ fE(w) at w.
Of course, there will typically be indirect, general equilibrium effects as well: changes

in E change returns ri(E) and hence individuals’ optimal cross-sectoral effort allocations.
The actual externality correction term ∑i

(
f i
E(w)/ fE(w)

)
(ξi/ri) from (12) includes these

general equilibrium effects. We can use the system (33) to compare the general- and
partial-equilibrium corrections. They would obviously coincide if τi

p(E) = ξi/ri, or equiv-
alently ti

p(E) = ξi, for each sector i, as would be the case if ∆β were identically zero and
there were no relative relative effects of any change in E.

More generally, the general- and partial-equilibrium corrections at wage w coincide
whenever the proportional change in income ∆Yi ∝ f i

E(w)/ fE(w) induced by an addi-
tional marginal income tax at wage w implies an aggregate effort change ∆Ei = ∆Yi/ri in
a direction in which there are no relative return effects. Formally, let !n denote the column
vector with ith element ni = ( f i

E(w)/ fE(w))(1/ri(E)) and!n′ its transpose. If!n′∆β = 0, so
that there are no relative wage effects in the direction!n′, then left-multiplying (33) yields
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!n′!ξ = !n′!tp, i.e.,
N

∑
i=1

f i
E(w)

fE(w)
ξi

ri(E)
=

N

∑
i=1

f i
E(w)

fE(w)
τi

p(E)

and the general equilibrium correction coincides with the partial equilibrium correction.6

Intuitively, any wedge between the partial- and general-equilibrium corrections is at-
tributable to relative return effects: if a marginal tax at wage w does not cause any change
in relative returns, then imposing it will change the aggregate efforts E, but it will not
change any type’s optimal cross-sectoral effort allocation, and hence will have no indirect
feedback effects on E. When there are relative return effects, and!n′∆β &= 0, then the opti-
mal correction, per (12), will in general diverge from the partial-equilibrium correction.

We can also ask when, additionally, the optimal correction in (12) is zero—i.e., when
∑i

(
f i
E(w)/ fE(w)

)
(ξi/ri) =

(
f i
E(w)/ fE(w)

)
τi

p(E) = 0, so that the marginal tax rate for-
mula (12) is the same as in a standard one-dimensional Mirrlees model. The following
result provides a simple characterization, defining β as the matrix with (i, j)-elements
β

j
i(E):

Proposition 2. Suppose there are at least two sectors with strictly positive earnings. Then !n′ is
a direction of both no relative return effects and no externalities, i.e., !n′∆β = 0 and !n′!tp = 0, if
and only if it is a left-nullvector of β: !n′β = 0.

Proof. From (23),!n′!tp = !n′β!Y, where !Y denotes the column vector of aggregate sectoral incomes Yi(E). By
definition, ∆β = β (IN −ON ), where ON is matrix with (i, j)th element δNj (i.e., with ones in the last row
and zeros otherwise). The “if” is thus immediate. For “only if”, observe that the last column of IN −ON

is zero and let D denote the matrix whose first N − 1 columns coincide with IN −ON and whose Nth

column is !Y. Then !n′∆β = 0 and !n′!tp = 0 only if !n′βD = 0. Since !Y ≥ 0, with at least two strictly positive
elements, D is non-singular. Hence,!n′βD = 0 only if!n′β = 0.

Let N − K denote the rank of the RN → RN mapping r(E) = (r1(E), ...rN(E))′ and
hence of the matrix β. Since the return vector r(E) is a sufficient statistic for individual be-
havior, conditional on a given tax code (equivalently, an l(w)- and V(w)-schedule),7 one
might hope to reduce the dimensionality of the outer problem when K > 0—i.e., when-
ever, by Proposition 2, there exist directions !n′ in which there are both no externalities
and no relative return effects.

This is the case, for example, in the framework of Rothschild and Scheuer (2013b),
where N = 2 and Y(E) has constant returns to scale with ri(E) = Yi(E), so that private

6It is worth noting that ∆β is singular (its last column is identically zero), so it has a non-empty left-
nullspace. There are no relative return effects at w precisely when!n′ lies in this left-nullspace.

7Note that this implies that r(E) is also sufficient for describing the variation, with E, of the tax code that
leads to (33).
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returns equal marginal products. Since the latter are homogeneous of degree zero, they
are only a function of ρ ≡ E1/E2, and it is easy to verify that the second row of β is just
−ρ times the first row. In other words, β has rank N − K = 1 for all E, and, as shown by
Rothschild and Scheuer (2013b), the outer problem can be written in terms of the single
variable ρ and with a single consistency constraint

ρ =

∫ wE
wE

wl(w)dF1
ρ (w)/r1(ρ)

∫ wE
wE

wl(w)dF2
ρ (w)/r2(ρ)

.

Similar reductions in dimensionality can occur for N > 2. Suppose, for instance,
N = 3 and β

j
2(E) = aβ

j
1(E) and β

j
3(E) = bβ

j
1(E) for all j, where a and b are constants.

Here, E1, E2 and E3 have effects on the returns rj that only differ in their magnitude or
sign (in percentage terms). Then there is a two-dimensional plane with directions of no
relative return effects and no externalities spanned by the vectors (−a, 1, 0) and (−b, 0, 1).
The vector orthogonal to both is (1, a, b), so Ẽ1 = E1 + aE2 + bE3 is a sufficient statistic for
the return vector r(E). The outer problem can again be written with a single consistency
constraint, namely the (1, a, b)-weighted average of the three consistency constraints in
(8).

In fact, the following proposition shows that the dimensionality of the outer problem
can be reduced with a proper choice of coordinates whenever the rank of β is less than N.

Proposition 3. Suppose that β has rank N − K in some open neighborhood of the optimum E∗.
Then there exists an open neighborhood U ∈ RN on which the Pareto problem can be written
as a function of the schedules l(w), V(w), and some ρ ∈ RN−K and with N − K consistency
constraints, one for each component of ρ.

Proof. Since wE(θ) and qE(θ) depend on E only through the returns vector r(E), this vector is a sufficient
statistic for individual decisions given any l(w) and V(w), and hence for the solution to the inner problem.
β has the same rank, N − K, as the matrix of partial derivatives Dr(·), as ln(·) is a diffeomorphism. By the
Constant Rank Theorem (Boothby, 1986, Theorem 7.1), there exist open neighborhoods UE ⊂ RN of E∗ and
Ur ⊂ RN of r(E∗) and diffeomorphisms G from UE onto a open subset of RN and H from Ur onto an open
subset of RN such that H(r(G−1(x1, · · · , xN))) = (x1, ..., xN−K, 0, · · · , 0). Defining ρ ≡ (x1, · · · , xN−K), we
have r(G−1(ρ, xN−K+1, · · · , xN)) = H−1(ρ, 0, · · · , 0), so ρ is sufficient for r.

To find the consistency constraints associated with ρ, let E(r(E); l(·)) denote the vector of right-hand
sides of (8). Then the ith consistency constraint, i = 1, · · · , N − K is ρi = Gi(E(H−1(ρ, 0, · · · , 0); V(·), l(·))),
i.e., the ith component of G(E) = G(E(r(E); l(·)), written in terms of ρ.

