
Nonstationarity in Time Series of State Densities1

Yoosoon Chang
Department of Economics

Indiana University

Chang Sik Kim
Department of Economics
Sungkyunkwan University

Joon Y. Park
Department of Economics

Indiana University and Sungkyunkwan University

Abstract

This paper proposes a new framework to analyze the nonstationarity in the time
series of state densities, representing either cross-sectional or intra-period dis-
tributions of some underlying economic variables. We regard each state density
as a realization of Hilbertian random variable, and use a functional time series
model to fit a given time series of state densities. This allows us to explore var-
ious sources of the nonstationarity of such time series. The potential unit roots
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1. Introduction

In the paper, we investigate the nonstationarity of the time series of state densities, which
are defined to represent either cross-sectional or intra-period distributions of some under-
lying economic variables. Examples of such distributions include, among many others,
cross-sectional distributions of individual earnings and intra-period distributions of asset
returns. Though not directly observable, the state densities may be easily estimated using
cross-sectional or intra-period observations. In economic time series analysis, we routinely
use the time series observations aggregated across cross-sections or averaged over some time
periods. Clearly, we may extract more information on the dynamics of the underlying eco-
nomic time series, if we study the entire cross-sectional or intra-period distributions rather
than their representative values. Note that the observations aggregated cross-sectionally or
averaged over time periods may simply be regarded as the means of the corresponding state
distributions.

For our purpose, we introduce a novel framework. We regard each state density as a
realization of Hilbertian random variable, and use a functional time series model to fit a
given time series of state densities. Modeling state density as a functional random variable
allows us to explore various sources of nonstationarity in state distribution including their
higher moments such as variance, skewness and kurtosis. In contrast, the conventional
unit root tests are applied to the cross-sectional aggregates and intra-period averages, and
therefore, they only examine the nonstationarity existing in the means of state distributions.
Our statistical theory of nonstationary functional time series in the paper builds upon the
existing literature on the general statistical theory of stationary functional time series. See,
e.g., Bosq (2000) for a detailed introduction to the subject. The reader is also referred to
Park and Qian (2010) for the statistical theory of stationary regression with state densities
defined similarly as in our paper.

Our testing procedure is simple and straightforward. The potential unit roots are i-
dentified through functional principal component analysis, and subsequently tested by the
generalized eigenvalues of leading components of normalized estimated variance operator.
The asymptotic distribution of our test statistic is free of nuisance parameters and depen-
dent only upon the number of unit roots existing in the underlying time series of state
densities. In parallel with the asymptotic distributions of the conventional unit root tests,
it is represented by the eigenvalues of a matrix of functional of demeaned standard Brow-
nian motion. The asymptotic critical values of the test are obtained and tabulated in the
paper for the number of unit roots up to five. The finite sample performance of our test
is evaluated by simulation. The test performs very well in terms of both finite sample size
and power even for moderately large samples. The finite sample size becomes close to its
nominal value and the finite sample power approaches to unity rather quickly as the sample
size increases.

For the purpose of illustration, we use our model and methodology to analyze the nonsta-
tionarity in the time series of two different types of state distributions. In the first empirical
application, we study the state distributions defined as the cross-sectional distributions of
individual earnings, which are obtained from the cross-sectional observations of individual
weekly earnings provided at monthly frequency by the Current Population Survey (CPS)
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data set. In the second empirical application, we investigate the state distributions defined
as the intra-month distributions of stock returns, which are obtained from the S&P 500 in-
dex returns at one-minute frequency. The sample sizes of their time series are 204 and 222
spanning the periods from January 1994 to December 2010 and from January 1992 to June
2010, respectively. Our test suggests that there are two unit roots in the cross-sectional
distributions of individual earnings, whereas we have only one unit root in the intra-month
distributions of stock returns.

The presence of unit roots in the time series of state distributions, of course, implies
that the time series of their moments are generally nonstationary. In the paper, we propose
a measure to represent the proportion of unit root component in each moment of state
distributions. The measure, called the unit root proportion of a moment, takes value 0 if
the moment is stationary, and 1 if the moment consists entirely of the unit root component
of state distributions. For the cross-sectional distributions of individual earnings, the first
four moments all have nonnegligible unit root proportions. In particular, the unit root
proportions for the first two moments are substantial. It appears that the volatilities, as
well as the means, of earnings distributions are quite persistent. On the other hand, for the
intra-month distributions of stock returns, the moments have uneven unit root proportions.
The unit root proportions of the odd moments are almost negligible, while those of the even
moments are relatively much larger. They are, however, much smaller than those for the
cross-sectional distributions of individual earnings.

The rest of the paper is organized as follows. Section 2 introduces the model and pre-
liminary results necessary for the subsequent development of our theory and methodology.
Our statistical procedure and asymptotic theory are presented in Section 3. To convey the
main idea more effectively, here we assume that the state densities are directly observable.
The effect of using estimated state densities on our statistical analysis is investigated and
summarized in Section 4. There we show that the error incurred by the estimation of state
densities are negligible and have no effect on our asymptotic theory under mild conditions.
Section 5 includes two illustrative empirical applications of our model and methodology
on the time series of cross-sectional distributions of individual earnings and intra-month
distributions of stock returns. The fitted models obtained in Section 5 are used to perform
our simulation study on the finite sample performance of our unit root test on the time
series of state densities, which is reported in Section 6. Conclusion follows in Section 7.
Finally, proofs are collected in Mathematical Appendix.

2. Model and Preliminaries

In the paper, we consider a sequence of density functions, which we denote by (ft). For
each time t = 1, 2, . . ., we suppose that there is a distribution represented by probability
density ft, whose value at ordinate s ∈ R is denoted by ft(s). Throughout the paper, we
let

wt = ft − Eft

denote a centered density function and treat (wt) as functional data taking values in Hilbert
space H, where we define H to be the set of functions on a compact subset K of R that
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have vanishing integrals and are square integrable, i.e.,

H =

{
w

∣∣∣∣∫
K
w(s)ds = 0,

∫
K
w2(s)ds < ∞

}
,

with inner product ⟨v, w⟩ =
∫
v(s)w(s)ds for v, w ∈ H. We assume that there exists an

orthonormal basis (vi) of H such that the i-th coordinate process

⟨vi, wt⟩

has a unit root for i = 1, . . . ,M , while it is stationary for all i ≥ M +1. By convention, we
set M = 0 if all the coordinate processes are stationary.

Using the symbol
∨

to denote span, we let

HN =

M∨
i=1

vi and HS =

∞∨
i=M+1

vi,

so that H = HN ⊕HS . In what follows, HN and HS will respectively be referred to as the
unit root and stationarity subspaces of H. We also let ΠN and ΠS be the projections on
HN and HS , respectively. Moreover, we define

wN
t = ΠNwt and wS

t = ΠSwt.

Note that ΠN + ΠS = 1, so in particular we have wt = wN
t + wS

t . Here and elsewhere in
the paper, the identity operator on H is denoted simply by 1.

Assumption 2.1 For ut = ∆wt, we let

ut = Φ(L)εt =

∞∑
i=0

Φiεt−i,

where we assume that (a)
∑∞

i=1 i∥Φi∥ < ∞, (b) ΠNΦ(1) is of rank M and ΠSΦ(1) = 0,
and (c) (εt) is an iid sequence with mean zero and variance Σ > 0, for which we have
E∥εt∥p < ∞ with some p ≥ 4.

The process (ut) introduced in Assumption 2.1 is a generalization of the finite-dimensional
linear process, and studied extensively in Bosq (2000) under stationarity assumption. The
coefficients (Φi) used to define the process are linear operators in H and the innovation (εt)
is a sequence of random elements in H. The main results in the paper hold under milder
conditions than those in Assumption 2.1. For instance, we may allow (wt) to be generated
from martingale differences in place of iid sequences. The stronger conditions are invoked
here to derive the explicit rates for some of our theoretical results.

In Assumption 2.1 and elsewhere in the paper, we use ∥ · ∥ to denote the usual Hilbert
space norm, i.e., ∥v∥2 = ⟨v, v⟩ for a vector v ∈ H and ∥A∥ = supv ∥Av∥/∥v∥ for any linear
operator A on H. We follow the usual convention and denote by A′ the adjoint of a linear
operator A on H. If A = A′, the operator is called self-adjoint. Moreover, we write A > 0
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and say that A is positive definite if and only if ⟨v,Av⟩ > 0 for all nonzero v ∈ H. For any
H-valued random element w, the expectation Ew of w is more formally defined as a vector
in H satisfying

⟨v,Ew⟩ = E⟨v, w⟩

for all v ∈ H, and the variance Σ of w is given by an operator for which

E⟨vi, w − Ew⟩⟨vj , w − Ew⟩ = ⟨vi,Σvj⟩

for all vi, vj ∈ H. The reader is referred to, e.g., Bosq (2000) for a brief introduction to
Hilbertian random variables and the definitions of their moments.

For the process (ut) introduced in Assumption 2.1, we may write

ut = Φ(1)εt + (ūt−1 − ūt),

where

ūt = Φ̄(L)εt =
∞∑
i=0

Φ̄iεt−i

with Φ̄i =
∑∞

j=i+1Φj . This representation is widely known as the Beveridge-Nelson de-
composition for finite-dimensional linear processes, and studied thoroughly by Phillips and
Solo (1992). Due to condition (a), we have

∑∞
i=0 ∥Φ̄i∥ < ∞, and therefore the process (ūt)

is well defined.
It follows from condition (b) that

wN
t = ΠNwt = ΠNΦ(1)

t∑
i=1

εi −ΠN ūt

and
wS
t = ΠSwt = −ΠS ūt

ignoring the initial values w0 and ū0 that are unimportant in the development of our asymp-
totic theory. Therefore, it is clear that (wN

t ) is an integrated process, while (wS
t ) is a sta-

tionary process. Thus far, we have assumed that the dimension M of unit roots in (wt) is
known. Of course, the unit root dimension M is unknown in practical applications. In the
next section, we will explain how to statistically determine M , as well as how to estimate
the unit root and stationarity subspaces HN and HS .

3. Statistical Procedure and Asymptotic Theory

In this section, we introduce our statistical procedures and develop their asymptotic theories.
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3.1 Functional Principal Component Analysis

Our testing procedure is based on the functional principal component analysis for the un-
normalized sample variance operator QT of (wt) defined by

QT =
T∑
t=1

wt ⊗ wt,

where T is the sample size. Moreover, we write

QT = T 2QT
NN + TQT

NS + TQT
SN + TQT

SS , (1)

where

QT
NN =

1

T 2
ΠN

(
T∑
t=1

wt ⊗ wt

)
ΠN =

1

T 2

T∑
t=1

wN
t ⊗ wN

t

QT
NS =

1

T
ΠN

(
T∑
t=1

wt ⊗ wt

)
ΠS =

1

T

T∑
t=1

wN
t ⊗ wS

t

QT
SS =

1

T
ΠS

(
T∑
t=1

wt ⊗ wt

)
ΠS =

1

T

T∑
t=1

wS
t ⊗ wS

t ,

and QT
SN is the adjoint of QT

NS , i.e., Q
T
SN = QT ′

NS .
To establish our asymptotic results onQT , it is necessary to introduce some new concepts

and notations. For a sequence (AT ) of operators on H, we let AT →p A if ∥AT −A∥ →p 0.
Moreover, we define B to be Brownian motion on the unit root subspace HN with variance
operator Ω, if B takes values on HN and if for any v ∈ HN , ⟨v,B⟩ is Brownian motion
with variance ⟨v,Ωv⟩. Naturally, for a random sequence (BT ) taking values on HN , we let
BT →d B, if for any v ∈ HN , ⟨v,BT ⟩ →d ⟨v,B⟩. It is straightforward to show that if B is
Brownian motion on HN then for any (vi), i = 1, . . . ,M , in HN

(⟨v1, B⟩, . . . , ⟨vM , B⟩)′

becomes an M -dimensional vector Brownian motion with covariance matrix having the
(i, j)-th entry given by ⟨vi,Ωvj⟩ for i, j = 1, . . . ,M . Furthermore, if BT →d B then for any
(vi), i = 1, . . . ,M , in HN we have

(⟨v1, BT ⟩, . . . , ⟨vM , BT ⟩)′ →d (⟨v1, B⟩, . . . , ⟨vM , B⟩)′,

as can be readily shown using the Cramer-Wold device. Finally, for a sequence of operators
(CT ) on HN , we let CT →d C if ⟨v1, CT v2⟩ →d ⟨v1, Cv2⟩ for an operator C on HN jointly
for any (v1, v2) ∈ HN ×HN .
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Lemma 3.1 Let Assumption 2.1 hold. We have

QT
NN →d QNN =

∫ 1

0
(W ⊗W )(r)dr, (2)

where W is Brownian motion on HN with variance operator ΠNΦ(1)ΣΦ(1)′ΠN . Also, it
follows that

QT
SS →p QSS = ΠS

( ∞∑
i=0

Φ̄iΣΦ̄
′
i

)
ΠS . (3)

Moreover, we have
QT

NS , Q
T
SN = Op(1) (4)

for all large T .