Whenever we can reduce dimensionality through a change in coordinates, we can,
of course, also reformulate the marginal tax rate formula from the inner problem (12) in
terms of this new basis. As before, let!n be the vector with elements f i

E(w)/( fE(w)ri(E)),
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!ξ the vector with elements ξi, where ξi are the multipliers in the original E coordinate sys-
tem, and L as the matrix with elements Lij = ∂Gi(E∗)/∂Ej (at an optimum E∗), where G is
the coordinate transformation defined in the proof of Proposition 3. Then the correction
term in (12) in terms of E, ∑N

i=1( f i
E(w)/ fE(w))(ξi/ri(E)), can be replaced in the new co-

ordinates with!n′L!̃ξ, where !̃ξ is the vector whose first N − K elements are the multipliers
of the consistency constraints in the new coordinate system and last K elements are zero.

3.5 Eigenvalues and Stability

For the system of optimality conditions (33) to be fully informative about the optimal
vector !ξ, the matrix A ≡ IN − ∆β(C +S) needs to be invertible and hence non-singular
at the optimum, which we assume in the following. If A had less than full rank, there
would be multiple solutions for !ξ in (33), and so the outer problem variation we used to
obtain this system would not be helpful to identify !ξ. This assumption implies that all
eigenvalues of A must be nonzero. In fact, defining !r as the column vector of sectoral
returns ri(E), the adding up property of the sectoral shift matrices C and S in Lemma 3
immediately implies that A!r =!r, so that!r is always an eigenvector of A with associated
eigenvalue 1.

For the analysis of some of the examples later on, we will assume that all other eigen-
values of A are not only nonzero, but strictly positive as well. What we briefly show here
is that this assumption corresponds to a notion of stability of the fixed point for E at the
optimum, which is closely related to the variation underlying (33).

For any given vector E, and holding for instance the schedule l(w) fixed, the right-
hand sides of the system of consistency constraints (8) yield some implied vector of sec-
toral efforts E(E), and the constraints require that the optimal E is a fixed point of this
mapping: E = E(E). It is reasonable to assume that the optimal E is in fact a stable fixed
point of this mapping, since otherwise we would have no reason to expect that it will be
reached when the government offers the optimal tax schedule T(y).

However, as discussed in detail in section 3.3, the variation underlying (33) is not
keeping the schedule l(w) fixed, so the appropriate notion of stability of the fixed point
needs to account for the schedule variation in subshift 2 when E changes. Formally, sup-
pose we start from some optimal vector E∗ and schedule l∗(w) and move locally away
from E∗ to E. The resulting average effort change at w is

N

∑
i=1

l∗′(w)wδi
E∗(w)(Ei − E∗

i )
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by (16) and (17). Our variation constructs an effort schedule lE(w) in subshift 2 by making
the negative of this adjustment to l∗(w) at each w and for each E, i.e.

lE(w) ≡ l∗(w)−
N

∑
i=1

l∗′(w)wδi
E∗(w)(Ei − E∗

i ). (34)

Note that the adjustments to the effort schedule underlying lE(w) are linear in E. If there
is no bunching at the original optimum, so y∗(w) is increasing, we know that yE(w) ≡
wlE(w) will be increasing in w as well for E close to E∗, so it will be implementable with
some nonlinear income tax schedule TE(y). This tax schedule is such that average effort
at each w is unchanged when varying E close to E∗.

We are interested in the stability of the optimal fixed point E∗ when the government
offers this E-contingent tax schedule. Let

Ei(E) =
1

ri(E)

∫ wE

wE

yE(w) f i
E(w)dw

and imagine a dynamic system with

Ėi = Ei(E)− Ei, i = 1, ..., N. (35)

Denoting the Jacobian of the right-hand side of this system, E(E)− E, by J , stability of the
fixed point E∗ requires the real parts of all the eigenvalues of J to be negative. Observe
that E(E)− E is the negative of the consistency constraints (8), and hence J = −A by our
derivation of the consistency constraint effects in section 3.3. This leads to the following
result:

Lemma 5. A fixed point E of the system (35) is stable if and only if all eigenvalues of the matrix
A = IN − ∆β(C +S) in (33) have positive real parts.

4 Two Sectors

If N = 2, we can use the system of optimality condition (33) to solve for !ξ explicitly. Note
first that, in this case, q2

E(φ) = 1 − q1
E(φ) and so Cov(q1

E, q2
E|w) = −Var(q1

E|w). Moreover,
by the proof of Lemma 3, Q2

1(xE(φ)) = −Q1
1(xE(φ)), so that we can write

∆β(C +S) =

(
∆β1

1(E)/r1(E) −∆β1
1(E)/r2(E)

∆β1
2(E)/r1(E) −∆β1

2(E)/r2(E)

)
(C(E) + S(E))
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where
C(E) ≡

∫ wE

wE

w2l′(w)Var(q1
E|w) fE(w)dw (36)

and
S(E) ≡

∫ wE

wE

y(w)
∫

Φ
Q1

1(x1
E(φ))x1

E(φ)dGE(w, φ). (37)

Since Q1
1 > 0 (the substitution effect leads to a re-allocation of effort towards activity 1

when the relative return to this activity increases), we have S(E) ≥ 0, and also C(E) ≥ 0
if l(w) is increasing in w at the optimum.

Since (∆β1
2(E),−∆β1

1(E)) is always a left-nullvector of ∆β and therefore a direction
of no relative return effects when N = 2, we can interpret the orthogonal direction
(∆β1

1(E), ∆β1
2(E)) as the direction of maximal relative return effects. Let γ2(E) be the sec-

ond, non-unit eigenvalue of the matrix A = I2 − ∆β(C +S), i.e.,

γ2(E) = 1 +

(
∆β1

2(E)
r2(E)

−
∆β1

1(E)
r1(E)

)
(C(E) + S(E)), (38)

which is associated with the eigenvector (∆β1
1(E), ∆β1

2(E))′. If the optimum involves a
stable fixed point for E in the sense of our discussion in section 3.5, then γ2(E) > 0.

Using this, solving system (33) yields:

Lemma 6. At any Pareto optimum with N = 2,

!ξ =!tp +

(
∆β1

1(E)
∆β1

2(E)

)
I1(E) + R1(E) +

(
τ1

p(E)− τ2
p(E)

)
(C(E) + S(E))

γ2(E)
. (39)

Proof. See Appendix A.3.

The system (39) makes it easy to interpret the corrective term in the marginal tax
rate formula (12). As before, we obtain ξi = ti

p(E) if ∆β1
i (E) = 0, i = 1, 2, so that a

change in Ei has no relative return effects at the optimum. More generally, if the vector !n
with elements f i

E(w)/(ri(E) fE(w)) is parallel to the direction of no relative return effects
(∆β1

2(E),−∆β1
1(E)), then the marginal tax rate formula (12) coincides with the weighted

sum of the partial equilibrium Pigouvian corrections, as discussed for the case of general
N in section 3.4, so that !n′!ξ = !n′!tp. For any other !n, the correction term !n′!ξ will diverge
from the Pigouvian correction!n′!tp, with the magnitude of this divergence determined by
the magnitude of the second term in (39) and the angle between!n and the direction of no
relative return effects (∆β1

2(E),−∆β1
1(E)).
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By Propositions 2 and 3, the outer problem can be reduced, via an appropriate change
of variables, to a one-dimensional problem whenever the direction of no relative return
effects is also a direction of no externalities or, equivalently, whenever!tp is parallel to the
direction of maximal relative return effects: !tp = x(∆β1

1, ∆β1
2) for some x. Clearly, this is

trivially the case whenever there are no externalities (so that x = 0, see Rothschild and
Scheuer (2013b)) or only one of the two activities affects returns (so that ∆β1

2 = t2
p = 0,

see Rothschild and Scheuer (2013a)), as we will discuss in more detail below.
In the remainder of the paper, we will use formula (39) in order to sign the deviation

of ξi from ti
p in various applications of our general model, and to explore its implications

for the shape of the optimal non-linear income tax schedule.

5 Applications

5.1 No Externalities

Suppose Y(E) is homothetic, and let us consider, to begin, the externality-free case where
private returns coincide with marginal products: ri(E) = Yi(E) for all i. The following
lemma shows that, in this case, Y(E) must exhibit constant returns to scale:

Lemma 7. If Y(E) is homothetic and there are no externalities then Y(E) is linear homogeneous.

Proof. Any homothetic and increasing function Y(E) can be written as Y(E) = h(Ỹ(E)) where h is increas-
ing and Ỹ(E) has constant returns to scale, so that Ỹ(E) = ∑N

i=1 Ỹi(E)Ei. Since ri(E) = Yi(E) (no exter-
nalities), Y(E) = ∑N

i=1 ri(E)Ei = ∑N
i=1 Yi(E)Ei requires h′(Ỹ(E))∑N

i=1 Ỹi(E)Ei = h′(Ỹ(E))Ỹ(E) = h(Ỹ(E))
or h′(s)s/h(s) = 1, i.e., h must have a constant elasticity of 1. It is easy to see that this requires h to
be of the form h(s) = cs, where c is some constant: Integrate both sides of h′(s)/h(s) = 1/s to get
log(h(s)) = log(s) + const., or h(s) = cs. Hence, Y(E) itself has constant returns to scale.

In the two-sector case, the returns ri(E) = Yi(E) are homogeneous of degree zero, and
thus only depend on ρ ≡ E1/E2. Denoting by σ(ρ) the substitution elasticity of Y(E) and
by α(ρ) ≡ Y1(E)/Y(E) the aggregate income share of sector 1 and applying Lemma 6, we
obtain the following characterization as in Rothschild and Scheuer (2013b):

Proposition 4. If N = 2, Y(E) is homothetic and there are no externalities, then the numerator
in the marginal tax rate formula (12) is

1 −
2

∑
i=1

f i
E(w)

fE(w)
ξi

ri(E)
= 1 +

(
f 1
E(w)

fE(w)
− α(ρ)

)
ξ with ξ ≡ (I1 + R1) /σ

α(1 − α)Y + (C + S) /σ
. (40)
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Proof. Straightforward calculations yield β1
1(E) = −β1

2(E)/ρ = Y′
1(ρ)/(E2Y1(ρ)), β2

1(E) = −β2
2(E)/ρ =

Y′
2(ρ)/(E2Y2(ρ)), ∆β1

1(E) = −1/(E1σ(ρ)), ∆β1
2(E) = 1/(E2σ(ρ)) where −1/σ(ρ) = ρ(Y′

1(ρ)/Y1(ρ) −
Y′

2(ρ)/Y2(ρ)), and t1
p(E) = t2

p(E) = 0. Substituting in (39) yields ξ1/r1(E) = −(1 − α(ρ))ξ and ξ2/r2(E) =
α(ρ)ξ, and substituting both in the adjustment term delivers the result.

This makes clear that the adjustment factor vanishes when technology becomes linear,
so σ(ρ) → ∞ and ξ → 0. Otherwise, suppose sector 1 is the high-wage sector, and
redistributive motives at least weakly favor the low-wage sector 2, so that I1(E) > 0 and
R1(E) > 0. Then ξ > 0, which means that marginal keep shares are scaled up compared
to the standard formula in parts of the wage distribution where sector 1 is prevalent and
hence its local income share f 1

E(w)/ fE(w) exceeds its aggregate income share α(ρ), and
scaled down otherwise. In other words, marginal tax rates are scaled down for high
wages and scaled up for low wages, making the tax schedule less progressive than in a
standard Mirrlees model.

In particular, the top marginal tax rate is T′(y(w)) =
(
α − f 1

E(w)/ fE(w)
)

ξ < 0. As
discussed in Rothschild and Scheuer (2013b), the intuition is that the optimal income tax
makes use of general equilibrium effects to indirectly redistribute from high to low wage
earners, introducing a regressive force when the sectors are complementary: lowering
taxes at wages where activity 1 is prevalent increases ρ and therefore increases the returns
to the low-wage activity 2.8

Finally, the adjustment vanishes precisely at wage levels w where f 1
E(w)/ fE(w) =

α, so that the local and aggregate income shares coincide. This is because, there, !n′ =

( f 1
E(w)/( fE(w)Y1), f 2

E(w)/( fE(w)Y2)) reduces to (E1/Y, E2/Y) and therefore points in the
direction of no relative return effects (ρ, 1), as discussed in section 3.4. Moreover, any
direction here is trivially a direction of no externalities, so there are no Pigouvian motives
for taxation and any nonzero adjustment term in (12) is exclusively due to relative return
effects.

5.2 Increasing or Decreasing Returns to Scale

Now let Y(E) be any homothetic production function. Then it can be written as Y(E) =
h(Ỹ(E)), where h(Ỹ) is some increasing function and Ỹ(E) is a constant returns to scale
production function as in the preceding subsection. Let N = 2 and denote the substitution
elasticity of Ỹ(E) as before by σ(ρ) and the sector 1 income share by α(ρ) ≡ Ỹ1(E)/Ỹ(E)
with ρ = E1/E2. Suppose the total output Y is divided across sectors according to the

8Note that constant returns to scale and concavity of Y imply σ ≥ 0. Also, the exact same results obtain
if sector 2 is the high-wage sector and sector 1 the low-wage sector, and redistributive motives again favor
the low-wage sector.
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Ỹ-income shares, i.e. Y1(E) = α(ρ)Y(E) and Y2(E) = (1 − α(ρ))Y(E). Then by linear
private returns,

r1(E) = α(ρ)Y(E)/E1 and r2(E) = (1 − α(ρ))Y(E)/E2. (41)

Denoting the elasticity of h by εh(E) ≡ h′(Ỹ(E))Ỹ(E)/Y(E), we have increasing returns
to scale when εh > 1 and decreasing returns to scale when εh < 1. Lemma 6 then yields
the following result:

Proposition 5. If N = 2, Y(E) = h(Ỹ(E)) with Ỹ(E) linear homogeneous, and returns are
given by (41), then the numerator of the marginal tax rate formula (12) is given by

1 −
2

∑
i=1

f i
E(w)

fE(w)
ξi

ri(E)
= 1 +

(
f 1
E(w)

fE(w)
− α(ρ)

)
ξ − (1 − εh(E)), (42)

where ξ is given in (40).