Lemma 3.1 establishes the limits and stochastic orders for each of the components appearing
in our decomposition (1) of the unnormalized sample variance operator QT of (wt). The
normalized sample variance operators QT

NN and QT
SS have well defined limits, and converge

to their limits in distribution and probability respectively on the unit root and stationarity
subspaces HN and HS . Note in particular that QT

NN has as its distributional limit a random
operator represented by a functional of Brownian motion W on HN , whereas the probability
limit of QT

SS is given by the operator

QSS = ΠS

(
E(wt ⊗ wt)

)
ΠS

on HS . The sample covariance operators QT
NS and QT

SN become negligible asymptotically
and do not appear in our subsequent asymptotic results.

Now we define
(λi(QT ), vi(QT )), i = 1, . . . , T,

to be the pairs of the eigenvalues and eigenvectors of QT , where we order (λi(QT )) so that
λ1(QT ) ≥ · · · ≥ λT (QT ). Moreover, assuming T > M , we let

HT
N =

M∨
i=1

vi(QT ),

and denote by ΠT
N the projection on HT

N . The subspace HT
N spanned by the eigenvectors

corresponding to M largest eigenvalues of QT will be referred to as the sample unit root
subspace. Finally, we define the projection on the sample stationarity subspace by ΠT

S =
1− ΠT

N , so that we have ΠT
N +ΠT

S = 1 analogously as the relationship ΠN +ΠS = 1. The
following proposition is an immediate consequence of Lemma 3.1.

Proposition 3.2 Under Assumption 2.1, we have

ΠT
N = ΠN +Op(T

−1) and ΠT
S = ΠS +Op(T

−1)

for all large T .
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Proposition 3.2 implies that the projections ΠN and ΠS on the unit root and stationarity
subspacesHN andHS can be estimated consistently at rate T respectively by the projections
ΠT

N and ΠT
S on the sample unit root and stationarity subspaces HT

N and HT
S .

In what follows, we let

(λi(QNN ), vi(QNN )) , i = 1, . . . ,M,

be the nonzero eigenvalues and their associated eigenvectors of QNN , which we order

λ1(QNN ) ≥ · · · ≥ λM (QNN ).

Note that QNN is stochastic, and therefore, so are ((λi(QNN ), vi(QNN )) for i = 1, . . . ,M .
Clearly, (vi(QNN )), i = 1, . . . ,M , span HN . Though the set of vectors (vi(QNN )) are
given randomly by the realization of Brownian motion W , the space spanned by them is
nonrandom and uniquely determined. On the other hand, we denote by

(λi(QSS), vi(QSS)) , i = 1, 2, . . . ,

the nonzero eigenvalues and their associated eigenvectors of QSS , for which we assume

λ1(QSS) ≥ λ2(QSS) ≥ · · · .

Since QSS is the variance operator of (ΠSwt), it is positive semi-definite and nuclear, i.e.,
λi(QSS) ≥ 0 for all i, and

∞∑
i=1

λi(QSS) < ∞.

In particular, λi(QSS) → 0 as i → ∞, and the origin is the limit point of the spectrum of
QSS . The reader is referred to Bosq (2000, Theorem 1.7) for more details.

It can be deduced from Lemma 3.1 and Proposition 3.2 that

Theorem 3.3 Under Assumption 2.1, we have(
T−2λi(QT ), vi(QT )

)
→d (λi(QNN ), vi(QNN ))

jointly for i = 1, . . . ,M , and(
T−1λM+i(QT ), vM+i(QT )

)
→p (λi(QSS), vi(QSS))

for i = 1, 2, . . ..

In the stationarity subspace HS , the eigenvectors and eigenvalues of the sample variance op-
erator QT of (wt), if appropriately normalized, converge in probability to the corresponding
population eigenvectors and eigenvalues. Following the convention made in Bosq (2000), the
eigenvectors (vi(QSS)) are identified only up to the spaces spanned by them. For instance,
we let vi(QSS) and −vi(QSS) be identical for i = 1, 2, . . .. Likewise, if λi(QSS) = λi+j(QSS)
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for some i ≥ 1 and 1 ≤ j ≤ J , then vi(QSS) and vi+j(QSS), j = 1, . . . , J , are not indi-
vidually identified and they denote any vectors spanning the eigen-subspace of λi(QSS). In
the unit root subspace HN , on the other hand, the eigenvectors and normalized eigenvalues
of the sample variance operator converge in distribution, and their distributional limits are
given by the distributions of eigenvalues and eigenvectors of some functionals of Brownian
motion.

One immediate consequence of our results in Theorem 3.3 is that we may use the criterion

ΛT = −T−2
M∑
i=1

λi(QT ) + cTT
−1

to determine the dimension M of unit roots in (wt), where (cT ) is a numerical sequence
such that cT → ∞ and cTT

−1 → 0. In fact, if we set

M̂T = argmin
0≤M≤Mmax

ΛT (5)

with some fixed number Mmax large enough to ensure M ≤ Mmax,
2 then we may easily

show following, e.g., Cheng and Phillips (2009), that M̂T is weakly consistent for M and
P{M̂T = M} → 1. In the paper, however, we follow a more conventional approach based
on a successive testing procedure similarly as in the testing procedure by Johansen (1988).
Note that any of the existing procedures developed to analyze cointegrating rank are not
directly applicable for our model, since it is infinite dimensional. Our new testing procedure
is presented in Section 3.3 below.

3.2 Asymptotic Behavior of Coordinate Process

One of the most important implications of Proposition 3.2 is that we may regard (vi(QT )),
i = 1, . . . ,M , asymptotically as vectors in the unit root subspace HN . Indeed, it is straight-
forward to deduce from Proposition 3.2 that

Corollary 3.4 Under Assumption 2.1, we have

max
1≤t≤T

∣∣⟨ΠT
Nv, wt⟩ − ⟨ΠNv, wt⟩| = Op(T

−1/2)

max
1≤t≤T

∣∣⟨ΠT
Nv,∆wt⟩ − ⟨ΠNv,∆wt⟩| = Op(T

−1+1/p)

for all large T , uniformly in all v ∈ H such that ∥v∥ = 1.

We may well expect from Corollary 3.4 that the coordinate processes of (wt) defined by
(vi(QT )) and (ΠNvi(QT )), i = 1, . . . ,M , yield the same asymptotics. Note that vi(QT ) =

2In practice, the choice of Mmax is not a difficult problem. It is often clearly suggested by the esti-
mated spectrum of QT , which normally has several dominant eigenvalues. We may also rely on various
methodologies of identifying dominant eigenvalues in the standard principal component analysis.
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ΠT
Nvi(QT ), i = 1, . . . ,M , since (vi(QT )), i = 1, . . . ,M , are in the sample unit root sub-

space HT
N . The difference between ⟨vi(QT ), wt⟩ and ⟨ΠNvi(QT ), wt⟩, i = 1, . . . ,M , van-

ishes completely as the sample size increases up to infinity. Needless to say, (ΠNvi(QT )),
i = 1, . . . ,M , are vectors in the unit root subspace HN , and we may therefore assume that
(vi(QT )), i = 1, . . . ,M , are in HN in our subsequent development of the asymptotics for
nonstationary coordinate processes.

It should, however, be noted that ⟨vi(QT ), wt⟩, i = 1, . . . ,M , in general behave quite
differently from unit root processes, even though we may regard (vi(QT )), i = 1, . . . ,M ,
asymptotically as vectors in the unit root subspaceHN . As shown in Theorem 3.3, (vi(QT )),
i = 1, . . . ,M , do not converge to any fixed set of vectors and remain to be random in the
limit. Therefore, their asymptotic behaviors are generally rather distinctive from those of
the coordinate processes ⟨vi, wt⟩ defined by a fixed set of vectors (vi), i = 1, . . . ,M , in HN .
For instance, we may easily deduce from Lemma 3.1 and Theorem 3.3 that

1

T 2

T∑
t=1

⟨vi(QT ), wt⟩2 =
⟨
vi(QT ), Q

T
NNvi(QT )

⟩
+Op(T

−1)

→d ⟨vi(QNN ), QNNvi(QNN )⟩ = λi(QNN )

with λi(QNN ) being the i-th largest eigenvalue of
∫ 1
0 (W ⊗W )(r)dr, whereas

1

T 2

T∑
t=1

⟨vi, wt⟩2 =
⟨
vi, Q

T
NNvi

⟩
+Op(T

−1)

→d ⟨vi, QNNvi⟩ =
∫ 1

0
W 2

i (r)dr

with Wi = ⟨vi,W ⟩. Unless M = 1, the two limit distributions are not identical.
We may now clearly see that the asymptotics of ⟨vi(QT ), wt⟩ are different in general from

those of ⟨vi, wt⟩ defined by a fixed set of vectors (vi), i = 1, . . . ,M , in the unit root subspace
HN , though their sample moments have the same order of magnitudes in probability. In
particular, ⟨vi(QT ), wt⟩, i = 1, . . . ,M , are not well defined unit root processes. To obtain
unit root coordinate processes, we need to find a set of vectors in HT

N that converge in
probability to a fixed set of vectors in HN , and use them to define coordinate processes. In
fact, if we fix a set of vectors (v̄i), i = 1, . . . ,M , in H and project them on HT

N using ΠT
N

to obtain (ΠT
N v̄i) and define ⟨

ΠT
N v̄i, wt

⟩
, i = 1, . . . ,M,

then it follows immediately from Corollary 3.4 that

max
1≤t≤T

∣∣⟨ΠT
N v̄i, wt⟩ − ⟨ΠN v̄i, wt⟩| = Op(T

−1/2) (6)

max
1≤t≤T

∣∣∆⟨ΠT
N v̄i, wt⟩ − ∆⟨ΠN v̄i, wt⟩| = Op(T

−1+1/p) (7)

for all large T . Consequently,
⟨
ΠT

N v̄i, wt

⟩
behave asymptotically as ⟨ΠN v̄i, wt⟩, i = 1, . . . ,M ,

which are well defined unit root processes.
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As is well expected, we may test for the unit root hypothesis H0 : αi = 1 in the regression⟨
ΠT

N v̄i, wt

⟩
= αi

⟨
ΠT

N v̄i, wt−1

⟩
+ ϵit

or ⟨
ΠT

N v̄i, wt

⟩
= αi

⟨
ΠT

N v̄i, wt−1

⟩
+

q∑
j=1

βij∆
⟨
ΠT

N v̄i, wt−j

⟩
+ ϵit

for i = 1, . . . ,M , using the conventional unit root tests such as the augmented Dickey-
Fuller (ADF) and Phillips’ tests, the details of which we refer to Stock (1994). In fact,
it follows directly from (6) and (7) that the unit root tests based on

⟨
ΠT

N v̄i, wt

⟩
have the

same asymptotics as those of ⟨ΠN v̄i, wt⟩, i = 1, . . . ,M , which are well defined unit root
processes yielding the usual unit root asymptotics. The conventional unit root tests applied
to
⟨
ΠT

N v̄i, wt

⟩
, i = 1, . . . ,M , are therefore valid asymptotically. However, the tests are not

applicable, unless M is known. In particular, we may not use the tests to determine M .
Besides, we expect the test results to be affected by the choice of vectors (v̄i), i = 1, . . . ,M ,
which has to be arbitrary, except for the simple case M = 1.