Proof. Tedious algebra yields

β1
1(E)E1 = −1 − α(ρ)

σ(ρ)
− α(ρ)(1 − εh(E)), β1

2(E)E2 =
1 − α(ρ)

σ(ρ)
− (1 − α(ρ))(1 − εh(E)),

β2
1(E)E1 =

α(ρ)
σ(ρ)

− α(ρ)(1 − εh(E)), β2
2(E)E2 = − α(ρ)

σ(ρ)
− (1 − α(ρ))(1 − εh(E)),

so ∆β1
1(ρ)E1 = −∆β2

2(ρ)E2 = −1/σ(ρ). Moreover, τ1
p (E) = τ2

p(E) = 1 − εh(E). Substituting in (39) yields
ξ1/r1 = 1 − εh(E)− (1 − α(ρ))ξ and ξ2/r2 = 1 − εh(E) + α(ρ)ξ, and using this in (12) yields (42).

Unsurprisingly, (42) collapses to (40) if εh = 1 and we are back to a setting with con-
stant returns to scale and no externalities. Otherwise, the optimal adjustment in (42)
can be transparently decomposed into two parts: the first, local one (which varies with
the wage and hence income level and therefore affects the progressivity of the optimal
tax schedule) is exactly the same as in Proposition 4. The second, new component is
1 − εh(E) and is of a global nature, since it uniformly scales up or down marginal keep
shares 1 − T′(y) independent of y. In particular, if εh(E) < 1, we have decreasing returns
to scale and so marginal tax rates are scaled up relative to an economy with constant
returns to scale, whereas they are scaled down if εh(E) > 1 (so there are globally posi-
tive externalities from increasing returns to scale). This makes individuals internalize the
externalities from non-constant returns to scale, which are only a function of aggregate
output and therefore independent its sectoral composition.

Observe that the first correction component only depends on properties of the inner
constant returns to scale production function Ỹ (since this is what drives the relative re-
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turns effects), so it has exactly the same properties as in the preceding subsection. For
instance, at wage levels such that f 1

E(w)/ fE(w) = α(ρ), there are again no relative re-
turn effects from a variation in the marginal income tax rate, so the optimal adjustment
equals the Pigouvian correction 1− εh, which only depends on the properties of the outer
function h(Ỹ). Finally, the adjustment in this direction never vanishes when εh &= 1.
This is because, in this setting, there exists no direction of both no relative return effects
and no externalities. As before, the direction of no relative return effects, in terms of E,
is (ρ, 1), whereas the direction of no externalities, in terms of incomes is (−1, 1) (since
τ1

p = τ2
p = 1 − εh), which translates into (−1/r1, 1/r2) in terms of E and obviously points

into a different quadrant.9 Hence, β has full rank and both consistency constraints are
needed in this example.

5.3 General Sectoral Income Shares

In the preceding subsection, we allowed for aggregate externalities, but the sectoral com-
position of incomes was still governed at the aggregate level by the constant returns to
scale income shares α(ρ) and 1 − α(ρ). Let us next consider the opposite case: total out-
put Y(E) exhibits constant returns to scale, but the aggregate income share of sector 1
may not necessarily be given by α(ρ) = Y1(E)E1/Y(E). Instead, we consider a general
sectoral income composition a(E) and 1 − a(E) across the two sectors. If a(E) &= α(ρ),
effort in one of the two activities is underpaid relative to its marginal product, and the
other is overpaid.

An extreme example would be Y(E) = E2, so total output only depends on effort in
activity 2, but a(E) = a(E1) is an increasing function. Then effort in activity 1 is pure
“stealing” of (or getting credit for) output produced in the other activity, increasing in-
comes at the expense of others without adding anything to aggregate resources (so it is
overpaid for any a > 0). Our general formulation allows for all intermediate cases where
effort in an activity may both contribute to output and increase its income share, and the
latter possibly decoupled from social marginal products.

Formally, let Y1(E) = a(E)Y(E) and Y2(E) = (1 − a(E))Y(E), so that, by linear re-
turns,

r1(E) = a(E)Y(E)/E1 and r2(E) = (1 − a(E))Y(E)/E2. (43)
9Moreover, the signs of the changes ∆E1 and ∆E2 in E1 and E2 induced by a variation in the marginal

tax rate at any given income are the same. Hence, (∆E1, ∆E2) can never point in the direction of zero
externalities and the Pigouvian correction 1 − εh in (42) never disappears unless εh = 1.
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Defining

ε1(E) ≡ ∂a(E)
∂E1

E1
a(E)

and ε2(E) ≡ ∂(1 − a(E))
∂E2

E2
1 − a(E)

yields:

Proposition 6. If N = 2, Y(E) has constant returns to scale and private returns are given by
(43), then the adjustment to the marginal tax rate formula (12) is

2

∑
i=1

f i
E(w)

fE(w)
ξi
ri

=
f 1
E(w)

fE(w)
a − α

a
+

f 2
E(w)

fE(w)
α − a
1 − a

+

(
f 1
E(w)

fE(w)
(ε1 − (1 − a)) +

f 2
E(w)

fE(w)
(a − ε2)

)
ξ

with

ξ =
I1 + R1 +

a−α
a(1−a) (C + S)

a(1 − a)Y + (1 − ε1 − ε2)(C + S)
. (44)

Proof. We have

β1
1(E)E1 = −(1− α(ρ))+ ε1(E), β1

2(E)E2 = 1− α(ρ)− 1 − a(E)
a(E)

ε2(E), β2
1(E)E1 = α(ρ)− a(E)

1 − a(E)
ε1(E),

β2
2(E)E2 = −α(ρ) + ε2(E), ∆β1

1(E)E1 = −1 +
ε1(E)

1 − a(E)
and ∆β1

2(E)E2 = 1 − ε2(E)
a(E)

.

Moreover, τ1
p (E) = (a(E)− α(ρ)/a(E) and τ2

p (E) = (α(ρ)− a(E))/(1 − a(E)). We can also compute

∆β1
2(E)

r2(E)
−

∆β1
1(E)

r1(E)
=

1 − ε1(E)− ε2(E)
a(E)(1 − a(E))Y(E)

.

Substituting in (39) yields ξ1/r1 = (a − α)/a + (ε1 − (1 − a))ξ with ξ as given in (44), and analogously
ξ2/r2 = (α − a)/(1 − a) + (a − ε2)ξ. The result then follows from substituting those into the adjustment
formula.

This formula is intuitive. The first two terms are simply the weighted average of the
Pigouvian corrections for the two activities, since τ1

p = (a − α)/a and τ2
p = (α − a)/(1 −

a), where the weights are the local income shares. In particular, if a > α, meaning that
activity 1 is overpaid relative to its social marginal product, then τ1

p > 0 and τ2
p < 0.

Because the externalities here only result from the distribution of incomes across sectors,
not from overall output (which was the case in the preceding section), the Pigouvian
correction is zero at the aggregate level: aτ1

p + (1− a)τ2
p = 0. In other words, the direction

of no externalities, in terms of sectoral incomes, here is always (a, 1 − a) (equivalently, in
terms of sectoral effective efforts, it is (a/r1, (1 − a)/r2), which using (43) is parallel to
(ρ, 1)). Hence, at wage levels where the local and aggregate income shares coincide, the
Pigouvian correction vanishes.
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The terms in brackets capture the deviation from this weighted Pigouvian correction
due to the relative return effects of a variation in the marginal tax rate. Since ε1 − (1− a) =
(1 − a)∆β1

1E1 and a − ε2 = a∆β1
2E2, this deviation can be rewritten as

a(1 − a)

(
f 1
E(w)

fE(w)

∆β1
1E1

a
+

f 2
E(w)

fE(w)

∆β1
2E2

1 − a

)
ξ.

In particular, by the general analysis in section 4, the direction of no relative return ef-
fects, again in terms of incomes, is (∆β1

2r1,−∆β1
1r2), which again using (43) is paral-

lel to (a∆β1
2/E1,−(1 − a)∆β1

1/E2). Hence, whenever the vector of local income shares
( f 1

E(w)/ fE(w), f 2
E(w)/ fE(w)) points in this direction, the terms in brackets cancel, and

the optimal correction coincides with the Pigouvian one.
Otherwise, the wedge depends on the sign of the relative return effects. For instance,

suppose activity 1 is the overpaid one, so a > α, and at the same time the high-wage,
low redistributive preference activity. Then ξ > 0 (since I1, R1 > 0 and the denominator
is positive whenever the optimum involves a stable fixed point by Lemma 5). Moreover,
suppose that both an increase in E1 and an increase in E2 reduce the relative returns x1

to activity 1 (so that ε1 < 1 − a and ε2 > a). Intuitively, this would be a situation where
activity 1 is, for instance, subject to crowding, whereas activity 2 mostly depresses the
returns to the other activity. Then an increase in the marginal tax rate at a wage level w,
by reducing both E1 and E2, induces a flow of individuals into the overpaid activity 1 by
increasing x1. Since this is not desirable, the optimal correction is in this case less than the
Pigouvian correction.

Two special cases for the income share function a(E) are of separate interest and lead
to particularly transparent characterizations: when a is homogeneous of degree zero and
the example from the beginning, where a only depends on E1 and Y = E2.

5.3.1 Incomes Shares Homogeneous of Degree Zero

Suppose a(E) is only a function of ρ = E1/E2, as is α. Then it is easy to check that
(1 − a)ε2 = aε1. Hence, ∆β1

1E1 = −∆β1
2E2 and the direction of no relative return effects

(in E-space) is simply (1, ρ), as in the preceding subsections. More importantly, as shown
above, the direction of no externalities is always (1, ρ) as well, so the two coincide in this
case and the outer problem effectively reduces to a one-dimensional problem. This leads
to a particularly simple formula for the optimal correction factor.
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Corollary 1. If a(E) is homogeneous of degree zero, then

2

∑
i=1

f i
E(w)

fE(w)
ξi
ri

=
1

1 − a

(
f 1
E(w)

fE(w)
− a

)(
a − α

a
− (1 − a − ε1)ξ

)
, (45)

where ξ is given in (44).

The first bracketed term, which parallels the corresponding terms in (40) and (42),
compares the local income share from activity 1 to its aggregate income share a at each
wage w. In parts of the income distribution where sector 1 dominates, the second brack-
eted term applies the Pigouvian correction for this sector, τ1

p = (a − α)/a, adjusted by
a term that accounts for the relative return effects. These now only depend on ε1 =

a′(ρ)ρ/a(ρ) since the relative return effects of E1 and E2 are always opposite. For in-
stance, suppose activity 1 is again the high income activity and is overpaid, so a > α and
ξ > 0.10 If ε1 > 1 − a, then the second bracketed term exceeds the Pigouvian correction
since an increase in the marginal tax rate at w (by reducing E1) reduces the relative return
x1 and therefore induces a beneficial shift of effort out of activity 1, and vice versa. Both
the Pigouvian and relative return corrections vanish when f 1

E(w)/ fE(w) = a.
It is also worth pointing out that (45) has sharp implications for the optimal progres-

sivity of the income tax schedule. In particular, under the conditions in the previous
paragraph, the adjustment term in (45) is positive at high income levels and negative oth-
erwise. In other words, the Pigouvian motives for taxation here lead to a more progressive
tax schedule than in a standard Mirrlees model (for instance, the top marginal tax rate is
positive), in contrast to what we found in subsection 5.1. The relative return effects em-
phasized here then determine whether the progressivity is even more or less pronounced
than in this Pigouvian benchmark.

5.3.2 A Pure Resource Transfer Activity

Let us return to the extreme example where a(E) = a(E1) and Y(E) = E2, so that only
activity 2 is productive, whereas activity 1 only means to capture resources produced by
others. Since the social marginal product of activity 1 is zero, we have α = 0 and activity
1 is overpaid for any a > 0. In particular, τ1

p = 1 and τ2
p = −a/(1 − a): Because activity

1 is pure rent-seeking, the Pigouvian tax is 100%, whereas activity 2 generates positive
externalities (it increases the returns r1 = a(E1)E2/E1 to activity 1), so it commands a

10Note that the labels of the sectors do not matter here; what is required to be able to sign ξ is only that
the overpaid activity is also the high-income, low redistributive preference activity, so that the numerator
in (44) is either positive or negative.
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Pigouvian subsidy.
Applying Proposition 6 with α = ε2 = 0 yields

Corollary 2. If a(E) = a(E1) and Y(E) = Y(E2), then

2

∑
i=1

f i
E(w)

fE(w)
ξi
ri

=
(
1 − (1 − a − ε1)ξ

) f 1
E(w)

fE(w)
+

(
− a

1 − a
+ aξ

)
f 2
E(w)

fE(w)
(46)

with
ξ =

I1 + R1 + (C + S)/(1 − a)
a(1 − a)Y + (1 − ε1)(C + S)

.

Again, ξ ≥ 0 whenever the rent-seeking activity 1 is also the high income activity, so
I1 ≥ 0, and Pareto weights are (weakly) higher among same-wage earners on those with a
high income share in the productive activity 2, so R1 ≥ 0 (and recall that the denominator
corresponds to an eigenvalue of the matrix A, so it is positive in a stable fixed point
according to Lemma 5).

The terms in brackets, weighted by the local income shares, collect both the Pigouvian
tax rates and the adjustments for relative return effects. In particular, as seen above, there
is a Pigouvian tax of 1 on activity 1 and a subsidy −a/(1 − a) on activity 2. The relative
return effects are also intuitive. For instance, considering activity 2, the total subsidy is
always less, in absolute value, than the Pigouvian subsidy. This is not surprising: A sub-
sidy on activity 2, raising E2, has no effect on the returns r2 = 1− a(E1) to activity 2, but it
increases the returns to activity 1, so it always increases the relative returns x1. Since this
leads to a wasteful shift of effort into activity 1, the optimum involves an undercorrection
relative to the Pigouvian subsidy.