3.3 Test Statistic and Limit Distribution

To determine the dimension M of the unit root subspace HN , we consider the test of the
null hypothesis

H0 : dim (HN ) = M (8)

against the alternative hypothesis

H1 : dim (HN ) ≤ M − 1 (9)

successively downward starting from M = Mmax, where Mmax is introduced earlier in (5).
By convention, M = 0 implies that there is no unit root, and the unit root subspace HN

consists only of the origin. Our estimate for M is given by Mmin − 1, where Mmin is the
smallest value of M for which the null hypothesis (8) is rejected in favor of the alternative
hypothesis (9). Obviously, we may find the true value of M with asymptotic probability
one, if we apply any consistent test in the successive manner as suggested here.

It is clear from Theorem 3.3 that we may use (λi(QT )) to determine the unit root dimen-
sion in (wt). As can be readily deduced from Theorem 3.3, T−2λi(QT ) has a nondegenerate
asymptotic distribution for i = 1, . . . ,M , whereas it converges to zero in probability for all
i ≥ M + 1. Therefore, we may consider

σT
M = T−2λM (QT ) (10)

to test the null hypothesis (8) against the alternative hypothesis (9) for M = 1, 2, . . .. It
is clear that the test would be consistent, if we reject the null hypothesis in favor of the
alternative hypothesis, when the test statistic σT

M in (10) takes a small value. Unfortunately,
however, σT

M has limit null distribution that is generally dependent upon various nuisance
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parameters, and cannot be used directly to test for the unit root dimension M without
employing some resampling schemes to compute the critical values.3

To introduce a test statistic whose limit distribution is free of nuisance parameters, we
first let (vi), i = 1, . . . ,M , be an arbitrary set of vectors generating HN . Then we define

zt = (⟨v1, wt⟩, . . . , ⟨vM , wt⟩)′ (11)

for t = 1, . . . , T . As we will show later, the choice of (vi), i = 1, . . . ,M , is unimportant,
and does not affect any of our subsequent developments. If we let QT

M = Z ′
TZT with

ZT = (z1, . . . , zT )
′, it follows from Lemma 3.1 that

T−2QT
M →d QM =

∫ 1

0
WM (r)WM (r)′dr, (12)

where WM is an M -dimensional vector Brownian motion with variance ΩM , say, which is
often referred to as the long run variance of (∆zt). The usual estimate for ΩM is defined as

ΩT
M =

∑
|i|≤ℓ

ϖℓ(i)ΓT (i),

where ϖℓ is a bounded weight function and ΓT is the usual sample autocovariance function
of (zt), i.e., ΓT (i) = T−1

∑
t∆zt∆z′t−i for |i| ≤ ℓ, used to estimate the true autocovariance

function Γ. The lag truncation number ℓ is set to increase as T .4

Now we define (
λi(Q

T
M ,ΩT

M ), vi(Q
T
M ,ΩT

M )
)
, i = 1, . . . ,M,

to be the pairs of generalized eigenvalues and eigenvectors of QT
M with respect to the consis-

tent estimate ΩT
M of ΩM . It follows immediately from (12) and continuous mapping theorem

that (
T−2λi(Q

T
M ,ΩT

M ), vi(Q
T
M ,ΩT

M )
)
→d (λi(QM ,ΩM ), vi(QM ,ΩM )) (13)

jointly for i = 1, . . . ,M , where

(λi(QM ,ΩM ), vi(QM ,ΩM )), i = 1, . . . ,M,

are the pairs of generalized eigenvalues and eigenvectors of QM with respect to ΩM . More-
over, if we let

(λi(Q
∗
M ), vi(Q

∗
M )) , i = 1, . . . ,M,

be the eigenvalue and eigenvector pairs of

Q∗
M =

∫ 1

0
W ∗

M (r)W ∗
M (r)′dr, (14)

3Of course, it may be possible to use the test statistic σT
M in (10) with critical values computed from

some resampling schemes such as bootstrap and subsampling. However, this will not be further discussed in
the paper.

4There exists a large literature on the consistent estimation of ΩM , for the introduction to which the
reader is referred to, e.g., Andrews (1991). For all applications in the paper, we use the Parzen window with
the Andrews’ automatic bandwidth.
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where W ∗
M = Ω

−1/2
M WM is the standard M -dimensional vector Brownian motion, i.e., M -

dimensional vector Brownian motion with identity covariance matrix, then it can be easily
seen that

λi(QM ,ΩM ) = λi(Q
∗
M ), Ω

1/2
M vi(QM ,ΩM ) = vi(Q

∗
M ), (15)

for i = 1, . . . ,M . In particular, we have

T−2λi(Q
T
M ,ΩT

M ) →d λi(Q
∗
M ) (16)

jointly for i = 1, . . . ,M , due to (13) and (15). The distributions of (λi(Q
∗
M )), i = 1, . . . ,M ,

are free of any nuisance parameters, and can be tabulated by simulations.
It is important to note that the pairs of generalized eigenvalues and eigenvectors(

λi(Q
T
M ,ΩT

M ), vi(Q
T
M ,ΩT

M )
)
, (λi(QM ,ΩM ), vi(QM ,ΩM ))

for i = 1, . . . ,M are determined uniquely regardless of the choice of (vi) generating HN ,
which we introduce in (11). To see this more clearly, we let (v̄i) be another set of vectors
generating HN . Moreover, we define z̄t = (⟨v̄1, wt⟩, . . . , ⟨v̄M , wt⟩)′ for t = 1, . . . , T and
Q̄T

M = Z̄ ′
T Z̄T with Z̄T = (z̄1, . . . , z̄T )

′. Then we have a nonsingular M -dimensional matrix
UM such that z̄t = UMzt. However, we have Z̄T = ZTU

′
M , and

T−2Q̄T
M →d Q̄M =

∫ 1

0
W̄M (r)W̄M (r)′dr,

where W̄M = UMWM is M -dimensional vector Brownian motion with variance Ω̄M =
UMΩMU ′

M . We may also easily see that Ω̄T
M = UMΩT

MU ′
M if we use the same estimator

for ΩM and Ω̄M . Consequently, it follows readily that the generalized eigenvalues and
eigenvectors of Q̄T

M and Q̄M with respect to Ω̄T
M and Ω̄M are the same respectively as those

of QT
M and QM with respect to ΩT

M and ΩM .
The generalized eigenvalues (λi(Q

T
M ,ΩT

M )), i = 1, . . . ,M , are based on (zt) in (11),
which are not observable since it consists of coordinate processes given by a set of vectors
(vi) spanning HN . Therefore, we consider

z̃t = (⟨v1 (QT ) , wt⟩, . . . , ⟨vM (QT ) , wt⟩)′ (17)

for t = 1, . . . , T , in place of (zt) in (11). Moreover, we define Q̃T
M = Z̃ ′

T Z̃T with Z̃T =
(z̃1, . . . , z̃T )

′, and

Ω̃T
M =

∑
|i|≤ℓ

ϖℓ(i)Γ̃T (i),

accordingly as ΩT
M , where the autocovariance function ΓT (i) of (zt) in ΩT

M is replaced by
that of (z̃t), Γ̃T (i) = T−1

∑
t∆z̃t∆z̃′t−i.

To test the null hypothesis (8) against the alternative hypothesis (9), we propose to use

τTM = T−2λM

(
Q̃T

M , Ω̃T
M

)
. (18)

For the test statistic τTM , we have
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Theorem 3.5 Let Assumption 2.1 hold. Under the null hypothesis (8), we have

τTM →d λM (Q∗
M ).

Moreover, we have
τTM →p 0

under the alternative hypothesis (9).

Theorem 3.5 shows that the limit null distribution of our test statistic τTM is given by the
distribution of the smallest eigenvalue of the integrated product moment of M -dimensional
standard vector Brownian motion on the unit interval, which was introduced earlier in (14).
The limit distribution is easily derived from (16), once we show that the replacements of QT

M

by Q̃T
M and ΩT

M by Ω̃T
M have no effect on the limit distribution of the generalized eigenvalue

λM

(
QT

M ,ΩT
M

)
. This is well expected from Corollary 3.4, since (z̃t) and (zt) are uniformly

close for t = 1, . . . , T , if we choose vi = ΠNvi(QT ), i = 1, . . . ,M , in defining (zt).
5 As

discussed, the distribution of λM (Q∗
M ) is free of nuisance parameters, and depends only

upon M . Therefore, the asymptotic critical values of our test statistic τTM can be tabulated
for each M . Theorem 3.5 also establishes that the test based on τTM is consistent.6

It is possible to more specifically test the null hypothesis H0 in (8) against the alternative
hypothesis HA : dim (HN ) = N for some N < M . In this case, it would clearly be more
powerful to use the test statistic

τTM,N = T−2
M∑

i=N+1

λi

(
Q̃T

M , Ω̃T
M

)
. (19)

As in the proof of Theorem 3.5, we may easily show that

τTM,N →d

M∑
i=N+1

λi (Q
∗
M ) ,

under the null hypothesis H0, and that

τTM,N →p 0

under the alternative hypothesis HA. The limit distributions of τTM,N are also free of nuisance
parameters and can be tabulated for various combinations of M and N .

5Recall that our test statistic τT
M is invariant with respect to the choice of (vi), and we may choose an

arbitrary set of (vi) as long as they span the unit root subspace HN .
6The discriminatory power of τT

M is expected to be lower than that of σT
M , since σT

M = Op(T
−1) under

the alternative hypothesis (9). Certainly, this is the price we have to pay to make the statistic τT
M free of

nuisance parameters in limit distribution.
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3.4 Unit Root Moment Decomposition

By convention, we identify any square integrable function µ on a compact subset K of R
with µ−

∫
K µ(s)ds, so that we may regard it as an element in H. Note that

⟨µ, v⟩ =
⟨
µ−

∫
K
µ(s)ds, v

⟩
for any v ∈ H, if we define the inner product ⟨·, ·⟩ in an extended Hilbert space including
all square integrable functions on K. For any µ in the extended Hilbert space, we define
the norm ∥ · ∥ as

∥µ∥2 =
⟨
µ−

∫
K
µ(s)ds, µ−

∫
K
µ(s)ds

⟩
=

∞∑
i=1

⟨µ, vi⟩2

for an orthonormal basis (vi) of H.7

Now we consider
µi(s) = si,

for i = 1, 2, . . .. Note that

⟨µi, wt⟩ = ⟨µi, ft⟩ − ⟨µi,Eft⟩ = ⟨µi, ft⟩ − E⟨µi, ft⟩

represents the random fluctuation of the i-th moment of the distribution given by probability
density (ft). We may decompose µi as µi = ΠNµi +ΠSµi, from which it follows that

∥µi∥2 = ∥ΠNµi∥2 + ∥ΠSµi∥2 =
M∑
j=1

⟨µi, vj⟩2 +
∞∑

j=M+1

⟨µi, vj⟩2, (20)

where (vj), j = 1, 2, . . ., is an orthonormal basis of H such that (vj)1≤j≤M and (vj)j≥M+1

span HN and HS , respectively.
Clearly, we may employ the ratio

πi =
∥ΠNµi∥
∥µi∥

=

√√√√√√√√√√
M∑
j=1

⟨µi, vj⟩2

∞∑
j=1

⟨µi, vj⟩2
(21)

to measure the proportion of the component of µi lying in HN . If, for instance, µi is entirely
in HN , we have πi = 1. On the other hand, we have πi = 0 if µi is entirely in HS . In the
paper, we use πi to represent the proportion of unit root component in the i-th moment of
probability densities (ft). The i-th moment of (ft) has more dominant unit root component
as πi tends to unity, whereas it becomes more stationary as πi approaches to zero. Of

7Strictly speaking, ∥·∥ introduced for the extended Hilbert space here by our convention is a pseudo-norm.
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course, it is more difficult to predict the i-th moment of (ft) if πi is closer to unity. In
contrast, the i-th moment of (ft) is easier to predict if πi is small. In what follows, we will
refer to πi simply as the unit root proportion of the i-th moment.