As for the correction on sector 1, the relative returns adjustment depends on ε1 ≷ 1− a
as before. Intuitively, an increase in E1 has two effects: it increases x1 because it increases
a(E1), thereby reducing r2 and increasing r1. But it also affects crowding in activity 1.
In particular, if a(E1) does not increase much with E1, an increase in E1 in fact reduces
r1 = a(E1)E2/E1. Therefore, x1 increases when the elasticity ε1 is large and vice versa, de-
pending on whether the within-sector crowding or the across-sector stealing effect domi-
nates. For instance, when ε1 < 1 − a, then a reduction in E1 increases the relative returns
to activity 1 as the crowding effect dominates, so a tax increase would lead to a flow of
effort into the rent-seeking activity 1. The optimal correction on activity 1-intensive parts
of the income distribution is therefore also less than the Pigouvian correction.
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An alternative way of writing (46) closer to (45) is

2

∑
i=1

f i
E(w)

fE(w)
ξi
ri

=
1

1 − a

(
f 1
E(w)

fE(w)
− a

)
−

(
f 1
E(w)

fE(w)
(1 − ε1)− a

)
ξ,

where the first term collects the Pigouvian corrections (recall that τ1
p = 1, which gets mul-

tiplied by the usual difference between the local and aggregate income shares of activity
1) and the second the relative return effects. This reveals that this particular example re-
mains a two-dimensional problem in terms of the outer problem, since the directions of
no externalities and no relative return effects do not coincide. As before, the direction
of no externalities is (a, 1 − a) in (Y1, Y2)-space, so the Pigouvian term disappears when
f 1
E(w)/ fE(w) = a. On the other hand, the direction of no relative return effects, in terms

of incomes, is (a, 1 − a − ε1), so the second term disappears whenever the local income
share of sector 1 is a/(1 − ε1).

5.4 Externalities from One Activity

Suppose all the returns only depend on aggregate effort in one activity, i.e. ri(E) = ri(E1)

for all i = 1, ..., N. A special case of this setting was analyzed in Rothschild and Scheuer
(2013a) for N = 2, where a rent-seeking activity 1 imposed negative externalities on both
activities, but a traditional activity 2 did not impose any externalities, so β

j
1 < 0 and

β
j
2 = 0 for j = 1, 2. We can use the tools developed here to solve this model for general N

and any form of externalities generated by sector 1.
In particular, since β

j
i = 0 for all i = 2, ..., N and all j, the matrix β has rank one

(all rows except for the first are zero) and the optimality condition (33) implies ξi = 0
for all i &= 1. Intuitively, there is a whole N − 1-dimensional subspace of directions of
no externalities and no relative return effects, spanned by all the vectors in E-space with
a zero first element. Only E1 generates externalities and relative return effects, so the
dimensionality of the outer problem reduces to one. In fact, we can use (33) to explicitly
solve for ξ1:

ξ1 =
t1

p + ∑N−1
j=1 ∆β

j
1(Ij + Rj)

1 − ∑N−1
j=1 ∆β

j
1(Cj1 + Sj1)

where t1
p = −∑N

j=1 β
j
1Yj and Cj1 and Sj1 are given in (26) and (31). This leads to the

following result:

Proposition 7. If ri(E) = ri(E1) for all i = 1, ..., N, then the numerator of the marginal tax rate
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formula in (12) is 1 − ξ f 1
E(w)/ fE(w) with

ξ =
τ1

p + ∑N−1
j=1 ∆β

j
1(Ij + Rj)/r1

1 − ∑N−1
j=1 ∆β

j
1(Cj1 + Sj1)

. (47)

The optimal adjustment to the marginal income tax formula is ξ weighted by the local
income share of the externality generating activity 1 at w. ξ in turn deviates from the
Pigouvian correction τ1

p only if there are relative return effects, so ∆β
j
1 &= 0 for some j.

These enter in an intuitive way. For instance, suppose activity 1 generates negative exter-
nalities, so τ1

p > 0. Then the denominator in (47) increases ξ compared to this Pigouvian
correction if an increase in E1 on average raises the relative returns to activities j with
Cj1, Sj1 > 0, and vice versa. This is because an increase in the relative returns xj to these
activities leads to a flow of effort into activity 1, since Cov(q1, qj) > 0 and Q1

j > 0 in
this case. A tax on sector 1 income, through reducing E1 and thus inducing the opposite
flow of effort out of activity 1, is therefore even more desirable than based on the purely
Pigouvian motives.11

The second term in the numerator of (47) further increases ξ compared to τ1
p if the

activities whose relative returns increase in response to an increase in E1 are also high
income, low Pareto weight activities on average (so ∆β

j
1 is positively correlated with

Ij, Rj).12 Then an increase in the marginal income tax at wage levels where activity 1
is prevalent raises the returns to the the lower wage, high redistributive preference ac-
tivities by decreasing E1, thus achieving indirect redistribution. Of course, analogous
results can be obtained from (47) when the tax leads to the opposite sectoral shifts, giving
rise to an undercorrection at the optimum, or when activity 1 imposes positive or mixed
externalities.

The special case considered in Rothschild and Scheuer (2013a) for N = 2 immediately
emerges as

ξ =
τ1

p + ∆β1
1(I1 + R1)/r1

1 − ∆β1
1(C + S)/r1

with C and S given by (36) and (37). If l(w) is increasing, so that C > 0, and if we also
have I1, R1 > 0 (because the externality-causing activity i = 1 is also a high wage and
low redistributive preference activity), then an undercorrection with ξ < τ1

p is optimal

11Note that the denominator of (47) is always positive when the optimum involves a stable fixed point
for E1 in terms of Lemma 5, since it is the eigenvalue of the matrix A associated with the unit eigenvector
(1, 0, 0, ..., 0)′.

12Recall that ∑j Ij = ∑j Rj = 0, so ∑j ∆β
j
1(Ij + Rj) can be interpreted as N times Cov(∆β

j
1, Ij + Rj) across

activities j.
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if ∆β1
1 < 0 (so a decrease in E1 increases the relative returns x1 and leads to a perverse

sectoral shift into activity 1) and an overcorrection with ξ > τ1
p otherwise. Note again

that these results do not depend on the form of the externalities generated by activity 1;
in particular, they are not confined to the special case in Rothschild and Scheuer (2013a)
with only negative externalities.

Finally, this special formula would also result in the general N-sector model whenever
∆β

j
1 = 0 for all j &= 1, i.e. if changes in E1 only affect the relative return to activity 1 itself,

but not the relative returns to the externality receiving activities j = 2, ..., N. A simple
example would involve returns r1(E1) and rj(E1) = rjrN(E1) for all j = 2, ..., N − 1. Then
variations in E1 do not induce any shifts among sectors 2, ..., N, but only between them
and sector 1, so the model effectively collapses to a two-sector setting as well.

5.5 Externalities Targeted at One Activity

Let us finally turn to the opposite case, where the returns to only one activity depend
on E, so that r1(E) is general but ri(E) = ri are constants for all i = 2, ..., N. A simple
example with N = 2 would be another specification of the economy where one activity is
just capturing output produced by others, with Y(E) = Y(E1) and Y1(E) = Y(E1)− E2

and Y2(E2) = E2. Hence, all output is produced through activity 1, and activity 2 takes
away some of this output one-for-one.13

Generally, β
j
i = 0 for all j &= 1 and β again has rank one in this case, this time with all

columns being zero except for the first, which has elements β1
i (and ∆β = β). Intuitively,

any movement in E-space that changes r1(E) generates both an externality and a relative
return change. Conversely, since ti

p = −β1
i Y1 in this example, all the N − 1 dimensions

of RN orthogonal to the vector (β1
1, β1

2, ..., β1
N) are directions of both no externalities and

no relative return effects because changes of E in these directions leave r1(E) unchanged.
As a result, there is only one effective consistency constraint in the outer problem here,
which is a β1

i -weighted sum of the original N constraints (8).
Using this, (33) immediately implies ξi/β1

i = ξ1/β1
1 for all i and therefore the follow-

ing result:

13For N = 2, this is a special case of the example considered in subsection 5.3 with a(E) = 1 − E2/Y(E1).
But we could imagine a more general model with N − 1 stealing sectors i = 2, ..., N and Y1(E) = Y(E1)−
∑N

i=2(1 + ki)Ei, Yi(Ei) = Ei for i ≥ 2, where these activities differ in terms of the share ki of resources lost
in the process of transferring them.
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Proposition 8. If ri(E) is fixed for all i &= 1, then the optimal adjustment term in (12) is

N

∑
i=1

f i
E(w)

fE(w)
ξi
ri

=
N

∑
i=1

f i
E(w)

fE(w)

β1
i

ri
ξ with ξ =

−Y1 + I1 + R1

1 − ∑N
i=1 β1

i (C1i + S1i)
. (48)

Proof. Using ξi = ξ1β1
i /β1

1, we can use the first equation in the system (33) to solve for ξ1:

ξ1 =
(

t1
p + β1

1(I1 + R1)
)/(

1 −
N

∑
i=1

β1
i (C1i + S1i)

)

Again using ξi = ξ1β1
i /β1

1 and ti
p = t1

pβ1
i /β1

1 delivers the result.

Since both the externalities and the relative return effects induced by a change in Ei

are scaled by the magnitude of β1
i , the optimal correction (in terms of income) in each

dimension i is proportional to β1
i /ri. Hence, the adjustment factor vanishes whenever the

vector of local income shares at w is orthogonal to the vector of these magnitudes, i.e.
∑i( f i

E(w)/ fE(w))(β1
i /ri) = 0. Intuitively, this is a wage level at which a variation in the

marginal income tax rate leads to changes in E that leave r1(E) unaffected, so the optimal
marginal tax rate is as if all returns were fixed locally.

Otherwise, suppose, for instance, that all activities increase r1(E), so β1
i (E) > 0 and

∑i( f i
E(w)/ fE(w))(β1

i /ri) > 0 for all w. The first term in the numerator of ξ in (48) captures
the Pigouvian subsidy for these positive externalities, since

−
N

∑
i=1

f i
E(w)

fE(w)

β1
i

ri
Y1 =

N

∑
i=1

f i
E(w)

fE(w)
τi

p.

In this case, the Pigouvian correction alone would lead to a negative adjustment term and
therefore lower marginal tax rates in (12). The denominator and the second term I1 + R1

in the numerator capture the deviation from this Pigouvian adjustment due to the relative
return effects from the increase in r1 induced by the subsidy.14

The term I1 + R1 in the numerator of ξ captures the direct effect of the rise in r1: If
activity 1 is in fact a relatively high wage activity with little redistributive weight, so
I1 + R1 > 0, then the increase in r1 is not desirable for distributional reasons, which is why
the optimal subsidy is less than the Pigouvian subsidy, and vice versa. The denominator is
a multiplier term coming from the indirect effects of the increase in r1 through the induced
sectoral reallocations of effort. It is easiest to understand when N = 2, in which case it

14Note that the denominator of ξ in (48) is positive if the optimum involves a stable fixed point of
E according to Lemma 5, since it is an eigenvalue of the matrix A associated with the eigenvector
(β1

1, β1
2, ..., β1

N)
′.

38



reduces to 1− (β1
1/r1 − β1

2/r2)(C + S) with C and S given in (36) and (37). Intuitively, the
increase in r1, raising the relative returns to activity 1, will always lead to a flow of effort
from activity 2 to 1. Whether this flow reinforces or mitigates the original increase in r1

depends on the relative magnitudes of the externalities from E1 and E2. In particular,
since the flow increases E1 and reduces E2, there will be a further increase in r1 if β1

1 is
large compared to β1

2, and a reduction in r1 otherwise. The denominator scales the direct
effects in the numerator to account for these indirect multiplier effects of the sectoral shifts
on r1.

A particularly simple adjustment term results if β1
i is proportional to ri for all i, so

β1
i = xri for some x. In this case, the adjustment term becomes

N

∑
i=1

f i
E(w)

fE(w)
ξi
ri

= x(−Y1 + I1 + R1)

by Lemma 3, i.e. it reduces to just the direct effects of the marginal tax. Note that this is
independent of w and therefore a uniform adjustment to the tax schedule. Intuitively, a
change in each sectoral income Yi has the same effect on r1 in this case, so the optimal cor-
rection for each activity is just x (there are no indirect effects from sectoral reallocations)
and the local sectoral income shares become irrelevant.

6 Conclusion

As suggested by the examples in the preceding section, the framework developed here
is flexible enough to handle a wide variety of applications. It is important to emphasize,
however, that these examples are not exhaustive: the optimal tax formula (12) and the
characterization of the correction term in that formula through condition (33) are fully
general and could be used to explore other special cases in future research.

While adapting these formulas for applied policy work will be non-trivial and is be-
yond the scope of this paper, they provide useful insights into the nature of evidence
that would be required to implement them. For instance, in the pure resource transfer
example discussed in section 5.3.2, the Pigouvian component of the correction would be
entirely pinned down by the aggregate income share accruing to the transfer activity. The
divergence between this and the optimal correction in turn only depends on the elastic-
ity of this income share with respect to aggregate effort in this activity: If this elasticity
is low, the within-sector crowding effects dominate and the transfer activity itself bears
the bulk of the externalities. As such, the Pigouvian tax induces a perverse shift of effort
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into this activity, and the optimal correction falls short of it. If the elasticity is high, the
externalities are borne primarily by the productive activity, so a tax induces the opposite,
beneficial shift and an overcorrection is optimal. Thus, information on these income shares
and elasticities would be of direct use for optimal policy design.

More generally, the key applied-policy lesson is that in settings with externalities, the
simple Pigouvian wedge between the private and social marginal returns of the average
worker at a given income is not sufficient for determining the optimal corrective adjust-
ment to the marginal tax rate at that income level. Policy makers need to know not just
who is over- or underpaid and by how much, but also on whom the resulting externalities
are imposed.
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A Proofs for Sections 3 and 4

A.1 Proof of Proposition 1
Putting multipliers λ on (9), ξiλ on the consistency constraints (8), and η̂(w)λ on (7), the Lagrangian corre-
sponding to (6)-(9) is, after integrating by parts (7),

L =
∫ wE

wE
V(w)ψE(w)dw −

∫ wE

wE
V(w)η̂′(w)λdw +

∫ wE

wE
ul(c(V(w), l(w)), l(w))

l(w)
w

η̂(w)λdw

+
N

∑
i=1

ξiλ

[
Ei −

1
ri(E)

∫ wE

wE
wl(w) f i

E(w)dw
]
+ λ

∫ wE

wE
(wl(w)− c(V(w), l(w))) fE(w)dw. (49)

Using ∂c/∂V = 1/uc and compressing notation, the first order condition for V(w) is

η̂′(w)λ = ψE(w)− λ fE(w)
1

ul(w)
+ η̂(w)λ

ucl(w)
ul(w)

l(w)
w

. (50)

Defining η(w) ≡ η̂(w)uc(w), this becomes

η′(w) = ψE(w)
uc(w)