The unit root proportion πi of the i-th moment defined in (21) is of course not directly
applicable, since HN and HS are unknown. However, we may use its sample version

πT
i =

√√√√√√√√√√
M∑
j=1

⟨µi, vj(QT )⟩2

T∑
j=1

⟨µi, vj(QT )⟩2
, (22)

and other notations are as defined in (21). The sample version πT
i in (22) of πi in (21) will

be referred to as the sample unit root proportion of the i-th moment. We may readily show
that the sample unit root proportion πT

i is a consistent estimator for the original unit root
proportion πi. In fact, it follows immediately from Proposition 3.2 that

πT
i = πi +Op(T

−1)

for all i = 1, 2, . . ..

4. Models with Estimated Densities

Usually, the state densities (ft) are not directly observed and should therefore be estimated
using the data, either cross-sectional or high frequency observations, that we assume to be
available for each time period. Therefore, we denote by (f̂t) the estimated density functions
and let

ŵt = f̂t −
1

T

T∑
t=1

f̂t (23)

be the demeaned density estimate for t = 1, . . . , T . It is well expected that the replacement
of the original centered density (wt) with the demeaned density estimate (ŵt) does not
affect the asymptotic theory as long as the number of cross-sectional or high frequency
observations available in each time period to estimate (f̂t) is large enough relative to the
number T of time series observations. This was indeed shown by Park and Qian (2009)
for a stationary functional regression model. In this section, we show that our asymptotic
theories developed in the previous section continue to hold even when we use (ŵt) in the
place of (wt). To develop subsequent asymptotic theories, we let ∆t = f̂t−ft for t = 1, . . . , T
and assume

Assumption 4.1 Let (a) supt≥1 ∥∆t∥ = Op (1), and (b) T−1
∑T

t=1 ∥∆t∥ →p 0.

The conditions introduced in Assumption 4.1 appear to be very mild and satisfied widely
in many potential applications. Clearly, condition (a) would hold in general, since both
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(ft) and (f̂t) are proper density functions. Moreover, condition (b) is expected to be met
whenever the number N of observations that we use to estimate the state density at each
period is sufficiently large relative to the sample size T for the time series of state density. In
fact, if the standard second-order kernel is used with an optimal bandwidth to estimate the
state densities, we would normally expect to have sup1≤t≤T E∥∆t∥ = O(aT /bN ) for some
(aT ) and (bN ) such that aT → ∞ and bN → ∞ respectively as T → ∞ and N → ∞. It is
well known that under very general regularity conditions we have E∥∆t∥ = O(N−2/5) for
each t, if the state distributions are defined as cross-sectional distributions, and independent
and identically distributed observations are available to estimate them for each period. The
same result holds if the state distributions are given by intra-period distributions, as long
as within each period the underlying economic variables can be regarded as stationary
processes satisfying some general mixing conditions.8 This is shown in, e.g., Bosq (1998)
and Hansen (2008).9

Now we redefine all sample statistics introduced in Section 3 to construct the feasible
version of our unit root test statistic using (ŵt) introduced in (23), in place of (wt). As
discussed, our testing procedure is based on the functional principal component analysis for
the sample variance operator of (wt). Define

Q̂T =
T∑
t=1

ŵt ⊗ ŵt, (24)

which we may write similarly as in (1)

Q̂T = T 2Q̂T
NN + TQ̂T

NS + TQ̂T
SN + TQ̂T

SS , (25)

where Q̂T
NN , Q̂T

NS , Q̂
T
SN and Q̂T

SS are defined in the same way as their counterpart compo-
nents of QT given below (1) in Section 3, except that they are all sample product moments
based on the demeaned density estimates (ŵt). In what follows, we will refer to Q̂T as the
unnormalized estimated variance operator of (wt).

In the subsequent development of our theory, we let(
λi(Q̂T ), vi(Q̂T )

)
, i = 1, . . . , T,

be the pairs of the eigenvalues and eigenvectors of Q̂T , where we order λ1(Q̂T ) ≥ · · · ≥
λT (Q̂T ). Moreover, for T > M , we use the eigenvectors vi(Q̂T ) corresponding to the M
largest eigenvalues λi(Q̂T ) of Q̂T to define

ĤT
N =

M∨
i=1

vi(Q̂T ).

We call ĤT
N the estimated unit root subspace and denote by Π̂T

N the projection on ĤT
N .

Finally, we let Π̂S = 1−Π̂N , so that we have Π̂T
N+Π̂T

S = 1 analogously with the relationship
ΠN +ΠS = 1.

8Such processes are often called locally stationary.
9The result holds under quite general conditions. For instance, Honda (2009) shows that we may even

allow for processes with infinite variances.
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Lemma 4.1 Let Assumptions 2.1 and 4.1 hold. We have

Q̂T
NN →d Q

NN
=

∫ 1

0
(W ⊗W )(r)dr

with W (r) = W (r)−
∫ 1
0 W (s)ds and

Q̂T
SS →p QSS ,

where the limit Brownian motion W and operator QSS are defined in Lemma 3.1. Moreover,
we have

Q̂T
NS , Q̂

T
SN = Op(1)

for all large T .

Lemma 4.1 presents the basic asymptotics for the estimated variance operator Q̂T of (wt).
This corresponds to Lemma 3.1, where we establish the basic asymptotics for the sample
variance operator QT of (wt). The estimated variance operator Q̂T differs from the sample
variance operator QT in two aspects. First, the state density (ft) used to define QT is
replaced by the estimated state density (f̂t) for Q̂T . Second, Q̂T is defined with the sample
mean T−1

∑T
t=1 f̂t instead of the expectation of state density Eft used in the definition of

QT . As can be clearly seen from the proof of Lemma 4.1, the replacement of (ft) by (f̂t)
becomes negligible and does not affect any of our asymptotic theory under our assumptions.
This is true regardless of the stationarity/nonstationarity of the time series of state density.
However, the use of the sample mean of the state density in place of its expectation has no
asymptotic effect only for the stationary component of state density. For the nonstationary
component, it yields different asymptotics. Note that the limit Brownian motion appeared
in Lemma 3.1 is replaced by the demeaned Brownian motion in Lemma 4.1.

Theorem 4.2 Let Assumptions 2.1 and 4.1 hold. We have(
T−2λi(Q̂T ), vi(Q̂T )

)
→d

(
λi(QNN

), vi(QNN
)
)

jointly for i = 1, . . . ,M , and(
T−1λM+i(Q̂T ), vM+i(Q̂T )

)
→p (λi(QSS), vi(QSS))

for i = 1, 2, . . ..

The results in Theorem 4.2 are completely analogous to those in Theorem 3.3. The only
difference in our asymptotic results in Theorem 4.2 is that we have Q

NN
defined with the

demeaned Brownian motion W instead of QNN defined with the undemeaned Brownian
motion W . As discussed, the appearance of W is due to the use of the sample mean of state
density in lieu of its expectation.

Based on the asymptotic results in Lemma 4.1 and Theorem 4.2, we may construct a
feasible version of our statistic τTM defined in (18) to test for the existence of unit roots
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in the time series of state density. The feasible test statistic, which we introduce below, is
defined using the demeaned state density estimate (ŵt) and the estimated variance operator
Q̂T of (wt). Let

ẑt =
(
⟨v1(Q̂T ), ŵt⟩, . . . , ⟨vM (Q̂T ), ŵt⟩

)′
(26)

for t = 1, . . . , T , similarly as (z̃t) in (17), and define ẐT = (ẑ1, . . . , ẑT )
′ and

Q̂T
M = Ẑ ′

T ẐT , Ω̂T
M =

∑
|i|≤ℓ

ϖℓ(i)Γ̂T (i), (27)

where Γ̂T (i) is the sample autocovariance function of (ẑt), viz., Γ̂T (i) = T−1
∑

t∆ẑt∆ẑ′t−i.

Moreover, similarly as before, we define λM (Q̂T
M , Ω̂T

M ) to be the smallest generalized eigen-

value of Q̂T
M with respect to Ω̂T

M . Our feasible version τ̂TM of the test statistic τTM is now
given by

τ̂TM = T−2λM (Q̂T
M , Ω̂T

M ), (28)

which corresponds to τTM in (18).
To effectively present the asymptotics of the feasible test statistic τ̂TM , it is necessary to

introduce some additional notations. In parallel with Q∗
M defined in (14), we define

Q∗
M

=

∫ 1

0
W ∗

M (r)W ∗
M (r)′dr (29)

with W ∗
M (r) = W ∗

M (r) −
∫ 1
0 W ∗

M (s)ds, where W ∗
M is the standard M -dimensional vector

Brownian motion introduced earlier in Section 3. Now we have

Theorem 4.3 Let Assumptions 2.1 and 4.1 hold. Under the null hypothesis (8), we have

τ̂TM →d λM (Q∗
M
).

Moreover, we have
τ̂TM →p 0

under the alternative hypothesis (9).

Theorem 4.3 shows that the limit distribution of the feasible test statistic τ̂TM is given by the
distribution of the smallest eigenvalue of the integrated product moment of the demeaned
M -dimensional standard vector Brownian motion on the unit interval, which is defined
in (29). Given the limit distribution of τTM in Theorem 3.5, this is well predicted from
our earlier results in Lemma 4.1 and Theorem 4.2. Theorem 4.3 also establishes that the
test based on the feasible statistic τ̂TM is consistent as was the case for our original test.
The consistency is therefore unaffected by using estimated densities and demeaned density
estimates of state distributions.

Clearly, the limit null distribution of the test statistic τ̂TM is free of nuisance parameters
and can be obtained through simulation for each M . In Table 1, we tabulate the simulated
critical values for the 1%, 5% and 10% tests based on τ̂TM for the values of M = 1, . . . , 5.
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The reported critical values are obtained by simulating the integrated product moment of
the demeaned M -dimensional standard vector Brownian motion on the unit interval in (29).
For the simulation, the Brownian motion is approximated by the standardized partial sum
of mean zero i.i.d. normal random variates with sample size 10,000. The actual critical
values are computed using 100,000 iterations.

Table 1: Critical Values of the Test Statistic τ̂TM

M 1 2 3 4 5

1% 0.0248 0.0163 0.0123 0.0100 0.0084

5% 0.0365 0.0215 0.0156 0.0122 0.0101

10% 0.0459 0.0254 0.0177 0.0136 0.0111

As is well expected, the critical values of the tests based on the statistic τ̂TM decrease as M
increases. Recall that the limit null distribution of τ̂TM is given by the smallest eigenvalue of
the integrated product moments of the demeaned M -dimensional vector Brownian motion.

Once we obtain the estimated unit root subspace ĤT
N , which is generated by M̂T -

eigenvectors given by vi(Q̂T ), i = 1, . . . , M̂T , the unit root proportion πi of the i-th moment
introduced in (21) can be consistently estimated by

π̂T
i =

√√√√√√√√√√√

M̂T∑
j=1

⟨µi, vj(Q̂T )⟩2

T∑
j=1

⟨µi, vj(Q̂T )⟩2
, (30)

which will be referred to as the estimated unit root proportion of the i-th moment. Under
our assumptions, it can indeed be readily deduced from our earlier results that π̂T

i =
πi + op(1) for all i = 1, 2, . . ..

5. Empirical Applications

To demonstrate the empirical relevancy of our model, we present two empirical applications.
In these applications, we show how to define and estimate the state densities, and test for
unit roots in the time series of state densities. As discussed, the state densities represent the
intra-period or cross-sectional distributions and we use the intra-period or cross-sectional
observations to estimate them. For the actual estimation of the state densities, we use the
Gaussian kernel with the standard optimal bandwidth suggested by Silverman. To analyze
the nonstationarity of the time series of state densities, we use our statistic developed in the
paper to test the null hypothesis (8) against the alternative hypothesis (9). To determine
the dimension of the unit root space, we apply the test successively downward starting from
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Figure 1: Individual Earnings Distributions - Undemeaned and Demeaned Densities

M = Mmax with Mmax = 5.10 Once we determine the dimension of the unit root space
and estimate the unit root space, the unit root proportion is computed for the first four
moments. As discussed, the unit root proportion provides the proportion of nonstationary
fluctuation in the moment of state distribution.

For the representation of functions in our Hilbert space as numerical vectors, we use a
Daubechies wavelet basis. Because wavelets are spatially varying orthonormal bases with
two parameters, i.e., scale and translation, they provide more flexibilities in fitting the
state densities in our applications, some of which have severe asymmetry and time-varying
support. In fact, the wavelet basis in general yields a much better fit than the trigonometric
basis. The Daubechies wavelet is implemented with 1037 basis functions. The data sets we
use in our empirical applications have either a censoring problem or extreme outliers. To
avoid their undesirable effects on the estimation of state density, we truncate some of the
cross-sectional or intra-period observations at the boundaries.11

5.1 Cross-Sectional Distributions of Individual Earnings

For the first empirical application, we consider the time series of cross-sectional distributions
of individual earnings. The cross-sectional observations of individual weekly earnings are
obtained at monthly frequency from the Current Population Survey (CPS) data set. The
individual weekly earnings are deflated by consumer price index with base year 2005. The

10In determining Mmax, we may use various rules that are commonly employed to identify dominant
eigenvalues in the principal component analysis. For example, we can retain eigenvectors with eigenvalues
greater than the average of all eigenvalues, or choose the eigenvectors needed to explain up to some fixed
proportion of the variation in the data.

11Indeed, our empirical results are not very sensitive to the presence of censored observations and outliers
as long as we use a wavelet basis. In particular, all our empirical results do not change qualitatively if all
cross-sectional or intra-period observations are used without truncation. In contrast, they become somewhat
sensitive to censored observations and outliers if we use trigonometric basis.
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data set provides 204 time series observations spanning from January 1994 to December
2010 at monthly frequency, and the number of cross-sectional observations in the data
set for each month ranges from 12,323 to 15,700. For confidentiality reasons, individual
earnings are topcoded above a certain level. In our empirical analysis, we drop all topcoded
individual earnings as well as zero earnings as in Liu (2011) and Shin and Solon (2011).12

Figure 1 shows the time series of the estimated densities for cross-sectional distributions of
individual earnings, undemeaned and demeaned, respectively in the left and right panels.
We may clearly see that the distributions change over time and that there exists some
evidence of nonstationarity in the time series of cross-sectional distributions of individual
earnings.

To investigate the unit root dimension in the time series of cross-sectional distributions
of individual earnings, we use the feasible statistic τ̂TM in (28) to test for the null hypothesis
(8) against the alternative hypothesis (9) with M = 1, . . . , 5. The test results are presented
below in Table 2. Our test, strongly and unambiguously, rejects the null hypothesis (8)

Table 2: Test Results for Dimension of Unit Root Space

M 1 2 3 4 5

τ̂TM 0.0746 0.0383 0.0079 0.0062 0.0040

against the alternative hypothesis (9) successively for M = 5, 4, 3. Clearly, however, the
test cannot reject the null hypothesis (8) in favor of the alternative hypothesis (9) for
M = 2. Therefore, we are led to conclude that there exists two-dimensional unit root, and
set M̂T = 2, in the time series of cross-sectional distributions of individual earnings. It
is also strongly supported by the scree plot of the eigenvalues of the estimated variance
operator of the demeaned state densities presented in Figure 2. The magnitudes of the first
two eigenvalues are substantially larger than the others, and we can clearly see that the
eigenvalues decreases slowly from the third largest one.

Now we compute as in (30) with M̂T = 2 the estimates π̂T
i of the unit root proportions

πT
i defined in (22) for the first four moments, based on the estimated nonstationarity space

which we obtain for the time series of cross-sectional distributions of individual earnings.
We summarize the results below in Table 3.

Table 3: Estimated Unit Root Proportions in Moments

π̂T
1 π̂T

2 π̂T
3 π̂T

4

0.5261 0.3420 0.2462 0.2013

It appears that the unit root proportions for the first four moments are all nonnegligibly
large. In particular, the unit root proportions for the first two moments are quite substantial.

12It is possible to impute topcoded individual earnings as a fixed multiple above the topcode threshold as
in Lemieux (2006) and Autor, Katz, and Kearney (2008).
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Figure 2: Scree Plot of Eigenvalues - Individual Earnings

The presence of a substantial unit root proportion in the second moment of the cross-
sectional distribution of individual earnings seems to be particularly interesting. Recently,
the time series analysis of changes in the volatilities of individual earnings and income have
drawn much attention. See, e.g., Dynan, Elmendorf, and Sichel (2008), Barth, Bryson,
Davis, and Freeman (2010) and Shin and Solon (2011). Nonstationarity in the time series
of cross-sectional distributions of individual earnings would certainly make their volatilities
more persistent, as evidenced extensively in the existing literature.

5.2 Intra-Month Distributions of Stock Returns

For the second empirical application, we consider the time series of intra-month distributions
of stock returns. For each month during the period from January 1992 to June 2010, we
use the S&P 500 index returns at one-minute frequency to estimate 222 densities for the
intra-month distributions. The one-minute returns of S&P 500 index are obtained from
Tick Data Inc. The number of intra-month observations available for each month varies
from 7211 to 9177, except for September 2001, for which we only have 5982 observations.13

Figure 3 shows the time series of the estimated densities for intra-month distributions of
the S&P 500 index returns, undemeaned and demeaned, respectively in the left and right
panels. The intra-month observations are truncated at 0.50% and 99.5% percentiles before
we estimate the state densities. It can be clearly seen that the mean locations and volatility
levels, in particular, of intra-month return distributions vary with time. We may also see
some evidence of nonstationarity in the time series of intra-month return distributions.

To determine the unit root dimension and check the existence of nonstationarity in the
time series of intra-month S&P 500 return distributions, we test using the feasible statistic
τ̂TM defined in (28) for the null hypothesis (8) against the alternative hypothesis (9) with
M = 1, . . . , 5. The test results are summarized in Table 4 below.
Our test successively rejects the null hypothesis (8) against the alternative hypothesis (9)
for M = 5, 4, 3, 2. However, at 5% level, the test cannot reject the null hypothesis (8) in

13To avoid the micro-structure noise, we also use the five-minute observations to estimate the intra-month
observations. Our empirical results are, however, virtually unchanged.
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Figure 3: Intra-Month Return Distributions - Undemeaned and Demeaned Densities

Table 4: Test Results for Dimension of Unit Root Space

M 1 2 3 4 5

τ̂TM 0.0421 0.0139 0.0118 0.0103 0.0095

favor of the alternative hypothesis (9) for M = 1. Our test result implies that there exists
one-dimensional unit root, i.e., M̂T = 1, in the time series of intra-month S&P 500 return
distributions. The scree plot of the eigenvalues of the estimated variance operator of the
state densities presented in Figure 4 also strongly supports the presence of one dimensional
unit root. The magnitude of the first eigenvalue is distinctively larger than all the other
eigenvalues.

Finally, we compute as in (30) with M̂T = 1 the estimates π̂T
i of the unit root proportions

πT
i defined in (22) for the first four moments, presuming that we have one-dimensional

unit root in the time series of intra-month S&P 500 return distributions. The results are
presented below in Table 5.

Table 5: Estimated Unit Root Proportions in Moments

π̂T
1 π̂T

2 π̂T
3 π̂T

4

0.0066 0.0826 0.0008 0.0269

The unit root proportions are in general small for all of the first four moments. This implies
that the nonstationarity in the time series of intra-month S&P 500 return distributions is
not concentrated in the first four moments. This is in contrast with our first empirical
application, where we study the time series of cross-sectional distributions of individual
earnings. However, the nonstationarity in the time series of intra-month S&P 500 return
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Figure 4: Scree Plot of Eigenvalues - Intra-Month Returns

distributions is relatively more concentrated in the second and fourth moments, with the
unit root proportion of the second moment being the largest. The unit root proportion of
the first and third moments are almost negligible, and it appears that nonstationarity does
not exist in the first and third moments of the time series of intra-month S&P 500 return
distributions. This is well expected, since for many financial time series strong persistency
is observed mainly in volatility and kurtosis.

6. Monte Carlo Simulation

In this section, we perform a simulation to investigate the finite sample performance of the
statistic τTM introduced in (18) to test for the null hypothesis (8) against the alternative
hypothesis (9). For the simulation, we generate the data using the models that approximate
as closely as possible the estimated models we obtained from our empirical applications in
the previous section. This is to make our simulation more realistic and practically more
relevant. Needless to say, the performance of our test is expected to be varying depending
upon data generating processes. We assume that the state densities are observable, and
therefore, our simulation would not provide any information on the effect of estimating
unobserved state densities. The numbers of observations N we use to estimate the state
densities in our empirical applications are quite large compared to the sample sizes T for the
time series of state density. The approximation error due to the estimation of state densities
should therefore be small and unimportant, if not totally negligible. Several choices of T
between 100 and 500 are considered. Recall that we have T = 204 and T = 222 for each of
the two empirical applications reported in the previous section. In all cases we employ our
test with 5% significance level, and all the reported results are based on 5,000 iterations.

In our simulation, we directly generate the centered state density (wt), instead of the
original state density (ft). This of course causes no loss in generality, since we use the
demeaned original state density ft−T−1

∑T
t=1 ft that is identical to the demeaned centered
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state density wt − T−1
∑T

t=1wt. To generate our simulation sample (wt), we let

wt =

I∑
i=1

citvi, (31)

where (cit), i = 1, . . . , I and t = 1, . . . , T , are scalar stochastic processes and (vi), i =
1, . . . , I, nonrandom orthonormal vectors in H, which are specified more specifically below.
Clearly, we have cit = ⟨vi, wt⟩, and (cit) becomes the i-th coordinate process of (wt) for
i = 1, . . . , I. Note that the simulation sample (wt) is generated from the I-dimensional
subspace of H spanned by (vi), i = 1, . . . , I. We set I = T , and let (vi) in (31) be the
orthonormal eigenvectors associated with nonzero eigenvalues of the estimated variance
operator of (wt) obtained in our empirical applications. Note that for a sample (wt) of
size T we only have T eigenvectors (vi) associated with nonzero eigenvalues of the sample
variance operator.

The coordinate processes (cit) in (31) are also specified similarly as the estimated co-
ordinate processes obtained from our empirical applications. For both of our empirical
applications, all information order selection criteria including AIC and BIC applied to the
estimated coordinate processes yield simple AR(1) and AR(2) models respectively for the
stationary and nonstationary coordinate processes.14 Accordingly, we let

(cit − αici,t−1) = βi(ci,t−1 − αici,t−2) + ηit (32)

for i = 1, . . . ,M , and
cit = αici,t−1 + ηit (33)

for i = M + 1, . . . , I, where (ηit) are independent normal random variates with mean zero
and variance (σ2

i ) for i = 1, . . . , I. The parameter values for (βi), i = 1, . . . ,M , (αi),
i = M + 1, . . . , I, and (σ2

i ), i = 1, . . . , I, are all set to be our estimates for the estimated
coordinate processes of our empirical applications. The estimates for (βi) are obtained with
the restriction αi = 1 imposed for i = 1, . . . ,M . Respectively for our first and second
empirical models, we set M = 2 and M = 1 in (32) and (33).