λ
− fE(w) + η(w)

ucc(w)c′(w) + ucl(w)l′(w) + ucl(w)l(w)/w
uc(w)

. (51)
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Using the first order condition corresponding to the incentive constraint (11),

uc(w)c′(w) + ul(w)l′(w) + ul(w)
l(w)

w
= 0, (52)

the fraction in (51) can be written as −(∂MRS(w)/∂c)y′(w)/w, where M(c, l) ≡ −ul(c, l)/uc(c, l) is the
marginal rate of substitution between effort and consumption and MRS(w) ≡ M(c(w), l(w)), so (with a
slight abuse of notation) ∂MRS(w)/∂c stands short for ∂M(c(w), l(w))/∂c. Substituting in (51) and rear-
ranging yields

− ∂MRS(w)
∂c

l(w)
y′(w)
y(w)

η(w) = fE(w)− ψE(w)
uc(w)

λ
+ η′(w). (53)

Integrating this ODE gives

η(w) =
∫ wE

w

(
fE(s)− ψE(s)

uc(s)
λ

)
exp

(∫ s

w

∂MRS(t)
∂c

l(t)
y′(t)
y(t)

dt
)

ds

=
∫ wE

w

(
1 − ψE(s)

fE(s)
uc(s)

λ

)
exp

(∫ s

w

(
1 − εu(t)

εc(t)

)
dy(t)
y(t)

)
fE(s)ds, (54)

where the last step follows from l(w)∂MRS(w)/∂c = 1 − εu(w)/εc(w) after tedious algebra (e.g. using
equations (23) and (24) in Saez, 2001).

Using ∂c/∂l = MRS, the first order condition for l(w) is

λw fE(w)

(
1 − MRS(w)

w

)
−λw

N

∑
i=1

ξi
ri(E)

f i
E(w) = −η̂(w)λ

[
(−ucl(w)ul(w)/uc(w) + ull(w)) l(w)

w
+

ul(w)
w

]
,

which after some algebra can be rewritten as

w fE(w)

(
1 − MRS(w)

w

)
− w

N

∑
i=1

ξi
ri(E)

f i
E(w) = η(w)

(
∂MRS(w)

∂l
l
w

+
MRS(w)

w

)
, (55)

where ∂MRS(w)/∂l again stands short for ∂M(c(w), l(w))/∂l. With MRS(w)/w = 1 − T′(y(w)) from the
first order condition of the workers, this becomes

1 −
N

∑
i=1

ξi
ri(E)

f i
E(w)

fE(w)
= (1 − T′(y(w)))

[
1 +

η(w)
w fE(w)

(
1 +

∂MRS(w)
∂l

l
MRS(w)

)]
. (56)

Simple algebra again shows that 1 + ∂ log MRS(w)/∂ log l = (1 + εu(w))/εc(w), so that the result follows
from (54) and (56).

A.2 Proof of Lemma 3
For Ckj, this follows from

N

∑
j=1

rj(E)Ckj(E) =
∫ wE

wE
w2l′(w)

N

∑
j=1

Cov
(

qj
E, qk

E

∣∣∣ w
)

dw = 0

42



because ∑N
j=1 Cov

(
qj

E, qk
E

∣∣∣ w
)
= Cov

(
∑N

j=1 qj
E, qk

E

∣∣∣ w
)
= Cov

(
1, qk

E

∣∣∣ w
)
= 0 for all w. For Skj, we prove

the result by showing that ∑N
j=1 Qj

k(xE(φ)) = 0 for all φ ∈ Φ. To see this, we use (28) and (29) to write

0 =
∂1
∂xk =

N

∑
j=1

∂qj
E(φ)

∂xk =
N

∑
j=1

∂Zj(xE(φ))

∂xk Ωj(ζ(xE(φ))) +
N

∑
j=1

Qj
k(xE(φ)).

Hence, the result is established if we show that ∑j Ωj∂Zj/∂xk = 0. Using (28), we have

∂Zj

∂xk = δkjm − xjmk
qk

(
xk
)2 , (57)

where we suppressed the arguments of m and mk denotes the partial derivative of m w.r.t. its k-th argument.
Note that the first order conditions for the minimization in (28) are mk/xk = mN for all k = 1, ..., N − 1,
which implies

N−1

∑
k=1

mk
qk

xk = mN

N−1

∑
k=1

qk = mN(1 − qN). (58)

On the other hand, by Euler’s theorem and linear homogeneity of m, we have

N−1

∑
k=1

mk
qk

xk + mNqN = m. (59)

Combining (58) and (59) implies mN = m and hence mk/xk = m for all i = k, ..., N − 1. Substituting this in
(57) yields xk∂Zj/∂xk = m

(
δkjxk − xjqk

)
= mxj

(
δkj − qk

)
since δkjxk = δkjxj. Using this and (24), we have

N

∑
j=1

Ωjxk ∂Zj

∂xk =
N

∑
j=1

ζ jxj
(

δkj − qk
)
=

N

∑
j=1

qj

qN

(
δkj − qk

)
=

1
qN

N

∑
j=1

(
δkjqj − qjqk

)
=

1
qN

(
qk − qk

)
= 0.

Dividing through by xk yields the desired ∑j Ωj∂Zj/∂xk = 0, which establishes the result.

A.3 Proof of Lemma 6
Dropping the arguments E, the optimality conditions (33) can be written for N = 2 as

A!ξ =!tp +

(
∆β1

1
∆β1

2

)
(I1 + R1). (60)

Since
(
∆β1

1, ∆β1
2
)′ is an eigenvector of A, it is also an eigenvector of A−1 (with associated eigenvalue 1/γ2),

and we can write (60) as

!ξ = A−1!tp +

(
∆β1

1
∆β1

2

)
I1 + R1

γ2
.

Moreover, defining the eigenbasis

B ≡
(

r1 ∆β1
1

r2 ∆β1
2

)
and

(
a
b

)
≡ B−1!tp,
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we can write!tp = a

(
r1

r2

)
+ b

(
∆β1

1
∆β1

2

)
. Using this and

1
γ2

= 1 − 1
γ2

(
∆β1

2
r2

−
∆β1

1
r1

)
(C + S), we have

A−1!tp = A−1B

(
a
b

)
=

(
A−1

(
r1

r2

)
A−1

(
∆β1

1
∆β1

2

) )(
a
b

)
= a

(
r1

r2

)
+

b
γ2

(
∆β1

1
∆β1

2

)

= !tp − b

(
∆β1

1
∆β1

2

)
+

b
γ2

(
∆β1

1
∆β1

2

)
=!tp −

(
∆β1

1
∆β1

2

)
b

γ2

(
∆β1

2
r2

−
∆β1

1
r1

)
(C + S).

Hence,

!ξ =!tp +

(
∆β1

1
∆β1

2

)
I1 + R1 − b

(
∆β1

2/r2 − ∆β1
1/r1

)
(C + S)

γ2
. (61)

Finally, note that the second row of B−1 is (−1/r1, 1/r2)/
(
∆β1

2/r2 − ∆β1
1/r1

)
, so

b = −
(

t1
p

r1
−

t2
p

r2

)/(
∆β1

2
r2

−
∆β1

1
r1

)
.

Substituting in (61) yields the result.
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