6.1 Empirical Model of Individual Earnings

The simulation results for our first empirical model on the cross-sectional distributions of
individual earnings are tabulated in Table 6. We denote by M0 the number of unit roots
in our simulated samples (wt) to distinguish it from the hypothesized number M of unit
roots for the test of the null hypothesis (8) against the alternative hypothesis (9) based on
τTM . Our simulation samples for the first empirical model are obtained from the coordinate
processes generated by (32) and (33) with M = 2. To obtain simulation samples with
M0 = 2, we may simply set α1 = α2 = 1 in (32). On the other hand, we set α1 = 1 and
let α2 = α, where α takes values from 0.80 to 0.95 with increment 0.05, in (32) and (33) to
obtain simulation samples with M0 = 1. Finally, for the simulation samples with M0 = 0,

14The results are also entirely robust to the choice of maximum orders for the order selection criteria.
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Table 6: Rejection Probabilities of τTM in Empirical Model of Individual Earnings

M

M0 T 1 2 3 4 5

2 100 0.0204 0.0664 0.7429 0.7146 0.4724
200 0.0245 0.0490 0.9966 0.9995 0.9907
300 0.0255 0.0551 1.0000 1.0000 1.0000

α

M M0 T 0.80 0.85 0.90 0.95

2 1 100 0.2724 0.1076 0.0348 0.0114
300 1.0000 0.9998 0.9078 0.2378
500 1.0000 1.0000 0.9998 0.7626

0 100 0.5498 0.2358 0.0838 0.0166
300 1.0000 1.0000 0.9924 0.4452
500 1.0000 1.0000 1.0000 0.9540

1 0 100 0.8376 0.5498 0.2294 0.0416
300 1.0000 1.0000 0.9988 0.6802
500 1.0000 1.0000 1.0000 0.9930

we set α1 = α2 = α in (33) with α again taking values from 0.80 to 0.95 with increment
0.05.

In the upper panel, we set the model exactly as we find in our empirical analysis with
M0 = 2, and present the rejection probabilities of τTM for various choices of M , M = 1, . . . , 5.
Under our setting, we expect the null hypothesis (8) to be rejected for all M ≥ 3. Overall,
the finite sample powers of the test are quite good even for moderately large T . The powers
of the test are almost 100% for all M as long as T is greater than 200. If T is 100, the test
loses power rather dramatically as M increases. Therefore, if T is small, it does not appear
to be practically meaningful to use the test for large values of M . The lack of power in
the test for small T however quickly disappears as T gets large. On the other hand, the
rejection probabilities are quite close to the nominal size 5% unless T is very small, in which
case the test tends to under-reject the null hypothesis. In sum, our empirical finding for the
existence of nonstationarity in the cross-sectional distributions of individual earnings seem
to be well supported by our simulation results here.

In the lower panel, we further investigate the finite sample powers of our test against
the models with roots in the vicinity of unity. As alternative models, we consider both
cases with M0 = 1 and M0 = 0. Our simulation results are largely as expected. In all
cases, the powers of the test decrease as α approaches to unity and it becomes harder to
discriminate the null and alternative hypotheses. Moreover, the test becomes more powerful
rather quickly as the sample size increases in every case we consider. This is true uniformly
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Table 7: Rejection Probability of τTM in Empirical Model of Stock Returns

M

M0 T 1 2 3 4 5

1 100 0.0512 0.9696 0.6021 0.2725 0.0708
200 0.0584 1.0000 1.0000 1.0000 0.9851

α

M M0 T 0.80 0.85 0.90 0.95

1 0 100 0.8682 0.6198 0.3008 0.0718
300 0.9990 0.9992 0.9980 0.7582
500 1.0000 1.0000 1.0000 0.9920

in α. However, it appears that the finite sample powers of the test are not large enough to
effectively distinguish the near unit roots from the exact unit roots. In particular, when T
is very small, the test has virtually no power against the near unit roots and rarely rejects
the null hypothesis of unit roots, regardless of the true number M0 of unit roots and the
hypothesized number M of unit roots.

6.2 Empirical Model of Stock Returns

Now we use our second empirical model on the intra-month distributions of stock returns
to evaluate the finite sample performance of our test τTM for the null hypothesis (8) against
the alternative hypothesis (9). The simulation results are tabulated in Table 7. As in the
previous section, we use M0 to denote the number of unit roots in our simulated samples
(wt), whereas M signifies the hypothesized number of unit roots for the test. Our simulation
samples for the second empirical model are obtained from the coordinate processes generated
by (32) and (33) with M = 1 as in the second empirical model. It is straightforward to
obtain simulation samples with M0 = 1, since we may simply set α1 = 1 in (32). To obtain
simulation samples with M0 = 0, on the other hand, we set α1 = α, where α takes values
from 0.80 to 0.95 with increment 0.05, in (33). This is completely analogous to our earlier
setup for the first empirical model.

For the simulation results in the upper panel, we use the model we find in our empirical
analysis with M0 = 1 and compute the rejection probabilities of τTM for various choices of
M , M = 1, . . . , 5. Consequently, we expect the null hypothesis (8) to be rejected for all
M ≥ 2. The finite sample powers of the test are quite good and have almost perfect power
even when T is only moderately large, i.e., T = 200. As in our simulation results for the
first empirical model, the power of the test is poor and not satisfactory when T is small.
However, the problem quickly disappears as T increases. The performance of the test is
rather satisfactory also in terms of finite sample sizes. The sizes of the test are nearly exact
even in very small samples. The actual rejection probabilities are indeed almost identical
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to the nominal size for T = 100 as well as for bigger samples. This is in contrast with our
earlier results for the first empirical model, where we observe a clear tendency for the test
to under-reject when T is small.

As in the simulations for the first empirical model, we further examine the finite sam-
ple powers of the test against stationary models with roots in the neighborhood of unity.
The overall aspects of our simulation results for the second empirical model are essentially
identical to those of our previous results for the first empirical model. Again, the power of
the test decreases as α approaches to unity, and the power loss is particularly severe if T
is small. The finite sample powers, however, rapidly increase uniformly in α as the sample
size increases. The performance of the test appears to be slightly better for the second
empirical model compared with the first.

7. Conclusion

In this paper, we consider testing for nonstationarity for the time series of state distributions,
which can be either cross-sectional or intra-period distributions of some underlying economic
variable. The state densities are regarded as Hilbertian random variables, and we employ
the functional principal component analysis to construct a statistic to test for unit roots in
the time series of state densities. Our test is nuisance parameter free and its critical values
are tabulated in the paper. Once we estimate the unit root subspace, we may compute the
unit root proportions in the moments of state distributions. We apply our methodology
to analyze nonstationarity in the time series of two different types of state distributions,
i.e., the cross-sectional distributions of individual earnings and intra-month distributions
of stock returns. In both cases, we could find some clear evidence for the presence of
nonstationarity. The presence of nonstationarity in the time series of state distributions
yields some important implications, both economic and statistical, which can certainly be
further explored. This will be reported in our subsequent work.
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Mathematical Appendix

Proof of Lemma 3.1 Define the stochastic process WT on [0, 1] by

WT (r) = T−1/2

[Tr]∑
t=1

HN∆wt,

which takes values on HN . We will establish that

WT →d W, (34)

where W is Brownian motion on HN with variance operator ΠNΦ(1)ΣΦ(1)′ΠN . To derive
(34), it suffices to show that

⟨v,WT ⟩ →d ⟨v,W ⟩ (35)

for v ∈ HN chosen arbitrarily.
For any v ∈ HN , we have

⟨v,WT (r)⟩ = T−1/2

[Tr]∑
t=1

⟨v,HN∆wt⟩ = T−1/2

[Tr]∑
t=1

⟨v,∆wt⟩. (36)

It follows that
⟨v,∆wt⟩ = ⟨v,Φ(1)εt⟩+ ⟨v,ūt−1 − ūt⟩, (37)

and therefore, for r ∈ [0, 1], it follows that

T−1/2

[Tr]∑
t=1

⟨v,∆wt⟩ = T−1/2

[Tr]∑
t=1

⟨v,Φ(1)εt⟩ − T−1/2⟨v, ū[Tr]⟩ (38)

ignoring ū0. However, we have

P

{
sup

r∈[0,1]
T−1/2

∣∣⟨v, ū[Tr]⟩
∣∣ > K

}
= P

{
max
1≤t≤n

T−1/2 |⟨v, ūt⟩| > K

}

≤
T∑
t=1

P
{
T−1/2 |⟨v, ūt⟩| > K

}
= TP

{
T−1/2 |⟨v, ūt⟩| > K

}
≤ T 1−p/2(1/Kp)E |⟨v, ūt⟩|p → 0

for any constant K > 0. Consequently, we may deduce from (38) that

T−1/2

[Tr]∑
t=1

⟨v,∆wt⟩ = T−1/2

[Tr]∑
t=1

⟨v,Φ(1)εt⟩+ op(1) (39)
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uniformly in r ∈ [0, 1]. Now (35) follows immediately from (36) and (39), as was to be
shown to derive (34). Note that (⟨v,Φ(1)εt⟩) is an i.i.d. sequence of random variables with
variance ⟨v,Φ(1)ΣΦ(1)′v⟩.

To prove (2), we let (v1, v2) ∈ HN ×HN be chosen arbitrarily. Note that⟨
v1,

(
T−2

T∑
t=1

wN
t ⊗ wN

t

)
v2

⟩
= T−2

T∑
t=1

⟨v1, wN
t ⟩⟨v2, wN

t ⟩, (40)

and that

T−2
T∑
t=1

⟨v1, wt⟩⟨v2, wt⟩ =
∫ 1

0
⟨v1,WT (r)⟩⟨v2,WT (r)⟩dr + op(1)

→d

∫ 1

0
⟨v1,W (r)⟩⟨v2,W (r)⟩dr

=

⟨
v1,

(∫ 1

0
W (r)⊗W (r)dr

)
v2

⟩
, (41)

jointly for any choice of (v1, v2) ∈ HN × HN , due to (34) and the continuous mapping
theorem. It follows from (40) and (41) that⟨

v1,

(
T−2

T∑
t=1

wN
t ⊗ wN

t

)
v2

⟩
→d

⟨
v1,

(∫ 1

0
W (r)⊗W (r)dr

)
v2

⟩
,

jointly for any choice of (v1, v2) ∈ HN ×HN . This was to be shown.
Next, to deduce (3), we simply note that

QT
NN = T−1

T∑
t=1

wS
t ⊗ wS

t = ΠS

(
T−1

T∑
t=1

ūt ⊗ ūt

)
ΠS ,

and that

T−1
T∑
t=1

ūt ⊗ ūt →p Eūt ⊗ ūt =

∞∑
i=0

Φ̄iΣΦ̄
′
i.

Finally, since we have for any (v1, v2) ∈ HN ×HS

⟨v1, QT
NSv2⟩ = T−1

T∑
t=1

⟨v1, wN
t ⟩⟨v2, wS

t ⟩ = Op(1)

from which (4) readily follows. This completes the proof. �

Proof of Proposition 3.2 It can be easily deduced from (1) and Lemma 3.1 that

T−2QT = QT
NN +Op(T

−1)

for all large T . Obviously, by construction, the M -leading eigenvectors of QT
NN associated

with nonzero eigenvalues are obtained in the unit root subspace of HN of H, and the stated
result for ΠT

N follows immediately. The result for ΠT
S can be deduced immediately from the

fact that ΠS = 1−ΠN . The proof is therefore complete. �
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Proof of Theorem 3.3 Assume that the eigensubspaces (Wi) spanned by vi(QNN ) are
one dimensional, and define vi(QT )

′ = sgn⟨vi(QT ), vi(QNN )⟩vi(QNN ). Note that since both
(vi(QNN )) and (−vi(QNN )) are eigenvectors corresponding to (λi(QNN )), the introduction
of (vi(QT )

′) is necessary for the definitiveness of eigenvectors as explained earlier. In fact,
our genuine interest of estimation is (Wi), and this explains the introduction of (vi(QT )

′).
Then from Lemma 4.2 and 4.3 in Bosq (2000), we have∣∣T−2λi(QT )− λi(QT )

′∣∣ ≤ ∥∥T−2QT −QNN

∥∥ , for i = 1, . . . ,M, (42)

and ∥∥T−2vi(QT )− vi(QT )
′∥∥ = αi

∥∥T−2QT −QNN

∥∥ , for i = 1, . . . ,M, (43)

where
αi = inf (λi−1(QNN )− λi, λi − λi−1) , i ≥ 2, and α1 = λ1 − λ2,

since both T−2QT and QNN are linear compact operators.
For our asymptotics in the unit root subspace HN , we only consider distributional con-

vergences. Therefore, we may identify the random vectors and operators on HN only up to
their distributions. Then we may invoke the well known Skorokhod representation theorem
in, e.g., Pollard (1984, Theorem IV.13), and assume that QT

NN →a.s. QNN . Obviously, the
infinite dimensionality of H does not give any complications, since the unit root subspace
HN , on which QT

NN and QNN are defined, is finite dimensional. Clearly, we have

λi(QNN ) = Op(1),

and therefore, it follows from Bosq (2000, Lemma 4.2) and the proof of Lemma 3.1 that

∥λi(QT )− λi(QNN )∥ ≤
∥∥T−2QT −QNN

∥∥
≤
(∥∥T−2QT −QT

NN

∥∥+ ∥∥QT
NN −QNN

∥∥)
= Op(T

−1) +Op(T
1−p/2)

and

∥vi(QT )− vi(QNN )∥ = Op(1)
∥∥T−2QT −QNN

∥∥
≤ Op(1)

(∥∥T−2QT −QT
NN

∥∥+ ∥∥QT
NN −QNN

∥∥)
= Op(T

−1) +Op(T
1−p/2)

for i = 1, . . . ,M . Consequently, we have(
T−2λi(QT ), vi(QT )

)
→a.s. (λi(QNN ), vi(QNN ))

for i = 1, . . . ,M, since both T−2QT and QNN are bounded linear operators in Hilbert space
H, which implies that (

T−2λi(QT ), vi(QT )
)
→d (λi(QNN ), vi(QNN ))

jointly for i = 1, . . . ,M , as was to be shown.
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For the second part, we write

ΠT
SQTΠ

T
S = T 2ΠT

SQ
T
NNΠT

S + TΠT
SQ

T
NSΠ

T
S + TΠT

SQ
T
SNΠT

S + TΠT
SQ

T
SSΠ

T
S , (44)

where QT
NN , QT

NS , Q
T
SN and QT

SS are defined as in (1), and note that

ΠT
SΠN = ΠSΠN + (ΠT

S −ΠS)ΠN = Op(T
−1) (45)

and
ΠT

SΠS = ΠSΠS + (ΠT
S −ΠS)ΠS = ΠS +Op(T

−1) (46)

due to Lemma 3.1. Clearly, we have ΠSΠN = 0 and ΠSΠS = ΠS .
We may easily deduce from (45) that

ΠT
SQ

T
NNΠT

S = ΠT
SΠN

(
1

T 2

T∑
t=1

wt ⊗ wt

)
ΠNΠT

S = Op(T
−2) (47)

since

1

T 2

T∑
t=1

wt ⊗ wt = Op(1).

Moreover, it follows from (45) and (46) that

ΠT
SQ

T
SNΠT

S = ΠT
S

(
1

T

T∑
t=1

wS
t ⊗ wt

)
ΠNΠT

S = Op(T
−1), (48)

since

1

T

T∑
t=1

wS
t ⊗ wt = Op(1).

Similarly, we have ΠT
SQ

T
NSΠ

T
S = Op(T

−1). Finally, it can be deduced that

ΠT
SQ

T
SSΠ

T
S = ΠT

S

(
1

T

T∑
t=1

wS
t ⊗ wS

t

)
ΠT

S =
1

T

T∑
t=1

wS
t ⊗ wS

t +Op(T
−1) (49)

due to (46).
Now we have from (44), (47), (48) and (49) that

T−1ΠT
SQTΠ

T
S = ΠT

SQ
T
SSΠ

T
S +Op(T

−1) =
1

T

T∑
t=1

wS
t ⊗ wS

t +Op(T
−1).

The eigenvectors (vM+i(QT )), i = 1, 2, . . ., are the eigenvectors of ΠT
SQTΠ

T
S associated with

nonzero eigenvalues and

1

T

T∑
t=1

wS
t ⊗ wS

t = QSS +Op(T
−1/2)
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for all large T . Since QSS is also a linear compact operator, we similarly have∣∣T−1λi (QT )− λi (QSS)
∣∣ ≤ ∥∥T−1ΠT

SQTΠ
T
S −QSS

∥∥ , for i = M + 1 . . . ,

and ∥∥vi (QT )− vi (QT )
′∥∥ = αi

∥∥T−1ΠT
SQTΠ

T
S −QSS

∥∥ , for i = M + 1 . . . ,

where
αi = inf (λi−1 − λi, λi − λi−1) , i = M + 1 . . . .

The proof for the stationary directions is therefore complete. �

Proof of Corollary 3.4 The first part follows immediately from∣∣⟨ΠT
Nv, wt⟩ − ⟨ΠNv, wt⟩

∣∣ = ∣∣⟨(ΠT
N −ΠN )v, wt⟩

∣∣
≤
∥∥(ΠT

N −ΠN )v
∥∥ ∥wt∥

≤
∥∥(ΠT

N −ΠN )
∥∥( max

1≤t≤T
∥wt∥

)
= Op(T

−1)Op(T
1/2).

Similarly, the second part can be deduced from∣∣⟨ΠT
Nv,∆wt⟩ − ⟨ΠNv,∆wt⟩

∣∣ = ∣∣⟨(ΠT
N −ΠN )v,∆wt⟩

∣∣
≤
∥∥(ΠT

N −ΠN )v
∥∥ ∥∆wt∥

≤
∥∥(ΠT

N −ΠN )
∥∥( max

1≤t≤T
∥∆wt∥

)
= Op(T

−1)Op(T
1/p).

upon noticing that
max
1≤t≤T

∥∆wt∥ = Op(T
1/p).

The proof is therefore complete. �

Proof of Theorem 3.5 As noted, we may let

zt = (⟨ΠNv1 (QT ) , wt⟩, . . . , ⟨ΠNvM (QT ) , wt⟩)′

without loss of generality. Therefore, it follows immediately from Corollary 3.4 that

max
1≤t≤T

∥z̃t − zt∥ = Op(T
−1/2) (50)

max
1≤t≤T

∥∆z̃t −∆zt∥ = Op(T
−1+1/p) (51)
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We may easily deduce from (50) that∥∥∥∥∥
T∑
t=1

z̃tz̃
′
t −

T∑
t=1

ztz
′
t

∥∥∥∥∥ ≤ 2

(
max
1≤t≤T

∥z̃t − zt∥
) T∑

t=1

∥zt∥+ T

(
max
1≤t≤T

∥z̃t − zt∥
)2

= Op(T
−1/2)Op(T

3/2) + TOp(T
−1) = Op(T ),

which implies that
Q̃T

M = QT
M +Op(T ) (52)

for all large T .
Moreover, we have from (51) that

∣∣∣Γ̃T (i)− ΓT (i)
∣∣∣ ≤ ( max

1≤t≤T
∥∆z̃t −∆zt∥

)
1

T

T∑
t=1

∥∆zt∥+
(

max
1≤t≤T

∥∆z̃t−i −∆zt−i∥
)2

= Op(T
−1+1/p)Op(1) +Op(T

−2+2/p) = Op(T
−1+1/p),

and therefore, ∣∣∣Ω̃T
M − ΩT

M

∣∣∣ ≤ ∑
|i|≤ℓ

|ϖℓ(i)|
∣∣∣Γ̃T (i)− ΓT (i)

∣∣∣
= Op(ℓ)Op(T

−1+1/p) = Op(ℓT
−1+1/p) = op(1). (53)

Now it can be easily deduced from (52) and (53) that

λi(Q̃
T
M , Ω̃T

M ) = λi(Q
T
M ,ΩT

M ) + op(1)

from which the first part follows immediately.
To establish the second part, we may simply consider the asymptotic behavior of

λM (QT
M ,ΩT

M ). Note that the asymptotic behavior of the newly defined statistic τTM is
different from that of σT

M also under the alternative hypothesis (9). Momentarily, we let
M = 0 and Γ(i) = 0 for all |i| > ℓ. In this simple case, we have ΩM = 0 and

ΩT−1

M = Op(T
1/2)

with the choice of ϖℓ(i) ≡ 1 for all |i| ≤ ℓ. The order of ΩT−1

M is in general smaller than
Op(T

1/2) if Γ(i) ̸= 0 for infinitely many i’s and we have to increase ℓ as T → ∞ with an
appropriate choice of ϖℓ. Under the alternative hypothesis (9), ΩM becomes singular and
we may now easily see

λM (QT
M ,ΩT

M ) = Op(T
3/2),

which implies that τTM = Op(T
−1/2). This was to be shown. �
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Proof of Lemma 4.1 Note that

ŵt = f̂t − T−1
T∑
t=1

f̂t

=

(
ft − T−1

T∑
t=1

ft

)
+ (f̂t − ft)− T−1

T∑
t=1

(f̂t − ft)

=

(
wt − T−1

T∑
t=1

wt

)
+

(
∆t − T−1

T∑
t=1

∆t

)

= wt +

(
∆t − T−1

T∑
t=1

∆t

)
,

where

wt = wt −
1

T

T∑
t=1

wt.

Define

QT
NN

=
1

T 2
ΠN

(
T∑
t=1

wt ⊗ wt

)
ΠN , (54)

and let (v1, v2) ∈ HN ×HN be chosen arbitrarily. We have

⟨v1, QT
NN

v2⟩ = T−2
T∑
t=1

⟨v1, wt⟩⟨v2, wt⟩

= T−2
T∑
t=1

⟨v1, wt⟩⟨v2, wt⟩ −

⟨
v1, T

−3/2
T∑
t=1

wt

⟩⟨
v2, T

−3/2
T∑
t=1

wt

⟩

→d

∫ 1

0
⟨v1,W (r)⟩⟨v2,W (r)⟩dr −

⟨
v1,

∫ 1

0
W (r)dr

⟩⟨
v2,

∫ 1

0
W (r)dr

⟩
=

∫ 1

0
⟨v1,W (r)⟩⟨v2,W (r)⟩dr

= ⟨v1, QNN
v2⟩ (55)

similarly as shown in the proof of Lemma 3.1. Obviously, (55) holds jointly for arbitrary
(v1, v2) ∈ HN ×HN , and therefore, we have

QT
NN

→d Q
NN

, (56)

where QT
NN

is defined in (54).
Now we define

∆t = ∆t −
1

T

T∑
t=1

∆t,
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and write

Q̂T
NN −QT

NN
=

1

T 2

T∑
t=1

ŵN
t ⊗ ŵN

t − 1

T 2

T∑
t=1

wN
t ⊗ wN

t

= ΠN (D1 +D2 +D3)ΠN , (57)

where wN
t = ΠNwt, and

D1 =
1

T 2

T∑
t=1

∆t ⊗∆t,

D2 = − 1

T 2

T∑
t=1

∆t ⊗ wt,

D3 = − 1

T 2

T∑
t=1

wt ⊗∆t.

Once again, we let (v1, v2) ∈ HN ×HN be chosen arbitrarily.
For D1, we have

⟨v1, D1v2⟩ =
1

T

⟨
v1,

(
T−1

T∑
t=1

∆t ⊗∆t

)
v2

⟩

=
1

T

⟨
v1,

(
T−1

T∑
t=1

∆t ⊗∆t − T−1
T∑
t=1

∆t ⊗ T−1
T∑
t=1

∆t

)
v2

⟩

=
1

T 2

T∑
t=1

⟨v1,∆t⟩⟨v2,∆t⟩ −
1

T

(
1

T

T∑
t=1

⟨v1,∆t⟩

)(
1

T

T∑
t=1

⟨v2,∆t⟩

)
.

However,∣∣∣∣∣T−2
T∑
t=1

⟨v1,∆t⟩⟨v2,∆t⟩

∣∣∣∣∣ ≤ 1

T

(
T−1

T∑
t=1

⟨v1,∆t⟩2
)1/2(

T−1
T∑
t=1

⟨v2,∆t⟩2
)1/2

,

and, due to Assumption 4.1, we have

1

T

T∑
t=1

⟨vi,∆t⟩2 ≤
1

T

T∑
t=1

∥∆t∥2 = op(1)

for i = 1, 2. Moreover, we have∣∣∣∣∣ 1T
T∑
t=1

⟨vi,∆t⟩

∣∣∣∣∣ ≤ 1

T

T∑
t=1

|⟨vi,∆t⟩| ≤
1

T

T∑
t=1

∥∆t∥ = op(1)
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for i = 1, 2 by Assumption 4.1. Consequently, we have

⟨v1, D1v2⟩ = op(T
−1) (58)

under Assumption 4.1.
For D2, we have

⟨v1, D2v2⟩ = −

⟨
v1,

(
T−2

T∑
t=1

∆t ⊗ wt

)
v2

⟩

= − 1

T 2

T∑
t=1

⟨v1,∆t⟩⟨v2, wt⟩

= − 1

T 2

T∑
t=1

⟨v1,∆t⟩⟨v2, wt⟩+
1

T 1/2

(
1

T

T∑
t=1

⟨v1,∆t⟩

)(
1

T 3/2

T∑
t=1

⟨v2, wt⟩

)
.

However, we have

1

T 3/2

T∑
t=1

⟨v2, wt⟩ = Op(1),
1

T 2

T∑
t=1

⟨v2, wt⟩2 = Op(1),

and therefore it follows that∣∣∣∣∣ 1T 2

T∑
t=1

⟨v1,∆t⟩⟨v2, wt⟩

∣∣∣∣∣ ≤ 1

T 1/2

(
1

T

T∑
t=1

⟨v1,∆t⟩2
)1/2(

1

T 2

T∑
t=1

⟨v2, wt⟩2
)1/2

= op(T
−1/2).

and

1

T 1/2

(
1

T

T∑
t=1

⟨v1,∆t⟩

)(
1

T 3/2

T∑
t=1

⟨v2, wt⟩

)
= op(T

−1/2)

under Assumption 4.1. Consequently, it follows that

⟨v1, D2v2⟩ = op(T
−1/2), (59)

and we may also show that
⟨v1, D3v2⟩ = op(T

−1/2) (60)

similarly. Now it follows from (57), (58), (59) and (60) that

Q̂T
NN = QT

NN
+ op(1),

from which and (56) the first part follows immediately.
To establish the second part, we show that

Q̂T
SS = QT

SS + op(1). (61)
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Note that

Q̂T
SS −QT

SS =

(
1

T

T∑
t=1

ŵS
t ⊗ ŵS

t − 1

T

T∑
t=1

wS
t ⊗ wS

t

)

+

(
1

T

T∑
t=1

wS
t ⊗ wS

t − 1

T

T∑
t=1

wS
t ⊗ wS

t

)
,

where wS
t = ΠSwt. It is straightforward to show that

1

T

T∑
t=1

wS
t ⊗ wS

t =
1

T

T∑
t=1

wS
t ⊗ wS

t + op(1).

To proceed, we write

1

T

T∑
t=1

ŵS
t ⊗ ŵS

t − 1

T

T∑
t=1

wS
t ⊗ wS

t = ΠS(D1 +D2 +D3)ΠS ,

where we redefine

D1 =
1

T

T∑
t=1

∆t ⊗∆t,

D2 = − 1

T

T∑
t=1

∆t ⊗ wt,

D3 = − 1

T

T∑
t=1

wt ⊗∆t.

Choose (v1, v2) ∈ HS ×HS arbitrarily.
For D1, it follows that

⟨v1, D1v2⟩ =
1

T

T∑
t=1

⟨v1,∆t⟩⟨v2,∆t⟩ −

(
1

T

T∑
t=1

⟨v1,∆t⟩

)(
1

T

T∑
t=1

⟨v2,∆t⟩

)
.

However, we have in particular∣∣∣∣∣T−1
T∑
t=1

⟨v1,∆t⟩⟨v2,∆t⟩

∣∣∣∣∣ ≤
(
T−1

T∑
t=1

⟨v1,∆t⟩2
)1/2(

T−1
T∑
t=1

⟨v2,∆t⟩2
)1/2

,

and we may easily show that ⟨v1, D1v2⟩ = op(1) under Assumption 4.1. For D2, we have

⟨v1, D2v2⟩ = − 1

T

T∑
t=1

⟨v1,∆t⟩⟨v2, wt⟩+

(
1

T

T∑
t=1

⟨v1,∆t⟩

)(
1

T

T∑
t=1

⟨v2, wt⟩

)
,

from which it follows immediately that ⟨v1, D2v2⟩ = op(1). Therefore, we may readily
establish (61) and the second part is easily deduced from Lemma 3.1. The rest of the proof
is straightforward, and therefore, the details are omitted. �
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Proof of Theorem 4.2 Note that

T−2Q̂T = Q̂T
NN +Op

(
T−1

)
from Lemma 4.1, and then by the same argument of the proof proposition 3.2, we have

Π̂T
N = ΠN +Op(T

−1) and Π̂T
S = ΠS +Op(T

−1) (62)

for all large T . Now, note that (42) and (43) continue to hold for Q̂T and Q
NN

, and
therefore the first part of Lemma can be easily deduced by Lemma 4.1.

The second part of proof is also very similar to the one in Theorem 3.3. We first write

Π̂T
S Q̂T Π̂

T
S = T 2Π̂T

S Q̂
T
NN Π̂T

S + T Π̂T
S Q̂

T
NSΠ̂

T
S + T Π̂T

S Q̂
T
SN Π̂T

S + T Π̂T
S Q̂

T
SSΠ̂

T
S ,

where Q̂T
NN , Q̂T

NS , Q̂
T
SN and Q̂T

SS are defined as in (25). By (62), we have

T−1Π̂T
S Q̂T Π̂

T
S =

1

T

T∑
t=1

ŵS
t ⊗ ŵS

t +Op(T
−1),

following the line of proof in Theorem 3.3. Then, (vM+i(Q̂T )), i = 1, 2, . . ., are the eigen-
vectors of Π̂T

S Q̂T Π̂
T
S and QSS for large ̸ T since

1

T

T∑
t=1

ŵS
t ⊗ ŵS

t = QSS +Op(T
−1/2).

The proof is therefore complete. �

Proof of Theorem 4.3 Let QT
M

be defined from (zt), where

zt = (⟨v1(QT ), wt⟩, . . . , ⟨vM (QT ), wt⟩)
′ ,

analogously as Q̂T
M in (27) defined from (ẑt) in (26), where (wt) is introduced in the proof

of Lemma 4.1. We need to show that

Q̂T
M = QT

M
+ op(T

3/2). (63)

To show (63), we note that for i = 1, . . . ,M∣∣∣⟨vi(Q̂T ), ŵt⟩ − ⟨vi(QT ), wt⟩
∣∣∣ ≤ ∣∣∣⟨vi(Q̂T ), ŵt⟩ − ⟨vi(QT ), ŵt⟩

∣∣∣
+
∣∣∣⟨vi(QT ), ŵt⟩ − ⟨vi(QT ), wt⟩

∣∣∣, (64)

each term of which will be considered in sequel below.
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Consider the first term in (64). For any v ∈ H, we have∣∣∣⟨Π̂T
Nv, ŵt⟩ − ⟨ΠT

Nv, ŵt⟩
∣∣∣ = ∣∣∣⟨(Π̂T

N −ΠT
N )v, ŵt⟩

∣∣∣
≤
∥∥∥(Π̂T

N −ΠT
N )v

∥∥∥ ∥ŵt∥

≤
∥∥∥Π̂T

N −ΠT
N

∥∥∥( max
1≤t≤T

∥ŵt∥
)

≤
(∥∥∥Π̂T

N −ΠN

∥∥∥+ ∥∥ΠT
N −ΠN

∥∥)( max
1≤t≤T

∥ŵt∥
)
.

Note that

∥ŵt∥ ≤ ∥wt∥+ ∥∆t∥+

∥∥∥∥∥ 1T
T∑
t=1

∆t

∥∥∥∥∥ ,
from which we may deduce that

max
1≤t≤T

∥ŵt∥ ≤ max
1≤t≤T

∥wt∥+Op(1) = Op(T
1/2).

Therefore, we have

max
1≤t≤T

∣∣∣⟨Π̂T
Nv, ŵt⟩ − ⟨ΠT

Nv, ŵt⟩
∣∣∣ = Op(T

−1)Op(T
1/2) = Op(T

−1/2) (65)

from Corollary 3.4, (62) and Assumption 4.1. For the second term in (64), we note that

|⟨vi(QT ), ŵt⟩ − ⟨vi(QT ), wt⟩| ≤ |⟨vi(QT ), ŵt − wt⟩|

≤ ∥ŵt − wt∥ ≤ ∥∆t∥+

∥∥∥∥∥ 1T
T∑
t=1

∆t

∥∥∥∥∥ (66)

for i = 1, . . . ,M . Consequently, it follows from (65) and (66) that∣∣∣⟨vi(Q̂T ), ŵt⟩ − ⟨vi(QT ), wt⟩
∣∣∣ ≤ Op(T

−1/2) + ∥∆t∥+ op(1) (67)

for i = 1, . . . ,M , uniformly in t = 1, . . . , T .
Now we may deduce from (67) that for all i, j = 1, . . . ,M∣∣∣∣∣

T∑
t=1

⟨vi(Q̂T ), ŵt⟩⟨vj(Q̂T ), ŵt⟩ −
T∑
t=1

⟨vi(QT ), wt⟩⟨vj(QT ), wt⟩

∣∣∣∣∣
≤
(

max
1≤t≤T

∥ŵt∥
) T∑

t=1

∣∣∣⟨vi(Q̂T ), ŵt⟩ − ⟨vi(QT ), wt⟩
∣∣∣

+

(
max
1≤t≤T

∥wt∥
) T∑

t=1

∣∣∣⟨vj(Q̂T ), ŵt⟩ − ⟨vj(QT ), wt⟩
∣∣∣

= Op(T
1/2)

(
Op(T

1/2) + op(T )
)
= op(T

3/2),
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from which (63) follows immediately. Similarly as above, we may also readily show that

Ω̂T
M = ΩT

M + op(1). (68)

In particular, note that

∥∆ŵt∥ ≤ ∥∆wt∥+ ∥∆t∥+ ∥∆t−1∥ ,

and
max
1≤t≤T

∥∆ŵt∥ ≤ max
1≤t≤T

∥∆wt∥+Op(1) = Op(T
1/p) +Op(1).

Therefore, for any v ∈ H,∣∣⟨ΠT
Nv,∆ŵt⟩ − ⟨ΠNv,∆ŵt⟩

∣∣ ≤ ∥∥(ΠT
N −ΠN )

∥∥( max
1≤t≤T

∥∆ŵt∥
)

= Op(T
−1)Op(T

1/p), (69)

from the line of proof of Corollary 3.4.
Now, following the line in (64) and (69), we have∣∣∣⟨vi(Q̂T ),∆ŵt⟩ − ⟨vi(QT ),∆wt⟩

∣∣∣ ≤ ∣∣∣⟨vi(Q̂T ),∆ŵt⟩ − ⟨vi(QT ),∆ŵt⟩
∣∣∣

+
∣∣∣⟨vi(QT ),∆ŵt⟩ − ⟨vi(QT ),∆wt⟩

∣∣∣,
≤ Op(T

−1+1/p) + ∥∆t∥+ ∥∆t−1∥

for i = 1, . . . ,M , uniformly in t = 1, . . . , T , which implies that

max
1≤t≤T

∥∆ẑt −∆zt∥ = Op(T
−1+1/p). (70)

Following the proof of Theorem 3.5 along with (70), we establish (68). Finally, it follows
from (63) and (68) that

λi(Q̂
T
M , Ω̂T

M ) = λi(Q̃
T
M , Ω̃T

M ) + op(1)

for i = 1, . . . ,M . The proof of the second part is similar and omitted here. �
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